WO2017200032A1 - Methacrylic resin composition and molded body - Google Patents
Methacrylic resin composition and molded body Download PDFInfo
- Publication number
- WO2017200032A1 WO2017200032A1 PCT/JP2017/018615 JP2017018615W WO2017200032A1 WO 2017200032 A1 WO2017200032 A1 WO 2017200032A1 JP 2017018615 W JP2017018615 W JP 2017018615W WO 2017200032 A1 WO2017200032 A1 WO 2017200032A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- methacrylic resin
- resin composition
- structural unit
- mass
- film
- Prior art date
Links
- 0 CC(*)(*)C(*)(C(C(*)*)(*1CC1)C(O1)=O)C1=O Chemical compound CC(*)(*)C(*)(C(C(*)*)(*1CC1)C(O1)=O)C1=O 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L21/00—Compositions of unspecified rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/18—Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/10—Homopolymers or copolymers of methacrylic acid esters
- C08L33/12—Homopolymers or copolymers of methyl methacrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L45/00—Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L61/00—Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
- C08L61/04—Condensation polymers of aldehydes or ketones with phenols only
- C08L61/06—Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
Definitions
- the present invention relates to a methacrylic resin composition and a molded body. More specifically, the present invention relates to a methacrylic resin composition suitable for obtaining a molded article that can be melt-molded while suppressing thermal decomposition of the methacrylic resin and mold contamination, and hardly causes bleeding out, and the methacrylic resin.
- the present invention relates to a molded article comprising the composition.
- methacrylic resin As a material for the polarizer protective film, a methacrylic resin that can be expected to have low moisture permeability instead of high moisture permeability triacetylcellulose has been studied. However, methacrylic resin is easily decomposed when it is overheated during melt molding. Substances generated by this thermal decomposition may cause bubbles (silver streaks) in the molded body or mold contamination.
- Patent Document 1 discloses pentaerythritol-tetrakis [3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate], bis- [3, Aromatic hydroxy compounds such as 3′-bis- (4′-hydroxy-3′-t-butylphenyl) butyric acid] glycol ester and the like containing methyl methacrylate units of 50% by weight or more and other unsaturated vinyl units And adding to a methyl methacrylate copolymer comprising:
- the thermal decomposition of the methacrylic resin can be suppressed by the addition of the aromatic hydroxy compound shown in Patent Document 1, mold contamination by the aromatic hydroxy compound or bleeding out of the aromatic hydroxy compound may be caused. .
- An object of the present invention is to provide a methacrylic resin composition suitable for obtaining a molded article that can be melt-molded while suppressing thermal decomposition of methacrylic resin and mold contamination, and hardly causes bleeding out.
- Methacrylic resin 70 to 99.99% by mass, compound having a molecular weight of 2,000 to 300,000 and having three or more phenolic hydroxyl groups in one molecule [B] 0.01 to 30% by mass
- a thermoplastic methacrylic resin composition comprising
- a structural unit having a ring structure in the main chain, a structural unit containing a> CH—O—C ( ⁇ O) — group in the ring structure, a —C ( ⁇ O) —O—C ( ⁇ O) — group Is a structural unit containing a —C ( ⁇ O) —N—C ( ⁇ O) — group in the ring structure, or a structural unit containing a> CH—O—CH ⁇ group in the ring structure.
- [5] The methacrylic resin composition according to any one of [1] to [4], wherein the compound [B] is a polyvinyl phenol, a terpene phenol resin, a resol type phenol resin, or a novolac type phenol resin.
- [6] The methacrylic resin composition according to any one of [1] to [5], further comprising an ultraviolet absorber [C].
- [7] The methacrylic resin composition according to any one of [1] to [6], further containing a crosslinked rubber [D].
- [8] The methacrylic resin composition according to any one of [1] to [7], further containing a block copolymer [E] or a graft copolymer [F].
- [9] The methacrylic resin composition according to any one of [1] to [8], further comprising a polycarbonate resin [G].
- a molded article comprising the methacrylic resin composition according to any one of [1] to [9].
- a film comprising the methacrylic resin composition according to any one of [1] to [9].
- An optical film comprising the film according to [11].
- a polarizer protective film comprising the film according to [11].
- a retardation film comprising the film according to [11].
- a polarizing plate formed by laminating at least one film according to any one of [11] to [14].
- Methacrylic resin [A] 70 to 99.99% by mass, compound having a molecular weight of 2,000 to 300,000 and having three or more phenolic hydroxyl groups in one molecule [B] 0.01 to 30% by mass And kneading to obtain a thermoplastic methacrylic resin composition, The manufacturing method of a molded object which has melt-molding this methacrylic resin composition.
- the methacrylic resin composition of the present invention is difficult to be thermally decomposed even when it is overheated in melt molding and hardly causes mold contamination.
- the molded body made of the methacrylic resin composition of the present invention hardly causes bleeding out. Since the molded body, particularly the film, comprising the methacrylic resin composition of the present invention has high transparency, low moisture permeability, and high heat resistance, it can be used in fields where such features can be utilized, for example, in the optical field. .
- the methacrylic resin composition of the present invention is thermoplastic, a desired shape can be easily formed by melt molding.
- the methacrylic resin composition of the present invention can be used, for example, in the field where light is irradiated and the field where it is exposed to heat.
- the methacrylic resin composition of the present invention contains a methacrylic resin [A] and a compound [B].
- the methacrylic resin [A] may be a polymer containing only a structural unit derived from methyl methacrylate (hereinafter, this may be referred to as methacrylic resin [A0]), or methyl methacrylate. Even a random copolymer containing a structural unit derived from (2) and a structural unit derived from another monomer (hereinafter, this random copolymer may be referred to as a methacrylic resin [A1]).
- a random copolymer containing a structural unit derived from methyl methacrylate and a structural unit having a ring structure in the main chain (hereinafter, this random copolymer may be referred to as a methacrylic resin [A2]). It may be.
- a commercially available methacrylic resin can be used as the methacrylic resin [A0] or [A1].
- the methacrylic resin [A] has a polystyrene equivalent weight average molecular weight Mw A calculated based on a chromatogram obtained by gel permeation chromatography, preferably 50,000 to 200,000, more preferably 550,000 to 160,000. More preferably, it is 60,000 to 120,000.
- Mw A polystyrene equivalent weight average molecular weight
- the ratio Mw A / Mn A of the weight average molecular weight Mw A to the number average molecular weight Mn A in terms of polystyrene calculated based on a chromatogram obtained by gel permeation chromatography is preferably 1.0. It is 5.0 or more, more preferably 1.2 or more and 3.0 or less, further preferably 1.2 or more and 2.5 or less, and particularly preferably 1.3 or more and 1.7 or less.
- the lower the Mw A / Mn A the better the impact resistance and toughness.
- Mw A / Mn A increases, the melt fluidity of the methacrylic resin [A] increases and the surface smoothness of the resulting molded product tends to improve.
- the total content of structural units derived from methyl methacrylate is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably methacrylic resin [A1] used in the present invention from the viewpoint of heat resistance and the like. Is 98% by mass or more, more preferably 99% by mass or more.
- the methacrylic resin [A1] may contain a structural unit derived from a monomer other than methyl methacrylate.
- monomers other than methyl methacrylate include, for example, alkyl methacrylates other than methyl methacrylate such as ethyl methacrylate and butyl methacrylate; aryl methacrylates such as phenyl methacrylate; cyclohexyl methacrylate, and methacrylic acid.
- Methacrylic acid cycloalkyl esters such as norbornenyl; acrylic acid alkyl esters such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate; aryl acrylates such as phenyl acrylate; acrylic Acrylic acid cycloalkyl esters such as cyclohexyl acid and norbornenyl acrylate; Aromatic vinyl compounds such as styrene and ⁇ -methylstyrene; Acrylonitrile; Methacrylonitrile Polymerizable carbon in one molecule, such as a - can be exemplified a vinyl monomer having only one carbon-carbon double bond.
- the methacrylic resin [A1] preferably does not contain a structural unit derived from a monomer having two or more polymerizable carbon-carbon double bonds in one molecule.
- the lower limit of the triplet syndiotacticity (rr) is preferably 50%, more preferably 52%, and even more preferably 53%.
- the upper limit of the tridentated syndiotacticity (rr) of the methacrylic resin [A0] or the methacrylic resin [A1] is not particularly limited, but is preferably 99%, more preferably 85% from the viewpoint of film forming properties. More preferably 77%, even more preferably 65%, and most preferably 64%.
- a triplet display syndiotacticity (hereinafter sometimes simply referred to as "syndiotacticity (rr)”) is a chain of three consecutive structural units (triplet, triad). The two chains (doublet, diad) are both racemo (represented as rr). In the chain of molecular units (doublet, diad) in the polymer molecule, those having the same configuration are referred to as “meso”, and those opposite to each other are referred to as “racemo”, which are expressed as m and r, respectively.
- the triplet-represented syndiotacticity (rr) was measured from 0.6 to 0.95 ppm when the 1 H-NMR spectrum was measured at 30 ° C. in deuterated chloroform and TMS was 0 ppm. The area (X) of the region and the area (Y) of the region of 0.6 to 1.35 ppm can be measured and calculated by the formula: (X / Y) ⁇ 100.
- the content of a component having a molecular weight of 200,000 or more (high molecular weight component) is preferably 0.1 to 10%, more preferably 0.5 to 5%.
- the methacrylic resin [A0] or methacrylic resin [A1] used in the present invention preferably has a content of a component having a molecular weight of less than 15,000 (low molecular weight component), preferably 0.1 to 5%, more preferably 0.2 to 3%.
- the methacrylic resin [A0] or the methacrylic resin [A1] contains the high molecular weight component and the low molecular weight component in this range, the film forming property is improved and a film having a uniform film thickness is easily obtained.
- the content of the component having a molecular weight of 200,000 or more is the chromatogram detected before the retention time of the standard polystyrene having a molecular weight of 200,000 in the area surrounded by the chromatogram measured by GPC and the baseline. Calculated as the ratio of the area surrounded by the baseline.
- the content of a component having a molecular weight of less than 15,000 is a chromatogram detected after the retention time of standard polystyrene having a molecular weight of 15,000 in the area surrounded by the chromatogram obtained by GPC and the baseline. Calculated as the ratio of the area of the portion surrounded by the gram and the baseline.
- the measurement by gel permeation chromatography is performed as follows. Tetrahydrofuran is used as the eluent, and TSKgel SuperMultipore HZM-M manufactured by Tosoh Corporation and SuperHZ4000 are connected in series as the column. An HLC-8320 (product number) manufactured by Tosoh Corporation equipped with a differential refractive index detector (RI detector) was used as an analyzer. 4 mg of the methacrylic resin to be tested was dissolved in 5 ml of tetrahydrofuran to prepare a test solution. The column oven temperature was set to 40 ° C., 20 ⁇ l of the test solution was injected at an eluent flow rate of 0.35 ml / min, and the chromatogram was measured.
- the chromatogram is a chart in which the electric signal value (intensity Y) derived from the difference in refractive index between the test solution and the reference solution is plotted against the retention time X.
- a standard polystyrene having a molecular weight in the range of 400 to 5000000 was measured by gel permeation chromatography to prepare a calibration curve showing the relationship between the retention time and the molecular weight.
- the chromatogram shows a single peak, it is based on a line connecting the point where the slope on the high molecular weight side of the chromatogram changes from zero to positive and the point where the slope of the peak on the low molecular weight side changes from negative to zero. Line. If the chromatogram shows multiple peaks, connect the line connecting the point where the slope of the highest molecular weight peak changes from zero to positive and the point where the slope of the lowest molecular weight peak changes from negative to zero. Baseline.
- the methacrylic resin [A0] or the methacrylic resin [A1] has a melt flow rate determined by measurement under conditions of 230 ° C. and a load of 3.8 kg, preferably 0.1 to 30 g / 10 min or more, more preferably 0. 0.5 to 20 g / 10 min, more preferably 1 to 15 g / 10 min.
- the methacrylic resin [A0] or methacrylic resin [A1] has a glass transition temperature of preferably 100 ° C. or higher, more preferably 110 ° C. or higher, still more preferably 115 ° C. or higher, and particularly preferably 120 ° C. or higher.
- the upper limit of the glass transition temperature of the methacrylic resin [A0] or the methacrylic resin [A1] is not particularly limited, but is preferably 131 ° C.
- the glass transition temperature is a midpoint glass transition temperature obtained from a DSC curve.
- the resin to be measured is heated to 10 ° C / min for the first time (1st run) to 250 ° C using a differential scanning calorimeter in accordance with JIS K7121, and then cooled to room temperature. Thereafter, the glass transition temperature is the midpoint glass transition temperature of the second run detected when the second temperature rise (2nd run) is performed from room temperature to 250 ° C. at a rate of temperature rise of 10 ° C./min.
- the methacrylic resin [A2] contains a structural unit having a ring structure in the main chain. This improves the heat resistance of the methacrylic resin composition. Therefore, in the methacrylic resin [A2] containing a structural unit derived from methyl methacrylate and a structural unit having a ring structure in the main chain, the total content of structural units derived from methyl methacrylate is more than the above-mentioned range. Can be lowered. For example, in the methacrylic resin [A2] containing a structural unit derived from methyl methacrylate and a structural unit having a ring structure in the main chain, the total content of structural units derived from methyl methacrylate is preferably 20 to 99.
- the mass is more preferably 30 to 95 mass%, still more preferably 40 to 90 mass%.
- the total content of structural units having a ring structure in the main chain is preferably 1 to 80% by mass, more preferably 5 to 70% by mass, and still more preferably 10 to 60% by mass.
- a methacrylic resin [A2] containing a structural unit derived from methyl methacrylate and a structural unit having a ring structure in the main chain is other than the structural unit derived from methyl methacrylate and the structural unit having a ring structure in the main chain. You may have a structural unit.
- Such a structural unit can be a structural unit derived from a monomer exemplified as a monomer other than methyl methacrylate as described above.
- the methacrylic resin [A2] preferably does not contain a structural unit derived from a monomer having two or more polymerizable carbon-carbon double bonds in one molecule.
- structural units having a ring structure in the main chain structural units containing> CH—O—C ( ⁇ O) — group in the ring structure, and —C ( ⁇ O) —O—C ( ⁇ O) — groups are cyclic
- a structural unit containing a structure, a structural unit containing a —C ( ⁇ O) —N—C ( ⁇ O) — group in the ring structure, or a structural unit containing a> CH—O—CH ⁇ group in the ring structure is preferable.
- a structural unit having a ring structure in the main chain is obtained by copolymerizing a cyclic monomer having a polymerizable unsaturated carbon-carbon double bond such as maleic anhydride or N-substituted maleimide with methyl methacrylate or the like.
- a part of the molecular chain of the methacrylic resin obtained by polymerization can be contained in the methacrylic resin by intramolecular condensation cyclization.
- Structural units containing a CH—O—C ( ⁇ O) — group in the ring structure include ⁇ -propiolactone diyl (also known as oxooxetanediyl) structural unit, ⁇ -butyrolactone diyl (also known as 2-oxodihydrofurandi) Yl) structural unit, and lactone diyl structural unit such as ⁇ -valerolactone diyl (also known as 2-oxodihydropyrandiyl) structural unit.
- “> C” means that the carbon atom C has two bonds.
- examples of the ⁇ -valerolactone diyl structural unit include structural units represented by the formula (I).
- R 14 and R 15 are each independently a hydrogen atom or an organic residue having 1 to 20 carbon atoms, preferably R 14 is a hydrogen atom and R 15 is a methyl group.
- R 16 is —COOR, R is a hydrogen atom or an organic residue having 1 to 20 carbon atoms, preferably a methyl group. * Means a bond.
- examples of the organic residue in the formula (I) include a linear or branched alkyl group, a linear or branched alkylene group, an aryl group, an —OAc group, and a —CN group.
- the organic residue may contain an oxygen atom as a constituent atom.
- “Ac” represents an acetyl group.
- the organic residue preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms.
- the ⁇ -valerolactone diyl structural unit can be contained in a methacrylic resin by intramolecular cyclization of structural units derived from two adjacent methyl methacrylates.
- the structural unit containing a —C ( ⁇ O) —O—C ( ⁇ O) — group in the ring structure includes 2,5-dioxodihydrofurandiyl structural unit, 2,6-dioxodihydropyrandiyl structural unit, Examples include 2,7-dioxooxepanediyl structural unit.
- examples of the 2,5-dioxodihydrofurandiyl structural unit include a structural unit represented by the formula (II).
- R 21 and R 22 are each independently a hydrogen atom or an organic residue having 1 to 20 carbon atoms.
- examples of the organic residue in the formula (II) include a linear or branched alkyl group, a linear or branched alkylene group, an aryl group, an —OAc group, and a —CN group.
- the organic residue may contain an oxygen atom.
- “Ac” represents an acetyl group.
- the organic residue preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms.
- R 21 and R 22 are more preferably hydrogen atoms.
- styrene or the like is copolymerized.
- Specific examples include a copolymer having a structural unit derived from styrene, a structural unit derived from methyl methacrylate, and a structural unit derived from maleic anhydride, as described in WO2014 / 021264A1. .
- the 2,5-dioxodihydrofurandiyl structural unit can be contained in the methacrylic resin by copolymerization of maleic anhydride.
- Examples of the 2,6-dioxodihydropyrandiyl structural unit include a structural unit represented by the formula (III).
- R 33 and R 34 are each independently a hydrogen atom or an organic residue having 1 to 20 carbon atoms.
- examples of the organic residue in the formula (III) include a linear or branched alkyl group, a linear or branched alkylene group, an aryl group, an —OAc group, and a —CN group.
- the organic residue may contain an oxygen atom.
- “Ac” represents an acetyl group.
- the organic residue preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and still more preferably a methyl group.
- 2,6-Dioxodihydropyrandiyl structural unit can be contained in a methacrylic resin by intramolecular cyclization of structural units derived from two adjacent methyl methacrylates.
- examples of the 2,6-dioxopiperidinediyl structural unit include a structural unit represented by the formula (IV).
- R 41 and R 42 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 43 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or an alkyl group having 3 to 12 carbon atoms.
- R 41 and R 42 are preferably each independently a hydrogen atom or a methyl group, R 41 is a methyl group, and R 42 is a hydrogen atom. Is more preferable.
- R 43 is preferably a hydrogen atom, a methyl group, an n-butyl group, a cyclohexyl group or a benzyl group, more preferably a methyl group.
- the 2,6-dioxopiperidinediyl structural unit can be contained in a methacrylic resin by, for example, intramolecular cyclization of a structural unit derived from two adjacent methyl methacrylate in the presence of an amine.
- Examples of the 2,5-dioxopyrrolidinediyl structural unit include a structural unit represented by the formula (V).
- R 52 and R 53 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an alkyl group having 6 to 14 carbon atoms, and R 51 is aryl having 7 to 14 carbon atoms.
- the group substituted by the aryl group is a halogeno group, a hydroxyl group, a nitro group, an alkoxy group having 1 to 12 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an arylalkyl group having 7 to 14 carbon atoms.
- R 51 is preferably a phenyl group or a cyclohexyl group, and both R 52 and R 53 are preferably hydrogen atoms.
- 2,5-Dioxopyrrolidinediyl structural unit can be contained in a methacrylic resin by copolymerization of N-substituted maleimide or the like.
- Examples of the structural unit containing a> CH—O—CH ⁇ group in the ring structure include an oxetanediyl structural unit, a tetrahydrofurandiyl structural unit, a tetrahydropyrandiyl structural unit, and an oxepandiyl structural unit.
- > C means that the carbon atom C has two bonds.
- examples of the tetrahydropyrandiyl structural unit include a structural unit represented by the formula (VI).
- R 61 and R 62 are each independently a hydrogen atom, a linear or branched hydrocarbon group having 1 to 20 carbon atoms, or a hydrocarbon group having 3 to 20 carbon atoms having a ring structure. It is. R 61 and R 62 are each independently a tricyclo [5.2.1.0 2,6 ] decanyl group, a 1,7,7-trimethylbicyclo [2.2.1] heptan-3-yl group, A t-butyl group or a 4-t-butylcyclohexanyl group is preferred.
- ⁇ -valerolactone diyl structural unit or 2,5-dioxodihydrofurandiyl structural unit is preferable.
- the methacrylic resin [A2] has a melt flow rate determined by measurement under conditions of 230 ° C. and a load of 3.8 kg, preferably 0.1 to 20 g / 10 min or more, more preferably 0.5 to 15 g / 10. Min, more preferably 1 to 10 g / 10 min.
- the glass transition temperature of the methacrylic resin [A2] is preferably 110 ° C. or higher, more preferably 115 ° C. or higher, further preferably 120 ° C. or higher, and particularly preferably 125 ° C. or higher.
- the upper limit of the glass transition temperature of the methacrylic resin [A2] is not particularly limited, but is preferably 140 ° C.
- the methacrylic resin [A] used in the present invention may be one that satisfies the above characteristics with one kind of methacrylic resin, or one that satisfies the above characteristics with a mixture of a plurality of kinds of methacrylic resins. There may be.
- the one or more methacrylic resins constituting the methacrylic resin [A] used in the present invention may be obtained by any manufacturing method.
- a methacrylic resin can be obtained by polymerizing methyl methacrylate or by polymerizing methyl methacrylate and other monomers.
- the polymerization can be performed by a known method.
- Examples of the polymerization method include classification according to the form of chain transfer, and examples thereof include radical polymerization and anionic polymerization.
- the classification according to the form of the reaction liquid includes bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization and the like.
- Each characteristic of the methacrylic resin [A] described above can be realized by adjusting the polymerization conditions such as the polymerization temperature, the polymerization time, the type, amount and addition time of the chain transfer agent, the type, amount and addition time of the polymerization initiator. .
- Such characteristic control by polymerization conditions is a technique well known to those skilled in the art, and it is not difficult for those skilled in the art to produce a resin having the desired characteristics.
- the methacrylic resin [A2] can be obtained by intramolecular cyclization of the resin obtained by the polymerization as described above.
- the amount of the methacrylic resin [A] contained in the methacrylic resin composition is 70 to 99.99% by mass, preferably 90 to 99.98% by mass, more preferably 95 to 99.96% by mass.
- Compound [B] is a compound having 3 or more, preferably 10 or more, phenolic hydroxyl groups in one molecule. If the number of phenolic hydroxyl groups is less than 3, the effect of suppressing the thermal decomposition of the methacrylic resin may not be obtained.
- Compound [B] has a molecular weight lower limit of 2,000, preferably 3,000, more preferably 5,000, still more preferably 10,000, and a molecular weight upper limit of 300,000.
- the compound [B] having a molecular weight in the above range does not cause defects such as mold contamination and bleed out during molding, and gives a molded article such as a film having a good appearance.
- Compound [B] may be a compound having a single molecular weight or a polymer having a distribution in molecular weight.
- the molecular weight of a compound having a single molecular weight can be measured by various mass spectrometry.
- the molecular weight of a polymer having a distribution in molecular weight is a weight average molecular weight in terms of polystyrene obtained by measurement by gel permeation chromatography.
- the compound [B] include polyphenols such as poly-o-hydroxystyrene, poly-m-hydroxystyrene, poly-p-hydroxystyrene, novolac-type phenol resins such as terpenephenol resin, bisphenol A-type novolak resin, and resol-type.
- polyphenols such as poly-o-hydroxystyrene, poly-m-hydroxystyrene, poly-p-hydroxystyrene
- novolac-type phenol resins such as terpenephenol resin, bisphenol A-type novolak resin, and resol-type.
- examples thereof include phenol resins, phenol resins having a hydroxy naphthalene structure (see WO2014 / 208132A1), phenol resins having an aralkyl group on an aromatic ring (see WO2014 / 073557A1), and the like.
- the amount of the compound [B] contained in the methacrylic resin composition is 0.01 to 30% by mass, preferably 0.02 to 10% by mass, more preferably 0.04 to 5% by mass.
- the mass ratio ((B) / (A)) between the compound (B) and the methacrylic resin (A) is preferably 0.01 / 99.99 to 30/70, more preferably 0.02 / 99. 98 to 10/90, more preferably 0.04 / 99.96 to 5/95.
- the ultraviolet absorbent [C] used in the present invention is a known ultraviolet absorbent that may be blended in a thermoplastic resin.
- the molecular weight of the ultraviolet absorber [C] is preferably more than 200, more preferably 300 or more, still more preferably 500 or more, and still more preferably 600 or more.
- the upper limit of the molecular weight of the ultraviolet absorber [C] is preferably 2000.
- an ultraviolet absorber is a compound having an ability to absorb ultraviolet rays.
- the ultraviolet absorber is a compound that is said to have a function of mainly converting light energy into heat energy.
- Examples of the ultraviolet absorber include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, succinic anilides, malonic esters, formamidines, and the like. These may be used individually by 1 type, or may be used in combination of 2 or more type.
- benzotriazoles compounds having a benzotriazole skeleton
- triazines compounds having a triazine skeleton
- Benzotriazoles or triazines have a high effect of suppressing resin degradation (for example, yellowing) due to ultraviolet rays.
- benzotriazoles examples include 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol (manufactured by BASF; trade name TINUVIN329), 2- (2H- Benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (manufactured by BASF; trade name TINUVIN234), 2,2′-methylenebis [6- (2H-benzotriazole-2 -Yl) -4-tert-octylphenol] (manufactured by ADEKA; LA-31), 2- (5-octylthio-2H-benzotriazol-2-yl) -6-tert-butyl-4-methylphenol be able to.
- triazines examples include 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (manufactured by ADEKA; LA-F70) and its analogs.
- Certain hydroxyphenyl triazine-based ultraviolet absorbers manufactured by BASF; CGL777, TINUVIN460, TINUVIN479, etc.
- 2,4-diphenyl-6- (2-hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, etc. Can be mentioned.
- an ultraviolet absorber having a maximum molar extinction coefficient ⁇ max at wavelengths of 380 to 450 nm of 1200 dm 3 ⁇ mol ⁇ 1 cm ⁇ 1 or less can be preferably used.
- examples of such an ultraviolet absorber include 2-ethyl-2′-ethoxy-oxalanilide (manufactured by Clariant Japan, trade name: Sundebore VSU).
- WO2011 / 089794A1 WO2012 / 124395A1, JP2012-012476, JP2013-023461, JP2013-112790, JP2013-194037, JP201462228, JP A metal complex having a heterocyclic ligand disclosed in JP 2014-88542 A, JP 2014-88543 A, or the like can be used as the ultraviolet absorber [C].
- the amount of the ultraviolet absorber [C] that can be contained in the methacrylic resin composition of the present invention is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 0.2 parts by mass with respect to 100 parts by mass of the methacrylic resin [A]. 5 parts by mass, more preferably 0.3 to 3 parts by mass.
- the crosslinked rubber [D] used in the present invention is a polymer having rubber elasticity in which a polymer chain is crosslinked by a structural unit derived from a crosslinking monomer.
- the crosslinkable monomer is one having two or more polymerizable functional groups in one monomer.
- crosslinkable monomer examples include allyl acrylate, allyl methacrylate, 1-acryloxy-3-butene, 1-methacryloxy-3-butene, 1,2-diacryloxy-ethane, 1,2-dimethacryloxy-ethane, 1,2-diacryloxy-propane, 1,3-diacryloxy-propane, 1,4-diacryloxy-butane, 1,3-dimethacryloxy-propane, 1,2-dimethacryloxy-propane, 1,4-dimethacryloxy-butane, triethylene
- cross-linked rubber examples include acrylic cross-linked rubber, diene cross-linked rubber, and the like, and more specifically, an acrylic acid alkyl ester monomer, a cross-linkable monomer, and other vinyl monomers.
- Copolymer rubber, copolymer rubber of conjugated diene monomer, crosslinkable monomer and other vinyl monomer, alkyl acrylate monomer, conjugated diene monomer and crosslinkable monomer examples thereof include copolymer rubbers of a monomer and other vinyl monomers.
- the crosslinked rubber is preferably contained in the methacrylic resin composition in the form of particles.
- the crosslinked rubber particles may be single-layer particles composed only of crosslinked rubber or multilayer particles composed of crosslinked rubber and another polymer.
- core-shell type particles comprising a core composed of the crosslinked rubber and a shell composed of the other polymer are preferable.
- the crosslinked rubber particles preferably used in the present invention are acrylic multilayer polymer particles.
- the acrylic multilayer polymer particles have a core part and a shell part.
- the core portion includes a center core and, if necessary, one or more inner shells that cover the center core in a substantially concentric shape.
- the shell portion has a one-layer outer shell that covers the core portion substantially concentrically.
- the center core, the inner shell, and the outer shell are connected to each other without a gap.
- Acrylic multilayer polymer particles are those in which at least one of the center core and the inner shell contains the crosslinked rubber polymer (i) and the remaining part contains the polymer (iii). It is preferable that When at least two of the center core and the inner shell contain the crosslinked rubber polymer (i), the crosslinked rubber polymer (i) contained in them has the same polymer physical properties. Alternatively, it may have different polymer properties. Further, when the remaining part of the center core and the inner shell is two or more, the polymer (iii) contained in them may have the same polymer properties or different polymer properties. It may be a thing.
- the crosslinked rubber polymer (i) includes a structural unit derived from an alkyl acrylate monomer and / or a structural unit derived from a conjugated diene monomer, and a structural unit derived from a crosslinkable monomer. It is preferable that it has at least.
- the acrylic acid alkyl ester monomer is preferably an acrylic acid alkyl ester monomer having an alkyl group having 1 to 8 carbon atoms. Examples of the alkyl acrylate monomer include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like. You may use these individually by 1 type or in combination of 2 or more types.
- the amount of the structural unit derived from the alkyl acrylate monomer and / or the structural unit derived from the conjugated diene monomer in the crosslinked rubber polymer (i) is based on the total mass of the crosslinked rubber polymer (i). The amount is preferably 60% by mass or more, more preferably 70 to 99% by mass, and still more preferably 80 to 98% by mass.
- the crosslinkable monomer has two or more polymerizable functional groups in one monomer.
- examples of the crosslinkable monomer include allyl acrylate, allyl methacrylate, 1-acryloxy-3-butene, 1-methacryloxy-3-butene, 1,2-diacryloxy-ethane, 1,2-dimethacryloxy-ethane, 1,2-diacryloxy-propane, 1,3-diacryloxy-propane, 1,4-diacryloxy-butane, 1,3-dimethacryloxy-propane, 1,2-dimethacryloxy-propane, 1,4-dimethacryloxy-butane, triethylene
- examples include glycol dimethacrylate, hexanediol dimethacrylate, triethylene glycol diacrylate, hexanediol diacrylate, divinylbenzene, 1,4-pentadiene, triallyl isocyanate, and the like. You may use these individually by 1 type or in combination of 2
- the amount of the structural unit derived from the crosslinkable monomer in the crosslinked rubber polymer (i) is preferably 0.05 to 10% by mass, more preferably 0, relative to the total mass of the crosslinked rubber polymer (i). 5-7% by mass, more preferably 1-5% by mass.
- the crosslinked rubber polymer (i) may have a structural unit derived from another vinyl monomer.
- the other vinyl monomer in the crosslinked rubber polymer (i) is not particularly limited as long as it is copolymerizable with the above-mentioned alkyl acrylate monomer and the crosslinkable monomer.
- Examples of other vinyl monomers in the crosslinked rubber polymer (i) include methacrylate monomers such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate; styrene, p-methylstyrene.
- the amount of structural units derived from other vinyl monomers in the crosslinked rubber polymer includes structural units derived from alkyl acrylate monomers, structural units derived from conjugated diene monomers, and cross-linking. It is the remainder with respect to the total amount of the structural unit derived from the sex monomer.
- the polymer (iii) is not particularly limited as long as it is other than the crosslinked rubber polymer (i), but preferably has a structural unit derived from a methacrylic acid alkyl ester monomer.
- the polymer (iii) may contain, as other structural units, structural units derived from a crosslinkable monomer and / or structural units derived from other vinyl monomers.
- the methacrylic acid alkyl ester monomer used in the polymer (iii) is preferably a methacrylic acid alkyl ester monomer having an alkyl group having 1 to 8 carbon atoms.
- methacrylic acid alkyl ester monomer examples include methyl methacrylate, ethyl methacrylate, butyl methacrylate and the like. You may use these individually by 1 type or in combination of 2 or more types. Of these, methyl methacrylate is preferred.
- the amount of the structural unit derived from the methacrylic acid alkyl ester monomer in the polymer (iii) is preferably 80 to 100% by mass, more preferably 85 to 99% by mass, and further preferably 90 to 98% by mass.
- crosslinkable monomer used in the polymer (iii) examples include the same crosslinkable monomers exemplified in the above-mentioned crosslinked rubber polymer (i).
- the amount of the structural unit derived from the crosslinkable monomer in the polymer (iii) is preferably 0 to 5% by mass, more preferably 0.01 to 3% by mass, and further preferably 0.02 to 2% by mass. is there.
- the other vinyl monomer in the polymer (iii) is not particularly limited as long as it can be copolymerized with the above-mentioned methacrylic acid alkyl ester monomer and the crosslinkable monomer.
- Other vinyl monomers in the polymer (iii) include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, acrylic acid Acrylic acid ester monomers such as 2-ethylhexyl; vinyl acetate; aromatic vinyl monomers such as styrene, p-methylstyrene, m-methylstyrene, o-methylstyrene, ⁇ -methylstyrene, vinylnaphthalene; acrylonitrile; Nitriles such as methacrylonitrile; ⁇ , ⁇ -unsaturated carboxylic
- the amount of the structural unit derived from the other vinyl monomer in the polymer (iii) is based on the total amount of the structural unit derived from the alkyl methacrylate monomer and the structural unit derived from the crosslinkable monomer. The rest.
- the acrylic multilayer polymer particles preferably have an outer shell containing a thermoplastic polymer (ii).
- thermoplastic polymer (ii) has a structural unit derived from a methacrylic acid alkyl ester monomer.
- the thermoplastic polymer (ii) may have a structural unit derived from another vinyl monomer.
- the methacrylic acid alkyl ester monomer in the thermoplastic polymer (ii) is preferably a methacrylic acid alkyl ester monomer having an alkyl group having 1 to 8 carbon atoms.
- Examples of the methacrylic acid alkyl ester monomer include methyl methacrylate and butyl methacrylate. You may use these individually by 1 type or in combination of 2 or more types. Of these, methyl methacrylate is preferred.
- the amount of the structural unit derived from the methacrylic acid alkyl ester monomer in the thermoplastic polymer (ii) is preferably 80% by mass or more, more preferably 85% by mass or more, and further preferably 90% by mass or more.
- Examples of the other vinyl monomers in the thermoplastic polymer (ii) include the same vinyl monomers as those exemplified in the polymer (iii).
- the amount of the structural unit derived from the other vinyl monomer in the thermoplastic polymer (ii) is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less.
- Examples of the configuration of the core part and the shell part of the acrylic multilayer polymer particle include, for example, a two-layer polymer particle in which the center core is a crosslinked rubber polymer (i) and the outer shell is a thermoplastic polymer (ii); Three-layer polymer particles in which the center core is the polymer (iii), the inner shell is the crosslinked rubber polymer (i), and the outer shell is the thermoplastic polymer (ii); A three-layer polymer particle in which the inner shell is another type of crosslinked rubber polymer (i) and the outer shell is a thermoplastic polymer (ii); the center core is a crosslinked rubber polymer (i ) In which the inner shell is a polymer (iii) and the outer shell is a thermoplastic polymer (ii); three-layer polymer particles; the center core is a crosslinked rubber polymer (i), and the inner inner shell is a polymer ( In iii), the outer inner shell is a crosslinked rubber polymer (i) and the outer shell is heat
- the center core polymer (iii) is an acrylic acid alkyl ester monomer having an alkyl group of 80 to 99.95% by mass of methyl methacrylate and 1 to 8 carbon atoms.
- thermoplastic polymer of an outer shell which is a copolymer of 80 to 98% by weight of an ester monomer, 1 to 19% by weight of an aromatic vinyl monomer and 1 to 5% by weight of a crosslinkable monomer (ii) Is more preferably a copolymer of 80 to 100% by weight of methyl methacrylate and 0 to 20% by weight of an acrylic acid alkyl ester monomer having an alkyl group having 1 to 8 carbon atoms.
- the difference in refractive index between adjacent layers is preferably less than 0.005, more preferably less than 0.004, and even more preferably less than 0.003. It is preferable to select a polymer contained in
- the ratio of the outer shell part in the acrylic multilayer polymer particles is preferably 10 to 60% by mass, more preferably 15 to 50% by mass, and further preferably 20 to 40% by mass.
- the ratio of the layer containing the crosslinked rubber polymer (i) in the core is preferably 20 to 100% by mass, more preferably 30 to 70% by mass.
- the volume-based average particle diameter of the crosslinked rubber particles used in the present invention is preferably 0.02 to 1 ⁇ m, more preferably 0.05 to 0.5 ⁇ m, and still more preferably 0.1 to 0.3 ⁇ m.
- the volume reference average particle diameter in this specification is a value calculated based on the particle size distribution data measured by the light scattering light method.
- the crosslinked rubber particles may be obtained by any manufacturing method. From the viewpoints of particle size control, ease of production of the multilayer structure, the emulsion polymerization method or the seed emulsion polymerization method is preferred.
- the emulsion polymerization method is a method capable of producing an emulsion containing polymer particles by emulsifying a predetermined monomer and polymerizing it.
- seed particles are obtained by emulsifying and polymerizing a predetermined monomer, and by emulsifying and polymerizing another predetermined monomer in the presence of the seed particles, This is a method capable of producing an emulsion containing core-shell polymer particles having a shell polymer coated in a substantially concentric shape.
- Examples of the emulsifier used in the emulsion polymerization method include dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate and sodium dilauryl sulfosuccinate which are anionic emulsifiers, alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, sodium dodecyl sulfate, and the like.
- Alkyloxysulfates polyoxyethylene alkyl ethers and polyoxyethylene nonylphenyl ethers that are nonionic emulsifiers; polyoxyethylene nonylphenyl ether sulfates such as sodium polyoxyethylene nonylphenyl ether sulfate that is a nonionic and anionic emulsifier, Polyoxyethylene alkyl ether sulfate such as sodium polyoxyethylene alkyl ether sulfate, polyoxyethylene tridecyl acetate Alkyl ether carboxylates, such as Le sodium acetate; and the like. You may use these individually by 1 type or in combination of 2 or more types.
- the average number of repeating units of the ethylene oxide unit in the exemplary compounds of the nonionic emulsifier and the nonionic anionic emulsifier is preferably 30 or less, more preferably 20 or less, in order to prevent the foaming property of the emulsifier from becoming extremely large. More preferably, it is 10 or less.
- the polymerization initiator used for emulsion polymerization is not particularly limited. Examples thereof include persulfate initiators such as potassium persulfate and ammonium persulfate; redox initiators such as persulfoxylate / organic peroxide and persulfate / sulfite.
- Separation and acquisition of the crosslinked rubber particles from the emulsion obtained by emulsion polymerization can be performed by a known method such as a salting out coagulation method, a freeze coagulation method, or a spray drying method.
