Nothing Special   »   [go: up one dir, main page]

WO2017199387A1 - 培養装置および培養方法、並びにこの培養方法により製造された培養臓器 - Google Patents

培養装置および培養方法、並びにこの培養方法により製造された培養臓器 Download PDF

Info

Publication number
WO2017199387A1
WO2017199387A1 PCT/JP2016/064825 JP2016064825W WO2017199387A1 WO 2017199387 A1 WO2017199387 A1 WO 2017199387A1 JP 2016064825 W JP2016064825 W JP 2016064825W WO 2017199387 A1 WO2017199387 A1 WO 2017199387A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
sealed container
tube
culture solution
tubes
Prior art date
Application number
PCT/JP2016/064825
Other languages
English (en)
French (fr)
Inventor
光次 斉藤
Original Assignee
光次 斉藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光次 斉藤 filed Critical 光次 斉藤
Priority to US16/302,728 priority Critical patent/US11306281B2/en
Priority to PCT/JP2016/064825 priority patent/WO2017199387A1/ja
Priority to JP2016559458A priority patent/JP6205507B1/ja
Priority to AU2016406837A priority patent/AU2016406837B2/en
Priority to KR1020187036842A priority patent/KR102231394B1/ko
Priority to EP16902406.4A priority patent/EP3460040A4/en
Priority to CN201680085872.XA priority patent/CN109312289B/zh
Publication of WO2017199387A1 publication Critical patent/WO2017199387A1/ja
Priority to US17/694,872 priority patent/US20220204900A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/08Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/22Transparent or translucent parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/24Gas permeable parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/10Hollow fibers or tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/16Hollow fibers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/18External loop; Means for reintroduction of fermented biomass or liquid percolate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/14Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus with filters, sieves or membranes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0062General methods for three-dimensional culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/067Hepatocytes
    • C12N5/0671Three-dimensional culture, tissue culture or organ culture; Encapsulated cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • C12N5/0677Three-dimensional culture, tissue culture or organ culture; Encapsulated cells

