Nothing Special   »   [go: up one dir, main page]

WO2017179674A1 - 内燃機関の排ガス浄化装置 - Google Patents

内燃機関の排ガス浄化装置 Download PDF

Info

Publication number
WO2017179674A1
WO2017179674A1 PCT/JP2017/015193 JP2017015193W WO2017179674A1 WO 2017179674 A1 WO2017179674 A1 WO 2017179674A1 JP 2017015193 W JP2017015193 W JP 2017015193W WO 2017179674 A1 WO2017179674 A1 WO 2017179674A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
catalyst
exhaust
casing
catalyst casing
Prior art date
Application number
PCT/JP2017/015193
Other languages
English (en)
French (fr)
Inventor
大祐 森山
直 水上
泰順 鈴木
幸博 川島
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2017179674A1 publication Critical patent/WO2017179674A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors

Definitions

  • the present disclosure relates to an exhaust gas purification device for an internal combustion engine.
  • an aftertreatment unit including a plurality of catalysts and the like in order to purify harmful substances in exhaust gas.
  • the aftertreatment unit typically has a filter that collects particulate matter (PM) in the exhaust, and a selective reduction that is arranged downstream of the filter to reduce and remove nitrogen oxides (NOx) in the exhaust.
  • a type NOx catalyst (SCR) is installed.
  • filter regeneration control It is known to perform filter regeneration control that periodically burns and removes PM accumulated on the filter.
  • additional fuel is supplied by, for example, post injection.
  • the filter regeneration control is being executed, the PM in the filter burns, and thus a relatively high temperature exhaust gas may be discharged from the filter.
  • this high-temperature exhaust gas is supplied to the NOx catalyst, the temperature of the NOx catalyst increases excessively, the deterioration of the NOx catalyst may be accelerated, and the NOx purification rate of the NOx catalyst may decrease early.
  • the present disclosure has been created in view of such circumstances, and an object thereof is to provide an exhaust gas purification device for an internal combustion engine that can suppress the deterioration promotion of the NOx catalyst due to the execution of filter regeneration control.
  • An exhaust gas purification device for an internal combustion engine An exhaust pipe, A post-processing unit provided in the middle of the exhaust pipe; A casing for housing the aftertreatment unit; With The post-processing unit is A first catalyst casing; A second catalyst casing disposed downstream of the first catalyst casing; A U-shaped connecting pipe connecting the first catalyst casing and the second catalyst casing; A filter provided in the first catalyst casing for collecting particulate matter in the exhaust; A selective reduction type NOx catalyst provided in the second catalyst casing and purifying nitrogen oxides in exhaust; With The exhaust gas purification device further includes A detector for detecting an inlet exhaust temperature of the NOx catalyst; An addition valve that is provided at an upstream end of the connecting pipe and adds urea water; A control unit configured to control the addition valve and perform regeneration control to regenerate the filter; With The control unit is configured to increase the urea water addition amount in the addition valve when the inlet exhaust temperature detected by the detector during execution of the regeneration control becomes a predetermined threshold value or more.
  • An exhaust gas purification device further includes A detector
  • the first catalyst casing extends from the front to the rear from the upstream side toward the downstream side
  • the second catalyst casing extends from the rear to the front from the upstream side toward the downstream side
  • the connecting pipe extends forward from the rear end portion of the first catalyst casing and is folded back in a U shape, and then extends rearward and is connected to the rear end portion of the second catalyst casing.
  • control unit increases the urea water addition amount when the inlet exhaust temperature becomes equal to or higher than the threshold during execution of the regeneration control and idle operation of the internal combustion engine.
  • control unit increases the urea water addition amount for a predetermined time after the inlet exhaust temperature becomes equal to or higher than the threshold value.
  • control unit increases the urea water addition amount from the time when the inlet exhaust temperature becomes equal to or higher than the threshold to the time when the inlet exhaust temperature becomes lower than the threshold.
  • an exhaust gas purification apparatus for an internal combustion engine comprising: An exhaust pipe, A post-processing unit provided in the middle of the exhaust pipe; A casing for housing the aftertreatment unit; With The post-processing unit is A first catalyst casing; A second catalyst casing disposed downstream of the first catalyst casing; A U-shaped connecting pipe connecting the first catalyst casing and the second catalyst casing; A filter provided in the first catalyst casing for collecting particulate matter in the exhaust; A selective reduction type NOx catalyst provided in the second catalyst casing and purifying nitrogen oxides in exhaust; With The exhaust gas purification device further includes An addition valve that is provided at an upstream end of the connecting pipe and adds urea water; A control unit configured to control the addition valve and perform regeneration control to regenerate the filter; With The control unit is configured to increase the urea water addition amount for a predetermined time from the time when the condition that the regeneration control is being executed and the internal combustion engine is idling is satisfied.
  • An exhaust gas purification device for an internal combustion engine is
  • FIG. 1 is a schematic configuration diagram illustrating an exhaust gas purification apparatus for an internal combustion engine according to the present embodiment.
  • the exhaust gas purification apparatus 200 includes an exhaust pipe 2 through which exhaust gas from an internal combustion engine (engine) 1 circulates and a plurality of catalysts 10 provided in the middle of the exhaust pipe 2 for purifying the exhaust gas.
  • the post-processing unit 3 and a casing 4 that houses the post-processing unit 3 are provided.
  • the internal combustion engine 1 is a multi-cylinder compression ignition internal combustion engine mounted on a vehicle, that is, a diesel engine.
  • the internal combustion engine 1 is provided with an exhaust manifold 12 that collects exhaust gas discharged from each cylinder 11.
  • Each cylinder 11 is provided with an injector (fuel injection valve) 8 for injecting fuel into the cylinder. Note that the types and applications of the vehicle and the internal combustion engine 1 are arbitrary.
  • the exhaust pipe 2 is a pipe that is connected to the exhaust manifold 12 and discharges the exhaust gas from the exhaust manifold 12 in the downstream direction (direction indicated by the arrow G) and releases it to the atmosphere.
  • the exhaust pipe 2 includes an upstream exhaust pipe 21 located upstream of the post-processing unit 3 and a downstream exhaust pipe 22 located downstream of the post-processing unit 3.
  • the upstream exhaust pipe 21 has a flange 21a at its downstream end
  • the downstream exhaust pipe 22 has a flange 22a at its upstream end.
  • the post-processing unit 3 will be described.
  • the front-rear and left-right directions of the post-processing unit 3 are the directions as shown in FIG. Such a direction is merely determined for convenience of explanation, and may or may not coincide with the front and rear and right and left directions of the vehicle.
  • the internal combustion engine 1 is placed vertically on the vehicle, and the right direction of the post-processing unit 3 coincides with the front direction of the vehicle.
  • the aftertreatment unit 3 includes an exhaust gas inlet pipe 31, an exhaust gas outlet pipe 32, a first catalyst casing 33 in which at least one catalyst 10 is provided, a second catalyst casing 34 in which at least one catalyst 10 is provided, A generally U-shaped connecting pipe 35 that connects the first catalyst casing 33 and the second catalyst casing 34 is provided.
  • the post-processing unit 3 has a generally symmetrical structure.
  • the exhaust gas inlet pipe 31 is arranged at the front end and the right side of the post-processing unit 3, extends from the front to the rear from the upstream side to the downstream side, and the front end is connected to the downstream end of the upstream side exhaust pipe 21.
  • the exhaust gas outlet pipe 32 is disposed at the front end and the left side of the post-processing unit 3 and extends from the rear to the front from the upstream side toward the downstream side, and the front end is connected to the upstream end of the downstream side exhaust pipe 22.
  • a flange 31a is provided at the upstream end of the exhaust gas inlet pipe 31, and the flange 21a of the upstream exhaust pipe 21 is connected to the flange 31a.
  • a flange 32a is provided at the downstream end of the exhaust gas outlet pipe 32, and the flange 22a of the downstream exhaust pipe 22 is connected to the flange 32a.
  • the flanges connected to each other are detachably fixed by an appropriate fastener such as a bolt (not shown).
  • the first catalyst casing 33 is formed in a tubular shape, extends rearward from the exhaust gas inlet pipe 31, and has a first side hole 33b on the left side of the downstream end 33a located at the rear end. Further, the first catalyst casing 33 is formed with a first enlarged-diameter portion 33c having a diameter larger than that of the exhaust gas inlet pipe 31 located on the upstream side and the connecting pipe 35 located on the downstream side.
