WO2018055695A1 - 鋼板 - Google Patents
鋼板 Download PDFInfo
- Publication number
- WO2018055695A1 WO2018055695A1 PCT/JP2016/077844 JP2016077844W WO2018055695A1 WO 2018055695 A1 WO2018055695 A1 WO 2018055695A1 JP 2016077844 W JP2016077844 W JP 2016077844W WO 2018055695 A1 WO2018055695 A1 WO 2018055695A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- volume fraction
- low
- bainite
- rolling
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
Definitions
- the present invention relates to a high-strength steel plate suitable for automobiles, building materials, home appliances, and the like.
- TRIP steel plate using transformation induced plasticity TRIP
- An object of the present invention is to provide a steel sheet that can achieve both tensile strength, ductility, hole expansibility, hydrogen embrittlement resistance and toughness.
- the present inventors have intensively studied to solve the above problems.
- the main phase is tempered martensite and / or bainite having a predetermined effective crystal grain size, or both, and the iron-based carbide having a predetermined number density is included in the tempered martensite and the lower bainite. It has been found that tensile strength, ductility, hole expansibility, hydrogen embrittlement resistance and toughness can be compatible.
- the inventor of the present application has come up with the following aspects of the invention as a result of further intensive studies based on such knowledge.
- Nb 0.005% to 0.3%
- Ti 0.005% to 0.3%
- V 0.005% to 0.3%
- the steel structure and the effective crystal grain size of tempered martensite and bainite are appropriate, the tensile strength, ductility, hole expansibility, hydrogen embrittlement resistance and toughness can be compatible.
- the steel sheet according to this embodiment has a volume fraction of tempered martensite and bainite: 70% or more and less than 92% in total, retained austenite: 8% or more and less than 30%, ferrite: less than 10%, fresh martensite: 10% And pearlite: a steel structure represented by less than 10%.
- Tempered martensite and bainite are low-temperature transformation structures containing iron-based carbides, and contribute to both hole expandability and hydrogen embrittlement resistance.
- the total volume fraction of tempered martensite and bainite is less than 70%, it becomes difficult to sufficiently achieve both hole expandability and hydrogen embrittlement resistance. Therefore, the total volume fraction of tempered martensite and bainite is 70% or more in total.
- the volume fraction of tempered martensite and bainite is 92% or more, residual austenite described later is insufficient. Therefore, the volume fraction of tempered martensite and bainite is less than 92%.
- Tempered martensite is an aggregate of lath-like crystal grains and contains iron-based carbide having a major axis of 5 nm or more inside.
- the iron-based carbide contained in the tempered martensite has a plurality of variants, and the iron-based carbide existing in one crystal grain extends in a plurality of directions.
- Bainite includes upper bainite and lower bainite.
- Lower bainite is an aggregate of lath-like crystal grains, and contains iron-based carbide having a major axis of 5 nm or more inside. However, unlike tempered martensite, the iron-based carbide contained in the lower bainite has a single variant, and the iron-based carbide existing in one crystal grain extends substantially in a single direction. .
- substantially single direction means a direction in which the angle difference is within 5 °.
- Upper bainite is a collection of lath-like crystal grains that do not contain iron-based carbides inside.
- the tempered martensite and the lower bainite can be discriminated based on whether the direction of extension of the iron-based carbide is plural or single. If the total volume fraction of tempered martensite and bainite is 70% or more, the breakdown is not limited. This is because, as will be described in detail later, the iron-based carbide variant does not affect the compatibility between hole expandability and hydrogen embrittlement resistance. However, since the formation of bainite requires a relatively long holding at 300 ° C. to 500 ° C., a higher ratio of tempered martensite is desirable from the viewpoint of productivity.
- Residual austenite contributes to the improvement of ductility through transformation induced plasticity (TRIP). If the volume fraction of retained austenite is less than 8%, sufficient ductility cannot be obtained. Therefore, the volume fraction of retained austenite is 8% or more, preferably 10% or more. On the other hand, when the volume fraction of retained austenite is 30% or more, tempered martensite and bainite are insufficient. Therefore, the volume fraction of retained austenite is less than 30%.
- Ferrite is a soft structure that does not contain a substructure such as lath inside, and is likely to crack due to a difference in strength at the interface with tempered martensite and bainite, which are hard structures. That is, ferrite tends to deteriorate toughness and hole expandability. Ferrite also degrades low temperature toughness. Therefore, the lower the volume fraction of ferrite, the better. In particular, when the volume fraction of ferrite is 10% or more, the toughness and the hole expandability are significantly reduced. Therefore, the volume fraction of ferrite is less than 10%.
- Fresh martensite is an as-quenched martensite that does not contain iron-based carbides, and contributes to an improvement in strength, but significantly deteriorates the hydrogen embrittlement resistance.
- Fresh martensite also causes deterioration in low-temperature toughness due to a difference in hardness from tempered martensite and bainite. Therefore, the lower the volume fraction of fresh martensite, the better. In particular, the volume fraction of fresh martensite is 10% or more, and the deterioration of hydrogen embrittlement resistance is remarkable. Therefore, the volume fraction of fresh martensite is set to less than 10%.
- Pearlite deteriorates toughness and hole expansibility like ferrite. Therefore, the lower the pearlite volume fraction, the better. In particular, when the volume fraction of pearlite is 10% or more, the toughness and the hole expandability are significantly reduced. Therefore, the pearlite volume fraction is less than 10%.
- a matching interface is included between the iron-based carbide in the tempered martensite and lower bainite and the parent phase, and matching strain exists at the matching interface.
- This matched strain exhibits hydrogen trapping ability, improves the resistance to hydrogen embrittlement, and improves the delayed fracture resistance. If the number density of such iron-based carbides is less than 1.0 ⁇ 10 6 (pieces / mm 2 ), sufficient hydrogen embrittlement resistance cannot be obtained.
- the number density of iron-based carbides in the tempered martensite and lower bainite is 1.0 ⁇ 10 6 (pieces / mm 2 ) or more, preferably 2.0 ⁇ 10 6 (pieces / mm 2 ) or more, and more Desirably, it should be 3.0 ⁇ 10 6 (pieces / mm 2 ) or more.
- the iron-based carbide is a general term for carbides mainly composed of Fe and C.
- ⁇ carbide, ⁇ carbide, and cementite ( ⁇ carbide) having different crystal structures belong to the iron-based carbide.
- Iron-based carbides have a specific orientation relationship in the parent phase martensite and lower bainite. Part of Fe contained in the iron-based carbide may be substituted with other elements of Mn, Si, and Cr. Even in this case, if the number density of the iron-based carbide having a major axis length of 5 nm or more is 1.0 ⁇ 10 6 (pieces / mm 2 ) or more, excellent hydrogen embrittlement resistance can be obtained.
- the number density counting object is iron-based carbide with a major axis size of 5 nm or more. Although there is a limit to the size that can be observed with a scanning electron microscope and a transmission electron microscope, iron-based carbides having a major axis size of 5 nm or more are generally observable.
- the tempered martensite and the lower bainite may contain an iron-based carbide having a major axis size of less than 5 nm. The finer the iron-based carbide, the better the hydrogen embrittlement resistance.
- the iron-based carbide is fine, for example, the average length of the long axis is desirably 350 nm or less, more desirably 250 nm or less, and even more desirably 200 nm or less.
- iron-based carbides contribute to the improvement of hydrogen embrittlement resistance.
- suppression of precipitation of iron-based carbides is particularly important, and precipitation of iron-based carbides has been suppressed.
- the steel sheet containing retained austenite and fine iron-based carbide has not been studied so far, and the effect of improving the hydrogen embrittlement resistance due to the iron-based carbide in TRIP steel has not been found.
- the effective crystal grain size of tempered martensite and bainite will be described. A method for measuring the effective crystal grain size of tempered martensite and bainite will be described later. However, if the effective crystal grain size of tempered martensite and bainite exceeds 5 ⁇ m, sufficient toughness cannot be obtained. Therefore, the effective crystal grain size of tempered martensite and bainite is 5 ⁇ m or less, preferably 3 ⁇ m or less.
- a sample is taken from the steel sheet using a cross section parallel to the rolling direction and parallel to the thickness direction as an observation surface.
- the observation surface is polished, nital etched, and the range from the depth of the steel plate to the depth of t / 8 to the depth of 3t / 8 when the thickness of the steel plate is t is an electrolytic radiation type at a magnification of 5000 times.
- FE-SEM scanning electron microscope
- Tempered martensite, upper bainite and lower bainite can be distinguished from each other by the presence and absence of iron-based carbides in the lath-like crystal grains and the elongation direction. Such observation is performed for 10 visual fields, and each area fraction of ferrite, pearlite, upper bainite, lower bainite, and tempered martensite is obtained from the average value of 10 visual fields. Since the area fraction is equivalent to the volume fraction, it can be directly used as the volume fraction. In this observation, the number density of iron-based carbides in tempered martensite and lower bainite can also be specified.
- volume fraction V ⁇ of retained austenite is expressed by the following equation.
- V ⁇ (I 200f + I 220f + I 311f ) / (I 200b + I 211b ) ⁇ 100
- I 200f , I 220f , and I 311f are the intensity of diffraction peaks of (200), (220), and (311) of the face-centered cubic lattice (fcc) phase, respectively, and I 200b and I 211b are body-centered cubic lattices, respectively.
- I 200fcc face-centered cubic lattice
- Fresh martensite and retained austenite are not sufficiently corroded by nital etching, and can be distinguished from ferrite, pearlite, bainite, and tempered martensite. Therefore, the volume fraction of fresh martensite can be specified by subtracting the volume fraction V ⁇ of retained austenite from the remaining volume fraction in FE-SEM observation.
- the block boundary is an effective crystal unit for crack propagation that governs toughness. Since the block boundary can be determined in a region surrounded by a boundary having an orientation difference of 10 ° or more, it can be reflected by illustrating a boundary having an orientation difference of 10 ° or more on the crystal orientation map measured by EBSD.
- the equivalent circle diameter in such a region surrounded by a boundary having an orientation difference of 10 ° or more is defined as an effective crystal grain size. According to the verification by the present inventors, a significant correlation between the effective grain boundary and toughness is confirmed when it is considered that an effective grain boundary exists between measurement points having an orientation difference of 10 ° or more. ing.
- the chemical composition of the steel plate and the slab used for manufacturing the steel plate according to the embodiment of the present invention will be described.
- the steel sheet according to the embodiment of the present invention is manufactured through hot rolling, cold rolling, continuous annealing, tempering, and the like of a slab. Therefore, the chemical composition of the steel plate and slab takes into account not only the properties of the steel plate but also these treatments.
- “%”, which is a unit of content of each element contained in the steel plate and slab, means “mass%” unless otherwise specified.
- the steel sheet according to the present embodiment is, in mass%, C: 0.15% to 0.45%, Si: 1.0% to 2.5%, Mn: 1.2% to 3.5%, Al: 0.001% to 2.0%, P: 0.02% or less, S: 0.02% or less, N: 0.007% or less, O: 0.01% or less, Mo: 0.0% to 1 0.0%, Cr: 0.0% to 2.0%, Ni: 0.0% to 2.0%, Cu: 0.0% to 2.0%, Nb: 0.0% to 0.3% %, Ti: 0.0% to 0.3%, V: 0.0% to 0.3%, B: 0.00% to 0.01%, Ca: 0.00% to 0.01%, It has a chemical composition represented by Mg: 0.00% to 0.01%, REM: 0.00% to 0.01%, and the balance: Fe and impurities. Examples of the impurities include those contained in raw materials such as ore and scrap and those contained in the manufacturing process.
- C contributes to the improvement of strength and the improvement of hydrogen embrittlement resistance through the formation of iron-based carbides.
- the C content is 0.15% or more, preferably 0.18% or more.
- the C content is 0.45% or less, preferably 0.35% or less.
- Si contributes to the improvement of strength, or suppresses precipitation of coarse iron-based carbides in austenite, thereby contributing to the formation of stable retained austenite at room temperature. If the Si content is less than 1.0%, the precipitation of coarse iron-based carbides cannot be sufficiently suppressed. Therefore, the Si content is 1.0% or more, preferably 1.2% or more. On the other hand, if the Si content exceeds 2.5%, the formability deteriorates due to the embrittlement of the steel sheet. Therefore, the Si content is set to 2.5% or less, preferably 2.0% or less.
- Mn contributes to improvement in strength or suppresses ferrite transformation during cooling after annealing. If the Mn content is less than 1.2%, ferrite is excessively generated, and it is difficult to ensure sufficient tensile strength, for example, 980 MPa or more. Therefore, the Mn content is 1.2% or more, preferably 2.2% or more. On the other hand, if the Mn content exceeds 3.5%, the slab and the hot-rolled steel sheet are excessively strengthened and the productivity is lowered. Therefore, the Mn content is 3.5% or less, preferably 2.8% or less. From the viewpoint of manufacturability, Mn is desirably 3.00% or less.