Definitions

  • the present invention relates to a culture apparatus and a culture method for three-dimensionally culturing cultures such as tissues and cells, and a culture organ produced by this culture method.
  • a conventional culture apparatus for three-dimensionally culturing an object to be cultured forms the object to be cultured in a cylindrical shape (see, for example, Patent Document 1) or holds it on a cylindrical scaffolding (for example, Patent Documents 2 and 3). In many cases, it is arranged in the culture chamber so that the culture medium is circulated inside and outside the cylindrical culture object.
  • three-dimensional culture (three-dimensional culture) is difficult with conventional culture devices, and only a few sheet-shaped cell cultures can be performed, and the function as an organ cannot be provided at present. .
  • the hepatic artery and bile duct run side by side, but the blood flow and bile flow are in opposite directions, and wastes such as bile are efficiently transferred to the bile duct due to the difference in the concentration gradient and the function of hepatocytes. It is excreted.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and a plurality of tubes having micropores formed on the outer peripheral surface thereof are provided in a sealed container that accommodates an object to be cultured.
  • the culture can be cultured three-dimensionally.
  • a culture apparatus and a culture method in which a culture object cultured three-dimensionally can be taken out together with a plurality of tubes from a sealed container, or left in the living body together with the sealed container,
  • An object of the present invention is to provide a cultured organ produced by this culture method.
  • a culture apparatus a sealed container having a sealable inlet for feeding a culture object and capable of accommodating the culture object, a micropore provided on the outer peripheral surface provided in the sealed container
  • a culture solution that is connected to at least one of the plurality of tubes and the tube is used as a culture solution supply tube by supplying or circulating the culture solution to the tube.
  • a waste apparatus that is connected to at least one of the plurality of tubes other than the culture solution supply tube of the plurality of tubes and has permeated into the tube through the micropores of the tube.
  • An excretion device having the tube as an excretory tube is provided by discharging an object out of the sealed container.
  • the culture medium is supplied into the sealed container through the culture solution supply pipe by the culture solution supply device in a state where the culture product is accommodated in the sealed container, and the waste product of the culture object is
  • the culture target can be cultured in a three-dimensional manner over a long period of time in a state similar to the living body of an animal.
  • a single excretory tube, a plurality of culture solution supply tubes, and various layout changes can be performed, so that an object to be cultured can be used in a living body such as complicated blood vessel running or blood flow and bile flow. It is possible to culture three-dimensionally while reproducing a complex structure that approximates various organs.
  • the sealed container is decomposable.
  • the culture object and the tube can be taken out from the sealed container as one body, and the taken-out thing is directly part of the animal tissue. Can be implanted in vivo.
  • the culture medium supply tube plays a role as a blood vessel, it is anastomosed to the blood vessel, and the excretory tube is anastomosed to the digestive tract or bile duct, etc. It is possible to maintain the same function.
  • the sealed container is a capsule.
  • the cells in the sealed container can be three-dimensionally cultured in a state where the capsule-shaped sealed container is embedded in the living body.
  • a tube having micropores can be manufactured at low cost.
  • the culture fluid supply device is connected to both ends of the culture fluid supply tube and circulates the culture fluid through the culture fluid supply tube. It is provided with a path, a pump provided in the culture solution circulation path and circulating the culture solution, and a control box provided in the culture solution circulation path and controlling the circulating culture solution.
  • the structure of the culture solution supply apparatus can be simplified, and the culture solution can be continuously and smoothly circulated through the culture solution supply pipe.
  • At least a part of the sealed container is made of a transparent material.
  • the culture liquid supply device supplies the culture liquid through the culture liquid supply pipe into the sealed container, and the waste product of the culture medium is supplied to the excretory duct and excretion.
  • the culture medium is three-dimensionally cultured in the sealed container by discharging it out of the sealed container through an apparatus, and after the culturing operation, the sealed container is disassembled, The tube and the tube are taken out from the sealed container.
  • a culturing method it is possible to cultivate the object to be cultured in a closed container in a three-dimensional manner over a long period of time in a state that approximates the living body of an animal. Further, after completion of the culturing operation, the integrated body of the culture object and the tube taken out by disassembling the sealed container can be transplanted into the living body as a part of the animal tissue as it is.
  • the object to be cultured in the hermetically sealed container can be cultured in a three-dimensional manner over a long period of time in an animal's living body, so that the same environment as that of the living body is created with difficulty. This is not necessary, and the culture object in the sealed container can be efficiently cultured under an optimum environment.
  • the culture solution supply tube and excretory tube are reconnected to the blood vessels and bile ducts of the living body and the sealed container is left in the living body or melts after a certain period of time in the living body. Therefore, the transplanting operation can be omitted or simplified.
  • a cultured organ composed of an integral body of a subject to be cultured and a tube cultured by the culture method according to (8) or (9) above.
  • an integrated body of the culture object and the tube taken out from the sealed container can be transplanted as it is as a cultured organ into the living body of an animal or left in the living body.
  • the culture medium supply tube plays a role as a blood vessel, it is anastomosed to the blood vessel, and the excretory tube is anastomosed to the digestive tract or bile duct, etc. It is possible to maintain the same function.
  • a plurality of tubes having micropores formed on the outer peripheral surface are provided in a sealed container that accommodates a culture object, and a culture solution is supplied or circulated to any one of the tubes, and from other tubes.
  • the culture can be cultured in a three-dimensional manner, and a plurality of the cultures cultured in a three-dimensional manner can be removed from a sealed container. It is possible to provide a culture device and a culture method that can be taken out together with the tube or left in a living body together with a sealed container, and a culture organ produced by this culture method.
  • FIG. 3 is a perspective view schematically showing a part of the first embodiment of the culture apparatus of the present invention by breaking. It is a partial top view of 2nd Embodiment of the culture apparatus of this invention.
  • FIG. 3 is a longitudinal front view taken along line III-III in FIG. 2.
  • FIG. 4 is a longitudinal side view taken along line IV-IV in FIG. 2.
  • FIG. 5 is an enlarged longitudinal sectional side view taken along line VV in FIG. 3. It is a perspective view which shows an example of the partition used in 2nd Embodiment.
  • the culture apparatus has a sealable inlet 1 (or a plurality of sealable inlets) for charging the culture object A, can accommodate the culture object A, and can be decomposed after the culture. 2, a plurality of tubes 3, 4, 5 provided in the sealed container 2 and provided with micropores (not shown) on the outer peripheral surface, and at least one of the plurality of tubes 3, 4, 5,
  • the tubes 3 and 5 are connected to the two tubes 3 and 5, and the tubes 3 and 5 are supplied or circulated so that these tubes 3 and 5 are used as the medium supply tubes.
  • An excretory device 8 is provided which is adapted to serve as an excretory tube.
  • the inlet 1 of the sealed container 2 can be sealed with a sealing lid 1a after the culture object A is put into the sealed container 2.
  • the sealing lid 1a may be made of an elastic body such as rubber, and an injection needle (not shown) or the like may be punctured therein to inject the culture object A such as cells into the sealed container 2.
  • the hermetic container 2 is a rectangular parallelepiped box made of a transparent acrylic plate, a glass plate, or the like, but may be a vertical or horizontal cylindrical body or other shapes. Moreover, only a part of the sealed container 2 can be formed of a transparent material, and the remaining part can be formed of an opaque material. In this embodiment, the hermetic container 2 is formed of an acrylic plate, and after culturing, any part can be cut with a cutter or the like so as to be disassembled.
  • the sealed container 2 is composed of a plurality of divided bodies (not shown), and is formed by connecting them with bolts and nuts (not shown) with a packing (not shown) in between. Then, after culturing, the bolts and nuts may be loosened or removed from the connecting portion so that the plurality of divided bodies can be separated from each other.
  • each tube 3, 4, 5 The number, length, outer shape, inner diameter, material, micropore diameter, etc. of each tube 3, 4, 5 are determined according to the culture conditions.
  • the material of each tube 3, 4, 5 can be a semipermeable membrane, an unglazed cylinder, an artificial blood vessel, or the like. Only a part of each of the tubes 3, 4, 5 in the sealed container 2 may be a semipermeable membrane or an unglazed cylinder, and the other part may be a synthetic resin cylinder.
  • the outer diameter of each of the tubes 3, 4, and 5 is preferably several mm to several tens mm, and the average pore diameter of the micropores is preferably 100 to 10,000 mm.
