Nothing Special   »   [go: up one dir, main page]

WO2017168503A1 - 室外機 - Google Patents

室外機 Download PDF

Info

Publication number
WO2017168503A1
WO2017168503A1 PCT/JP2016/059862 JP2016059862W WO2017168503A1 WO 2017168503 A1 WO2017168503 A1 WO 2017168503A1 JP 2016059862 W JP2016059862 W JP 2016059862W WO 2017168503 A1 WO2017168503 A1 WO 2017168503A1
Authority
WO
WIPO (PCT)
Prior art keywords
outdoor unit
unit according
bent portion
pipe
bent
Prior art date
Application number
PCT/JP2016/059862
Other languages
English (en)
French (fr)
Inventor
英明 前山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/059862 priority Critical patent/WO2017168503A1/ja
Priority to CN201680083697.0A priority patent/CN108885038A/zh
Priority to CN202210591371.6A priority patent/CN114777216A/zh
Priority to EP16896723.0A priority patent/EP3438573B1/en
Priority to US16/072,033 priority patent/US11105521B2/en
Priority to JP2018507829A priority patent/JP6639644B2/ja
Publication of WO2017168503A1 publication Critical patent/WO2017168503A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/30Refrigerant piping for use inside the separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/06Damage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/07Exceeding a certain pressure value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/12Safety or protection arrangements; Arrangements for preventing malfunction for preventing overpressure

Definitions

  • the present invention relates to an outdoor unit of a refrigeration cycle apparatus using 1,1,2-trifluoroethylene.
  • a refrigerant having a lower global warming potential is also being studied for refrigerants used in refrigeration cycle apparatuses such as air conditioners.
  • GWP global warming potential
  • the G410 of R410A widely used for air conditioners is 2088, which is a very large value.
  • the GWP of difluoromethane (R32), which has begun to be introduced in recent years, is also a considerably large value of 675.
  • HFO-1123 1,1,2-trifluoroethylene
  • Patent Document 1 1,1,2-trifluoroethylene (HFO-1123) (see, for example, Patent Document 1).
  • This refrigerant has the following advantages in particular. -Since the operating pressure is high and the volume flow rate of the refrigerant is small, the pressure loss is small and it is easy to ensure performance.
  • -GWP is less than 1 and is highly advantageous as a measure against global warming.
  • HFO-1123 has the following problems. (1) When ignition energy is applied in a high temperature and high pressure state, an explosion occurs (for example, see Non-Patent Document 1).
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain an outdoor unit of a refrigeration cycle apparatus that can ensure safety even when HFO-1123 is used.
  • An outdoor unit is an outdoor unit used in a refrigeration cycle apparatus in which a mixed refrigerant containing 1,1,2-trifluoroethylene circulates, and includes a housing and a pipe through which the mixed refrigerant flows.
  • the pipe is housed in the housing and has a bent portion, and the bent portion has a breakage induction structure whose pressure resistance is lower than other portions of the pipe, and the breakage induction structure and the housing A plate is provided between the outside and the outside.
  • the refrigeration cycle apparatus using the outdoor unit according to the present invention, when the pressure of the mixed refrigerant rises abnormally, the pipe breaks at the break induction structure portion, so the mixed refrigerant can be discharged to the outside of the pipe. . Therefore, the disproportionation reaction of 1,1,2-trifluoroethylene (HFO-1123) can be prevented from diffusing as a chain reaction, and an explosion due to the disproportionation reaction can be prevented.
  • the outdoor unit which concerns on this invention is equipped with the fracture
  • the outdoor unit according to the present invention includes a plate between the breakage induction structure and the outside of the housing, it is possible to prevent the mixed refrigerant blown out from the broken part from being blown out of the outdoor unit. Accordingly, by configuring the refrigeration cycle apparatus using the outdoor unit according to the present invention, it is possible to obtain a refrigeration cycle apparatus that can ensure safety even when HFO-1123 is used.
  • FIG. 1 is a circuit diagram of a refrigeration cycle apparatus including an outdoor unit according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 100 is an air conditioner. Even if the refrigeration cycle apparatus 100 is a device other than an air conditioner (for example, a heat pump cycle apparatus), the outdoor unit 110 according to Embodiment 1 can be applied.
  • the refrigeration cycle apparatus 100 includes a refrigerant circuit 50 through which refrigerant circulates.
  • the refrigerant circuit 50 is configured by connecting the compressor 1, the flow path switching device 2, the outdoor heat exchanger 10, the expansion valve 3, and the indoor heat exchanger 4 through a refrigerant pipe.
  • the compressor 1 compresses the low-pressure gas refrigerant sucked from the suction port and discharges it from the discharge port 1a as a high-pressure gas refrigerant.
  • the compressor 1 according to the first embodiment is provided with a suction muffler 1b that separates liquid refrigerant and gas refrigerant at the suction port.
  • the flow path switching device 2 is, for example, a four-way valve, and is connected to the discharge port 1a of the compressor 1 through a refrigerant pipe. The flow path switching device 2 switches the inflow destination of the high-pressure gas refrigerant discharged from the compressor 1 to the outdoor heat exchanger 10 or the indoor heat exchanger 4.
  • the outdoor heat exchanger 10 operates as a condenser during cooling, and dissipates the refrigerant compressed by the compressor 1.
  • the outdoor heat exchanger 10 operates as an evaporator during heating, and heats the refrigerant by exchanging heat between the outdoor air and the refrigerant expanded by the expansion valve 3.
  • the outdoor heat exchanger 10 according to Embodiment 1 is a fin tube heat exchanger, for example, and has the following configuration.
  • FIG. 2 is a side view showing the outdoor heat exchanger according to Embodiment 1 of the present invention.
  • the outdoor heat exchanger 10 includes a plurality of fins 11 that are arranged in parallel at a predetermined interval and a plurality of heat transfer tubes 12 that are arranged in parallel at a predetermined interval and penetrate the fins 11.
  • the outdoor heat exchanger 10 also has a bent portion 13 that connects the two heat transfer tubes 12.
  • the bent portion 13 is formed integrally with the two heat transfer tubes 12 by bending one pipe into a hairpin shape.
  • the bending part 13 may be comprised with the U vent 13a separate from the heat exchanger tube 12.
  • FIG. The U vent 13a is connected to the two heat transfer tubes 12 by brazing.
  • the expansion valve 3 expands the refrigerant radiated by the condenser, that is, the refrigerant flowing into the expansion valve 3.
  • the indoor heat exchanger 4 operates as a condenser during heating, and dissipates the refrigerant compressed by the compressor 1.
  • the indoor heat exchanger 4 operates as an evaporator during cooling, and heats the refrigerant by exchanging heat between the indoor air and the refrigerant expanded by the expansion valve 3.
  • the indoor heat exchanger 4 is, for example, a fin tube type heat exchanger. Note that when the refrigeration cycle apparatus 100 performs only one of cooling and heating, the flow path switching device 2 is not necessary.
  • the refrigerant circulating in the refrigerant circuit 50 is a mixed refrigerant obtained by mixing 1,1,2-trifluoroethylene (HFO-1123) and another refrigerant different from the HFO-1123. used.
  • a mixed refrigerant of HFO-1123 and difluoromethane (R32) can be used.
  • the other refrigerant includes 2,3,3,3-tetrafluoropropene (R1234yf), trans-1,3,3,3-tetrafluoropropene (R1234ze (E)), cis-1 , 3,3,3-tetrafluoropropene (R1234ze (Z)), 1,1,1,2-tetrafluoroethane (R134a), 1,1,1,2,2-pentafluoroethane (R125) May be.
  • at least two of these refrigerants may be adopted and mixed with HFO-1123.
  • Each component of the refrigerant circuit 50 described above is housed in the outdoor unit 110 or the indoor unit 120.
  • the indoor heat exchanger 4 is housed in the indoor unit 120.
  • the compressor 1, the flow path switching device 2, the outdoor heat exchanger 10, and the refrigerant pipe connecting them are housed in the outdoor unit 110.
  • the refrigerant pipe connecting them is the “pipe housed in the casing of the outdoor unit” in the present invention.
  • the heat transfer tube 12, the bent portion 13, and the U vent 13a constituting the outdoor heat exchanger 10 are also “piping accommodated in the casing of the outdoor unit” in the present invention.