- the salting out coagulation method and the freeze coagulation method are preferable, and the freeze coagulation method is more preferable because impurities contained in the crosslinked rubber particles can be easily removed by washing with water.
- an aggregating agent since an aggregating agent is not used, an acrylic resin film excellent in water resistance is easily obtained.
- the crosslinked rubber particles are preferably taken out with an aggregate of 1000 ⁇ m or less, and taken out with an aggregate of 500 ⁇ m or less. Is more preferable.
- the form of the crosslinked rubber particle aggregate is not particularly limited.
- the crosslinked rubber particle aggregate may be in the form of pellets fused to each other at the shell, or may be in the form of powder or granule.
- the amount of the crosslinked rubber [D] contained in the methacrylic resin composition according to the embodiment of the present invention is preferably 5 to 30 parts by mass, more preferably 10 to 25 parts by mass with respect to 100 parts by mass of the methacrylic resin [A]. Part, more preferably 15 to 20 parts by weight.
- the crosslinked rubber particles when the crosslinked rubber particles are contained in the methacrylic resin composition, the crosslinked rubber particles are not aggregated due to sticking or the like, so that each particle is uniformly dispersed.
- Dispersion aid particles can be added.
- the dispersion auxiliary particles include methacrylic resin particles.
- the dispersion auxiliary particles preferably have an average particle size smaller than the average particle size of the crosslinked rubber particles.
- the volume-based average particle diameter of the dispersion auxiliary particles is preferably 0.04 to 0.12 ⁇ m, more preferably 0.05 to 0.1 ⁇ m.
- the amount of the dispersion assisting particle is a mass ratio with respect to the crosslinked rubber particle [D], preferably 0/100 to 60/40, more preferably 10/90 to 50/50, further preferably 20 /. 80 to 40/60.
- the block copolymer [E] used in the present invention is, for example, the molecular chain of the polymer B (polymer block B) at the end of the molecular chain of the polymer A (sometimes referred to as polymer block A). ) Are joined together in a chain or radial form as a whole.
- the polymer block constituting the block copolymer is not particularly limited.
- a block copolymer comprising a polymer block such as polymethyl methacrylate and a polymer block such as polyacrylic acid ester has good compatibility between a methacrylic resin and an aromatic low-molecular compound. May be.
- the block copolymer is, for example, a method in which a polymerization initiation point is created at the end of the polymer block A using living polymerization, and a monomer is polymerized from this initiation point to produce a polymer block B [i], polymer
- the block A and the polymer block B can be prepared, and can be produced by a method [ii] or the like of adding or condensing them.
- At least one of the polymer blocks constituting the block copolymer used in the present invention is a polymer containing 90% by mass or more of a structural unit derived from a methacrylic ester, a structural unit derived from styrene, and a structure derived from acrylonitrile.
- a polymer containing a derived structural unit or polyvinyl butyral is preferably selected.
- the amount of the block copolymer [E] contained in the methacrylic resin composition according to the embodiment of the present invention is preferably 0.1 to 30 parts by mass, more preferably 100 parts by mass of the methacrylic resin [A].
- the amount is 0.5 to 25 parts by mass, more preferably 1 to 20 parts by mass.
- the graft copolymer [F] used in the present invention may be, for example, a polymer B molecular chain (also referred to as a graft side chain) in the middle of the polymer A molecular chain (sometimes referred to as a polymer main chain). )) Are connected to each other, and are connected in a branched manner as a whole.
- the main chain and graft side chain constituting the graft copolymer are not particularly limited.
- the graft copolymer has a chain transfer method [i] in which a monomer that becomes the polymer B is polymerized in the presence of the polymer A, and a polymer group introduced at the end of the polymer B that becomes the graft side chain.
- a polymer in which the main chain or at least one graft side chain constituting the graft copolymer used in the present invention contains 90% by mass or more of a structural unit derived from a methacrylic acid ester, a structural unit derived from styrene and acrylonitrile Polymers containing structural units derived from, polymers containing structural units derived from styrene and structural units derived from maleic anhydride, structural units derived from styrene, structural units derived from maleic anhydride and methacrylic It is preferable from the viewpoint of compatibility with the methacrylic resin [A] that it is selected from a polymer containing a structural unit derived from methyl acid, polyvinyl butyral, and polycarbonate.
- the amount of the graft copolymer [F] included in the methacrylic resin composition according to the embodiment of the present invention is preferably 0.1 to 30 parts by mass, more preferably 100 parts by mass of the methacrylic resin [A].
- the amount is 0.5 to 25 parts by mass, more preferably 1 to 20 parts by mass.
- the polycarbonate resin [G] that may be added to the methacrylic resin composition of the present invention is not particularly limited, and examples thereof include a polymer obtained by a reaction between a polyfunctional hydroxy compound and a carbonate ester-forming compound.
- an aromatic polycarbonate resin is preferred from the viewpoint of compatibility with the methacrylic resin [A] and excellent transparency of the resulting film.
- the polycarbonate resin [G] used in the present invention has a melt volume flow rate at 300 ° C. and 1.2 kg from the viewpoint of compatibility with the methacrylic resin [A], transparency of the resulting film, surface smoothness and the like.
- MVR values, preferably 130 ⁇ 250cm 3/10 min, more preferably 150 ⁇ 230cm 3/10 min, more preferably 180 ⁇ 220cm 3/10 min.
- the polycarbonate resin [G] used in the present invention was measured by gel permeation chromatography (GPC) from the viewpoints of compatibility with the methacrylic resin [A], transparency of the resulting film, surface smoothness, and the like.
- the weight average molecular weight calculated by converting the chromatogram to the molecular weight of standard polystyrene is preferably 15,000 to 28,000, more preferably 18,000 to 27,000, and even more preferably 20,000 to 24,000.
- the MVR value and the weight average molecular weight of the polycarbonate resin [G] can be adjusted by adjusting the amounts of the terminal terminator and the branching agent.
- the glass transition temperature of the polycarbonate resin [G] used in the present invention is preferably 130 ° C. or higher, more preferably 135 ° C. or higher, and further preferably 140 ° C. or higher.
- the upper limit of the glass transition temperature of the polycarbonate resin is usually 180 ° C.
- the glass transition temperature is performed in accordance with JIS K7121 in the region of room temperature or higher, and the first temperature rise (1st run) is performed up to 250 ° C. at a rate of temperature rise of 10 ° C./min. It is the midpoint glass transition temperature of the 2nd run when cooling and then raising the temperature from room temperature to 250 ° C. at a rate of temperature increase of 10 ° C./min (2nd run).
- the method for producing the polycarbonate resin [G] is not particularly limited. Examples thereof include a phosgene method (interfacial polymerization method) and a melt polymerization method (transesterification method).
- the aromatic polycarbonate resin preferably used in the present invention may be obtained by subjecting a polycarbonate resin raw material produced by a melt polymerization method to a treatment for adjusting the amount of terminal hydroxy groups.
- the polycarbonate resin [G] commercially available products or other known products can be used.
- the polycarbonate resin [G] may contain a structural unit having a polyester, polyurethane, polyether or polysiloxane structure in addition to the polycarbonate structural unit.
- the amount of the polycarbonate resin [G] to be included in the methacrylic resin composition according to the embodiment of the present invention is preferably 0.1 to 15 parts by mass, more preferably 0.8 parts per 100 parts by mass of the methacrylic resin [A]. 5 to 10 parts by mass, more preferably 1 to 8 parts by mass.
- the amount of the polycarbonate resin [G] is 1 to 4 parts by mass with respect to 100 parts by mass of the methacrylic resin [A], the absolute value of the retardation of the film can be reduced.
- the methacrylic resin composition used in the present invention may contain other polymers as long as the effects of the present invention are not impaired.
- Other polymers include polyolefin resins such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1 and polynorbornene; ethylene ionomers; polystyrene, styrene-maleic anhydride copolymer, high impact polystyrene, Styrenic resins such as AS resin, ABS resin, AES resin, AAS resin, ACS resin and MBS resin; methyl methacrylate-styrene copolymer; polyester resin such as polyethylene terephthalate and polybutylene terephthalate; nylon 6, nylon 66, polyamide elastomer Polyamides such as: phenoxy resin, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyacetal, polyvinylidene flu
- the methacrylic resin composition of the present invention may contain a polymer processing aid.
- the polymer processing aid include polymer particles having a particle diameter of 0.05 to 0.5 ⁇ m, which can be usually produced by an emulsion polymerization method.
- the polymer particles may be single layer particles composed of polymers having a single composition ratio and single intrinsic viscosity, or multilayer particles composed of two or more kinds of polymers having different composition ratios or intrinsic viscosities. May be. Among these, particles having a two-layer structure having a polymer layer having a low intrinsic viscosity in the inner layer and a polymer layer having a high intrinsic viscosity of 5 dl / g or more in the outer layer are preferable.
- the polymer processing aid preferably has an intrinsic viscosity of 3 to 6 dl / g.
- the amount of the polymer processing aid contained in the methacrylic resin composition according to the embodiment of the present invention is preferably 0.1% by mass or more and 7% by mass or less, more preferably 100% by mass of the methacrylic resin [A]. Is 0.2 mass% or more and 5 mass% or less, More preferably, it is 0.5 mass% or more and 4 mass% or less.
- the method for preparing the methacrylic resin composition of the present invention is not particularly limited.
- a method of polymerizing a monomer mixture containing methyl methacrylate in the presence of compound [B] to produce methacrylic resin [A]; a method of melt-kneading methacrylic resin [A] and compound [B], etc. can be mentioned.
- the melt-kneading method is preferable because the process is simple.
- other polymers and additives may be mixed as necessary, or after mixing the methacrylic resin [A] with other polymers and additives and mixing with the compound [B].
- the compound [B] may be mixed with other polymer and additive and then mixed with the methacrylic resin [A], or other methods may be used.
- the kneading can be performed using a known mixing apparatus or kneading apparatus such as a kneader ruder, a single-screw or multi-screw extruder, a mixing roll, a Banbury mixer, and the like. Of these, a twin screw extruder is preferred.
- the temperature at the time of mixing and kneading can be appropriately adjusted according to the melting temperature of the methacrylic resin [A] and the compound [B] used, but is preferably 110 ° C. to 300 ° C.
- the methacrylic resin composition of the present invention preferably contains 70 to 99.99% by mass, more preferably 90 to 99.98% by mass, and still more preferably 95 to 99.96% by mass of the methacrylic resin [A].
- the methacrylic resin composition of the present invention preferably contains the compound [B] in an amount of 0.01 to 30% by mass, more preferably 0.02 to 10% by mass, and still more preferably 0.04 to 5% by mass. Within this range, the effect of suppressing thermal decomposition is obtained, and the transparency of the resulting methacrylic resin composition is excellent.
- the glass transition temperature of the methacrylic resin composition of the present invention is preferably 100 ° C. or higher, more preferably 105 ° C. or higher, and further preferably 110 ° C. or higher.
- the upper limit of the glass transition temperature of the methacrylic resin composition is not particularly limited, but is preferably 130 ° C.
- the weight average molecular weight (Mw) determined by measuring the methacrylic resin composition of the present invention by GPC is preferably 50,000 to 200,000, more preferably 550,000 to 160,000, still more preferably 60,000 to 120,000, particularly preferably 70,000 to 100,000.
- the molecular weight distribution (weight average molecular weight Mw / number average molecular weight Mn) determined by measuring the methacrylic resin composition by GPC is preferably 1.0 to 5.0, more preferably 1.2 to 3.0, More preferably, it is 1.3 to 2.0, and particularly preferably 1.3 to 1.7.
- the melt flow rate determined by measuring the methacrylic resin composition of the present invention at 230 ° C. and a load of 3.8 kg is preferably 0.1 to 30 g / 10 minutes, more preferably 0.5 to 20 g / 10. Min, most preferably 1.0 to 15 g / 10 min.
- the haze having a thickness of 3.2 mm is preferably 3.0% or less, more preferably 2.0% or less, and further preferably 1.5% or less.
- the methacrylic resin composition of the present invention can be in the form of pellets or the like in order to enhance convenience during storage, transportation or molding.
- the methacrylic resin composition of the present invention can be formed into a molded body by a known molding method.
- molding methods include T-die method (laminate method, coextrusion method, etc.), inflation method (coextrusion method, etc.), compression molding method, blow molding method, calendar molding method, vacuum molding method, injection molding method (insert). Method, two-color method, press method, core back method, sandwich method, etc.) and solution casting method.
- a mold or the like is generally used for molding a resin composition. Examples thereof include a sheet forming roll, a film forming roll, a calendar roll, a compression molding mold, a blow molding mold, a vacuum molding mold, an injection molding mold, and a cast polymerization mold.
- the mold used for molding is not necessarily made of metal, and may be made of rubber or tempered glass, for example. Since the methacrylic resin composition of the present invention hardly causes mold contamination, it can be preferably used in production in which continuous molding is performed for a long time, production in which molding is repeated many times, and the like.
- molded article of the present invention include, for example, billboard parts such as advertising towers, stand signboards, sleeve signboards, billboard signs, and rooftop signs; display parts such as showcases, partition plates, and store displays; fluorescent lamp covers, mood lighting Lighting parts such as covers, lamp shades, light ceilings, light walls, and chandeliers; interior parts such as pendants and mirrors; architectures such as doors, domes, safety window glass, partitions, staircases, balcony waistboards, and roofs for leisure buildings Parts: Aircraft windshields, pilot visors, motorcycles, motorboat windshields, bus shading plates, automotive side visors, rear visors, head wings, headlight covers, and other transport related parts; audio visual nameplates, stereo covers, TV protection Electronic devices such as masks and display covers for vending machines Parts: Medical equipment parts such as incubators and X-ray parts; machine-related parts such as machine covers, instrument covers, experimental devices, rulers, dials, observation windows; light guide plates and films for front lights of display devices, guides for back
- the molded body of the present invention is excellent in weather resistance and suppresses bleeding out of the ultraviolet absorber, so that, for example, in various covers, various terminal boards, printed wiring boards, speakers, microscopes, binoculars, cameras, watches, etc.
- Representative optical equipment and parts related to video / optical recording / optical communication / information equipment such as cameras, VTRs, projection TVs, filters, prisms, Fresnel lenses, various optical disks (VD, CD, DVD, MD, LD) Etc.)
- various liquid crystal display elements such as mobile phones, digital information terminals, navigation, liquid crystal displays for vehicles, liquid crystal monitors, light control panels, displays for OA equipment, displays for AV equipment, electroluminescence display elements, or touch panels.
- various liquid crystal display elements such as mobile phones, digital information terminals, navigation, liquid crystal displays for vehicles, liquid crystal monitors, light control panels, displays for OA equipment, displays for AV equipment, electroluminescence display elements, or touch panels.
- the present invention is particularly preferably applicable to known building materials such as road construction members, retroreflective films / sheets, agricultural films / sheets, lighting covers, signboards, and translucent sound insulation walls.
- the molded article of the present invention can also be applied to solar cell surface protective films, solar cell sealing films, solar cell back surface protective films, solar cell base films, gas barrier film protective films and the like for solar cell applications.
- the film of the present invention which is one form of the molded body is not particularly limited by the production method.
- the film of the present invention can be obtained, for example, by forming the methacrylic resin composition by a known method such as a solution casting method, a melt casting method, an extrusion molding method, an inflation molding method, or a blow molding method. it can. Of these, the extrusion method is preferred. According to the extrusion molding method, a film having improved toughness, excellent handleability, and excellent balance between toughness, surface hardness and rigidity can be obtained.
- the temperature of the methacrylic resin composition discharged from the extruder is preferably set to 160 to 270 ° C., more preferably 220 to 260 ° C.
- the methacrylic resin composition is extruded from a T die in a molten state, and then it is applied to two or more specular surfaces.
- a method including forming by sandwiching with a roll or a mirror belt is preferable.
- the mirror roll or the mirror belt is preferably made of metal.
- the linear pressure between the pair of mirror rolls or the mirror belt is preferably 2 N / mm or more, more preferably 10 N / mm or more, and even more preferably 30 N / mm or more.
- the surface temperature of the mirror roll or the mirror belt is preferably 130 ° C. or less.
- the pair of mirror rolls or mirror belts preferably have at least one surface temperature of 60 ° C. or higher.
- the surface temperature is set to such a value, the methacrylic resin composition discharged from the extruder can be cooled at a speed faster than natural cooling, and a film having excellent surface smoothness and low haze can be easily produced.
- the film of the present invention may be subjected to a stretching treatment.
- the stretching treatment By the stretching treatment, a film that has high mechanical strength and is difficult to crack can be obtained.
- the stretching method is not particularly limited, and examples thereof include a uniaxial stretching method, a simultaneous biaxial stretching method, a sequential biaxial stretching method, and a tuber stretching method.
- the temperature during stretching is preferably from 100 to 200 ° C., more preferably from 110 to 160 ° C. from the viewpoint that the film can be uniformly stretched and a high-strength film can be obtained.
- Stretching is usually performed at 100 to 5000% / min on a length basis.
- the stretching is preferably performed so that the area ratio is 1.5 to 8 times.
- a film with less heat shrinkage can be obtained by heat setting after stretching.
- the thickness of the film of the present invention is not particularly limited, but when used as an optical film, the thickness is preferably 1 to 300 ⁇ m, more preferably 10 to 100 ⁇ m, and still more preferably 15 to 80 ⁇ m.
- the haze at a thickness of 40 ⁇ m is preferably 0.2% or less, more preferably 0.1% or less.
- the film of the present invention having haze in the above range is excellent in surface gloss and transparency.
- the film of the present invention is used as an optical member such as a liquid crystal protective film or a light guide film, it is preferable because the use efficiency of light from the light source is increased. Furthermore, since the film of this invention is excellent in workability, it can give a fine and precise surface shaping.
- the film of the present invention has a polarizer protective film, a retardation film, a liquid crystal protective plate, a surface material for a portable information terminal, a display window protective film for a portable information terminal, a light guide film, silver nanowires and carbon nanotubes on the surface. It is suitable for a coated transparent conductive film, a front plate of various displays, and the like, and is particularly suitable for a polarizer protective film.
- the film of the present invention includes fields other than the optical field, such as IR cut film, security film, scattering prevention film, decorative film, metal decorative film, solar cell back sheet, flexible solar cell front sheet, shrink film, It can be used for a film for a mold label, a gas barrier substrate film and the like.
- a functional layer may be provided on the surface of the film of the present invention.
- the functional layer include a hard coat layer, an antiglare layer, an antireflection layer, an antisticking layer, a diffusion layer, an antiglare layer, an antistatic layer, an antifouling layer, and an easy-sliding layer containing fine particles.
- the polarizing plate in which the film of the present invention is used has at least a polarizer and the film of the present invention laminated on the polarizer.
- the film of the present invention may be laminated on both sides of the polarizer or may be laminated on one side.
- an optical film other than the film of the present invention can be laminated on another side.
- the optical film include a polarizer protective film, a viewing angle adjusting film, a retardation film, and a brightness enhancement film. Lamination can also be performed via an adhesive layer.
- the polarizing plate in which the film of the present invention is used can be used for an image display device.
- the image display device include a self-luminous display device such as an electroluminescence (EL) display, a plasma display (PD), a field emission display (FED), and a liquid crystal display (LCD).
- EL electroluminescence
- PD plasma display
- FED field emission display
- LCD liquid crystal display
- the liquid crystal display device includes a liquid crystal cell and the polarizing plate disposed on at least one side of the liquid crystal cell.
- the film of the present invention has excellent thermal decomposition resistance and impact resistance, it is also suitable as a film used for an organic electroluminescence lighting device or an organic electroluminescence display device.
- the chromatogram was measured under the following conditions by gel permeation chromatography (GPC), and the value converted into the molecular weight of standard polystyrene was calculated.
- the baseline is that the slope of the peak on the high molecular weight side of the GPC chart changes from zero to positive when viewed from the earlier retention time, and the slope of the peak on the low molecular weight side is from negative to zero when viewed from the earlier retention time. A line connecting the points that change to.
- GPC device manufactured by Tosoh Corporation, HLC-8320 Detector: Differential refractive index detector Column: TSKgel SuperMultipore HZM-M manufactured by Tosoh Corporation and SuperHZ4000 connected in series were used. Eluent: Tetrahydrofuran Eluent flow rate: 0.35 ml / min Column temperature: 40 ° C Calibration curve: Created using 10 standard polystyrene data
- Glass transition temperature Tg Glass transition temperature Tg
- the methacrylic resin and the methacrylic resin composition were subjected to the first temperature rise (1st run) to 250 ° C. using a differential scanning calorimeter (manufactured by Shimadzu Corporation, DSC-50 (product number)) in accordance with JIS K7121. Then, it was cooled to room temperature, and then the DSC curve was measured under the condition of raising the temperature from room temperature to 250 ° C. at a rate of 10 ° C./min for the second time.
- the midpoint glass transition temperature obtained from the DSC curve measured at the second temperature increase (2nd run) was defined as the glass transition temperature in the present invention.
- thermogravimetric measuring device manufactured by Shimadzu Corporation, TGA-50
- the weighed methacrylic resin composition was heated from room temperature to 290 ° C. at a rate of 20 ° C./min in an air atmosphere (flow rate 50 ml / min). Weighing was performed at the time when the temperature reached 290 ° C. and 30 minutes after that, and the thermogravimetric retention was calculated by the following formula. It shows that it is excellent in thermal decomposition resistance, so that a thermogravimetric retention rate is large.
- Thermal weight retention (%) (weight at the time when 30 minutes have passed at 290 ° C.) / (Weight when the temperature reaches 290 ° C.) ⁇ 100
- Total light transmittance A test piece was cut out from an unstretched film or a biaxially stretched film. The total light transmittance of the test piece was measured using a haze meter (manufactured by Murakami Color Research Laboratory, HM-150) according to JIS K7361-1. The methacrylic resin composition was hot pressed to obtain a molded product having a thickness of 3.2 mm, and the total light transmittance was measured in the same manner as described above.
- haze A test piece was cut out from an unstretched film or a biaxially stretched film. The haze of the test piece was measured using a haze meter (manufactured by Murakami Color Research Laboratory, HM-150) according to JIS K 7136. The methacrylic resin composition was hot-pressed to obtain a molded product having a thickness of 3.2 mm, and haze was measured in the same manner as described above.
- the polymerization reaction was started in a batch mode while maintaining the temperature at 140 ° C.
- the raw material liquid is supplied from the autoclave to the tank reactor at a flow rate of an average residence time of 150 minutes, and the reaction liquid is supplied at a flow rate corresponding to the supply flow rate of the raw material liquid. It was extracted from the tank reactor, maintained at a temperature of 140 ° C., and switched to a continuous flow polymerization reaction. After switching, the polymerization conversion in the steady state was 48% by mass.
- the reaction liquid extracted from the tank reactor in a steady state was heated by supplying it to a multi-tubular heat exchanger having an internal temperature of 230 ° C. at a flow rate with an average residence time of 2 minutes.
- the heated reaction liquid was introduced into a flash evaporator, and volatile components mainly composed of unreacted monomers were removed to obtain a molten resin.
- the molten resin from which volatile components have been removed is supplied to a twin-screw extruder having an internal temperature of 260 ° C., discharged into a strand, cut with a pelletizer, Mw is 112,000, molecular weight distribution is 1.86, and syndiotacticity
- a methacrylic resin [A-2] having a city (rr) of 52%, a glass transition temperature of 120 ° C., and a content of structural units derived from methyl methacrylate of 100% by mass was obtained.
- the internal temperature increased due to heat generated by the polymerization, and then the internal temperature began to decrease.
- the mixture was stirred at 70 ° C. for 30 minutes for emulsion polymerization to obtain an emulsion containing seed particles.
- 720 g of a 2% aqueous sodium persulfate solution was added to the emulsion containing seed particles.
- a mixture of 12.4 kg of butyl acrylate, 1.76 kg of styrene and 280 g of allyl methacrylate was dropped over 60 minutes.
- the mixture was stirred for 60 minutes for emulsion polymerization to obtain an emulsion containing core-shell bilayer particles.
- reaction solution was brought to ⁇ 25 ° C., and a mixed solution of 29.0 kg of n-butyl acrylate and 10.0 kg of benzyl acrylate was added dropwise over 0.5 hour to prepare a methyl methacrylate polymer [c1 1 ].
- a polymerization reaction is continued from the end, and a diblock copolymer [E2] comprising a methyl methacrylate polymer block [c1 1 ] and an acrylate polymer block [c2] consisting of n-butyl acrylate and benzyl acrylate -1].
- the block copolymer [E-1] contained in the reaction solution had a weight average molecular weight Mw CB-1 of 92000 and a weight average molecular weight Mw CB-1 / number average molecular weight Mn CB-1 of 1.06. Since the weight average molecular weight of the methyl methacrylate polymer [c1 1 ] was 45800, the weight average molecular weight of the acrylate polymer [c2] composed of n-butyl acrylate and benzyl acrylate was determined to be 46200. The proportion of benzyl acrylate contained in the acrylate polymer [c2] was 25.6% by mass.
- Example 1 Methacrylic resin [A-1] 60 parts by mass, Methacrylic resin [A-2] 40 parts by mass, phenolic hydroxyl group-containing compound [KH-6021] 1.0 part by mass, UV absorber [LA-F70] 0.9 parts by mass Part, block copolymer [E-1] 1 part by weight and processing aid [H-1] 2 parts by weight, twin screw extruder (manufactured by Technobel Co., Ltd., trade name: KZW20TW-45MG-NH- 600) at 250 ° C., and the melt-kneaded product was extruded to produce a methacrylic resin composition [1]. The glass transition temperature of the methacrylic resin composition [1] was measured.
- the results are shown in Table 1.
- the methacrylic resin composition [1] was hot press molded to obtain a plate-like molded body of 50 mm ⁇ 50 mm ⁇ 3.2 mm.
- the total light transmittance and haze were measured using the plate-like molded product.
- the results are shown in Table 1.
- the methacrylic resin composition [1] was dried at 80 ° C. for 12 hours. Using a 20 mm ⁇ single-screw extruder (OCS), the methacrylic resin composition [1] is extruded from a 150 mm wide T-die at a resin temperature of 260 ° C., and is taken up by a roll having a surface temperature of 85 ° C. An unstretched film having a thickness of 110 mm and a thickness of 160 ⁇ m was obtained. The surface smoothness and strength of the produced unstretched film were measured. The evaluation results are shown in Table 1.
- OCS 20 mm ⁇ single-screw extruder
- a small piece of 100 mm ⁇ 100 mm was cut out from an unstretched film having a thickness of 160 ⁇ m so that two sides were parallel to the extrusion direction.
- the small piece is set in a pantograph type biaxial stretching tester (manufactured by Toyo Seiki Co., Ltd.), and is uniaxially doubled in length in a direction parallel to the extrusion direction at a glass transition temperature of + 10 ° C. at 150% / min. Stretched. Next, it is uniaxially stretched twice in length in the direction perpendicular to the extrusion direction at a glass transition temperature + 10 ° C. at 150% / min, then held for 10 seconds, and finally taken out at room temperature and rapidly cooled.
- a biaxially stretched film having an area stretch ratio of 4 times and a thickness of 40 ⁇ m was obtained. About the obtained biaxially stretched film, the total light transmittance and haze were measured. The results are shown in Table 1.
- Examples 2-8, Comparative Examples 1-2> The methacrylic resin compositions [2] to [10] were produced in the same manner as in Example 1 except that the blending ratios shown in Tables 1 and 2 were used, and the physical properties were measured in the same manner as in Example 1. The evaluation results are shown in Tables 1 and 2.
- LA-31 2,2′-methylenebis [6- (2H-benzotriazol-2-yl) -4-t-octylphenol] (manufactured by ADEKA)
- LA-F70 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (manufactured by ADEKA)
- Processing aid [H] H-1 Metablene P550A manufactured by Mitsubishi Rayon Co., Ltd. (average polymerization degree: 7734, structural unit 88% by mass derived from methyl tacrylate, structural unit 12% by mass derived from butyl acrylate)
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polarising Elements (AREA)
Abstract
A thermoplastic methacrylic resin composition which contains: 70-99.99% by mass of (A) a methacrylic resin such as a resin that contains a structural unit derived from methyl methacrylate and a structural unit having a ring structure in the main chain; and 0.01-30% by mass of (B) a compound that has three or more phenolic hydroxyl groups in each molecule, while having a molecular weight of 2,000-300,000 such as a polyvinyl phenol, a terpene phenolic resin and a novolac phenolic resin. A molded body which is formed from this resin composition.
Description
本発明は、メタクリル樹脂組成物および成形体に関する。より詳細に、本発明は、メタクリル樹脂の熱分解および金型汚れを抑制しつつ溶融成形することができ、ブリードアウトの生じ難い成形体を得るのに適したメタクリル樹脂組成物、ならびに当該メタクリル樹脂組成物からなる成形体に関する。
The present invention relates to a methacrylic resin composition and a molded body. More specifically, the present invention relates to a methacrylic resin composition suitable for obtaining a molded article that can be melt-molded while suppressing thermal decomposition of the methacrylic resin and mold contamination, and hardly causes bleeding out, and the methacrylic resin. The present invention relates to a molded article comprising the composition.
偏光子保護フィルムの材料として高透湿性のトリアセチルセルロースに代えて低透湿性が期待できるメタクリル樹脂が検討されている。ところが、メタクリル樹脂は溶融成形時において過熱されると分解し易い。この熱分解によって生じる物質が、成形体に気泡(シルバーストリーク)を生じさせたり、金型汚れを生じさせたりすることがある。
As a material for the polarizer protective film, a methacrylic resin that can be expected to have low moisture permeability instead of high moisture permeability triacetylcellulose has been studied. However, methacrylic resin is easily decomposed when it is overheated during melt molding. Substances generated by this thermal decomposition may cause bubbles (silver streaks) in the molded body or mold contamination.
メタクリル樹脂の熱分解を抑制するために、特許文献1は、ペンタエリスリトール-テトラキス[3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]、ビス-[3,3’-ビス-(4’-ヒドロキシ-3’-t-ブチルフェニル)ブチリックアシッド]グリコ-ルエステルなどのような芳香族ヒドロキシ化合物をメタクリル酸メチル単位50重量%以上と他の不飽和ビニル単位とからなるメタクリル酸メチル系共重合体に添加することを開示している。ところが、特許文献1に示されている芳香族ヒドロキシ化合物の添加で、メタクリル樹脂の熱分解を抑制できても、芳香族ヒドロキシ化合物による金型汚れまたは芳香族ヒドロキシ化合物のブリードアウトを引き起こすことがある。
In order to suppress thermal decomposition of methacrylic resin, Patent Document 1 discloses pentaerythritol-tetrakis [3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate], bis- [3, Aromatic hydroxy compounds such as 3′-bis- (4′-hydroxy-3′-t-butylphenyl) butyric acid] glycol ester and the like containing methyl methacrylate units of 50% by weight or more and other unsaturated vinyl units And adding to a methyl methacrylate copolymer comprising: However, even if the thermal decomposition of the methacrylic resin can be suppressed by the addition of the aromatic hydroxy compound shown in Patent Document 1, mold contamination by the aromatic hydroxy compound or bleeding out of the aromatic hydroxy compound may be caused. .
本発明の課題は、メタクリル樹脂の熱分解および金型汚れを抑制しつつ溶融成形することができ、ブリードアウトの生じ難い成形体を得るのに適したメタクリル樹脂組成物を提供することである。
An object of the present invention is to provide a methacrylic resin composition suitable for obtaining a molded article that can be melt-molded while suppressing thermal decomposition of methacrylic resin and mold contamination, and hardly causes bleeding out.
上記課題を解決するために、鋭意検討した結果、以下の形態を包含する本発明を完成するに至った。
As a result of intensive studies to solve the above problems, the present invention including the following modes has been completed.
〔1〕 メタクリル樹脂〔A〕70~99.99質量%、および分子量が2千~30万であり且つ1分子中にフェノール性水酸基を3つ以上有する化合物〔B〕0.01~30質量%を含有してなる熱可塑性のメタクリル樹脂組成物。
[1] Methacrylic resin [A] 70 to 99.99% by mass, compound having a molecular weight of 2,000 to 300,000 and having three or more phenolic hydroxyl groups in one molecule [B] 0.01 to 30% by mass A thermoplastic methacrylic resin composition comprising
〔2〕 メタクリル樹脂〔A〕は、メタクリル酸メチルに由来する構造単位を90質量%以上含有するものである、〔1〕に記載のメタクリル樹脂組成物。
〔3〕 メタクリル樹脂〔A〕は、メタクリル酸メチルに由来する構造単位と環構造を主鎖に有する構造単位とを含有するものである、〔1〕または〔2〕に記載のメタクリル樹脂組成物。
〔4〕 環構造を主鎖に有する構造単位が、>CH-O-C(=O)-基を環構造に含む構造単位、-C(=O)-O-C(=O)-基を環構造に含む構造単位、-C(=O)-N-C(=O)-基を環構造に含む構造単位、または>CH-O-CH<基を環構造に含む構造単位である、〔3〕に記載のメタクリル樹脂組成物。 [2] The methacrylic resin composition according to [1], wherein the methacrylic resin [A] contains 90% by mass or more of a structural unit derived from methyl methacrylate.
[3] The methacrylic resin composition according to [1] or [2], wherein the methacrylic resin [A] contains a structural unit derived from methyl methacrylate and a structural unit having a ring structure in the main chain. .
[4] a structural unit having a ring structure in the main chain, a structural unit containing a> CH—O—C (═O) — group in the ring structure, a —C (═O) —O—C (═O) — group Is a structural unit containing a —C (═O) —N—C (═O) — group in the ring structure, or a structural unit containing a> CH—O—CH <group in the ring structure. The methacrylic resin composition according to [3].
〔3〕 メタクリル樹脂〔A〕は、メタクリル酸メチルに由来する構造単位と環構造を主鎖に有する構造単位とを含有するものである、〔1〕または〔2〕に記載のメタクリル樹脂組成物。
〔4〕 環構造を主鎖に有する構造単位が、>CH-O-C(=O)-基を環構造に含む構造単位、-C(=O)-O-C(=O)-基を環構造に含む構造単位、-C(=O)-N-C(=O)-基を環構造に含む構造単位、または>CH-O-CH<基を環構造に含む構造単位である、〔3〕に記載のメタクリル樹脂組成物。 [2] The methacrylic resin composition according to [1], wherein the methacrylic resin [A] contains 90% by mass or more of a structural unit derived from methyl methacrylate.
[3] The methacrylic resin composition according to [1] or [2], wherein the methacrylic resin [A] contains a structural unit derived from methyl methacrylate and a structural unit having a ring structure in the main chain. .
[4] a structural unit having a ring structure in the main chain, a structural unit containing a> CH—O—C (═O) — group in the ring structure, a —C (═O) —O—C (═O) — group Is a structural unit containing a —C (═O) —N—C (═O) — group in the ring structure, or a structural unit containing a> CH—O—CH <group in the ring structure. The methacrylic resin composition according to [3].
〔5〕 化合物〔B〕が、ポリビニルフェノール、テルペンフェノール樹脂、レゾール型フェノール樹脂またはノボラック型フェノール樹脂である、〔1〕~〔4〕のいずれかひとつに記載のメタクリル樹脂組成物。
〔6〕 紫外線吸収剤〔C〕をさらに含有する、〔1〕~〔5〕のいずれかひとつに記載のメタクリル樹脂組成物。
〔7〕 架橋ゴム〔D〕をさらに含有する、〔1〕~〔6〕のいずれかひとつに記載のメタクリル樹脂組成物。
〔8〕 ブロック共重合体〔E〕またはグラフト共重合体〔F〕をさらに含有する、〔1〕~〔7〕のいずれかひとつに記載のメタクリル樹脂組成物。
〔9〕 ポリカーボネート樹脂〔G〕をさらに含有する、〔1〕~〔8〕のいずれかひとつに記載のメタクリル樹脂組成物。 [5] The methacrylic resin composition according to any one of [1] to [4], wherein the compound [B] is a polyvinyl phenol, a terpene phenol resin, a resol type phenol resin, or a novolac type phenol resin.
[6] The methacrylic resin composition according to any one of [1] to [5], further comprising an ultraviolet absorber [C].
[7] The methacrylic resin composition according to any one of [1] to [6], further containing a crosslinked rubber [D].
[8] The methacrylic resin composition according to any one of [1] to [7], further containing a block copolymer [E] or a graft copolymer [F].
[9] The methacrylic resin composition according to any one of [1] to [8], further comprising a polycarbonate resin [G].
〔6〕 紫外線吸収剤〔C〕をさらに含有する、〔1〕~〔5〕のいずれかひとつに記載のメタクリル樹脂組成物。
〔7〕 架橋ゴム〔D〕をさらに含有する、〔1〕~〔6〕のいずれかひとつに記載のメタクリル樹脂組成物。
〔8〕 ブロック共重合体〔E〕またはグラフト共重合体〔F〕をさらに含有する、〔1〕~〔7〕のいずれかひとつに記載のメタクリル樹脂組成物。
〔9〕 ポリカーボネート樹脂〔G〕をさらに含有する、〔1〕~〔8〕のいずれかひとつに記載のメタクリル樹脂組成物。 [5] The methacrylic resin composition according to any one of [1] to [4], wherein the compound [B] is a polyvinyl phenol, a terpene phenol resin, a resol type phenol resin, or a novolac type phenol resin.
[6] The methacrylic resin composition according to any one of [1] to [5], further comprising an ultraviolet absorber [C].
[7] The methacrylic resin composition according to any one of [1] to [6], further containing a crosslinked rubber [D].
[8] The methacrylic resin composition according to any one of [1] to [7], further containing a block copolymer [E] or a graft copolymer [F].
[9] The methacrylic resin composition according to any one of [1] to [8], further comprising a polycarbonate resin [G].
〔10〕 前記〔1〕~〔9〕のいずれかひとつに記載のメタクリル樹脂組成物からなる成形体。
〔11〕 前記〔1〕~〔9〕のいずれかひとつに記載のメタクリル樹脂組成物からなるフィルム。
〔12〕 前記〔11〕に記載のフィルムからなる光学フィルム。
〔13〕 前記〔11〕に記載のフィルムからなる偏光子保護フィルム。
〔14〕 前記〔11〕に記載のフィルムからなる位相差フィルム。
〔15〕 前記〔11〕~〔14〕のいずれかひとつに記載のフィルムを少なくとも一枚積層してなる偏光板。 [10] A molded article comprising the methacrylic resin composition according to any one of [1] to [9].
[11] A film comprising the methacrylic resin composition according to any one of [1] to [9].
[12] An optical film comprising the film according to [11].
[13] A polarizer protective film comprising the film according to [11].
[14] A retardation film comprising the film according to [11].
[15] A polarizing plate formed by laminating at least one film according to any one of [11] to [14].