  • the materials, dimensions, average pore diameters, and the like of the tubes 3, 4, and 5 may be different from each other according to the respective applications.
  • each tube 3, 4, 5 is desirably flexible, but is not essential.
  • each of the tubes 3, 4, 5 penetrates the sealed container 2 in the left-right direction, and both end portions protrude from both sides of the sealed container 2.
  • the range in which the micropores in the tubes 3, 4, 5 are provided Or the outer peripheral surface of the portion outside the sealed container 2 is air-tightly and liquid-tightly coated, or a portion outside the sealed container 2 is provided.
  • a flexible tube (not shown) may be externally fitted.
  • Each culture solution supply device 6, 7 is connected to both ends of the culture solution supply pipes 3, 5, and a culture solution circulation path 9 that circulates the culture solution B through the culture solution supply pipes 3, 5; And a pump 10 that circulates the culture medium B, and a control box 11 that is provided in the culture medium circulation path 9 and controls the temperature, pressure, oxygen concentration, component distribution, etc. of the circulating culture medium B. ing.
  • Each of the culture fluid supply devices 6 and 7 includes a liquid reservoir 12 in the culture fluid circulation path 9, and the culture fluid circulation path 9 passes through the control box 11 and the pump 10 from the liquid reservoir 12.
  • the liquid supply pipe 9 a reaches one end of each culture liquid supply pipe 3, 5, and the drainage pipe 9 b reaches the liquid reservoir 12 from the other end of each culture liquid supply pipe 3, 5.
  • the excretion device 8 is connected to a waste storage container 13 provided outside the sealed container 2 and one end of the excretion pipe 4, and supplies the waste C stored in the excretion pipe 4 to the waste storage container 13. And a feeding pipe 14. The other end of the excretory tube 4 is closed by a plug 15.
  • the inlet 1 of the sealed container 2 is opened, and the culture object A is introduced into the sealed container 2 from there, and then the inlet 1 is sealed with a sealing lid 1a.
  • the culture object A can be as follows, for example. (1) Multiple cells dispersed and suspended in liquid or gel culture (2) Small cell clumps suspended in a liquid or gel culture solution
  • the culture medium A is introduced into the sealed container 2 and the inlet 1 is sealed, and then the culture solution B is circulated through the culture solution supply pipes 3 and 5 by the culture solution supply devices 6 and 7. Then, the necessary components contained in the culture medium B permeate the culture medium A in the sealed container 2 through the micropores of the culture liquid supply pipes 3 and 5 to promote the culture of the culture medium A.
  • the culture solution B may be a known one containing one or more of collagen, elastin, proteoglycan, fibrillin, fibronectin, laminin, chitin, chitosan, blood and the like.
  • the waste product C of the culture object A penetrates into the excretory tube 4 through the micropores of the excretory tube 4 and is stored in the waste product container 13 through the supply tube 14.
  • the culture object A can be efficiently three-dimensionally cultured over a long period of time.
  • the culture object A is cultured three-dimensionally over a long period of time in a state that approximates the complex structure of various organs in the animal body. Can do.
  • the sealed container 2 is disassembled so that the cultured object A and the tubes 3, 4 and 5 are taken out from the sealed container 2 and the taken-out thing is directly used as a cultured organ. Can be transplanted into the body.
  • the culture solution supply tubes 3 and 5 play a role as blood vessels, they are anastomosed to the blood vessels, and the excretory tube 4 is anastomosed to the digestive tract or bile ducts, etc. It becomes possible to maintain the same function as various organs.
  • the sealed container 20 is formed in a capsule shape in which hemispherical portions 20b and 20b are connected to both ends of the cylindrical portion 20a. Is provided in a hermetically sealed container 20.
  • a sealing lid 22 is detachably provided at the insertion port 21.
  • the surface of the hermetic lid 22 is preferably aligned with the outer surface of the cylindrical portion 20a of the hermetic container 20 when the hermetic lid 22 is properly attached to the inlet 21.
  • the hermetic container 20 and the hermetic lid 22 are made of a synthetic resin material having flexibility, a biomaterial including collagen fibers having good compatibility with a living body, and further embedded in the living body and longer than a predetermined culture time. It is preferable to use a material that melts over time. Specific examples of materials that can be used include nylon, tempered glass, reinforced plastic, silicon rubber, and silicon prosthesis.
  • a plurality of partition walls 23 formed of the same biomaterial as described above are provided in the sealed container 20 at appropriate intervals in the left-right direction.
  • Each partition wall 23 is provided with a plurality of small holes 24 in a predetermined arrangement or randomly.
  • the sealed container 20 is partitioned into a plurality of cells 25 by each partition wall 23.
  • a plurality of small holes 24 provided in each partition wall 23 allow movement of the culture medium A and the culture medium B between the cells 25 and 25, and pass through any of the small holes 24, which will be described later. It has the effect
  • FIG. The shape and size of the plurality of small holes 24 provided in each partition wall 23 can be changed as appropriate, and the partition wall 23 may block the movement of the culture medium A and the culture medium B between the cells 25 and 25. .
  • the sealed container 20 is provided with four tubes 26 to 29 so as to penetrate in the longitudinal direction.
  • each of the pipes 26 to 29 is sealed with large-diameter pipes 26a to 29a penetrating the hemispherical portions 20b on both sides of the sealed container 20 in an airtight and liquid tight manner.
  • both ends are bundled with each other, and as shown in FIGS. 3 and 5, a plurality of small diameters connected to the large diameter pipes 26a to 29a by connection pipes 30 formed of a stretchable material such as rubber.
  • connection pipes 30 formed of a stretchable material such as rubber.
  • It consists of tubes 26b-29b.
  • Micro holes (not shown) similar to those provided in the tubes 3, 4 and 5 in the first embodiment are provided on the outer peripheral surfaces of the small diameter tubes 26b to 29b.
  • a sealing material 31 is interposed between the portions where the ends of the plurality of small-diameter pipes 26b to 29b are bundled and between the connection pipes 30, so that the airtightness of the joint and the liquid It is preferable to keep the density.
  • the small-diameter pipes 26b to 29b are inserted into the small holes 24 of the respective partition walls 23 to be held at predetermined positions in the sealed container 20 so that they are not entangled or aggregated with each other. Has been.
  • the tubes 26, 28, and 29 are culture medium supply tubes, and the tube 27 is an excretory tube.
  • encapsulated fibers are enclosed in the sealed container 20. Or by implanting microfibers on the inner surface of the sealed container 20 or the surface of the partition wall 23, or coating those surfaces with a material that cells can easily engraft, or the inside of the tubes 26, 27, 28, 29. It is desirable to coat with a material that cells are difficult to engraft.
  • both ends of the tubes 26, 28, and 29 are connected to the culture solution supply device, one end of the tube 27 is connected to the excretory device, and a stopper is press-fitted to the other end of the tube 27, Block.
  • each culture solution supply apparatus is operated to circulate the culture solution B similar to that described above through the tubes 26, 28, and 29.
  • the culture solution B to be circulated through the tubes 26, 28, and 29 can be the same or different types.
  • the sealed container 20 can be embedded in the living body, and the object A to be cultured can be three-dimensionally cultured, so that the environment such as temperature can be kept the same as that of the living body.
  • the tube 26 is anastomosed to the living body
  • the tube 28 is also the portal vein
  • the tube 29 is the same bile duct
  • the tube 27 is also anastomosed to the liver vein (when the culture A is a hepatocyte)
  • the sealed container 20 is left as it is in the living body, and the cultured cells can be used as a part of the living body.
  • the sealed container 20 is embedded in the living body and formed of a material that melts after a certain period of time, it is not necessary to remove the sealed container 20 from the living body.
  • the status of the transplant destination, etc. it can be implemented in various ways.
  • the present invention is not limited only to the above-described embodiments, and can be implemented in various modified modes as follows, for example, without departing from the scope of the claims.
  • (1) One end of the culture solution supply pipe 3 or 5 is closed, and the culture solution B is supplied into the sealed container from the other end.
  • (3) Either one of the tubes 3 and 5 is a lymphatic vessel.
  • the tube 3 is a blood vessel
  • the tube 4 is an excretory tube
  • the tube 5 is a lymphatic tube.
  • the culture object A is called complicated blood vessel running, blood flow and bile flow. It is cultured three-dimensionally while reproducing a complex structure that approximates various organs in a living body.
  • the tubes 3, 4, 5 are provided in the sealed container 2 in different directions.
  • a Culture object B Culture solution C Waste 1 Input 1a Sealed lid 2 Sealed container 3 Tube (culture solution supply tube) 4 tubes (excretion tube) 5 tubes (culture solution supply tube) 6, 7 Culture fluid supply device 8 Excretion device 9 Culture fluid circulation path 9a Fluid supply tube 9b Fluid discharge tube 10 Pump 11 Control box 12 Liquid reservoir 13 Waste storage container 14 Feed tube 15 Plug body 20 Sealed container 20a Cylindrical portion 20b Hemispherical part 21 Input port 22 Sealing lid 23 Partition wall 24 Small hole 25 Cell 26, 28, 29 Tube (culture solution supply tube) 27 tubes (excretion tubes) 26a to 29a Large diameter pipe 26b to 29b Small diameter pipe 30 Connection pipe 31 Sealing material