  • An oxidation catalyst (DOC: Diesel Oxidation Catalyst) 10a and a particulate filter (hereinafter referred to as “DPF”) are inserted into the first enlarged diameter portion 33c of the first catalyst casing 33 from the upstream side through a first heat insulating buffer member (mat) 37. 10b) is provided.
  • DOC Diesel Oxidation Catalyst
  • DPF particulate filter
  • the oxidation catalyst 10a oxidizes and purifies unburned components (hydrocarbon HC and carbon monoxide CO) in the exhaust gas.
  • the oxidation catalyst 10a has a function of heating and raising the temperature of exhaust gas with heat generated during oxidation of HC and CO.
  • the oxidation catalyst 10a oxidizes NO in the exhaust gas to NO 2, also has a function of increasing the NO 2 concentration in the exhaust gas.
  • the DPF 10b collects and removes particulate matter (PM) contained in the exhaust gas, and corresponds to a filter in the claims.
  • a so-called wall flow type DPF 10b is used in which openings at both ends of a honeycomb-shaped heat-resistant substrate are alternately closed in a checkered pattern.
  • any type of filter that physically captures PM can be used, such as a mesh-shaped foam shape.
  • the DPF 10b is a so-called continuous regeneration type DPF with a catalyst in which a catalyst noble metal such as Pt is supported on its inner wall.
  • a catalyst noble metal such as Pt
  • HC in the exhaust gas supplied to the DPF 10b is oxidized and burned by the catalytic action, and at this time, PM deposited in the DPF 10b is burned and removed.
  • DPF10b since DPF10b has a catalyst noble metal and exhibits a catalytic action, DPF10b shall also be contained in the catalyst 10 here.
  • the second catalyst casing 34 is formed in a tubular shape, extends rearward from the exhaust gas outlet pipe 32, and has a second side hole 34b on the right side surface of the upstream end 34a located at the rear end. Further, the second catalyst casing 34 is formed with a second diameter-expanded portion 34c having a diameter larger than that of the connecting pipe 35 positioned on the upstream side and the exhaust gas outlet pipe 32 positioned on the downstream side.
  • a NOx catalyst 10c and an ammonia oxidation catalyst 10d are provided from the upstream side via a second heat insulating buffer member (mat) 38.
  • the NOx catalyst 10c is a catalyst for purifying nitrogen oxides NOx in the exhaust gas.
  • the NOx catalyst 10c is composed of a selective reduction type NOx catalyst (SCR: Selective Catalytic Reduction), and can continuously reduce NOx by ammonia (NH 3 ) generated by hydrolysis of urea water.
  • SCR selective reduction type NOx catalyst
  • Ammonia oxidation catalyst 10d is to oxidize surplus ammonia not consumed in the reduction of NOx in the NOx catalyst 10c, a catalyst that generates N 2.
  • the first catalyst casing 33 and the second catalyst casing 34 are arranged on the right side and the left side in parallel with each other.
  • the first side hole 33b and the second side hole 34b are disposed so as to face each other.
  • the connecting pipe 35 is disposed at a position between the first catalyst casing 33 and the second catalyst casing 34 in the left-right direction.
  • the upstream end of the connecting pipe 35 is connected to the first side hole 33b, and the downstream end of the connecting pipe 35 is connected to the second side hole 34b.
  • the connecting pipe 35 has a first portion 35a extending leftward from the first side hole 33b and bent forward, and a second portion 35b extending rightward from the second side hole 34b and bent forward.
  • the first portion 35a is a portion from X1 to X2 in the drawing
  • the second portion 35b is a portion from Y1 to Y2 in the drawing.
  • the connecting pipe 35 has a third portion 35c that extends forward from the downstream end X2 of the first portion 35a and is folded back in a U shape, and then extends rearward and is connected to the upstream end Y2 of the second portion 35b.
  • the connecting pipe 35 generally extends forward from the rear end portion of the first catalyst casing 33 and is folded back in a U shape, and then extends rearward to connect to the rear end portion of the second catalyst casing 34.
  • the connecting pipe 35 By forming the connecting pipe 35 in the U shape in this way, the pipe length of the connecting pipe 35, and hence the exhaust passage length between the first catalyst casing 33 and the second catalyst casing 34, can be lengthened in a compact space. it can.
  • the casing 4 is made of a box-type casing using a heat-resistant material such as stainless steel, and covers the entire post-processing unit 3 in a substantially airtight manner.
  • a heat insulating material 5 such as glass wool is laid on almost the entire inner peripheral surface of the casing 4 to keep the post-processing unit 3 warm.
  • the front surface 45 of the casing 4 is formed with an inlet hole 46 through which the exhaust gas inlet pipe 31 is inserted with a gap S1 so that the exhaust gas inlet pipe 31 protrudes to the outside (front) of the casing 4.
  • the gap S ⁇ b> 1 is sealed by the inlet side heat insulating seal member 6.
  • an outlet hole 47 through which the exhaust gas outlet pipe 32 is inserted with a gap S2 is formed in the front surface portion 45 of the casing 4 so that the exhaust gas outlet pipe 32 protrudes to the outside (front) of the casing 4.
  • the gap S2 is sealed by the outlet side heat insulating seal member 7.
  • These seal members 6 and 7 are made of a material having a low heat transfer coefficient, for example, heat-resistant rubber, and minimize heat transfer from each pipe to the casing 4.
  • the exhaust gas purification apparatus 200 of the present embodiment further includes an addition valve 36 that adds or injects urea water into the connecting pipe 35.
  • the addition valve 36 is provided at the upstream end portion of the connecting pipe 35, and is particularly arranged at the bent portion L of the first portion 35a.
  • the addition valve 36 is disposed so as to add urea water from the bent portion L toward the folded portion U of the third portion 35 c from the rear to the front and along the central axis of the connecting pipe 35.
  • the addition valve 36 is inserted and fixed in the connecting pipe 35 from the outside rear side of the casing 4 toward the front side.
  • the exhaust gas purification apparatus 200 of the present embodiment is provided with an electronic control unit (hereinafter referred to as “ECU”) 100 that forms a control unit or a controller.
  • ECU 100 includes a CPU, a ROM, a RAM, an input / output port, a storage device, and the like.
  • the ECU 100 is configured or programmed to control the injector 8 and the addition valve 36 as will be described later.
  • the exhaust gas purifying device 200 includes a rotational speed sensor 51 for detecting the rotational speed or the rotational speed (rpm) of the engine, an accelerator opening sensor 52 for detecting the accelerator opening, and an inlet exhaust temperature of the oxidation catalyst 10a.
  • These sensors are electrically connected to the ECU 100.
  • the temperature sensor 56 corresponds to a detector referred to in the claims.
  • the ECU 100 detects the fuel injected from the injector 8 based on the engine operating state, particularly the engine speed detected by the rotational speed sensor 51 and the accelerator opening detected by the accelerator opening sensor 52.
  • the injection amount and the urea water addition amount added from the addition valve 36 are controlled.
  • the fuel injection amount and the urea water addition amount are increased as the engine speed is higher and the accelerator opening is larger.
  • the urea water added from the addition valve 36 is hydrolyzed to generate ammonia, and this ammonia is supplied to the NOx catalyst 10c, whereby NOx is reduced and removed.
  • the ECU 100 periodically executes filter regeneration control. That is, when the differential pressure detected by the differential pressure sensor 55 exceeds a predetermined threshold, the ECU 100 determines that regeneration of the DPF 10b is necessary, causes the injector 8 to perform post injection, and supplies additional fuel into the cylinder. To do. As a result, surplus HC is combusted by the oxidation catalyst 10a, high-temperature and rich exhaust gas is supplied to the DPF 10b, and accumulated PM in the DPF 10b is combusted and removed.
  • the filter regeneration control can be performed by other methods including known methods.
  • fuel may be directly supplied from another fuel injection valve to the upstream side of the oxidation catalyst 10a.
  • the filter regeneration control corresponds to the regeneration control referred to in the claims.
  • the PM in the DPF 10b burns, so that a relatively high temperature exhaust gas may be discharged from the DPF 10b.
  • a relatively high temperature exhaust gas may be discharged from the DPF 10b.
  • the ECU 100 increases the urea water addition amount in the addition valve 36 when the inlet exhaust temperature of the NOx catalyst 10c detected by the temperature sensor 56 becomes equal to or higher than a predetermined threshold during the execution of the filter regeneration control. It is configured to let you. According to this, on the upstream side of the NOx catalyst 10c, the increased amount of urea water can be mixed with the exhaust gas, and the exhaust temperature can be lowered. The exhaust gas whose temperature has been lowered is supplied to the NOx catalyst 10c. Therefore, even when high-temperature exhaust gas is exhausted from the DPF 10b during execution of filter regeneration control, the temperature of the exhaust gas can be lowered and supplied to the NOx catalyst 10c. Therefore, it is possible to suppress the deterioration promotion of the NOx catalyst 10c due to the filter regeneration control and to suppress the early decrease in the NOx purification rate.