〔11〕 前記〔1〕~〔9〕のいずれかひとつに記載のメタクリル樹脂組成物からなるフィルム。
〔12〕 前記〔11〕に記載のフィルムからなる光学フィルム。
〔13〕 前記〔11〕に記載のフィルムからなる偏光子保護フィルム。
〔14〕 前記〔11〕に記載のフィルムからなる位相差フィルム。
〔15〕 前記〔11〕~〔14〕のいずれかひとつに記載のフィルムを少なくとも一枚積層してなる偏光板。 [10] A molded article comprising the methacrylic resin composition according to any one of [1] to [9].
[11] A film comprising the methacrylic resin composition according to any one of [1] to [9].
[12] An optical film comprising the film according to [11].
[13] A polarizer protective film comprising the film according to [11].
[14] A retardation film comprising the film according to [11].
[15] A polarizing plate formed by laminating at least one film according to any one of [11] to [14].
〔16〕 メタクリル樹脂〔A〕70~99.99質量%と、分子量が2千~30万であり且つ1分子中にフェノール性水酸基を3つ以上有する化合物〔B〕0.01~30質量%とを溶融混練して、熱可塑性のメタクリル樹脂組成物を得、
該メタクリル樹脂組成物を溶融成形することを有する、成形体の製造方法。 [16] Methacrylic resin [A] 70 to 99.99% by mass, compound having a molecular weight of 2,000 to 300,000 and having three or more phenolic hydroxyl groups in one molecule [B] 0.01 to 30% by mass And kneading to obtain a thermoplastic methacrylic resin composition,
The manufacturing method of a molded object which has melt-molding this methacrylic resin composition.
該メタクリル樹脂組成物を溶融成形することを有する、成形体の製造方法。 [16] Methacrylic resin [A] 70 to 99.99% by mass, compound having a molecular weight of 2,000 to 300,000 and having three or more phenolic hydroxyl groups in one molecule [B] 0.01 to 30% by mass And kneading to obtain a thermoplastic methacrylic resin composition,
The manufacturing method of a molded object which has melt-molding this methacrylic resin composition.
本発明のメタクリル樹脂組成物は、溶融成形において過熱されても熱分解し難く、金型汚れを生じ難い。本発明のメタクリル樹脂組成物からなる成形体は、ブリードアウトを生じ難い。本発明のメタクリル樹脂組成物からなる成形体、特にフィルムは、高い透明性、低い透湿性、高い耐熱性を有するので、そのような特長を生かせる分野、例えば、光学分野などに使用することができる。
The methacrylic resin composition of the present invention is difficult to be thermally decomposed even when it is overheated in melt molding and hardly causes mold contamination. The molded body made of the methacrylic resin composition of the present invention hardly causes bleeding out. Since the molded body, particularly the film, comprising the methacrylic resin composition of the present invention has high transparency, low moisture permeability, and high heat resistance, it can be used in fields where such features can be utilized, for example, in the optical field. .
本発明のメタクリル樹脂組成物は、熱可塑性であるので、溶融成形によって所望の形状を容易に成すことができる。本発明のメタクリル樹脂組成物は、例えば、光が照射される分野、熱に曝される分野において使用することができる。
Since the methacrylic resin composition of the present invention is thermoplastic, a desired shape can be easily formed by melt molding. The methacrylic resin composition of the present invention can be used, for example, in the field where light is irradiated and the field where it is exposed to heat.
本発明のメタクリル樹脂組成物は、メタクリル樹脂〔A〕および化合物〔B〕を含有する。
The methacrylic resin composition of the present invention contains a methacrylic resin [A] and a compound [B].
〔メタクリル樹脂〔A〕〕
メタクリル樹脂〔A〕は、メタクリル酸メチルに由来する構造単位のみを含有してなる重合体(以下、これをメタクリル樹脂〔A0〕と記すことがある。)であってもよいし、メタクリル酸メチルに由来する構造単位と他の単量体に由来する構造単位を含有してなるランダム共重合体(以下、このランダム共重合体をメタクリル樹脂〔A1〕と記すことがある。)であってもよいし、メタクリル酸メチルに由来する構造単位と環構造を主鎖に有する構造単位とを含有するランダム共重合体(以下、このランダム共重合体をメタクリル樹脂〔A2〕と記すことがある。)であってもよい。メタクリル樹脂〔A0〕または〔A1〕として市販のメタクリル樹脂を用いることができる。 [Methacrylic resin [A]]
The methacrylic resin [A] may be a polymer containing only a structural unit derived from methyl methacrylate (hereinafter, this may be referred to as methacrylic resin [A0]), or methyl methacrylate. Even a random copolymer containing a structural unit derived from (2) and a structural unit derived from another monomer (hereinafter, this random copolymer may be referred to as a methacrylic resin [A1]). Alternatively, a random copolymer containing a structural unit derived from methyl methacrylate and a structural unit having a ring structure in the main chain (hereinafter, this random copolymer may be referred to as a methacrylic resin [A2]). It may be. A commercially available methacrylic resin can be used as the methacrylic resin [A0] or [A1].
メタクリル樹脂〔A〕は、メタクリル酸メチルに由来する構造単位のみを含有してなる重合体(以下、これをメタクリル樹脂〔A0〕と記すことがある。)であってもよいし、メタクリル酸メチルに由来する構造単位と他の単量体に由来する構造単位を含有してなるランダム共重合体(以下、このランダム共重合体をメタクリル樹脂〔A1〕と記すことがある。)であってもよいし、メタクリル酸メチルに由来する構造単位と環構造を主鎖に有する構造単位とを含有するランダム共重合体(以下、このランダム共重合体をメタクリル樹脂〔A2〕と記すことがある。)であってもよい。メタクリル樹脂〔A0〕または〔A1〕として市販のメタクリル樹脂を用いることができる。 [Methacrylic resin [A]]
The methacrylic resin [A] may be a polymer containing only a structural unit derived from methyl methacrylate (hereinafter, this may be referred to as methacrylic resin [A0]), or methyl methacrylate. Even a random copolymer containing a structural unit derived from (2) and a structural unit derived from another monomer (hereinafter, this random copolymer may be referred to as a methacrylic resin [A1]). Alternatively, a random copolymer containing a structural unit derived from methyl methacrylate and a structural unit having a ring structure in the main chain (hereinafter, this random copolymer may be referred to as a methacrylic resin [A2]). It may be. A commercially available methacrylic resin can be used as the methacrylic resin [A0] or [A1].
メタクリル樹脂〔A〕は、ゲルパーミエーションクロマトグラフィで得られるクロマトグラムに基いて算出されるポリスチレン換算の重量平均分子量MwAが、好ましくは5万~20万、より好ましくは5.5万~16万、さらに好ましくは6万~12万である。MwAが高くなるほど、メタクリル樹脂〔A〕から得られる成形体の強度が高くなる傾向がある。MwAが低くなるほど、メタクリル樹脂〔A〕の成形加工性が良好になり、得られる成形体の表面平滑性が良好になる傾向がある。
The methacrylic resin [A] has a polystyrene equivalent weight average molecular weight Mw A calculated based on a chromatogram obtained by gel permeation chromatography, preferably 50,000 to 200,000, more preferably 550,000 to 160,000. More preferably, it is 60,000 to 120,000. As Mw A increases, the strength of the molded product obtained from the methacrylic resin [A] tends to increase. The lower the Mw A, the better the processability of the methacrylic resin [A] and the better the surface smoothness of the resulting molded product.
メタクリル樹脂〔A〕は、ゲルパーミエーションクロマトグラフィで得られるクロマトグラムに基いて算出されるポリスチレン換算の数平均分子量MnAに対する重量平均分子量MwAの比MwA/MnAが、好ましくは1.0以上5.0以下、より好ましくは1.2以上3.0以下、さらに好ましくは1.2以上2.5以下、特に好ましくは1.3以上1.7以下である。MwA/MnAが低くなるほど、耐衝撃性や靭性が良好になる傾向がある。MwA/MnAが高くなるほど、メタクリル樹脂〔A〕の溶融流動性が高くなり、得られる成形体の表面平滑性が良好になる傾向がある。
In the methacrylic resin [A], the ratio Mw A / Mn A of the weight average molecular weight Mw A to the number average molecular weight Mn A in terms of polystyrene calculated based on a chromatogram obtained by gel permeation chromatography is preferably 1.0. It is 5.0 or more, more preferably 1.2 or more and 3.0 or less, further preferably 1.2 or more and 2.5 or less, and particularly preferably 1.3 or more and 1.7 or less. The lower the Mw A / Mn A, the better the impact resistance and toughness. As Mw A / Mn A increases, the melt fluidity of the methacrylic resin [A] increases and the surface smoothness of the resulting molded product tends to improve.
本発明に用いられるメタクリル樹脂〔A1〕は、耐熱性などの観点から、メタクリル酸メチルに由来する構造単位の総含有量が、好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは98質量%以上、さらに好ましくは99質量%以上である。
The total content of structural units derived from methyl methacrylate is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably methacrylic resin [A1] used in the present invention from the viewpoint of heat resistance and the like. Is 98% by mass or more, more preferably 99% by mass or more.
メタクリル樹脂〔A1〕は、メタクリル酸メチル以外の単量体に由来する構造単位を含有してもよい。メタクリル酸メチル以外の単量体としては、例えば、メタクリル酸エチル、メタクリル酸ブチルなどのメタクリル酸メチル以外のメタクリル酸アルキルエステル;メタクリル酸フェニルなどのメタクリル酸アリールエステル;メタクリル酸シクロへキシル、メタクリル酸ノルボルネニルなどのメタクリル酸シクロアルキルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-エチルへキシルなどのアクリル酸アルキルエステル;アクリル酸フェニルなどのアクリル酸アリールエステル;アクリル酸シクロへキシル、アクリル酸ノルボルネニルなどのアクリル酸シクロアルキルエステル;スチレン、α-メチルスチレンなどの芳香族ビニル化合物;アクリロニトリル;メタクリロニトリル;などの一分子中に重合性の炭素-炭素二重結合を一つだけ有するビニル系単量体を挙げることができる。なお、メタクリル樹脂〔A1〕は、一分子中に重合性の炭素-炭素二重結合を二つ以上有する単量体に由来する構造単位を含有しない方がよい。
The methacrylic resin [A1] may contain a structural unit derived from a monomer other than methyl methacrylate. Examples of monomers other than methyl methacrylate include, for example, alkyl methacrylates other than methyl methacrylate such as ethyl methacrylate and butyl methacrylate; aryl methacrylates such as phenyl methacrylate; cyclohexyl methacrylate, and methacrylic acid. Methacrylic acid cycloalkyl esters such as norbornenyl; acrylic acid alkyl esters such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate; aryl acrylates such as phenyl acrylate; acrylic Acrylic acid cycloalkyl esters such as cyclohexyl acid and norbornenyl acrylate; Aromatic vinyl compounds such as styrene and α-methylstyrene; Acrylonitrile; Methacrylonitrile Polymerizable carbon in one molecule, such as a - can be exemplified a vinyl monomer having only one carbon-carbon double bond. The methacrylic resin [A1] preferably does not contain a structural unit derived from a monomer having two or more polymerizable carbon-carbon double bonds in one molecule.
メタクリル樹脂〔A0〕またはメタクリル樹脂〔A1〕は、三連子表示のシンジオタクティシティ(rr)の下限が、好ましくは50%、より好ましくは52%、さらに好ましくは53%である。メタクリル樹脂〔A0〕またはメタクリル樹脂〔A1〕の三連子表示のシンジオタクティシティ(rr)の上限は、特に制限されないが、製膜性の観点から、好ましくは99%、より好ましくは85%、さらに好ましくは77%、よりさらに好ましくは65%、最も好ましくは64%である。
For the methacrylic resin [A0] or the methacrylic resin [A1], the lower limit of the triplet syndiotacticity (rr) is preferably 50%, more preferably 52%, and even more preferably 53%. The upper limit of the tridentated syndiotacticity (rr) of the methacrylic resin [A0] or the methacrylic resin [A1] is not particularly limited, but is preferably 99%, more preferably 85% from the viewpoint of film forming properties. More preferably 77%, even more preferably 65%, and most preferably 64%.
三連子表示のシンジオタクティシティ(rr)(以下、単に「シンジオタクティシティ(rr)」と称することがある。)は、連続する3つの構造単位の連鎖(3連子、triad)中の2つの連鎖(2連子、diad)が、ともにラセモ(rrと表記する)である割合である。なお、ポリマー分子中の構造単位の連鎖(2連子、diad)において立体配置が同じものをメソ(meso)、逆のものをラセモ(racemo)と称し、それぞれm、rと表記する。
三連子表示のシンジオタクティシティ(rr)は、重水素化クロロホルム中、30℃で1H-NMRスペクトルを測定し、そのスペクトルからTMSを0ppmとした際の0.6~0.95ppmの領域の面積(X)と0.6~1.35ppmの領域の面積(Y)とを計測し、式:(X/Y)×100にて算出することができる。 A triplet display syndiotacticity (rr) (hereinafter sometimes simply referred to as "syndiotacticity (rr)") is a chain of three consecutive structural units (triplet, triad). The two chains (doublet, diad) are both racemo (represented as rr). In the chain of molecular units (doublet, diad) in the polymer molecule, those having the same configuration are referred to as “meso”, and those opposite to each other are referred to as “racemo”, which are expressed as m and r, respectively.
The triplet-represented syndiotacticity (rr) was measured from 0.6 to 0.95 ppm when the 1 H-NMR spectrum was measured at 30 ° C. in deuterated chloroform and TMS was 0 ppm. The area (X) of the region and the area (Y) of the region of 0.6 to 1.35 ppm can be measured and calculated by the formula: (X / Y) × 100.
三連子表示のシンジオタクティシティ(rr)は、重水素化クロロホルム中、30℃で1H-NMRスペクトルを測定し、そのスペクトルからTMSを0ppmとした際の0.6~0.95ppmの領域の面積(X)と0.6~1.35ppmの領域の面積(Y)とを計測し、式:(X/Y)×100にて算出することができる。 A triplet display syndiotacticity (rr) (hereinafter sometimes simply referred to as "syndiotacticity (rr)") is a chain of three consecutive structural units (triplet, triad). The two chains (doublet, diad) are both racemo (represented as rr). In the chain of molecular units (doublet, diad) in the polymer molecule, those having the same configuration are referred to as “meso”, and those opposite to each other are referred to as “racemo”, which are expressed as m and r, respectively.
The triplet-represented syndiotacticity (rr) was measured from 0.6 to 0.95 ppm when the 1 H-NMR spectrum was measured at 30 ° C. in deuterated chloroform and TMS was 0 ppm. The area (X) of the region and the area (Y) of the region of 0.6 to 1.35 ppm can be measured and calculated by the formula: (X / Y) × 100.
本発明に用いられるメタクリル樹脂〔A0〕またはメタクリル樹脂〔A1〕は、分子量20万以上の成分(高分子量成分)の含有量が、好ましくは0.1~10%、より好ましくは0.5~5%である。また、本発明に用いられるメタクリル樹脂〔A0〕またはメタクリル樹脂〔A1〕は、分子量1.5万未満の成分(低分子量成分)の含有量が、好ましくは0.1~5%、より好ましくは0.2~3%である。メタクリル樹脂〔A0〕またはメタクリル樹脂〔A1〕が高分子量成分および低分子量成分をこの範囲にて含有していることで、製膜性が向上し、均一な膜厚のフィルムを得やすい。
分子量20万以上の成分の含有量は、GPCで測定されたクロマトグラムとベースラインとで囲まれる部分の面積のうちの、分子量20万の標準ポリスチレンの保持時間より前に検出されるクロマトグラムとベースラインとで囲まれる部分の面積の割合として算出する。分子量1.5万未満の成分の含有量は、GPCで得られるクロマトグラムとベースラインとで囲まれる部分の面積のうちの、分子量1.5万の標準ポリスチレンの保持時間より後に検出されるクロマトグラムとベースラインとで囲まれる部分の面積の割合として算出する。 In the methacrylic resin [A0] or methacrylic resin [A1] used in the present invention, the content of a component having a molecular weight of 200,000 or more (high molecular weight component) is preferably 0.1 to 10%, more preferably 0.5 to 5%. The methacrylic resin [A0] or methacrylic resin [A1] used in the present invention preferably has a content of a component having a molecular weight of less than 15,000 (low molecular weight component), preferably 0.1 to 5%, more preferably 0.2 to 3%. When the methacrylic resin [A0] or the methacrylic resin [A1] contains the high molecular weight component and the low molecular weight component in this range, the film forming property is improved and a film having a uniform film thickness is easily obtained.
The content of the component having a molecular weight of 200,000 or more is the chromatogram detected before the retention time of the standard polystyrene having a molecular weight of 200,000 in the area surrounded by the chromatogram measured by GPC and the baseline. Calculated as the ratio of the area surrounded by the baseline. The content of a component having a molecular weight of less than 15,000 is a chromatogram detected after the retention time of standard polystyrene having a molecular weight of 15,000 in the area surrounded by the chromatogram obtained by GPC and the baseline. Calculated as the ratio of the area of the portion surrounded by the gram and the baseline.
分子量20万以上の成分の含有量は、GPCで測定されたクロマトグラムとベースラインとで囲まれる部分の面積のうちの、分子量20万の標準ポリスチレンの保持時間より前に検出されるクロマトグラムとベースラインとで囲まれる部分の面積の割合として算出する。分子量1.5万未満の成分の含有量は、GPCで得られるクロマトグラムとベースラインとで囲まれる部分の面積のうちの、分子量1.5万の標準ポリスチレンの保持時間より後に検出されるクロマトグラムとベースラインとで囲まれる部分の面積の割合として算出する。 In the methacrylic resin [A0] or methacrylic resin [A1] used in the present invention, the content of a component having a molecular weight of 200,000 or more (high molecular weight component) is preferably 0.1 to 10%, more preferably 0.5 to 5%. The methacrylic resin [A0] or methacrylic resin [A1] used in the present invention preferably has a content of a component having a molecular weight of less than 15,000 (low molecular weight component), preferably 0.1 to 5%, more preferably 0.2 to 3%. When the methacrylic resin [A0] or the methacrylic resin [A1] contains the high molecular weight component and the low molecular weight component in this range, the film forming property is improved and a film having a uniform film thickness is easily obtained.
The content of the component having a molecular weight of 200,000 or more is the chromatogram detected before the retention time of the standard polystyrene having a molecular weight of 200,000 in the area surrounded by the chromatogram measured by GPC and the baseline. Calculated as the ratio of the area surrounded by the baseline. The content of a component having a molecular weight of less than 15,000 is a chromatogram detected after the retention time of standard polystyrene having a molecular weight of 15,000 in the area surrounded by the chromatogram obtained by GPC and the baseline. Calculated as the ratio of the area of the portion surrounded by the gram and the baseline.
ゲルパーミエーションクロマトグラフィによる測定は、以下のようにして行う。溶離液としてテトラヒドロフラン、カラムとして東ソー株式会社製のTSKgel SuperMultipore HZM-Mの2本とSuperHZ4000を直列に繋いだものを用いる。分析装置として、示差屈折率検出器(RI検出器)を備えた東ソー株式会社製のHLC-8320(品番)を使用した。試験対象のメタクリル樹脂4mgをテトラヒドロフラン5mlに溶解させて、試験対象溶液を調製した。カラムオーブンの温度を40℃に設定し、溶離液流量0.35ml/分で、試験対象溶液20μlを注入して、クロマトグラムを測定した。
クロマトグラムは、試験対象溶液と参照溶液との屈折率差に由来する電気信号値(強度Y)をリテンションタイムXに対してプロットしたチャートである。
分子量400~5000000の範囲の標準ポリスチレンをゲルパーミエーションクロマトグラフィ測定し、リテンションタイムと分子量との関係を示す検量線を作成した。クロマトグラムが一つのピークを示す場合は、クロマトグラムの高分子量側の傾きがゼロからプラスに変化する点と、低分子量側のピークの傾きがマイナスからゼロに変化する点を結んだ線をベースラインとした。クロマトグラムが複数のピークを示す場合は、最も高分子量側のピークの傾きがゼロからプラスに変化する点と、最も低分子量側のピークの傾きがマイナスからゼロに変化する点を結んだ線をベースラインとした。 The measurement by gel permeation chromatography is performed as follows. Tetrahydrofuran is used as the eluent, and TSKgel SuperMultipore HZM-M manufactured by Tosoh Corporation and SuperHZ4000 are connected in series as the column. An HLC-8320 (product number) manufactured by Tosoh Corporation equipped with a differential refractive index detector (RI detector) was used as an analyzer. 4 mg of the methacrylic resin to be tested was dissolved in 5 ml of tetrahydrofuran to prepare a test solution. The column oven temperature was set to 40 ° C., 20 μl of the test solution was injected at an eluent flow rate of 0.35 ml / min, and the chromatogram was measured.
The chromatogram is a chart in which the electric signal value (intensity Y) derived from the difference in refractive index between the test solution and the reference solution is plotted against the retention time X.
A standard polystyrene having a molecular weight in the range of 400 to 5000000 was measured by gel permeation chromatography to prepare a calibration curve showing the relationship between the retention time and the molecular weight. When the chromatogram shows a single peak, it is based on a line connecting the point where the slope on the high molecular weight side of the chromatogram changes from zero to positive and the point where the slope of the peak on the low molecular weight side changes from negative to zero. Line. If the chromatogram shows multiple peaks, connect the line connecting the point where the slope of the highest molecular weight peak changes from zero to positive and the point where the slope of the lowest molecular weight peak changes from negative to zero. Baseline.
クロマトグラムは、試験対象溶液と参照溶液との屈折率差に由来する電気信号値(強度Y)をリテンションタイムXに対してプロットしたチャートである。
分子量400~5000000の範囲の標準ポリスチレンをゲルパーミエーションクロマトグラフィ測定し、リテンションタイムと分子量との関係を示す検量線を作成した。クロマトグラムが一つのピークを示す場合は、クロマトグラムの高分子量側の傾きがゼロからプラスに変化する点と、低分子量側のピークの傾きがマイナスからゼロに変化する点を結んだ線をベースラインとした。クロマトグラムが複数のピークを示す場合は、最も高分子量側のピークの傾きがゼロからプラスに変化する点と、最も低分子量側のピークの傾きがマイナスからゼロに変化する点を結んだ線をベースラインとした。 The measurement by gel permeation chromatography is performed as follows. Tetrahydrofuran is used as the eluent, and TSKgel SuperMultipore HZM-M manufactured by Tosoh Corporation and SuperHZ4000 are connected in series as the column. An HLC-8320 (product number) manufactured by Tosoh Corporation equipped with a differential refractive index detector (RI detector) was used as an analyzer. 4 mg of the methacrylic resin to be tested was dissolved in 5 ml of tetrahydrofuran to prepare a test solution. The column oven temperature was set to 40 ° C., 20 μl of the test solution was injected at an eluent flow rate of 0.35 ml / min, and the chromatogram was measured.
The chromatogram is a chart in which the electric signal value (intensity Y) derived from the difference in refractive index between the test solution and the reference solution is plotted against the retention time X.
A standard polystyrene having a molecular weight in the range of 400 to 5000000 was measured by gel permeation chromatography to prepare a calibration curve showing the relationship between the retention time and the molecular weight. When the chromatogram shows a single peak, it is based on a line connecting the point where the slope on the high molecular weight side of the chromatogram changes from zero to positive and the point where the slope of the peak on the low molecular weight side changes from negative to zero. Line. If the chromatogram shows multiple peaks, connect the line connecting the point where the slope of the highest molecular weight peak changes from zero to positive and the point where the slope of the lowest molecular weight peak changes from negative to zero. Baseline.
メタクリル樹脂〔A0〕またはメタクリル樹脂〔A1〕は、230℃および3.8kg荷重の条件で測定して決定されるメルトフローレートが、好ましくは0.1~30g/10分以上、より好ましくは0.5~20g/10分、さらに好ましくは1~15g/10分である。
The methacrylic resin [A0] or the methacrylic resin [A1] has a melt flow rate determined by measurement under conditions of 230 ° C. and a load of 3.8 kg, preferably 0.1 to 30 g / 10 min or more, more preferably 0. 0.5 to 20 g / 10 min, more preferably 1 to 15 g / 10 min.
また、メタクリル樹脂〔A0〕またはメタクリル樹脂〔A1〕は、ガラス転移温度が、好ましくは100℃以上、より好ましくは110℃以上、さらに好ましくは115℃以上、特に好ましくは120℃以上である。メタクリル樹脂〔A0〕またはメタクリル樹脂〔A1〕のガラス転移温度の上限は、特に制限はないが、好ましくは131℃である。
The methacrylic resin [A0] or methacrylic resin [A1] has a glass transition temperature of preferably 100 ° C. or higher, more preferably 110 ° C. or higher, still more preferably 115 ° C. or higher, and particularly preferably 120 ° C. or higher. The upper limit of the glass transition temperature of the methacrylic resin [A0] or the methacrylic resin [A1] is not particularly limited, but is preferably 131 ° C.
ガラス転移温度は、DSC曲線から求められる中間点ガラス転移温度である。DSC曲線は、測定対象樹脂を、JIS K7121に準拠して、示差走査熱量計を用いて、250℃まで10℃/分で1回目の昇温(1stラン)を行い、次いで室温まで冷却し、その後、室温から250℃までを昇温速度10℃/分で2回目の昇温(2ndラン)を行う際に検出される2ndランの中間点ガラス転移温度である。
The glass transition temperature is a midpoint glass transition temperature obtained from a DSC curve. In the DSC curve, the resin to be measured is heated to 10 ° C / min for the first time (1st run) to 250 ° C using a differential scanning calorimeter in accordance with JIS K7121, and then cooled to room temperature. Thereafter, the glass transition temperature is the midpoint glass transition temperature of the second run detected when the second temperature rise (2nd run) is performed from room temperature to 250 ° C. at a rate of temperature rise of 10 ° C./min.
メタクリル樹脂〔A2〕は、環構造を主鎖に有する構造単位を含有する。これによってメタクリル樹脂組成物の耐熱性が向上する。よって、メタクリル酸メチルに由来する構造単位と環構造を主鎖に有する構造単位とを含有するメタクリル樹脂〔A2〕における、メタクリル酸メチルに由来する構造単位の総含有量を、上述した範囲よりも低くすることができる。例えば、メタクリル酸メチルに由来する構造単位と環構造を主鎖に有する構造単位とを含有するメタクリル樹脂〔A2〕における、メタクリル酸メチルに由来する構造単位の総含有量は、好ましくは20~99質量%、より好ましくは30~95質量%、さらに好ましくは40~90質量%である。環構造を主鎖に有する構造単位の総含有量は、好ましくは1~80質量%、より好ましくは5~70質量%、さらに好ましくは10~60質量%である。メタクリル酸メチルに由来する構造単位と環構造を主鎖に有する構造単位とを含有するメタクリル樹脂〔A2〕はメタクリル酸メチルに由来する構造単位と環構造を主鎖に有する構造単位以外の他の構造単位を有してもよい。係る構造単位は前述したようなメタクリル酸メチル以外の単量体として例示した単量体に由来する構造単位であることができる。なお、メタクリル樹脂〔A2〕は、一分子中に重合性の炭素-炭素二重結合を二つ以上有する単量体に由来する構造単位を含有しない方がよい。
The methacrylic resin [A2] contains a structural unit having a ring structure in the main chain. This improves the heat resistance of the methacrylic resin composition. Therefore, in the methacrylic resin [A2] containing a structural unit derived from methyl methacrylate and a structural unit having a ring structure in the main chain, the total content of structural units derived from methyl methacrylate is more than the above-mentioned range. Can be lowered. For example, in the methacrylic resin [A2] containing a structural unit derived from methyl methacrylate and a structural unit having a ring structure in the main chain, the total content of structural units derived from methyl methacrylate is preferably 20 to 99. The mass is more preferably 30 to 95 mass%, still more preferably 40 to 90 mass%. The total content of structural units having a ring structure in the main chain is preferably 1 to 80% by mass, more preferably 5 to 70% by mass, and still more preferably 10 to 60% by mass. A methacrylic resin [A2] containing a structural unit derived from methyl methacrylate and a structural unit having a ring structure in the main chain is other than the structural unit derived from methyl methacrylate and the structural unit having a ring structure in the main chain. You may have a structural unit. Such a structural unit can be a structural unit derived from a monomer exemplified as a monomer other than methyl methacrylate as described above. The methacrylic resin [A2] preferably does not contain a structural unit derived from a monomer having two or more polymerizable carbon-carbon double bonds in one molecule.
環構造を主鎖に有する構造単位としては、>CH-O-C(=O)-基を環構造に含む構造単位、-C(=O)-O-C(=O)-基を環構造に含む構造単位、-C(=O)-N-C(=O)-基を環構造に含む構造単位、または>CH-O-CH<基を環構造に含む構造単位が好ましい。
環構造を主鎖に有する構造単位は、無水マレイン酸、N-置換マレイミドなどのような重合性不飽和炭素-炭素二重結合を有する環状単量体をメタクリル酸メチルなどと共重合させることによって、または重合によって得られたメタクリル樹脂の分子鎖の一部を分子内縮合環化させることによって、メタクリル樹脂に含有させることができる。 As structural units having a ring structure in the main chain, structural units containing> CH—O—C (═O) — group in the ring structure, and —C (═O) —O—C (═O) — groups are cyclic A structural unit containing a structure, a structural unit containing a —C (═O) —N—C (═O) — group in the ring structure, or a structural unit containing a> CH—O—CH <group in the ring structure is preferable.
A structural unit having a ring structure in the main chain is obtained by copolymerizing a cyclic monomer having a polymerizable unsaturated carbon-carbon double bond such as maleic anhydride or N-substituted maleimide with methyl methacrylate or the like. Alternatively, a part of the molecular chain of the methacrylic resin obtained by polymerization can be contained in the methacrylic resin by intramolecular condensation cyclization.
環構造を主鎖に有する構造単位は、無水マレイン酸、N-置換マレイミドなどのような重合性不飽和炭素-炭素二重結合を有する環状単量体をメタクリル酸メチルなどと共重合させることによって、または重合によって得られたメタクリル樹脂の分子鎖の一部を分子内縮合環化させることによって、メタクリル樹脂に含有させることができる。 As structural units having a ring structure in the main chain, structural units containing> CH—O—C (═O) — group in the ring structure, and —C (═O) —O—C (═O) — groups are cyclic A structural unit containing a structure, a structural unit containing a —C (═O) —N—C (═O) — group in the ring structure, or a structural unit containing a> CH—O—CH <group in the ring structure is preferable.
A structural unit having a ring structure in the main chain is obtained by copolymerizing a cyclic monomer having a polymerizable unsaturated carbon-carbon double bond such as maleic anhydride or N-substituted maleimide with methyl methacrylate or the like. Alternatively, a part of the molecular chain of the methacrylic resin obtained by polymerization can be contained in the methacrylic resin by intramolecular condensation cyclization.
>CH-O-C(=O)-基を環構造に含む構造単位としては、β-プロピオラクトンジイル(別名:オキソオキセタンジイル)構造単位、γ-ブチロラクトンジイル(別名:2-オキソジヒドロフランジイル)構造単位、δ-バレロラクトンジイル(別名:2-オキソジヒドロピランジイル)構造単位などのラクトンジイル構造単位を挙げることができる。なお、式中の「>C」は炭素原子Cに結合手が2つあることを意味する。
> Structural units containing a CH—O—C (═O) — group in the ring structure include β-propiolactone diyl (also known as oxooxetanediyl) structural unit, γ-butyrolactone diyl (also known as 2-oxodihydrofurandi) Yl) structural unit, and lactone diyl structural unit such as δ-valerolactone diyl (also known as 2-oxodihydropyrandiyl) structural unit. In the formula, “> C” means that the carbon atom C has two bonds.
例えば、δ-バレロラクトンジイル構造単位としては、式(I)で表される構造単位を挙げることができる。
For example, examples of the δ-valerolactone diyl structural unit include structural units represented by the formula (I).
式(I)中、R14およびR15はそれぞれ独立に水素原子または炭素数1~20の有機残基であり、R14が水素原子、R15がメチル基であることが好ましい。R16は-COORであり、Rは水素原子または炭素数1~20の有機残基であり、好ましくはメチル基である。*は結合手を意味する。
なお、式(I)における、有機残基としては、直鎖若しくは分岐状のアルキル基、直鎖若しくは分岐状のアルキレン基、アリール基、-OAc基、および-CN基等を挙げることができる。有機残基は酸素原子を構成原子として含んでいてもよい。「Ac」はアセチル基を示す。有機残基は、その炭素数が、好ましくは1~10、より好ましくは1~5である。
In the formula (I), R 14 and R 15 are each independently a hydrogen atom or an organic residue having 1 to 20 carbon atoms, preferably R 14 is a hydrogen atom and R 15 is a methyl group. R 16 is —COOR, R is a hydrogen atom or an organic residue having 1 to 20 carbon atoms, preferably a methyl group. * Means a bond.
In addition, examples of the organic residue in the formula (I) include a linear or branched alkyl group, a linear or branched alkylene group, an aryl group, an —OAc group, and a —CN group. The organic residue may contain an oxygen atom as a constituent atom. “Ac” represents an acetyl group. The organic residue preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms.
δ-バレロラクトンジイル構造単位は、隣り合う二つのメタクリル酸メチルに由来する構造単位の分子内環化などによって、メタクリル樹脂に含有させることができる。
The δ-valerolactone diyl structural unit can be contained in a methacrylic resin by intramolecular cyclization of structural units derived from two adjacent methyl methacrylates.
-C(=O)-O-C(=O)-基を環構造に含む構造単位としては、2,5-ジオキソジヒドロフランジイル構造単位、2,6-ジオキソジヒドロピランジイル構造単位、2,7-ジオキソオキセパンジイル構造単位などを挙げることができる。
The structural unit containing a —C (═O) —O—C (═O) — group in the ring structure includes 2,5-dioxodihydrofurandiyl structural unit, 2,6-dioxodihydropyrandiyl structural unit, Examples include 2,7-dioxooxepanediyl structural unit.
例えば、2,5-ジオキソジヒドロフランジイル構造単位としては、式(II)で表される構造単位を挙げることができる。
For example, examples of the 2,5-dioxodihydrofurandiyl structural unit include a structural unit represented by the formula (II).
式(II)中、R21およびR22はそれぞれ独立に水素原子または炭素数1~20の有機残基である。
なお、式(II)における、有機残基としては、直鎖若しくは分岐状のアルキル基、直鎖若しくは分岐状のアルキレン基、アリール基、-OAc基、および-CN基等を挙げることができる。有機残基は酸素原子を含んでいてもよい。「Ac」はアセチル基を示す。有機残基は、その炭素数が、好ましくは1~10、より好ましくは1~5である。
In formula (II), R 21 and R 22 are each independently a hydrogen atom or an organic residue having 1 to 20 carbon atoms.
In addition, examples of the organic residue in the formula (II) include a linear or branched alkyl group, a linear or branched alkylene group, an aryl group, an —OAc group, and a —CN group. The organic residue may contain an oxygen atom. “Ac” represents an acetyl group. The organic residue preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms.
R21およびR22はいずれも水素原子であることがより好ましい。その場合、製造容易性および固有複屈折の調節等の観点から、通常、スチレン等が共重合されていることが好ましい。具体的にはWO2014/021264A1に記載されているような、スチレンに由来する構造単位とメタクリル酸メチルに由来する構造単位と無水マレイン酸に由来する構造単位とを有する共重合体を挙げることができる。
2,5-ジオキソジヒドロフランジイル構造単位は、無水マレイン酸の共重合などによって、メタクリル樹脂に含有させることができる。 R 21 and R 22 are more preferably hydrogen atoms. In that case, from the viewpoint of ease of production and adjustment of intrinsic birefringence, it is usually preferable that styrene or the like is copolymerized. Specific examples include a copolymer having a structural unit derived from styrene, a structural unit derived from methyl methacrylate, and a structural unit derived from maleic anhydride, as described in WO2014 / 021264A1. .
The 2,5-dioxodihydrofurandiyl structural unit can be contained in the methacrylic resin by copolymerization of maleic anhydride.
2,5-ジオキソジヒドロフランジイル構造単位は、無水マレイン酸の共重合などによって、メタクリル樹脂に含有させることができる。 R 21 and R 22 are more preferably hydrogen atoms. In that case, from the viewpoint of ease of production and adjustment of intrinsic birefringence, it is usually preferable that styrene or the like is copolymerized. Specific examples include a copolymer having a structural unit derived from styrene, a structural unit derived from methyl methacrylate, and a structural unit derived from maleic anhydride, as described in WO2014 / 021264A1. .
The 2,5-dioxodihydrofurandiyl structural unit can be contained in the methacrylic resin by copolymerization of maleic anhydride.
2,6-ジオキソジヒドロピランジイル構造単位としては、式(III)で表される構造単位を挙げることができる。
Examples of the 2,6-dioxodihydropyrandiyl structural unit include a structural unit represented by the formula (III).
式(III)中、R33およびR34はそれぞれ独立に水素原子または炭素数1~20の有機残基である。
なお、式(III)における、有機残基としては、直鎖若しくは分岐状のアルキル基、直鎖若しくは分岐状のアルキレン基、アリール基、-OAc基、および-CN基等を挙げることができる。有機残基は酸素原子を含んでいてもよい。「Ac」はアセチル基を示す。有機残基は、その炭素数が、好ましくは1~10、より好ましくは1~5であり、さらに好ましくはメチル基である。
In the formula (III), R 33 and R 34 are each independently a hydrogen atom or an organic residue having 1 to 20 carbon atoms.
In addition, examples of the organic residue in the formula (III) include a linear or branched alkyl group, a linear or branched alkylene group, an aryl group, an —OAc group, and a —CN group. The organic residue may contain an oxygen atom. “Ac” represents an acetyl group. The organic residue preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and still more preferably a methyl group.
2,6-ジオキソジヒドロピランジイル構造単位は、隣り合う二つのメタクリル酸メチルに由来する構造単位の分子内環化などによって、メタクリル樹脂に含有させることができる。
2,6-Dioxodihydropyrandiyl structural unit can be contained in a methacrylic resin by intramolecular cyclization of structural units derived from two adjacent methyl methacrylates.
-C(=O)-N-C(=O)-基を環構造に含む構造単位(なお、Nが有するもう一つ結合手は表記を省略している。)としては、2,5-ジオキソピロリジンジイル構造単位、2,6-ジオキソピペリジンジイル構造単位、2,7-ジオキソアゼパンジイル構造単位などを挙げることができる。
As structural units containing a —C (═O) —N—C (═O) — group in a ring structure (note that another bond of N is omitted), 2,5- And dioxopyrrolidinediyl structural unit, 2,6-dioxopiperidinediyl structural unit, and 2,7-dioxoazepanediyl structural unit.
例えば、2,6-ジオキソピペリジンジイル構造単位としては、式(IV)で表される構造単位を挙げることができる。
For example, examples of the 2,6-dioxopiperidinediyl structural unit include a structural unit represented by the formula (IV).