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Clinical Laboratory Science (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 被培養物を三次元的に培養することができ、しかも培養された被培養物を、複数の管とともに一体として取り出すことができるようにした培養装置および培養方法、並びにその培養方法により製造された培養臓器を提供する。 培養装置を、被培養物Aを収容しうるとともに、培養後に分解可能とした密閉容器2と、密閉容器2内に設けられ、かつ外周面に微小孔が形成された複数の管3、4、5と、複数の管のうちの少なくとも1本の管3または5に培養液Bを供給または循環させる培養液供給装置6、7と、複数の管のうちの少なくとも1本の管4に接続され、該管4の微小孔を通して、被培養物Aから該管4内に浸透してきた老廃物Cを、密閉容器外に排出する排泄装置8とを備えるものとする。

Description

培養装置および培養方法、並びにこの培養方法により製造された培養臓器
 本発明は、組織や細胞等の被培養物を三次元的に培養する培養装置および培養方法、並びにこの培養方法により製造された培養臓器に関する。
 被培養物を三次元的に培養する従来の培養装置は、被培養物を筒状に形成するか(例えば特許文献1参照)、または筒状の足場台に保持し(例えば特許文献2または3参照)、それを培養室内に配設し、筒状とした被培養物の内側と外側とに培養液を流通させるようにしたものが多い。
特開2002-315566号公報 特許第4059301号公報 特開2008-92935号公報
 しかし、生体内では血管やリンパ管が組織内を複雑な分岐状または網目状に走行しており、上記のような従来の培養装置においては、このような組織を三次元的に再現することは困難である。
 また、臓器としての機能を持つ組織を培養・製造するには長期間の培養が必要である。培養細胞は培養に際して老廃物を産生する。老廃物には細胞毒性のある物質が含まれることがある。そのため、生体内では老廃物や粘液を排泄する排泄路(胆管、膵管、導管など)が存在する。しかし、従来の培養装置では排泄路が設けられておらず、長期間の循環培養は行われていない。
 したがって、これまでの培養装置では、三次元培養(立体培養)は困難であり、シート状の数層の細胞培養しかできず、臓器としての機能を持たせることはできていないのが現状である。
 また、生体内では、肝動脈と胆管は併走しているが、血流と胆汁の流れは逆方向であり、濃度勾配や肝細胞の働きの違いにより、効率よく胆汁などの老廃物を胆管に排泄している。
 本発明は、従来の技術が有する上記のような問題点に鑑みてなされたもので、被培養物を収容する密閉容器内に、外周面に微小孔が形成された複数の管を設け、そのいずれかの管に培養液を供給または循環させ、かつ他の管より被培養物の老廃物を排出させることができるようにすることにより、被培養物を三次元的に培養することができ、しかも三次元的に培養された被培養物を、密閉容器から、複数の管とともに一体として取り出すか、または密閉容器とともに、生体内に残置させたりすることができるようにした培養装置および培養方法、並びにこの培養方法により製造された培養臓器を提供することを目的としている。
 本発明によると、上記課題は、次のようにして解決される。
(1)培養装置において、被培養物を投入する密閉可能な投入口を有し、かつ前記被培養物を収容しうる密閉容器と、前記密閉容器内に設けられ、かつ外周面に微小孔が形成された複数の管と、前記複数の管のうちの少なくとも1本の管に接続され、かつ該管に、培養液を供給または循環させることにより、該管を培養液供給管とする培養液供給装置と、前記複数の管のうちの前記培養液供給管を除く他の管の少なくとも1本の管に接続され、該管の微小孔を通して、前記被培養物から該管内に浸透してきた老廃物を、前記密閉容器外に排出することにより、該管を排泄管とする排泄装置とを備えるものとする。
 このような構成によると、密閉容器内に被培養物を収容した状態で、培養液供給装置により、培養液を培養液供給管を通して密閉容器内に供給し、かつ被培養物の老廃物を、排泄管および排泄装置を通して、密閉容器外に排出することにより、密閉容器内において、被培養物を、動物の生体に近似した状態で、三次元的に、長期に亘って培養することができる。
 また、例えば排泄管を1本とし、培養液供給管を複数として、そのレイアウトを様々に変更することにより、被培養物を、複雑な血管走行や血流と胆汁の流れと言った生体内での種々の臓器に近似した複雑な構造を再現させつつ、三次元的に培養することができる。
(2)上記(1)項において、前記密閉容器を、分解可能のものとする。
 このような構成によると、培養作業終了後に、密閉容器を分解することにより、被培養物と管とを一体として、密閉容器から取り出すことができ、取り出したものを、そのまま動物の組織の一部として生体内に移植することができる。
 その際、培養液供給管は血管としての役割を果たすため、血管に吻合し、排泄管は、消化管または胆管等に吻合することにより、移植後も動物の肝臓、膵臓等の様々な臓器と同様の機能を維持することが可能となる。
(3)上記(1)項において、前記密閉容器を、カプセル状のものとする。
 このような構成によると、カプセル状とした密閉容器を生体内に埋設した状態で、密閉容器内の細胞を立体培養することができる。
(4)上記(1)~(3)項のいずれかにおいて、前記密閉容器内における前記管のいずれかの少なくとも一部を、半透膜からなるものとする。
 このような構成によると、管内を循環する培養液から、必要な成分を、半透膜を通して浸透させて、被培養物に供給したり、被培養物の老廃物を、半透膜を通して、管内に抽出したりすることができる。
(5)上記(1)~(3)項のいずれかにおいて、前記密閉容器内における前記管のいずれかの少なくとも一部を、素焼きの筒体からなるものとする。
 このような構成によると、微小孔を有する管を、安価に製造することができる。
(6)上記(1)~(5)項のいずれかにおいて、前記培養液供給装置が、前記培養液供給管の両端に接続され、かつ前記培養液供給管に培養液を循環させる培養液循環路と、前記培養液循環路に設けられ、かつ培養液を循環させるポンプと、前記培養液循環路に設けられ、かつ循環する培養液をコントロールするコントロールボックスとを備えているものとする。
 このような構成によると、培養液供給装置の構造を簡素化することができるとともに、培養液を、培養液供給管に、連続して、円滑に循環させることができる。
(7)上記(1)~(6)項のいずれかにおいて、前記密閉容器の少なくとも一部を透明材料からなるものとする。
 このような構成によると、被培養物の培養時の状況を、外部から視認して、培養の進行状況を容易に知ることができる。
(8)上記(1)項もしくは(2)項、または上記(2)項を引用する上記(4)~(7)項のいずれかの培養装置を使用した培養方法において、前記密閉容器内に被培養物を収容した状態で、前記培養液供給装置により、培養液を、前記培養液供給管を通して、前記密閉容器内に供給し、かつ前記被培養物の老廃物を、前記排泄管および排泄装置を通して、前記密閉容器外に排出することにより、前記密閉容器内において、前記被培養物を三次元的に培養し、培養作業終了後に、前記密閉容器を分解することにより、前記被培養物と管とを一体として、前記密閉容器から取り出す。
 このような培養方法によると、密閉容器内において、被培養物を、動物の生体に近似した状態で、三次元的に、長期に亘って培養することができる。
 また、培養作業終了後に、密閉容器を分解して取り出した被培養物と管との一体物を、そのまま動物の組織の一部として生体内に移植することができる。
(9)上記(1)項もしくは(3)項、または上記(3)項を引用する上記(4)~(7)項のいずれかの培養装置を使用した培養方法において、前記被培養物を収容した前記密閉容器を生体内に埋設し、かつ前記培養液供給装置と排泄装置とを生体外に配設した状態で、前記培養液供給装置により、培養液を、前記培養液供給管を通して、前記密閉容器内に供給し、かつ前記被培養物の老廃物を、前記排泄管および排泄装置を通して、前記密閉容器外に排出することにより、前記密閉容器内において、前記被培養物を三次元的に培養する。