  • the capacity of the DPF 10b can be increased, and the regeneration interval can be extended to improve fuel efficiency. And even if it is a case where the capacity
  • FIG. 2 is a time chart showing the transition of each value when the filter regeneration control is executed. t is time.
  • line a indicates the accelerator opening degree Ac
  • line b indicates the engine speed Ne
  • a line c indicates the urea water addition amount Qu of a comparative example to which the present disclosure is not applied
  • a line d indicates the post injection amount Qp.
  • line e indicates the inlet exhaust temperature (referred to as SCR inlet temperature) T of the NOx catalyst 10c in the comparative example.
  • the filter regeneration control is started from time t1, and the post injection is started.
  • the urea water addition is also executed during the filter regeneration control.
  • the accelerator opening degree Ac is zero, that is, is fully closed
  • the engine speed Ne is equal to or lower than a predetermined idle determination threshold value N1
  • the engine operating state is shifted to the idle operating state.
  • the idle determination threshold value N1 is set to a value slightly higher than the predetermined target idle speed Ni after engine warm-up, and is set to a value equal to, for example, the return speed when returning from the deceleration fuel cut.
  • the engine After time t2, the engine is idling during execution of filter regeneration control.
  • the occurrence of the ignition idle causes the SCR inlet temperature T to rise rapidly and in a peak shape as indicated by the line e in FIG. This temperature increase promotes deterioration of the NOx catalyst 10c.
  • the time from time t2 to time t4 when the SCR inlet temperature T reaches a peak is, for example, about 100 seconds.
  • the urea water addition amount Qu is the amount of the comparative example (reference to be described later) as shown by a virtual line c ′ in FIG.
  • the predetermined amount ⁇ Qu is increased from the amount Qub) to obtain a larger amount Quc.
  • a virtual line e ′ in FIG. 2C it is possible to suppress an increase in the SCR inlet temperature T and to suppress deterioration of the NOx catalyst 10 c.
  • the threshold value Tth is experimentally obtained in advance and stored in the ECU 100.
  • the threshold value Tth is set to the minimum value of the SCR inlet temperature T that causes excessive deterioration of the NOx catalyst 10c. In the present embodiment, it is possible to suppress the SCR inlet temperature T from exceeding the minimum value by increasing the urea water addition amount Qu.
  • the threshold value Tth may be set to a value lower than the minimum value by a predetermined margin temperature (for example, a value of about several degrees Celsius to several tens of degrees Celsius). Thereby, it can suppress more reliably that SCR entrance temperature T becomes more than the said minimum value.
  • a predetermined margin temperature for example, a value of about several degrees Celsius to several tens of degrees Celsius.
  • the ECU 100 increases the urea water addition amount Qu for a predetermined time ⁇ t from the time point t3 when the SCR inlet temperature T becomes equal to or higher than the threshold value Tth.
  • the predetermined time ⁇ t is preferably set to a time equal to or longer than the time from the time point t3 when the SCR inlet temperature T becomes equal to or higher than the threshold value Tth to the time point t4 when the SCR inlet temperature T reaches the peak temperature in the comparative example.
  • the illustrated example shows the former example.
  • the predetermined time ⁇ t has a length of, for example, 3 seconds to 30 seconds, preferably 5 seconds to 20 seconds, and more preferably about 10 seconds.
  • the predetermined time ⁇ t is also experimentally obtained in advance and stored in the ECU 100. This reliably prevents the SCR inlet temperature T from rising to the peak temperature, and the SCR inlet temperature T can be suitably suppressed.
  • the ECU 100 increases the urea water addition amount Qu from the time t3 when the SCR inlet temperature T becomes equal to or higher than the threshold Tth to the time when the SCR inlet temperature T becomes lower than the threshold Tth. According to this, since the urea water addition amount Qu is increased only during the period when the SCR inlet temperature T is equal to or higher than the threshold value Tth, the SCR inlet temperature T can be suppressed with a minimum increase.
  • the ECU 100 adds the urea water addition amount for a predetermined time ⁇ t ′ longer than the previous predetermined time ⁇ t from the time point t2 when the filter regeneration control is being executed and the engine is idling. Increase Qu.
  • This predetermined time ⁇ t ′ is experimentally obtained in advance as a time from time t 2 to time t 5 when the SCR inlet temperature T once exceeds the threshold value Tth and then falls below the threshold value Tth in the comparative example, and is stored in the ECU 100. Is done. If it carries out like this, the increase in the urea water addition amount Qu can be started in advance and it can suppress more reliably that the SCR entrance temperature T rises more than the threshold value Tth. Any of the first to third aspects can be arbitrarily adopted as necessary.
  • the illustrated routine is repeatedly executed by the ECU 100 at every predetermined calculation cycle ⁇ (for example, 10 msec).
  • step S101 it is determined whether or not the filter regeneration control is being executed. If not, the process proceeds to step S105, and the urea water addition amount Qu is set to the reference amount Qub.
  • the reference amount Qub is calculated using a predetermined map based on the engine operating state, that is, the engine speed Ne and the accelerator opening sensor 52 detected by the rotation speed sensor 51 and the accelerator opening sensor 52, respectively.
  • the addition valve 36 is controlled so that the reference amount Qub of urea water is added or injected from the addition valve 36.
  • step S102 determines whether or not the engine is idling. If the idling operation is not being performed, the process proceeds to step S105, and the urea water addition amount Qu is set to the reference amount Qub.
  • step S103 it is determined whether or not the SCR inlet temperature T detected by the temperature sensor 56 is equal to or higher than a threshold value Tth. If it is not the threshold value Tth, the process proceeds to step S105, and the urea water addition amount Qu is set to the reference amount Qub.
  • step S104 the process proceeds to step S104, and the urea water addition amount Qu is increased to a predetermined amount Quc that is larger than the reference amount Qub.
  • the addition valve 36 is controlled so that the increased amount of urea water is added or injected from the addition valve 36.
  • the aftertreatment unit 3 is configured as described above, the first and second catalyst casings 33 and 34 are connected by the U-shaped connecting pipe 35, and the upstream end of the connecting pipe 35 is connected.
  • An addition valve 36 is provided.
  • the urea water added from the addition valve 36 can be sufficiently and uniformly mixed with the exhaust gas through the relatively long passage in the connecting pipe 35. Therefore, not only can the urea water be supplied to the NOx catalyst 10c by a preferred method when the reference amount is added, but also the exhaust gas having a uniform temperature drop with little temperature unevenness can be suitably supplied to the NOx catalyst 10c when the increase amount is added. It is advantageous for suppressing temperature rise of 10c.
  • the passage in the long connecting pipe 35 can be realized in a relatively small space, and the post-processing unit 3 and thus the casing 4 can be made compact.
  • the post-processing unit 3 is accommodated in the casing 4, the post-processing unit 3 is kept warm, the post-processing unit 3 is suppressed from being cooled by outside air or traveling wind, and the temperature of each catalyst 10 is kept high. can do.
  • the SCR inlet temperature T is directly detected by the temperature sensor 56 at the inlet of the NOx catalyst 10c.
  • the ECU 100 refers to a predetermined estimated map based on the detected value (DPF outlet exhaust temperature) Td of the temperature sensor 54 at the outlet of the DPF 10b and the urea water addition amount Qu, and determines the SCR inlet temperature T. It may be estimated. In this way, the temperature sensor 56 can be omitted.
  • the reason for considering the urea water addition amount Qu is that the exhaust gas discharged from the DPF 10b is cooled by the urea water before reaching the NOx catalyst 10c.
  • the SCR inlet temperature T can be accurately estimated in consideration of such a temperature drop.
  • “estimation” is also included in “detection”.
  • the ECU 100 and the temperature sensor 54 correspond to a detector referred to in the claims.
  • the estimated map defines a three-way relationship in which the higher the DPF outlet exhaust temperature Td and the lower the urea water addition amount Qu, the higher the SCR inlet temperature T is obtained.
  • the engine 1 may include a turbocharger.
  • the post-processing unit 3 is provided on the downstream side of the turbine of the turbocharger.
  • the present disclosure is useful in that deterioration promotion of the NOx catalyst due to execution of the filter regeneration control can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