式(IV)中、R41およびR42はそれぞれ独立に水素原子または炭素数1~8のアルキル基であり、R43は水素原子、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または炭素数6~10のアリール基である。
原料入手の容易さ、費用、耐熱性などの観点から、R41およびR42はそれぞれ独立に水素原子またはメチル基であることが好ましく、R41がメチル基でありR42が水素原子であることがより好ましい。R43は水素原子、メチル基、n-ブチル基、シクロへキシル基またはベンジル基であることが好ましく、メチル基であることがより好ましい。
In the formula (IV), R 41 and R 42 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 43 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or an alkyl group having 3 to 12 carbon atoms. A cycloalkyl group or an aryl group having 6 to 10 carbon atoms.
From the viewpoint of easy availability of raw materials, cost, heat resistance, etc., R 41 and R 42 are preferably each independently a hydrogen atom or a methyl group, R 41 is a methyl group, and R 42 is a hydrogen atom. Is more preferable. R 43 is preferably a hydrogen atom, a methyl group, an n-butyl group, a cyclohexyl group or a benzyl group, more preferably a methyl group.
2,6-ジオキソピペリジンジイル構造単位は、アミンの存在下に隣り合う二つのメタクリル酸メチルに由来する構造単位の分子内環化などによって、メタクリル樹脂に含有させることができる。
The 2,6-dioxopiperidinediyl structural unit can be contained in a methacrylic resin by, for example, intramolecular cyclization of a structural unit derived from two adjacent methyl methacrylate in the presence of an amine.
2,5-ジオキソピロリジンジイル構造単位としては、式(V)で表される構造単位を挙げることができる。
Examples of the 2,5-dioxopyrrolidinediyl structural unit include a structural unit represented by the formula (V).
式(V)中、R52およびR53はそれぞれ独立に水素原子、炭素数1~12のアルキル基、または炭素数6~14のアルキル基であり、R51は、炭素数7~14のアリールアルキル基、または無置換の若しくは置換基を有する炭素数6~14のアリール基である。アリール基に置換される基は、ハロゲノ基、ヒドロキシル基、ニトロ基、炭素数1~12のアルコキシ基、炭素数1~12のアルキル基または炭素数7~14のアリールアルキル基である。R51はフェニル基またはシクロヘキシル基であることが好ましく、R52およびR53は共に水素原子であることが好ましい。
In the formula (V), R 52 and R 53 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an alkyl group having 6 to 14 carbon atoms, and R 51 is aryl having 7 to 14 carbon atoms. An alkyl group or an unsubstituted or substituted aryl group having 6 to 14 carbon atoms. The group substituted by the aryl group is a halogeno group, a hydroxyl group, a nitro group, an alkoxy group having 1 to 12 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an arylalkyl group having 7 to 14 carbon atoms. R 51 is preferably a phenyl group or a cyclohexyl group, and both R 52 and R 53 are preferably hydrogen atoms.
2,5-ジオキソピロリジンジイル構造単位は、N-置換マレイミドの共重合などによって、メタクリル樹脂に含有させることができる。
2,5-Dioxopyrrolidinediyl structural unit can be contained in a methacrylic resin by copolymerization of N-substituted maleimide or the like.
>CH-O-CH<基を環構造に含む構造単位としては、オキセタンジイル構造単位、テトラヒドロフランジイル構造単位、テトラヒドロピランジイル構造単位、オキセパンジイル構造単位などを挙げることができる。なお、式中の「>C」は炭素原子Cに結合手が2つあることを意味する。
Examples of the structural unit containing a> CH—O—CH <group in the ring structure include an oxetanediyl structural unit, a tetrahydrofurandiyl structural unit, a tetrahydropyrandiyl structural unit, and an oxepandiyl structural unit. In the formula, “> C” means that the carbon atom C has two bonds.
例えば、テトラヒドロピランジイル構造単位としては、式(VI)で表される構造単位を挙げることができる。
For example, examples of the tetrahydropyrandiyl structural unit include a structural unit represented by the formula (VI).
式(VI)中、R61およびR62はそれぞれ独立に水素原子、炭素数1~20の直鎖状若しくは分岐鎖状の炭化水素基、または環構造を有する炭素数3~20の炭化水素基である。
R61およびR62としては、それぞれ独立に、トリシクロ[5.2.1.02,6]デカニル基、1,7,7-トリメチルビシクロ[2.2.1]ヘプタン-3-イル基、t-ブチル基、または4-t-ブチルシクロヘキサニル基が好ましい。
In the formula (VI), R 61 and R 62 are each independently a hydrogen atom, a linear or branched hydrocarbon group having 1 to 20 carbon atoms, or a hydrocarbon group having 3 to 20 carbon atoms having a ring structure. It is.
R 61 and R 62 are each independently a tricyclo [5.2.1.0 2,6 ] decanyl group, a 1,7,7-trimethylbicyclo [2.2.1] heptan-3-yl group, A t-butyl group or a 4-t-butylcyclohexanyl group is preferred.
上記の環構造を主鎖に有する構造単位のうち、原料および製造の容易さの観点から、δ-バレロラクトンジイル構造単位、または2,5-ジオキソジヒドロフランジイル構造単位が好ましい。
Of the structural units having the above-mentioned ring structure in the main chain, from the viewpoint of raw materials and ease of production, δ-valerolactone diyl structural unit or 2,5-dioxodihydrofurandiyl structural unit is preferable.
メタクリル樹脂〔A2〕は、230℃および3.8kg荷重の条件で測定して決定されるメルトフローレートが、好ましくは0.1~20g/10分以上、より好ましくは0.5~15g/10分、さらに好ましくは1~10g/10分である。
The methacrylic resin [A2] has a melt flow rate determined by measurement under conditions of 230 ° C. and a load of 3.8 kg, preferably 0.1 to 20 g / 10 min or more, more preferably 0.5 to 15 g / 10. Min, more preferably 1 to 10 g / 10 min.
また、メタクリル樹脂〔A2〕は、ガラス転移温度が、好ましくは110℃以上、より好ましくは115℃以上、さらに好ましくは120℃以上、特に好ましくは125℃以上である。メタクリル樹脂〔A2〕のガラス転移温度の上限は、特に制限はないが、好ましくは140℃である。
The glass transition temperature of the methacrylic resin [A2] is preferably 110 ° C. or higher, more preferably 115 ° C. or higher, further preferably 120 ° C. or higher, and particularly preferably 125 ° C. or higher. The upper limit of the glass transition temperature of the methacrylic resin [A2] is not particularly limited, but is preferably 140 ° C.
本発明に用いられるメタクリル樹脂〔A〕は、1種のメタクリル樹脂によって前記特性を満たすようにしたものであってもよいし、複数種のメタクリル樹脂の混合物によって前記特性を満たすようにしたものであってもよい。
The methacrylic resin [A] used in the present invention may be one that satisfies the above characteristics with one kind of methacrylic resin, or one that satisfies the above characteristics with a mixture of a plurality of kinds of methacrylic resins. There may be.
本発明に用いられるメタクリル樹脂〔A〕を構成する1種または2種以上のメタクリル樹脂は、どのような製法で得られたものであってもよい。例えば、メタクリル樹脂は、メタクリル酸メチルを重合することによってまたはメタクリル酸メチルと他の単量体とを重合することによって得ることができる。重合は、公知の方法にて行うことができる。重合の方法としては、連鎖移動の形態による分類で、例えば、ラジカル重合、アニオン重合などを挙げることができる。また、反応液の形態による分類で、塊状重合、溶液重合、懸濁重合、乳化重合などを挙げることができる。前述したメタクリル樹脂〔A〕の各特性は、重合温度、重合時間、連鎖移動剤の種類や量や添加時期、重合開始剤の種類や量や添加時期などの重合条件を調整することによって実現できる。このような重合条件による特性制御は当業者においてよく知られた技術であり、目的とする特性を有する樹脂を製造することは当業者にとって困難なことではない。
さらに、前記のような重合によって得られた樹脂を前述したような分子内環化させることによってメタクリル樹脂〔A2〕を得ることができる。 The one or more methacrylic resins constituting the methacrylic resin [A] used in the present invention may be obtained by any manufacturing method. For example, a methacrylic resin can be obtained by polymerizing methyl methacrylate or by polymerizing methyl methacrylate and other monomers. The polymerization can be performed by a known method. Examples of the polymerization method include classification according to the form of chain transfer, and examples thereof include radical polymerization and anionic polymerization. The classification according to the form of the reaction liquid includes bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization and the like. Each characteristic of the methacrylic resin [A] described above can be realized by adjusting the polymerization conditions such as the polymerization temperature, the polymerization time, the type, amount and addition time of the chain transfer agent, the type, amount and addition time of the polymerization initiator. . Such characteristic control by polymerization conditions is a technique well known to those skilled in the art, and it is not difficult for those skilled in the art to produce a resin having the desired characteristics.
Furthermore, the methacrylic resin [A2] can be obtained by intramolecular cyclization of the resin obtained by the polymerization as described above.
さらに、前記のような重合によって得られた樹脂を前述したような分子内環化させることによってメタクリル樹脂〔A2〕を得ることができる。 The one or more methacrylic resins constituting the methacrylic resin [A] used in the present invention may be obtained by any manufacturing method. For example, a methacrylic resin can be obtained by polymerizing methyl methacrylate or by polymerizing methyl methacrylate and other monomers. The polymerization can be performed by a known method. Examples of the polymerization method include classification according to the form of chain transfer, and examples thereof include radical polymerization and anionic polymerization. The classification according to the form of the reaction liquid includes bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization and the like. Each characteristic of the methacrylic resin [A] described above can be realized by adjusting the polymerization conditions such as the polymerization temperature, the polymerization time, the type, amount and addition time of the chain transfer agent, the type, amount and addition time of the polymerization initiator. . Such characteristic control by polymerization conditions is a technique well known to those skilled in the art, and it is not difficult for those skilled in the art to produce a resin having the desired characteristics.
Furthermore, the methacrylic resin [A2] can be obtained by intramolecular cyclization of the resin obtained by the polymerization as described above.
メタクリル樹脂組成物に含有するメタクリル樹脂〔A〕の量は、70~99.99質量%、好ましくは90~99.98質量%、より好ましくは95~99.96質量%である。
The amount of the methacrylic resin [A] contained in the methacrylic resin composition is 70 to 99.99% by mass, preferably 90 to 99.98% by mass, more preferably 95 to 99.96% by mass.
〔化合物〔B〕〕
化合物〔B〕は、1分子中にフェノール性水酸基を3つ以上、好ましくは10以上有する化合物である。フェノール性水酸基の数が3未満であると、メタクリル樹脂の熱分解抑制効果が得られない場合がある。 [Compound [B]]
Compound [B] is a compound having 3 or more, preferably 10 or more, phenolic hydroxyl groups in one molecule. If the number of phenolic hydroxyl groups is less than 3, the effect of suppressing the thermal decomposition of the methacrylic resin may not be obtained.
化合物〔B〕は、1分子中にフェノール性水酸基を3つ以上、好ましくは10以上有する化合物である。フェノール性水酸基の数が3未満であると、メタクリル樹脂の熱分解抑制効果が得られない場合がある。 [Compound [B]]
Compound [B] is a compound having 3 or more, preferably 10 or more, phenolic hydroxyl groups in one molecule. If the number of phenolic hydroxyl groups is less than 3, the effect of suppressing the thermal decomposition of the methacrylic resin may not be obtained.
化合物〔B〕は、分子量の下限が、2千、好ましくは3千、より好ましくは5千、さらに好ましくは1万であり、分子量の上限が、30万である。分子量が上記範囲にある化合物〔B〕は、成形時に、金型汚れやブリードアウトなどの不具合を生じさせず、外観良好なフィルムなどの成形品を与える。
化合物〔B〕は、単一の分子量をもつ化合物であってもよいし、分子量に分布を持つ重合体であってもよい。単一の分子量をもつ化合物の分子量は各種質量分析によって測定することができる。分子量に分布を持つ重合体の分子量は、ゲルパーミエーションクロマトグラフィによる測定で得られるポリスチレン換算の重量平均分子量である。 Compound [B] has a molecular weight lower limit of 2,000, preferably 3,000, more preferably 5,000, still more preferably 10,000, and a molecular weight upper limit of 300,000. The compound [B] having a molecular weight in the above range does not cause defects such as mold contamination and bleed out during molding, and gives a molded article such as a film having a good appearance.
Compound [B] may be a compound having a single molecular weight or a polymer having a distribution in molecular weight. The molecular weight of a compound having a single molecular weight can be measured by various mass spectrometry. The molecular weight of a polymer having a distribution in molecular weight is a weight average molecular weight in terms of polystyrene obtained by measurement by gel permeation chromatography.
化合物〔B〕は、単一の分子量をもつ化合物であってもよいし、分子量に分布を持つ重合体であってもよい。単一の分子量をもつ化合物の分子量は各種質量分析によって測定することができる。分子量に分布を持つ重合体の分子量は、ゲルパーミエーションクロマトグラフィによる測定で得られるポリスチレン換算の重量平均分子量である。 Compound [B] has a molecular weight lower limit of 2,000, preferably 3,000, more preferably 5,000, still more preferably 10,000, and a molecular weight upper limit of 300,000. The compound [B] having a molecular weight in the above range does not cause defects such as mold contamination and bleed out during molding, and gives a molded article such as a film having a good appearance.
Compound [B] may be a compound having a single molecular weight or a polymer having a distribution in molecular weight. The molecular weight of a compound having a single molecular weight can be measured by various mass spectrometry. The molecular weight of a polymer having a distribution in molecular weight is a weight average molecular weight in terms of polystyrene obtained by measurement by gel permeation chromatography.
化合物〔B〕の具体例としては、ポリo-ヒドロキシスチレン、ポリm-ヒドロキシスチレン、ポリp-ヒドロキシスチレンなどのポリビニルフェノール、テルペンフェノール樹脂、ビスフェノールA型ノボラック樹脂などのノボラック型フェノール樹脂、レゾール型フェノール樹脂、ヒドロキシナフタレン構造を有するフェノール樹脂(WO2014/208132A1参照)、芳香環上にアラルキル基を有するフェノール樹脂(WO2014/073557A1参照)等が挙げられる。これらのうち、ポリビニルフェノール、テルペンフェノール樹脂、ノボラック型フェノール樹脂、またはレゾール型フェノール樹脂が好ましく、熱分解を抑制する効果が高いことから、ポリビニルフェノールが最も好ましい。
Specific examples of the compound [B] include polyphenols such as poly-o-hydroxystyrene, poly-m-hydroxystyrene, poly-p-hydroxystyrene, novolac-type phenol resins such as terpenephenol resin, bisphenol A-type novolak resin, and resol-type. Examples thereof include phenol resins, phenol resins having a hydroxy naphthalene structure (see WO2014 / 208132A1), phenol resins having an aralkyl group on an aromatic ring (see WO2014 / 073557A1), and the like. Among these, polyvinyl phenol, terpene phenol resin, novolac type phenol resin, or resol type phenol resin is preferable, and polyvinyl phenol is most preferable because of its high effect of suppressing thermal decomposition.
メタクリル樹脂組成物に含有する化合物〔B〕の量は、0.01~30質量%、好ましくは0.02~10質量%、より好ましくは0.04~5質量%である。
また、化合物(B)とメタクリル樹脂(A)との質量比((B)/(A))は、好ましくは0.01/99.99~30/70、より好ましくは0.02/99.98~10/90、さらに好ましくは0.04/99.96~5/95である。 The amount of the compound [B] contained in the methacrylic resin composition is 0.01 to 30% by mass, preferably 0.02 to 10% by mass, more preferably 0.04 to 5% by mass.
The mass ratio ((B) / (A)) between the compound (B) and the methacrylic resin (A) is preferably 0.01 / 99.99 to 30/70, more preferably 0.02 / 99. 98 to 10/90, more preferably 0.04 / 99.96 to 5/95.
また、化合物(B)とメタクリル樹脂(A)との質量比((B)/(A))は、好ましくは0.01/99.99~30/70、より好ましくは0.02/99.98~10/90、さらに好ましくは0.04/99.96~5/95である。 The amount of the compound [B] contained in the methacrylic resin composition is 0.01 to 30% by mass, preferably 0.02 to 10% by mass, more preferably 0.04 to 5% by mass.
The mass ratio ((B) / (A)) between the compound (B) and the methacrylic resin (A) is preferably 0.01 / 99.99 to 30/70, more preferably 0.02 / 99. 98 to 10/90, more preferably 0.04 / 99.96 to 5/95.
〔紫外線吸収剤〔C〕〕
本発明に用いられる紫外線吸収剤〔C〕は、熱可塑性樹脂に配合されることがある公知の紫外線吸収剤である。紫外線吸収剤〔C〕の分子量は、好ましくは200超過、より好ましくは300以上、さらに好ましくは500以上、よりさらに好ましくは600以上である。紫外線吸収剤〔C〕の分子量の上限は好ましくは2000である。 [Ultraviolet absorber [C]]
The ultraviolet absorbent [C] used in the present invention is a known ultraviolet absorbent that may be blended in a thermoplastic resin. The molecular weight of the ultraviolet absorber [C] is preferably more than 200, more preferably 300 or more, still more preferably 500 or more, and still more preferably 600 or more. The upper limit of the molecular weight of the ultraviolet absorber [C] is preferably 2000.
本発明に用いられる紫外線吸収剤〔C〕は、熱可塑性樹脂に配合されることがある公知の紫外線吸収剤である。紫外線吸収剤〔C〕の分子量は、好ましくは200超過、より好ましくは300以上、さらに好ましくは500以上、よりさらに好ましくは600以上である。紫外線吸収剤〔C〕の分子量の上限は好ましくは2000である。 [Ultraviolet absorber [C]]
The ultraviolet absorbent [C] used in the present invention is a known ultraviolet absorbent that may be blended in a thermoplastic resin. The molecular weight of the ultraviolet absorber [C] is preferably more than 200, more preferably 300 or more, still more preferably 500 or more, and still more preferably 600 or more. The upper limit of the molecular weight of the ultraviolet absorber [C] is preferably 2000.
一般に、紫外線吸収剤は、紫外線を吸収する能力を有する化合物である。紫外線吸収剤は、主に光エネルギーを熱エネルギーに変換する機能を有すると言われる化合物である。
紫外線吸収剤としては、ベンゾフェノン類、ベンゾトリアゾール類、トリアジン類、ベンゾエート類、サリシレート類、シアノアクリレート類、蓚酸アニリド類、マロン酸エステル類、ホルムアミジン類などを挙げることができる。これらは1種を単独で用いても、2種以上を組み合わせて用いてもよい。これらの中でも、ベンゾトリアゾール類(ベンゾトリアゾール骨格を有する化合物)、トリアジン類(トリアジン骨格を有する化合物)が好ましい。ベンゾトリアゾール類またはトリアジン類は、紫外線による樹脂の劣化(例えば、黄変など)を抑制する効果が高い。 In general, an ultraviolet absorber is a compound having an ability to absorb ultraviolet rays. The ultraviolet absorber is a compound that is said to have a function of mainly converting light energy into heat energy.
Examples of the ultraviolet absorber include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, succinic anilides, malonic esters, formamidines, and the like. These may be used individually by 1 type, or may be used in combination of 2 or more type. Among these, benzotriazoles (compounds having a benzotriazole skeleton) and triazines (compounds having a triazine skeleton) are preferable. Benzotriazoles or triazines have a high effect of suppressing resin degradation (for example, yellowing) due to ultraviolet rays.
紫外線吸収剤としては、ベンゾフェノン類、ベンゾトリアゾール類、トリアジン類、ベンゾエート類、サリシレート類、シアノアクリレート類、蓚酸アニリド類、マロン酸エステル類、ホルムアミジン類などを挙げることができる。これらは1種を単独で用いても、2種以上を組み合わせて用いてもよい。これらの中でも、ベンゾトリアゾール類(ベンゾトリアゾール骨格を有する化合物)、トリアジン類(トリアジン骨格を有する化合物)が好ましい。ベンゾトリアゾール類またはトリアジン類は、紫外線による樹脂の劣化(例えば、黄変など)を抑制する効果が高い。 In general, an ultraviolet absorber is a compound having an ability to absorb ultraviolet rays. The ultraviolet absorber is a compound that is said to have a function of mainly converting light energy into heat energy.
Examples of the ultraviolet absorber include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, succinic anilides, malonic esters, formamidines, and the like. These may be used individually by 1 type, or may be used in combination of 2 or more type. Among these, benzotriazoles (compounds having a benzotriazole skeleton) and triazines (compounds having a triazine skeleton) are preferable. Benzotriazoles or triazines have a high effect of suppressing resin degradation (for example, yellowing) due to ultraviolet rays.
ベンゾトリアゾール類としては、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(BASF社製;商品名TINUVIN329)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(BASF社製;商品名TINUVIN234)、2,2’-メチレンビス〔6-(2H-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノール〕(ADEKA社製;LA-31)、2-(5-オクチルチオ-2H-ベンゾトリアゾール-2-イル)-6-tert-ブチル-4-メチルフェノールなどを挙げることができる。
Examples of benzotriazoles include 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol (manufactured by BASF; trade name TINUVIN329), 2- (2H- Benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (manufactured by BASF; trade name TINUVIN234), 2,2′-methylenebis [6- (2H-benzotriazole-2 -Yl) -4-tert-octylphenol] (manufactured by ADEKA; LA-31), 2- (5-octylthio-2H-benzotriazol-2-yl) -6-tert-butyl-4-methylphenol be able to.
トリアジン類としては、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジン(ADEKA社製;LA-F70)や、その類縁体であるヒドロキシフェニルトリアジン系紫外線吸収剤(BASF社製;CGL777、TINUVIN460、TINUVIN479など)、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジンなどを挙げることができる。
Examples of triazines include 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (manufactured by ADEKA; LA-F70) and its analogs. Certain hydroxyphenyl triazine-based ultraviolet absorbers (manufactured by BASF; CGL777, TINUVIN460, TINUVIN479, etc.), 2,4-diphenyl-6- (2-hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, etc. Can be mentioned.
その他に、波長380~450nmにおけるモル吸光係数の最大値εmaxが1200dm3・mol-1cm-1以下である紫外線吸収剤を好ましく用いることができる。このような紫外線吸収剤としては、2-エチル-2’-エトキシ-オキサルアニリド(クラリアントジャパン社製;商品名サンデユボアVSU)などを挙げることができる。
In addition, an ultraviolet absorber having a maximum molar extinction coefficient ε max at wavelengths of 380 to 450 nm of 1200 dm 3 · mol −1 cm −1 or less can be preferably used. Examples of such an ultraviolet absorber include 2-ethyl-2′-ethoxy-oxalanilide (manufactured by Clariant Japan, trade name: Sundebore VSU).
WO2011/089794A1、WO2012/124395A1、特開2012-012476号公報、特開2013-023461号公報、特開2013-112790号公報、特開2013-194037号公報、特開2014-62228号公報、特開2014-88542号公報、特開2014-88543号公報等に開示される複素環構造の配位子を有する金属錯体を紫外線吸収剤〔C〕として用いることができる。
WO2011 / 089794A1, WO2012 / 124395A1, JP2012-012476, JP2013-023461, JP2013-112790, JP2013-194037, JP201462228, JP A metal complex having a heterocyclic ligand disclosed in JP 2014-88542 A, JP 2014-88543 A, or the like can be used as the ultraviolet absorber [C].
本発明のメタクリル樹脂組成物に含有させ得る紫外線吸収剤〔C〕の量は、メタクリル樹脂〔A〕100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.2~5質量部、さらに好ましくは0.3~3質量部である。
The amount of the ultraviolet absorber [C] that can be contained in the methacrylic resin composition of the present invention is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 0.2 parts by mass with respect to 100 parts by mass of the methacrylic resin [A]. 5 parts by mass, more preferably 0.3 to 3 parts by mass.
〔架橋ゴム〔D〕〕
本発明に用いられる架橋ゴム〔D〕は、架橋性単量体に由来する構造単位によって高分子鎖が架橋されてなるゴム弾性を有する重合体である。なお、架橋性単量体は、1つの単量体中に2つ以上の重合性官能基を有するものである。 [Crosslinked rubber [D]]
The crosslinked rubber [D] used in the present invention is a polymer having rubber elasticity in which a polymer chain is crosslinked by a structural unit derived from a crosslinking monomer. The crosslinkable monomer is one having two or more polymerizable functional groups in one monomer.
本発明に用いられる架橋ゴム〔D〕は、架橋性単量体に由来する構造単位によって高分子鎖が架橋されてなるゴム弾性を有する重合体である。なお、架橋性単量体は、1つの単量体中に2つ以上の重合性官能基を有するものである。 [Crosslinked rubber [D]]
The crosslinked rubber [D] used in the present invention is a polymer having rubber elasticity in which a polymer chain is crosslinked by a structural unit derived from a crosslinking monomer. The crosslinkable monomer is one having two or more polymerizable functional groups in one monomer.
架橋性単量体としては、例えば、アクリル酸アリル、メタクリル酸アリル、1-アクリロキシ-3-ブテン、1-メタクリロキシ-3-ブテン、1,2-ジアクリロキシ-エタン、1,2-ジメタクリロキシ-エタン、1,2-ジアクリロキシ-プロパン、1,3-ジアクリロキシ-プロパン、1,4-ジアクリロキシ-ブタン、1,3-ジメタクリロキシ-プロパン、1,2-ジメタクリロキシ-プロパン、1,4-ジメタクリロキシ-ブタン、トリエチレングリコールジメタクリレート、ヘキサンジオールジメタクリレート、トリエチレングリコールジアクリレート、ヘキサンジオールジアクリレート、ジビニルベンゼン、1,4-ペンタジエン、トリアリルイソシアネートなどを挙げることができる。これらは1種単独でまたは2種以上を組み合わせて用いてもよい。
Examples of the crosslinkable monomer include allyl acrylate, allyl methacrylate, 1-acryloxy-3-butene, 1-methacryloxy-3-butene, 1,2-diacryloxy-ethane, 1,2-dimethacryloxy-ethane, 1,2-diacryloxy-propane, 1,3-diacryloxy-propane, 1,4-diacryloxy-butane, 1,3-dimethacryloxy-propane, 1,2-dimethacryloxy-propane, 1,4-dimethacryloxy-butane, triethylene Examples include glycol dimethacrylate, hexanediol dimethacrylate, triethylene glycol diacrylate, hexanediol diacrylate, divinylbenzene, 1,4-pentadiene, triallyl isocyanate, and the like. You may use these individually by 1 type or in combination of 2 or more types.
架橋ゴムとしては、アクリル系架橋ゴム、ジエン系架橋ゴムなどを挙げることができ、より具体的には、アクリル酸アルキルエステル単量体と架橋性単量体とその他のビニル系単量体との共重合体ゴム、共役ジエン系単量体と架橋性単量体とその他のビニル系単量体との共重合体ゴム、アクリル酸アルキルエステル単量体と共役ジエン系単量体と架橋性単量体とその他のビニル系単量体との共重合体ゴムなどを挙げることができる。
Examples of the cross-linked rubber include acrylic cross-linked rubber, diene cross-linked rubber, and the like, and more specifically, an acrylic acid alkyl ester monomer, a cross-linkable monomer, and other vinyl monomers. Copolymer rubber, copolymer rubber of conjugated diene monomer, crosslinkable monomer and other vinyl monomer, alkyl acrylate monomer, conjugated diene monomer and crosslinkable monomer Examples thereof include copolymer rubbers of a monomer and other vinyl monomers.
本発明において架橋ゴムは粒子形態にてメタクリル樹脂組成物に含まれていることが好ましい。
In the present invention, the crosslinked rubber is preferably contained in the methacrylic resin composition in the form of particles.
架橋ゴム粒子は、架橋ゴムのみからなる単層粒子であってもよいし、架橋ゴムと他の重合体とからなる多層粒子であってもよい。架橋ゴムと他の重合体とからなる多層粒子の形態としては、架橋ゴムからなるコアとそれ以外の重合体からなるシェルとを含んで成るコアシェル型粒子が好ましい。
The crosslinked rubber particles may be single-layer particles composed only of crosslinked rubber or multilayer particles composed of crosslinked rubber and another polymer. As a form of the multilayer particle composed of the crosslinked rubber and other polymer, core-shell type particles comprising a core composed of the crosslinked rubber and a shell composed of the other polymer are preferable.
本発明に好適に用いられる架橋ゴム粒子はアクリル系多層重合体粒子である。アクリル系多層重合体粒子は、コア部とシェル部とを有するものである。コア部は、センターコアと、必要に応じてセンターコアを略同心円状に覆ってなる1層以上のインナーシェルとを有する。シェル部は、コア部を略同心円状に覆ってなる1層のアウターシェルとを有する。該アクリル系多層重合体粒子は、センターコア、インナーシェルおよびアウターシェルの相互間が隙間無く繋がっていることが好ましい。
The crosslinked rubber particles preferably used in the present invention are acrylic multilayer polymer particles. The acrylic multilayer polymer particles have a core part and a shell part. The core portion includes a center core and, if necessary, one or more inner shells that cover the center core in a substantially concentric shape. The shell portion has a one-layer outer shell that covers the core portion substantially concentrically. In the acrylic multilayer polymer particles, it is preferable that the center core, the inner shell, and the outer shell are connected to each other without a gap.
アクリル系多層重合体粒子は、センターコアおよびインナーシェルのうちの、少なくとも1つが架橋ゴム重合体(i)を含有して成るものであり、残り部分が重合体(iii)を含有して成るものであることが好ましい。
センターコアおよびインナーシェルのうちの少なくとも2つが架橋ゴム重合体(i)を含有して成るものであるとき、それらに含まれる架橋ゴム重合体(i)は同じ重合体物性を有するものであってもよいし、異なる重合体物性を有するものであってもよい。また、センターコアおよびインナーシェルのうちの残部分が2つ以上である場合、それらに含まれる重合体(iii)は同じ重合体物性を有するものであってもよいし、異なる重合体物性を有するものであってもよい。 Acrylic multilayer polymer particles are those in which at least one of the center core and the inner shell contains the crosslinked rubber polymer (i) and the remaining part contains the polymer (iii). It is preferable that
When at least two of the center core and the inner shell contain the crosslinked rubber polymer (i), the crosslinked rubber polymer (i) contained in them has the same polymer physical properties. Alternatively, it may have different polymer properties. Further, when the remaining part of the center core and the inner shell is two or more, the polymer (iii) contained in them may have the same polymer properties or different polymer properties. It may be a thing.
センターコアおよびインナーシェルのうちの少なくとも2つが架橋ゴム重合体(i)を含有して成るものであるとき、それらに含まれる架橋ゴム重合体(i)は同じ重合体物性を有するものであってもよいし、異なる重合体物性を有するものであってもよい。また、センターコアおよびインナーシェルのうちの残部分が2つ以上である場合、それらに含まれる重合体(iii)は同じ重合体物性を有するものであってもよいし、異なる重合体物性を有するものであってもよい。 Acrylic multilayer polymer particles are those in which at least one of the center core and the inner shell contains the crosslinked rubber polymer (i) and the remaining part contains the polymer (iii). It is preferable that
When at least two of the center core and the inner shell contain the crosslinked rubber polymer (i), the crosslinked rubber polymer (i) contained in them has the same polymer physical properties. Alternatively, it may have different polymer properties. Further, when the remaining part of the center core and the inner shell is two or more, the polymer (iii) contained in them may have the same polymer properties or different polymer properties. It may be a thing.
前記の架橋ゴム重合体(i)は、アクリル酸アルキルエステル単量体に由来する構造単位および/または共役ジエン系単量体に由来する構造単位と、架橋性単量体に由来する構造単位とを少なくとも有するものであることが好ましい。
アクリル酸アルキルエステル単量体は、炭素原子数1~8のアルキル基を有するアクリル酸アルキルエステル単量体であることが好ましい。アクリル酸アルキルエステル単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-エチルヘキシルなどを挙げることができる。これらは1種単独でまたは2種以上を組み合わせて用いてもよい。
共役ジエン系単量体としては、ブタジエンおよびイソプレンを挙げることができる。これらは1種単独でまたは2種以上を組み合わせて用いてもよい。
架橋ゴム重合体(i)におけるアクリル酸アルキルエステル単量体に由来する構造単位および/または共役ジエン系単量体に由来する構造単位の量は、架橋ゴム重合体(i)の全質量に対して、好ましくは60質量%以上、より好ましくは70~99質量%、さらに好ましくは80~98質量%である。 The crosslinked rubber polymer (i) includes a structural unit derived from an alkyl acrylate monomer and / or a structural unit derived from a conjugated diene monomer, and a structural unit derived from a crosslinkable monomer. It is preferable that it has at least.
The acrylic acid alkyl ester monomer is preferably an acrylic acid alkyl ester monomer having an alkyl group having 1 to 8 carbon atoms. Examples of the alkyl acrylate monomer include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like. You may use these individually by 1 type or in combination of 2 or more types.
Examples of the conjugated diene monomer include butadiene and isoprene. You may use these individually by 1 type or in combination of 2 or more types.
The amount of the structural unit derived from the alkyl acrylate monomer and / or the structural unit derived from the conjugated diene monomer in the crosslinked rubber polymer (i) is based on the total mass of the crosslinked rubber polymer (i). The amount is preferably 60% by mass or more, more preferably 70 to 99% by mass, and still more preferably 80 to 98% by mass.
アクリル酸アルキルエステル単量体は、炭素原子数1~8のアルキル基を有するアクリル酸アルキルエステル単量体であることが好ましい。アクリル酸アルキルエステル単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-エチルヘキシルなどを挙げることができる。これらは1種単独でまたは2種以上を組み合わせて用いてもよい。
共役ジエン系単量体としては、ブタジエンおよびイソプレンを挙げることができる。これらは1種単独でまたは2種以上を組み合わせて用いてもよい。
架橋ゴム重合体(i)におけるアクリル酸アルキルエステル単量体に由来する構造単位および/または共役ジエン系単量体に由来する構造単位の量は、架橋ゴム重合体(i)の全質量に対して、好ましくは60質量%以上、より好ましくは70~99質量%、さらに好ましくは80~98質量%である。 The crosslinked rubber polymer (i) includes a structural unit derived from an alkyl acrylate monomer and / or a structural unit derived from a conjugated diene monomer, and a structural unit derived from a crosslinkable monomer. It is preferable that it has at least.
The acrylic acid alkyl ester monomer is preferably an acrylic acid alkyl ester monomer having an alkyl group having 1 to 8 carbon atoms. Examples of the alkyl acrylate monomer include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like. You may use these individually by 1 type or in combination of 2 or more types.
Examples of the conjugated diene monomer include butadiene and isoprene. You may use these individually by 1 type or in combination of 2 or more types.
The amount of the structural unit derived from the alkyl acrylate monomer and / or the structural unit derived from the conjugated diene monomer in the crosslinked rubber polymer (i) is based on the total mass of the crosslinked rubber polymer (i). The amount is preferably 60% by mass or more, more preferably 70 to 99% by mass, and still more preferably 80 to 98% by mass.
架橋性単量体は、1つの単量体中に2つ以上の重合性官能基を有するものである。架橋性単量体としては、例えば、アクリル酸アリル、メタクリル酸アリル、1-アクリロキシ-3-ブテン、1-メタクリロキシ-3-ブテン、1,2-ジアクリロキシ-エタン、1,2-ジメタクリロキシ-エタン、1,2-ジアクリロキシ-プロパン、1,3-ジアクリロキシ-プロパン、1,4-ジアクリロキシ-ブタン、1,3-ジメタクリロキシ-プロパン、1,2-ジメタクリロキシ-プロパン、1,4-ジメタクリロキシ-ブタン、トリエチレングリコールジメタクリレート、ヘキサンジオールジメタクリレート、トリエチレングリコールジアクリレート、ヘキサンジオールジアクリレート、ジビニルベンゼン、1,4-ペンタジエン、トリアリルイソシアネートなどを挙げることができる。これらは1種単独でまたは2種以上を組み合わせて用いてもよい。
The crosslinkable monomer has two or more polymerizable functional groups in one monomer. Examples of the crosslinkable monomer include allyl acrylate, allyl methacrylate, 1-acryloxy-3-butene, 1-methacryloxy-3-butene, 1,2-diacryloxy-ethane, 1,2-dimethacryloxy-ethane, 1,2-diacryloxy-propane, 1,3-diacryloxy-propane, 1,4-diacryloxy-butane, 1,3-dimethacryloxy-propane, 1,2-dimethacryloxy-propane, 1,4-dimethacryloxy-butane, triethylene Examples include glycol dimethacrylate, hexanediol dimethacrylate, triethylene glycol diacrylate, hexanediol diacrylate, divinylbenzene, 1,4-pentadiene, triallyl isocyanate, and the like. You may use these individually by 1 type or in combination of 2 or more types.
架橋ゴム重合体(i)における架橋性単量体に由来する構造単位の量は、架橋ゴム重合体(i)の全質量に対して、好ましくは0.05~10質量%、より好ましくは0.5~7質量%、さらに好ましくは1~5質量%である。
The amount of the structural unit derived from the crosslinkable monomer in the crosslinked rubber polymer (i) is preferably 0.05 to 10% by mass, more preferably 0, relative to the total mass of the crosslinked rubber polymer (i). 5-7% by mass, more preferably 1-5% by mass.
架橋ゴム重合体(i)は、その他のビニル系単量体に由来する構造単位を有してもよい。架橋ゴム重合体(i)におけるその他のビニル系単量体は前記のアクリル酸アルキルエステル単量体および架橋性単量体に共重合可能なものであれば特に限定されない。架橋ゴム重合体(i)におけるその他のビニル系単量体の例としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシルなどのメタクリル酸エステル単量体;スチレン、p-メチルスチレン、o-メチルスチレンなどの芳香族ビニル単量体;およびN-プロピルマレイミド、N-シクロヘキシルマレイミド、N-o-クロロフェニルマレイミドなどのマレイミド系単量体;を挙げることができる。これらは1種単独でまたは2種以上を組み合わせて用いてもよい。
架橋ゴム重合体(i)におけるその他のビニル系単量体に由来する構造単位の量は、アクリル酸アルキルエステル単量体に由来する構造単位、共役ジエン系単量体に由来する構造単位および架橋性単量体に由来する構造単位の合計量に対する残部である。 The crosslinked rubber polymer (i) may have a structural unit derived from another vinyl monomer. The other vinyl monomer in the crosslinked rubber polymer (i) is not particularly limited as long as it is copolymerizable with the above-mentioned alkyl acrylate monomer and the crosslinkable monomer. Examples of other vinyl monomers in the crosslinked rubber polymer (i) include methacrylate monomers such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate; styrene, p-methylstyrene. And aromatic vinyl monomers such as o-methylstyrene; and maleimide monomers such as N-propylmaleimide, N-cyclohexylmaleimide and N-o-chlorophenylmaleimide. You may use these individually by 1 type or in combination of 2 or more types.
The amount of structural units derived from other vinyl monomers in the crosslinked rubber polymer (i) includes structural units derived from alkyl acrylate monomers, structural units derived from conjugated diene monomers, and cross-linking. It is the remainder with respect to the total amount of the structural unit derived from the sex monomer.