 このような培養方法によると、動物の生体内において、密閉容器内の被培養物を、三次元的に、長期に亘って培養することができるので、その生体と同一の環境を苦労して創り出す必要がなく、最適な環境の下で、密閉容器内の被培養物を、効率よく培養することができる。
 また、培養作業終了後、培養液供給管や排泄管を、生体の血管や胆管等と接続し直し、かつ密閉容器を生体内に残置するか、または生体内において一定時間の経過後に溶融する材料により形成しておくことにより、移植作業を省略、または簡略化することができる。
(10)上記(8)項または(9)項の培養方法により培養された、被培養物と管との一体物よりなる培養臓器。
 このような培養臓器によると、密閉容器から取り出した被培養物と管との一体物を、そのまま培養臓器として、動物の生体内に移植するか、または生体内に残置することができる。
 その際、培養液供給管は血管としての役割を果たすため、血管に吻合し、排泄管は、消化管または胆管等に吻合することにより、移植後も動物の肝臓、膵臓等の様々な臓器と同様の機能を維持することが可能となる。
 本発明によると、被培養物を収容する密閉容器内に、外周面に微小孔が形成された複数の管を設け、そのいずれかの管に培養液を供給または循環させ、かつ他の管より被培養物の老廃物を排出させることができるようにすることにより、被培養物を三次元的に培養することができ、しかも三次元的に培養された被培養物を、密閉容器から、複数の管とともに一体として取り出すか、または密閉容器とともに、生体内に残置させたりすることができるようにした培養装置および培養方法、並びにこの培養方法により製造された培養臓器を提供することができる。
本発明の培養装置の第1の実施形態の一部を破断して模式的に示す斜視図である。 本発明の培養装置の第2の実施形態の一部の平面図である。 図2のIII-III線における縦断正面図である。 図2のIV-IV線における縦断側面図である。 図3のV-V線における拡大縦断側面図である。 第2の実施形態において使用する隔壁の一例を示す斜視図である。
 以下、本発明の培養装置の第1の実施形態を、図1を参照して説明する。
 この培養装置は、被培養物Aを投入するための密閉可能な投入口1(複数でもよい)を有し、かつ被培養物Aを収容しうるとともに、培養後に分解しうるようにした密閉容器2と、密閉容器2内に設けられ、かつ外周面に微小孔(図示略)が設けられた複数の管3、4、5と、複数の管3、4、5のうちの少なくとも1本、この実施形態においては2本の管3、5に接続され、かつこれらの管3、5に、培養液Bを供給または循環させることにより、これらの管3、5を培養液供給管とするようにした2系統の培養液供給装置6、7と、複数の管3、4、5のうちの上記培養液供給管3、5を除く他の管の少なくとも1本の管4に接続され、この管4における微小孔を通して、被培養物Aから該管4内に浸透してきた老廃物Cを、密閉容器2外に排出することにより、この管4を排泄管とするようにした排泄装置8とを備えている。
 密閉容器2の投入口1は、被培養物Aを密閉容器2内に投入した後、密閉蓋1aにより密閉しうるようになっている。または、密閉蓋1aをゴム等の弾性体よりなるものとし、そこに注射針(図示略)等を穿刺して、細胞等の被培養物Aを密閉容器2内に注入することもある。
 密閉容器2は、透明なアクリル板、またはガラス板等よりなる直方体の箱状のものとしてあるが、縦型もしくは横型の円柱体、またはその他の形状とすることができる。
 また、密閉容器2の一部のみを透明材料により形成し、残部を不透明材料に形成することもできる。
 この実施形態においては、密閉容器2をアクリル板により形成し、培養後に、任意の部位をカッター等により切断することによって、分解できるようにしてある。
 なお、密閉容器2を、複数の分割体(図示略)よりなるものとし、それらの相互間を、間にパッキン(図示略)を挟んで、ボルト・ナット(図示略)等をもって結合して形成し、培養後に、ボルト・ナットを緩めるか、または結合部分から外して、複数の分割体を互いに分離できるようにしてもよい。
 各管3、4、5の本数、長さ、外形、内径、材質、微小孔の径等は、培養条件に応じて定められる。
 例えば、各管3、4、5の材質は、半透膜、または素焼きの筒体、人工血管等とすることができる。密閉容器2内における各管3、4、5の一部のみを、半透膜、または素焼きの筒体等とし、他部は、合成樹脂製の筒体とすることもできる。
 各管3、4、5の外径は数mm~数十mm、微小孔の平均孔径は100~10,000Åとするのが好ましい。
 また、各管3、4、5の材質、寸法、および微小孔の平均孔径等は、それぞれの用途に応じて、互いに異ならせることもある。
 さらに、各管3、4、5は、可撓性を有することが望ましいが、必須ではない。
 各管3、4、5は、この実施形態においては、密閉容器2を左右方向に貫通して、両端部が密閉容器2の両側方より突出するようにしてある。
 密閉容器2の外側における各管3、4、5から、後述する培養液B等が外部に漏出しないようにするため、各管3、4、5における微小孔を設ける範囲を、密閉容器2内に制限するか、または各管3、4、5の全体に微小孔を設けた上で、密閉容器2外の部分の外周面を気密および液密にコーティングするか、もしくは密閉容器2外の部分に、可撓性のチューブ(図示略)を外嵌しておくのがよい。
 各培養液供給装置6、7は、培養液供給管3、5の両端に接続され、かつ培養液供給管3、5に培養液Bを循環させる培養液循環路9と、培養液循環路9に設けられ、かつ培養液Bを循環させるポンプ10と、培養液循環路9に設けられ、かつ循環する培養液Bの温度、圧力、酸素濃度、成分分布等をコントロールするコントロールボックス11とを備えている。
 また、各培養液供給装置6、7は、培養液循環路9中に液体溜め12を備えており、培養液循環路9は、この液体溜め12から、コントロールボックス11とポンプ10とを経て、各培養液供給管3、5の一端に至る給液管9aと、各培養液供給管3、5の他端から、液体溜め12に至る排液管9bとからなっている。
 排泄装置8は、密閉容器2外に設けられた老廃物収容容器13と、排泄管4の一端に接続され、排泄管4内に溜まった老廃物Cを、老廃物収容容器13に送給する送給管14とを備えている。
 排泄管4の他端は、栓体15により閉塞されている。
 次に、上記培養装置を使用して実施される本発明の培養方法の実施要領の例について説明する。
 図1に示すように、密閉容器2の投入口1を開いて、そこから被培養物Aを密閉容器2内に投入し、その後、密閉蓋1aにより、投入口1を密閉する。
 被培養物Aは、例えば次のようなものとすることができる。
(1) 複数の細胞を分散させて、液状またはゲル状の培養液に浮遊させたもの
(2) 小型の細胞集塊を、液状またはゲル状の培養液に浮遊させたもの
 被培養物Aを密閉容器2内に投入し、投入口1を密閉した後、培養液供給装置6、7により、各培養液供給管3、5に、培養液Bを循環させる。
 すると、培養液B中に含まれる必要成分は、各培養液供給管3、5の微小孔を通して、密閉容器2内の被培養物A側に浸透し、被培養物Aの培養が促進される。
 培養液Bとしては、例えば、コラーゲン、エラスチン、プロテオグリカン、フィブリリン、フィブロネクチン、ラミニン、キチン、キトサン、血液等の1種または2種以上を含む公知のものとすることができる。
 被培養物Aの老廃物Cは、排泄管4の微小孔を通して、排泄管4内に浸透し、かつ送給管14を通して、老廃物収容容器13内に溜められる。
 このように、被培養物Aの老廃物Cが、排泄管4および送給管14を通って、密閉容器2外に排出されるので、老廃物Cが被培養物Aに滞留することはなく、被培養物Aを長期に亘って、効率よく立体培養することができる。
 また、この培養方法によると、密閉容器2内において、被培養物Aを、動物の生体内における種々の臓器の複雑な構造に近似した状態で、三次元的に、長期に亘って培養することができる。