  • the expansion valve 3 is housed in the outdoor unit 110 or the indoor unit 120. In FIG. 1, the example which accommodated the expansion valve 3 in the outdoor unit 110 is shown.
  • the outdoor unit 110 and the indoor unit 120 can be connected and disconnected by the on-off valve 55 provided in the refrigerant circuit 50. That is, the outdoor unit 110 and the indoor unit 120 can be connected by the on-off valve 55 after being installed at the installation location.
  • the outdoor unit 110 is installed at the installation location with the mixed refrigerant sealed in the outdoor unit 110 and the on-off valve 55 closed.
  • the indoor unit 120 is installed in an installation location. Thereafter, the outdoor unit 110 and the indoor unit 120 are connected by the opening / closing valve 55 and the opening / closing valve 55 is opened. Thereby, the mixed refrigerant can be circulated in the refrigerant circuit 50, and the refrigeration cycle apparatus 100 can be used.
  • FIG. 3 is a cross-sectional view showing the outdoor unit according to Embodiment 1 of the present invention from above.
  • a specific arrangement of each component housed in the outdoor unit 110 will be described with reference to FIG.
  • the outdoor unit 110 includes a substantially cuboid casing 111 formed of a plate such as a steel plate.
  • the inside of the casing 111 is partitioned into a machine chamber 113 and a blower chamber 114 by a partition plate 112 that is a plate such as a steel plate.
  • the housing 111 includes a machine room 113 and a blower room 114.
  • a suction port 114a is formed in the back surface portion and the left side surface portion, and an air outlet 114b is formed in the front surface portion.
  • the outdoor heat exchanger 10 is accommodated in the blower chamber 114 so that the fin 11 faces the suction port 114a. Further, the blower chamber 114 is provided with a blower 20 that is, for example, a propeller fan, facing the air outlet 114b. That is, when the blower 20 is driven, outdoor air is sucked into the blower chamber 114 from the suction port 114a and blown out from the blower outlet 114b. The air sucked into the blower chamber 114 exchanges heat with the mixed refrigerant flowing through the outdoor heat exchanger 10 when passing through the outdoor heat exchanger 10.
  • a blower 20 that is, for example, a propeller fan
  • the bent portion 13 of the outdoor heat exchanger 10 is disposed at a position not facing the suction port 114a. Specifically, as shown in FIG. 2, bent portions 13 are formed at both ends of the outdoor heat exchanger 10. The bent portion 13 at one end is disposed in front of the suction port 114 a formed on the left side surface portion of the blower chamber 114. That is, the outdoor unit 110 according to the first embodiment includes the plate 111d that forms the front side portion of the left side surface portion of the air blowing chamber 114 and the air flow between the bent portion 13 and the outside of the casing 111 of the outdoor unit 110. And a plate 111e constituting the left side portion of the front surface of the chamber 114.
  • the bent portion 13 at the other end is housed in the machine room 113. That is, the outdoor unit 110 according to Embodiment 1 includes the plates 111a, 111b, 111c and the partition plate 112 that constitute the machine room 113 between the bent portion 13 and the outside of the casing 111 of the outdoor unit 110. It has. In the first embodiment, the bent portion 13 on the side accommodated in the machine room 113 is the U vent 13a.
  • the machine room 113 also stores the compressor 1, the flow path switching device 2, and the like.
  • the mixed refrigerant circulating through the refrigerant circuit 50 is expanded when the mixed refrigerant from the discharge port 1a of the compressor 1 to the inlet of the expansion valve 3 is on the high pressure side.
  • the mixed refrigerant from the outlet of the valve 3 to the inlet of the compressor 1 is on the low pressure side.
  • the ratio of HFO-1123 in the mixed refrigerant is 1 wt% or more and 35 wt% or less.
  • the pressure on the high pressure side of the mixed refrigerant in the refrigerant circuit 50 is approximately 4 MPa or less regardless of the type of other refrigerant different from HFO-1123.
  • the pressure on the high-pressure side of the mixed refrigerant in the refrigerant circuit 50 may abnormally increase.
  • the high-temperature and high-pressure gas refrigerant flowing in the outdoor heat exchanger 10 cannot be condensed, and mixing in the refrigerant circuit 50
  • the pressure on the high pressure side of the refrigerant rises abnormally.
  • HFO-1123 contained in the mixed refrigerant diffuses due to a disproportionation reaction in a high temperature and high pressure state. Therefore, for example, when HFO-1123 is ignited from an ignition source in the compressor 1 (motor, wiring for supplying power to the motor, etc.), the disproportionation reaction of HFO-1123 diffuses as a chain reaction, and the disproportionation occurs. There is a concern that an explosion may occur due to the chemical reaction.
  • the outdoor unit 110 according to the first embodiment is provided with the fracture induction structure 30 having a lower pressure resistance than the other part of the piping constituting the refrigerant circuit 50 at the bent portion 13 of the outdoor heat exchanger 10.
  • the fracture induction structure 30 according to the first embodiment has the following configuration. In the following, an example in which the U vent 13a is provided with the fracture guiding structure 30 will be described.
  • FIG. 4 is a side view showing the U vent according to Embodiment 1 of the present invention.
  • FIG. 4 shows a part as a cross section.
  • the breakage guiding structure 30 according to the first embodiment has a notch structure having a notch 31.
  • This notch 31 is formed in the outer periphery of piping, for example in the perimeter.
  • the U vent 13a which is the bent portion 13 is configured to be broken, so that the break can be made on a small scale, and there can be no or few scattered objects.
  • the U vent 13a is observed in the state shown in FIG. That is, for convenience, the heat transfer tube 12 connected to the upper end of the U vent 13a is referred to as a heat transfer tube 12a, the heat transfer tube 12 connected to the lower end of the U vent 13a is referred to as a heat transfer tube 12b, and the U vent 13a.
  • a portion on the upper side of the notch 31 is referred to as an upper portion 13a1
  • a portion of the U vent 13a on the lower side of the notch 31 is referred to as a lower portion 13a2.
  • the lower portion 13a2 is pushed upward by the reaction force of the heat transfer tube 12b, which is a straight pipe. For this reason, when the notch 31 is broken, the movement of the upper portion 13a1 and the lower portion 13a2 of the U vent 13a is reduced, and the breakage of the U vent 13a can be reduced. In addition, since the movement of the upper portion 13a1 and the lower portion 13a2 of the U vent 13a is reduced, the upper portion 13a1 and the lower portion 13a2 can be prevented from interfering with nearby components, so that there is no or little scattered matter. You can also.
  • the U vent 13a is housed in the machine room 113. That is, the plates 111 a, 111 b, 111 c and the partition plate 112 constituting the machine room 113 are provided between the U vent 13 a having the notch 31 and the outside of the casing 111 of the outdoor unit 110. For this reason, it can also prevent that the mixed refrigerant blown out from the notch 31 which is a fracture
  • the notch 31 does not penetrate the U vent 13a and has a depth of 30% or more of the thickness of the portion where the notch 31 is not formed in the U vent 13a. In other words, it is preferable that 0.3t ⁇ d ⁇ t, where t is the thickness of the U vent 13a where the notch 31 is not formed, and d is the depth of the notch 31.
  • the breakage induction structure 30 breaks at 10 MPa to 15 MPa.
  • the resin that covers the motor winding of the compressor 1 and the wiring for supplying power to the motor generally has a heat resistance of about 230 ° C. to 250 ° C.
  • the temperature at which the resin melts and the winding or wiring is exposed is assumed to be about 300 ° C. Therefore, the inventors diffused the disproportionation reaction of HFO-1123 as a chain reaction at what pressure when a mixed refrigerant having an HFO-1123 ratio of 35 wt% or less is used in an environment of 300 ° C. I verified it.
  • the disproportionation reaction of HFO-1123 diffuses as a chain reaction when the pressure is higher than 15 MPa. It has also been found that when the pressure on the high-pressure side of the mixed refrigerant in the refrigerant circuit 50 abnormally increases as described above, the pressure on the high-pressure side may increase to around 10 MPa. Therefore, when the ratio of HFO-1123 in the mixed refrigerant is 35 wt% or less as in the first embodiment, it is preferable that the breakage induction structure 30 breaks at 10 MPa to 15 MPa.