内燃機関1の排ガス浄化装置200は排気管2と後処理ユニット3とケーシング4を備える。後処理ユニットは、第1および第2触媒ケーシング33,34と、これらケーシングを連結するU字状の連結管35と、第1触媒ケーシング内に設けられたフィルタ10bと、第2触媒ケーシング内に設けられた選択還元型NOx触媒10cとを備える。排ガス浄化装置はさらに、NOx触媒の入口排気温度を検出する検出器56と、連結管の上流側端部にて尿素水を添加する添加弁36と、添加弁を制御すると共にフィルタの再生制御を実行する制御ユニット100とを備える。制御ユニットは、再生制御の実行中に検出器により検出された入口排気温度が所定の閾値以上となったとき、添加弁における尿素水添加量を増加させる。

Description

内燃機関の排ガス浄化装置
 本開示は、内燃機関の排ガス浄化装置に関する。
 ディーゼルエンジンにおいて、排ガス中の有害物質を浄化するため、複数の触媒等を含む後処理ユニットを設けることが知られている。後処理ユニットには典型的に、排気中の粒子状物質(PM)を捕集するフィルタと、フィルタの下流側に配置され、排気中の窒素酸化物(NOx)を還元して除去する選択還元型NOx触媒(SCR)とが設置される。
日本国特開2010-53847号公報
 定期的に、フィルタに堆積されたPMを燃焼除去するフィルタ再生制御を行うことが知られている。フィルタ再生制御に際しては、例えばポスト噴射等により、追加の燃料を供給することが行われる。
 一方、フィルタ再生制御の実行中、フィルタ内のPMが燃焼することにより、フィルタから比較的高温の排気ガスが排出されることがある。そしてこの高温の排気ガスがNOx触媒に供給されることで、NOx触媒の温度が過度に上昇し、NOx触媒の劣化を早め、NOx触媒のNOx浄化率が早期に低下することがある。
 そこで、本開示は、かかる事情に鑑みて創案され、その目的は、フィルタ再生制御の実行によるNOx触媒の劣化促進を抑制することができる内燃機関の排ガス浄化装置を提供することにある。
 本開示の一の態様によれば、
 内燃機関の排ガス浄化装置であって、
 排気管と、
 前記排気管の途中に設けられた後処理ユニットと、
 前記後処理ユニットを収容するケーシングと、
 を備え、
 前記後処理ユニットは、
 第1触媒ケーシングと、
 前記第1触媒ケーシングの下流側に配置された第2触媒ケーシングと、
 前記第1触媒ケーシングおよび前記第2触媒ケーシングを連結するU字状の連結管と、
 前記第1触媒ケーシング内に設けられ、排気中の粒子状物質を捕集するフィルタと、
 前記第2触媒ケーシング内に設けられ、排気中の窒素酸化物を浄化する選択還元型NOx触媒と、
 を備え、
 前記排ガス浄化装置はさらに、
 前記NOx触媒の入口排気温度を検出する検出器と、
 前記連結管の上流側端部に設けられ、尿素水を添加する添加弁と、
 前記添加弁を制御すると共に、前記フィルタを再生させるための再生制御を実行するように構成された制御ユニットと、
 を備え、
 前記制御ユニットは、前記再生制御の実行中に前記検出器により検出された前記入口排気温度が所定の閾値以上となったとき、前記添加弁における尿素水添加量を増加させるように構成されている
 ことを特徴とする内燃機関の排ガス浄化装置が提供される。
 好ましくは、前記第1触媒ケーシングは、上流側から下流側に向かって前方から後方に延び、
 前記第2触媒ケーシングは、上流側から下流側に向かって後方から前方に延び、
 前記連結管は、前記第1触媒ケーシングの後端部から前方に延びてU字状に折り返し、その後、後方に延びて前記第2触媒ケーシングの後端部に接続する。
 好ましくは、前記制御ユニットは、前記再生制御の実行中かつ前記内燃機関のアイドル運転中に前記入口排気温度が前記閾値以上となったとき、前記尿素水添加量を増加させる。
 好ましくは、前記制御ユニットは、前記入口排気温度が前記閾値以上となった時点から所定時間の間、前記尿素水添加量を増加させる。
 好ましくは、前記制御ユニットは、前記入口排気温度が前記閾値以上となった時点から前記閾値未満となる時点まで、前記尿素水添加量を増加させる。
 本開示の更なる態様によれば
 内燃機関の排ガス浄化装置であって、
 排気管と、
 前記排気管の途中に設けられた後処理ユニットと、
 前記後処理ユニットを収容するケーシングと、
 を備え、
 前記後処理ユニットは、
 第1触媒ケーシングと、
 前記第1触媒ケーシングの下流側に配置された第2触媒ケーシングと、
 前記第1触媒ケーシングおよび前記第2触媒ケーシングを連結するU字状の連結管と、
 前記第1触媒ケーシング内に設けられ、排気中の粒子状物質を捕集するフィルタと、
 前記第2触媒ケーシング内に設けられ、排気中の窒素酸化物を浄化する選択還元型NOx触媒と、
 を備え、
 前記排ガス浄化装置はさらに、
 前記連結管の上流側端部に設けられ、尿素水を添加する添加弁と、
 前記添加弁を制御すると共に、前記フィルタを再生させるための再生制御を実行するように構成された制御ユニットと、
 を備え、
 前記制御ユニットは、前記再生制御の実行中であり、かつ前記内燃機関のアイドル運転中という条件が満たされた時点から所定時間だけ尿素水添加量を増加させるように構成されている
 ことを特徴とする内燃機関の排ガス浄化装置が提供される。
 本開示によれば、フィルタ再生制御の実行によるNOx触媒の劣化促進を抑制することができる。
本開示の一実施形態に係る排ガス浄化装置を示す概略構成図である。 フィルタ再生制御を実行した場合の各値の推移を示すタイムチャートである。 本実施形態における制御の一例を示すフローチャートである。
 以下、添付図面に基づいて、本開示の一実施形態を説明する。図1は、本実施形態に係る内燃機関の排ガス浄化装置を示す概略構成図である。
 図1に示すように、排ガス浄化装置200は、内燃機関(エンジン)1の排ガスを流通させる排気管2と、排気管2の途中に設けられ、排ガスを浄化するための複数の触媒10を有する後処理ユニット3と、後処理ユニット3を収容するケーシング4とを備える。
 内燃機関1は、車両に搭載された多気筒の圧縮着火式内燃機関、すなわちディーゼルエンジンである。内燃機関1には、各気筒11から排出される排ガスを集合させる排気マニホールド12が設けられる。各気筒11には、筒内に燃料を噴射するためのインジェクタ(燃料噴射弁)8が設けられる。なお、車両および内燃機関1の種類、用途等は任意である。
 排気管2は、排気マニホールド12に接続され、排気マニホールド12からの排ガスを下流方向(矢印Gで示す方向)に流して大気に放出する管である。
 より詳しくは、排気管2は、後処理ユニット3の上流側に位置する上流側排気管21と、後処理ユニット3の下流側に位置する下流側排気管22とを含む。上流側排気管21は、その下流側端部にフランジ21aを有し、下流側排気管22は、その上流側端部にフランジ22aを有する。