- Al 0.001% to 2.0%
- Al is inevitably contained in the steel, but suppresses the precipitation of coarse iron-based carbides in austenite, and contributes to the formation of stable austenite at room temperature. Al also functions as a deoxidizer. Therefore, Al may be contained. On the other hand, if the Al content exceeds 2.0%, the productivity is lowered. Therefore, Al is set to 2.0% or less, preferably 1.5% or less. Reduction of the Al content is costly, and if it is attempted to reduce it to less than 0.001%, the cost increases remarkably. For this reason, Al content shall be 0.001% or more.
- P 0.02% or less
- P is not an essential element but is contained as an impurity in steel, for example. P tends to segregate in the central part in the thickness direction of the steel sheet and embrittles the weld. For this reason, the lower the P content, the better. In particular, when the P content exceeds 0.02%, the weldability is significantly reduced. Therefore, the P content is 0.02% or less, preferably 0.015% or less. Reduction of the P content requires a cost, and if it is attempted to reduce it to less than 0.0001%, the cost increases remarkably. For this reason, the P content may be 0.0001% or more.
- S is not an essential element but is contained as an impurity in steel, for example.
- S forms coarse MnS and reduces hole expansibility.
- S may reduce weldability and may reduce manufacturability of casting and hot rolling. For this reason, the lower the S content, the better.
- the S content is 0.02% or less, preferably 0.005% or less. Reduction of the S content is costly, and if it is attempted to reduce it to less than 0.0001%, the cost will increase significantly, and if it is attempted to reduce it to less than 0.0001%, the cost will further increase significantly. For this reason, S content is good also as 0.0001% or more.
- N is not an essential element but is contained as an impurity in steel, for example. N forms coarse nitrides and degrades bendability and hole expansibility. N also causes blowholes during welding. For this reason, the lower the N content, the better. In particular, when the N content exceeds 0.007%, the bendability and hole expansibility are significantly reduced. Therefore, the N content is 0.007% or less, preferably 0.004% or less. Reduction of the N content is costly, and if it is attempted to reduce it to less than 0.0005%, the cost increases remarkably. For this reason, the N content may be 0.0005% or more.
- O is not an essential element but is contained as an impurity in steel, for example. O forms an oxide and deteriorates moldability. For this reason, the lower the O content, the better. In particular, when the O content exceeds 0.01%, the moldability is significantly reduced. Therefore, the O content is 0.01% or less, and preferably 0.005% or less. Reduction of the O content is costly, and if it is attempted to reduce it to less than 0.0001%, the cost increases remarkably. For this reason, the O content may be 0.0001% or more.
- Mo, Cr, Ni, Cu, Nb, Ti, V, B, Ca, Mg, and REM are not essential elements, but are optional elements that may be appropriately contained in steel plates and slabs up to a predetermined amount.
- Mo, Cr, Ni, and Cu contribute to the improvement of strength or suppress ferrite transformation during cooling after annealing. Therefore, Mo, Cr, Ni, Cu or any combination thereof may be contained.
- the Mo content is preferably 0.01% or more
- the Cr content is preferably 0.05% or more
- the Ni content is 0.05% or more
- the Cu content is 0.05% or more.
- the Mo content is over 1.0%, the Cr content is over 2.0%, the Ni content is over 2.0%, or the Cu content is 2.0%. If it is over, the productivity of hot rolling is lowered.
- the Mo content is 1.0% or less
- the Cr content is 2.0% or less
- the Ni content is 2.0% or less
- the Cu content is 2.0% or less. That is, Mo: 0.01% to 1.0%, Cr: 0.05% to 2.0%, Ni: 0.05% to 2.0%, or Cu: 0.05% to 2.0% Or any combination thereof is preferable.
- Nb 0.0% to 0.3%, Ti: 0.0% to 0.3%, V: 0.0% to 0.3%)
- Nb, Ti and V generate alloy carbonitrides and contribute to the improvement of strength through precipitation strengthening and fine grain strengthening. Therefore, Nb, Ti or V or any combination thereof may be contained.
- the Nb content is preferably 0.005% or more
- the Ti content is preferably 0.005% or more
- the V content is 0.005% or more. It is preferable.
- the Nb content is more than 0.3%, the Ti content is more than 0.3%, or the V content is more than 0.3%, the alloy carbonitride is excessively precipitated. As a result, moldability deteriorates.
- the Nb content is 0.3% or less
- the Ti content is 0.3% or less
- the V content is 0.3% or less. That is, Nb: 0.005% to 0.3%, Ti: 0.005% to 0.3%, or V: 0.005% to 0.3%, or any combination thereof is preferable. .
- B (B: 0.00% to 0.01%) B reinforces grain boundaries or suppresses ferrite transformation during cooling after annealing. Therefore, B may be contained. In order to sufficiently obtain this effect, the B content is preferably 0.0001% or more. On the other hand, if the B content is more than 0.01%, the hot rolling productivity is lowered. Therefore, the B content is 0.01% or less. That is, it is preferable that B: 0.0001% to 0.01% is satisfied.
- Ca, Mg, and REM contribute to improving the hole expanding property by controlling the form of oxides and sulfides. Therefore, Ca, Mg, REM, or any combination thereof may be contained.
- the Ca content is preferably 0.0005% or more
- the Mg content is preferably 0.0005% or more
- the REM content is 0.0005% or more. It is preferable.
- the Ca content exceeds 0.01%, the Mg content exceeds 0.01%, or the REM content exceeds 0.01%, the manufacturability such as castability deteriorates. To do.
- the Ca content is 0.01% or less
- the Mg content is 0.01% or less
- the REM content is 0.01% or less. That is, it is preferable that Ca: 0.0005% to 0.01%, Mg: 0.0005% to 0.01%, or REM: 0.0005% to 0.01%, or any combination thereof is satisfied. .
- REM rare earth metal refers to a total of 17 elements of Sc, Y and lanthanoid, and “REM content” means the total content of these 17 elements.
- REM is added by, for example, misch metal, and misch metal may contain a lanthanoid in addition to La and Ce.
- a simple metal such as metal La or metal Ce may be used.
- excellent ductility, hole expansibility, hydrogen embrittlement resistance, and toughness can be obtained while obtaining high tensile strength, for example, 980 MPa or more, preferably 1180 MPa or more.
- Hot rolling rough rolling and finish rolling are performed.
- the manufacturing method of the slab to be subjected to hot rolling is not limited, and a continuous cast slab may be used, or a thin slab caster or the like may be used. Moreover, you may perform hot rolling immediately after continuous casting.
- the cast slab is heated to 1150 ° C. or higher after casting without cooling or once cooling.
- the heating temperature is desirably less than 1350 ° C.
- finish rolling continuous rolling is performed using 5 to 7 finish rolling mills arranged at intervals of about 5 m. Then, the final three-stage rolling is performed at 1020 ° C. or less, the total rolling reduction of the final three-stage rolling is set to 40% or more, and the passing time of the final three-stage rolling is set to 2.0 seconds or less. In addition, water cooling is started at an elapsed time of 1.5 seconds or less from the rolling of the final stage.
- the final three-stage rolling means rolling using the last three rolling mills. For example, when performing continuous rolling with six rolling mills, it means rolling with the fourth to sixth rolling mills, and the total rolling reduction of the final three stages of rolling is the same as that of the fourth rolling mill.
- t4 is the thickness when entering and t6 is the thickness when coming out of the sixth rolling mill.
- the passing time of the last three stages of rolling means the time from when the steel plate comes out of the fourth rolling mill until it comes out of the sixth rolling mill, and the elapsed time from the rolling of the last stage is It means the time from when the steel plate comes out of the sixth rolling mill until the water cooling starts.
- There may be a section for measuring the properties of the steel sheet such as temperature and thickness between the final rolling mill and the water cooling equipment.
- the final three-stage rolling is performed at 1020 ° C. or lower.
- the final three-stage rolling is performed at 1020 ° C. or lower, so that the entrance temperature in the fourth rolling mill is set to 1020 ° C. or lower, and due to processing heat generated during the subsequent rolling.
- the temperature of the steel plate should not exceed 1020 ° C.
- the total rolling reduction of the final three-stage rolling is set to 40% or more.
- the passing time of the final three-stage rolling depends on the time between passes, and the longer the passing time, the longer the time between passes, and the recrystallization and grain growth of austenite grains tend to proceed between two continuous rolling mills. And when this transit time exceeds 2.0 seconds, recrystallization and grain growth of austenite grains tend to become remarkable. Therefore, the passing time of the final three-stage rolling is set to 2.0 seconds or less. From the viewpoint of suppressing recrystallization and grain growth of austenite grains, the shorter the elapsed time from the rolling of the final stage to the start of water cooling, the better. When this elapsed time exceeds 1.5 seconds, recrystallization and grain growth of austenite grains tend to become remarkable.
- the elapsed time from the rolling of the final stage to the start of water cooling is 1.5 seconds or less. Even if there is a section for measuring the properties of the steel sheet such as temperature and thickness between the rolling mill in the final stage and the water cooling equipment, even if water cooling cannot be started immediately, the elapsed time is 1.5 seconds or less If so, recrystallization and grain growth of austenite grains can be suppressed.
- the austenite grains may be refined by cooling with a water-cooled nozzle or the like immediately after finish rolling within a range not impairing the finish rolling ability.
- a plurality of rough rolled plates obtained by rough rolling may be joined and these may be continuously subjected to finish rolling. Further, the rough rolled plate may be wound up once and then subjected to finish rolling while unwinding.
- the finish rolling temperature (finishing temperature of finish rolling) is 850 ° C. or higher and 950 ° C. or lower. If the finish rolling temperature is a two-phase region of austenite and ferrite, the structure of the steel sheet becomes non-uniform, and excellent formability cannot be obtained. Further, when the finish rolling temperature is less than 850 ° C., the rolling load becomes high. From the viewpoint of refining austenite grains, the finish rolling temperature is desirably 930 ° C. or lower.
- the coiling temperature after hot rolling is 730 ° C or lower.
- the coiling temperature exceeds 730 ° C.
- the effective crystal grain size of tempered martensite and bainite in the steel sheet cannot be reduced to 5 ⁇ m or less.
- the coiling temperature exceeds 730 ° C.
- a thick oxide is formed on the surface of the steel sheet, and the pickling property may be lowered.
- the coiling temperature is desirably 680 ° C. or lower.
- the lower limit of the coiling temperature is not limited, the coiling temperature is desirably higher than the room temperature because it is technically difficult to wind it below room temperature.
- the hot-rolled steel sheet obtained by hot rolling is pickled once or twice or more. Pickling removes surface oxides produced during hot rolling. Pickling also contributes to the improvement of chemical conversion treatment properties of cold-rolled steel plates and the plating properties of plated steel plates.
- the hot rolled steel sheet may be heated to 300 ° C. to 730 ° C. between hot rolling and cold rolling.
- This heat treatment (tempering treatment) softens the hot-rolled steel sheet and facilitates cold rolling.
- the temperature of this heat treatment is 730 ° C. or lower, preferably 650 ° C. or lower.
- the tempering effect is insufficient and the hot-rolled steel sheet is not sufficiently softened.
- the temperature of this heat treatment is 300 ° C. or higher, preferably 400 ° C. or higher.
- various alloy carbides are precipitated during the heat treatment, and it becomes difficult to remelt these alloy carbides during the subsequent continuous annealing, so that desired mechanical properties can be obtained. There is a possibility of disappearing.
- Cold rolling After pickling, cold rolling of the hot-rolled steel sheet is performed.
- the rolling reduction in cold rolling is 30% to 90%. If the rolling reduction is less than 30%, austenite grains become coarse during annealing, and the effective crystal grain size of tempered martensite and bainite in the steel sheet cannot be made 5 ⁇ m or less. Therefore, the rolling reduction is 30% or more, preferably 40% or more. On the other hand, if the rolling reduction exceeds 90%, the rolling load is too high and the operation becomes difficult. Therefore, the rolling reduction is 90% or less, preferably 70% or less.
- the number of rolling passes and the rolling reduction per pass are not limited.
- Continuous annealing After cold rolling, continuous annealing of the cold-rolled steel sheet obtained by cold rolling is performed. Continuous annealing is performed, for example, in a continuous annealing line or a continuous hot dip galvanizing line.
- the maximum heating temperature in continuous annealing is 760 to 900 ° C. When the maximum heating temperature is less than 760 ° C., the total volume fraction of tempered martensite and bainite is less than 70%, and it is impossible to achieve both hole expandability and hydrogen embrittlement resistance.