 培養作業終了後、密閉容器2を分解することにより、培養された被培養物Aと管3、4、5とを一体として、密閉容器2から取り出し、取り出した一体物を培養臓器として、そのまま生体内に移植することができる。
 その際、培養液供給管3、5は血管としての役割を果たすため、血管に吻合し、排泄管4は、消化管または胆管等に吻合することにより、移植後も動物の肝臓、膵臓等の様々な臓器と同様の機能を維持することが可能となる。
 図2~図6は、本発明の培養装置の第2の実施形態を示す。
 この第2の実施形態においては、密閉容器20を、円筒部20aの両端に、半球部20b、20bを連設したカプセル状のものとしてあり、円筒部20aの一部には、被培養物Aを密閉容器20内に投入するための密閉可能な投入口21が設けられている。
 投入口21には、密閉蓋22が着脱可能として設けられている。
 密閉蓋22の表面は、密閉蓋22を投入口21に適正に装着したとき、密閉容器20の円筒部20aの外面と整合するようにしておくのが好ましい。
 密閉容器20および密閉蓋22は、可撓性を有する合成樹脂材料、生体との適合性のよいコラーゲン繊維等を含む生体材料、さらには、生体内に埋設して、予め定めた培養時間より長い時間が経過することにより溶融するような材料とするのが好ましい。具体的な材料としては、例えば、ナイロン、強化ガラス、強化プラスチック、シリコンゴム、シリコンプロテーゼ等を使用することができる。
 密閉容器20内には、図3および図6に示すように、上記と同様の生体材料により形成された複数の隔壁23が、左右方向に適宜の間隔をもって設けられている。
 各隔壁23には、複数の小孔24が、予め定めた配置で、またはランダムに設けられている。
 密閉容器20内は、各隔壁23によって複数のセル25に区画されている。
 各隔壁23に設けた複数の小孔24は、各セル25、25間の被培養物Aや培養液Bの移動を許容するとともに、いずれかの小孔24を挿通する、後述する細管23a~26aを、密閉容器20内の予め定めた位置に保持する作用を有している。各隔壁23に設ける複数の小孔24の形状や寸法は適宜変更可能であり、また、隔壁23によって、各セル25、25間の被培養物Aや培養液Bの移動を遮断することもある。
 密閉容器20には、4本の管26~29が、長手方向に貫通するようにして設けられている。
 第2の実施形態においては、各管26~29は、図3に示すように、密閉容器20の両側端の半球部20bを、気密および液密に貫通する大径管26a~29aと、密閉容器20内において、両端部が互いに束ねられて、図3および図5に示すように、ゴム等の伸縮性材料により形成された接続管30をもって大径管26a~29aに接続された複数の小径管26b~29bとからなっている。
 この小径管26b~29bの外周面に、第1の実施形態における管3、4、5に設けられているのと同様の微小孔(図示略)が設けられている。
 図5に示すように、複数の小径管26b~29bの端部同士を束ねた部分の相互間および接続管30との間には、シール材31を介在させて、接合部の気密性および液密性を保つようにするのが好ましい。
 各小径管26b~29bは、各隔壁23のいずれかの小孔24を挿通することにより、密閉容器20内の予め定めた位置に保持され、互いに絡まったり、凝集したりすることがないようにされている。
 図示は省力してあるが、4本の管26~29のうちの3本、例えば管26、28、29の両端は、第1の実施形態における管3または5に接続された培養液供給装置6または7と同様の培養液供給装置(図示略)に接続され、残りの管27の一端は、第1の実施形態における管4に接続された排泄装置8と同様の排泄装置(図示略)に接続され、かつ管27の他端は、第1の実施形態における栓体15と同様の栓体(図示略)が圧嵌されて、閉塞されている。
 したがって、この例では、管26、28、29は培養液供給管をなし、管27は排泄管をなしている。
 なお、密閉容器20内で細胞が生着し易くしたり、管26、27、28、29内に血栓などが詰まることを防止したりするため、密閉容器20内に生着用の繊維を封入したり、密閉容器20の内面や隔壁23の表面等に、微小繊維を植毛したり、またはそれらの表面を細胞が生着し易い材料によりコーティングしたり、もしくは管26、27、28、29内を細胞が生着し難い材料によりコーティングしたりするのが望ましい。
 次に、本発明の培養装置の第2の実施形態を使用して実施される本発明の培養方法の実施要領の例について説明する。
 図2~図4に示す状態から、密閉蓋22を密閉容器20の投入口21から外して、投入口21を開き、そこから被培養物Aを密閉容器20内に投入し、その後、密閉蓋22を投入口21に装着して、投入口21を密閉する。
 次いで、管26、28、29の両端を培養液供給装置に接続し、管27の一端を、排泄装置に接続し、かつ管27の他端に栓体を圧嵌して、その端部を閉塞する。
 この状態で、密閉容器20と、それに接続された管26~29とを、動物の生体(図示略)内に埋設する。
 次いで、各培養液供給装置におけるポンプ(図1におけるポンプ10参照)を作動させて、管26、28、29に、上述したのと同様の培養液Bを循環させる。
 各管26、28、29に循環させる培養液Bは、同一のものとすることもできるし、互いに異なる種類のものとすることもできる。
 このようにして、培養液供給管である各管26、28、29に培養液Bを循環させつつ、排泄管である管27における小径管27bの微小孔を通して、小径管27b内に浸透してきた被培養物Aの老廃物Cを、大径管27aを通して、密閉容器20外に排出することにより、第1の実施形態におけるのと同様に、密閉容器20内において、老廃物Cが被培養物Aに滞留することなく、被培養物Aを長期に亘って、効率よく立体培養することができる。
 また、この培養方法によると、密閉容器20を生体内に埋設して、その中の被培養物Aを立体培養することができるので、温度等の環境を生体と同一に保つことができる。
 培養作業終了後は、例えば、管26を生体の動脈、管28を同じく門脈、管29を同じく胆管、管27を同じく肝静脈に吻合し(被培養物Aを肝細胞とした場合)、密閉容器20をそのまま生体内に残置し、培養した細胞を、そのまま生体の一部とすることができる。
 この場合に、密閉容器20を、生体内に埋設して、一定時間経過することにより溶融するような材料により形成しておくと、密閉容器20を生体から取り出す必要がなくなる。
 なお、管26~29の本数、各管26~29における大径管26a~29aに対する小径管26b~29bの本数および直径、その分岐の仕方、それらの配置等は、培養しようとする被培養物Aの種類や移植先の状況等に応じて、多様に変化させて実施することができる。
 本発明は、上記実施形態のみに限定されるものではなく、特許請求の範囲を逸脱することなく、例えば、次のような幾多の変形した態様での実施が可能である。
(1) 培養液供給管3または5の一端を閉塞し、他端から培養液Bを密閉容器内に供給するようにする。
(2) 管3、5のいずれか一方を省略し、それに伴って、それに接続されている培養液供給装置6、7のいずれか一方をも省略する。
(3) 管3、5のいずれか一方をリンパ管とする。
(4) 管3を血管、管4を排泄管、管5をリンパ管とする。
(5) 排泄管4を1本とし、培養液供給管3、5を複数として、そのレイアウトを種々変更することにより、被培養物Aを、複雑な血管走行や血流と胆汁の流れと言った生体内での種々の臓器に近似した複雑な構造を再現しつつ、三次元的に培養する。
(6) 各管3、4、5の向きを互いに異ならせて、密閉容器2に設ける。
 A 被培養物
 B 培養液
 C 老廃物
 1 投入口
 1a密閉蓋
 2 密閉容器
 3 管(培養液供給管)
 4 管(排泄管)
 5 管(培養液供給管)
 6、7 培養液供給装置
 8 排泄装置
 9 培養液循環路
 9a給液管
 9b排液管
10 ポンプ
11 コントロールボックス
12 液体溜め
13 老廃物収容容器
14 送給管
15 栓体
20 密閉容器
20a円筒部
20b半球部
21 投入口
22 密閉蓋
23 隔壁
24 小孔
25 セル
26、28、29 管(培養液供給管)
27 管(排泄管)
26a~29a 大径管
26b~29b 小径管
30 接続管
31 シール材