 次に、後処理ユニット3について説明する。後処理ユニット3の前後左右方向を、便宜上、図1に示すような方向とする。なお、かかる方向は説明の便宜上定められたものに過ぎず、車両の前後左右方向と一致していてもよいし、一致していなくてもよい。本実施形態では、内燃機関1が車両に縦置きされており、後処理ユニット3の右方向が車両の前方向に一致する。
 後処理ユニット3は、排ガス入口管31と、排ガス出口管32と、少なくとも一つの触媒10を内設する第1触媒ケーシング33と、少なくとも一つの触媒10を内設する第2触媒ケーシング34と、第1触媒ケーシング33と第2触媒ケーシング34とを連結する概ねU字状の連結管35とを備える。後処理ユニット3は、概ね左右対称の構造を有する。
 排ガス入口管31は、後処理ユニット3の前端部且つ右側に配置され、上流側から下流側に向かって前方から後方に延び、その前端は、上流側排気管21の下流端に接続される。また、排ガス出口管32は、後処理ユニット3の前端部且つ左側に配置され、上流側から下流側に向かって後方から前方に延び、その前端は、下流側排気管22の上流端に接続される。
 より詳しくは、排ガス入口管31の上流側端部には、フランジ31aが設けられ、このフランジ31aに上流側排気管21のフランジ21aが接続される。また同様に、排ガス出口管32の下流側端部には、フランジ32aが設けられ、このフランジ32aに下流側排気管22のフランジ22aが接続される。互いに接続されるフランジ同士は、ボルト(不図示)等の適宜の締結具により取り外し可能に固定される。
 第1触媒ケーシング33は、管状に形成され、排ガス入口管31から後方に向けて延在すると共に、後端部に位置する下流側端部33aの左側面に第1側孔33bを有する。また、第1触媒ケーシング33には、上流側に位置する排ガス入口管31および下流側に位置する連結管35よりも拡径された第1拡径部33cが形成される。
 第1触媒ケーシング33における第1拡径部33c内には、第1断熱緩衝部材(マット)37を介して、上流側から酸化触媒(DOC:Diesel Oxidation Catalyst)10aおよびパティキュレートフィルタ(以下「DPF」という)10bが設けられる。
 酸化触媒10aは、排ガス中の未燃成分(炭化水素HCおよび一酸化炭素CO)を酸化して浄化する。酸化触媒10aは、HC,COの酸化時に生じた熱で排ガスを加熱、昇温する機能を有する。また酸化触媒10aは、排ガス中のNOをNO2に酸化し、排ガス中のNO2濃度を高める機能をも有する。
 DPF10bは、排ガス中に含まれる粒子状物質(PM:Particulate Matter)を捕集して除去するものであり、特許請求の範囲にいうフィルタに相当する。DPF10bは、本実施形態では、ハニカム形状の耐熱性基材の両端開口を互い違いに市松状に閉塞した所謂ウォールフロータイプのものが用いられている。しかしながら、網の目構造のフォーム形状のもの等、PMを物理的に捕集するあらゆるタイプのフィルタを用いることができる。
 DPF10bは、その内壁にPt等の触媒貴金属を担持させた所謂連続再生式の触媒付きDPFからなる。この場合、エンジンの通常運転中、DPF10bに供給された排ガス中のHCが触媒作用で酸化、燃焼し、このとき同時にDPF10b内部に堆積されたPMが燃焼除去される。なお、DPF10bが触媒貴金属を有し、触媒作用を発揮するため、ここではDPF10bも触媒10に含まれるものとする。
 こうした連続再生式DPF10bであっても、DPF10b内にはエンジンの通常運転中にPMが徐々に堆積する。この堆積したPMを燃焼除去してDPF10bを再生するため、後述のフィルタ再生制御が行われる。この点については後に詳述する。
 第2触媒ケーシング34は、管状に形成され、排ガス出口管32から後方に向けて延在すると共に、後端部に位置する上流側端部34aの右側面に第2側孔34bを有する。また、第2触媒ケーシング34には、上流側に位置する連結管35および下流側に位置する排ガス出口管32よりも拡径された第2拡径部34cが形成される。
 第2触媒ケーシング34における第2拡径部34c内には、第2断熱緩衝部材(マット)38を介して、上流側からNOx触媒10cおよびアンモニア酸化触媒10dが設けられる。
 NOx触媒10cは、排ガス中の窒素酸化物NOxを浄化するための触媒である。NOx触媒10cは、選択還元型NOx触媒(SCR:Selective Catalytic Reduction)からなり、尿素水が加水分解されて生成されたアンモニア(NH3)によって、NOxを連続的に還元し得る。
 アンモニア酸化触媒10dは、NOx触媒10cでNOxの還元に消費されなかった余剰のアンモニアを酸化して、N2を生成する触媒である。
 第1触媒ケーシング33と第2触媒ケーシング34は、互いに並列して右側および左側に配置される。また、第1側孔33bと第2側孔34bは、互いに対向するように配置される。
 連結管35は、左右方向における第1触媒ケーシング33と第2触媒ケーシング34との間の位置に配置される。連結管35の上流端は第1側孔33bに接続され、連結管35の下流端は第2側孔34bに接続される。
 連結管35は、第1側孔33bから左側に延びて前方に折れ曲がる第1部分35aと、第2側孔34bから右側に延びて前方に折れ曲がる第2部分35bとを有する。第1部分35aは、図中のX1からX2までの部分であり、第2部分35bは、図中のY1からY2までの部分である。
 また連結管35は、第1部分35aの下流端X2から前方に延びてU字状に折り返し、その後、後方に延びて第2部分35bの上流端Y2に接続される第3部分35cを有する。このように連結管35は、概して、第1触媒ケーシング33の後端部から前方に延びてU字状に折り返し、その後、後方に延びて第2触媒ケーシング34の後端部に接続する。
 連結管35をこのようにU字状に形成することで、連結管35の管長、ひいては第1触媒ケーシング33と第2触媒ケーシング34の間の排気通路長を、コンパクトなスペースで長くすることができる。
 ケーシング4は、ステンレス等の耐熱材料を用いた箱型ケーシングからなり、後処理ユニット3全体を略気密に覆う。ケーシング4の内周面上ほぼ全体には、後処理ユニット3の保温のため、グラスウール等の断熱材5が敷設される。
 ケーシング4の前面部45には、排ガス入口管31をケーシング4の外部(前方)に突出させるべく、排ガス入口管31が隙間S1をもって挿通される入口孔46が形成される。隙間S1は入口側断熱シール部材6でシールされる。同様に、ケーシング4の前面部45には、排ガス出口管32をケーシング4の外部(前方)に突出させるべく、排ガス出口管32が隙間S2をもって挿通される出口孔47が形成される。隙間S2は出口側断熱シール部材7でシールされる。これらシール部材6,7は、熱伝達率の低い材料、例えば耐熱性ゴムで形成され、各管からケーシング4への熱伝達を最小限に止める。