  • the notch 31 that is the breakage induction structure 30 is provided in the bent portion 13 housed in the machine room 113 among the bent portion 13 of the outdoor heat exchanger 10. Not only this but you may provide the notch 31 in the bending part 13 arrange
  • FIG. Between the bent portion 13 and the outside of the casing 111 of the outdoor unit 110, as described above, the plate 111d constituting the front side portion of the left side surface portion of the blower chamber 114 and the left side portion of the front portion of the blower chamber 114 are provided. The board 111e which comprises this is provided.
  • the mixed refrigerant blown out from the notch 31 can be prevented from being ejected to the outside of the outdoor unit 110.
  • the blower chamber 114 is formed with large openings such as an inlet 114a and an outlet 114b.
  • the machine room 113 does not have such a large opening. For this reason, when the notch 31 is provided in the bent portion 13 accommodated in the machine room 113, the mixed refrigerant blown out from the notch 31 can be more prevented from being ejected to the outside of the outdoor unit 110.
  • FIG. 1 a notch structure is adopted as the fracture guide structure 30.
  • the structure of the fracture induction structure 30 is not limited to the notch structure, and may be the following structure, for example.
  • items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 5 is a cross-sectional view showing a bent portion of the outdoor heat exchanger according to Embodiment 2 of the present invention.
  • FIG. 5A shows a cross section of a thin portion 32 described later.
  • FIG. 5B shows a cross section of a portion other than the thin portion 32 in the bent portion 13.
  • a thin portion 32 having a smaller thickness than other portions of the bent portion 13 is formed in a part of the bent portion 13 of the outdoor heat exchanger 10 according to the second embodiment.
  • the thin-walled portion 32 is the fracture induction structure 30.
  • the fracture guide structure 30 according to the second embodiment has a thin structure.
  • the pressure resistance of the thin portion 32 is lower than the pressure resistance of the bent portion 13 other than the thin portion 32. Therefore, when the pressure on the high pressure side of the mixed refrigerant in the refrigerant circuit 50 rises abnormally, the thin portion 32 is broken, so that the mixed refrigerant can be discharged to the outside of the pipe, and the pressure in the refrigerant circuit 50 is released. Can do. For this reason, even when the thin-walled portion 32 has the fracture inducing structure 30, it is possible to prevent the disproportionation reaction of HFO-1123 from diffusing as a chain reaction, and to prevent an explosion due to the disproportionation reaction.
  • the thin portion 32 preferably has a thinning ratio of 70% or less.
  • the thinning rate is defined as t3 / t4, where t3 is the thickness of the thin portion 32 and t4 is the thickness of the bent portion 13 other than the thin portion 32. That is, it is preferable that the thin portion 32 satisfy t3 / t4 ⁇ 0.7.
  • the thickness is reduced over the entire circumference of the pipe, and the thin portion 32 is formed over the entire circumference of the pipe.
  • the present invention is not limited to this, and when the bent portion 13 is viewed in cross section, the thickness of a part of the entire circumference may be reduced, and the portion may be the thin portion 32.
  • the structure of the breakage induction structure 30 shown in the second embodiment may be combined with the structure of the breakage induction structure 30 shown in the first embodiment. That is, the notch 31 may be formed in the thin portion 32 to form the breakage induction structure 30.
  • the breakage induction structure 30 can be broken at a pressure closer to the target value, and the pressure range in which the breakage induction structure 30 breaks. The width of can be reduced. That is, the operation of the refrigeration cycle apparatus 100 can be further stabilized.
  • Embodiment 3 The structure of the breakage induction structure 30 is not limited to the first and second embodiments, and may be the following structure, for example.
  • items that are not particularly described are the same as those in Embodiment 1, and the same functions and configurations are described using the same reference numerals.
  • FIG. 6 is a cross-sectional view showing a bent portion of an outdoor heat exchanger according to Embodiment 3 of the present invention.
  • FIG. 6A shows a cross section of a flat portion 33 to be described later.
  • FIG. 6B shows a cross section of a portion other than the flat portion 33 in the bent portion 13.
  • a part of the bent portion 13 of the outdoor heat exchanger 10 according to the third embodiment is a flat portion 33 having a substantially elliptical cross section at the outer peripheral portion.
  • portions other than the flat portion 33 in the bent portion 13 are formed in a circular tube shape, and a cross section of the outer peripheral portion is circular. And in this Embodiment 3, this flat part 33 is made into the fracture
  • the fracture guide structure 30 according to the third embodiment has a flat structure.
  • the pressure resistance of the flat portion 33 is lower than the pressure resistance of the circular pipe portion that is a portion other than the flat portion 33 in the bent portion 13. Therefore, when the pressure on the high pressure side of the mixed refrigerant in the refrigerant circuit 50 rises abnormally, the flat portion 33 is broken, so that the mixed refrigerant can be discharged to the outside of the pipe, and the pressure in the refrigerant circuit 50 is released. Can do. For this reason, even when the flat portion 33 has the fracture inducing structure 30, it is possible to prevent the disproportionation reaction of HFO-1123 from diffusing as a chain reaction, and to prevent an explosion due to the disproportionation reaction.
  • the flat portion 33 preferably has a flatness ratio of 10% or more.
  • the flattening ratio is defined by the length d1 of the long radius in the cross section of the outer peripheral portion of the flat portion 33, the diameter d2 of the short radius in the cross section of the outer peripheral portion of the flat portion 33, When d3, it is defined by (d1-d2) / d3. That is, the flat portion 33 is preferably (d1 ⁇ d2) /d3 ⁇ 0.1.
  • the entire bent portion 13 may be the flat portion 33.
  • the structure of the breakage induction structure 30 shown in the third embodiment may be combined with the structure of the breakage induction structure 30 shown in the first and second embodiments.
  • at least one of the thin portion 32 and the notch 31 may be formed on the flat portion 33 to form the fracture induction structure 30.
  • Embodiment 4 The structure of the fracture guiding structure 30 is not limited to the first to third embodiments, and may be the following structure, for example.
  • items not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • the bent portion 13 of the outdoor heat exchanger 10 according to the fourth embodiment is made of metal. And the bending part 13 of the outdoor heat exchanger 10 which concerns on this Embodiment 4 has the coarse part in which the particle size of the crystal
  • the pressure resistance of the coarse portion is lower than the pressure resistance of the bent portion 13 other than the coarse portion. Therefore, when the pressure on the high pressure side of the mixed refrigerant in the refrigerant circuit 50 rises abnormally, the coarse portion breaks, so that the mixed refrigerant can be discharged to the outside of the pipe, and the pressure in the refrigerant circuit 50 can be released. it can. For this reason, even when the coarse portion has the fracture inducing structure 30, it is possible to prevent the disproportionation reaction of HFO-1123 from diffusing as a chain reaction, and to prevent explosion due to the disproportionation reaction.
  • the structure of the breakage induction structure 30 shown in the fourth embodiment may be combined with the structure of the breakage induction structure 30 shown in the first to third embodiments.
  • at least one of the flat part 33, the thin part 32, and the notch 31 may be formed in the coarse part to form the fracture induction structure 30.
  • Embodiment 5 When providing the fracture
  • items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 7 is a side view showing a U vent according to Embodiment 5 of the present invention.
  • a tube expansion portion 34 is formed by expanding the end portion.
  • the heat transfer pipe 12 and the pipe expansion part 34 are brazed, and the heat transfer pipe 12 and the U vent 13a are connected.
  • the expanded pipe portion 34 is the fracture induction structure 30.
  • the pipe expansion part 34 When the pipe expansion part 34 is formed by expanding both ends of the U vent 13a, the thickness of the pipe expansion part 34 becomes thinner than the thickness of the bent part 13 other than the pipe expansion part 34. For this reason, the pressure resistance of the pipe expansion portion 34 is lower than the pressure resistance of the bent portion 13 other than the pipe expansion portion 34. Therefore, when the pressure on the high pressure side of the mixed refrigerant in the refrigerant circuit 50 rises abnormally, the expanded pipe portion 34 is broken, so that the mixed refrigerant can be discharged to the outside of the pipe, and the pressure in the refrigerant circuit 50 is released. Can do.