Claims (10)

  1.  被培養物を投入する密閉可能な投入口を有し、かつ前記被培養物を収容しうる密閉容器と、
     前記密閉容器内に設けられ、かつ外周面に微小孔が形成された複数の管と、
     前記複数の管のうちの少なくとも1本の管に接続され、かつ該管に、培養液を供給または循環させることにより、該管を培養液供給管とする培養液供給装置と、
     前記複数の管のうちの前記培養液供給管を除く他の管の少なくとも1本の管に接続され、該管の微小孔を通して、前記被培養物から該管内に浸透してきた老廃物を、前記密閉容器外に排出することにより、該管を排泄管とする排泄装置
    とを備えることを特徴とする培養装置。
  2.  前記密閉容器を、分解可能のものとした請求項1記載の培養装置。
  3.  前記密閉容器を、カプセル状のものとした請求項1記載の培養装置。
  4.  前記密閉容器内における前記管のいずれかの少なくとも一部を、半透膜からなるものとしたことを特徴とする請求項1~3のいずれかに記載の培養装置。
  5.  前記密閉容器内における前記管のいずれかの少なくとも一部を、素焼きの筒体からなるものとしたことを特徴とする請求項1~4のいずれかに記載の培養装置。
  6.  前記培養液供給装置が、
     前記培養液供給管の両端に接続され、かつ前記培養液供給管に培養液を循環させる培養液循環路と、
     前記培養液循環路に設けられ、かつ培養液を循環させるポンプと、
     前記培養液循環路に設けられ、かつ循環する培養液をコントロールするコントロールボックスとを備えていることを特徴とする請求項1~5のいずれかに記載の培養装置。
  7.  前記密閉容器の少なくとも一部を、透明材料からなるものとしたことを特徴とする請求項1~6のいずれかに記載の培養装置。
  8.  請求項1もしくは2、または請求項2を引用する請求項4~7のいずれかに記載の培養装置を使用し、前記密閉容器内に被培養物を収容した状態で、前記培養液供給装置により、培養液を、前記培養液供給管を通して、前記密閉容器内に供給し、かつ前記被培養物の老廃物を、前記排泄管および排泄装置を通して、前記密閉容器外に排出することにより、前記密閉容器内において、前記被培養物を三次元的に培養し、培養作業終了後に、前記密閉容器を分解することにより、前記被培養物と管とを一体として、前記密閉容器から取り出すことを特徴とする培養方法。
  9.  請求項1もしくは3、または請求項3を引用する請求項4~7のいずれかに記載の培養装置を使用し、前記被培養物を収容した前記密閉容器を生体内に埋設し、かつ前記培養液供給装置と排泄装置とを生体外に配設した状態で、前記培養液供給装置により、培養液を、前記培養液供給管を通して、前記密閉容器内に供給し、かつ前記被培養物の老廃物を、前記排泄管および排泄装置を通して、前記密閉容器外に排出することにより、前記密閉容器内において、前記被培養物を三次元的に培養することを特徴とする培養方法。
  10.  請求項8または9記載の培養方法により培養された、被培養物と管との一体物よりなる培養臓器。
PCT/JP2016/064825 2016-05-19 2016-05-19 培養装置および培養方法、並びにこの培養方法により製造された培養臓器 WO2017199387A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US16/302,728 US11306281B2 (en) 2016-05-19 2016-05-19 Culture device, culture method and cultured organ produced by the culture method
PCT/JP2016/064825 WO2017199387A1 (ja) 2016-05-19 2016-05-19 培養装置および培養方法、並びにこの培養方法により製造された培養臓器
JP2016559458A JP6205507B1 (ja) 2016-05-19 2016-05-19 培養装置および培養方法、並びにこの培養方法により製造された培養臓器
AU2016406837A AU2016406837B2 (en) 2016-05-19 2016-05-19 Culture device, culture method and cultured organ produced by culture method
KR1020187036842A KR102231394B1 (ko) 2016-05-19 2016-05-19 배양 장치 및 배양 방법, 및 이 배양 방법에 의해 제조된 배양 장기
EP16902406.4A EP3460040A4 (en) 2016-05-19 2016-05-19 BREEDING DEVICE, BREEDING PROCESS AND BODY GROWED BY THE BREEDING PROCESS
CN201680085872.XA CN109312289B (zh) 2016-05-19 2016-05-19 培养装置、培养方法、以及利用该培养方法制造出的培养器官
US17/694,872 US20220204900A1 (en) 2016-05-19 2022-03-15 Culture device, culture method and cultured organ produced by the culture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064825 WO2017199387A1 (ja) 2016-05-19 2016-05-19 培養装置および培養方法、並びにこの培養方法により製造された培養臓器

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/302,728 A-371-Of-International US11306281B2 (en) 2016-05-19 2016-05-19 Culture device, culture method and cultured organ produced by the culture method
US17/694,872 Division US20220204900A1 (en) 2016-05-19 2022-03-15 Culture device, culture method and cultured organ produced by the culture method

Publications (1)

Publication Number Publication Date
WO2017199387A1 true WO2017199387A1 (ja) 2017-11-23

Family

ID=59969435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064825 WO2017199387A1 (ja) 2016-05-19 2016-05-19 培養装置および培養方法、並びにこの培養方法により製造された培養臓器

Country Status (7)