- the maximum heating temperature exceeds 900 ° C.
- the austenite grains become coarse, and the effective crystal grain size of tempered martensite and bainite in the steel sheet cannot be reduced to 5 ⁇ m or less, or the cost increases easily.
- the holding time is desirably 1000 seconds or less. It may be held isothermally at the maximum heating temperature, or cooling may be started immediately after the gradient heating is performed and the maximum heating temperature is reached.
- the average heating rate from room temperature to the maximum heating temperature is 2 ° C / second or more.
- the average heating rate is less than 2 ° C./second, the strain introduced by cold rolling is released during the temperature rise, the austenite grains become coarse, and the effective crystal grain size of tempered martensite and bainite in the steel sheet cannot be reduced to 5 ⁇ m or less. .
- the temperature After holding for 20 seconds or more in the temperature range of 760 ° C. to 900 ° C., the temperature is cooled to 150 ° C. to 300 ° C., and the average cooling rate from the holding temperature to 300 ° C. is 5 ° C./second or more. If the cooling stop temperature at this time exceeds 300 ° C., even if the cooling stop temperature is higher than the martensite transformation start temperature, or even if the cooling stop temperature is equal to or lower than the martensite transformation start temperature, sufficient martensite may not be generated. To do. As a result, the total volume fraction of tempered martensite and bainite is less than 70%, and the hole expandability and hydrogen embrittlement resistance cannot be compatible.
- the cooling stop temperature is less than 150 ° C.
- martensite is excessively generated, and the volume fraction of retained austenite is less than 8%.
- the average cooling rate from the holding temperature to 300 ° C. is less than 5 ° C./second, ferrite is excessively generated during cooling and sufficient martensite is not generated. From the viewpoint of cost, the average cooling rate is desirably 300 ° C./second or less.
- the cooling method is not limited, and for example, hydrogen gas cooling, roll cooling, air cooling, water cooling, or any combination thereof can be performed. During this cooling, nucleation sites for precipitating fine iron-based carbides during subsequent tempering are introduced into the martensite.
- the cooling stop temperature is important, and the holding time after the stop is not limited. This is because the volume fraction of tempered martensite and bainite depends on the cooling stop temperature but does not depend on the holding time.
- the reheating temperature exceeds 500 ° C.
- martensite is excessively tempered, and a sufficient tensile strength, for example, a tensile strength of 980 MPa or more cannot be obtained. Further, the precipitated iron-based carbide becomes coarse, and sufficient hydrogen embrittlement resistance may not be obtained. Furthermore, even if Si is contained, carbides are generated in austenite and austenite is decomposed, so that the volume fraction of retained austenite is less than 8% and sufficient formability cannot be obtained. As the volume fraction of retained austenite decreases, the volume fraction of fresh martensite may become 10% or more.
- the holding time is desirably 1000 seconds or less. It may be kept isothermal in a temperature range of 300 ° C. to 500 ° C., and cooling or heating may be performed in this temperature range.
- the steel sheet according to the embodiment of the present invention can be manufactured.
- a plating treatment of Ni, Cu, Co, Fe, or any combination thereof may be performed.
- chemical conversion processability and paintability can be improved.
- the steel sheet is heated in an atmosphere having a dew point of ⁇ 50 ° C. to 20 ° C., and the form of oxides formed on the surface of the steel sheet may be controlled to further improve the chemical conversion.
- Chemical conversion property may be improved by once raising the dew point in the furnace, oxidizing Si, Mn, etc., which adversely affects chemical conversion property, inside the steel sheet, and then performing reduction treatment.
- you may electroplate on a steel plate. The tensile strength, ductility, hole expandability, hydrogen embrittlement resistance and toughness of the steel sheet are not affected by the electroplating process.
- the steel plate according to this embodiment is also suitable as a material for electroplating.
- hot dip galvanizing treatment may be performed on the steel sheet.
- the above-described continuous annealing and tempering treatment is performed in a continuous hot dip galvanizing line, and subsequently the steel plate is immersed in a plating bath at a temperature of 400 ° C. to 500 ° C.
- the temperature of the steel sheet is less than 400 ° C., the heat removal from the plating bath during immersion penetration is large, and a part of the molten zinc is solidified, which may impair the appearance of the plating.
- the temperature of the steel plate exceeds 500 ° C., there is a possibility that an operation trouble accompanying the temperature increase of the plating bath may occur.
- the temperature of the steel sheet after tempering is less than 400 ° C., it may be heated to 400 ° C. to 500 ° C. before immersion.
- the plating bath may be a pure zinc plating bath and may contain Fe, Al, Mg, Mn, Si, Cr, or any combination thereof in addition to zinc.
- a hot-dip galvanized steel sheet having a plated layer mainly composed of Zn can be obtained.
- the Fe content of the plated layer of the hot dip galvanized steel sheet is generally less than 7%.
- Alloying treatment may be performed on the hot-dip galvanized steel sheet.
- the temperature of the alloying treatment is 450 ° C. to 550 ° C. When the temperature of the alloying treatment is less than 450 ° C., the progress of alloying is slow and the productivity is low. If the temperature of the alloying treatment exceeds 550 ° C., austenite is decomposed and excellent formability cannot be obtained, or tempered martensite is excessively softened and sufficient tensile strength cannot be obtained.
- the Fe content of the plating layer of the galvannealed steel sheet is approximately 7% or more. Since the melting point of the plated layer of the galvannealed steel sheet is higher than the melting point of the galvanized steel sheet, the galvannealed steel sheet is excellent in spot weldability.
- any of the Sendzimer method, the total reduction furnace method, and the flux method may be employed.
- the Sendzimer method after degreasing pickling, heating in a non-oxidizing atmosphere, annealing in a reducing atmosphere containing H 2 and N 2 , cooling to near the plating bath temperature, and immersing in a plating bath.
- the all-reduction furnace method the atmosphere during annealing is adjusted, the surface of the steel sheet is first oxidized, and after that, it is reduced before being cleaned to be immersed in a plating bath.
- the flux method after the steel sheet is degreased and pickled, flux treatment is performed using ammonium chloride or the like, and the steel sheet is immersed in a plating bath.
- Skin pass rolling may be performed after tempering, after plating or after alloying.
- the rolling reduction of the skin pass rolling is 1.0% or less. When the rolling reduction exceeds 1.0%, the volume fraction of retained austenite is significantly reduced during skin pass rolling. If the rolling reduction is less than 0.1%, the effect of skin pass rolling is small and control is difficult.
- Skin pass rolling may be performed in-line in the continuous annealing line, or may be performed off-line after completion of continuous annealing in the continuous annealing line. Skin pass rolling may be performed once, or may be performed in a plurality of times so that the total rolling reduction is 1.0% or less.
- a slab having the chemical composition shown in Table 1 was heated to 1230 ° C. and hot-rolled under the conditions shown in Tables 2 and 3 to obtain a hot-rolled steel sheet having a thickness of 2.5 mm.
- hot rolling water cooling was performed after rough rolling and finish rolling using six rolling mills, and then the hot-rolled steel sheet was wound up.
- Tables 2 and 3 “CR” indicates a cold rolled steel sheet, “GI” indicates a hot dip galvanized steel sheet, and “GA” indicates an alloyed hot dip galvanized steel sheet.
- the “extraction temperature” in Tables 2 and 3 is the temperature of the slab when extracted from the heating furnace in the slab heating before rough rolling.
- “Number of passes” is the number of passes of rolling with a rolling reduction of 40% or more at 1000 ° C. or more and 1150 ° C. or less. “Time between first passes” is the time from when the steel plate comes out of the fourth rolling mill until it enters the fifth rolling mill. “Time between the second passes” is the fifth time between the steel plates. It is the time from the time when the rolling mill comes out to the time when it enters the sixth rolling mill. “Elapsed time” is the time from when the steel plate comes out from the sixth rolling mill to when water cooling starts, and “passing time” is 6 after the steel plate comes out from the fourth rolling mill. Time until it comes out of the second rolling mill.
- Total reduction ratio is “(t4 ⁇ t6) / t4, where t4 is the thickness when entering the fourth rolling mill and t6 is the thickness when coming out of the sixth rolling mill. X100 (%) ".
- the balance of the chemical composition shown in Table 1 is Fe and impurities.
- the underline in Table 1 indicates that the numerical value is out of the scope of the present invention.
- the underline in Table 2 and Table 3 indicates that the numerical value is out of the range suitable for manufacturing the steel sheet according to the present invention.
- the hot-rolled steel sheet was pickled and cold-rolled to obtain a cold-rolled steel sheet having a thickness of 1.2 mm.
- the continuous annealing and tempering processing of the cold-rolled steel sheet were performed under the conditions shown in Tables 4 and 5, and skin pass rolling with a rolling rate of 0.1% was performed.
- the holding temperature in Tables 4 and 5 was set as the maximum heating temperature.
- the cooling rate is an average cooling rate from the holding temperature to 300 ° C.
- the alloying process was performed on the conditions shown in Table 4 and Table 5 between the hot dip galvanization process and skin pass rolling.
- the hot dip galvanizing treatment continuous hot dip galvanizing equipment was used, and continuous annealing, tempering treatment, and hot dip galvanizing treatment were continuously performed.
- the underline in Table 4 and Table 5 indicates that the numerical value is out of the range suitable for manufacturing the steel sheet according to the present invention.
- the desirable ranges here are a tensile strength TS of 980 MPa or more, a ductility index (TS ⁇ El) of 15000 MPa% or more, and a hole expansibility index (TS 1.7 ⁇ ⁇ ) of 5000000 MPa 1.7 % or more. .
- a strip-shaped test piece of 100 mm ⁇ 30 mm whose longitudinal direction is the direction perpendicular to the rolling direction was taken from the steel plate, and holes for applying stress were formed at both ends thereof.
- the test piece was bent at a radius of 10 mm, a strain gauge was attached to the surface of the bending top of the test piece, a bolt was passed through the holes at both ends, and a nut was attached to the tip of the bolt. Then, bolts and nuts were tightened to apply stress to the test piece.
- the applied stress was 60% and 90% of the maximum tensile strength TS separately measured by a tensile test, and when applying the stress, the strain that could be read from the strain gauge was converted to stress using Young's modulus. Then, it was immersed in an aqueous solution of ammonium thiocyanate and charged with electrolytic hydrogen at a current density of 0.1 mA / cm 2 , and the occurrence of cracks after 2 hours was observed. And, it does not break at a load stress of 60% of the maximum tensile strength TS, it is “possible” when it is broken at a load stress of 90% of the maximum tensile strength TS, and it is “bad” when it is broken at both conditions.
- Tables 8 and 9 In Tables 8 and 9, “good” is represented by “ ⁇ ”, “possible” is represented by “ ⁇ ”, and “bad” is represented by “x”. The underline in Table 8 and Table 9 indicates that the numerical value is out of the desired range.
- samples A-1, A-6, A-8, B-1, C-1, D-1, E-1, F-1, G which are within the scope of the present invention.
- -1, G-3, G-4, G-7, H-1, I-1, J-1, K-1, L-1, M-1, N-1, O-1, P-1 Q-1, R-1, S-1, S-7, T-1, U-1, V-1, W-1, W-3, X-1 and Y-1 have excellent tensile strength It was possible to obtain ductility, hole expandability, hydrogen embrittlement resistance and toughness.
- sample A-2 the volume fraction of retained austenite is too low, the volume fraction of fresh martensite is too high, the total volume fraction of tempered martensite and bainite is too low, and the number density of iron-based carbides is too high. Too low, ductility, hole expansibility, hydrogen embrittlement characteristics and toughness were low.
- sample A-3 the volume fraction of retained austenite was too low, the total volume fraction of tempered martensite and bainite was too high, and the ductility was low.
- sample A-4 the volume fraction of retained austenite was too low, the volume fraction of fresh martensite was too high, the number density of iron-based carbides was too low, and the ductility, hole expansibility and toughness were low.
- sample A-5 the volume fraction of retained austenite was too low, the effective crystal grain size of tempered martensite and bainite was too large, and the ductility, hole expansibility and toughness were low.
- Sample A-7 the volume fraction of retained austenite was too low, and the ductility and toughness were low.
- sample A-9 the volume fraction of retained austenite was too low, and the ductility, hole expansibility and toughness were low.
- Sample A-10 the volume fraction of ferrite was too high, the volume fraction of retained austenite was too low, the effective crystal grain size of tempered martensite and bainite was too large, and the hole expandability and toughness were low.
- sample A-11 the volume fraction of retained austenite was too low, the volume fraction of fresh martensite was too high, the number density of iron-based carbides was too low, and the hole expandability, hydrogen embrittlement characteristics and toughness were low. It was.