架橋ゴム重合体(i)におけるその他のビニル系単量体に由来する構造単位の量は、アクリル酸アルキルエステル単量体に由来する構造単位、共役ジエン系単量体に由来する構造単位および架橋性単量体に由来する構造単位の合計量に対する残部である。 The crosslinked rubber polymer (i) may have a structural unit derived from another vinyl monomer. The other vinyl monomer in the crosslinked rubber polymer (i) is not particularly limited as long as it is copolymerizable with the above-mentioned alkyl acrylate monomer and the crosslinkable monomer. Examples of other vinyl monomers in the crosslinked rubber polymer (i) include methacrylate monomers such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate; styrene, p-methylstyrene. And aromatic vinyl monomers such as o-methylstyrene; and maleimide monomers such as N-propylmaleimide, N-cyclohexylmaleimide and N-o-chlorophenylmaleimide. You may use these individually by 1 type or in combination of 2 or more types.
The amount of structural units derived from other vinyl monomers in the crosslinked rubber polymer (i) includes structural units derived from alkyl acrylate monomers, structural units derived from conjugated diene monomers, and cross-linking. It is the remainder with respect to the total amount of the structural unit derived from the sex monomer.
前記の重合体(iii)は、架橋ゴム重合体(i)以外のものであれば特に制限されないが、メタクリル酸アルキルエステル単量体に由来する構造単位を有するものであることが好ましい。重合体(iii)は、その他の構造単位として、架橋性単量体に由来する構造単位および/またはその他のビニル系単量体に由来する構造単位を含有してもよい。
重合体(iii)に用いられるメタクリル酸アルキルエステル単量体は、炭素原子数1~8のアルキル基を有するメタクリル酸アルキルエステル単量体であることが好ましい。メタクリル酸アルキルエステル単量体としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチルなどを挙げることができる。これらは1種単独でまたは2種以上を組み合わせて用いてもよい。これらのうち、メタクリル酸メチルが好ましい。
重合体(iii)におけるメタクリル酸アルキルエステル単量体に由来する構造単位の量は、好ましくは80~100質量%、より好ましくは85~99質量%、さらに好ましくは90~98質量%である。 The polymer (iii) is not particularly limited as long as it is other than the crosslinked rubber polymer (i), but preferably has a structural unit derived from a methacrylic acid alkyl ester monomer. The polymer (iii) may contain, as other structural units, structural units derived from a crosslinkable monomer and / or structural units derived from other vinyl monomers.
The methacrylic acid alkyl ester monomer used in the polymer (iii) is preferably a methacrylic acid alkyl ester monomer having an alkyl group having 1 to 8 carbon atoms. Examples of the methacrylic acid alkyl ester monomer include methyl methacrylate, ethyl methacrylate, butyl methacrylate and the like. You may use these individually by 1 type or in combination of 2 or more types. Of these, methyl methacrylate is preferred.
The amount of the structural unit derived from the methacrylic acid alkyl ester monomer in the polymer (iii) is preferably 80 to 100% by mass, more preferably 85 to 99% by mass, and further preferably 90 to 98% by mass.
重合体(iii)に用いられるメタクリル酸アルキルエステル単量体は、炭素原子数1~8のアルキル基を有するメタクリル酸アルキルエステル単量体であることが好ましい。メタクリル酸アルキルエステル単量体としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチルなどを挙げることができる。これらは1種単独でまたは2種以上を組み合わせて用いてもよい。これらのうち、メタクリル酸メチルが好ましい。
重合体(iii)におけるメタクリル酸アルキルエステル単量体に由来する構造単位の量は、好ましくは80~100質量%、より好ましくは85~99質量%、さらに好ましくは90~98質量%である。 The polymer (iii) is not particularly limited as long as it is other than the crosslinked rubber polymer (i), but preferably has a structural unit derived from a methacrylic acid alkyl ester monomer. The polymer (iii) may contain, as other structural units, structural units derived from a crosslinkable monomer and / or structural units derived from other vinyl monomers.
The methacrylic acid alkyl ester monomer used in the polymer (iii) is preferably a methacrylic acid alkyl ester monomer having an alkyl group having 1 to 8 carbon atoms. Examples of the methacrylic acid alkyl ester monomer include methyl methacrylate, ethyl methacrylate, butyl methacrylate and the like. You may use these individually by 1 type or in combination of 2 or more types. Of these, methyl methacrylate is preferred.
The amount of the structural unit derived from the methacrylic acid alkyl ester monomer in the polymer (iii) is preferably 80 to 100% by mass, more preferably 85 to 99% by mass, and further preferably 90 to 98% by mass.
重合体(iii)に用いられる架橋性単量体としては、前述の架橋ゴム重合体(i)において例示した架橋性単量体と同じものを挙げることができる。重合体(iii)における架橋性単量体に由来する構造単位の量は、好ましくは0~5質量%、より好ましくは0.01~3質量%、さらに好ましくは0.02~2質量%である。
Examples of the crosslinkable monomer used in the polymer (iii) include the same crosslinkable monomers exemplified in the above-mentioned crosslinked rubber polymer (i). The amount of the structural unit derived from the crosslinkable monomer in the polymer (iii) is preferably 0 to 5% by mass, more preferably 0.01 to 3% by mass, and further preferably 0.02 to 2% by mass. is there.
重合体(iii)におけるその他のビニル系単量体は、前記のメタクリル酸アルキルエステル単量体および架橋性単量体と共重合可能なものであれば特に限定されない。重合体(iii)におけるその他のビニル系単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ヘキシル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸2-エチルヘキシルなどのアクリル酸エステル単量体;酢酸ビニル;スチレン、p-メチルスチレン、m-メチルスチレン、o-メチルスチレン、α-メチルスチレン、ビニルナフタレンなどの芳香族ビニル単量体;アクリロニトリル、メタクリロニトリルなどのニトリル類;アクリル酸、メタクリル酸、クロトン酸などのα,β-不飽和カルボン酸;およびN-エチルマレイミド、N-シクロヘキシルマレイミドなどのマレイミド系単量体を挙げることができる。これらは1種単独でまたは2種以上を組み合わせて用いてもよい。
重合体(iii)におけるその他のビニル系単量体に由来する構造単位の量は、メタクリル酸アルキルエステル単量体に由来する構造単位、および架橋性単量体に由来する構造単位の合計量に対する残部である。 The other vinyl monomer in the polymer (iii) is not particularly limited as long as it can be copolymerized with the above-mentioned methacrylic acid alkyl ester monomer and the crosslinkable monomer. Other vinyl monomers in the polymer (iii) include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, acrylic acid Acrylic acid ester monomers such as 2-ethylhexyl; vinyl acetate; aromatic vinyl monomers such as styrene, p-methylstyrene, m-methylstyrene, o-methylstyrene, α-methylstyrene, vinylnaphthalene; acrylonitrile; Nitriles such as methacrylonitrile; α, β-unsaturated carboxylic acids such as acrylic acid, methacrylic acid and crotonic acid; and maleimide monomers such as N-ethylmaleimide and N-cyclohexylmaleimide. You may use these individually by 1 type or in combination of 2 or more types.
The amount of the structural unit derived from the other vinyl monomer in the polymer (iii) is based on the total amount of the structural unit derived from the alkyl methacrylate monomer and the structural unit derived from the crosslinkable monomer. The rest.
重合体(iii)におけるその他のビニル系単量体に由来する構造単位の量は、メタクリル酸アルキルエステル単量体に由来する構造単位、および架橋性単量体に由来する構造単位の合計量に対する残部である。 The other vinyl monomer in the polymer (iii) is not particularly limited as long as it can be copolymerized with the above-mentioned methacrylic acid alkyl ester monomer and the crosslinkable monomer. Other vinyl monomers in the polymer (iii) include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, acrylic acid Acrylic acid ester monomers such as 2-ethylhexyl; vinyl acetate; aromatic vinyl monomers such as styrene, p-methylstyrene, m-methylstyrene, o-methylstyrene, α-methylstyrene, vinylnaphthalene; acrylonitrile; Nitriles such as methacrylonitrile; α, β-unsaturated carboxylic acids such as acrylic acid, methacrylic acid and crotonic acid; and maleimide monomers such as N-ethylmaleimide and N-cyclohexylmaleimide. You may use these individually by 1 type or in combination of 2 or more types.
The amount of the structural unit derived from the other vinyl monomer in the polymer (iii) is based on the total amount of the structural unit derived from the alkyl methacrylate monomer and the structural unit derived from the crosslinkable monomer. The rest.
アクリル系多層重合体粒子は、アウターシェルが、熱可塑性重合体(ii)を含有して成るものであることが好ましい。
The acrylic multilayer polymer particles preferably have an outer shell containing a thermoplastic polymer (ii).
前記の熱可塑性重合体(ii)は、メタクリル酸アルキルエステル単量体に由来する構造単位を有するものである。熱可塑性重合体(ii)は、その他のビニル系単量体に由来する構造単位を有してもよい。
The thermoplastic polymer (ii) has a structural unit derived from a methacrylic acid alkyl ester monomer. The thermoplastic polymer (ii) may have a structural unit derived from another vinyl monomer.
熱可塑性重合体(ii)におけるメタクリル酸アルキルエステル単量体は、炭素原子数1~8のアルキル基を有するメタクリル酸アルキルエステル単量体であることが好ましい。
メタクリル酸アルキルエステル単量体としては、メタクリル酸メチルおよびメタクリル酸ブチルなどを挙げることができる。これらは1種単独でまたは2種以上を組み合わせて用いてもよい。これらのうちメタクリル酸メチルが好ましい。
熱可塑性重合体(ii)におけるメタクリル酸アルキルエステル単量体に由来する構造単位の量は、好ましくは80質量%以上、より好ましくは85質量%以上、さらに好ましくは90質量%以上である。 The methacrylic acid alkyl ester monomer in the thermoplastic polymer (ii) is preferably a methacrylic acid alkyl ester monomer having an alkyl group having 1 to 8 carbon atoms.
Examples of the methacrylic acid alkyl ester monomer include methyl methacrylate and butyl methacrylate. You may use these individually by 1 type or in combination of 2 or more types. Of these, methyl methacrylate is preferred.
The amount of the structural unit derived from the methacrylic acid alkyl ester monomer in the thermoplastic polymer (ii) is preferably 80% by mass or more, more preferably 85% by mass or more, and further preferably 90% by mass or more.
メタクリル酸アルキルエステル単量体としては、メタクリル酸メチルおよびメタクリル酸ブチルなどを挙げることができる。これらは1種単独でまたは2種以上を組み合わせて用いてもよい。これらのうちメタクリル酸メチルが好ましい。
熱可塑性重合体(ii)におけるメタクリル酸アルキルエステル単量体に由来する構造単位の量は、好ましくは80質量%以上、より好ましくは85質量%以上、さらに好ましくは90質量%以上である。 The methacrylic acid alkyl ester monomer in the thermoplastic polymer (ii) is preferably a methacrylic acid alkyl ester monomer having an alkyl group having 1 to 8 carbon atoms.
Examples of the methacrylic acid alkyl ester monomer include methyl methacrylate and butyl methacrylate. You may use these individually by 1 type or in combination of 2 or more types. Of these, methyl methacrylate is preferred.
The amount of the structural unit derived from the methacrylic acid alkyl ester monomer in the thermoplastic polymer (ii) is preferably 80% by mass or more, more preferably 85% by mass or more, and further preferably 90% by mass or more.
熱可塑性重合体(ii)におけるその他のビニル系単量体としては、前述の重合体(iii)において例示したその他のビニル系単量体と同じものを挙げることができる。
熱可塑性重合体(ii)におけるその他のビニル系単量体に由来する構造単位の量は、好ましくは20質量%以下、より好ましくは15質量%以下、さらに好ましくは10質量%以下である。 Examples of the other vinyl monomers in the thermoplastic polymer (ii) include the same vinyl monomers as those exemplified in the polymer (iii).
The amount of the structural unit derived from the other vinyl monomer in the thermoplastic polymer (ii) is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less.
熱可塑性重合体(ii)におけるその他のビニル系単量体に由来する構造単位の量は、好ましくは20質量%以下、より好ましくは15質量%以下、さらに好ましくは10質量%以下である。 Examples of the other vinyl monomers in the thermoplastic polymer (ii) include the same vinyl monomers as those exemplified in the polymer (iii).
The amount of the structural unit derived from the other vinyl monomer in the thermoplastic polymer (ii) is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less.
アクリル系多層重合体粒子のコア部とシェル部の構成態様としては、例えば、センターコアが架橋ゴム重合体(i)で、アウターシェルが熱可塑性重合体(ii)である2層重合体粒子;センターコアが重合体(iii)で、インナーシェルが架橋ゴム重合体(i)で、アウターシェルが熱可塑性重合体(ii)である3層重合体粒子;センターコアがある1種の架橋ゴム重合体(i)で、インナーシェルが別の1種の架橋ゴム重合体(i)で、アウターシェルが熱可塑性重合体(ii)である3層重合体粒子;センターコアが架橋ゴム重合体(i)で、インナーシェルが重合体(iii)で、アウターシェルが熱可塑性重合体(ii)である3層重合体粒子;センターコアが架橋ゴム重合体(i)で、内側インナーシェルが重合体(iii)で、外側インナーシェルが架橋ゴム重合体(i)で、アウターシェルが熱可塑性重合体(ii)である4層重合体粒子;などを挙げることができる。
これらの中で、センターコアが重合体(iii)で、インナーシェルが架橋ゴム重合体(i)で、アウターシェルが熱可塑性重合体(ii)である3層重合体粒子が好ましい。
係る3層重合体粒子は、センターコアの重合体(iii)が、メタクリル酸メチル80~99.95質量%、炭素原子数1~8のアルキル基を有するアクリル酸アルキルエステル単量体0~19.95質量%および架橋性単量体0.05~2質量%の共重合体であり、インナーシェルの架橋ゴム重合体(i)が、炭素原子数1~8のアルキル基を有するアクリル酸アルキルエステル単量体80~98質量%、芳香族ビニル単量体1~19質量%および架橋性単量体1~5質量%の共重合体であり、且つアウターシェルの熱可塑性重合体(ii)がメタクリル酸メチル80~100質量%および炭素原子数1~8のアルキル基を有するアクリル酸アルキルエステル単量体0~20質量%の共重合体であることがより好ましい。 Examples of the configuration of the core part and the shell part of the acrylic multilayer polymer particle include, for example, a two-layer polymer particle in which the center core is a crosslinked rubber polymer (i) and the outer shell is a thermoplastic polymer (ii); Three-layer polymer particles in which the center core is the polymer (iii), the inner shell is the crosslinked rubber polymer (i), and the outer shell is the thermoplastic polymer (ii); A three-layer polymer particle in which the inner shell is another type of crosslinked rubber polymer (i) and the outer shell is a thermoplastic polymer (ii); the center core is a crosslinked rubber polymer (i ) In which the inner shell is a polymer (iii) and the outer shell is a thermoplastic polymer (ii); three-layer polymer particles; the center core is a crosslinked rubber polymer (i), and the inner inner shell is a polymer ( In iii), the outer inner shell is a crosslinked rubber polymer (i) and the outer shell is heatable. And 4-layer polymer particles that are a plastic polymer (ii).
Of these, three-layer polymer particles in which the center core is the polymer (iii), the inner shell is the crosslinked rubber polymer (i), and the outer shell is the thermoplastic polymer (ii) are preferable.
In the three-layer polymer particles, the center core polymer (iii) is an acrylic acid alkyl ester monomer having an alkyl group of 80 to 99.95% by mass of methyl methacrylate and 1 to 8 carbon atoms. A copolymer of 95% by mass and 0.05-2% by mass of a crosslinkable monomer, wherein the crosslinked rubber polymer (i) of the inner shell has an alkyl group having 1 to 8 carbon atoms. A thermoplastic polymer of an outer shell, which is a copolymer of 80 to 98% by weight of an ester monomer, 1 to 19% by weight of an aromatic vinyl monomer and 1 to 5% by weight of a crosslinkable monomer (ii) Is more preferably a copolymer of 80 to 100% by weight of methyl methacrylate and 0 to 20% by weight of an acrylic acid alkyl ester monomer having an alkyl group having 1 to 8 carbon atoms.
これらの中で、センターコアが重合体(iii)で、インナーシェルが架橋ゴム重合体(i)で、アウターシェルが熱可塑性重合体(ii)である3層重合体粒子が好ましい。
係る3層重合体粒子は、センターコアの重合体(iii)が、メタクリル酸メチル80~99.95質量%、炭素原子数1~8のアルキル基を有するアクリル酸アルキルエステル単量体0~19.95質量%および架橋性単量体0.05~2質量%の共重合体であり、インナーシェルの架橋ゴム重合体(i)が、炭素原子数1~8のアルキル基を有するアクリル酸アルキルエステル単量体80~98質量%、芳香族ビニル単量体1~19質量%および架橋性単量体1~5質量%の共重合体であり、且つアウターシェルの熱可塑性重合体(ii)がメタクリル酸メチル80~100質量%および炭素原子数1~8のアルキル基を有するアクリル酸アルキルエステル単量体0~20質量%の共重合体であることがより好ましい。 Examples of the configuration of the core part and the shell part of the acrylic multilayer polymer particle include, for example, a two-layer polymer particle in which the center core is a crosslinked rubber polymer (i) and the outer shell is a thermoplastic polymer (ii); Three-layer polymer particles in which the center core is the polymer (iii), the inner shell is the crosslinked rubber polymer (i), and the outer shell is the thermoplastic polymer (ii); A three-layer polymer particle in which the inner shell is another type of crosslinked rubber polymer (i) and the outer shell is a thermoplastic polymer (ii); the center core is a crosslinked rubber polymer (i ) In which the inner shell is a polymer (iii) and the outer shell is a thermoplastic polymer (ii); three-layer polymer particles; the center core is a crosslinked rubber polymer (i), and the inner inner shell is a polymer ( In iii), the outer inner shell is a crosslinked rubber polymer (i) and the outer shell is heatable. And 4-layer polymer particles that are a plastic polymer (ii).
Of these, three-layer polymer particles in which the center core is the polymer (iii), the inner shell is the crosslinked rubber polymer (i), and the outer shell is the thermoplastic polymer (ii) are preferable.
In the three-layer polymer particles, the center core polymer (iii) is an acrylic acid alkyl ester monomer having an alkyl group of 80 to 99.95% by mass of methyl methacrylate and 1 to 8 carbon atoms. A copolymer of 95% by mass and 0.05-2% by mass of a crosslinkable monomer, wherein the crosslinked rubber polymer (i) of the inner shell has an alkyl group having 1 to 8 carbon atoms. A thermoplastic polymer of an outer shell, which is a copolymer of 80 to 98% by weight of an ester monomer, 1 to 19% by weight of an aromatic vinyl monomer and 1 to 5% by weight of a crosslinkable monomer (ii) Is more preferably a copolymer of 80 to 100% by weight of methyl methacrylate and 0 to 20% by weight of an acrylic acid alkyl ester monomer having an alkyl group having 1 to 8 carbon atoms.
アクリル系多層重合体粒子の透明性の観点から、隣り合う層の屈折率の差が、好ましくは0.005未満、より好ましくは0.004未満、さらに好ましくは0.003未満になるように各層に含有される重合体を選択することが好ましい。
From the viewpoint of the transparency of the acrylic multilayer polymer particles, the difference in refractive index between adjacent layers is preferably less than 0.005, more preferably less than 0.004, and even more preferably less than 0.003. It is preferable to select a polymer contained in
アクリル系多層重合体粒子におけるアウターシェル部の割合は、好ましくは10~60質量%、より好ましくは15~50質量%、さらに好ましくは20~40質量%である。コア部において、架橋ゴム重合体(i)を含有してなる層が占める割合は、好ましくは20~100質量%、より好ましくは30~70質量%である。
The ratio of the outer shell part in the acrylic multilayer polymer particles is preferably 10 to 60% by mass, more preferably 15 to 50% by mass, and further preferably 20 to 40% by mass. The ratio of the layer containing the crosslinked rubber polymer (i) in the core is preferably 20 to 100% by mass, more preferably 30 to 70% by mass.
本発明に用いられる架橋ゴム粒子の体積基準平均粒子径は、好ましくは0.02~1μm、より好ましくは0.05~0.5μm、さらに好ましくは0.1~0.3μmである。
このような体積基準平均粒子径を有する架橋ゴム粒子成分を用いると、成形品の外観上の欠点を著しく低減できる。なお、本明細書における体積基準平均粒子径は、光散乱光法によって測定される粒径分布データに基いて算出される値である。 The volume-based average particle diameter of the crosslinked rubber particles used in the present invention is preferably 0.02 to 1 μm, more preferably 0.05 to 0.5 μm, and still more preferably 0.1 to 0.3 μm.
When a crosslinked rubber particle component having such a volume-based average particle size is used, defects in the appearance of the molded product can be significantly reduced. In addition, the volume reference average particle diameter in this specification is a value calculated based on the particle size distribution data measured by the light scattering light method.
このような体積基準平均粒子径を有する架橋ゴム粒子成分を用いると、成形品の外観上の欠点を著しく低減できる。なお、本明細書における体積基準平均粒子径は、光散乱光法によって測定される粒径分布データに基いて算出される値である。 The volume-based average particle diameter of the crosslinked rubber particles used in the present invention is preferably 0.02 to 1 μm, more preferably 0.05 to 0.5 μm, and still more preferably 0.1 to 0.3 μm.
When a crosslinked rubber particle component having such a volume-based average particle size is used, defects in the appearance of the molded product can be significantly reduced. In addition, the volume reference average particle diameter in this specification is a value calculated based on the particle size distribution data measured by the light scattering light method.
架橋ゴム粒子は、どのような製造方法によって得られるものであってもよい。粒子径制御、多層構造の製造しやすさなどの観点から、乳化重合法、またはシード乳化重合法が好適である。乳化重合法は、所定の単量体を乳化させて重合することによって重合体粒子を含むエマルジョンを製造できる方法である。シード乳化重合法は、所定の単量体を乳化させ重合することによってシード粒子を得、該シード粒子の存在下に別の所定の単量体を乳化させ重合することによって、シード粒子とそれを略同心円状に被覆するシェル重合体とを有するコアシェル重合体粒子を含むエマルジョンを製造できる方法である。コアシェル重合体粒子の存在下にさらに別の所定の単量体を乳化させ重合することを所望の回数で繰り返すによって、シード粒子とそれを略同心円状に被覆する複数のシェル重合体とを有するコアシェル多層重合体粒子を含むエマルジョンを製造できる。
The crosslinked rubber particles may be obtained by any manufacturing method. From the viewpoints of particle size control, ease of production of the multilayer structure, the emulsion polymerization method or the seed emulsion polymerization method is preferred. The emulsion polymerization method is a method capable of producing an emulsion containing polymer particles by emulsifying a predetermined monomer and polymerizing it. In the seed emulsion polymerization method, seed particles are obtained by emulsifying and polymerizing a predetermined monomer, and by emulsifying and polymerizing another predetermined monomer in the presence of the seed particles, This is a method capable of producing an emulsion containing core-shell polymer particles having a shell polymer coated in a substantially concentric shape. A core-shell having seed particles and a plurality of shell polymers covering them substantially concentrically by repeating emulsification and polymerization of another predetermined monomer in the presence of the core-shell polymer particles a desired number of times Emulsions containing multi-layer polymer particles can be produced.
乳化重合法に用いられる乳化剤としては、例えば、アニオン系乳化剤であるジオクチルスルホコハク酸ナトリウム、ジラウリルスルホコハク酸ナトリウムなどのジアルキルスルホコハク酸塩、ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩、ドデシル硫酸ナトリウムなどのアルキル硫酸塩; ノニオン系乳化剤であるポリオキシエチレンアルキルエーテル、ポリオキシエチレンノニルフェニルエーテルなど; ノニオン・アニオン系乳化剤であるポリオキシエチレンノニルフェニルエーテル硫酸ナトリウムなどのポリオキシエチレンノニルフェニルエーテル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸ナトリウムなどのポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレントリデシルエーテル酢酸ナトリウムなどのアルキルエーテルカルボン酸塩;を挙げることができる。これらは1種単独でまたは2種以上を組み合わせて用いてもよい。なお、ノニオン系乳化剤およびノニオン・アニオン系乳化剤の例示化合物におけるエチレンオキシド単位の平均繰返し単位数は、乳化剤の発泡性が極端に大きくならないようにするために、好ましくは30以下、より好ましくは20以下、さらに好ましくは10以下である。
Examples of the emulsifier used in the emulsion polymerization method include dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate and sodium dilauryl sulfosuccinate which are anionic emulsifiers, alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, sodium dodecyl sulfate, and the like. Alkyloxysulfates; polyoxyethylene alkyl ethers and polyoxyethylene nonylphenyl ethers that are nonionic emulsifiers; polyoxyethylene nonylphenyl ether sulfates such as sodium polyoxyethylene nonylphenyl ether sulfate that is a nonionic and anionic emulsifier, Polyoxyethylene alkyl ether sulfate such as sodium polyoxyethylene alkyl ether sulfate, polyoxyethylene tridecyl acetate Alkyl ether carboxylates, such as Le sodium acetate; and the like. You may use these individually by 1 type or in combination of 2 or more types. In addition, the average number of repeating units of the ethylene oxide unit in the exemplary compounds of the nonionic emulsifier and the nonionic anionic emulsifier is preferably 30 or less, more preferably 20 or less, in order to prevent the foaming property of the emulsifier from becoming extremely large. More preferably, it is 10 or less.
乳化重合に用いられる重合開始剤は特に限定されない。例えば、過硫酸カリウム、過硫酸アンモニウムなどの過硫酸塩系開始剤;パースルホキシレート/有機過酸化物、過硫酸塩/亜硫酸塩などのレドックス系開始剤を挙げることができる。
The polymerization initiator used for emulsion polymerization is not particularly limited. Examples thereof include persulfate initiators such as potassium persulfate and ammonium persulfate; redox initiators such as persulfoxylate / organic peroxide and persulfate / sulfite.
乳化重合によって得られるエマルジョンからの架橋ゴム粒子の分離取得は、塩析凝固法、凍結凝固法、噴霧乾燥法などの公知の方法によって行うことができる。これらの中でも、架橋ゴム粒子に含まれる不純物を水洗により容易に除去できる点から、塩析凝固法および凍結凝固法が好ましく、凍結凝固法がより好ましい。凍結凝固法においては凝集剤を用いないので耐水性に優れたアクリル系樹脂フィルムが得られやすい。
なお、凝固工程前に、目開き50μm以下の金網などでエマルジョンを濾過すると、エマルジョンに混入した異物を除去することができるので、好ましい。 Separation and acquisition of the crosslinked rubber particles from the emulsion obtained by emulsion polymerization can be performed by a known method such as a salting out coagulation method, a freeze coagulation method, or a spray drying method. Among these, the salting out coagulation method and the freeze coagulation method are preferable, and the freeze coagulation method is more preferable because impurities contained in the crosslinked rubber particles can be easily removed by washing with water. In the freeze coagulation method, since an aggregating agent is not used, an acrylic resin film excellent in water resistance is easily obtained.
In addition, it is preferable to filter the emulsion with a wire mesh having an opening of 50 μm or less before the coagulation step because foreign matters mixed in the emulsion can be removed.
なお、凝固工程前に、目開き50μm以下の金網などでエマルジョンを濾過すると、エマルジョンに混入した異物を除去することができるので、好ましい。 Separation and acquisition of the crosslinked rubber particles from the emulsion obtained by emulsion polymerization can be performed by a known method such as a salting out coagulation method, a freeze coagulation method, or a spray drying method. Among these, the salting out coagulation method and the freeze coagulation method are preferable, and the freeze coagulation method is more preferable because impurities contained in the crosslinked rubber particles can be easily removed by washing with water. In the freeze coagulation method, since an aggregating agent is not used, an acrylic resin film excellent in water resistance is easily obtained.
In addition, it is preferable to filter the emulsion with a wire mesh having an opening of 50 μm or less before the coagulation step because foreign matters mixed in the emulsion can be removed.
架橋ゴム粒子とメタクリル樹脂〔A〕との溶融混練において架橋ゴム粒子を均一に分散させ易いという観点から、架橋ゴム粒子を1000μm以下の凝集体で取り出すことが好ましく、500μm以下の凝集体で取り出すことがより好ましい。なお、架橋ゴム粒子凝集体の形態は特に限定されず、例えば、シェル部で相互に融着した状態のペレット状でもよいし、パウダー状やグラニュー状でもよい。
From the viewpoint of easily dispersing the crosslinked rubber particles uniformly in the melt-kneading of the crosslinked rubber particles and the methacrylic resin [A], the crosslinked rubber particles are preferably taken out with an aggregate of 1000 μm or less, and taken out with an aggregate of 500 μm or less. Is more preferable. The form of the crosslinked rubber particle aggregate is not particularly limited. For example, the crosslinked rubber particle aggregate may be in the form of pellets fused to each other at the shell, or may be in the form of powder or granule.
本発明の実施形態に係るメタクリル樹脂組成物に含ませる架橋ゴム〔D〕の量は、メタクリル樹脂〔A〕100質量部に対して、好ましくは5~30質量部、より好ましくは10~25質量部、さらに好ましくは15~20質量部である。
The amount of the crosslinked rubber [D] contained in the methacrylic resin composition according to the embodiment of the present invention is preferably 5 to 30 parts by mass, more preferably 10 to 25 parts by mass with respect to 100 parts by mass of the methacrylic resin [A]. Part, more preferably 15 to 20 parts by weight.
本発明のメタクリル樹脂組成物には、架橋ゴム粒子をメタクリル樹脂組成物に含有させたときに、架橋ゴム粒子同士が膠着などで凝集せず、粒子ひとつひとつが均一に分散するようにするために、分散補助粒子を添加することができる。分散補助粒子としてはメタクリル系樹脂粒子などを挙げることができる。分散補助粒子は、架橋ゴム粒子の平均粒子径よりも小さい平均粒子径を有するものであることが好ましい。具体的に、分散補助粒子の体積基準平均粒子径は、好ましくは0.04~0.12μm、より好ましくは0.05~0.1μmである。
分散効果などの観点から、分散補助粒子の量は架橋ゴム粒子〔D〕に対する質量比で、好ましくは0/100~60/40、より好ましくは10/90~50/50、さらに好ましくは20/80~40/60である。 In the methacrylic resin composition of the present invention, when the crosslinked rubber particles are contained in the methacrylic resin composition, the crosslinked rubber particles are not aggregated due to sticking or the like, so that each particle is uniformly dispersed. Dispersion aid particles can be added. Examples of the dispersion auxiliary particles include methacrylic resin particles. The dispersion auxiliary particles preferably have an average particle size smaller than the average particle size of the crosslinked rubber particles. Specifically, the volume-based average particle diameter of the dispersion auxiliary particles is preferably 0.04 to 0.12 μm, more preferably 0.05 to 0.1 μm.
From the viewpoint of dispersion effect and the like, the amount of the dispersion assisting particle is a mass ratio with respect to the crosslinked rubber particle [D], preferably 0/100 to 60/40, more preferably 10/90 to 50/50, further preferably 20 /. 80 to 40/60.
分散効果などの観点から、分散補助粒子の量は架橋ゴム粒子〔D〕に対する質量比で、好ましくは0/100~60/40、より好ましくは10/90~50/50、さらに好ましくは20/80~40/60である。 In the methacrylic resin composition of the present invention, when the crosslinked rubber particles are contained in the methacrylic resin composition, the crosslinked rubber particles are not aggregated due to sticking or the like, so that each particle is uniformly dispersed. Dispersion aid particles can be added. Examples of the dispersion auxiliary particles include methacrylic resin particles. The dispersion auxiliary particles preferably have an average particle size smaller than the average particle size of the crosslinked rubber particles. Specifically, the volume-based average particle diameter of the dispersion auxiliary particles is preferably 0.04 to 0.12 μm, more preferably 0.05 to 0.1 μm.
From the viewpoint of dispersion effect and the like, the amount of the dispersion assisting particle is a mass ratio with respect to the crosslinked rubber particle [D], preferably 0/100 to 60/40, more preferably 10/90 to 50/50, further preferably 20 /. 80 to 40/60.
〔ブロック共重合体〔E〕〕
本発明に用いられるブロック共重合体〔E〕は、例えば、重合体Aの分子鎖(重合体ブロックAということがある。)の末端に重合体Bの分子鎖(重合体ブロックBということがある。)の末端が繋がって全体として鎖状または放射状に結合したものである。
ブロック共重合体を構成する重合体ブロックは特に限定されない。例えば、ポリメタクリル酸メチルなどの重合体ブロックと、ポリアクリル酸エステルなどの重合体ブロックとを有して成るブロック共重合体は、メタクリル樹脂と芳香族低分子化合物との相溶性などが良好となることがある。
ブロック共重合体は、例えば、リビング重合を利用して重合体ブロックAの末端に重合開始点をつくり、この開始点からモノマーを重合させて重合体ブロックBを生成する方法〔i〕、重合体ブロックAと重合体ブロックBとをそれぞれ準備し、それらを付加や縮合反応させる方法〔ii〕などによって製造することができる。 [Block copolymer [E]]
The block copolymer [E] used in the present invention is, for example, the molecular chain of the polymer B (polymer block B) at the end of the molecular chain of the polymer A (sometimes referred to as polymer block A). ) Are joined together in a chain or radial form as a whole.
The polymer block constituting the block copolymer is not particularly limited. For example, a block copolymer comprising a polymer block such as polymethyl methacrylate and a polymer block such as polyacrylic acid ester has good compatibility between a methacrylic resin and an aromatic low-molecular compound. May be.
The block copolymer is, for example, a method in which a polymerization initiation point is created at the end of the polymer block A using living polymerization, and a monomer is polymerized from this initiation point to produce a polymer block B [i], polymer The block A and the polymer block B can be prepared, and can be produced by a method [ii] or the like of adding or condensing them.
本発明に用いられるブロック共重合体〔E〕は、例えば、重合体Aの分子鎖(重合体ブロックAということがある。)の末端に重合体Bの分子鎖(重合体ブロックBということがある。)の末端が繋がって全体として鎖状または放射状に結合したものである。
ブロック共重合体を構成する重合体ブロックは特に限定されない。例えば、ポリメタクリル酸メチルなどの重合体ブロックと、ポリアクリル酸エステルなどの重合体ブロックとを有して成るブロック共重合体は、メタクリル樹脂と芳香族低分子化合物との相溶性などが良好となることがある。
ブロック共重合体は、例えば、リビング重合を利用して重合体ブロックAの末端に重合開始点をつくり、この開始点からモノマーを重合させて重合体ブロックBを生成する方法〔i〕、重合体ブロックAと重合体ブロックBとをそれぞれ準備し、それらを付加や縮合反応させる方法〔ii〕などによって製造することができる。 [Block copolymer [E]]
The block copolymer [E] used in the present invention is, for example, the molecular chain of the polymer B (polymer block B) at the end of the molecular chain of the polymer A (sometimes referred to as polymer block A). ) Are joined together in a chain or radial form as a whole.
The polymer block constituting the block copolymer is not particularly limited. For example, a block copolymer comprising a polymer block such as polymethyl methacrylate and a polymer block such as polyacrylic acid ester has good compatibility between a methacrylic resin and an aromatic low-molecular compound. May be.
The block copolymer is, for example, a method in which a polymerization initiation point is created at the end of the polymer block A using living polymerization, and a monomer is polymerized from this initiation point to produce a polymer block B [i], polymer The block A and the polymer block B can be prepared, and can be produced by a method [ii] or the like of adding or condensing them.
本発明に用いられるブロック共重合体を構成する重合体ブロックの少なくとも1つが、メタクリル酸エステルに由来する構造単位を90質量%以上含有する重合体、スチレンに由来する構造単位とアクリロニトリルに由来する構造単位とを含有する重合体、スチレンに由来する構造単位と無水マレイン酸に由来する構造単位とを含有する重合体、スチレンに由来する構造単位と無水マレイン酸に由来する構造単位とメタクリル酸メチルに由来する構造単位とを含有する重合体、またはポリビニルブチラールから選ばれることが、メタクリル樹脂〔A〕との相容性の観点から好ましい。
At least one of the polymer blocks constituting the block copolymer used in the present invention is a polymer containing 90% by mass or more of a structural unit derived from a methacrylic ester, a structural unit derived from styrene, and a structure derived from acrylonitrile. A polymer containing a unit, a polymer containing a structural unit derived from styrene and a structural unit derived from maleic anhydride, a structural unit derived from styrene, a structural unit derived from maleic anhydride, and methyl methacrylate. From the viewpoint of compatibility with the methacrylic resin [A], a polymer containing a derived structural unit or polyvinyl butyral is preferably selected.
本発明の実施形態に係るメタクリル樹脂組成物に含ませるブロック共重合体〔E〕の量は、メタクリル樹脂〔A〕100質量部に対して、好ましくは0.1~30質量部、より好ましくは0.5~25質量部、さらに好ましくは1~20質量部である。
The amount of the block copolymer [E] contained in the methacrylic resin composition according to the embodiment of the present invention is preferably 0.1 to 30 parts by mass, more preferably 100 parts by mass of the methacrylic resin [A]. The amount is 0.5 to 25 parts by mass, more preferably 1 to 20 parts by mass.
〔グラフト共重合体〔F〕〕
本発明に用いられるグラフト共重合体〔F〕は、例えば、重合体Aの分子鎖(重合体主鎖ということがある。)の途中に重合体Bの分子鎖(グラフト側鎖ということがある。)の末端が繋がって、全体として分枝状に結合したものである。
グラフト共重合体を構成する主鎖およびグラフト側鎖は特に限定されない。例えば、ポリオレフィン、ポリカーボネート、アクリル系共重合体などからなる主鎖と、ポリスチレン、スチレン-アクリロニトリル共重合体、アクリル系共重合体などからなるグラフト側鎖とを有してなるグラフト共重合体は、メタクリル樹脂と芳香族低分子化合物との相溶性などが良好となることがある。
グラフト共重合体は、例えば、重合体Aの存在下に重合体Bとなるモノマーを重合させる連鎖移動法〔i〕、グラフト側鎖となる重合体Bの末端に重合性基が導入された高分子化合物と、重合体Aとなるモノマーとを共重合させる方法〔ii〕、主鎖となる重合体Aとグラフト側鎖となる重合体Bをそれぞれ準備し、それらを付加や縮合反応させる方法〔iii〕などによって製造することができる。 [Graft copolymer [F]]
The graft copolymer [F] used in the present invention may be, for example, a polymer B molecular chain (also referred to as a graft side chain) in the middle of the polymer A molecular chain (sometimes referred to as a polymer main chain). )) Are connected to each other, and are connected in a branched manner as a whole.
The main chain and graft side chain constituting the graft copolymer are not particularly limited. For example, a graft copolymer having a main chain composed of polyolefin, polycarbonate, acrylic copolymer, etc. and a graft side chain composed of polystyrene, styrene-acrylonitrile copolymer, acrylic copolymer, etc. The compatibility between the methacrylic resin and the aromatic low molecular weight compound may be improved.
For example, the graft copolymer has a chain transfer method [i] in which a monomer that becomes the polymer B is polymerized in the presence of the polymer A, and a polymer group introduced at the end of the polymer B that becomes the graft side chain. A method in which a molecular compound and a monomer to be a polymer A are copolymerized [ii], a polymer A to be a main chain and a polymer B to be a graft side chain are respectively prepared, and an addition or condensation reaction thereof is performed [ iii] and the like.