  • the expanded pipe portion 34 is the breakage induction structure 30, it is possible to prevent the disproportionation reaction of HFO-1123 from diffusing as a chain reaction and to prevent an explosion due to the disproportionation reaction.
  • the end portion of the expanded pipe portion 34 since the heat exchanger tube 12 is inserted, the end portion of the expanded pipe portion 34 has a double tube structure. For this reason, the expanded pipe portion 34 is broken at the base portion (the Z portion in FIG. 7) of the expanded tube portion 34 not having the double tube structure.
  • the pipe expansion portion 34 has a thinning ratio of 70% or less.
  • the thinning rate is defined as t1 / t2, where the thickness of the expanded portion 34 is t1, and the thickness of the bent portion 13 other than the expanded portion 34 is t2. That is, it is preferable that the pipe expansion part 34 is t1 / t2 ⁇ 0.7.
  • voltage resistant difference becomes clear and the fracture
  • the structure of the breakage induction structure 30 shown in the fifth embodiment may be combined with the structure of the breakage induction structure 30 shown in the first to fourth embodiments.
  • at least one of a coarse portion, a flat portion 33, a thin portion 32, and a notch 31 may be formed in the tube expansion portion 34 to form the breakage induction structure 30.
  • Embodiment 6 The location where the fracture induction structure 30 according to the present invention is provided is not limited to the bent portion 13 of the outdoor heat exchanger 10.
  • the breakage induction structure 30 may be provided at the following locations.
  • items that are not particularly described are the same as those in any of the first to fifth embodiments, and the same functions and configurations are described using the same reference numerals.
  • FIG. 8 is a circuit diagram of a refrigeration cycle apparatus including an outdoor unit according to Embodiment 6 of the present invention.
  • the outdoor unit 110 according to the sixth embodiment is connected to a refrigerant pipe connecting the discharge port 1a of the compressor 1 and the flow path switching device 2, that is, between the discharge port 1a of the compressor 1 and the flow path switching device 2.
  • a bending portion 6 is provided.
  • the refrigerant pipe that connects the discharge port 1a of the compressor 1 and the flow path switching device 2 is the “pipe housed in the casing of the outdoor unit” in the present invention. As can be seen from FIG.
  • the bending portion 6 provided at the connection portion between the compressor 1 and the flow path switching device 2 is also provided. Further, it is provided in the machine room 113. That is, the plates 111 a, 111 b, 111 c and the partition plate 112 constituting the machine room 113 are provided between the bent portion 6 and the outside of the casing 111 of the outdoor unit 110.
  • the bent portion 6 is formed similarly to the bent portion 13 of the outdoor heat exchanger 10 shown in the first to fifth embodiments, and the bent portion 6 is shown in the first to fifth embodiments.
  • the breakage induction structure 30 By providing the breakage induction structure 30, the same effect as in the first to fifth embodiments can be obtained.
  • the breakage induction structure 30 in the bent portion 6 as in the sixth embodiment. That is, when the refrigeration cycle apparatus 100 performs a heating operation, the outdoor heat exchanger 10 operates as an evaporator. Therefore, when the breakage induction structure 30 is provided at the bent portion 13 of the outdoor heat exchanger 10 as in the first to fifth embodiments, the breakage induction structure 30 is placed on the low pressure side in the refrigerant circuit 50 during heating operation. Will be placed. Therefore, during the heating operation, the breakage induction structure 30 does not operate, that is, does not break.
  • the heating operation can be performed.
  • the breakage induction structure 30 is disposed on the high pressure side of the refrigerant circuit 50. For this reason, the breakage induction structure 30 can be operated in both the heating operation and the cooling operation by providing the breakage induction structure 30 as in the sixth embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

室外機は、1,1,2-トリフルオロエチレンを含む混合冷媒が循環する冷凍サイクル装置に用いられる室外機であって、筐体と、前記混合冷媒が流れる配管と、を備え、前記配管は、前記筐体に収納されて、曲がり部を有し、該曲がり部は、前記配管の他の部分よりも耐圧が低い破断誘導構造を有し、該破断誘導構造と前記筐体の外部との間に板を備えたものである。

Description

室外機
 本発明は、1,1,2-トリフルオロエチレンを使用する冷凍サイクル装置の室外機に関するものである。
 近年、地球温暖化防止の観点より、温室効果ガスの削減が求められている。空気調和機等の冷凍サイクル装置に用いられている冷媒についても、地球温暖化係数(GWP)のより低いものが検討されている。現在、空気調和機用として広く用いられているR410AのGWPは2088と非常に大きい値である。近年導入され始めているジフルオロメタン(R32)のGWPも675とかなり大きい値になっている。
 GWPの低い冷媒としては、二酸化炭素(R744:GWP=1)、アンモニア(R717:GWP=0)、プロパン(R290:GWP=6)、2,3,3,3-テトラフルオロプロペン(R1234yf:GWP=4)、1,3,3,3-テトラフルオロプロペン(R1234ze:GWP=6)等がある。
 これらの低GWP冷媒は、下記の課題があるため、一般的な空気調和機に適用することは困難である。
・R744:動作圧力が非常に高いため、耐圧確保の課題がある。また、臨界温度が31℃と低いため、空気調和機用途での性能の確保が課題となる。
・R717:高毒性であるため、安全確保の課題がある。
・R290:強燃性であるため、安全確保の課題がある。
・R1234yf及びR1234ze:低動作圧で体積流量が大きくなるため、圧力損失増大による性能低下の課題がある。
 上記の課題を解決する冷媒として、1,1,2-トリフルオロエチレン(HFO-1123)がある(例えば、特許文献1参照)。この冷媒には、特に、以下の利点がある。
・動作圧力が高く、冷媒の体積流量が小さいため、圧力損失が小さく、性能を確保しやすい。
・GWPが1未満であり、地球温暖化対策として優位性が高い。
国際公開第2012/157764号
Andrew E. Feiring, Jon D. Hulburt, "Trifluoroethylene deflagration", Chemical & Engineering News (22 Dec 1997) Vol. 75, No. 51, pp. 6
 HFO-1123には、下記の課題がある。
(1)高温高圧の状態において、着火エネルギーが加わると、爆発が発生する(例えば、非特許文献1参照)。
 このため、HFO-1123を冷凍サイクル装置に適用するには、上記の課題を解決する必要がある。
 上記の課題については、不均化反応の連鎖によって爆発が発生することが明らかになった。この現象が発生する条件は、下記の2点である。
(1a)冷凍サイクル装置(特に、圧縮機)の内部に着火エネルギー(高温部)が発生し、不均化反応が起こる。
(1b)高温高圧の状態において、不均化反応が連鎖して拡散する。
 本発明は、上述のような課題を解決するためになされたものであり、HFO-1123を使用しても安全性を確保することができる冷凍サイクル装置の室外機を得ることを目的とする。
 本発明に係る室外機は、1,1,2-トリフルオロエチレンを含む混合冷媒が循環する冷凍サイクル装置に用いられる室外機であって、筐体と、前記混合冷媒が流れる配管と、を備え、前記配管は、前記筐体に収納されて、曲がり部を有し、該曲がり部は、前記配管の他の部分よりも耐圧が低い破断誘導構造を有し、該破断誘導構造と前記筐体の外部との間に板を備えたものである。
 本発明に係る室外機を用いて冷凍サイクル装置を構成することにより、混合冷媒の圧力が異常上昇した場合、破断誘導構造部分で配管が破断するため、混合冷媒を配管外部に放出することができる。このため、1,1,2-トリフルオロエチレン(HFO-1123)の不均化反応が連鎖反応として拡散することを防止でき、不均化反応による爆発を防止できる。
 また、本発明に係る室外機は、破断誘導構造を曲がり部に備えているので、小規模で飛散物が無い又は少ない状態で破断誘導構造を破断させることができる。さらに、本発明に係る室外機は、破断誘導構造と前記筐体の外部との間に板を備えているので、破断箇所から吹き出した混合冷媒が室外機の外部に噴出することも防止できる。
 したがって、本発明に係る室外機を用いて冷凍サイクル装置を構成することにより、HFO-1123を使用しても安全性を確保することができる冷凍サイクル装置を得ることができる。
本発明の実施の形態1に係る室外機を備えた冷凍サイクル装置の回路図である。 本発明の実施の形態1に係る室外熱交換器を示す側面図である。 本発明の実施の形態1に係る室外機を上方から示す断面図である。 本発明の実施の形態1に係るUベントを示す側面図である。 本発明の実施の形態2に係る室外熱交換器の曲がり部を示す断面図である。 本発明の実施の形態3に係る室外熱交換器の曲がり部を示す断面図である。 本発明の実施の形態5に係るUベントを示す側面図である。 本発明の実施の形態6に係る室外機を備えた冷凍サイクル装置の回路図である。
実施の形態1.