- sample G-2 the volume fraction of ferrite is too high, the volume fraction of retained austenite is too low, the total volume fraction of tempered martensite and bainite is too low, and the effective crystal grain size of tempered martensite and bainite is too small. It was too large, and the hole expandability and toughness were low.
- Sample G-5 the volume fraction of retained austenite was too low, the number density of iron-based carbides was too low, and the ductility, hole expansibility and toughness were low.
- sample G-6 the volume fraction of retained austenite was too low and the ductility was low.
- sample G-8 the volume fraction of ferrite is too high, the volume fraction of retained austenite is too low, the volume fraction of fresh martensite is too high, the effective crystal grain size of tempered martensite and bainite is too large, The number density of the iron-based carbide was too low, and the ductility, hole expandability, hydrogen embrittlement characteristics and toughness were low.
- sample G-9 the volume fraction of retained austenite was too low, the total volume fraction of tempered martensite and bainite was too high, and the ductility was low.
- sample S-2 the effective crystal grain sizes of tempered martensite and bainite were too large, and the hole expandability, hydrogen embrittlement resistance, and toughness were low.
- sample S-3 the effective crystal grain size of tempered martensite and bainite was too large, and the hole expandability and toughness were low.
- sample S-4 the effective crystal grain size of tempered martensite and bainite was too large and the toughness was low.
- sample S-5 the volume fraction of retained austenite was too low, the volume fraction of fresh martensite was too high, the total volume fraction of tempered martensite and bainite was too low, and the effective crystal grains of tempered martensite and bainite
- the diameter was too large, the number density of the iron-based carbide was too low, and the ductility, hole expandability, hydrogen embrittlement characteristics and toughness were low.
- sample S-6 the effective crystal grain size of tempered martensite and bainite was too large, and the hole expandability and toughness were low.
- sample S-8 the effective crystal grain size of tempered martensite and bainite was too large and the toughness was low.
- sample S-9 the number density of the iron-based carbide was too low, and the hole expandability, hydrogen embrittlement resistance, and toughness were low.
- sample S-10 the volume fraction of ferrite is too high, the volume fraction of retained austenite is too low, the total volume fraction of tempered martensite and bainite is too low, and the effective crystal grain size of tempered martensite and bainite is too low. It was too large and the hole expandability, hydrogen embrittlement resistance and toughness were low.
- sample S-11 the volume fraction of retained austenite was too low, the volume fraction of fresh martensite was too high, and the hole expandability, hydrogen embrittlement resistance, and toughness were low.
- sample S-12 the volume fraction of retained austenite is too low, the volume fraction of pearlite is too high, the effective crystal grain size of tempered martensite and bainite is too large, and the hole expandability, hydrogen embrittlement characteristics and The toughness was low.
- sample S-13 the volume fraction of retained austenite was too low, the volume fraction of fresh martensite was too high, and the ductility and hydrogen embrittlement resistance were low.
- sample S-14 the volume fraction of retained austenite was too low, and the hole expandability, hydrogen embrittlement characteristics, and toughness were low.
- sample W-2 the volume fraction of fresh martensite was too high, the volume fraction of retained austenite was too low, and the ductility was low.
- sample a-1 the C content is too low, the volume fraction of ferrite is too high, the volume fraction of retained austenite is too low, the volume fraction of fresh martensite is too high, and the total of tempered martensite and bainite The volume fraction was too low and the ductility, hole expansibility and toughness were low.
- sample b-1 the C content was too high, the volume fraction of retained austenite was too low, and the ductility, hole expandability, hydrogen embrittlement resistance, and toughness were low.
- sample c-1 the Si content was too low, the ferrite volume fraction was too high, the residual austenite volume fraction was too low, the fresh martensite volume fraction was too high, and the total of tempered martensite and bainite.
- the volume fraction was too low and the ductility was low.
- the Mn content is too low, the volume fraction of ferrite is too high, the volume fraction of retained austenite is too low, the total volume fraction of tempered martensite and bainite is too low, ductility, hole The spreadability, hydrogen embrittlement resistance and toughness were low.
- the P content was too high and the hole expandability, hydrogen embrittlement resistance and toughness were low.
- the S content was too high and the hole expandability, hydrogen embrittlement resistance and toughness were low.
- the Al content is too high, the volume fraction of ferrite is too high, the volume fraction of retained austenite is too low, the volume fraction of fresh martensite is too high, and the total of tempered martensite and bainite.
- the volume fraction was too low, and the hole expandability, hydrogen embrittlement resistance and toughness were low.
- the effective crystal grain sizes of tempered martensite and bainite were too large. For this reason, hole expansibility and toughness were low.
- the effective crystal grain sizes of tempered martensite and bainite were too large. For this reason, the toughness was low.
- sample j-1 the effective crystal grain sizes of tempered martensite and bainite were too large. For this reason, the toughness was low.
- sample k-1 the effective crystal grain sizes of tempered martensite and bainite were too large. For this reason, the toughness was low.
- sample G-2 the heating rate in continuous annealing was too low. Therefore, the volume fraction of ferrite becomes too high, the volume fraction of retained austenite becomes too low, the total volume fraction of tempered martensite and bainite becomes too low, and the effective crystal grain size of tempered martensite and bainite It became too big.
- Sample G-5 the holding temperature in the tempering process was too low. For this reason, the volume fraction of retained austenite became too low, and the number density of iron-based carbides became too low.
- Sample G-6 the cooling stop temperature during continuous annealing was too low, and the holding temperature during tempering was too high. For this reason, the volume fraction of retained austenite became too low.
- sample S-2 the number of passes under the predetermined conditions in the rough rolling was 0, the entry temperature in the fourth rolling mill in the finish rolling was too high, and the finishing temperature was too high. For this reason, the effective crystal grain size of tempered martensite and bainite became too large.
- Sample S-3 the passing time of the final three stages of rolling in the finish rolling was too long, and the elapsed time from the rolling of the final stage to the start of water cooling was too long. For this reason, the effective crystal grain size of tempered martensite and bainite became too large.
- sample S-4 the total rolling reduction in the final three stages in finish rolling was too low. For this reason, the effective crystal grain size of tempered martensite and bainite became too large.
- sample S-5 the cooling stop temperature in the continuous annealing was too low. For this reason, the volume fraction of fresh martensite becomes too high, the volume fraction of retained austenite becomes too low, the total volume fraction of tempered martensite and bainite becomes too low, and effective grains of tempered martensite and bainite