 本実施形態の排ガス浄化装置200はさらに、連結管35内に尿素水を添加もしくは噴射する添加弁36を備える。添加弁36は、連結管35の上流側端部に設けられ、特に、第1部分35aの折れ曲がり部分Lに配置される。添加弁36は、当該折れ曲がり部分Lから第3部分35cの折り返し部分Uに向かって、後方から前方に、かつ連結管35の中心軸に沿って尿素水を添加するように配置される。添加弁36は、ケーシング4の外部後方から前方に向かって連結管35内に挿入され、固定される。
 また、本実施形態の排ガス浄化装置200は、制御ユニットもしくはコントローラをなす電子制御ユニット(以下「ECU」と称す)100が設けられる。ECU100はCPU、ROM、RAM、入出力ポートおよび記憶装置等を含む。ECU100は、後述の如くインジェクタ8および添加弁36を制御するように構成され、またはプログラムされている。
 排ガス浄化装置200は、エンジンの回転速度ないし回転数(rpm)を検出するための回転速度センサ51と、アクセル開度を検出するためのアクセル開度センサ52と、酸化触媒10aの入口排気温度を検出するための温度センサ(第1温度センサ)53と、DPF10bの出口排気温度を検出するための温度センサ(第2温度センサ)54と、DPF10bの前後の差圧を検出するための差圧センサ55と、NOx触媒10cの入口排気温度を検出するための温度センサ(第3温度センサ)56とをさらに備える。これらセンサはECU100に電気的に接続されている。温度センサ56が特許請求の範囲にいう検出器に相当する。
 エンジンの通常運転時、ECU100は、エンジン運転状態、特に回転速度センサ51により検出されたエンジン回転数と、アクセル開度センサ52により検出されたアクセル開度とに基づき、インジェクタ8から噴射される燃料噴射量と、添加弁36から添加される尿素水添加量とを制御する。エンジン回転数が高いほど、またアクセル開度が大きいほど、燃料噴射量および尿素水添加量は増加される。添加弁36から添加された尿素水が加水分解されてアンモニアが生成され、このアンモニアがNOx触媒10cに供給されることにより、NOxが還元除去される。
 また、エンジンの通常運転中にDPF10bに堆積したPMを燃焼除去し、DPF10bを再生するため、ECU100はフィルタ再生制御を定期的に実行する。すなわち、差圧センサ55により検出された差圧が所定の閾値を超えた場合、ECU100は、DPF10bの再生が必要と判断し、インジェクタ8にポスト噴射を行わせ、追加の燃料を筒内に供給する。これにより、余剰のHCが酸化触媒10aで燃焼され、高温かつリッチの排ガスがDPF10bに供給され、DPF10b内の堆積PMが燃焼除去される。
 なお、フィルタ再生制御は公知方法を含め他の方法でも可能である。例えば、ポスト噴射の代わりに、酸化触媒10aの上流側に別の燃料噴射弁から燃料を直接供給してもよい。フィルタ再生制御が特許請求の範囲にいう再生制御に相当する。
 さて、フィルタ再生制御の実行中、DPF10b内のPMが燃焼することにより、DPF10bから比較的高温の排気ガスが排出されることがある。そしてこの高温の排気ガスがNOx触媒10cに供給されることで、NOx触媒10cの温度が過度に上昇し、NOx触媒10cの劣化を早め、NOx触媒10cのNOx浄化率を早期に低下させることがある。
 特に近年、DPF10bの容量を増やしてそのPM最大堆積量を増やし、フィルタ再生制御間の時間的インターバル、すなわち再生インターバルを長期化して、燃費の向上を図る試みが行われている。こうした場合、多量の堆積PMが一気に燃焼し、DPF10bから排出される排ガスのピーク温度が上昇し、NOx触媒10cの劣化を促進する傾向が強まる。
 また、フィルタ再生制御中にエンジンがアイドル運転状態に移行すると、DPF10bにおける排ガス通過流量が減少するので、堆積PMが一気に燃焼し(これを着火アイドルという)、DPF10bから排出される排ガスのピーク温度が上昇し、NOx触媒10cの劣化を促進する傾向が強まる。
 そこで、本実施形態のECU100は、フィルタ再生制御の実行中、温度センサ56により検出されたNOx触媒10cの入口排気温度が所定の閾値以上となったとき、添加弁36における尿素水添加量を増加させるよう構成されている。これによれば、NOx触媒10cの上流側で、増量された尿素水を排気ガスと混合させ、排気温度を低下させることができる。そしてこの温度低下した排ガスがNOx触媒10cに供給される。よって、フィルタ再生制御の実行中に高温の排気ガスがDPF10bから排出された場合であっても、その排気ガスの温度を低下させた上でNOx触媒10cに供給することができる。それ故、フィルタ再生制御によるNOx触媒10cの劣化促進を抑制し、NOx浄化率の早期低下を抑制することができる。
 またこれに伴い、DPF10bの容量増加が可能になり、再生インターバルを長期化して燃費を向上することができる。そして、たとえDPF10bの容量を増加した場合であっても、着火アイドルに起因してNOx触媒10cに供給される排ガスの温度が上昇するのを抑制し、NOx触媒10cの劣化促進を抑制することができる。
 図2は、フィルタ再生制御を実行した場合の各値の推移を示すタイムチャートである。tは時間である。
 図2(A)において、線aはアクセル開度Ac、線bはエンジン回転数Neを示す。図2(B)において、線cは、本開示を適用しない比較例の尿素水添加量Qu、線dはポスト噴射量Qpを示す。図2(C)において、線eは、比較例におけるNOx触媒10cの入口排気温度(SCR入口温度という)Tを示す。
 図示例では、時刻t1からフィルタ再生制御が開始され、ポスト噴射が開始されている。フィルタ再生制御中も尿素水添加が実行される。その後、時刻t2で、アクセル開度Acがゼロすなわち全閉となり、エンジン回転数Neが所定のアイドル判定閾値N1以下の回転数となり、エンジン運転状態がアイドル運転状態に移行している。アイドル判定閾値N1は、エンジン暖機後の所定の目標アイドル回転数Niより若干高い値に設定され、例えば、減速フューエルカットから復帰する際の復帰回転数と等しい値とされる。
 時刻t2以降、フィルタ再生制御の実行中にエンジンがアイドル運転している。こうなると比較例においては、アイドル運転開始後、前述の着火アイドルの発生により、図2(C)の線eで示すように、SCR入口温度Tが急激にかつピーク状に上昇する。この温度上昇がNOx触媒10cの劣化を促す。時刻t2から、SCR入口温度Tがピークに達する時点t4までの時間は例えば100秒程度である。
 しかしながら本実施形態では、SCR入口温度Tが所定の閾値Tth以上となったとき、図2(B)に仮想線c’で示すように、尿素水添加量Quが比較例の量(後述の基準量Qub)よりも所定量ΔQu増加され、より多い量Qucとされる。これにより、図2(C)に仮想線e’で示すように、SCR入口温度Tの上昇を抑制し、NOx触媒10cの劣化を抑制することができる。
 閾値Tthは、予め実験的に求められ、ECU100に記憶されている。閾値Tthは、NOx触媒10cの過度の劣化を生じさせるSCR入口温度Tの最小値に設定されている。本実施形態では、尿素水添加量Quの増量により、SCR入口温度Tが当該最小値以上になることを抑制できる。