 図1は、本発明の実施の形態1に係る室外機を備えた冷凍サイクル装置の回路図である。
 本実施の形態1において、冷凍サイクル装置100は、空気調和機である。なお、冷凍サイクル装置100が空気調和機以外の機器(例えば、ヒートポンプサイクル装置)であっても、本実施の形態1に係る室外機110を適用することができる。
 冷凍サイクル装置100は、冷媒が循環する冷媒回路50を備える。冷媒回路50は、圧縮機1、流路切替装置2、室外熱交換器10、膨張弁3、及び室内熱交換器4が冷媒配管で接続されて構成されている。
 圧縮機1は、吸入口から吸入した低圧のガス冷媒を圧縮し、高圧のガス冷媒として吐出口1aから吐出するものである。なお、本実施の形態1に係る圧縮機1は、吸入口に、液冷媒とガス冷媒とを分離する吸入マフラ1bが設けられている。流路切替装置2は、例えば四方弁であり、圧縮機1の吐出口1aと冷媒配管で接続されている。流路切替装置2は、圧縮機1から吐出された高圧ガス冷媒の流入先を室外熱交換器10又は室内熱交換器4に切り替えるものである。
 室外熱交換器10は、冷房時には凝縮器として動作し、圧縮機1により圧縮された冷媒を放熱させるものである。また、室外熱交換器10は、暖房時には蒸発器として動作し、室外空気と膨張弁3で膨張した冷媒との間で熱交換を行って冷媒を加熱するものである。本実施の形態1に係る室外熱交換器10は、例えばフィンチューブ型熱交換器であり、次のような構成となっている。
 図2は、本発明の実施の形態1に係る室外熱交換器を示す側面図である。
 室外熱交換器10は、規定間隔を開けて並設された複数のフィン11と、規定間隔を開けて並設され、フィン11を貫通する複数の伝熱管12とを有する。また、室外熱交換器10は、2つの伝熱管12を接続する曲がり部13を有する。例えば、曲がり部13は、1本の配管をヘアピン状に曲げることにより、2つの伝熱管12と一体で形成される。また例えば、曲がり部13は、伝熱管12とは別体のUベント13aで構成される場合もある。Uベント13aは、2つの伝熱管12とロウ付けにより接続される。
 再び図1に着目すると、膨張弁3は、凝縮器で放熱した冷媒を、つまり膨張弁3に流入した冷媒を膨張させるものである。室内熱交換器4は、暖房時には凝縮器として動作し、圧縮機1により圧縮された冷媒を放熱させるものである。また、室内熱交換器4は、冷房時には蒸発器として動作し、室内空気と膨張弁3で膨張した冷媒との間で熱交換を行って冷媒を加熱するものである。室内熱交換器4は、例えばフィンチューブ型熱交換器である。なお、冷凍サイクル装置100が冷房又は暖房のうちの一方のみを行うものの場合、流路切替装置2は必要ない。
 本実施の形態1において、冷媒回路50を循環する冷媒としては、1,1,2-トリフルオロエチレン(HFO-1123)と、該HFO-1123とは異なる他の冷媒とを混合した混合冷媒が使用される。
 好適な冷媒として、HFO-1123とジフルオロメタン(R32)との混合冷媒を使用することができる。なお、前記他の冷媒として、R32以外に、2,3,3,3-テトラフルオロプロペン(R1234yf)、トランス-1,3,3,3-テトラフルオロプロペン(R1234ze(E))、シス-1,3,3,3-テトラフルオロプロペン(R1234ze(Z))、1,1,1,2-テトラフルオロエタン(R134a)、1,1,1,2,2-ペンタフルオロエタン(R125)を用いてもよい。また、前記他の冷媒としてこれらの冷媒のうちの少なくとも2つを採用し、HFO-1123と混合してもよい。
 上述した冷媒回路50の各構成は、室外機110又は室内機120に収納される。詳しくは、室内熱交換器4は、室内機120に収納されている。また、圧縮機1、流路切替装置2、室外熱交換器10、及びこれらを接続する冷媒配管が、室外機110に収納されている。つまり、これらを接続する冷媒配管が、本発明における「室外機の筐体に収納された配管」となる。また、室外熱交換器10を構成する伝熱管12、曲がり部13及びUベント13aもまた、本発明における「室外機の筐体に収納された配管」となる。なお、膨張弁3は、室外機110又は室内機120に収納される。図1では、膨張弁3を室外機110に収納した例を示している。
 また、室外機110と室内機120とは、冷媒回路50に設けられた開閉弁55によって、接続及び分離が可能になっている。つまり、室外機110及び室内機120は、それぞれを設置箇所に設置した後に、開閉弁55で接続可能となっている。例えば、室外機110に混合冷媒を封入し、開閉弁55を閉じた状態で、該室外機110を設置箇所に設置する。また、室内機120を設置箇所に設置する。その後、開閉弁55で室外機110と室内機120とを接続し、開閉弁55を開く。これにより、冷媒回路50内を混合冷媒が循環できるようになり、冷凍サイクル装置100が使用可能となる。
 図3は、本発明の実施の形態1に係る室外機を上方から示す断面図である。
 以下、図3を用いて、室外機110に収納されている各構成の具体的な配置について説明する。
 室外機110は、鋼板等の板で形成された略直方体の筐体111を備えている。この筐体111の内部は、鋼板等の板である仕切板112により、機械室113と送風室114とに仕切られている。換言すると、筐体111は、機械室113及び送風室114を備えている。また、送風室114には、背面部及び左側面部に吸込口114aが形成されており、前面部に吹出口114bが形成されている。
 送風室114には、フィン11が吸込口114aと対向するように、室外熱交換器10が収納されている。また、送風室114には、吹出口114bと対向して、例えばプロペラファンである送風機20が設けられている。すなわち、送風機20が駆動することにより、吸込口114aから送風室114内に室外空気が吸い込まれ、吹出口114bから吹き出される構成となっている。そして、送風室114内に吸い込まれる空気は、室外熱交換器10を通過する際、室外熱交換器10を流れる混合冷媒と熱交換する。
 ここで、室外熱交換器10の曲がり部13は、吸込口114aと対向しない位置に配置されている。詳しくは、図2で示したように、室外熱交換器10の両端部には、曲がり部13が形成されている。一方の端部の曲がり部13は、送風室114の左側面部に形成された吸込口114aよりも前方に配置されている。つまり、本実施の形態1に係る室外機110は、当該曲がり部13と室外機110の筐体111の外部との間に、送風室114の左側面部の前側部分を構成する板111dと、送風室114の前面部の左側部分を構成する板111eとを備えている。また、他方の端部の曲がり部13は、機械室113に収納されている。つまり、本実施の形態1に係る室外機110は、当該曲がり部13と室外機110の筐体111の外部との間に、機械室113を構成する板111a,111b,111cと仕切板112とを備えている。なお、本実施の形態1においては、機械室113に収納されている側の曲がり部13を、Uベント13aとしている。
 また、機械室113には、圧縮機1及び流路切替装置2等も収納されている。
 上述のように構成された冷凍サイクル装置100を運転した場合、冷媒回路50を循環する混合冷媒は、圧縮機1の吐出口1aから膨張弁3の流入口までの混合冷媒が高圧側となり、膨張弁3の流出口から圧縮機1の吸入口までの混合冷媒が低圧側となる。本実施の形態1においては、混合冷媒中のHFO-1123の比率が、1wt%以上で35wt%以下となっている。このような混合冷媒の場合、冷媒回路50中の混合冷媒の高圧側の圧力は、HFO-1123とは異なる他の冷媒の種類にかかわらず、略4MPa以下となる。