本発明に用いられるグラフト共重合体〔F〕は、例えば、重合体Aの分子鎖(重合体主鎖ということがある。)の途中に重合体Bの分子鎖(グラフト側鎖ということがある。)の末端が繋がって、全体として分枝状に結合したものである。
グラフト共重合体を構成する主鎖およびグラフト側鎖は特に限定されない。例えば、ポリオレフィン、ポリカーボネート、アクリル系共重合体などからなる主鎖と、ポリスチレン、スチレン-アクリロニトリル共重合体、アクリル系共重合体などからなるグラフト側鎖とを有してなるグラフト共重合体は、メタクリル樹脂と芳香族低分子化合物との相溶性などが良好となることがある。
グラフト共重合体は、例えば、重合体Aの存在下に重合体Bとなるモノマーを重合させる連鎖移動法〔i〕、グラフト側鎖となる重合体Bの末端に重合性基が導入された高分子化合物と、重合体Aとなるモノマーとを共重合させる方法〔ii〕、主鎖となる重合体Aとグラフト側鎖となる重合体Bをそれぞれ準備し、それらを付加や縮合反応させる方法〔iii〕などによって製造することができる。 [Graft copolymer [F]]
The graft copolymer [F] used in the present invention may be, for example, a polymer B molecular chain (also referred to as a graft side chain) in the middle of the polymer A molecular chain (sometimes referred to as a polymer main chain). )) Are connected to each other, and are connected in a branched manner as a whole.
The main chain and graft side chain constituting the graft copolymer are not particularly limited. For example, a graft copolymer having a main chain composed of polyolefin, polycarbonate, acrylic copolymer, etc. and a graft side chain composed of polystyrene, styrene-acrylonitrile copolymer, acrylic copolymer, etc. The compatibility between the methacrylic resin and the aromatic low molecular weight compound may be improved.
For example, the graft copolymer has a chain transfer method [i] in which a monomer that becomes the polymer B is polymerized in the presence of the polymer A, and a polymer group introduced at the end of the polymer B that becomes the graft side chain. A method in which a molecular compound and a monomer to be a polymer A are copolymerized [ii], a polymer A to be a main chain and a polymer B to be a graft side chain are respectively prepared, and an addition or condensation reaction thereof is performed [ iii] and the like.
本発明に用いられるグラフト共重合体を構成する主鎖または少なくとも一つのグラフト側鎖が、メタクリル酸エステルに由来する構造単位を90質量%以上含有する重合体、スチレンに由来する構造単位とアクリロニトリルに由来する構造単位とを含有する重合体、スチレンに由来する構造単位と無水マレイン酸に由来する構造単位とを含有する重合体、スチレンに由来する構造単位と無水マレイン酸に由来する構造単位とメタクリル酸メチルに由来する構造単位とを含有する重合体、ポリビニルブチラール、ポリカーボネートから選ばれることが、メタクリル樹脂〔A〕との相容性の観点から好ましい。
A polymer in which the main chain or at least one graft side chain constituting the graft copolymer used in the present invention contains 90% by mass or more of a structural unit derived from a methacrylic acid ester, a structural unit derived from styrene and acrylonitrile Polymers containing structural units derived from, polymers containing structural units derived from styrene and structural units derived from maleic anhydride, structural units derived from styrene, structural units derived from maleic anhydride and methacrylic It is preferable from the viewpoint of compatibility with the methacrylic resin [A] that it is selected from a polymer containing a structural unit derived from methyl acid, polyvinyl butyral, and polycarbonate.
本発明の実施形態に係るメタクリル樹脂組成物に含ませるグラフト共重合体〔F〕の量は、メタクリル樹脂〔A〕100質量部に対して、好ましくは0.1~30質量部、より好ましくは0.5~25質量部、さらに好ましくは1~20質量部である。
The amount of the graft copolymer [F] included in the methacrylic resin composition according to the embodiment of the present invention is preferably 0.1 to 30 parts by mass, more preferably 100 parts by mass of the methacrylic resin [A]. The amount is 0.5 to 25 parts by mass, more preferably 1 to 20 parts by mass.
〔ポリカーボネート樹脂〔G〕〕
本発明のメタクリル樹脂組成物に添加してもよいポリカーボネート樹脂〔G〕は特に限定されず、例えば、多官能ヒドロキシ化合物と炭酸エステル形成性化合物との反応によって得られる重合体を挙げることができる。本発明においては、メタクリル樹脂〔A〕との相溶性、得られるフィルムの透明性に優れるという観点から、芳香族ポリカーボネート樹脂が好ましい。 [Polycarbonate resin [G]]
The polycarbonate resin [G] that may be added to the methacrylic resin composition of the present invention is not particularly limited, and examples thereof include a polymer obtained by a reaction between a polyfunctional hydroxy compound and a carbonate ester-forming compound. In the present invention, an aromatic polycarbonate resin is preferred from the viewpoint of compatibility with the methacrylic resin [A] and excellent transparency of the resulting film.
本発明のメタクリル樹脂組成物に添加してもよいポリカーボネート樹脂〔G〕は特に限定されず、例えば、多官能ヒドロキシ化合物と炭酸エステル形成性化合物との反応によって得られる重合体を挙げることができる。本発明においては、メタクリル樹脂〔A〕との相溶性、得られるフィルムの透明性に優れるという観点から、芳香族ポリカーボネート樹脂が好ましい。 [Polycarbonate resin [G]]
The polycarbonate resin [G] that may be added to the methacrylic resin composition of the present invention is not particularly limited, and examples thereof include a polymer obtained by a reaction between a polyfunctional hydroxy compound and a carbonate ester-forming compound. In the present invention, an aromatic polycarbonate resin is preferred from the viewpoint of compatibility with the methacrylic resin [A] and excellent transparency of the resulting film.
本発明に用いるポリカーボネート樹脂〔G〕は、メタクリル樹脂〔A〕との相溶性、並びに得られるフィルムの透明性、表面平滑性などの観点から、300℃、1.2Kgでのメルトボリュームフローレート(MVR)値が、好ましくは130~250cm3/10分、より好ましくは150~230cm3/10分、さらに好ましくは180~220cm3/10分である。
The polycarbonate resin [G] used in the present invention has a melt volume flow rate at 300 ° C. and 1.2 kg from the viewpoint of compatibility with the methacrylic resin [A], transparency of the resulting film, surface smoothness and the like. MVR) values, preferably 130 ~ 250cm 3/10 min, more preferably 150 ~ 230cm 3/10 min, more preferably 180 ~ 220cm 3/10 min.
また、本発明に用いられるポリカーボネート樹脂〔G〕は、メタクリル樹脂〔A〕との相溶性、並びに得られるフィルムの透明性、表面平滑性などの観点から、ゲルパーミエーションクロマトグラフィ(GPC)で測定したクロマトグラムを標準ポリスチレンの分子量に換算して算出される重量平均分子量が、好ましくは1.5万~2.8万、より好ましくは1.8万~2.7万、さらに好ましくは2万~2.4万である。なお、ポリカーボネート樹脂〔G〕のMVR値や重量平均分子量の調節は末端停止剤や分岐剤の量を調整することによって行うことができる。
The polycarbonate resin [G] used in the present invention was measured by gel permeation chromatography (GPC) from the viewpoints of compatibility with the methacrylic resin [A], transparency of the resulting film, surface smoothness, and the like. The weight average molecular weight calculated by converting the chromatogram to the molecular weight of standard polystyrene is preferably 15,000 to 28,000, more preferably 18,000 to 27,000, and even more preferably 20,000 to 24,000. The MVR value and the weight average molecular weight of the polycarbonate resin [G] can be adjusted by adjusting the amounts of the terminal terminator and the branching agent.
本発明に用いるポリカーボネート樹脂〔G〕のガラス転移温度は、好ましくは130℃以上、より好ましくは135℃以上、さらに好ましくは140℃以上である。該ポリカーボネート樹脂のガラス転移温度の上限は、通常180℃である。ここで、ガラス転移温度は、室温以上の領域においてJIS K7121に準拠して行うものであり、250℃まで昇温速度10℃/分で1回目の昇温(1stラン)をし、次いで室温まで冷却し、その後、室温から250℃までを昇温速度10℃/分で昇温(2ndラン)する際の、2ndランの中間点ガラス転移温度である。
The glass transition temperature of the polycarbonate resin [G] used in the present invention is preferably 130 ° C. or higher, more preferably 135 ° C. or higher, and further preferably 140 ° C. or higher. The upper limit of the glass transition temperature of the polycarbonate resin is usually 180 ° C. Here, the glass transition temperature is performed in accordance with JIS K7121 in the region of room temperature or higher, and the first temperature rise (1st run) is performed up to 250 ° C. at a rate of temperature rise of 10 ° C./min. It is the midpoint glass transition temperature of the 2nd run when cooling and then raising the temperature from room temperature to 250 ° C. at a rate of temperature increase of 10 ° C./min (2nd run).
ポリカーボネート樹脂〔G〕の製造方法は特に限定されない。例えば、ホスゲン法(界面重合法)及び溶融重合法(エステル交換法)などを挙げることができる。また、本発明に好ましく用いられる芳香族ポリカーボネート樹脂は、溶融重合法で製造したポリカーボネート樹脂原料に、末端ヒドロキシ基量を調整するための処理を施して成るものであってもよい。また、ポリカーボネート樹脂〔G〕は、市販品やその他公知のものを用いることができる。
The method for producing the polycarbonate resin [G] is not particularly limited. Examples thereof include a phosgene method (interfacial polymerization method) and a melt polymerization method (transesterification method). In addition, the aromatic polycarbonate resin preferably used in the present invention may be obtained by subjecting a polycarbonate resin raw material produced by a melt polymerization method to a treatment for adjusting the amount of terminal hydroxy groups. As the polycarbonate resin [G], commercially available products or other known products can be used.
ポリカーボネート樹脂〔G〕は、ポリカーボネート構造単位以外に、ポリエステル、ポリウレタン、ポリエーテルまたはポリシロキサン構造を有する構造単位等を含有しているものであってもよい。
The polycarbonate resin [G] may contain a structural unit having a polyester, polyurethane, polyether or polysiloxane structure in addition to the polycarbonate structural unit.
本発明の実施形態に係るメタクリル樹脂組成物に含ませるポリカーボネート樹脂〔G〕の量は、メタクリル樹脂〔A〕100質量部に対して、好ましくは0.1~15質量部、より好ましくは0.5~10質量部、さらに好ましくは1~8質量部である。この範囲にあることで、メタクリル樹脂(A)とポリカーボネート樹脂〔G〕の相溶性が良好であるので、透明性が高く、屈折率が高く、表面平滑性の良好なフィルムが得られやすい。特にメタクリル樹脂〔A〕100質量部に対して、ポリカーボネート樹脂〔G〕の量を1~4質量部にした場合には、フィルムの位相差の絶対値を小さくすることができる。
The amount of the polycarbonate resin [G] to be included in the methacrylic resin composition according to the embodiment of the present invention is preferably 0.1 to 15 parts by mass, more preferably 0.8 parts per 100 parts by mass of the methacrylic resin [A]. 5 to 10 parts by mass, more preferably 1 to 8 parts by mass. By being in this range, since the compatibility of the methacrylic resin (A) and the polycarbonate resin [G] is good, it is easy to obtain a film having high transparency, high refractive index, and good surface smoothness. In particular, when the amount of the polycarbonate resin [G] is 1 to 4 parts by mass with respect to 100 parts by mass of the methacrylic resin [A], the absolute value of the retardation of the film can be reduced.
本発明に用いられるメタクリル樹脂組成物には、本発明の効果を損なわない範囲で、他の重合体を含んでいてもよい。他の重合体としては、ポリエチレン、ポリプロピレン、ポリブテン-1、ポリ-4-メチルペンテン-1、ポリノルボルネンなどのポリオレフィン樹脂;エチレン系アイオノマー;ポリスチレン、スチレン-無水マレイン酸共重合体、ハイインパクトポリスチレン、AS樹脂、ABS樹脂、AES樹脂、AAS樹脂、ACS樹脂、MBS樹脂などのスチレン系樹脂;メチルメタクリレート-スチレン共重合体;ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル樹脂;ナイロン6、ナイロン66、ポリアミドエラストマーなどのポリアミド;フェノキシ樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリアセタール、ポリフッ化ビニリデン、ポリウレタン、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、シリコーン変性樹脂;シリコーンゴム;SEPS、SEBS、SISなどのスチレン系熱可塑性エラストマー;IR、EPR、EPDMなどのオレフィン系ゴムなどを挙げることができる。これら重合体のメタクリル樹脂組成物中の含有量は20質量%以下であることが好ましく、10質量%以下であることがより好ましい。
The methacrylic resin composition used in the present invention may contain other polymers as long as the effects of the present invention are not impaired. Other polymers include polyolefin resins such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1 and polynorbornene; ethylene ionomers; polystyrene, styrene-maleic anhydride copolymer, high impact polystyrene, Styrenic resins such as AS resin, ABS resin, AES resin, AAS resin, ACS resin and MBS resin; methyl methacrylate-styrene copolymer; polyester resin such as polyethylene terephthalate and polybutylene terephthalate; nylon 6, nylon 66, polyamide elastomer Polyamides such as: phenoxy resin, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyacetal, polyvinylidene fluoride, polyurethane Tan, modified polyphenylene ether, polyphenylene sulfide, silicone-modified resins; can be mentioned IR, EPR, and olefin rubbers such as EPDM; silicone rubber; SEPS, SEBS, styrene-based thermoplastic elastomers such as SIS. The content of these polymers in the methacrylic resin composition is preferably 20% by mass or less, and more preferably 10% by mass or less.
本発明のメタクリル樹脂組成物は、高分子加工助剤を含有していてもよい。高分子加工助剤としては、通常、乳化重合法によって製造することができる、0.05~0.5μmの粒子径を有する重合体粒子を挙げることができる。該重合体粒子は、単一組成比および単一極限粘度の重合体からなる単層粒子であってもよいし、また組成比または極限粘度の異なる2種以上の重合体からなる多層粒子であってもよい。この中でも、内層に低い極限粘度を有する重合体層を有し、外層に5dl/g以上の高い極限粘度を有する重合体層を有する2層構造の粒子が好ましいものとして挙げられる。高分子加工助剤としては、極限粘度が3~6dl/gであることが好ましい。
The methacrylic resin composition of the present invention may contain a polymer processing aid. Examples of the polymer processing aid include polymer particles having a particle diameter of 0.05 to 0.5 μm, which can be usually produced by an emulsion polymerization method. The polymer particles may be single layer particles composed of polymers having a single composition ratio and single intrinsic viscosity, or multilayer particles composed of two or more kinds of polymers having different composition ratios or intrinsic viscosities. May be. Among these, particles having a two-layer structure having a polymer layer having a low intrinsic viscosity in the inner layer and a polymer layer having a high intrinsic viscosity of 5 dl / g or more in the outer layer are preferable. The polymer processing aid preferably has an intrinsic viscosity of 3 to 6 dl / g.
本発明の実施形態に係るメタクリル樹脂組成物に含ませる高分子加工助剤の量は、メタクリル樹脂〔A〕100質量部に対して、好ましくは0.1質量%以上7質量%以下、より好ましくは0.2質量%以上5質量%以下、さらに好ましくは0.5質量%以上4質量%以下である。
The amount of the polymer processing aid contained in the methacrylic resin composition according to the embodiment of the present invention is preferably 0.1% by mass or more and 7% by mass or less, more preferably 100% by mass of the methacrylic resin [A]. Is 0.2 mass% or more and 5 mass% or less, More preferably, it is 0.5 mass% or more and 4 mass% or less.
本発明のメタクリル樹脂組成物の調製方法は特に限定されない。例えば、化合物〔B〕の存在下にメタクリル酸メチルを含む単量体混合物を重合してメタクリル樹脂〔A〕を生成させる方法;メタクリル樹脂〔A〕と化合物〔B〕を溶融混練する方法などを挙げることができる。これらのうち溶融混練法は工程が単純であるので、好ましい。溶融混練の際に、必要に応じて他の重合体や添加剤を混合してもよいし、メタクリル樹脂〔A〕を他の重合体および添加剤と混合した後に化合物〔B〕と混合してもよいし、化合物〔B〕を他の重合体および添加剤と混合した後にメタクリル樹脂〔A〕と混合してもよいし、その他の方法でもよい。混練は、例えば、ニーダールーダー、単軸または多軸押出機、ミキシングロール、バンバリーミキサーなどの公知の混合装置または混練装置を使用して行なうことができる。これらのうち、二軸押出機が好ましい。混合・混練時の温度は、使用するメタクリル樹脂〔A〕および化合物〔B〕の溶融温度などに応じて適宜調節することができるが、好ましくは110℃~300℃である。
The method for preparing the methacrylic resin composition of the present invention is not particularly limited. For example, a method of polymerizing a monomer mixture containing methyl methacrylate in the presence of compound [B] to produce methacrylic resin [A]; a method of melt-kneading methacrylic resin [A] and compound [B], etc. Can be mentioned. Among these, the melt-kneading method is preferable because the process is simple. When melt-kneading, other polymers and additives may be mixed as necessary, or after mixing the methacrylic resin [A] with other polymers and additives and mixing with the compound [B]. Alternatively, the compound [B] may be mixed with other polymer and additive and then mixed with the methacrylic resin [A], or other methods may be used. The kneading can be performed using a known mixing apparatus or kneading apparatus such as a kneader ruder, a single-screw or multi-screw extruder, a mixing roll, a Banbury mixer, and the like. Of these, a twin screw extruder is preferred. The temperature at the time of mixing and kneading can be appropriately adjusted according to the melting temperature of the methacrylic resin [A] and the compound [B] used, but is preferably 110 ° C. to 300 ° C.
本発明のメタクリル樹脂組成物は、メタクリル樹脂〔A〕を、好ましくは70~99.99質量%、より好ましくは90~99.98質量%、さらに好ましくは95~99.96質量%含む。この範囲でメタクリル樹脂〔A〕を含むと透明性と耐熱性に優れる。
本発明のメタクリル樹脂組成物は、化合物〔B〕を、好ましくは0.01~30質量%、より好ましくは0.02~10質量%、さらに好ましくは0.04~5質量%含む。この範囲で熱分解性の抑制効果が得られ、かつ得られるメタクリル樹脂組成物の透明性に優れる。 The methacrylic resin composition of the present invention preferably contains 70 to 99.99% by mass, more preferably 90 to 99.98% by mass, and still more preferably 95 to 99.96% by mass of the methacrylic resin [A]. When the methacrylic resin [A] is included in this range, the transparency and heat resistance are excellent.
The methacrylic resin composition of the present invention preferably contains the compound [B] in an amount of 0.01 to 30% by mass, more preferably 0.02 to 10% by mass, and still more preferably 0.04 to 5% by mass. Within this range, the effect of suppressing thermal decomposition is obtained, and the transparency of the resulting methacrylic resin composition is excellent.
本発明のメタクリル樹脂組成物は、化合物〔B〕を、好ましくは0.01~30質量%、より好ましくは0.02~10質量%、さらに好ましくは0.04~5質量%含む。この範囲で熱分解性の抑制効果が得られ、かつ得られるメタクリル樹脂組成物の透明性に優れる。 The methacrylic resin composition of the present invention preferably contains 70 to 99.99% by mass, more preferably 90 to 99.98% by mass, and still more preferably 95 to 99.96% by mass of the methacrylic resin [A]. When the methacrylic resin [A] is included in this range, the transparency and heat resistance are excellent.
The methacrylic resin composition of the present invention preferably contains the compound [B] in an amount of 0.01 to 30% by mass, more preferably 0.02 to 10% by mass, and still more preferably 0.04 to 5% by mass. Within this range, the effect of suppressing thermal decomposition is obtained, and the transparency of the resulting methacrylic resin composition is excellent.
本発明のメタクリル樹脂組成物は、ガラス転移温度が、好ましくは100℃以上、より好ましくは105℃以上、さらに好ましくは110℃以上である。メタクリル樹脂組成物のガラス転移温度の上限は特に制限はないが、好ましくは130℃である。
The glass transition temperature of the methacrylic resin composition of the present invention is preferably 100 ° C. or higher, more preferably 105 ° C. or higher, and further preferably 110 ° C. or higher. The upper limit of the glass transition temperature of the methacrylic resin composition is not particularly limited, but is preferably 130 ° C.
本発明のメタクリル樹脂組成物をGPCにて測定して決定される重量平均分子量(Mw)は、好ましくは5万~20万、より好ましくは5.5万~16万、さらに好ましくは6万~12万、特に好ましくは7万~10万である。メタクリル樹脂組成物をGPCにて測定して決定される分子量分布(重量平均分子量Mw/数平均分子量Mn)は、好ましくは1.0~5.0、より好ましくは1.2~3.0、さらに好ましくは1.3~2.0、特に好ましくは1.3~1.7である。Mwや分子量分布(Mw/Mn)がこの範囲にあると、メタクリル樹脂組成物の成形加工性が良好となり、耐衝撃性や靭性に優れた成形体を得易くなる。
The weight average molecular weight (Mw) determined by measuring the methacrylic resin composition of the present invention by GPC is preferably 50,000 to 200,000, more preferably 550,000 to 160,000, still more preferably 60,000 to 120,000, particularly preferably 70,000 to 100,000. The molecular weight distribution (weight average molecular weight Mw / number average molecular weight Mn) determined by measuring the methacrylic resin composition by GPC is preferably 1.0 to 5.0, more preferably 1.2 to 3.0, More preferably, it is 1.3 to 2.0, and particularly preferably 1.3 to 1.7. When the Mw and molecular weight distribution (Mw / Mn) are in this range, the molding processability of the methacrylic resin composition becomes good, and it becomes easy to obtain a molded body excellent in impact resistance and toughness.
本発明のメタクリル樹脂組成物を230℃および3.8kg荷重の条件で測定して決定されるメルトフローレートは、好ましくは0.1~30g/10分、さらに好ましくは0.5~20g/10分、最も好ましくは1.0~15g/10分である。
The melt flow rate determined by measuring the methacrylic resin composition of the present invention at 230 ° C. and a load of 3.8 kg is preferably 0.1 to 30 g / 10 minutes, more preferably 0.5 to 20 g / 10. Min, most preferably 1.0 to 15 g / 10 min.
本発明のメタクリル樹脂組成物は、3.2mm厚さのヘーズが、3.0%以下が好ましく、2.0%以下がより好ましく、1.5%以下がさらに好ましい。
In the methacrylic resin composition of the present invention, the haze having a thickness of 3.2 mm is preferably 3.0% or less, more preferably 2.0% or less, and further preferably 1.5% or less.
本発明のメタクリル樹脂組成物は、保存、運搬、または成形時の利便性を高めるために、ペレットなどの形態にすることができる。
The methacrylic resin composition of the present invention can be in the form of pellets or the like in order to enhance convenience during storage, transportation or molding.
本発明のメタクリル樹脂組成物は公知の成形方法によって成形体とすることができる。成形方法としては、例えば、Tダイ法(ラミネート法、共押出法など)、インフレーション法(共押出法など)、圧縮成形法、ブロー成形法、カレンダー成形法、真空成形法、射出成形法(インサート法、二色法、プレス法、コアバック法、サンドイッチ法など)などの溶融成形法ならびに溶液キャスト法などを挙げることができる。
これらの成形方法では、一般に樹脂組成物を成形するために金型などが用いられる。例えば、シート成形用ロール、フィルム成形用ロール、カレンダーロール、圧縮成形用金型、ブロー成形用金型、真空成形用金型、射出成形用金型、キャスト重合用鋳型などを挙げることができる。成形に使用される金型などは必ずしも金属製である必要はなく、例えば、ゴム製、強化ガラス製などであってもよい。本発明のメタクリル樹脂組成物は、金型汚れを生じにくいため、長時間の連続成形を行う生産、成形を多数繰返して行う生産などにおいて好ましく使用できる。 The methacrylic resin composition of the present invention can be formed into a molded body by a known molding method. Examples of molding methods include T-die method (laminate method, coextrusion method, etc.), inflation method (coextrusion method, etc.), compression molding method, blow molding method, calendar molding method, vacuum molding method, injection molding method (insert). Method, two-color method, press method, core back method, sandwich method, etc.) and solution casting method.
In these molding methods, a mold or the like is generally used for molding a resin composition. Examples thereof include a sheet forming roll, a film forming roll, a calendar roll, a compression molding mold, a blow molding mold, a vacuum molding mold, an injection molding mold, and a cast polymerization mold. The mold used for molding is not necessarily made of metal, and may be made of rubber or tempered glass, for example. Since the methacrylic resin composition of the present invention hardly causes mold contamination, it can be preferably used in production in which continuous molding is performed for a long time, production in which molding is repeated many times, and the like.
これらの成形方法では、一般に樹脂組成物を成形するために金型などが用いられる。例えば、シート成形用ロール、フィルム成形用ロール、カレンダーロール、圧縮成形用金型、ブロー成形用金型、真空成形用金型、射出成形用金型、キャスト重合用鋳型などを挙げることができる。成形に使用される金型などは必ずしも金属製である必要はなく、例えば、ゴム製、強化ガラス製などであってもよい。本発明のメタクリル樹脂組成物は、金型汚れを生じにくいため、長時間の連続成形を行う生産、成形を多数繰返して行う生産などにおいて好ましく使用できる。 The methacrylic resin composition of the present invention can be formed into a molded body by a known molding method. Examples of molding methods include T-die method (laminate method, coextrusion method, etc.), inflation method (coextrusion method, etc.), compression molding method, blow molding method, calendar molding method, vacuum molding method, injection molding method (insert). Method, two-color method, press method, core back method, sandwich method, etc.) and solution casting method.
In these molding methods, a mold or the like is generally used for molding a resin composition. Examples thereof include a sheet forming roll, a film forming roll, a calendar roll, a compression molding mold, a blow molding mold, a vacuum molding mold, an injection molding mold, and a cast polymerization mold. The mold used for molding is not necessarily made of metal, and may be made of rubber or tempered glass, for example. Since the methacrylic resin composition of the present invention hardly causes mold contamination, it can be preferably used in production in which continuous molding is performed for a long time, production in which molding is repeated many times, and the like.
本発明の成形体の用途としては、例えば、広告塔、スタンド看板、袖看板、欄間看板、屋上看板などの看板部品;ショーケース、仕切板、店舗ディスプレイなどのディスプレイ部品;蛍光灯カバー、ムード照明カバー、ランプシェード、光天井、光壁、シャンデリアなどの照明部品;ペンダント、ミラーなどのインテリア部品;ドア、ドーム、安全窓ガラス、間仕切り、階段腰板、バルコニー腰板、レジャー用建築物の屋根などの建築用部品;航空機風防、パイロット用バイザー、オートバイ、モーターボート風防、バス用遮光板、自動車用サイドバイザー、リアバイザー、ヘッドウィング、ヘッドライトカバーなどの輸送機関係部品;音響映像用銘板、ステレオカバー、テレビ保護マスク、自動販売機用ディスプレイカバーなどの電子機器部品;保育器、レントゲン部品などの医療機器部品;機械カバー、計器カバー、実験装置、定規、文字盤、観察窓などの機器関係部品;ディスプレイ装置のフロントライト用導光板およびフィルム、バックライト用導光板及びフィルム、液晶保護板、フレネルレンズ、レンチキュラーレンズ、各種ディスプレイの前面板、拡散板、反射材などの光学関係部品;道路標識、案内板、カーブミラー、防音壁などの交通関係部品;自動車内装用表面材、携帯電話の表面材、マーキングフィルムなどのフィルム部材;洗濯機の天蓋材やコントロールパネル、炊飯ジャーの天面パネルなどの家電製品用部材;その他、温室、大型水槽、箱水槽、時計パネル、バスタブ、サニタリー、デスクマット、遊技部品、玩具、熔接時の顔面保護用マスクなどが挙げられる。
Applications of the molded article of the present invention include, for example, billboard parts such as advertising towers, stand signboards, sleeve signboards, billboard signs, and rooftop signs; display parts such as showcases, partition plates, and store displays; fluorescent lamp covers, mood lighting Lighting parts such as covers, lamp shades, light ceilings, light walls, and chandeliers; interior parts such as pendants and mirrors; architectures such as doors, domes, safety window glass, partitions, staircases, balcony waistboards, and roofs for leisure buildings Parts: Aircraft windshields, pilot visors, motorcycles, motorboat windshields, bus shading plates, automotive side visors, rear visors, head wings, headlight covers, and other transport related parts; audio visual nameplates, stereo covers, TV protection Electronic devices such as masks and display covers for vending machines Parts: Medical equipment parts such as incubators and X-ray parts; machine-related parts such as machine covers, instrument covers, experimental devices, rulers, dials, observation windows; light guide plates and films for front lights of display devices, guides for backlights Optical components such as optical plates and films, LCD protective plates, Fresnel lenses, lenticular lenses, front panels of various displays, diffusers and reflectors; traffic-related components such as road signs, guide plates, curved mirrors, and noise barriers; automobile interiors Surface materials for mobile phones, surface materials for mobile phones, film members such as marking films; members for household appliances such as canopy materials and control panels for washing machines, top panels for rice cookers; other greenhouses, large tanks, box tanks, watches Panels, bathtubs, sanitary, desk mats, game parts, toys, masks for face protection when welding, etc. It is.
本発明の成形体は、耐候性に優れ、また紫外線吸収剤のブリードアウトが抑制される点から、例えば、各種カバー、各種端子板、プリント配線板、スピーカー、顕微鏡、双眼鏡、カメラ、時計などに代表される光学機器、また、映像・光記録・光通信・情報機器関連部品としてカメラ、VTR、プロジェクションTV等のファインダー、フィルター、プリズム、フレネルレンズ、各種光ディスク(VD、CD、DVD、MD、LD等)基板の保護フィルム、光スイッチ、光コネクター、液晶ディスプレイ、液晶ディスプレイ用導光フィルム・シート、フラットパネルディスプレイ、フラットパネルディスプレイ用導光フィルム・シート、プラズマディスプレイ、プラズマディスプレイ用導光フィルム・シート、電子ペーパー用導光フィルム・シート、位相差フィルム・シート、偏光フィルム・シート、偏光板保護フィルム・シート、偏光子保護フィルム・シート、波長板、光拡散フィルム・シート、プリズムフィルム・シート、反射フィルム・シート、反射防止フィルム・シート、視野角拡大フィルム・シート、防眩フィルム・シート、輝度向上フィルム・シート、液晶やエレクトロルミネッセンス用途の表示素子基板、タッチパネル、タッチパネル用導光フィルム・シート、各種前面板と各種モジュール間のスペーサーなど、各種の光学用途へ特に好適に適用可能である。
具体的には、例えば、携帯電話、デジタル情報端末、ナビゲーション、車載用液晶ディスプレイ、液晶モニター、調光パネル、OA機器用ディスプレイ、AV機器用ディスプレイ等の各種液晶表示素子やエレクトロルミネッセンス表示素子あるいはタッチパネルなどに用いることができる。また、耐候性に優れている点から、例えば、建築用内・外装用部材、カーテンウォール、屋根用部材、屋根材、窓用部材、雨樋、エクステリア類、壁材、床材、造作材、道路建設用部材、再帰反射フィルム・シート、農業用フィルム・シート、照明カバー、看板、透光性遮音壁など、公知の建材用途へも特に好適に適用可能である。 The molded body of the present invention is excellent in weather resistance and suppresses bleeding out of the ultraviolet absorber, so that, for example, in various covers, various terminal boards, printed wiring boards, speakers, microscopes, binoculars, cameras, watches, etc. Representative optical equipment and parts related to video / optical recording / optical communication / information equipment, such as cameras, VTRs, projection TVs, filters, prisms, Fresnel lenses, various optical disks (VD, CD, DVD, MD, LD) Etc.) Protective films for substrates, optical switches, optical connectors, liquid crystal displays, light guide films and sheets for liquid crystal displays, flat panel displays, light guide films and sheets for flat panel displays, plasma displays, light guide films and sheets for plasma displays , Light guide film for electronic paper Sheet, retardation film / sheet, polarizing film / sheet, polarizing plate protective film / sheet, polarizer protective film / sheet, wave plate, light diffusion film / sheet, prism film / sheet, reflective film / sheet, anti-reflective film・ Sheets, viewing angle expansion films / sheets, anti-glare films / sheets, brightness enhancement films / sheets, display element substrates for liquid crystal and electroluminescence, touch panels, light guide films / sheets for touch panels, various front plates, and various modules It can be particularly suitably applied to various optical applications such as spacers.
Specifically, for example, various liquid crystal display elements such as mobile phones, digital information terminals, navigation, liquid crystal displays for vehicles, liquid crystal monitors, light control panels, displays for OA equipment, displays for AV equipment, electroluminescence display elements, or touch panels. Can be used. Also, from the point of excellent weather resistance, for example, building interior and exterior members, curtain walls, roofing members, roofing materials, window members, gutters, exteriors, wall materials, flooring materials, construction materials, The present invention is particularly preferably applicable to known building materials such as road construction members, retroreflective films / sheets, agricultural films / sheets, lighting covers, signboards, and translucent sound insulation walls.
具体的には、例えば、携帯電話、デジタル情報端末、ナビゲーション、車載用液晶ディスプレイ、液晶モニター、調光パネル、OA機器用ディスプレイ、AV機器用ディスプレイ等の各種液晶表示素子やエレクトロルミネッセンス表示素子あるいはタッチパネルなどに用いることができる。また、耐候性に優れている点から、例えば、建築用内・外装用部材、カーテンウォール、屋根用部材、屋根材、窓用部材、雨樋、エクステリア類、壁材、床材、造作材、道路建設用部材、再帰反射フィルム・シート、農業用フィルム・シート、照明カバー、看板、透光性遮音壁など、公知の建材用途へも特に好適に適用可能である。 The molded body of the present invention is excellent in weather resistance and suppresses bleeding out of the ultraviolet absorber, so that, for example, in various covers, various terminal boards, printed wiring boards, speakers, microscopes, binoculars, cameras, watches, etc. Representative optical equipment and parts related to video / optical recording / optical communication / information equipment, such as cameras, VTRs, projection TVs, filters, prisms, Fresnel lenses, various optical disks (VD, CD, DVD, MD, LD) Etc.) Protective films for substrates, optical switches, optical connectors, liquid crystal displays, light guide films and sheets for liquid crystal displays, flat panel displays, light guide films and sheets for flat panel displays, plasma displays, light guide films and sheets for plasma displays , Light guide film for electronic paper Sheet, retardation film / sheet, polarizing film / sheet, polarizing plate protective film / sheet, polarizer protective film / sheet, wave plate, light diffusion film / sheet, prism film / sheet, reflective film / sheet, anti-reflective film・ Sheets, viewing angle expansion films / sheets, anti-glare films / sheets, brightness enhancement films / sheets, display element substrates for liquid crystal and electroluminescence, touch panels, light guide films / sheets for touch panels, various front plates, and various modules It can be particularly suitably applied to various optical applications such as spacers.
Specifically, for example, various liquid crystal display elements such as mobile phones, digital information terminals, navigation, liquid crystal displays for vehicles, liquid crystal monitors, light control panels, displays for OA equipment, displays for AV equipment, electroluminescence display elements, or touch panels. Can be used. Also, from the point of excellent weather resistance, for example, building interior and exterior members, curtain walls, roofing members, roofing materials, window members, gutters, exteriors, wall materials, flooring materials, construction materials, The present invention is particularly preferably applicable to known building materials such as road construction members, retroreflective films / sheets, agricultural films / sheets, lighting covers, signboards, and translucent sound insulation walls.
本発明の成形体は、太陽電池用途として太陽電池表面保護フィルム、太陽電池用封止フィルム、太陽電池用裏面保護フィルム、太陽電池用基盤フィルム、ガスバリアフィルム用保護フィルムなどへも適用可能である。
The molded article of the present invention can also be applied to solar cell surface protective films, solar cell sealing films, solar cell back surface protective films, solar cell base films, gas barrier film protective films and the like for solar cell applications.
成形体の一形態である本発明のフィルムは、その製法によって特に限定されない。本発明のフィルムは、例えば、前記メタクリル樹脂組成物を、溶液キャスト法、溶融流延法、押出成形法、インフレーション成形法、ブロー成形法などの公知の方法にて製膜することによって得ることができる。これらのうち、押出成形法が好ましい。押出成形法によれば、改善された靭性を持ち、取扱い性に優れ、靭性と表面硬度および剛性とのバランスに優れたフィルムを得ることができる。押出機から吐出されるメタクリル樹脂組成物の温度は好ましくは160~270℃、より好ましくは220~260℃に設定する。
The film of the present invention which is one form of the molded body is not particularly limited by the production method. The film of the present invention can be obtained, for example, by forming the methacrylic resin composition by a known method such as a solution casting method, a melt casting method, an extrusion molding method, an inflation molding method, or a blow molding method. it can. Of these, the extrusion method is preferred. According to the extrusion molding method, a film having improved toughness, excellent handleability, and excellent balance between toughness, surface hardness and rigidity can be obtained. The temperature of the methacrylic resin composition discharged from the extruder is preferably set to 160 to 270 ° C., more preferably 220 to 260 ° C.
押出成形法のうち、良好な表面平滑性、良好な鏡面光沢、低ヘーズのフィルムが得られるという観点から、前記メタクリル樹脂組成物を溶融状態でTダイから押出し、次いでそれを二つ以上の鏡面ロールまたは鏡面ベルトで挟持して成形することを含む方法が好ましい。鏡面ロールまたは鏡面ベルトは、金属製であることが好ましい。一対の鏡面ロールまたは鏡面ベルトの間の線圧は、好ましくは2N/mm以上、より好ましくは10N/mm以上、さらにより好ましくは30N/mm以上である。
Among the extrusion molding methods, from the viewpoint of obtaining a film having good surface smoothness, good specular gloss, and low haze, the methacrylic resin composition is extruded from a T die in a molten state, and then it is applied to two or more specular surfaces. A method including forming by sandwiching with a roll or a mirror belt is preferable. The mirror roll or the mirror belt is preferably made of metal. The linear pressure between the pair of mirror rolls or the mirror belt is preferably 2 N / mm or more, more preferably 10 N / mm or more, and even more preferably 30 N / mm or more.
また、鏡面ロールまたは鏡面ベルトの表面温度は共に130℃以下であることが好ましい。また、一対の鏡面ロール若しくは鏡面ベルトは、少なくとも一方の表面温度が60℃以上であることが好ましい。このような表面温度に設定すると、押出機から吐出される前記メタクリル樹脂組成物を自然放冷よりも速い速度で冷却することができ、表面平滑性に優れ且つヘーズの低いフィルムを製造し易い。
Also, the surface temperature of the mirror roll or the mirror belt is preferably 130 ° C. or less. The pair of mirror rolls or mirror belts preferably have at least one surface temperature of 60 ° C. or higher. When the surface temperature is set to such a value, the methacrylic resin composition discharged from the extruder can be cooled at a speed faster than natural cooling, and a film having excellent surface smoothness and low haze can be easily produced.