- the diameter was too large and the number density of the iron-based carbide was too low.
- sample S-6 the heating rate in continuous annealing was too low. For this reason, the effective crystal grain size of tempered martensite and bainite became too large.
- sample S-8 the holding temperature in continuous annealing was too high. For this reason, the effective crystal grain size of tempered martensite and bainite became too large.
- sample S-9 the holding time in continuous annealing was too short. For this reason, the number density of the iron-based carbide was too low.
- sample S-10 the cooling stop temperature in the continuous annealing was too low. Therefore, the volume fraction of ferrite becomes too high, the volume fraction of retained austenite becomes too low, the total volume fraction of tempered martensite and bainite becomes too low, and the effective crystal grain size of tempered martensite and bainite It became too big.
- sample S-11 the holding temperature in the tempering process was too high. For this reason, the volume fraction of fresh martensite became too high, and the volume fraction of retained austenite became too low.
- sample S-12 the holding time in the tempering process was too long.
- sample i-1 and sample j-1 the entry temperature in the fourth rolling mill in finish rolling was too high. For this reason, the effective crystal grain size of tempered martensite and bainite became too large.
- sample k-1 the passing time of the last three stages of rolling in the finish rolling was too long, and the elapsed time from the last stage rolling to the start of water cooling was too long. For this reason, the effective crystal grain size of tempered martensite and bainite became too large.
- sample 1-1 the extraction temperature from the heating furnace was too low. For this reason, the temperature before finish rolling became too low and finish annealing was not performed.
- the present invention can be used, for example, in industries related to steel plates suitable for automobile parts.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
質量%で、
C:0.15%~0.45%、
Si:1.0%~2.5%、
Mn:1.2%~3.5%、
Al:0.001%~2.0%、
P:0.02%以下、
S:0.02%以下、
N:0.007%以下、
O:0.01%以下、
Mo:0.0%~1.0%、
Cr:0.0%~2.0%、
Ni:0.0%~2.0%、
Cu:0.0%~2.0%、
Nb:0.0%~0.3%、
Ti:0.0%~0.3%、
V:0.0%~0.3%、
B:0.00%~0.01%、
Ca:0.00%~0.01%、
Mg:0.00%~0.01%、
REM:0.00%~0.01%、かつ
残部:Fe及び不純物、
で表される化学組成を有し、
体積分率で、
焼戻しマルテンサイト及びベイナイト:合計で70%以上92%未満、
残留オーステナイト:8%以上30%未満、
フェライト:10%未満、
フレッシュマルテンサイト:10%未満、かつ
パーライト:10%未満、
で表される鋼組織を有し、
焼戻しマルテンサイト及び下部ベイナイト中の鉄基炭化物の個数密度が1.0×106(個/mm2)以上であり、
焼戻しマルテンサイト及びベイナイトの有効結晶粒径が5μm以下であることを特徴とする鋼板。
前記化学組成において、質量%で、
Mo:0.01%~1.0%、
Cr:0.05%~2.0%、
Ni:0.05%~2.0%、若しくは
Cu:0.05%~2.0%、
又はこれらの任意の組み合わせが成り立つことを特徴とする(1)に記載の鋼板。
前記化学組成において、質量%で、
Nb:0.005%~0.3%、
Ti:0.005%~0.3%、若しくは
V:0.005%~0.3%、
又はこれらの任意の組み合わせが成り立つことを特徴とする(1)又は(2)に記載の鋼板。
前記化学組成において、質量%で、
B:0.0001%~0.01%、
が成り立つことを特徴とする(1)~(3)のいずれかに記載の鋼板。
前記化学組成において、質量%で、
Ca:0.0005%~0.01%、
Mg:0.0005%~0.01%、若しくは
REM:0.0005%~0.01%、
又はこれらの任意の組み合わせが成り立つことを特徴とする(1)~(4)のいずれかに記載の鋼板。
焼戻しマルテンサイト及びベイナイトは、鉄基炭化物を含む低温変態組織であり、穴広げ性及び耐水素脆化特性の両立に寄与する。焼戻しマルテンサイト及びベイナイトの体積分率が合計で70%未満では、穴広げ性及び耐水素脆化特性を十分に両立することが困難となる。従って、焼戻しマルテンサイト及びベイナイトの体積分率は合計で70%以上とする。一方、焼戻しマルテンサイト及びベイナイトの体積分率が92%以上では、後述の残留オーステナイトが不足する。従って、焼戻しマルテンサイト及びベイナイトの体積分率は92%未満とする。
残留オーステナイトは、変態誘起塑性(transformation induced plasticity:TRIP)を通じて延性の向上に寄与する。残留オーステナイトの体積分率が8%未満では、十分な延性が得られない。従って、残留オーステナイトの体積分率は8%以上とし、望ましくは10%以上とする。一方、残留オーステナイトの体積分率が30%以上では、焼戻しマルテンサイト及びベイナイトが不足する。従って、残留オーステナイトの体積分率は30%未満とする。
フェライトは、内部にラス等の下部組織を含まない軟質の組織であり、硬質組織である焼戻しマルテンサイト及びベイナイトとの界面で強度差に伴う割れが生じやすい。つまり、フェライトは靭性及び穴広げ性を劣化させやすい。また、フェライトは低温靱性の劣化をもたらす。従って、フェライトの体積分率は低ければ低いほどよい。特に、フェライトの体積分率が10%以上で、靱性及び穴広げ性の低下が著しい。従って、フェライトの体積分率は10%未満とする。
フレッシュマルテンサイトは、鉄基炭化物を含まない焼き入れままのマルテンサイトであり、強度の向上に寄与するものの、耐水素脆化特性を大幅に劣化させる。また、フレッシュマルテンサイトは、焼戻しマルテンサイト及びベイナイトとの硬度差に伴う低温靱性の劣化をもたらす。従って、フレッシュマルテンサイトの体積分率は低ければ低いほどよい。特に、フレッシュマルテンサイトの体積分率が10%以上で、耐水素脆化特性の劣化が著しい。従って、フレッシュマルテンサイトの体積分率は10%未満とする。
パーライトは、フェライトと同様に、靭性及び穴広げ性を劣化させる。従って、パーライトの体積分率は低ければ低いほどよい。特に、パーライトの体積分率が10%以上で、靱性及び穴広げ性の低下が著しい。従って、パーライトの体積分率は10%未満とする。
Vγ=(I200f+I220f+I311f)/(I200b+I211b)×100
(I200f、I220f、I311fは、それぞれ面心立方格子(fcc)相の(200)、(220)、(311)の回折ピークの強度、I200b、I211bは、それぞれ体心立方格子(bcc)相の(200)、(211)の回折ピークの強度を示す。)
Cは、強度の向上に寄与したり、鉄基炭化物の生成を通じた耐水素脆化特性の向上に寄与したりする。C含有量が0.15%未満では、十分な引張強度、例えば980MPa以上の引張強度が得られない。従って、C含有量は0.15%以上とし、望ましくは0.18%以上とする。一方、C含有量が0.45%超では、マルテンサイト変態開始温度が極端に低くなり、十分な体積分率のマルテンサイトを確保できず、焼戻しマルテンサイト及びベイナイトの体積分率を70%以上とすることができない。また、溶接部の強度が不足することもある。従って、C含有量は0.45%以下とし、望ましくは0.35%以下とする。
Siは、強度の向上に寄与したり、オーステナイト中での粗大な鉄基炭化物の析出を抑制して、室温で安定な残留オーステナイトの生成に寄与したりする。Si含有量が1.0%未満では、粗大な鉄基炭化物の析出を十分に抑制できない。従って、Si含有量は1.0%以上とし、望ましくは1.2%以上とする。一方、Si含有量が2.5%超では、鋼板の脆化により成形性が低下する。従って、Si含有量は2.5%以下とし、望ましくは2.0%以下とする。
Mnは、強度の向上に寄与したり、焼鈍後の冷却中のフェライト変態を抑制したりする。Mn含有量が1.2%未満では、フェライトが過剰に生成し、十分な引張強度、例えば980MPa以上の引張強度の確保が難しい。従って、Mn含有量は1.2%以上とし、望ましくは2.2%以上とする。一方、Mn含有量が3.5%超では、スラブ及び熱延鋼板が過度に高強度化し、製造性が低下する。従って、Mn含有量は3.5%以下とし、望ましくは2.8%以下とする。製造性の観点から、Mnは望ましくは3.00%以下とする。
Alは、不可避的に鋼に含有されるが、オーステナイト中での粗大な鉄基炭化物の析出を抑制して、室温で安定な残留オーステナイトの生成に寄与する。Alは脱酸剤としても機能する。従って、Alが含有されていてもよい。一方、Al含有量が2.0%超では、製造性が低下する。従って、Alは2.0%以下とし、望ましくは1.5%以下とする。Al含有量の低減にはコストがかかり、0.001%未満まで低減しようとすると、コストが著しく上昇する。このため、Al含有量は0.001%以上とする。
Pは、必須元素ではなく、例えば鋼中に不純物として含有される。Pは、鋼板の厚さ方向の中央部に偏析しやすく、溶接部を脆化させる。このため、P含有量は低ければ低いほどよい。特に、P含有量が0.02%超で、溶接性の低下が著しい。従って、P含有量は0.02%以下とし、望ましくは0.015%以下とする。P含有量の低減にはコストがかかり、0.0001%未満まで低減しようとすると、コストが著しく上昇する。このため、P含有量は0.0001%以上としてもよい。
Sは、必須元素ではなく、例えば鋼中に不純物として含有される。Sは、粗大なMnSを形成して穴広げ性を低下させる。Sは、溶接性を低下させたり、鋳造及び熱間圧延の製造性を低下させたりすることもある。このため、S含有量は低ければ低いほどよい。特に、S含有量が0.02%超で、穴広げ性の低下が著しい。従って、S含有量は0.02%以下とし、望ましくは0.005%以下とする。S含有量の低減にはコストがかかり、0.0001%未満まで低減しようとすると、コストが著しく上昇し、0.0001%未満まで低減しようとすると、コストが更に著しく上昇する。このため、S含有量は0.0001%以上としてもよい。
Nは、必須元素ではなく、例えば鋼中に不純物として含有される。Nは、粗大な窒化物を形成して、曲げ性及び穴広げ性を劣化させる。Nは、溶接時のブローホールの発生の原因にもなる。このため、N含有量は低ければ低いほどよい。特に、N含有量が0.007%超で、曲げ性及び穴広げ性の低下が著しい。従って、N含有量は0.007%以下とし、望ましくは0.004%以下とする。N含有量の低減にはコストがかかり、0.0005%未満まで低減しようとすると、コストが著しく上昇する。このため、N含有量は0.0005%以上としてもよい。
Oは、必須元素ではなく、例えば鋼中に不純物として含有される。Oは、酸化物を形成して成形性を劣化させる。このため、O含有量は低ければ低いほどよい。特に、O含有量が0.01%超で、成形性の低下が顕著となる。従って、O含有量は0.01%以下とし、望ましくは0.005%以下とする。O含有量の低減にはコストがかかり、0.0001%未満まで低減しようとすると、コストが著しく上昇する。このため、O含有量は0.0001%以上としてもよい。
Mo、Cr、Ni及びCuは、強度の向上に寄与したり、焼鈍後の冷却中のフェライト変態を抑制したりする。従って、Mo、Cr、Ni若しくはCu又はこれらの任意の組み合わせが含有されていてもよい。この効果を十分に得るために、Mo含有量は0.01%以上であることが好ましく、Cr含有量は0.05%以上であることが好ましく、Ni含有量は0.05%以上であることが好ましく、Cu含有量は0.05%以上であることが好ましい。一方、Mo含有量が1.0%超であるか、Cr含有量が2.0%超であるか、Ni含有量が2.0%超であるか、又はCu含有量が2.0%超であると、熱間圧延の製造性が低下する。従って、Mo含有量は1.0%以下とし、Cr含有量は2.0%以下とし、Ni含有量は2.0%以下とし、Cu含有量は2.0%以下とする。つまり、Mo:0.01%~1.0%、Cr:0.05%~2.0%、Ni:0.05%~2.0%、若しくはCu:0.05%~2.0%、又はこれらの任意の組み合わせが成り立つことが好ましい。
Nb、Ti及びVは、合金炭窒化物を生成し、析出強化及び細粒化強化を通じて強度の向上に寄与する。従って、Nb、Ti若しくはV又はこれらの任意の組み合わせが含有されていてもよい。この効果を十分に得るために、Nb含有量は0.005%以上であることが好ましく、Ti含有量は0.005%以上であることが好ましく、V含有量は0.005%以上であることが好ましい。一方、Nb含有量が0.3%超であるか、Ti含有量が0.3%超であるか、又はV含有量が0.3%超であると、合金炭窒化物が過剰に析出して成形性が劣化する。従って、Nb含有量は0.3%以下とし、Ti含有量は0.3%以下とし、V含有量は0.3%以下とする。つまり、Nb:0.005%~0.3%、Ti:0.005%~0.3%、若しくはV:0.005%~0.3%、又はこれらの任意の組み合わせが成り立つことが好ましい。
Bは、粒界を強化したり、焼鈍後の冷却中のフェライト変態を抑制したりする。従って、Bが含有されていてもよい。この効果を十分に得るために、B含有量は0.0001%以上であることが好ましい。一方、B含有量が0.01%超であると、熱間圧延の製造性が低下する。従って、B含有量は0.01%以下とする。つまり、B:0.0001%~0.01%が成り立つことが好ましい。
Ca、Mg及びREMは、酸化物や硫化物の形態を制御して穴広げ性の向上に寄与する。従って、Ca、Mg若しくはREM又はこれらの任意の組み合わせが含有されていてもよい。この効果を十分に得るために、Ca含有量は0.0005%以上であることが好ましく、Mg含有量は0.0005%以上であることが好ましく、REM含有量は0.0005%以上であることが好ましい。一方、Ca含有量が0.01%超であるか、Mg含有量が0.01%超であるか、又はREM含有量が0.01%超であると、鋳造性等の製造性が劣化する。従って、Ca含有量は0.01%以下とし、Mg含有量は0.01%以下とし、REM含有量は0.01%以下とする。つまり、Ca:0.0005%~0.01%、Mg:0.0005%~0.01%、若しくはREM:0.0005%~0.01%、又はこれらの任意の組み合わせが成り立つことが好ましい。
熱間圧延では、粗圧延及び仕上げ圧延を行う。熱間圧延に供するスラブの製造方法は限定されず、連続鋳造スラブを用いてもよく、薄スラブキャスタ等で製造したものを用いてもよい。また、連続鋳造後に直ちに熱間圧延を行ってもよい。鋳造スラブは、鋳造後に、冷却することなく、又は一旦冷却した後に、1150℃以上に加熱する。加熱温度が1150℃未満では、仕上げ圧延温度が850℃未満となりやすく、圧延荷重が高くなる。コストの観点から、加熱温度は、望ましくは1350℃未満とする。
酸洗後には、熱延鋼板の冷間圧延を行う。冷間圧延における圧下率は30%~90%とする。圧下率が30%未満では、焼鈍中にオーステナイト粒が粗大化し、鋼板における焼戻しマルテンサイト及びベイナイトの有効結晶粒径を5μm以下にできない。従って、圧下率は30%以上とし、望ましくは40%以上とする。一方、圧下率が90%超では、圧延荷重が高すぎて操業が困難となる。従って、圧下率は90%以下とし、望ましくは70%以下とする。圧延パスの回数及びパス毎の圧下率は限定されない。
冷間圧延の後、冷間圧延により得た冷延鋼板の連続焼鈍を行う。連続焼鈍は、例えば、連続焼鈍ライン又は連続溶融亜鉛めっきラインにて行う。連続焼鈍での最高加熱温度は760℃~900℃とする。最高加熱温度が760℃未満では、焼戻しマルテンサイト及びベイナイトの体積分率が合計で70%未満となり、穴広げ性及び耐水素脆化特性を両立することができない。一方、最高加熱温度が900℃超では、オーステナイト粒が粗大化し、鋼板における焼戻しマルテンサイト及びベイナイトの有効結晶粒径を5μm以下にできなかったり、徒にコストを上昇させたりする。