 ここで、冷凍サイクル装置100が例えば以下のような状態になった場合、冷媒回路50中の混合冷媒の高圧側の圧力が異常上昇する場合がある。
(1)室外熱交換器10が凝縮器として動作している状態において、送風機20が停止した場合、室外熱交換器10内を流れる高温高圧のガス冷媒が凝縮できず、冷媒回路50中の混合冷媒の高圧側の圧力が異常上昇する。
(2)室外熱交換器10が凝縮器として動作している状態において、室外機110の吸込口114a又は吹出口114bの近傍に物が置かれた場合、送風室114を通過する室外空気の量が減少するため、室外熱交換器10内を流れる高温高圧のガス冷媒が凝縮できず、冷媒回路50中の混合冷媒の高圧側の圧力が異常上昇する。
(3)開閉弁55を開き忘れた状態で冷凍サイクル装置100の運転を開始した結果、冷媒回路50中の混合冷媒の高圧側の圧力が異常上昇する。
(4)経年劣化等によって冷媒回路50内が詰まり、冷媒回路50中の混合冷媒の高圧側の圧力が異常上昇する。
 また、上述のように、混合冷媒に含まれるHFO-1123は、高温高圧の状態において不均化反応が連鎖して拡散する。このため、例えば圧縮機1内の着火源(モータ、該モータに電力供給する配線等)等からHFO-1123に着火すると、HFO-1123の不均化反応が連鎖反応として拡散し、不均化反応による爆発が発生することが懸念される。
 そこで、本実施の形態1に係る室外機110は、室外熱交換器10の曲がり部13に、冷媒回路50を構成する配管の他の部分よりも耐圧が低い破断誘導構造30を備えている。具体的には、本実施の形態1に係る破断誘導構造30は、次のような構成となっている。なお、以下では、Uベント13aに破断誘導構造30を備える例について説明する。
 図4は、本発明の実施の形態1に係るUベントを示す側面図である。なお、図4は、一部を断面として示している。
 図4に示すように、本実施の形態1に係る破断誘導構造30は、切り欠き31を有する切り欠き構造となっている。この切り欠き31は、配管の外周に、例えば全周において形成されている。これにより、冷媒回路50中の混合冷媒の高圧側の圧力が異常上昇した際、破断誘導構造30が破断するため、混合冷媒を配管外部に放出することができ、冷媒回路50中の圧力を開放することができる。このため、HFO-1123の不均化反応が連鎖反応として拡散することを防止でき、不均化反応による爆発を防止できる。
 また、本実施の形態1においては、曲がり部13であるUベント13aが破断する構成としているので、破断を小規模にでき、飛散物が無い又は少ない状態にすることもできる。ここで、当該効果を詳しく説明するにあたり、Uベント13aを図4に示す状態で観察することとする。すなわち、便宜上、Uベント13aの上側端部に接続された伝熱管12を伝熱管12aと称し、Uベント13aの下側端部に接続された伝熱管12を伝熱管12bと称し、Uベント13aにおける切り欠き31よりも上側となる部分を上部分13a1と称し、Uベント13aにおける切り欠き31よりも下側となる部分を下部分13a2と称することとする。
 切り欠き31が破断した際、切り欠き31から吹き出す混合冷媒の勢いにより、Uベント13aの上部分13a1には、上方へ押し上げられる力が作用する。この力は、上部分13a1に接続された伝熱管12aにも作用する。しかしながら、直線状配管である伝熱管12aの反力により、上部分13a1は下方へ押し下げられる。同様に、切り欠き31が破断した際、切り欠き31から吹き出す混合冷媒の勢いにより、Uベント13aの下部分13a2には、下方へ押し下げられる力が作用する。この力は、下部分13a2に接続された伝熱管12bにも作用する。しかしながら、直線状配管である伝熱管12bの反力により、下部分13a2は上方へ押し上げられる。このため、切り欠き31が破断した際、Uベント13aの上部分13a1及び下部分13a2の移動が小さくなり、Uベント13aの破断を小さくすることができる。また、Uベント13aの上部分13a1及び下部分13a2の移動が小さくなることにより、上部分13a1及び下部分13a2が近傍の部品と干渉することを抑制できるので、飛散物が無い又は少ない状態にすることもできる。
 さらに、本実施の形態1においては、Uベント13aを、機械室113に収納している。つまり、切り欠き31を備えたUベント13aと室外機110の筐体111の外部との間に、機械室113を構成する板111a,111b,111cと仕切板112とを備えている。このため、破断箇所である切り欠き31から吹き出した混合冷媒が室外機110の外部に噴出することも防止できる。
 したがって、本実施の形態1に係る室外機110を用いて冷凍サイクル装置100を構成することにより、HFO-1123を使用しても安全性を確保することができる冷凍サイクル装置100を得ることができる。
 なお、切り欠き31は、Uベント13aを貫通せず、Uベント13aにおける切り欠き31が形成されていない箇所の肉厚の30%以上の深さとすることが好ましい。換言すると、Uベント13aにおける切り欠き31が形成されていない箇所の肉厚をt、切り欠き31の深さをdとすると、0.3t≦d<tとすることが好ましい。このように切り欠き31の深さを設定することにより、耐圧差が明確となり、破断誘導構造30を他の配管部分よりも確実に早く破断させることができる。
 また、本実施の形態1のように混合冷媒中のHFO-1123の比率が35wt%以下となっている場合、破断誘導構造30が10MPa~15MPaで破断する構成とすることが好ましい。詳しくは、圧縮機1のモータの巻線及び該モータに電力供給する配線を被覆する樹脂は、一般的に、230℃~250℃程度の耐熱性を有する。このため、当該樹脂が溶けて巻線又は配線が露出する温度は、約300℃と想定される。そこで、発明者らは、300℃の環境下において、HFO-1123の比率が35wt%以下の混合冷媒を用いた場合、どの程度の圧力でHFO-1123の不均化反応が連鎖反応として拡散するのかを検証した。検証の結果、15MPaよりも高圧になると、HFO-1123の不均化反応が連鎖反応として拡散することがわかった。また、冷媒回路50中の混合冷媒の高圧側の圧力が上述のように異常上昇する場合、当該高圧側の圧力が10MPa近傍まで上昇する場合があることもわかった。したがって、本実施の形態1のように混合冷媒中のHFO-1123の比率が35wt%以下となっている場合、破断誘導構造30が10MPa~15MPaで破断する構成とすることが好ましい。
 また、本実施の形態1では、室外熱交換器10の曲がり部13のうち、機械室113に収納された曲がり部13に破断誘導構造30である切り欠き31を設けた。これに限らず、送風室114に配置された曲がり部13に切り欠き31を設けてもよい。当該曲がり部13と室外機110の筐体111の外部との間には、上述のように、送風室114の左側面部の前側部分を構成する板111dと、送風室114の前面部の左側部分を構成する板111eとを備えている。このため、機械室113に収納された曲がり部13に切り欠き31を設けても、切り欠き31から吹き出した混合冷媒が室外機110の外部に噴出することを防止できる。ただし、送風室114には、吸込口114a及び吹出口114bといった大きな開口部が形成されている。一方、機械室113には、このような大きな開口部がない。このため、機械室113に収納された曲がり部13に切り欠き31を設けた方が、切り欠き31から吹き出した混合冷媒が室外機110の外部に噴出することをより防止できる。
実施の形態2.