 代替的に、閾値Tthは、当該最小値に対し所定のマージン温度(例えば数℃~数10℃程度の値)だけ低い値に設定されてもよい。これにより、SCR入口温度Tが当該最小値以上になることをより確実に抑制できる。
 尿素水添加量Quの増加方法については次の幾つかの態様が考えられる。まず第1の態様に関し、ECU100は、SCR入口温度Tが閾値Tth以上となった時点t3から所定時間Δtの間、尿素水添加量Quを増加させる。所定時間Δtは、好ましくは、比較例においてSCR入口温度Tが閾値Tth以上となる時点t3から、SCR入口温度Tがピーク温度に達する時点t4までの時間と等しいか、それより長い時間に設定される。図示例は前者の例を示す。所定時間Δtは例えば3秒から30秒、好ましくは5秒から20秒、より好ましくは10秒程度の長さを有する。所定時間Δtも予め実験的に求められ、ECU100に記憶されている。これにより、SCR入口温度Tがピーク温度まで上昇することが確実に妨げられ、SCR入口温度Tを好適に抑制できる。
 第2の態様に関し、ECU100は、SCR入口温度Tが閾値Tth以上となった時点t3から、その後閾値Tth未満となる時点まで、尿素水添加量Quを増加させる。これによれば、SCR入口温度Tが閾値Tth以上となっている期間だけ、尿素水添加量Quを増加させるので、必要最小限の増量でSCR入口温度Tを抑制できる。
 第3の態様に関し、ECU100は、フィルタ再生制御の実行中かつエンジンのアイドル運転中という2条件が満たされた時点t2から、先の所定時間Δtよりも長い所定時間Δt’だけ、尿素水添加量Quを増加させる。この所定時間Δt’は、時刻t2から、比較例においてSCR入口温度Tが一旦閾値Tthを超えその後閾値Tth未満に低下する時点t5までの間の時間として、予め実験的に求められ、ECU100に記憶される。こうすると、先行的に尿素水添加量Quの増量を開始でき、SCR入口温度Tが閾値Tth以上に上昇するのをより確実に抑制できる。これら第1~第3の態様は必要に応じていずれかを任意に採択可能である。
 次に、本実施形態における制御の一例を図3に示すフローチャートに基づいて説明する。図示するルーチンはECU100により所定の演算周期τ(例えば10msec)毎に繰り返し実行される。
 まずステップS101では、フィルタ再生制御が実行中であるか否かが判断される。実行中でなければステップS105に進み、尿素水添加量Quは基準量Qubとされる。基準量Qubは、エンジン運転状態すなわち、回転速度センサ51およびアクセル開度センサ52によりそれぞれ検出されたエンジン回転数Neおよびアクセル開度センサ52に基づき、所定のマップを用いて算出される。この基準量Qubの尿素水が添加弁36から添加ないし噴射されるよう添加弁36が制御される。
 フィルタ再生制御が実行中であれば、ステップS102に進み、エンジンがアイドル運転中か否かが判断される。アイドル運転中でなければステップS105に進み、尿素水添加量Quは基準量Qubとされる。
 他方、アイドル運転中であればステップS103に進み、温度センサ56により検出されたSCR入口温度Tが閾値Tth以上か否かが判断される。閾値TthでなければステップS105に進み、尿素水添加量Quは基準量Qubとされる。
 他方、閾値Tth以上であればステップS104に進み、尿素水添加量Quが、基準量Qubより多い所定量Qucに増量される。そしてこの増量された尿素水が添加弁36から添加ないし噴射されるよう添加弁36が制御される。
 SCR入口温度Tが一旦閾値Tth以上となり(S103:イエス)、尿素水添加量Quが増量されても、その後SCR入口温度Tが閾値Tth未満となれば(S103:ノー)、尿素水添加量Quが基準量Qubに戻される。このように本フローは前述の第2の態様に対応するものであるが、第1または第3の態様に対応するフローチャートを構築することも、当業者の想定範囲内である。
 以上述べたように、本実施形態によれば、フィルタ再生制御の実行によるNOx触媒10cの劣化促進を抑制することができる。
 また本実施形態によれば、後処理ユニット3を上述の如く構成し、第1および第2触媒ケーシング33,34をU字状の連結管35で連結し、連結管35の上流側端部に添加弁36を設置している。こうすると、添加弁36から添加された尿素水を、比較的長い連結管35内の通路で排ガスと十分にかつ均質に混合できる。よって基準量添加時に、NOx触媒10cに対し好ましい方法で尿素水を供給できるだけでなく、増量添加時においては、温度むらが少なく均等に温度低下した排ガスをNOx触媒10cに好適に供給でき、NOx触媒10cの温度上昇抑制に有利である。しかも、その長い連結管35内の通路を比較的小スペースで実現でき、後処理ユニット3ひいてはケーシング4もコンパクト化できる。
 また、後処理ユニット3をケーシング4内に収容したので、後処理ユニット3を保温し、後処理ユニット3が外気や走行風で冷却されるのを抑制し、各触媒10の温度を高温に保持することができる。
 なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
 (1)前記実施形態では、SCR入口温度Tを、NOx触媒10cの入口部の温度センサ56により直接検出した。しかしながら代替的に、DPF10bの出口部の温度センサ54の検出値(DPF出口排気温度)Tdと、尿素水添加量Quとに基づき、ECU100が所定の推定マップを参照して、SCR入口温度Tを推定してもよい。こうすると温度センサ56を省略できる。尿素水添加量Quを考慮する理由は、DPF10bから排出された排気ガスが、NOx触媒10cに到達する前に、尿素水により冷却されるためである。尿素水添加量Quを考慮することにより、こうした温度低下分も加味してSCR入口温度Tを精度良く推定できる。なお本明細書では「推定」も「検出」に含まれるものとする。この変形例の場合、ECU100および温度センサ54が特許請求の範囲にいう検出器に相当する。推定マップにおいては、DPF出口排気温度Tdが高いほど、また尿素水添加量Quが少ないほど、高いSCR入口温度Tが得られるような三者の関係が規定されている。
 (2)エンジン1はターボチャージャを備えてもよい。この場合、ターボチャージャのタービンの下流側に後処理ユニット3が設けられる。
 本出願は、2016年4月14日付で出願された日本国特許出願(特願2016-080782)に基づくものであり、その内容はここに参照として取り込まれる。
産業上に利用可能性
 本開示によれば、フィルタ再生制御の実行によるNOx触媒の劣化促進を抑制することができる点で有用である。
1 内燃機関(エンジン)
2 排気管
3 後処理ユニット
4 ケーシング
10b フィルタ(DPF)
10c NOx触媒
33 第1触媒ケーシング
34 第2触媒ケーシング
35 連結管
36 添加弁
54,56 温度センサ
100 電子制御ユニット(ECU)
200 排ガス浄化装置