150℃~300℃までの冷却の後、300℃~500℃に再加熱し、この温度域に10秒以上保持する。連続焼鈍の冷却で生成した焼き入れままのマルテンサイトの耐水素脆化特性は低い。300℃~500℃への再加熱により、マルテンサイトが焼き戻され、鉄基炭化物の個数密度が1.0×106(個/mm2)以上となる。また、この再加熱の際に、ベイナイトが生成したり、マルテンサイト及びベイナイトからオーステナイトヘCが拡散したりするため、オーステナイトが安定になる。
試料A-3では、残留オーステナイトの体積分率が低すぎ、焼戻しマルテンサイト及びベイナイトの合計体積分率が高すぎて、延性が低かった。
試料A-4では、残留オーステナイトの体積分率が低すぎ、フレッシュマルテンサイトの体積分率が高すぎ、鉄基炭化物の個数密度が低すぎて、延性、穴広げ性及び靱性が低かった。
試料A-5では、残留オーステナイトの体積分率が低すぎ、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きすぎて、延性、穴広げ性及び靭性が低かった。
試料A-7では、残留オーステナイトの体積分率が低すぎて、延性及び靱性が低かった。
試料A-9では、残留オーステナイトの体積分率が低すぎて、延性、穴広げ性及び靱性が低かった。
試料A-10では、フェライトの体積分率が高すぎ、残留オーステナイトの体積分率が低すぎ、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きすぎて、穴広げ性及び靭性が低かった。
試料A-11では、残留オーステナイトの体積分率が低すぎ、フレッシュマルテンサイトの体積分率が高すぎ、鉄基炭化物の個数密度が低すぎて、穴広げ性、水素脆化特性及び靭性が低かった。
試料G-5では、残留オーステナイトの体積分率が低すぎ、鉄基炭化物の個数密度が低すぎて、延性、穴広げ性及び靭性が低かった。
試料G-6では、残留オーステナイトの体積分率が低すぎて、延性が低かった。
試料G-8では、フェライトの体積分率が高すぎ、残留オーステナイトの体積分率が低すぎ、フレッシュマルテンサイトの体積分率が高すぎ、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きすぎ、鉄基炭化物の個数密度が低すぎて、延性、穴広げ性、水素脆化特性及び靭性が低かった。
試料G-9では、残留オーステナイトの体積分率が低すぎ、焼戻しマルテンサイト及びベイナイトの合計体積分率が高すぎて、延性が低かった。
試料S-3では、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きすぎて、穴広げ性及び靭性が低かった。
試料S-4では、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きすぎて、靭性が低かった。
試料S-5では、残留オーステナイトの体積分率が低すぎ、フレッシュマルテンサイトの体積分率が高すぎ、焼戻しマルテンサイト及びベイナイトの合計体積分率が低すぎ、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きすぎ、鉄基炭化物の個数密度が低すぎて、延性、穴広げ性、水素脆化特性及び靭性が低かった。
試料S-6では、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きすぎて、穴広げ性及び靭性が低かった。
試料S-8では、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きすぎて、靭性が低かった。
試料S-9では、鉄基炭化物の個数密度が低すぎて、穴広げ性、耐水素脆化特性及び靭性が低かった。
試料S-10では、フェライトの体積分率が高すぎ、残留オーステナイトの体積分率が低すぎ、焼戻しマルテンサイト及びベイナイトの合計体積分率が低すぎ、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きすぎて、穴広げ性、耐水素脆化特性及び靭性が低かった。
試料S-11では、残留オーステナイトの体積分率が低すぎ、フレッシュマルテンサイトの体積分率が高すぎて、穴広げ性、耐水素脆化特性及び靭性が低かった。
試料S-12では、残留オーステナイトの体積分率が低すぎ、パーライトの体積分率が高すぎ、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きくなりすぎて、穴広げ性、水素脆化特性及び靭性が低かった。
試料S-13では、残留オーステナイトの体積分率が低すぎ、フレッシュマルテンサイトの体積分率が高すぎて、延性及び耐水素脆化特性が低かった。
試料S-14では、残留オーステナイトの体積分率が低すぎて、穴広げ性、水素脆化特性及び靭性が低かった。
試料W-2では、フレッシュマルテンサイトの体積分率が高すぎ、残留オーステナイトの体積分率が低すぎて、延性が低かった。
試料b-1では、C含有量が高すぎ、残留オーステナイトの体積分率が低すぎて、延性、穴広げ性、耐水素脆化特性及び靱性が低かった。
試料c-1では、Si含有量が低すぎ、フェライトの体積分率が高すぎ、残留オーステナイトの体積分率が低すぎ、フレッシュマルテンサイトの体積分率が高すぎ、焼戻しマルテンサイト及びベイナイトの合計体積分率が低すぎて、延性が低かった。
試料d-1では、Mn含有量が低すぎ、フェライトの体積分率が高すぎ、残留オーステナイトの体積分率が低すぎ、焼戻しマルテンサイト及びベイナイトの合計体積分率が低すぎて、延性、穴広げ性、耐水素脆化特性及び靱性が低かった。
試料e-1では、P含有量が高すぎて、穴広げ性、耐水素脆化特性及び靱性が低かった。
試料f-1では、S含有量が高すぎて、穴広げ性、耐水素脆化特性及び靱性が低かった。
試料g-1では、Al含有量が高すぎ、フェライトの体積分率が高すぎ、残留オーステナイトの体積分率が低すぎ、フレッシュマルテンサイトの体積分率が高すぎ、焼戻しマルテンサイト及びベイナイトの合計体積分率が低すぎて、穴広げ性、耐水素脆化特性及び靱性が低かった。
試料h-1では、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きすぎた。このため、穴広げ性及び靱性が低かった。
試料i-1では、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きすぎた。このため、靱性が低かった。
試料j-1では、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きすぎた。このため、靱性が低かった。
試料k-1では、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きすぎた。このため、靱性が低かった。
試料A-3では、連続焼鈍における冷却停止温度が低すぎた。このため、残留オーステナイトの体積分率が低くなりすぎ、焼戻しマルテンサイト及びベイナイトの合計体積分率が高くなりすぎた。
試料A-4では、焼戻し処理における保持温度が低すぎた。このため、フレッシュマルテンサイトの体積分率が高くなりすぎ、残留オーステナイトの体積分率が低くなりすぎ、鉄基炭化物の個数密度が低くなりすぎた。
試料A-5では、焼戻し処理における保持温度が高すぎた。このため、残留オーステナイトの体積分率が低くなりすぎ、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きくなりすぎた。
試料A-7では、焼戻し処理における保持時間が短すぎた。このため、残留オーステナイトの体積分率が低くなりすぎた。
試料A-9では、合金化処理の温度が高すぎた。残留オーステナイトの体積分率が低くなりすぎた。
試料A-10では、連続焼鈍における保持温度が低すぎた。このため、フェライトの体積分率が高くなりすぎ、残留オーステナイトの体積分率が低くなりすぎ、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きくなりすぎた。
試料A-11では、連続焼鈍における冷却停止温度が高すぎた。このため、フレッシュマルテンサイトの体積分率が高くなりすぎ、残留オーステナイトの体積分率が低くなりすぎ、鉄基炭化物の個数密度が低くなりすぎた。
試料G-5では、焼戻し処理における保持温度が低すぎた。このため、残留オーステナイトの体積分率が低くなりすぎ、鉄基炭化物の個数密度が低くなりすぎた。
試料G-6では、連続焼鈍における冷却停止温度が低すぎ、焼戻し処理における保持温度が高すぎた。このため、残留オーステナイトの体積分率が低くなりすぎた。
試料G-8では、連続焼鈍における平均冷却速度が低すぎ、冷却停止温度が高すぎた。このため、フェライトの体積分率が高くなりすぎ、フレッシュマルテンサイトの体積分率が高くなりすぎ、残留オーステナイトの体積分率が低くなりすぎ、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きくなりすぎ、鉄基炭化物の個数密度が低くなりすぎた。
試料G-9では、連続焼鈍における冷却停止温度が低すぎ、焼戻し処理における保持時間が短すぎた。このため、残留オーステナイトの体積分率が低くなりすぎ、焼戻しマルテンサイト及びベイナイトの合計体積分率が高くなりすぎた。
試料S-3では、仕上げ圧延における最終3段の圧延の通過時間が長すぎ、最終段の圧延から水冷開始までの経過時間が長すぎた。このため、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きくなりすぎた。
試料S-4では、仕上げ圧延における最終3段の合計圧下率が低すぎた。このため、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きくなりすぎた。
試料S-5では、連続焼鈍における冷却停止温度が低すぎた。このため、フレッシュマルテンサイトの体積分率が高くなりすぎ、残留オーステナイトの体積分率が低くなりすぎ、焼戻しマルテンサイト及びベイナイトの合計体積分率が低くなりすぎ、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きくなりすぎ、鉄基炭化物の個数密度が低くなりすぎた。
試料S-6では、連続焼鈍における加熱速度が低すぎた。このため、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きくなりすぎた。
試料S-8では、連続焼鈍における保持温度が高すぎた。このため、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きくなりすぎた。
試料S-9では、連続焼鈍における保持時間が短すぎた。このため、鉄基炭化物の個数密度が低くなりすぎた。
試料S-10では、連続焼鈍における冷却停止温度が低すぎた。このため、フェライトの体積分率が高くなりすぎ、残留オーステナイトの体積分率が低くなりすぎ、焼戻しマルテンサイト及びベイナイトの合計体積分率が低くなりすぎ、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きくなりすぎた。
試料S-11では、焼戻し処理における保持温度が高すぎた。このため、フレッシュマルテンサイトの体積分率が高くなりすぎ、残留オーステナイトの体積分率が低くなりすぎた。
試料S-12では、焼戻し処理における保持時間が長すぎた。このため、残留オーステナイトの体積分率が低くなりすぎ、パーライトの体積分率が高くなりすぎ、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きくなりすぎた。
試料S-13では、連続焼鈍における冷却停止温度が高すぎた。このため、残留オーステナイトの体積分率が低くなりすぎ、フレッシュマルテンサイトの体積分率が高くなりすぎた。
試料S-14では、連続焼鈍における冷却停止温度が低すぎ、合金化処理の温度が高すぎた。残留オーステナイトの体積分率が低くなりすぎた。
試料W-2では、焼戻し処理における保持温度が高すぎた。このため、フレッシュマルテンサイトの体積分率が高くなりすぎ、残留オーステナイトの体積分率が低くなりすぎた。
試料k-1では、仕上げ圧延における最終3段の圧延の通過時間が長すぎ、最終段の圧延から水冷開始までの経過時間が長すぎた。このため、焼戻しマルテンサイト及びベイナイトの有効結晶粒径が大きくなりすぎた。
試料l-1では、加熱炉からの抽出温度が低すぎた。このため、仕上げ圧延前の温度が低くなりすぎ、仕上げ焼鈍を行わなかった。
Claims (5)
- 質量%で、
C:0.15%~0.45%、
Si:1.0%~2.5%、
Mn:1.2%~3.5%、
Al:0.001%~2.0%、
P:0.02%以下、
S:0.02%以下、
N:0.007%以下、
O:0.01%以下、
Mo:0.0%~1.0%、
Cr:0.0%~2.0%、
Ni:0.0%~2.0%、
Cu:0.0%~2.0%、
Nb:0.0%~0.3%、
Ti:0.0%~0.3%、
V:0.0%~0.3%、
B:0.00%~0.01%、
Ca:0.00%~0.01%、
Mg:0.00%~0.01%、
REM:0.00%~0.01%、かつ
残部:Fe及び不純物、
で表される化学組成を有し、
体積分率で、
焼戻しマルテンサイト及びベイナイト:合計で70%以上92%未満、
残留オーステナイト:8%以上30%未満、
フェライト:10%未満、
フレッシュマルテンサイト:10%未満、かつ
パーライト:10%未満、
で表される鋼組織を有し、
焼戻しマルテンサイト及び下部ベイナイト中の鉄基炭化物の個数密度が1.0×106(個/mm2)以上であり、
焼戻しマルテンサイト及びベイナイトの有効結晶粒径が5μm以下であることを特徴とする鋼板。 - 前記化学組成において、質量%で、
Mo:0.01%~1.0%、
Cr:0.05%~2.0%、
Ni:0.05%~2.0%、若しくは
Cu:0.05%~2.0%、
又はこれらの任意の組み合わせが成り立つことを特徴とする請求項1に記載の鋼板。 - 前記化学組成において、質量%で、
Nb:0.005%~0.3%、
Ti:0.005%~0.3%、若しくは
V:0.005%~0.3%、
又はこれらの任意の組み合わせが成り立つことを特徴とする請求項1又は2に記載の鋼板。 - 前記化学組成において、質量%で、
B:0.0001%~0.01%、
が成り立つことを特徴とする請求項1乃至3のいずれか1項に記載の鋼板。 - 前記化学組成において、質量%で、
Ca:0.0005%~0.01%、
Mg:0.0005%~0.01%、若しくは
REM:0.0005%~0.01%、
又はこれらの任意の組み合わせが成り立つことを特徴とする請求項1乃至4のいずれか1項に記載の鋼板。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018540533A JP6801716B2 (ja) | 2016-09-21 | 2016-09-21 | 冷延鋼板 |
CN201680086997.4A CN109312433B (zh) | 2016-09-21 | 2016-09-21 | 钢板 |
KR1020187036757A KR102221391B1 (ko) | 2016-09-21 | 2016-09-21 | 강판 |
MX2018016000A MX2018016000A (es) | 2016-09-21 | 2016-09-21 | Lamina de acero. |
PCT/JP2016/077844 WO2018055695A1 (ja) | 2016-09-21 | 2016-09-21 | 鋼板 |
US16/312,214 US10787727B2 (en) | 2016-09-21 | 2016-09-21 | Steel sheet |
EP16916765.7A EP3517644B1 (en) | 2016-09-21 | 2016-09-21 | Steel sheet |
BR112018076347-0A BR112018076347A2 (pt) | 2016-09-21 | 2016-09-21 | chapa de aço |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/077844 WO2018055695A1 (ja) | 2016-09-21 | 2016-09-21 | 鋼板 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018055695A1 true WO2018055695A1 (ja) | 2018-03-29 |
Family
ID=61690291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/077844 WO2018055695A1 (ja) | 2016-09-21 | 2016-09-21 | 鋼板 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10787727B2 (ja) |
EP (1) | EP3517644B1 (ja) |
JP (1) | JP6801716B2 (ja) |
KR (1) | KR102221391B1 (ja) |
CN (1) | CN109312433B (ja) |
BR (1) | BR112018076347A2 (ja) |
MX (1) | MX2018016000A (ja) |
WO (1) | WO2018055695A1 (ja) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019184293A (ja) * | 2018-04-04 | 2019-10-24 | 日本製鉄株式会社 | 水素充填方法および水素脆化特性評価方法 |
WO2019212045A1 (ja) * | 2018-05-01 | 2019-11-07 | 日本製鉄株式会社 | 亜鉛系めっき鋼板及びその製造方法 |
WO2019238741A1 (de) * | 2018-06-12 | 2019-12-19 | Thyssenkrupp Steel Europe Ag | Stahlflachprodukt und verfahren zu seiner herstellung |