 実施の形態1では、破断誘導構造30として切り欠き構造を採用した。しかしながら、破断誘導構造30の構造は、切り欠き構造に限定されるものではなく、例えば次のような構造としてもよい。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図5は、本発明の実施の形態2に係る室外熱交換器の曲がり部を示す断面図である。なお、図5(A)は、後述する薄肉部32の断面を示している。図5(B)は、曲がり部13における薄肉部32以外の箇所の断面を示している。
 本実施の形態2に係る室外熱交換器10の曲がり部13の一部には、該曲がり部13の他の箇所よりも肉厚の薄い薄肉部32が形成されている。そして、本実施の形態2では、該薄肉部32を破断誘導構造30としている。換言すると、本実施の形態2に係る破断誘導構造30は、薄肉構造となっている。
 薄肉部32の耐圧は、曲がり部13における薄肉部32以外の箇所の耐圧よりも低くなる。したがって、冷媒回路50中の混合冷媒の高圧側の圧力が異常上昇した際、薄肉部32が破断するため、混合冷媒を配管外部に放出することができ、冷媒回路50中の圧力を開放することができる。このため、薄肉部32を破断誘導構造30とした場合でも、HFO-1123の不均化反応が連鎖反応として拡散することを防止でき、不均化反応による爆発を防止できる。
[規則91に基づく訂正 20.06.2017] 
 ここで、薄肉部32は、薄肉化率を70%以下にすることが好ましい。薄肉化率は、薄肉部32の肉厚をt3、曲がり部13における薄肉部32以外の箇所の肉厚をt4とした場合、t3/t4で定義するものとする。つまり、薄肉部32は、t3/t4≦0.7とすることが好ましい。このように薄肉部32の薄肉化率を設定することにより、耐圧差が明確となり、破断誘導構造30を他の配管部分よりも確実に早く破断させることができる。薄肉部32の薄肉化率の下限値は、破断誘導構造30が破断する圧力の下限値に応じて、適宜決定すればよい。
 なお、本実施の形態2では、曲がり部13を断面視した場合、配管の全周に渡って肉厚を薄くし、配管の全周に渡って薄肉部32を形成した。しかしながら、これに限らず、曲がり部13を断面視した場合、全周のうちの一部の肉厚を薄くし、当該部分を薄肉部32としてもよい。
 また、本実施の形態2で示した破断誘導構造30の構造と、実施の形態1で示した破断誘導構造30の構造とを組み合わせても、勿論よい。つまり、薄肉部32に切り欠き31を形成し、破断誘導構造30としてもよい。実施の形態1,2に示した構造を組み合わせて破断誘導構造30を構成することにより、破断誘導構造30をより狙い値に近い圧力で破断させることができ、破断誘導構造30が破断する圧力範囲の幅を小さくすることができる。すなわち、冷凍サイクル装置100の運転をより安定させることができる。
実施の形態3.
 破断誘導構造30の構造は、実施の形態1,2に限定されるものではなく、例えば次のような構造としてもよい。なお、本実施の形態3において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図6は、本発明の実施の形態3に係る室外熱交換器の曲がり部を示す断面図である。なお、図6(A)は、後述する扁平部33の断面を示している。図6(B)は、曲がり部13における扁平部33以外の箇所の断面を示している。
 本実施の形態3に係る室外熱交換器10の曲がり部13の一部は、外周部の断面が略楕円形状となった扁平部33となっている。また、曲がり部13における扁平部33以外の箇所は、円管状に形成されており、外周部の断面が円状になっている。そして、本実施の形態3では、該扁平部33を破断誘導構造30としている。換言すると、本実施の形態3に係る破断誘導構造30は、扁平構造となっている。
 扁平部33の耐圧は、曲がり部13における扁平部33以外の箇所である円管部分の耐圧よりも低くなる。したがって、冷媒回路50中の混合冷媒の高圧側の圧力が異常上昇した際、扁平部33が破断するため、混合冷媒を配管外部に放出することができ、冷媒回路50中の圧力を開放することができる。このため、扁平部33を破断誘導構造30とした場合でも、HFO-1123の不均化反応が連鎖反応として拡散することを防止でき、不均化反応による爆発を防止できる。
[規則91に基づく訂正 20.06.2017] 
 ここで、扁平部33は、扁平率を10%以上にすることが好ましい。扁平率は、扁平部33の外周部の断面における長半径をd1、扁平部33の外周部の断面における短半径をd2、曲がり部13における扁平部33以外の箇所の外周部の断面の直径をd3とした場合、(d1-d2)/d3で定義するものとする。つまり、扁平部33は、(d1-d2)/d3≧0.1とすることが好ましい。このように扁平部33の扁平率を設定することにより、耐圧差が明確となり、破断誘導構造30を他の配管部分よりも確実に早く破断させることができる。扁平部33の扁平率の上限値は、破断誘導構造30が破断する圧力の下限値に応じて、適宜決定すればよい。
 なお、曲がり部13全体を扁平部33としてもよい。当該曲がり部13の耐圧が冷媒回路50を構成する配管の他の部分よりも低くなる。したがって、冷媒回路50中の混合冷媒の高圧側の圧力が異常上昇した際、扁平部33である曲がり部13が破断して、混合冷媒を配管外部に放出することができ、冷媒回路50中の圧力を開放することができる。このため、曲がり部13全体を扁平部33とした場合でも、HFO-1123の不均化反応が連鎖反応として拡散することを防止でき、不均化反応による爆発を防止できる。曲がり部13全体を扁平部33とする場合も、扁平率を10%以上にすることが好ましい。扁平率は、d3=(d1+d2)/2と近似することにより、(d1-d2)/{(d1+d2)/2}で定義することができる。
 また、本実施の形態3で示した破断誘導構造30の構造と、実施の形態1,2で示した破断誘導構造30の構造とを組み合わせても、勿論よい。例えば、扁平部33に薄肉部32及び切り欠き31のうちの少なくとも一方を形成し、破断誘導構造30としてもよい。実施の形態1~実施の形態3に示した構造を組み合わせて破断誘導構造30を構成することにより、破断誘導構造30をより狙い値に近い圧力で破断させることができ、破断誘導構造30が破断する圧力範囲の幅を小さくすることができる。すなわち、冷凍サイクル装置100の運転をより安定させることができる。
実施の形態4.
 破断誘導構造30の構造は、実施の形態1~実施の形態3に限定されるものではなく、例えば次のような構造としてもよい。なお、本実施の形態4において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 本実施の形態4に係る室外熱交換器10の曲がり部13は、金属製である。そして、本実施の形態4に係る室外熱交換器10の曲がり部13は、その一部に、該曲がり部の他の箇所よりも結晶の粒径が大きくなった粗大部が形成されている。曲がり部13の一部を加熱することにより、他の箇所よりも結晶の粒径が大きくなり、粗大部を形成することができる。そして、本実施の形態4では、該粗大部を破断誘導構造30としている。換言すると、本実施の形態4に係る破断誘導構造30は、結晶粗大構造となっている。
 粗大部の耐圧は、曲がり部13における粗大部以外の箇所の耐圧よりも低くなる。したがって、冷媒回路50中の混合冷媒の高圧側の圧力が異常上昇した際、粗大部が破断するため、混合冷媒を配管外部に放出することができ、冷媒回路50中の圧力を開放することができる。このため、粗大部を破断誘導構造30とした場合でも、HFO-1123の不均化反応が連鎖反応として拡散することを防止でき、不均化反応による爆発を防止できる。
 なお、本実施の形態4で示した破断誘導構造30の構造と、実施の形態1~実施の形態3で示した破断誘導構造30の構造とを組み合わせても、勿論よい。例えば、粗大部に、扁平部33、薄肉部32及び切り欠き31のうちの少なくとも1つを形成し、破断誘導構造30としてもよい。実施の形態1~実施の形態4に示した構造を組み合わせて破断誘導構造30を構成することにより、破断誘導構造30をより狙い値に近い圧力で破断させることができ、破断誘導構造30が破断する圧力範囲の幅を小さくすることができる。すなわち、冷凍サイクル装置100の運転をより安定させることができる。
実施の形態5.