Claims (6)

  1.  内燃機関の排ガス浄化装置であって、
     排気管と、
     前記排気管の途中に設けられた後処理ユニットと、
     前記後処理ユニットを収容するケーシングと、
     を備え、
     前記後処理ユニットは、
     第1触媒ケーシングと、
     前記第1触媒ケーシングの下流側に配置された第2触媒ケーシングと、
     前記第1触媒ケーシングおよび前記第2触媒ケーシングを連結するU字状の連結管と、
     前記第1触媒ケーシング内に設けられ、排気中の粒子状物質を捕集するフィルタと、
     前記第2触媒ケーシング内に設けられ、排気中の窒素酸化物を浄化する選択還元型NOx触媒と、
     を備え、
     前記排ガス浄化装置はさらに、
     前記NOx触媒の入口排気温度を検出する検出器と、
     前記連結管の上流側端部に設けられ、尿素水を添加する添加弁と、
     前記添加弁を制御すると共に、前記フィルタを再生させるための再生制御を実行するように構成された制御ユニットと、
     を備え、
     前記制御ユニットは、前記再生制御の実行中に前記検出器により検出された前記入口排気温度が所定の閾値以上となったとき、前記添加弁における尿素水添加量を増加させるように構成されている
     ことを特徴とする内燃機関の排ガス浄化装置。
  2.  前記第1触媒ケーシングは、上流側から下流側に向かって前方から後方に延び、
     前記第2触媒ケーシングは、上流側から下流側に向かって後方から前方に延び、
     前記連結管は、前記第1触媒ケーシングの後端部から前方に延びてU字状に折り返し、その後、後方に延びて前記第2触媒ケーシングの後端部に接続する
     ことを特徴とする請求項1に記載の内燃機関の排ガス浄化装置。
  3.  前記制御ユニットは、前記再生制御の実行中かつ前記内燃機関のアイドル運転中に前記入口排気温度が前記閾値以上となったとき、前記尿素水添加量を増加させる
     ことを特徴とする請求項1または2に記載の内燃機関の排ガス浄化装置。
  4.  前記制御ユニットは、前記入口排気温度が前記閾値以上となった時点から所定時間の間、前記尿素水添加量を増加させる
     ことを特徴とする請求項1~3のいずれか一項に記載の内燃機関の排ガス浄化装置。
  5.  前記制御ユニットは、前記入口排気温度が前記閾値以上となった時点から前記閾値未満となる時点まで、前記尿素水添加量を増加させる
     ことを特徴とする請求項1~3のいずれか一項に記載の内燃機関の排ガス浄化装置。
  6.  内燃機関の排ガス浄化装置であって、
     排気管と、
     前記排気管の途中に設けられた後処理ユニットと、
     前記後処理ユニットを収容するケーシングと、
     を備え、
     前記後処理ユニットは、
     第1触媒ケーシングと、
     前記第1触媒ケーシングの下流側に配置された第2触媒ケーシングと、
     前記第1触媒ケーシングおよび前記第2触媒ケーシングを連結するU字状の連結管と、
     前記第1触媒ケーシング内に設けられ、排気中の粒子状物質を捕集するフィルタと、
     前記第2触媒ケーシング内に設けられ、排気中の窒素酸化物を浄化する選択還元型NOx触媒と、
     を備え、
     前記排ガス浄化装置はさらに、
     前記連結管の上流側端部に設けられ、尿素水を添加する添加弁と、
     前記添加弁を制御すると共に、前記フィルタを再生させるための再生制御を実行するように構成された制御ユニットと、
     を備え、
     前記制御ユニットは、前記再生制御の実行中であり、かつ前記内燃機関のアイドル運転中という条件が満たされた時点から所定時間だけ尿素水添加量を増加させるように構成されている
     ことを特徴とする内燃機関の排ガス浄化装置。
PCT/JP2017/015193 2016-04-14 2017-04-13 内燃機関の排ガス浄化装置 WO2017179674A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016080782A JP6682972B2 (ja) 2016-04-14 2016-04-14 内燃機関の排ガス浄化装置
JP2016-080782 2016-04-14

Publications (1)

Publication Number Publication Date
WO2017179674A1 true WO2017179674A1 (ja) 2017-10-19

Family

ID=60042667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015193 WO2017179674A1 (ja) 2016-04-14 2017-04-13 内燃機関の排ガス浄化装置

Country Status (2)

Country Link
JP (1) JP6682972B2 (ja)
WO (1) WO2017179674A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6891588B2 (ja) * 2017-03-28 2021-06-18 いすゞ自動車株式会社 内燃機関の排気浄化装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138737A (ja) * 2007-11-14 2009-06-25 Mazda Motor Corp エンジンの排気浄化方法及び排気浄化装置
US20100242450A1 (en) * 2009-03-26 2010-09-30 Marcus Werni Exhaust gas-treating device
JP2013092075A (ja) * 2011-10-25 2013-05-16 Nissan Motor Co Ltd 内燃機関の排気浄化装置
JP2014194204A (ja) * 2013-03-29 2014-10-09 Yanmar Co Ltd 排気ガス浄化装置
JP2015068341A (ja) * 2013-09-27 2015-04-13 エーバーシュペッヒャー・エグゾースト・テクノロジー・ゲーエムベーハー・ウント・コンパニー・カーゲー 排気ガス処理装置
JP2015098791A (ja) * 2013-11-18 2015-05-28 株式会社クボタ 作業車両
JP2015121199A (ja) * 2013-12-25 2015-07-02 トヨタ自動車株式会社 車載内燃機関の排気浄化装置
JP2015124642A (ja) * 2013-12-26 2015-07-06 株式会社クボタ ディーゼルエンジン

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138737A (ja) * 2007-11-14 2009-06-25 Mazda Motor Corp エンジンの排気浄化方法及び排気浄化装置
US20100242450A1 (en) * 2009-03-26 2010-09-30 Marcus Werni Exhaust gas-treating device
JP2013092075A (ja) * 2011-10-25 2013-05-16 Nissan Motor Co Ltd 内燃機関の排気浄化装置
JP2014194204A (ja) * 2013-03-29 2014-10-09 Yanmar Co Ltd 排気ガス浄化装置
JP2015068341A (ja) * 2013-09-27 2015-04-13 エーバーシュペッヒャー・エグゾースト・テクノロジー・ゲーエムベーハー・ウント・コンパニー・カーゲー 排気ガス処理装置
JP2015098791A (ja) * 2013-11-18 2015-05-28 株式会社クボタ 作業車両
JP2015121199A (ja) * 2013-12-25 2015-07-02 トヨタ自動車株式会社 車載内燃機関の排気浄化装置
JP2015124642A (ja) * 2013-12-26 2015-07-06 株式会社クボタ ディーゼルエンジン

Also Published As

Publication number Publication date
JP6682972B2 (ja) 2020-04-15
JP2017190725A (ja) 2017-10-19

Similar Documents

Publication Publication Date Title
JP4978856B2 (ja) 内燃機関の排気浄化装置
US8146351B2 (en) Regeneration systems and methods for particulate filters using virtual brick temperature sensors
EP2559876B1 (en) Exhaust gas purification device, and control method for exhaust gas purification device
JP6051948B2 (ja) 内燃機関の排気浄化装置
JP4592504B2 (ja) 排気浄化装置
JP2008057364A (ja) 内燃機関の排気浄化システム
JP2008121629A (ja) 排気浄化装置
JP2019035370A (ja) 排気浄化装置およびこれを備えた車両
JP5830832B2 (ja) フィルタ再生装置
JP5251711B2 (ja) 内燃機関の排気浄化装置
JP4640318B2 (ja) 内燃機関の制御装置
JP2008144711A (ja) NOx触媒の異常診断装置及び異常診断方法
JP2010249076A (ja) 内燃機関の排気浄化装置
CN110857650B (zh) 半经验引擎排放烟尘模型
JP5614004B2 (ja) 触媒昇温装置
WO2017179674A1 (ja) 内燃機関の排ガス浄化装置
JP2019167919A (ja) エンジンの排気ガス状態推定方法及び触媒異常判定方法、並びに、エンジンの触媒異常判定装置
JP2010150979A (ja) エンジンの排気浄化装置
JP7354976B2 (ja) 内燃機関の排気浄化システム
JP2015031211A (ja) 内燃機関の制御装置
JP2019167918A (ja) エンジンの排気ガス状態推定方法及び触媒異常判定方法、並びに、エンジンの触媒異常判定装置
JP2016173037A (ja) 排出ガス浄化システム
JP2011021485A (ja) 自動車用排気浄化装置
JP5652255B2 (ja) 内燃機関の排気浄化装置
JP7147214B2 (ja) エンジンの排気ガス状態推定方法及び触媒異常判定方法、並びに、エンジンの触媒異常判定装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782487

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782487

Country of ref document: EP

Kind code of ref document: A1