本発明のフィルムは延伸処理を施したものであってもよい。延伸処理によって、機械的強度が高まり、ひび割れし難いフィルムを得ることができる。延伸方法は特に限定されず、一軸延伸法、同時二軸延伸法、逐次二軸延伸法、チュブラー延伸法などを挙げることができる。延伸時の温度は、均一に延伸でき、高い強度のフィルムが得られるという観点から、100~200℃が好ましく、110℃~160℃がより好ましい。延伸は、通常長さ基準で100~5000%/分で行われる。延伸は、面積比で1.5~8倍になるように行うことが好ましい。延伸の後、熱固定を行うことによって、熱収縮の少ないフィルムを得ることができる。
The film of the present invention may be subjected to a stretching treatment. By the stretching treatment, a film that has high mechanical strength and is difficult to crack can be obtained. The stretching method is not particularly limited, and examples thereof include a uniaxial stretching method, a simultaneous biaxial stretching method, a sequential biaxial stretching method, and a tuber stretching method. The temperature during stretching is preferably from 100 to 200 ° C., more preferably from 110 to 160 ° C. from the viewpoint that the film can be uniformly stretched and a high-strength film can be obtained. Stretching is usually performed at 100 to 5000% / min on a length basis. The stretching is preferably performed so that the area ratio is 1.5 to 8 times. A film with less heat shrinkage can be obtained by heat setting after stretching.
本発明のフィルムの厚さは、特に制限されないが、光学フィルムとして用いる場合、その厚さは、好ましくは1~300μm、より好ましくは10~100μm、さらに好ましくは15~80μmである。
The thickness of the film of the present invention is not particularly limited, but when used as an optical film, the thickness is preferably 1 to 300 μm, more preferably 10 to 100 μm, and still more preferably 15 to 80 μm.
本発明のフィルムは、厚さ40μmにおけるヘーズが、好ましくは0.2%以下、より好ましくは0.1%以下である。ヘーズが上記範囲にある本発明のフィルムは表面光沢や透明性に優れる。本発明のフィルムを、液晶保護フィルムや導光フィルムなどの光学部材として用いた場合には、光源からの光の利用効率が高まるので好ましい。さらに、本発明のフィルムは加工性に優れるので、精細で緻密な表面賦形を施すことができる。
In the film of the present invention, the haze at a thickness of 40 μm is preferably 0.2% or less, more preferably 0.1% or less. The film of the present invention having haze in the above range is excellent in surface gloss and transparency. When the film of the present invention is used as an optical member such as a liquid crystal protective film or a light guide film, it is preferable because the use efficiency of light from the light source is increased. Furthermore, since the film of this invention is excellent in workability, it can give a fine and precise surface shaping.
本発明のフィルムは、偏光子保護フィルム、位相差フィルム、液晶保護板、携帯型情報端末の表面材、携帯型情報端末の表示窓保護フィルム、導光フィルム、銀ナノワイヤーやカーボンナノチューブを表面に塗布した透明導電フィルム、各種ディスプレイの前面板などに好適であり、偏光子保護フィルムに特に好適である。
本発明のフィルムは、光学分野以外の分野として、IRカットフィルム、防犯フィルム、飛散防止フィルム、加飾フィルム、金属加飾フィルム、太陽電池のバックシート、フレキシブル太陽電池用フロントシート、シュリンクフィルム、インモールドラベル用フィルム、ガスバリア基板フィルムなどに使用することができる。 The film of the present invention has a polarizer protective film, a retardation film, a liquid crystal protective plate, a surface material for a portable information terminal, a display window protective film for a portable information terminal, a light guide film, silver nanowires and carbon nanotubes on the surface. It is suitable for a coated transparent conductive film, a front plate of various displays, and the like, and is particularly suitable for a polarizer protective film.
The film of the present invention includes fields other than the optical field, such as IR cut film, security film, scattering prevention film, decorative film, metal decorative film, solar cell back sheet, flexible solar cell front sheet, shrink film, It can be used for a film for a mold label, a gas barrier substrate film and the like.
本発明のフィルムは、光学分野以外の分野として、IRカットフィルム、防犯フィルム、飛散防止フィルム、加飾フィルム、金属加飾フィルム、太陽電池のバックシート、フレキシブル太陽電池用フロントシート、シュリンクフィルム、インモールドラベル用フィルム、ガスバリア基板フィルムなどに使用することができる。 The film of the present invention has a polarizer protective film, a retardation film, a liquid crystal protective plate, a surface material for a portable information terminal, a display window protective film for a portable information terminal, a light guide film, silver nanowires and carbon nanotubes on the surface. It is suitable for a coated transparent conductive film, a front plate of various displays, and the like, and is particularly suitable for a polarizer protective film.
The film of the present invention includes fields other than the optical field, such as IR cut film, security film, scattering prevention film, decorative film, metal decorative film, solar cell back sheet, flexible solar cell front sheet, shrink film, It can be used for a film for a mold label, a gas barrier substrate film and the like.
本発明のフィルムの表面に機能層を設けてもよい。機能層としては、ハードコート層、アンチグレア層、反射防止層、スティッキング防止層、拡散層、防眩層、静電気防止層、防汚層、微粒子などを含有した易滑性層等が挙げられる。
A functional layer may be provided on the surface of the film of the present invention. Examples of the functional layer include a hard coat layer, an antiglare layer, an antireflection layer, an antisticking layer, a diffusion layer, an antiglare layer, an antistatic layer, an antifouling layer, and an easy-sliding layer containing fine particles.
本発明のフィルムが使用される偏光板は、偏光子と、該偏光子に積層された本発明のフィルムとを少なくとも有する。本発明のフィルムは、偏光子の両面に積層されていてもよいし、片面に積層されていてもよい。偏光子の片面に本発明のフィルムを偏光子保護フィルムとして積層した場合は、別の片面に本発明のフィルム以外の光学フィルムを積層することができる。係る光学フィルムとしては、偏光子保護フィルム、視野角調整フィルム、位相差フィルム、輝度向上フィルムなどを挙げることができる。積層は接着剤層を介して行うこともできる。
The polarizing plate in which the film of the present invention is used has at least a polarizer and the film of the present invention laminated on the polarizer. The film of the present invention may be laminated on both sides of the polarizer or may be laminated on one side. When the film of the present invention is laminated on one side of the polarizer as a polarizer protective film, an optical film other than the film of the present invention can be laminated on another side. Examples of the optical film include a polarizer protective film, a viewing angle adjusting film, a retardation film, and a brightness enhancement film. Lamination can also be performed via an adhesive layer.
本発明のフィルムが使用される偏光板は、画像表示装置に使用することができる。画像表示装置の具体例としては、エレクトロルミネッセンス(EL)ディスプレイ、プラズマディスプレイ(PD)、電界放出ディスプレイ(FED:Field Emission Display)のような自発光型表示装置、液晶表示装置(LCD)などを挙げることができる。液晶表示装置は、液晶セルと、当該液晶セルの少なくとも片側に配置された上記偏光板とを有する。
The polarizing plate in which the film of the present invention is used can be used for an image display device. Specific examples of the image display device include a self-luminous display device such as an electroluminescence (EL) display, a plasma display (PD), a field emission display (FED), and a liquid crystal display (LCD). be able to. The liquid crystal display device includes a liquid crystal cell and the polarizing plate disposed on at least one side of the liquid crystal cell.
本発明のフィルムは、耐熱分解性に優れ、耐衝撃性を有するため、有機エレクトロルミネッセンス照明装置または有機エレクトロルミネッセンス表示装置に使用されるフィルムとしても好適である。
Since the film of the present invention has excellent thermal decomposition resistance and impact resistance, it is also suitable as a film used for an organic electroluminescence lighting device or an organic electroluminescence display device.
以下、実施例および比較例によって本発明を具体的に説明するが、本発明は下記実施例に限定されない。なお、物性値等の測定は以下の方法によって実施した。
Hereinafter, the present invention will be specifically described by way of examples and comparative examples, but the present invention is not limited to the following examples. The physical property values and the like were measured by the following method.
(重合転化率)
島津製作所社製ガスクロマトグラフ GC-14Aに、カラム(GL Sciences Inc.製 Inert CAP 1(df=0.4μm、0.25mmI.D.×60m))を取り付けて、インジェクション温度を180℃に、検出器温度を180℃に、カラム温度を60℃(5分間保持)から昇温速度10℃/分で200℃まで昇温して、200℃を10分間保持する条件に設定して、測定を行い、この結果に基づいて重合転化率を算出した。 (Polymerization conversion)
A column (GL Sciences Inc. Inert CAP 1 (df = 0.4 μm, 0.25 mm ID × 60 m)) was attached to Shimadzu Gas Chromatograph GC-14A, and the injection temperature was detected at 180 ° C. The temperature is set to 180 ° C, the column temperature is raised from 60 ° C (holding for 5 minutes) to 200 ° C at a heating rate of 10 ° C / minute, and the conditions are set to hold 200 ° C for 10 minutes. The polymerization conversion rate was calculated based on this result.
島津製作所社製ガスクロマトグラフ GC-14Aに、カラム(GL Sciences Inc.製 Inert CAP 1(df=0.4μm、0.25mmI.D.×60m))を取り付けて、インジェクション温度を180℃に、検出器温度を180℃に、カラム温度を60℃(5分間保持)から昇温速度10℃/分で200℃まで昇温して、200℃を10分間保持する条件に設定して、測定を行い、この結果に基づいて重合転化率を算出した。 (Polymerization conversion)
A column (GL Sciences Inc. Inert CAP 1 (df = 0.4 μm, 0.25 mm ID × 60 m)) was attached to Shimadzu Gas Chromatograph GC-14A, and the injection temperature was detected at 180 ° C. The temperature is set to 180 ° C, the column temperature is raised from 60 ° C (holding for 5 minutes) to 200 ° C at a heating rate of 10 ° C / minute, and the conditions are set to hold 200 ° C for 10 minutes. The polymerization conversion rate was calculated based on this result.
(重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布)
ゲルパーミエーションクロマトグラフィ(GPC)にて下記の条件でクロマトグラムを測定し、標準ポリスチレンの分子量に換算した値を算出した。ベースラインはGPCチャートの高分子量側のピークの傾きが保持時間の早い方から見てゼロからプラスに変化する点と、低分子量側のピークの傾きが保持時間の早い方から見てマイナスからゼロに変化する点を結んだ線とした。
GPC装置:東ソー株式会社製、HLC-8320
検出器:示差屈折率検出器
カラム:東ソー株式会社製のTSKgel SuperMultipore HZM-Mの2本とSuperHZ4000を直列に繋いだものを用いた。
溶離剤: テトラヒドロフラン
溶離剤流量: 0.35ml/分
カラム温度: 40℃
検量線:標準ポリスチレン10点のデータを用いて作成 (Weight average molecular weight (Mw), number average molecular weight (Mn), molecular weight distribution)
The chromatogram was measured under the following conditions by gel permeation chromatography (GPC), and the value converted into the molecular weight of standard polystyrene was calculated. The baseline is that the slope of the peak on the high molecular weight side of the GPC chart changes from zero to positive when viewed from the earlier retention time, and the slope of the peak on the low molecular weight side is from negative to zero when viewed from the earlier retention time. A line connecting the points that change to.
GPC device: manufactured by Tosoh Corporation, HLC-8320
Detector: Differential refractive index detector Column: TSKgel SuperMultipore HZM-M manufactured by Tosoh Corporation and SuperHZ4000 connected in series were used.
Eluent: Tetrahydrofuran Eluent flow rate: 0.35 ml / min Column temperature: 40 ° C
Calibration curve: Created using 10 standard polystyrene data
ゲルパーミエーションクロマトグラフィ(GPC)にて下記の条件でクロマトグラムを測定し、標準ポリスチレンの分子量に換算した値を算出した。ベースラインはGPCチャートの高分子量側のピークの傾きが保持時間の早い方から見てゼロからプラスに変化する点と、低分子量側のピークの傾きが保持時間の早い方から見てマイナスからゼロに変化する点を結んだ線とした。
GPC装置:東ソー株式会社製、HLC-8320
検出器:示差屈折率検出器
カラム:東ソー株式会社製のTSKgel SuperMultipore HZM-Mの2本とSuperHZ4000を直列に繋いだものを用いた。
溶離剤: テトラヒドロフラン
溶離剤流量: 0.35ml/分
カラム温度: 40℃
検量線:標準ポリスチレン10点のデータを用いて作成 (Weight average molecular weight (Mw), number average molecular weight (Mn), molecular weight distribution)
The chromatogram was measured under the following conditions by gel permeation chromatography (GPC), and the value converted into the molecular weight of standard polystyrene was calculated. The baseline is that the slope of the peak on the high molecular weight side of the GPC chart changes from zero to positive when viewed from the earlier retention time, and the slope of the peak on the low molecular weight side is from negative to zero when viewed from the earlier retention time. A line connecting the points that change to.
GPC device: manufactured by Tosoh Corporation, HLC-8320
Detector: Differential refractive index detector Column: TSKgel SuperMultipore HZM-M manufactured by Tosoh Corporation and SuperHZ4000 connected in series were used.
Eluent: Tetrahydrofuran Eluent flow rate: 0.35 ml / min Column temperature: 40 ° C
Calibration curve: Created using 10 standard polystyrene data
(ガラス転移温度Tg)
メタクリル樹脂およびメタクリル樹脂組成物を、JIS K7121に準拠して、示差走査熱量測定装置(島津製作所製、DSC-50(品番))を用いて、250℃まで1回目の昇温(1stラン)をし、次いで室温まで冷却し、その後、室温から250℃までを10℃/分で2回目の昇温をさせる条件にてDSC曲線を測定した。2回目の昇温(2ndラン)時に測定されるDSC曲線から求められる中間点ガラス転移温度を本発明におけるガラス転移温度とした。 (Glass transition temperature Tg)
The methacrylic resin and the methacrylic resin composition were subjected to the first temperature rise (1st run) to 250 ° C. using a differential scanning calorimeter (manufactured by Shimadzu Corporation, DSC-50 (product number)) in accordance with JIS K7121. Then, it was cooled to room temperature, and then the DSC curve was measured under the condition of raising the temperature from room temperature to 250 ° C. at a rate of 10 ° C./min for the second time. The midpoint glass transition temperature obtained from the DSC curve measured at the second temperature increase (2nd run) was defined as the glass transition temperature in the present invention.
メタクリル樹脂およびメタクリル樹脂組成物を、JIS K7121に準拠して、示差走査熱量測定装置(島津製作所製、DSC-50(品番))を用いて、250℃まで1回目の昇温(1stラン)をし、次いで室温まで冷却し、その後、室温から250℃までを10℃/分で2回目の昇温をさせる条件にてDSC曲線を測定した。2回目の昇温(2ndラン)時に測定されるDSC曲線から求められる中間点ガラス転移温度を本発明におけるガラス転移温度とした。 (Glass transition temperature Tg)
The methacrylic resin and the methacrylic resin composition were subjected to the first temperature rise (1st run) to 250 ° C. using a differential scanning calorimeter (manufactured by Shimadzu Corporation, DSC-50 (product number)) in accordance with JIS K7121. Then, it was cooled to room temperature, and then the DSC curve was measured under the condition of raising the temperature from room temperature to 250 ° C. at a rate of 10 ° C./min for the second time. The midpoint glass transition temperature obtained from the DSC curve measured at the second temperature increase (2nd run) was defined as the glass transition temperature in the present invention.
(熱重量保持率)
熱重量測定装置(島津製作所製、TGA-50)を用いて、空気雰囲気下(流量50ml/分)で、秤量したメタクリル樹脂組成物を室温から20℃/分の速度で290℃まで加熱した。290℃に到達した時点とそれから30分間経過した時点で秤量し、次式によって熱重量保持率を算出した。熱重量保持率が大きいほど耐熱分解性に優れることを示す。
熱重量保持率(%)=(290℃で30分間経過した時点の重量)/(290℃に到達した時点の重量)×100 (Thermal weight retention)
Using a thermogravimetric measuring device (manufactured by Shimadzu Corporation, TGA-50), the weighed methacrylic resin composition was heated from room temperature to 290 ° C. at a rate of 20 ° C./min in an air atmosphere (flow rate 50 ml / min). Weighing was performed at the time when the temperature reached 290 ° C. and 30 minutes after that, and the thermogravimetric retention was calculated by the following formula. It shows that it is excellent in thermal decomposition resistance, so that a thermogravimetric retention rate is large.
Thermal weight retention (%) = (weight at the time when 30 minutes have passed at 290 ° C.) / (Weight when the temperature reaches 290 ° C.) × 100
熱重量測定装置(島津製作所製、TGA-50)を用いて、空気雰囲気下(流量50ml/分)で、秤量したメタクリル樹脂組成物を室温から20℃/分の速度で290℃まで加熱した。290℃に到達した時点とそれから30分間経過した時点で秤量し、次式によって熱重量保持率を算出した。熱重量保持率が大きいほど耐熱分解性に優れることを示す。
熱重量保持率(%)=(290℃で30分間経過した時点の重量)/(290℃に到達した時点の重量)×100 (Thermal weight retention)
Using a thermogravimetric measuring device (manufactured by Shimadzu Corporation, TGA-50), the weighed methacrylic resin composition was heated from room temperature to 290 ° C. at a rate of 20 ° C./min in an air atmosphere (flow rate 50 ml / min). Weighing was performed at the time when the temperature reached 290 ° C. and 30 minutes after that, and the thermogravimetric retention was calculated by the following formula. It shows that it is excellent in thermal decomposition resistance, so that a thermogravimetric retention rate is large.
Thermal weight retention (%) = (weight at the time when 30 minutes have passed at 290 ° C.) / (Weight when the temperature reaches 290 ° C.) × 100
(全光線透過率)
未延伸フィルムまたは二軸延伸フィルムから試験片を切り出した。試験片についてJIS K7361-1に準じてヘーズメータ(村上色彩研究所製、HM-150)を用いて全光線透過率を測定した。メタクリル樹脂組成物を熱プレスして厚さ3.2mmの成形体を得、上記と同様にして全光線透過率を測定した。 (Total light transmittance)
A test piece was cut out from an unstretched film or a biaxially stretched film. The total light transmittance of the test piece was measured using a haze meter (manufactured by Murakami Color Research Laboratory, HM-150) according to JIS K7361-1. The methacrylic resin composition was hot pressed to obtain a molded product having a thickness of 3.2 mm, and the total light transmittance was measured in the same manner as described above.
未延伸フィルムまたは二軸延伸フィルムから試験片を切り出した。試験片についてJIS K7361-1に準じてヘーズメータ(村上色彩研究所製、HM-150)を用いて全光線透過率を測定した。メタクリル樹脂組成物を熱プレスして厚さ3.2mmの成形体を得、上記と同様にして全光線透過率を測定した。 (Total light transmittance)
A test piece was cut out from an unstretched film or a biaxially stretched film. The total light transmittance of the test piece was measured using a haze meter (manufactured by Murakami Color Research Laboratory, HM-150) according to JIS K7361-1. The methacrylic resin composition was hot pressed to obtain a molded product having a thickness of 3.2 mm, and the total light transmittance was measured in the same manner as described above.
(ヘーズ)
未延伸フィルムまたは二軸延伸フィルムから試験片を切り出した。試験片についてJIS K 7136に準拠してヘーズメータ(村上色彩研究所製、HM-150)を用いてヘーズを測定した。メタクリル樹脂組成物を熱プレスして厚さ3.2mmの成形体を得、上記と同様にしてヘーズを測定した。 (Haze)
A test piece was cut out from an unstretched film or a biaxially stretched film. The haze of the test piece was measured using a haze meter (manufactured by Murakami Color Research Laboratory, HM-150) according to JIS K 7136. The methacrylic resin composition was hot-pressed to obtain a molded product having a thickness of 3.2 mm, and haze was measured in the same manner as described above.
未延伸フィルムまたは二軸延伸フィルムから試験片を切り出した。試験片についてJIS K 7136に準拠してヘーズメータ(村上色彩研究所製、HM-150)を用いてヘーズを測定した。メタクリル樹脂組成物を熱プレスして厚さ3.2mmの成形体を得、上記と同様にしてヘーズを測定した。 (Haze)
A test piece was cut out from an unstretched film or a biaxially stretched film. The haze of the test piece was measured using a haze meter (manufactured by Murakami Color Research Laboratory, HM-150) according to JIS K 7136. The methacrylic resin composition was hot-pressed to obtain a molded product having a thickness of 3.2 mm, and haze was measured in the same manner as described above.
(ロール汚れ)
Optical Control System社製の製膜機(型式FS-5)を用いて、シリンダ温度290℃、Tダイ温度290℃、リップ間隙0.5mm、吐出量2.7kg/hr、ロール温度85℃およびフィルム引取り速度2.2m/分にて、メタクリル樹脂組成物を押出成形して、厚さ100μmのフィルムを製造した。フィルムが通過する金属ロールの表面を目視で観察し、フィルムの製造を開始した時からロール面に白もやが僅かでも発生した時までの時間を測定し、5分間以上の場合は[A]、5分間未満の場合は「B」と評定した。 (Roll dirt)
Using an optical control system film forming machine (model FS-5), cylinder temperature 290 ° C, T die temperature 290 ° C, lip gap 0.5mm, discharge rate 2.7kg / hr, roll temperature 85 ° C and film The methacrylic resin composition was extruded at a take-up speed of 2.2 m / min to produce a film having a thickness of 100 μm. The surface of the metal roll through which the film passes is visually observed, and the time from when the production of the film is started until when a slight white haze occurs on the roll surface is measured. When it was less than 5 minutes, it was rated as “B”.
Optical Control System社製の製膜機(型式FS-5)を用いて、シリンダ温度290℃、Tダイ温度290℃、リップ間隙0.5mm、吐出量2.7kg/hr、ロール温度85℃およびフィルム引取り速度2.2m/分にて、メタクリル樹脂組成物を押出成形して、厚さ100μmのフィルムを製造した。フィルムが通過する金属ロールの表面を目視で観察し、フィルムの製造を開始した時からロール面に白もやが僅かでも発生した時までの時間を測定し、5分間以上の場合は[A]、5分間未満の場合は「B」と評定した。 (Roll dirt)
Using an optical control system film forming machine (model FS-5), cylinder temperature 290 ° C, T die temperature 290 ° C, lip gap 0.5mm, discharge rate 2.7kg / hr, roll temperature 85 ° C and film The methacrylic resin composition was extruded at a take-up speed of 2.2 m / min to produce a film having a thickness of 100 μm. The surface of the metal roll through which the film passes is visually observed, and the time from when the production of the film is started until when a slight white haze occurs on the roll surface is measured. When it was less than 5 minutes, it was rated as “B”.
(製造例1)(メタクリル樹脂〔A-1〕の製造)
撹拌翼と三方コックが取り付けられたオートクレーブ内を窒素で置換した。これに、室温下にて、トルエン1600kg、1,2-ジメトキシエタン80kg、濃度0.45Mのイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムのトルエン溶液73.3kg(42.3mol)、および濃度1.3Mのsec-ブチルリチウムの溶液(溶媒:シクロヘキサン95%、n-ヘキサン5%)8.44kg(14.1mmol)を仕込んだ。撹拌しながら、これに、15℃にて、蒸留精製したメタクリル酸メチル550kgを30分間かけて滴下した。滴下終了後、15℃で90分間撹拌した。溶液の色が黄色から無色に変わった。この時点におけるメタクリル酸メチルの重合転化率は100%であった。
得られた溶液にトルエン1500kgを加えて希釈した。次いで、希釈液を大量のメタノールに注ぎ入れ、沈澱物を得た。得られた沈殿物を80℃、140Paにて24時間乾燥させて、Mwが70000で、分子量分布が1.06で、シンジオタクティシティ(rr)が75%で、ガラス転移温度が131℃で、且つメタクリル酸メチルに由来する構造単位の含有量が100質量%であるメタクリル樹脂〔A-1〕を得た。 (Production Example 1) (Production of methacrylic resin [A-1])
The inside of the autoclave fitted with the stirring blade and the three-way cock was replaced with nitrogen. To this, 1600 kg of toluene, 80 kg of 1,2-dimethoxyethane, and 73.3 kg of a toluene solution of isobutylbis (2,6-di-t-butyl-4-methylphenoxy) aluminum having a concentration of 0.45 M at room temperature ( 42.3 mol) and a solution of 1.3 M sec-butyllithium (solvent: cyclohexane 95%, n-hexane 5%) were charged in an amount of 8.44 kg (14.1 mmol). While stirring, 550 kg of distilled methyl methacrylate was added dropwise at 30 ° C. over 30 minutes. After completion of dropping, the mixture was stirred at 15 ° C. for 90 minutes. The color of the solution changed from yellow to colorless. At this time, the polymerization conversion rate of methyl methacrylate was 100%.
The resulting solution was diluted by adding 1500 kg of toluene. Next, the diluted solution was poured into a large amount of methanol to obtain a precipitate. The obtained precipitate was dried at 80 ° C. and 140 Pa for 24 hours. The Mw was 70000, the molecular weight distribution was 1.06, the syndiotacticity (rr) was 75%, and the glass transition temperature was 131 ° C. And the methacryl resin [A-1] whose content of the structural unit derived from methyl methacrylate is 100 mass% was obtained.
撹拌翼と三方コックが取り付けられたオートクレーブ内を窒素で置換した。これに、室温下にて、トルエン1600kg、1,2-ジメトキシエタン80kg、濃度0.45Mのイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムのトルエン溶液73.3kg(42.3mol)、および濃度1.3Mのsec-ブチルリチウムの溶液(溶媒:シクロヘキサン95%、n-ヘキサン5%)8.44kg(14.1mmol)を仕込んだ。撹拌しながら、これに、15℃にて、蒸留精製したメタクリル酸メチル550kgを30分間かけて滴下した。滴下終了後、15℃で90分間撹拌した。溶液の色が黄色から無色に変わった。この時点におけるメタクリル酸メチルの重合転化率は100%であった。
得られた溶液にトルエン1500kgを加えて希釈した。次いで、希釈液を大量のメタノールに注ぎ入れ、沈澱物を得た。得られた沈殿物を80℃、140Paにて24時間乾燥させて、Mwが70000で、分子量分布が1.06で、シンジオタクティシティ(rr)が75%で、ガラス転移温度が131℃で、且つメタクリル酸メチルに由来する構造単位の含有量が100質量%であるメタクリル樹脂〔A-1〕を得た。 (Production Example 1) (Production of methacrylic resin [A-1])
The inside of the autoclave fitted with the stirring blade and the three-way cock was replaced with nitrogen. To this, 1600 kg of toluene, 80 kg of 1,2-dimethoxyethane, and 73.3 kg of a toluene solution of isobutylbis (2,6-di-t-butyl-4-methylphenoxy) aluminum having a concentration of 0.45 M at room temperature ( 42.3 mol) and a solution of 1.3 M sec-butyllithium (solvent: cyclohexane 95%, n-hexane 5%) were charged in an amount of 8.44 kg (14.1 mmol). While stirring, 550 kg of distilled methyl methacrylate was added dropwise at 30 ° C. over 30 minutes. After completion of dropping, the mixture was stirred at 15 ° C. for 90 minutes. The color of the solution changed from yellow to colorless. At this time, the polymerization conversion rate of methyl methacrylate was 100%.
The resulting solution was diluted by adding 1500 kg of toluene. Next, the diluted solution was poured into a large amount of methanol to obtain a precipitate. The obtained precipitate was dried at 80 ° C. and 140 Pa for 24 hours. The Mw was 70000, the molecular weight distribution was 1.06, the syndiotacticity (rr) was 75%, and the glass transition temperature was 131 ° C. And the methacryl resin [A-1] whose content of the structural unit derived from methyl methacrylate is 100 mass% was obtained.
(製造例2)(メタクリル樹脂〔A-2〕の製造)
攪拌機および採取管が取り付けられたオートクレーブ内を窒素で置換した。これに、精製されたメタクリル酸メチル100質量部、2,2’-アゾビス(2-メチルプロピオニトリル(水素引抜能:1%、1時間半減期温度:83℃)0.0054質量部、およびn-オクチルメルカプタン0.200質量部を入れ、撹拌して、原料液を得た。かかる原料液中に窒素を送り込み、原料液中の溶存酸素を除去した。
オートクレーブと配管で接続された槽型反応器に容量の2/3まで原料液を入れた。温度を140℃に維持して先ずバッチ方式で重合反応を開始させた。重合転化率が55質量%になったところで、平均滞留時間150分となる流量で、原料液をオートクレーブから槽型反応器に供給し、且つ原料液の供給流量に相当する流量で、反応液を槽型反応器から抜き出して、温度140℃に維持し、連続流通方式の重合反応に切り替えた。切り替え後、定常状態における重合転化率は48質量%であった。 (Production Example 2) (Production of methacrylic resin [A-2])
The inside of the autoclave equipped with the stirrer and the sampling tube was replaced with nitrogen. To this, 100 parts by mass of purified methyl methacrylate, 0.0054 parts by mass of 2,2′-azobis (2-methylpropionitrile (hydrogen abstraction capacity: 1%, 1 hour half-life temperature: 83 ° C.), and 0.200 parts by mass of n-octyl mercaptan was added and stirred to obtain a raw material liquid, and nitrogen was fed into the raw material liquid to remove dissolved oxygen in the raw material liquid.
The raw material liquid was put to 2/3 of the capacity in a tank reactor connected to the autoclave by piping. First, the polymerization reaction was started in a batch mode while maintaining the temperature at 140 ° C. When the polymerization conversion rate reaches 55% by mass, the raw material liquid is supplied from the autoclave to the tank reactor at a flow rate of an average residence time of 150 minutes, and the reaction liquid is supplied at a flow rate corresponding to the supply flow rate of the raw material liquid. It was extracted from the tank reactor, maintained at a temperature of 140 ° C., and switched to a continuous flow polymerization reaction. After switching, the polymerization conversion in the steady state was 48% by mass.
攪拌機および採取管が取り付けられたオートクレーブ内を窒素で置換した。これに、精製されたメタクリル酸メチル100質量部、2,2’-アゾビス(2-メチルプロピオニトリル(水素引抜能:1%、1時間半減期温度:83℃)0.0054質量部、およびn-オクチルメルカプタン0.200質量部を入れ、撹拌して、原料液を得た。かかる原料液中に窒素を送り込み、原料液中の溶存酸素を除去した。
オートクレーブと配管で接続された槽型反応器に容量の2/3まで原料液を入れた。温度を140℃に維持して先ずバッチ方式で重合反応を開始させた。重合転化率が55質量%になったところで、平均滞留時間150分となる流量で、原料液をオートクレーブから槽型反応器に供給し、且つ原料液の供給流量に相当する流量で、反応液を槽型反応器から抜き出して、温度140℃に維持し、連続流通方式の重合反応に切り替えた。切り替え後、定常状態における重合転化率は48質量%であった。 (Production Example 2) (Production of methacrylic resin [A-2])
The inside of the autoclave equipped with the stirrer and the sampling tube was replaced with nitrogen. To this, 100 parts by mass of purified methyl methacrylate, 0.0054 parts by mass of 2,2′-azobis (2-methylpropionitrile (hydrogen abstraction capacity: 1%, 1 hour half-life temperature: 83 ° C.), and 0.200 parts by mass of n-octyl mercaptan was added and stirred to obtain a raw material liquid, and nitrogen was fed into the raw material liquid to remove dissolved oxygen in the raw material liquid.
The raw material liquid was put to 2/3 of the capacity in a tank reactor connected to the autoclave by piping. First, the polymerization reaction was started in a batch mode while maintaining the temperature at 140 ° C. When the polymerization conversion rate reaches 55% by mass, the raw material liquid is supplied from the autoclave to the tank reactor at a flow rate of an average residence time of 150 minutes, and the reaction liquid is supplied at a flow rate corresponding to the supply flow rate of the raw material liquid. It was extracted from the tank reactor, maintained at a temperature of 140 ° C., and switched to a continuous flow polymerization reaction. After switching, the polymerization conversion in the steady state was 48% by mass.
定常状態になった槽型反応器から抜き出される反応液を、平均滞留時間2分間となる流量で内温230℃の多管式熱交換器に供給して加温した。次いで加温された反応液をフラッシュ蒸発器に導入し、未反応単量体を主成分とする揮発分を除去して、溶融樹脂を得た。揮発分が除去された溶融樹脂を内温260℃の二軸押出機に供給してストランド状に吐出し、ペレタイザーでカットして、Mwが112000で、分子量分布が1.86で、シンジオタクティシティ(rr)が52%で、ガラス転移温度が120℃で、且つメタクリル酸メチルに由来する構造単位の含有量が100質量%であるメタクリル樹脂〔A-2〕を得た。
The reaction liquid extracted from the tank reactor in a steady state was heated by supplying it to a multi-tubular heat exchanger having an internal temperature of 230 ° C. at a flow rate with an average residence time of 2 minutes. Next, the heated reaction liquid was introduced into a flash evaporator, and volatile components mainly composed of unreacted monomers were removed to obtain a molten resin. The molten resin from which volatile components have been removed is supplied to a twin-screw extruder having an internal temperature of 260 ° C., discharged into a strand, cut with a pelletizer, Mw is 112,000, molecular weight distribution is 1.86, and syndiotacticity A methacrylic resin [A-2] having a city (rr) of 52%, a glass transition temperature of 120 ° C., and a content of structural units derived from methyl methacrylate of 100% by mass was obtained.
(製造例3)(架橋ゴム粒子(m)の製造)
コンデンサー、温度計および撹拌機を備えたグラスライニングを施した容量100Lの反応槽に、イオン交換水48kgを投入し、次いでステアリン酸ナトリウム416g、ラウリルサルコシン酸ナトリウム128gおよび炭酸ナトリウム16gを投入して溶解させた。次いで、メタクリル酸メチル11.2kgおよびメタクリル酸アリル110gを投入し撹拌しながら70℃に昇温した。その後、2%過硫酸カリウム水溶液560gを添加して乳化重合を開始させた。重合による発熱により内部温度が上昇し、その後内部温度が下降し始めた。70℃まで下がった後、70℃にて30分間撹拌して乳化重合させてシード粒子を含むエマルジョンを得た。
シード粒子を含むエマルジョンに、2%過硫酸ナトリウム水溶液720gを添加した。その後、アクリル酸ブチル12.4kg、スチレン1.76kgおよびメタクリル酸アリル280gからなる混合物を60分間かけて滴下した。滴下終了後60分間撹拌して乳化重合させてコアシェル2層粒子を含むエマルジョンを得た。
コアシェル2層粒子を含むエマルジョンに、2%過硫酸カリウム水溶液320gを添加し、さらにメタクリル酸メチル6.2kg、アクリル酸メチル0.2kgおよびn-オクチルメルカプタン200gからなる混合物を30分間かけて添加した。添加終了後60分間撹拌して乳化重合させ、次いで室温に冷まして、体積基準平均粒径0.23μmのコアシェル3層構造架橋ゴム粒子(m)を40%含有するエマルジョンを得た。 (Production Example 3) (Production of crosslinked rubber particles (m))
48 kg of ion-exchanged water is charged into a 100-liter reaction tank equipped with a condenser, a thermometer and a stirrer, and then dissolved with 416 g of sodium stearate, 128 g of sodium lauryl sarcosinate and 16 g of sodium carbonate. I let you. Next, 11.2 kg of methyl methacrylate and 110 g of allyl methacrylate were added and the temperature was raised to 70 ° C. while stirring. Thereafter, 560 g of a 2% aqueous potassium persulfate solution was added to initiate emulsion polymerization. The internal temperature increased due to heat generated by the polymerization, and then the internal temperature began to decrease. After dropping to 70 ° C., the mixture was stirred at 70 ° C. for 30 minutes for emulsion polymerization to obtain an emulsion containing seed particles.
To the emulsion containing seed particles, 720 g of a 2% aqueous sodium persulfate solution was added. Thereafter, a mixture of 12.4 kg of butyl acrylate, 1.76 kg of styrene and 280 g of allyl methacrylate was dropped over 60 minutes. After completion of dropping, the mixture was stirred for 60 minutes for emulsion polymerization to obtain an emulsion containing core-shell bilayer particles.
To the emulsion containing the core-shell bilayer particles, 320 g of a 2% aqueous potassium persulfate solution was added, and a mixture consisting of 6.2 kg of methyl methacrylate, 0.2 kg of methyl acrylate and 200 g of n-octyl mercaptan was added over 30 minutes. . After completion of the addition, the mixture was stirred for 60 minutes for emulsion polymerization, and then cooled to room temperature to obtain an emulsion containing 40% of core-shell three-layered crosslinked rubber particles (m) having a volume-based average particle size of 0.23 μm.
コンデンサー、温度計および撹拌機を備えたグラスライニングを施した容量100Lの反応槽に、イオン交換水48kgを投入し、次いでステアリン酸ナトリウム416g、ラウリルサルコシン酸ナトリウム128gおよび炭酸ナトリウム16gを投入して溶解させた。次いで、メタクリル酸メチル11.2kgおよびメタクリル酸アリル110gを投入し撹拌しながら70℃に昇温した。その後、2%過硫酸カリウム水溶液560gを添加して乳化重合を開始させた。重合による発熱により内部温度が上昇し、その後内部温度が下降し始めた。70℃まで下がった後、70℃にて30分間撹拌して乳化重合させてシード粒子を含むエマルジョンを得た。
シード粒子を含むエマルジョンに、2%過硫酸ナトリウム水溶液720gを添加した。その後、アクリル酸ブチル12.4kg、スチレン1.76kgおよびメタクリル酸アリル280gからなる混合物を60分間かけて滴下した。滴下終了後60分間撹拌して乳化重合させてコアシェル2層粒子を含むエマルジョンを得た。
コアシェル2層粒子を含むエマルジョンに、2%過硫酸カリウム水溶液320gを添加し、さらにメタクリル酸メチル6.2kg、アクリル酸メチル0.2kgおよびn-オクチルメルカプタン200gからなる混合物を30分間かけて添加した。添加終了後60分間撹拌して乳化重合させ、次いで室温に冷まして、体積基準平均粒径0.23μmのコアシェル3層構造架橋ゴム粒子(m)を40%含有するエマルジョンを得た。 (Production Example 3) (Production of crosslinked rubber particles (m))
48 kg of ion-exchanged water is charged into a 100-liter reaction tank equipped with a condenser, a thermometer and a stirrer, and then dissolved with 416 g of sodium stearate, 128 g of sodium lauryl sarcosinate and 16 g of sodium carbonate. I let you. Next, 11.2 kg of methyl methacrylate and 110 g of allyl methacrylate were added and the temperature was raised to 70 ° C. while stirring. Thereafter, 560 g of a 2% aqueous potassium persulfate solution was added to initiate emulsion polymerization. The internal temperature increased due to heat generated by the polymerization, and then the internal temperature began to decrease. After dropping to 70 ° C., the mixture was stirred at 70 ° C. for 30 minutes for emulsion polymerization to obtain an emulsion containing seed particles.