JP2020059881A (ja) * | 2018-10-09 | 2020-04-16 | 日本製鉄株式会社 | 鋼材およびその製造方法 |
JP2020059880A (ja) * | 2018-10-09 | 2020-04-16 | 日本製鉄株式会社 | 鋼材およびその製造方法 |
WO2020080554A1 (ja) * | 2018-10-19 | 2020-04-23 | 日本製鉄株式会社 | 熱延鋼板 |
KR20200075337A (ko) * | 2018-12-18 | 2020-06-26 | 주식회사 포스코 | 연성 및 가공성이 우수한 고강도 강판 및 그 제조방법 |
KR20200075332A (ko) * | 2018-12-18 | 2020-06-26 | 주식회사 포스코 | 고강도 고연성 강판 및 그 제조방법 |
WO2020162561A1 (ja) * | 2019-02-06 | 2020-08-13 | 日本製鉄株式会社 | 溶融亜鉛めっき鋼板およびその製造方法 |
WO2020162562A1 (ja) * | 2019-02-06 | 2020-08-13 | 日本製鉄株式会社 | 溶融亜鉛めっき鋼板およびその製造方法 |
JP2020122213A (ja) * | 2019-01-29 | 2020-08-13 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板およびその製造方法 |
WO2020174676A1 (ja) * | 2019-02-28 | 2020-09-03 | 新東工業株式会社 | ショットの製造方法、ショット |
KR20200140883A (ko) * | 2018-04-23 | 2020-12-16 | 닛폰세이테츠 가부시키가이샤 | 강 부재 및 그 제조 방법 |
WO2020262652A1 (ja) * | 2019-06-28 | 2020-12-30 | 日本製鉄株式会社 | 鋼板 |
WO2021024748A1 (ja) * | 2019-08-06 | 2021-02-11 | Jfeスチール株式会社 | 高強度薄鋼板およびその製造方法 |
WO2021070951A1 (ja) * | 2019-10-10 | 2021-04-15 | 日本製鉄株式会社 | 冷延鋼板およびその製造方法 |
WO2021149676A1 (ja) * | 2020-01-22 | 2021-07-29 | 日本製鉄株式会社 | 鋼板およびその製造方法 |
JP2021123801A (ja) * | 2020-02-07 | 2021-08-30 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2021193057A1 (ja) * | 2020-03-27 | 2021-09-30 | Motp合同会社 | 鋼材及びその製造方法 |
JP2021161478A (ja) * | 2020-03-31 | 2021-10-11 | 日本製鉄株式会社 | 鋼材およびその製造方法 |
WO2022234760A1 (ja) * | 2021-05-07 | 2022-11-10 | 株式会社神戸製鋼所 | 冷間圧延用の鋼板の製造方法および冷間圧延鋼板の製造方法 |
WO2023135980A1 (ja) * | 2022-01-14 | 2023-07-20 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2023135983A1 (ja) * | 2022-01-14 | 2023-07-20 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2024070889A1 (ja) * | 2022-09-30 | 2024-04-04 | Jfeスチール株式会社 | 鋼板、部材およびそれらの製造方法 |
WO2024070890A1 (ja) * | 2022-09-30 | 2024-04-04 | Jfeスチール株式会社 | 鋼板、部材およびそれらの製造方法 |
US12006562B2 (en) | 2019-02-06 | 2024-06-11 | Nippon Steel Corporation | Hot dip galvanized steel sheet and method for producing same |
WO2024162176A1 (ja) * | 2023-01-30 | 2024-08-08 | Jfeスチール株式会社 | 鋼板、部材およびそれらの製造方法 |
JP7534612B2 (ja) | 2020-08-07 | 2024-08-15 | 日本製鉄株式会社 | 表面処理鋼板及び加工材の製造方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112019004943A2 (pt) * | 2016-10-19 | 2019-06-25 | Nippon Steel & Sumitomo Metal Corp | chapa de aço revestida, método para fabricação de chapa de aço galvanizada por imersão a quente e método para fabricação de chapa de aço galvanizada por imersão a quente com liga |
KR101940919B1 (ko) * | 2017-08-08 | 2019-01-22 | 주식회사 포스코 | 우수한 강도와 연신율을 갖는 열연강판 및 제조방법 |
CN112996938B (zh) * | 2019-03-28 | 2022-05-24 | 日本制铁株式会社 | 高强度钢板 |
KR102314432B1 (ko) * | 2019-12-16 | 2021-10-19 | 주식회사 포스코 | 저온 충격인성이 우수한 고경도 내마모강 및 이의 제조방법 |
KR102321297B1 (ko) * | 2019-12-18 | 2021-11-03 | 주식회사 포스코 | 가공성이 우수한 고강도 강판 및 그 제조방법 |
WO2021123889A1 (en) * | 2019-12-19 | 2021-06-24 | Arcelormittal | Hot rolled and heat-treated steel sheet and method of manufacturing the same |
KR102348503B1 (ko) * | 2019-12-19 | 2022-01-06 | 주식회사 포스코 | 굽힘 특성이 우수한 강판 및 그 제조방법 |
US20230087014A1 (en) * | 2020-03-16 | 2023-03-23 | Nippon Steel Corporation | Steel sheet |
KR102498141B1 (ko) * | 2020-12-18 | 2023-02-08 | 주식회사 포스코 | 저온 충격인성이 우수한 고경도 방탄강 및 이의 제조방법 |
KR102498142B1 (ko) * | 2020-12-18 | 2023-02-08 | 주식회사 포스코 | 저온 충격인성이 우수한 고경도 방탄강 및 이의 제조방법 |
KR102498144B1 (ko) * | 2020-12-18 | 2023-02-08 | 주식회사 포스코 | 저온 충격인성이 우수한 고경도 방탄강 및 이의 제조방법 |
KR20240022723A (ko) | 2022-08-12 | 2024-02-20 | 주식회사 포스코 | 고강도 및 고연신 강판 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009209450A (ja) * | 2008-02-08 | 2009-09-17 | Jfe Steel Corp | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
CN102312157A (zh) * | 2011-09-21 | 2012-01-11 | 首钢总公司 | 一种1000MPa级以上冷轧TRIP钢及其制备方法 |
JP2012031462A (ja) * | 2010-07-29 | 2012-02-16 | Jfe Steel Corp | 成形性および耐衝撃性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2013060657A (ja) * | 2011-08-19 | 2013-04-04 | Jfe Steel Corp | 伸びおよび伸びフランジ性に優れる高強度冷延鋼板ならびにその製造方法 |
JP5896086B1 (ja) * | 2014-03-31 | 2016-03-30 | Jfeスチール株式会社 | 高降伏比高強度冷延鋼板およびその製造方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01230715A (ja) | 1987-06-26 | 1989-09-14 | Nippon Steel Corp | プレス成形性の優れた高強度冷延鋼板の製造方法 |
JPH0733551B2 (ja) | 1989-02-18 | 1995-04-12 | 新日本製鐵株式会社 | 優れた成形性を有する高強度鋼板の製造方法 |
JPH11293383A (ja) | 1998-04-09 | 1999-10-26 | Nippon Steel Corp | 水素性欠陥の少ない厚鋼板およびその製造方法 |
JP5365216B2 (ja) * | 2008-01-31 | 2013-12-11 | Jfeスチール株式会社 | 高強度鋼板とその製造方法 |
JP5418047B2 (ja) | 2008-09-10 | 2014-02-19 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
BR112012013042B1 (pt) | 2009-11-30 | 2022-07-19 | Nippon Steel Corporation | Chapa de aço de alta resistência com resistência máxima à tração de 900 mpa ou mais e métodos de produção da mesma |
PL2692893T3 (pl) | 2011-03-28 | 2018-05-30 | Nippon Steel & Sumitomo Metal Corporation | Blacha stalowa cienka walcowana na gorąco i sposób jej wytwarzania |
MX2013012116A (es) | 2011-04-21 | 2013-12-06 | Nippon Steel & Sumitomo Metal Corp | Placa de acero laminada en frio de alta resistencia que tiene excelente alargamiento por tension uniforme y capacidad de expansion de agujeros y metodo de fabricacion de la misma. |
RU2566121C1 (ru) * | 2011-09-30 | 2015-10-20 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Высокопрочный гальванизированный погружением стальной лист с превосходной характеристикой сопротивления удару и способ его изготовления и высокопрочный, подвергнутый легированию, гальванизированный погружением стальной лист и способ его изготовления |
KR101618477B1 (ko) | 2011-10-04 | 2016-05-04 | 제이에프이 스틸 가부시키가이샤 | 고강도 강판 및 그 제조 방법 |
JP5632904B2 (ja) | 2012-03-29 | 2014-11-26 | 株式会社神戸製鋼所 | 加工性に優れた高強度冷延鋼板の製造方法 |
JP5857909B2 (ja) | 2012-08-09 | 2016-02-10 | 新日鐵住金株式会社 | 鋼板およびその製造方法 |
CN102925803A (zh) * | 2012-11-01 | 2013-02-13 | 湖南华菱湘潭钢铁有限公司 | 一种超高强钢板的生产方法 |
JP6040753B2 (ja) * | 2012-12-18 | 2016-12-07 | 新日鐵住金株式会社 | 強度と耐水素脆性に優れたホットスタンプ成形体及びその製造方法 |
WO2014132968A1 (ja) * | 2013-02-26 | 2014-09-04 | 新日鐵住金株式会社 | 焼き付け硬化性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板 |
CN103194668B (zh) * | 2013-04-02 | 2015-09-16 | 北京科技大学 | 一种低屈强比超高强冷轧钢板及其制备方法 |
CN105209650B (zh) * | 2013-05-14 | 2017-11-07 | 新日铁住金株式会社 | 热轧钢板及其制造方法 |
JP6295893B2 (ja) * | 2014-08-29 | 2018-03-20 | 新日鐵住金株式会社 | 耐水素脆化特性に優れた超高強度冷延鋼板およびその製造方法 |
-
2016
- 2016-09-21 KR KR1020187036757A patent/KR102221391B1/ko active IP Right Grant
- 2016-09-21 WO PCT/JP2016/077844 patent/WO2018055695A1/ja unknown
- 2016-09-21 CN CN201680086997.4A patent/CN109312433B/zh active Active
- 2016-09-21 JP JP2018540533A patent/JP6801716B2/ja active Active
- 2016-09-21 EP EP16916765.7A patent/EP3517644B1/en active Active
- 2016-09-21 MX MX2018016000A patent/MX2018016000A/es unknown
- 2016-09-21 US US16/312,214 patent/US10787727B2/en active Active
- 2016-09-21 BR BR112018076347-0A patent/BR112018076347A2/pt active Search and Examination
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009209450A (ja) * | 2008-02-08 | 2009-09-17 | Jfe Steel Corp | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2012031462A (ja) * | 2010-07-29 | 2012-02-16 | Jfe Steel Corp | 成形性および耐衝撃性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2013060657A (ja) * | 2011-08-19 | 2013-04-04 | Jfe Steel Corp | 伸びおよび伸びフランジ性に優れる高強度冷延鋼板ならびにその製造方法 |
CN102312157A (zh) * | 2011-09-21 | 2012-01-11 | 首钢总公司 | 一种1000MPa级以上冷轧TRIP钢及其制备方法 |
JP5896086B1 (ja) * | 2014-03-31 | 2016-03-30 | Jfeスチール株式会社 | 高降伏比高強度冷延鋼板およびその製造方法 |
Cited By (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7020255B2 (ja) | 2018-04-04 | 2022-02-16 | 日本製鉄株式会社 | 水素充填方法および水素脆化特性評価方法 |
JP2019184293A (ja) * | 2018-04-04 | 2019-10-24 | 日本製鉄株式会社 | 水素充填方法および水素脆化特性評価方法 |
KR102504106B1 (ko) * | 2018-04-23 | 2023-02-28 | 닛폰세이테츠 가부시키가이샤 | 강 부재 및 그 제조 방법 |
KR20200140883A (ko) * | 2018-04-23 | 2020-12-16 | 닛폰세이테츠 가부시키가이샤 | 강 부재 및 그 제조 방법 |
US11713497B2 (en) | 2018-04-23 | 2023-08-01 | Nippon Steel Corporation | Steel member and method of manufacturing same |
WO2019212045A1 (ja) * | 2018-05-01 | 2019-11-07 | 日本製鉄株式会社 | 亜鉛系めっき鋼板及びその製造方法 |
US11859259B2 (en) | 2018-05-01 | 2024-01-02 | Nippon Steel Corporation | Zinc-plated steel sheet and manufacturing method thereof |