Country Link
US (2) US11306281B2 (ja)
EP (1) EP3460040A4 (ja)
JP (1) JP6205507B1 (ja)
KR (1) KR102231394B1 (ja)
CN (1) CN109312289B (ja)
AU (1) AU2016406837B2 (ja)
WO (1) WO2017199387A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022112968A1 (en) 2020-11-25 2022-06-02 Association For The Advancement Of Tissue Engineering And Cell Based Technologies & Therapies (A4Tec) - Associação Bioreactor for tissue engineering of multi-tissue structure and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196286A (ja) * 1987-02-12 1988-08-15 Sumitomo Electric Ind Ltd 細胞培養用基材
JP2001128660A (ja) * 1999-08-25 2001-05-15 Toyobo Co Ltd 血管網類似構造体を有する細胞培養用モジュール
JP2003070458A (ja) * 2001-09-04 2003-03-11 Mitsubishi Heavy Ind Ltd 3次元クリノスタット、細胞培養装置、生物育成装置、及び材料形成装置
JP2004201594A (ja) * 2002-12-25 2004-07-22 Toshiba Ceramics Co Ltd 生体培養用基体及びその製造方法
WO2007049576A1 (ja) * 2005-10-28 2007-05-03 Kuraray Co., Ltd. 細胞培養容器及び細胞培養方法
JP2009000012A (ja) * 2007-06-19 2009-01-08 Gc Corp 細胞培養容器
JP2009531067A (ja) * 2006-03-24 2009-09-03 ノーティス,インク. 灌流可能な微小血管システムを作製する方法
JP2015062392A (ja) * 2013-09-26 2015-04-09 学校法人東京電機大学 毛細血管の製造方法および毛細血管の製造装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3883393A (en) * 1972-05-18 1975-05-13 Us Health Education & Welfare Cell culture on semi-permeable tubular membranes
US4206015A (en) * 1977-11-11 1980-06-03 United States Of America Method of simulation of lymphatic drainage utilizing a dual circuit, woven artificial capillary bundle
US4537860A (en) 1982-12-08 1985-08-27 Monsanto Company Static cell culture maintenance system
US4720462A (en) 1985-11-05 1988-01-19 Robert Rosenson Culture system for the culture of solid tissue masses and method of using the same
US4948736A (en) * 1987-03-20 1990-08-14 Toshiba Ceramics Co., Ltd. Continuous microorganism cultivating apparatus
US5043260A (en) * 1987-11-02 1991-08-27 Rhode Island Hospital Perfusion device with hepatocytes
JPH0292270A (ja) 1988-09-30 1990-04-03 Terumo Corp 細胞培養装置
JP3026516B2 (ja) * 1991-05-15 2000-03-27 株式会社クラレ 細胞培養器
JPH06225758A (ja) * 1993-02-05 1994-08-16 Hitachi Ltd 接着性細胞の培養方法及び培養装置
GB9311784D0 (en) * 1993-06-08 1993-07-28 Univ Alberta Vascular bioartificial organ
CA2219202A1 (en) 1995-04-27 1996-10-31 Advanced Tissue Sciences, Inc. Apparatus and method for sterilizing, seeding, culturing, storing, shipping and testing tissue, synthetic or native vascular grafts
JP2002315566A (ja) * 2001-04-24 2002-10-29 Takagi Ind Co Ltd 細胞・組織培養装置
GB0121986D0 (en) * 2001-09-11 2001-10-31 Isis Innovation Method and structure for growing living organic tissue
JP2004057028A (ja) * 2002-07-25 2004-02-26 Toshiba Ceramics Co Ltd 細胞培養用部材およびそれを用いた人工臓器
CN101007999B (zh) * 2006-01-23 2012-04-25 杨炜 可透见的三维空间细胞培养系统及其在组织细胞和新生器官培养中的应用
JP2007202430A (ja) * 2006-01-31 2007-08-16 Scimedia Ltd 細胞培養用中空糸束モジュール
JP2008092935A (ja) 2006-10-13 2008-04-24 Otake:Kk 密封培養容器にポンプ機能を設けた培養装置
US20110003359A1 (en) * 2008-02-04 2011-01-06 Yoichi Fujiyama Biodevice
GB0808373D0 (en) * 2008-05-09 2008-06-18 Synexa Life Sciences Pty Ltd Scalable cell culture bioreactor and cell culture process
CN101486967B (zh) 2009-02-13 2011-09-28 中国人民解放军第三军医大学第一附属医院 组织工程组织仿生培育的培养液气/液和液/液交换器
AU2010232389A1 (en) 2009-04-03 2011-10-20 Humacyte, Inc. Tissue and organ graft bioreactor and method of operation
WO2012016711A1 (en) * 2010-08-06 2012-02-09 Technische Universität Berlin Circulation system
JP5700460B2 (ja) * 2010-09-10 2015-04-15 株式会社島津製作所 細胞培養デバイス及び細胞培養方法
CN102114275B (zh) 2011-03-17 2012-10-17 浙江大学 类肝小叶生物反应器
CN202078585U (zh) * 2011-05-13 2011-12-21 浙江大学 一种u形中空纤维管人工肝生物反应器
JP6612227B2 (ja) * 2013-11-16 2019-11-27 テルモ ビーシーティー、インコーポレーテッド バイオリアクターにおける細胞増殖
NL2011895C2 (en) 2013-12-04 2015-06-08 Mikhail Alexandrovich Ponomarenko Fluidic device and perfusion system for in vitro tissue reconstruction.
JP6664692B2 (ja) * 2014-06-09 2020-03-13 誠一 横尾 接着系細胞用の閉鎖系培養容器
CN104611225A (zh) 2015-02-16 2015-05-13 昆明市第一人民医院 体外循环灌流构建组织工程肝的生物反应器
CN204779609U (zh) 2015-02-16 2015-11-18 昆明市第一人民医院 体外循环灌流构建组织工程肝的生物反应器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196286A (ja) * 1987-02-12 1988-08-15 Sumitomo Electric Ind Ltd 細胞培養用基材
JP2001128660A (ja) * 1999-08-25 2001-05-15 Toyobo Co Ltd 血管網類似構造体を有する細胞培養用モジュール
JP2003070458A (ja) * 2001-09-04 2003-03-11 Mitsubishi Heavy Ind Ltd 3次元クリノスタット、細胞培養装置、生物育成装置、及び材料形成装置
JP2004201594A (ja) * 2002-12-25 2004-07-22 Toshiba Ceramics Co Ltd 生体培養用基体及びその製造方法
WO2007049576A1 (ja) * 2005-10-28 2007-05-03 Kuraray Co., Ltd. 細胞培養容器及び細胞培養方法
JP2009531067A (ja) * 2006-03-24 2009-09-03 ノーティス,インク. 灌流可能な微小血管システムを作製する方法
JP2009000012A (ja) * 2007-06-19 2009-01-08 Gc Corp 細胞培養容器
JP2015062392A (ja) * 2013-09-26 2015-04-09 学校法人東京電機大学 毛細血管の製造方法および毛細血管の製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3460040A4 *

Also Published As

Publication number Publication date
CN109312289A (zh) 2019-02-05
EP3460040A4 (en) 2020-01-15
JP6205507B1 (ja) 2017-09-27
AU2016406837B2 (en) 2020-07-23
CN109312289B (zh) 2022-12-09
US11306281B2 (en) 2022-04-19
US20220204900A1 (en) 2022-06-30
AU2016406837A1 (en) 2018-12-20
EP3460040A1 (en) 2019-03-27
JPWO2017199387A1 (ja) 2018-05-31
KR102231394B1 (ko) 2021-03-24
US20190300829A1 (en) 2019-10-03
KR20190006017A (ko) 2019-01-16

Similar Documents

Publication Publication Date Title
US12116561B2 (en) Automated cell culturing and harvesting device
US6379963B2 (en) Process for producing a vascularized bioartificial tissue and an experimental reactor for carrying out the process
CN104937094B (zh) 对骨进行脱细胞化的方法
Maher Tissue engineering: How to build a heart.
CN101272815A (zh) 器官和组织的脱细胞化和再细胞化
US6379956B1 (en) Method for populating substrates with biological cells and populating devices that can be used therefor
JP6715330B2 (ja) 細胞の立体構造化方法及び立体構造化システム
US20110091926A1 (en) Perfusable bioreactor for the production of human or animal tissues
US10544387B2 (en) Bioreactors and uses thereof
CN102114275B (zh) 类肝小叶生物反应器
JP6205507B1 (ja) 培養装置および培養方法、並びにこの培養方法により製造された培養臓器
EP2800807B1 (en) Bioreactor composed of watertight chamber and internal matrix for the generation of cellularized medical implants
Visconti et al. Cardiovascular tissue engineering I. Perfusion bioreactors: a review
CN109906267A (zh) 微型生物反应器组件
JP6751587B2 (ja) 培養装置及び培養方法
JP7550537B2 (ja) 移植片を移送するための容器
BABA et al. Combined automated culture system for tubular structure assembly and maturation for vascular tissue engineering
KR102682842B1 (ko) 배양액 유동 세포 배양 칩
JP2023124920A (ja) 中空糸バイオリアクター
Praharaj Design of a perfusion bioreactor for simulating synovial joint cavity
PT106046A (pt) Dispositivo e método simplificado para a geração de substitutos tecidulares tubulares estratificados
TW200411046A (en) Double-chamber bioreactor for tissue engineering

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016559458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187036842

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016406837

Country of ref document: AU

Date of ref document: 20160519

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016902406

Country of ref document: EP

Effective date: 20181219