To the emulsion containing seed particles, 720 g of a 2% aqueous sodium persulfate solution was added. Thereafter, a mixture of 12.4 kg of butyl acrylate, 1.76 kg of styrene and 280 g of allyl methacrylate was dropped over 60 minutes. After completion of dropping, the mixture was stirred for 60 minutes for emulsion polymerization to obtain an emulsion containing core-shell bilayer particles.
To the emulsion containing the core-shell bilayer particles, 320 g of a 2% aqueous potassium persulfate solution was added, and a mixture consisting of 6.2 kg of methyl methacrylate, 0.2 kg of methyl acrylate and 200 g of n-octyl mercaptan was added over 30 minutes. . After completion of the addition, the mixture was stirred for 60 minutes for emulsion polymerization, and then cooled to room temperature to obtain an emulsion containing 40% of core-shell three-layered crosslinked rubber particles (m) having a volume-based average particle size of 0.23 μm.
(製造例4)(重合体粒子(n)の製造)
コンデンサー、温度計および撹拌機を備えたグラスライニングを施した容量100Lの反応槽に、イオン交換水48kgを投入し、次いで界面活性剤(花王株式会社製「ペレックスSS-H」)252gを投入して溶解させた。反応槽を70℃に昇温した。その後、これに、2%過硫酸カリウム水溶液160gを添加し、次いでメタクリル酸メチル3.04kg、アクリル酸メチル0.16kgおよびn-オクチルメルカプタン15.2gからなる混合物を一括添加して乳化重合を開始させた。重合反応による発熱が無くなった時点から30分間撹拌を続けた。
その後、これに2%過硫酸カリウム水溶液160gを添加し、次いでメタクリル酸メチル27.4kg、アクリル酸メチル1.44kgおよびn-オクチルメルカプタン98gからなる混合物を2時間かけて連続的に滴下した。滴下終了後、60分間撹拌して乳化重合を行った。得られたエマルジョンを室温まで冷やした。このようにして、体積基準平均粒径0.12μm、極限粘度0.44g/dlの(メタ)アクリル酸エステル系重合体粒子(n)を40%含有するエマルジョンを得た。 (Production Example 4) (Production of polymer particles (n))
48 kg of ion-exchanged water is charged into a 100-liter reaction tank equipped with a condenser, thermometer and stirrer, and then 252 g of a surfactant (“Perex SS-H” manufactured by Kao Corporation) is charged. And dissolved. The reaction vessel was heated to 70 ° C. Thereafter, 160 g of 2% potassium persulfate aqueous solution was added thereto, and then a mixture consisting of 3.04 kg of methyl methacrylate, 0.16 kg of methyl acrylate and 15.2 g of n-octyl mercaptan was added all at once to start emulsion polymerization. I let you. Stirring was continued for 30 minutes after the exotherm due to the polymerization reaction disappeared.
Thereafter, 160 g of a 2% potassium persulfate aqueous solution was added thereto, and then a mixture consisting of 27.4 kg of methyl methacrylate, 1.44 kg of methyl acrylate and 98 g of n-octyl mercaptan was continuously added dropwise over 2 hours. After completion of dropping, the mixture was stirred for 60 minutes for emulsion polymerization. The resulting emulsion was cooled to room temperature. In this way, an emulsion containing 40% of (meth) acrylate polymer particles (n) having a volume-based average particle size of 0.12 μm and an intrinsic viscosity of 0.44 g / dl was obtained.
コンデンサー、温度計および撹拌機を備えたグラスライニングを施した容量100Lの反応槽に、イオン交換水48kgを投入し、次いで界面活性剤(花王株式会社製「ペレックスSS-H」)252gを投入して溶解させた。反応槽を70℃に昇温した。その後、これに、2%過硫酸カリウム水溶液160gを添加し、次いでメタクリル酸メチル3.04kg、アクリル酸メチル0.16kgおよびn-オクチルメルカプタン15.2gからなる混合物を一括添加して乳化重合を開始させた。重合反応による発熱が無くなった時点から30分間撹拌を続けた。
その後、これに2%過硫酸カリウム水溶液160gを添加し、次いでメタクリル酸メチル27.4kg、アクリル酸メチル1.44kgおよびn-オクチルメルカプタン98gからなる混合物を2時間かけて連続的に滴下した。滴下終了後、60分間撹拌して乳化重合を行った。得られたエマルジョンを室温まで冷やした。このようにして、体積基準平均粒径0.12μm、極限粘度0.44g/dlの(メタ)アクリル酸エステル系重合体粒子(n)を40%含有するエマルジョンを得た。 (Production Example 4) (Production of polymer particles (n))
48 kg of ion-exchanged water is charged into a 100-liter reaction tank equipped with a condenser, thermometer and stirrer, and then 252 g of a surfactant (“Perex SS-H” manufactured by Kao Corporation) is charged. And dissolved. The reaction vessel was heated to 70 ° C. Thereafter, 160 g of 2% potassium persulfate aqueous solution was added thereto, and then a mixture consisting of 3.04 kg of methyl methacrylate, 0.16 kg of methyl acrylate and 15.2 g of n-octyl mercaptan was added all at once to start emulsion polymerization. I let you. Stirring was continued for 30 minutes after the exotherm due to the polymerization reaction disappeared.
Thereafter, 160 g of a 2% potassium persulfate aqueous solution was added thereto, and then a mixture consisting of 27.4 kg of methyl methacrylate, 1.44 kg of methyl acrylate and 98 g of n-octyl mercaptan was continuously added dropwise over 2 hours. After completion of dropping, the mixture was stirred for 60 minutes for emulsion polymerization. The resulting emulsion was cooled to room temperature. In this way, an emulsion containing 40% of (meth) acrylate polymer particles (n) having a volume-based average particle size of 0.12 μm and an intrinsic viscosity of 0.44 g / dl was obtained.
(製造例5)(架橋ゴム粒子(D-1)の製造)
製造例3で得られた粒子(m)を含有するエマルジョンと製造例4で得られた粒子(n)(分散補助粒子)を含有するエマルジョンとを、粒子(m):粒子(n)の質量比が2:1になるように混ぜ合わせた。該混合エマルジョンを-20℃で2時間かけて凍結させた。凍結した混合エマルジョンをその2倍量の80℃の温水に投入して氷解させてスラリーを得た。該スラリーを80℃にて20分間保持し、次いで脱水し、70℃で乾燥させて、架橋ゴム粒子(D-1)からなる粉末を得た。 (Production Example 5) (Production of crosslinked rubber particles (D-1))
The emulsion containing the particles (m) obtained in Production Example 3 and the emulsion containing the particles (n) (dispersion auxiliary particles) obtained in Production Example 4 were used as the particles (m): mass of the particles (n). The mixture was mixed so that the ratio was 2: 1. The mixed emulsion was frozen at −20 ° C. for 2 hours. The frozen mixed emulsion was thrown into twice as much warm water at 80 ° C. and iced to obtain a slurry. The slurry was held at 80 ° C. for 20 minutes, then dehydrated and dried at 70 ° C. to obtain a powder composed of crosslinked rubber particles (D-1).
製造例3で得られた粒子(m)を含有するエマルジョンと製造例4で得られた粒子(n)(分散補助粒子)を含有するエマルジョンとを、粒子(m):粒子(n)の質量比が2:1になるように混ぜ合わせた。該混合エマルジョンを-20℃で2時間かけて凍結させた。凍結した混合エマルジョンをその2倍量の80℃の温水に投入して氷解させてスラリーを得た。該スラリーを80℃にて20分間保持し、次いで脱水し、70℃で乾燥させて、架橋ゴム粒子(D-1)からなる粉末を得た。 (Production Example 5) (Production of crosslinked rubber particles (D-1))
The emulsion containing the particles (m) obtained in Production Example 3 and the emulsion containing the particles (n) (dispersion auxiliary particles) obtained in Production Example 4 were used as the particles (m): mass of the particles (n). The mixture was mixed so that the ratio was 2: 1. The mixed emulsion was frozen at −20 ° C. for 2 hours. The frozen mixed emulsion was thrown into twice as much warm water at 80 ° C. and iced to obtain a slurry. The slurry was held at 80 ° C. for 20 minutes, then dehydrated and dried at 70 ° C. to obtain a powder composed of crosslinked rubber particles (D-1).
(製造例6)(ブロック共重合体〔E-1〕の製造)
内部を窒素で置換した三口フラスコに、室温にて乾燥トルエン735kgと、1,2-ジメトキシエタン36.75kgと、イソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム20molを含有するトルエン溶液39.4kgとを入れた。これにsec-ブチルリチウム1.17molを加えた。さらにこれにメタクリル酸メチル39.0kgを加え、室温で1時間反応させてメタクリル酸メチル重合体〔c11〕を得た。反応液に含まれるメタクリル酸メチル重合体〔c11〕の重量平均分子量Mwc11は45800であった。 (Production Example 6) (Production of block copolymer [E-1])
In a three-necked flask purged with nitrogen, 735 kg of dry toluene at room temperature, 36.75 kg of 1,2-dimethoxyethane, and 20 mol of isobutylbis (2,6-di-t-butyl-4-methylphenoxy) aluminum were added. 39.4 kg of the contained toluene solution was added. To this was added 1.17 mol of sec-butyllithium. Further, 39.0 kg of methyl methacrylate was added thereto and reacted at room temperature for 1 hour to obtain a methyl methacrylate polymer [c1 1 ]. The weight average molecular weight Mw c11 of the methyl methacrylate polymer [c1 1 ] contained in the reaction solution was 45800.
内部を窒素で置換した三口フラスコに、室温にて乾燥トルエン735kgと、1,2-ジメトキシエタン36.75kgと、イソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム20molを含有するトルエン溶液39.4kgとを入れた。これにsec-ブチルリチウム1.17molを加えた。さらにこれにメタクリル酸メチル39.0kgを加え、室温で1時間反応させてメタクリル酸メチル重合体〔c11〕を得た。反応液に含まれるメタクリル酸メチル重合体〔c11〕の重量平均分子量Mwc11は45800であった。 (Production Example 6) (Production of block copolymer [E-1])
In a three-necked flask purged with nitrogen, 735 kg of dry toluene at room temperature, 36.75 kg of 1,2-dimethoxyethane, and 20 mol of isobutylbis (2,6-di-t-butyl-4-methylphenoxy) aluminum were added. 39.4 kg of the contained toluene solution was added. To this was added 1.17 mol of sec-butyllithium. Further, 39.0 kg of methyl methacrylate was added thereto and reacted at room temperature for 1 hour to obtain a methyl methacrylate polymer [c1 1 ]. The weight average molecular weight Mw c11 of the methyl methacrylate polymer [c1 1 ] contained in the reaction solution was 45800.
次いで、反応液を-25℃にし、アクリル酸n-ブチル29.0kgとアクリル酸ベンジル10.0kgとの混合液を0.5時間かけて滴下して、メタクリル酸メチル重合体〔c11〕の末端から重合反応を継続させて、メタクリル酸メチル重合体ブロック〔c11〕とアクリル酸n-ブチルおよびアクリル酸ベンジルからなるアクリル酸エステル重合体ブロック〔c2〕とからなるジブロック共重合体〔E-1〕を得た。反応液に含まれるブロック共重合体〔E-1〕は、重量平均分子量MwCB-1が92000、重量平均分子量MwCB-1/数平均分子量MnCB-1が1.06であった。メタクリル酸メチル重合体〔c11〕の重量平均分子量が45800であったので、アクリル酸n-ブチルおよびアクリル酸ベンジルからなるアクリル酸エステル重合体〔c2〕の重量平均分子量を46200と決定した。アクリル酸エステル重合体〔c2〕に含まれるアクリル酸ベンジルの割合は25.6質量%であった。
Next, the reaction solution was brought to −25 ° C., and a mixed solution of 29.0 kg of n-butyl acrylate and 10.0 kg of benzyl acrylate was added dropwise over 0.5 hour to prepare a methyl methacrylate polymer [c1 1 ]. A polymerization reaction is continued from the end, and a diblock copolymer [E2] comprising a methyl methacrylate polymer block [c1 1 ] and an acrylate polymer block [c2] consisting of n-butyl acrylate and benzyl acrylate -1]. The block copolymer [E-1] contained in the reaction solution had a weight average molecular weight Mw CB-1 of 92000 and a weight average molecular weight Mw CB-1 / number average molecular weight Mn CB-1 of 1.06. Since the weight average molecular weight of the methyl methacrylate polymer [c1 1 ] was 45800, the weight average molecular weight of the acrylate polymer [c2] composed of n-butyl acrylate and benzyl acrylate was determined to be 46200. The proportion of benzyl acrylate contained in the acrylate polymer [c2] was 25.6% by mass.
続いて、反応液にメタノール4kgを添加して重合反応を停止させた。その後、反応液を大量のメタノールに注ぎジブロック共重合体〔E-1〕を析出させ、該析出物を濾し取り、80℃、1torr(約133Pa)で、12時間乾燥させた。アクリル酸エステル重合体ブロック〔c2〕の質量に対するメタクリル酸エステル重合体ブロック〔c11〕の質量の比は50/50であった。
Subsequently, 4 kg of methanol was added to the reaction solution to stop the polymerization reaction. Thereafter, the reaction solution was poured into a large amount of methanol to precipitate a diblock copolymer [E-1], and the precipitate was filtered and dried at 80 ° C. and 1 torr (about 133 Pa) for 12 hours. The ratio of the mass of the methacrylic ester polymer block [c1 1 ] to the mass of the acrylate polymer block [c2] was 50/50.
<実施例1>
メタクリル樹脂〔A-1〕60質量部、メタクリル樹脂〔A-2〕40質量部、フェノール性水酸基含有化合物〔KH-6021〕1.0質量部、紫外線吸収剤〔LA-F70〕0.9質量部、ブロック共重合体〔E-1〕1質量部及び加工助剤〔H-1〕2質量部を混ぜ合わせ、二軸押出機((株)テクノベル製、商品名:KZW20TW-45MG-NH-600)で250℃にて溶融混練し、該溶融混練物を押出してメタクリル樹脂組成物〔1〕を製造した。メタクリル樹脂組成物〔1〕のガラス転移温度を測定した。結果を表1に示す。
メタクリル樹脂組成物〔1〕を熱プレス成形して50mm×50mm×3.2mmの板状成形体を得た。該板状成形体を用いて、全光線透過率およびヘーズを測定した。その結果を表1に示す。 <Example 1>
Methacrylic resin [A-1] 60 parts by mass, Methacrylic resin [A-2] 40 parts by mass, phenolic hydroxyl group-containing compound [KH-6021] 1.0 part by mass, UV absorber [LA-F70] 0.9 parts by mass Part, block copolymer [E-1] 1 part by weight and processing aid [H-1] 2 parts by weight, twin screw extruder (manufactured by Technobel Co., Ltd., trade name: KZW20TW-45MG-NH- 600) at 250 ° C., and the melt-kneaded product was extruded to produce a methacrylic resin composition [1]. The glass transition temperature of the methacrylic resin composition [1] was measured. The results are shown in Table 1.
The methacrylic resin composition [1] was hot press molded to obtain a plate-like molded body of 50 mm × 50 mm × 3.2 mm. The total light transmittance and haze were measured using the plate-like molded product. The results are shown in Table 1.
メタクリル樹脂〔A-1〕60質量部、メタクリル樹脂〔A-2〕40質量部、フェノール性水酸基含有化合物〔KH-6021〕1.0質量部、紫外線吸収剤〔LA-F70〕0.9質量部、ブロック共重合体〔E-1〕1質量部及び加工助剤〔H-1〕2質量部を混ぜ合わせ、二軸押出機((株)テクノベル製、商品名:KZW20TW-45MG-NH-600)で250℃にて溶融混練し、該溶融混練物を押出してメタクリル樹脂組成物〔1〕を製造した。メタクリル樹脂組成物〔1〕のガラス転移温度を測定した。結果を表1に示す。
メタクリル樹脂組成物〔1〕を熱プレス成形して50mm×50mm×3.2mmの板状成形体を得た。該板状成形体を用いて、全光線透過率およびヘーズを測定した。その結果を表1に示す。 <Example 1>
Methacrylic resin [A-1] 60 parts by mass, Methacrylic resin [A-2] 40 parts by mass, phenolic hydroxyl group-containing compound [KH-6021] 1.0 part by mass, UV absorber [LA-F70] 0.9 parts by mass Part, block copolymer [E-1] 1 part by weight and processing aid [H-1] 2 parts by weight, twin screw extruder (manufactured by Technobel Co., Ltd., trade name: KZW20TW-45MG-NH- 600) at 250 ° C., and the melt-kneaded product was extruded to produce a methacrylic resin composition [1]. The glass transition temperature of the methacrylic resin composition [1] was measured. The results are shown in Table 1.
The methacrylic resin composition [1] was hot press molded to obtain a plate-like molded body of 50 mm × 50 mm × 3.2 mm. The total light transmittance and haze were measured using the plate-like molded product. The results are shown in Table 1.
メタクリル樹脂組成物〔1〕を、80℃で12時間乾燥させた。20mmφ単軸押出機(OCS社製)を用いて、樹脂温度260℃にて、メタクリル樹脂組成物〔1〕を150mm幅のTダイから押し出し、それを表面温度85℃のロールにて引き取り、幅110mm、厚さ160μmの未延伸フィルムを得た。製造された未延伸フィルムについて表面平滑性および強度を測定した。その評価結果を表1に示す。
厚さ160μmの未延伸フィルムから、二辺が押出方向と平行となるように100mm×100mmの小片を切り出した。該小片をパンタグラフ式二軸延伸試験機(東洋精機(株)製)にセットし、ガラス転移温度+10℃の温度で、150%/分で、押出方向に平行な方向に長さ2倍に一軸延伸した。次に、ガラス転移温度+10℃の温度で、150%/分で、押出方向に垂直な方向に長さ2倍に一軸延伸し、次いで10秒間保持し、最後に室温下に取り出し、急冷させて、面積延伸倍率4倍、厚さ40μmの二軸延伸フィルムを得た。得られた二軸延伸フィルムについて全光線透過率、ヘーズを測定した。その結果を表1に示す。 The methacrylic resin composition [1] was dried at 80 ° C. for 12 hours. Using a 20 mmφ single-screw extruder (OCS), the methacrylic resin composition [1] is extruded from a 150 mm wide T-die at a resin temperature of 260 ° C., and is taken up by a roll having a surface temperature of 85 ° C. An unstretched film having a thickness of 110 mm and a thickness of 160 μm was obtained. The surface smoothness and strength of the produced unstretched film were measured. The evaluation results are shown in Table 1.
A small piece of 100 mm × 100 mm was cut out from an unstretched film having a thickness of 160 μm so that two sides were parallel to the extrusion direction. The small piece is set in a pantograph type biaxial stretching tester (manufactured by Toyo Seiki Co., Ltd.), and is uniaxially doubled in length in a direction parallel to the extrusion direction at a glass transition temperature of + 10 ° C. at 150% / min. Stretched. Next, it is uniaxially stretched twice in length in the direction perpendicular to the extrusion direction at a glass transition temperature + 10 ° C. at 150% / min, then held for 10 seconds, and finally taken out at room temperature and rapidly cooled. A biaxially stretched film having an area stretch ratio of 4 times and a thickness of 40 μm was obtained. About the obtained biaxially stretched film, the total light transmittance and haze were measured. The results are shown in Table 1.
厚さ160μmの未延伸フィルムから、二辺が押出方向と平行となるように100mm×100mmの小片を切り出した。該小片をパンタグラフ式二軸延伸試験機(東洋精機(株)製)にセットし、ガラス転移温度+10℃の温度で、150%/分で、押出方向に平行な方向に長さ2倍に一軸延伸した。次に、ガラス転移温度+10℃の温度で、150%/分で、押出方向に垂直な方向に長さ2倍に一軸延伸し、次いで10秒間保持し、最後に室温下に取り出し、急冷させて、面積延伸倍率4倍、厚さ40μmの二軸延伸フィルムを得た。得られた二軸延伸フィルムについて全光線透過率、ヘーズを測定した。その結果を表1に示す。 The methacrylic resin composition [1] was dried at 80 ° C. for 12 hours. Using a 20 mmφ single-screw extruder (OCS), the methacrylic resin composition [1] is extruded from a 150 mm wide T-die at a resin temperature of 260 ° C., and is taken up by a roll having a surface temperature of 85 ° C. An unstretched film having a thickness of 110 mm and a thickness of 160 μm was obtained. The surface smoothness and strength of the produced unstretched film were measured. The evaluation results are shown in Table 1.
A small piece of 100 mm × 100 mm was cut out from an unstretched film having a thickness of 160 μm so that two sides were parallel to the extrusion direction. The small piece is set in a pantograph type biaxial stretching tester (manufactured by Toyo Seiki Co., Ltd.), and is uniaxially doubled in length in a direction parallel to the extrusion direction at a glass transition temperature of + 10 ° C. at 150% / min. Stretched. Next, it is uniaxially stretched twice in length in the direction perpendicular to the extrusion direction at a glass transition temperature + 10 ° C. at 150% / min, then held for 10 seconds, and finally taken out at room temperature and rapidly cooled. A biaxially stretched film having an area stretch ratio of 4 times and a thickness of 40 μm was obtained. About the obtained biaxially stretched film, the total light transmittance and haze were measured. The results are shown in Table 1.
<実施例2~8、比較例1~2>
表1~表2に示す配合比とする以外は実施例1と同じ方法でメタクリル樹脂組成物〔2〕~〔10〕を製造し、実施例1と同じ方法で物性を測定した。
評価結果を表1~表2に示す。 <Examples 2-8, Comparative Examples 1-2>
The methacrylic resin compositions [2] to [10] were produced in the same manner as in Example 1 except that the blending ratios shown in Tables 1 and 2 were used, and the physical properties were measured in the same manner as in Example 1.
The evaluation results are shown in Tables 1 and 2.
表1~表2に示す配合比とする以外は実施例1と同じ方法でメタクリル樹脂組成物〔2〕~〔10〕を製造し、実施例1と同じ方法で物性を測定した。
評価結果を表1~表2に示す。 <Examples 2-8, Comparative Examples 1-2>
The methacrylic resin compositions [2] to [10] were produced in the same manner as in Example 1 except that the blending ratios shown in Tables 1 and 2 were used, and the physical properties were measured in the same manner as in Example 1.
The evaluation results are shown in Tables 1 and 2.
メタクリル樹脂組成物〔1〕の代わりにメタクリル樹脂組成物〔2〕~〔10〕を用いた以外は実施例1と同じ方法で未延伸フィルム並びに二軸延伸フィルムを得た。評価結果を表1~表2に示す。
An unstretched film and a biaxially stretched film were obtained in the same manner as in Example 1 except that the methacrylic resin compositions [2] to [10] were used instead of the methacrylic resin composition [1]. The evaluation results are shown in Tables 1 and 2.
表中の略号の意味は以下のとおりである。
フェノール性水酸基含有化合物〔B〕
KH-6021 : ビスフェノールA型ノボラック樹脂(DIC社製、重量平均分子量Mw=3000、分子量分布Mw/Mn=3.33、1分子中のフェノール性水酸基の数=平均7.5個。
VP8000 : ポリパラヒドロキシスチレン(日本曹達社製、重量平均分子量Mw=9800、分子量分布Mw/Mn=1.09、1分子中のフェノール性水酸基の数=平均75個。 The meanings of the abbreviations in the table are as follows.
Phenolic hydroxyl group-containing compound [B]
KH-6021: Bisphenol A type novolak resin (manufactured by DIC, weight average molecular weight Mw = 3000, molecular weight distribution Mw / Mn = 3.33, the number of phenolic hydroxyl groups in one molecule = average 7.5).
VP8000: polyparahydroxystyrene (manufactured by Nippon Soda Co., Ltd., weight average molecular weight Mw = 9800, molecular weight distribution Mw / Mn = 1.09, number of phenolic hydroxyl groups in one molecule = average 75).
フェノール性水酸基含有化合物〔B〕
KH-6021 : ビスフェノールA型ノボラック樹脂(DIC社製、重量平均分子量Mw=3000、分子量分布Mw/Mn=3.33、1分子中のフェノール性水酸基の数=平均7.5個。
VP8000 : ポリパラヒドロキシスチレン(日本曹達社製、重量平均分子量Mw=9800、分子量分布Mw/Mn=1.09、1分子中のフェノール性水酸基の数=平均75個。 The meanings of the abbreviations in the table are as follows.
Phenolic hydroxyl group-containing compound [B]
KH-6021: Bisphenol A type novolak resin (manufactured by DIC, weight average molecular weight Mw = 3000, molecular weight distribution Mw / Mn = 3.33, the number of phenolic hydroxyl groups in one molecule = average 7.5).
VP8000: polyparahydroxystyrene (manufactured by Nippon Soda Co., Ltd., weight average molecular weight Mw = 9800, molecular weight distribution Mw / Mn = 1.09, number of phenolic hydroxyl groups in one molecule = average 75).
紫外線吸収剤〔C〕
LA-31 : 2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-t-オクチルフェノール](ADEKA社製)
LA-F70 : 2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジン(ADEKA社製) UV absorber [C]
LA-31: 2,2′-methylenebis [6- (2H-benzotriazol-2-yl) -4-t-octylphenol] (manufactured by ADEKA)
LA-F70: 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (manufactured by ADEKA)
LA-31 : 2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-t-オクチルフェノール](ADEKA社製)
LA-F70 : 2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジン(ADEKA社製) UV absorber [C]
LA-31: 2,2′-methylenebis [6- (2H-benzotriazol-2-yl) -4-t-octylphenol] (manufactured by ADEKA)
LA-F70: 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (manufactured by ADEKA)
ポリカーボネート樹脂〔G〕
G-1: 直鎖のポリカーボネート樹脂(住化スタイロンポリカーボネート社製、SD POLYCA TR-2201(品番)、MVR(300℃、1.2Kg、10分間;JIS K7210準拠)=210cm3/10分、Mw=22000、Mw/Mn=2.0)、1分子中のフェノール性水酸基の数=0~2個。 Polycarbonate resin [G]
G-1: linear polycarbonate resin (manufactured by Sumika scan Tyrone polycarbonate Inc., SD POLYCA TR-2201 (product number), MVR (300 ℃, 1.2Kg , 10 minutes; JIS K7210 compliant) = 210cm 3/10 min, Mw = 22000, Mw / Mn = 2.0) The number of phenolic hydroxyl groups in one molecule = 0-2.
G-1: 直鎖のポリカーボネート樹脂(住化スタイロンポリカーボネート社製、SD POLYCA TR-2201(品番)、MVR(300℃、1.2Kg、10分間;JIS K7210準拠)=210cm3/10分、Mw=22000、Mw/Mn=2.0)、1分子中のフェノール性水酸基の数=0~2個。 Polycarbonate resin [G]
G-1: linear polycarbonate resin (manufactured by Sumika scan Tyrone polycarbonate Inc., SD POLYCA TR-2201 (product number), MVR (300 ℃, 1.2Kg , 10 minutes; JIS K7210 compliant) = 210cm 3/10 min, Mw = 22000, Mw / Mn = 2.0) The number of phenolic hydroxyl groups in one molecule = 0-2.
加工助剤〔H〕
H-1 : 三菱レイヨン社製メタブレンP550A(平均重合度:7734、タクリル酸メチルに由来する構造単位88質量%、アクリル酸ブチルに由来する構造単位12質量%) Processing aid [H]
H-1: Metablene P550A manufactured by Mitsubishi Rayon Co., Ltd. (average polymerization degree: 7734, structural unit 88% by mass derived from methyl tacrylate, structural unit 12% by mass derived from butyl acrylate)
H-1 : 三菱レイヨン社製メタブレンP550A(平均重合度:7734、タクリル酸メチルに由来する構造単位88質量%、アクリル酸ブチルに由来する構造単位12質量%) Processing aid [H]
H-1: Metablene P550A manufactured by Mitsubishi Rayon Co., Ltd. (average polymerization degree: 7734, structural unit 88% by mass derived from methyl tacrylate, structural unit 12% by mass derived from butyl acrylate)
酸化防止剤〔I〕
I-1 : ヒンダードフェノール系酸化防止剤(Pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]、分子量1178、1分子中のフェノール性水酸基の数=4個。 Antioxidant [I]
I-1: Hindered phenol antioxidant (Pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], molecular weight 1178, number of phenolic hydroxyl groups in one molecule = 4 .
I-1 : ヒンダードフェノール系酸化防止剤(Pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]、分子量1178、1分子中のフェノール性水酸基の数=4個。 Antioxidant [I]
I-1: Hindered phenol antioxidant (Pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], molecular weight 1178, number of phenolic hydroxyl groups in one molecule = 4 .
Claims (16)
- メタクリル樹脂〔A〕70~99.99質量%、および分子量が2千~30万であり且つ1分子中にフェノール性水酸基を3つ以上有する化合物〔B〕0.01~30質量%を含有してなる熱可塑性のメタクリル樹脂組成物。 Methacrylic resin [A] 70 to 99.99% by mass, and a compound having a molecular weight of 2,000 to 300,000 and having three or more phenolic hydroxyl groups in one molecule [B] 0.01 to 30% by mass A thermoplastic methacrylic resin composition.
- メタクリル樹脂〔A〕は、メタクリル酸メチルに由来する構造単位を90質量%以上含有するものである、請求項1に記載のメタクリル樹脂組成物。 The methacrylic resin composition according to claim 1, wherein the methacrylic resin [A] contains 90% by mass or more of a structural unit derived from methyl methacrylate.
- メタクリル樹脂〔A〕は、メタクリル酸メチルに由来する構造単位と環構造を主鎖に有する構造単位とを含有するものである、請求項1または2に記載のメタクリル樹脂組成物。 3. The methacrylic resin composition according to claim 1 or 2, wherein the methacrylic resin [A] contains a structural unit derived from methyl methacrylate and a structural unit having a ring structure in the main chain.
- 環構造を主鎖に有する構造単位が、>CH-O-C(=O)-基を環構造に含む構造単位、-C(=O)-O-C(=O)-基を環構造に含む構造単位、-C(=O)-N-C(=O)-基を環構造に含む構造単位、または>CH-O-CH<基を環構造に含む構造単位である、請求項3に記載のメタクリル樹脂組成物。 A structural unit having a ring structure in the main chain is a structural unit containing a> CH—O—C (═O) — group in the ring structure, and a —C (═O) —O—C (═O) — group is a ring structure A structural unit containing a —C (═O) —N—C (═O) — group in the ring structure, or a structural unit containing a> CH—O—CH <group in the ring structure. 3. The methacrylic resin composition according to 3.
- 化合物〔B〕が、ポリビニルフェノール、テルペンフェノール樹脂、レゾール型フェノール樹脂またはノボラック型フェノール樹脂である、請求項1~4のいずれかひとつに記載のメタクリル樹脂組成物。 The methacrylic resin composition according to any one of claims 1 to 4, wherein the compound [B] is polyvinyl phenol, terpene phenol resin, resol type phenol resin or novolac type phenol resin.
- 紫外線吸収剤〔C〕をさらに含有する、請求項1~5のいずれかひとつに記載のメタクリル樹脂組成物。 The methacrylic resin composition according to any one of claims 1 to 5, further comprising an ultraviolet absorber [C].
- 架橋ゴム〔D〕をさらに含有する、請求項1~6のいずれかひとつに記載のメタクリル樹脂組成物。 The methacrylic resin composition according to any one of claims 1 to 6, further comprising a crosslinked rubber [D].
- ブロック共重合体〔E〕またはグラフト共重合体〔F〕をさらに含有する、請求項1~7のいずれかひとつに記載のメタクリル樹脂組成物。 The methacrylic resin composition according to any one of claims 1 to 7, further comprising a block copolymer [E] or a graft copolymer [F].
- ポリカーボネート樹脂〔G〕をさらに含有する、請求項1~8のいずれかひとつに記載のメタクリル樹脂組成物。 The methacrylic resin composition according to any one of claims 1 to 8, further comprising a polycarbonate resin [G].
- 請求項1~9のいずれかひとつに記載のメタクリル樹脂組成物からなる成形体。 A molded body comprising the methacrylic resin composition according to any one of claims 1 to 9.
- 請求項1~9のいずれかひとつに記載のメタクリル樹脂組成物からなるフィルム。 A film comprising the methacrylic resin composition according to any one of claims 1 to 9.
- 請求項11に記載のフィルムからなる光学フィルム。 An optical film comprising the film according to claim 11.
- 請求項11に記載のフィルムからなる偏光子保護フィルム。 A polarizer protective film comprising the film according to claim 11.
- 請求項11に記載のフィルムからなる位相差フィルム。 A retardation film comprising the film according to claim 11.
- 請求項11~14のいずれかひとつに記載のフィルムを少なくとも一枚積層してなる偏光板。 A polarizing plate formed by laminating at least one film according to any one of claims 11 to 14.
- メタクリル樹脂〔A〕70~99.99質量%と、分子量が2千~30万であり且つ1分子中にフェノール性水酸基を3つ以上有する化合物〔B〕0.01~30質量%とを溶融混練して、熱可塑性のメタクリル樹脂組成物を得、
該メタクリル樹脂組成物を溶融成形することを有する、成形体の製造方法。 Melt methacrylic resin [A] 70 to 99.99 mass% and compound [B] 0.01 to 30 mass% having a molecular weight of 2,000 to 300,000 and having three or more phenolic hydroxyl groups in one molecule Kneading to obtain a thermoplastic methacrylic resin composition,
The manufacturing method of a molded object which has melt-molding this methacrylic resin composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018518344A JP6909209B2 (en) | 2016-05-19 | 2017-05-18 | Methacrylic resin composition and molded article |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016100810 | 2016-05-19 | ||
JP2016-100810 | 2016-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017200032A1 true WO2017200032A1 (en) | 2017-11-23 |
Family
ID=60325336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/018615 WO2017200032A1 (en) | 2016-05-19 | 2017-05-18 | Methacrylic resin composition and molded body |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6909209B2 (en) |
TW (1) | TW201811909A (en) |
WO (1) | WO2017200032A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019151537A1 (en) * | 2018-02-05 | 2019-08-08 | 株式会社クラレ | Thermoplastic resin film and method for manufacturing same |
JP2020164680A (en) * | 2019-03-29 | 2020-10-08 | 株式会社クラレ | (meth)acrylic resin film |
WO2021020426A1 (en) * | 2019-07-30 | 2021-02-04 | 株式会社クラレ | Methacryl resin composition, resin modifier, molded body, film, and film manufacturing method |
WO2022124402A1 (en) * | 2020-12-11 | 2022-06-16 | 株式会社カネカ | Acrylic resin composition and resin film |
JP2022540212A (en) * | 2019-07-12 | 2022-09-14 | 金発科技股▲ふん▼有限公司 | Polyacrylic acid ester polymer composite material and method for producing the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01146948A (en) * | 1987-12-02 | 1989-06-08 | Toshiba Chem Corp | Sealing resin composition |
JPH03174465A (en) * | 1989-09-08 | 1991-07-29 | Takeda Chem Ind Ltd | Phenolic resin molding material and molded product thereof |
JPH093168A (en) * | 1995-06-23 | 1997-01-07 | Matsushita Electric Works Ltd | Epoxy resin composition and its production |
JP2004529258A (en) * | 2001-06-08 | 2004-09-24 | チェイル インダストリーズ インコーポレイテッド | Flame retardant thermoplastic resin composition |
JP2011509434A (en) * | 2008-01-08 | 2011-03-24 | エルジー・ケム・リミテッド | Optical film and information electronic device including the same |
WO2016185722A1 (en) * | 2015-05-21 | 2016-11-24 | 株式会社日本触媒 | Resin composition and film |
-
2017
- 2017-05-18 WO PCT/JP2017/018615 patent/WO2017200032A1/en active Application Filing
- 2017-05-18 TW TW106116489A patent/TW201811909A/en unknown
- 2017-05-18 JP JP2018518344A patent/JP6909209B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01146948A (en) * | 1987-12-02 | 1989-06-08 | Toshiba Chem Corp | Sealing resin composition |
JPH03174465A (en) * | 1989-09-08 | 1991-07-29 | Takeda Chem Ind Ltd | Phenolic resin molding material and molded product thereof |
JPH093168A (en) * | 1995-06-23 | 1997-01-07 | Matsushita Electric Works Ltd | Epoxy resin composition and its production |
JP2004529258A (en) * | 2001-06-08 | 2004-09-24 | チェイル インダストリーズ インコーポレイテッド | Flame retardant thermoplastic resin composition |
JP2011509434A (en) * | 2008-01-08 | 2011-03-24 | エルジー・ケム・リミテッド | Optical film and information electronic device including the same |
WO2016185722A1 (en) * | 2015-05-21 | 2016-11-24 | 株式会社日本触媒 | Resin composition and film |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019151537A1 (en) * | 2018-02-05 | 2019-08-08 | 株式会社クラレ | Thermoplastic resin film and method for manufacturing same |
JP2020164680A (en) * | 2019-03-29 | 2020-10-08 | 株式会社クラレ | (meth)acrylic resin film |
JP2022540212A (en) * | 2019-07-12 | 2022-09-14 | 金発科技股▲ふん▼有限公司 | Polyacrylic acid ester polymer composite material and method for producing the same |
WO2021020426A1 (en) * | 2019-07-30 | 2021-02-04 | 株式会社クラレ | Methacryl resin composition, resin modifier, molded body, film, and film manufacturing method |
JP7561128B2 (en) | 2019-07-30 | 2024-10-03 | 株式会社クラレ | Methacrylic resin composition, resin modifier, molded article and film, and method for producing film |
WO2022124402A1 (en) * | 2020-12-11 | 2022-06-16 | 株式会社カネカ | Acrylic resin composition and resin film |
Also Published As
Publication number | Publication date |
---|---|
TW201811909A (en) | 2018-04-01 |
JPWO2017200032A1 (en) | 2019-03-14 |
JP6909209B2 (en) | 2021-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10619043B2 (en) | Methacrylic resin composition | |
JP6808613B2 (en) | Methacrylic resin composition | |
KR102221882B1 (en) | Methacrylic resin composition | |
KR102394025B1 (en) | Methacrylic resin or methacrylic resin composition | |
JP6324406B2 (en) | Acrylic resin film | |
JP6909209B2 (en) | Methacrylic resin composition and molded article | |
JP7009377B2 (en) | Methacrylic resin composition | |
JP7045994B2 (en) | Methacrylic resin composition and its manufacturing method, molded body, film, laminated film, laminated molded body | |
JP6345086B2 (en) | Resin composition and molded body | |
WO2021193922A1 (en) | Acrylic composition and molded article | |
JP6317131B2 (en) | Plate-shaped molded body made of methacrylic resin composition | |
JP2017048344A (en) | Methacryl resin, methacryl resin composition and molded body | |
JP7184793B2 (en) | Methacrylic resin, methacrylic resin composition and molded article | |
KR102578963B1 (en) | Methacrylic resin compositions, molded bodies and films | |
JP2022072065A (en) | Methacrylic polymer, production method thereof, and molded body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018518344 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17799456 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17799456 Country of ref document: EP Kind code of ref document: A1 |