JP6631765B1 (ja) * | 2018-05-01 | 2020-01-15 | 日本製鉄株式会社 | 亜鉛系めっき鋼板及びその製造方法 |
CN112041475A (zh) * | 2018-05-01 | 2020-12-04 | 日本制铁株式会社 | 镀锌钢板及其制造方法 |
CN112041475B (zh) * | 2018-05-01 | 2021-09-17 | 日本制铁株式会社 | 镀锌钢板及其制造方法 |
US11597986B2 (en) | 2018-06-12 | 2023-03-07 | Thyssenkrupp Steel Europe Ag | Flat steel product and method for producing same |
CN112313349A (zh) * | 2018-06-12 | 2021-02-02 | 蒂森克虏伯钢铁欧洲股份公司 | 扁钢产品及其生产方法 |
CN112313349B (zh) * | 2018-06-12 | 2023-04-14 | 蒂森克虏伯钢铁欧洲股份公司 | 扁钢产品及其生产方法 |
WO2019238741A1 (de) * | 2018-06-12 | 2019-12-19 | Thyssenkrupp Steel Europe Ag | Stahlflachprodukt und verfahren zu seiner herstellung |
JP7218533B2 (ja) | 2018-10-09 | 2023-02-07 | 日本製鉄株式会社 | 鋼材およびその製造方法 |
JP2020059880A (ja) * | 2018-10-09 | 2020-04-16 | 日本製鉄株式会社 | 鋼材およびその製造方法 |
JP2020059881A (ja) * | 2018-10-09 | 2020-04-16 | 日本製鉄株式会社 | 鋼材およびその製造方法 |
WO2020080554A1 (ja) * | 2018-10-19 | 2020-04-23 | 日本製鉄株式会社 | 熱延鋼板 |
JPWO2020080554A1 (ja) * | 2018-10-19 | 2021-02-15 | 日本製鉄株式会社 | 熱延鋼板 |
KR102209569B1 (ko) * | 2018-12-18 | 2021-01-28 | 주식회사 포스코 | 고강도 고연성 강판 및 그 제조방법 |
KR20200075337A (ko) * | 2018-12-18 | 2020-06-26 | 주식회사 포스코 | 연성 및 가공성이 우수한 고강도 강판 및 그 제조방법 |
US12037656B2 (en) | 2018-12-18 | 2024-07-16 | Posco Co., Ltd | High strength steel sheet having excellent ductility and workability, and method for manufacturing same |
KR20200075332A (ko) * | 2018-12-18 | 2020-06-26 | 주식회사 포스코 | 고강도 고연성 강판 및 그 제조방법 |
KR102276740B1 (ko) * | 2018-12-18 | 2021-07-13 | 주식회사 포스코 | 연성 및 가공성이 우수한 고강도 강판 및 그 제조방법 |
JP2020122213A (ja) * | 2019-01-29 | 2020-08-13 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP7056631B2 (ja) | 2019-01-29 | 2022-04-19 | Jfeスチール株式会社 | 高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP6750771B1 (ja) * | 2019-02-06 | 2020-09-02 | 日本製鉄株式会社 | 溶融亜鉛めっき鋼板およびその製造方法 |
JP6750772B1 (ja) * | 2019-02-06 | 2020-09-02 | 日本製鉄株式会社 | 溶融亜鉛めっき鋼板およびその製造方法 |
US12006562B2 (en) | 2019-02-06 | 2024-06-11 | Nippon Steel Corporation | Hot dip galvanized steel sheet and method for producing same |
WO2020162562A1 (ja) * | 2019-02-06 | 2020-08-13 | 日本製鉄株式会社 | 溶融亜鉛めっき鋼板およびその製造方法 |
WO2020162561A1 (ja) * | 2019-02-06 | 2020-08-13 | 日本製鉄株式会社 | 溶融亜鉛めっき鋼板およびその製造方法 |
US11814708B2 (en) | 2019-02-06 | 2023-11-14 | Nippon Steel Corporation | Hot dip galvanized steel sheet and method for producing same |
US11905570B2 (en) | 2019-02-06 | 2024-02-20 | Nippon Steel Corporation | Hot dip galvanized steel sheet and method for producing same |
EP3922744A4 (en) * | 2019-02-06 | 2022-08-10 | Nippon Steel Corporation | HOT DIP ZINC COATED STEEL SHEET AND METHOD OF MAKING IT |
WO2020174676A1 (ja) * | 2019-02-28 | 2020-09-03 | 新東工業株式会社 | ショットの製造方法、ショット |
JPWO2020174676A1 (ja) * | 2019-02-28 | 2021-11-04 | 新東工業株式会社 | ショットの製造方法、ショット |
JPWO2020262652A1 (ja) * | 2019-06-28 | 2021-12-23 | 日本製鉄株式会社 | 鋼板 |
US11898219B2 (en) | 2019-06-28 | 2024-02-13 | Nippon Steel Corporation | Steel sheet |
KR20220024825A (ko) * | 2019-06-28 | 2022-03-03 | 닛폰세이테츠 가부시키가이샤 | 강판 |
WO2020262652A1 (ja) * | 2019-06-28 | 2020-12-30 | 日本製鉄株式会社 | 鋼板 |
JP7160199B2 (ja) | 2019-06-28 | 2022-10-25 | 日本製鉄株式会社 | 鋼板 |
KR102660727B1 (ko) | 2019-06-28 | 2024-04-26 | 닛폰세이테츠 가부시키가이샤 | 강판 |
WO2021024748A1 (ja) * | 2019-08-06 | 2021-02-11 | Jfeスチール株式会社 | 高強度薄鋼板およびその製造方法 |
KR102682666B1 (ko) | 2019-08-06 | 2024-07-08 | 제이에프이 스틸 가부시키가이샤 | 고강도 박강판 및 그의 제조 방법 |
JP6874919B1 (ja) * | 2019-08-06 | 2021-05-19 | Jfeスチール株式会社 | 高強度薄鋼板およびその製造方法 |
KR20220033519A (ko) * | 2019-08-06 | 2022-03-16 | 제이에프이 스틸 가부시키가이샤 | 고강도 박강판 및 그의 제조 방법 |
JPWO2021070951A1 (ja) * | 2019-10-10 | 2021-04-15 | ||
JP7216932B2 (ja) | 2019-10-10 | 2023-02-02 | 日本製鉄株式会社 | 冷延鋼板およびその製造方法 |
WO2021070951A1 (ja) * | 2019-10-10 | 2021-04-15 | 日本製鉄株式会社 | 冷延鋼板およびその製造方法 |
KR102711646B1 (ko) | 2019-10-10 | 2024-10-04 | 닛폰세이테츠 가부시키가이샤 | 냉연강판 및 그 제조 방법 |
CN114867880B (zh) * | 2019-10-10 | 2023-08-18 | 日本制铁株式会社 | 冷轧钢板及其制造方法 |
CN114867880A (zh) * | 2019-10-10 | 2022-08-05 | 日本制铁株式会社 | 冷轧钢板及其制造方法 |
KR20220060552A (ko) * | 2019-10-10 | 2022-05-11 | 닛폰세이테츠 가부시키가이샤 | 냉연강판 및 그 제조 방법 |
JPWO2021149676A1 (ja) * | 2020-01-22 | 2021-07-29 | ||
CN115003839A (zh) * | 2020-01-22 | 2022-09-02 | 日本制铁株式会社 | 钢板及其制造方法 |
WO2021149676A1 (ja) * | 2020-01-22 | 2021-07-29 | 日本製鉄株式会社 | 鋼板およびその製造方法 |
JP7364942B2 (ja) | 2020-01-22 | 2023-10-19 | 日本製鉄株式会社 | 鋼板およびその製造方法 |
JP7276366B2 (ja) | 2020-02-07 | 2023-05-18 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP2021123801A (ja) * | 2020-02-07 | 2021-08-30 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2021193057A1 (ja) * | 2020-03-27 | 2021-09-30 | Motp合同会社 | 鋼材及びその製造方法 |
US12110566B2 (en) | 2020-03-27 | 2024-10-08 | Motp Llc | Steel material and method for producing same |
JP2021161478A (ja) * | 2020-03-31 | 2021-10-11 | 日本製鉄株式会社 | 鋼材およびその製造方法 |
JP7534612B2 (ja) | 2020-08-07 | 2024-08-15 | 日本製鉄株式会社 | 表面処理鋼板及び加工材の製造方法 |
WO2022234760A1 (ja) * | 2021-05-07 | 2022-11-10 | 株式会社神戸製鋼所 | 冷間圧延用の鋼板の製造方法および冷間圧延鋼板の製造方法 |
JP7359331B1 (ja) * | 2022-01-14 | 2023-10-11 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP7359332B1 (ja) * | 2022-01-14 | 2023-10-11 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2023135983A1 (ja) * | 2022-01-14 | 2023-07-20 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2023135980A1 (ja) * | 2022-01-14 | 2023-07-20 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2024070890A1 (ja) * | 2022-09-30 | 2024-04-04 | Jfeスチール株式会社 | 鋼板、部材およびそれらの製造方法 |
WO2024070889A1 (ja) * | 2022-09-30 | 2024-04-04 | Jfeスチール株式会社 | 鋼板、部材およびそれらの製造方法 |
WO2024162176A1 (ja) * | 2023-01-30 | 2024-08-08 | Jfeスチール株式会社 | 鋼板、部材およびそれらの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
MX2018016000A (es) | 2019-08-14 |
CN109312433B (zh) | 2021-12-31 |
JP6801716B2 (ja) | 2020-12-16 |
US10787727B2 (en) | 2020-09-29 |
JPWO2018055695A1 (ja) | 2019-04-18 |
KR102221391B1 (ko) | 2021-03-02 |
EP3517644B1 (en) | 2021-03-03 |
EP3517644A4 (en) | 2020-02-26 |
BR112018076347A2 (pt) | 2019-04-02 |
CN109312433A (zh) | 2019-02-05 |
KR20190007055A (ko) | 2019-01-21 |
EP3517644A1 (en) | 2019-07-31 |
US20190330721A1 (en) | 2019-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6801716B2 (ja) | 冷延鋼板 | |
US11970752B2 (en) | Steel sheet | |
JP4772927B2 (ja) | 疲労特性と伸び及び衝突特性に優れた高強度鋼板、溶融めっき鋼板、合金化溶融めっき鋼板およびそれらの製造方法 | |
JP4510488B2 (ja) | 成形性および穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板およびその製造方法 | |
KR101606658B1 (ko) | 아연 도금 강판 및 그 제조 방법 | |
JP5499664B2 (ja) | 疲労耐久性に優れた引張最大強度900MPa以上の高強度冷延鋼板及びその製造方法、並びに、高強度亜鉛めっき鋼板及びその製造方法 | |
JP4737319B2 (ja) | 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法 | |
JP6314520B2 (ja) | 引張最大強度1300MPa以上を有する成形性に優れた高強度鋼板、高強度溶融亜鉛めっき鋼板、及び、高強度合金化溶融亜鉛めっき鋼板とそれらの製造方法 | |
JP5251208B2 (ja) | 高強度鋼板とその製造方法 | |
JP5114747B2 (ja) | 穴拡げ性と延性のバランスが極めて良好な高強度鋼板の製造方法と亜鉛めっき鋼板の製造方法 | |
WO2019186989A1 (ja) | 鋼板 | |
JP5245228B2 (ja) | 伸び、耐食性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法 | |
JPWO2009125874A1 (ja) | 穴拡げ性と延性のバランスが極めて良好で、疲労耐久性にも優れた高強度鋼板及び亜鉛めっき鋼板、並びにそれらの鋼板の製造方法 | |
JP2011111675A (ja) | 耐水素脆化特性に優れた引張最大強度900MPa以上の高強度鋼板および高強度冷延鋼板の製造方法、高強度亜鉛めっき鋼板の製造方法 | |
JP6388056B2 (ja) | 熱延鋼板の製造方法および冷延フルハード鋼板の製造方法 | |
US20220290269A1 (en) | Steel sheet and method for manufacturing same | |
JP4528135B2 (ja) | 穴拡げ性に優れた高強度高延性溶融亜鉛めっき鋼板およびその製造方法 | |
JP4855442B2 (ja) | 低降伏比型合金化溶融亜鉛メッキ高強度鋼板の製造方法 | |
JP6460239B2 (ja) | 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法 | |
JP6460238B2 (ja) | 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法 | |
JP7311808B2 (ja) | 鋼板及びその製造方法 | |
KR20230098625A (ko) | 용융 아연 도금 강판 및 그 제조 방법 | |
JP2002317245A (ja) | プレス加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 | |
TWI593812B (zh) | Steel plate | |
WO2023068369A1 (ja) | 鋼板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16916765 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018540533 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20187036757 Country of ref document: KR Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112018076347 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 112018076347 Country of ref document: BR Kind code of ref document: A2 Effective date: 20181218 |
|
ENP | Entry into the national phase |
Ref document number: 2016916765 Country of ref document: EP Effective date: 20190423 |