 Uベント13aに破断誘導構造30を設ける場合、例えば次のような構造としてもよい。なお、本実施の形態5において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図7は、本発明の実施の形態5に係るUベントを示す側面図である。
 本実施の形態5に係るUベント13aの例えば両端部には、該端部を押し広げた拡管部34が形成されている。そして、拡管部34に伝熱管12を挿入した状態で、伝熱管12と拡管部34とをロウ付けし、伝熱管12とUベント13aを接続している。そして、本実施の形態5では、該拡管部34を破断誘導構造30としている。
 Uベント13aの両端部を押し広げて拡管部34を形成した場合、拡管部34の肉厚が、曲がり部13における拡管部34以外の箇所の肉厚よりも薄くなる。このため、拡管部34の耐圧は、曲がり部13における拡管部34以外の箇所の耐圧よりも低くなる。したがって、冷媒回路50中の混合冷媒の高圧側の圧力が異常上昇した際、拡管部34が破断するため、混合冷媒を配管外部に放出することができ、冷媒回路50中の圧力を開放することができる。このため、拡管部34を破断誘導構造30とした場合でも、HFO-1123の不均化反応が連鎖反応として拡散することを防止でき、不均化反応による爆発を防止できる。詳しくは、拡管部34の端部は、伝熱管12が挿入されているため、二重管構造となっている。このため、二重管構造となっていない拡管部34の根本部分(図7のZ部分)で、拡管部34は破断する。
[規則91に基づく訂正 20.06.2017] 
 ここで、拡管部34は、薄肉化率を70%以下にすることが好ましい。薄肉化率は、拡管部34の肉厚をt1、曲がり部13における拡管部34以外の箇所の肉厚をt2とした場合、t1/t2で定義するものとする。つまり、拡管部34は、t1/t2≦0.7とすることが好ましい。このように拡管部34の薄肉化率を設定することにより、耐圧差が明確となり、破断誘導構造30を他の配管部分よりも確実に早く破断させることができる。拡管部34の薄肉化率の下限値は、破断誘導構造30が破断する圧力の下限値に応じて、適宜決定すればよい。
 なお、本実施の形態5で示した破断誘導構造30の構造と、実施の形態1~実施の形態4で示した破断誘導構造30の構造とを組み合わせても、勿論よい。例えば、拡管部34に、粗大部、扁平部33、薄肉部32及び切り欠き31のうちの少なくとも1つを形成し、破断誘導構造30としてもよい。実施の形態1~実施の形態5に示した構造を組み合わせて破断誘導構造30を構成することにより、破断誘導構造30をより狙い値に近い圧力で破断させることができ、破断誘導構造30が破断する圧力範囲の幅を小さくすることができる。すなわち、冷凍サイクル装置100の運転をより安定させることができる。
実施の形態6.
 本発明に係る破断誘導構造30が設けられる箇所は、室外熱交換器10の曲がり部13に限定されるものではない。例えば、次のような箇所に破断誘導構造30を設けてもよい。なお、本実施の形態6において、特に記述しない項目については実施の形態1~実施の形態5のいずれかと同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図8は、本発明の実施の形態6に係る室外機を備えた冷凍サイクル装置の回路図である。
 本実施の形態6に係る室外機110は、圧縮機1の吐出口1aと流路切替装置2とを接続する冷媒配管に、つまり圧縮機1の吐出口1aと流路切替装置2との間に、曲がり部6を備えている。上述のように、圧縮機1の吐出口1aと流路切替装置2とを接続する冷媒配管は、本発明における「室外機の筐体に収納された配管」となる。また、図3からわかるように、圧縮機1及び流路切替装置2は機械室113に設けられているため、圧縮機1と流路切替装置2との接続箇所に設けられた曲がり部6もまた、機械室113に設けられている。つまり、曲がり部6と室外機110の筐体111の外部との間に、機械室113を構成する板111a,111b,111cと仕切板112とを備えている。
 したがって、実施の形態1~実施の形態5で示した室外熱交換器10の曲がり部13と同様に曲がり部6を形成し、該曲がり部6に実施の形態1~実施の形態5で示した破断誘導構造30を設けることにより、実施の形態1~実施の形態5と同様の効果を得ることができる。
 特に、本実施の形態6のように曲がり部6に破断誘導構造30を設けることにより、以下のような効果を得ることもできる。すなわち、冷凍サイクル装置100が暖房運転する場合、室外熱交換器10は蒸発器として動作する。このため、実施の形態1~実施の形態5のように室外熱交換器10の曲がり部13に破断誘導構造30を設けた場合、暖房運転時、破断誘導構造30は冷媒回路50における低圧側に配置されることとなる。したがって、暖房運転時、破断誘導構造30は動作つまり破断しないこととなる。一方、本実施の形態6のように圧縮機1の吐出口1aと流路切替装置2との間に曲がり部6を設け、該曲がり部6に破断誘導構造30を備えることにより、暖房運転時及び冷房運転時の双方において、破断誘導構造30は冷媒回路50における高圧側に配置されることとなる。このため、本実施の形態6のように破断誘導構造30を備えることにより、暖房運転時及び冷房運転時の双方において破断誘導構造30を動作させることができる。
 1 圧縮機、1a 吐出口、1b 吸入マフラ、2 流路切替装置、3 膨張弁、4 室内熱交換器、6 曲がり部、10 室外熱交換器、11 フィン、12(12a,12b) 伝熱管、13 曲がり部、13a Uベント(曲がり部)、13a1 上部分、13a2 下部分、20 送風機、30 破断誘導構造、31 切り欠き、32 薄肉部、33 扁平部、34 拡管部、50 冷媒回路、55 開閉弁、100 冷凍サイクル装置、110 室外機、111 筐体、111a~111e 板、112 仕切板、113 機械室、114 送風室、114a 吸込口、114b 吹出口、120 室内機。

Claims (16)

  1.  1,1,2-トリフルオロエチレンを含む混合冷媒が循環する冷凍サイクル装置に用いられる室外機であって、
     筐体と、
     前記混合冷媒が流れる配管と、
     を備え、
     前記配管は、前記筐体に収納されて、曲がり部を有し、
     該曲がり部は、前記配管の他の部分よりも耐圧が低い破断誘導構造を有し、
     該破断誘導構造と前記筐体の外部との間に板を備えた室外機。
  2.  前記筐体は、吸込口及び吹出口が形成された送風室と、該送風室とは仕切られた機械室とを備え、
     前記破断誘導構造が前記機械室に収納されている請求項1に記載の室外機。
  3.  前記混合冷媒中の前記1,1,2-トリフルオロエチレンの比率が35wt%以下であり、
     前記破断誘導構造は、10MPa~15MPaで破断する請求項1又は請求項2に記載の室外機。
  4.  フィンと、該フィンを貫通し、前記配管の一部を構成する複数の伝熱管と、2つの前記伝熱管を接続する前記曲がり部と、を有する室外熱交換器を備えた請求項1~請求項3のいずれか一項に記載の室外機。
  5.  前記曲がり部は、前記伝熱管とは別体に形成され、前記伝熱管にロウ付けされたUベントである請求項4に記載の室外機。
  6.  前記Uベントの端部に、該端部を押し広げた拡管部が形成されており、
     前記破断誘導構造は、該拡管部である請求項5に記載の室外機。
  7. [規則91に基づく訂正 20.06.2017] 
     前記Uベントの前記拡管部の肉厚をt1、前記Uベントにおける前記拡管部以外の箇所の肉厚をt2とした場合、
     t1/t2≦0.7である請求項6に記載の室外機。
  8.  圧縮機と、
     該圧縮機の吐出口と前記配管で接続され、前記圧縮機から吐出された前記混合冷媒の流入先を切り替える流路切替装置と、
     を有し、
     前記圧縮機の吐出口と前記流路切替装置との間に前記曲がり部を備えた請求項1~請求項3のいずれか一項に記載の室外機。
  9.  前記破断誘導構造は、前記配管の外周に形成された切り欠きである請求項1~請求項8のいずれか一項に記載の室外機。
  10.  前記切り欠きは、前記配管を貫通せず、前記曲がり部における前記切り欠きが形成されていない箇所の肉厚の30%以上の深さである請求項9に記載の室外機。
  11.  前記曲がり部の一部に、該曲がり部の他の箇所よりも肉厚の薄い薄肉部が形成されており、
     前記破断誘導構造は、該薄肉部である請求項1~請求項10のいずれか一項に記載の室外機。
  12. [規則91に基づく訂正 20.06.2017] 
     前記薄肉部の肉厚をt3、前記曲がり部における前記薄肉部以外の箇所の肉厚をt4とした場合、
     t3/t4≦0.7である請求項11に記載の室外機。
  13.  前記曲がり部に、外周部の断面が楕円形状の扁平部が形成されており、
     前記破断誘導構造は、該扁平部である請求項1~請求項12のいずれか一項に記載の室外機。
  14. [規則91に基づく訂正 20.06.2017] 
     前記曲がり部の一部に、前記扁平部が形成されており、
     前記扁平部の外周部の断面における長半径をd1、前記扁平部の外周部の断面における短半径をd2、前記曲がり部における前記扁平部以外の箇所の外周部の断面の直径をd3とした場合、
     (d1-d2)/d3≧0.1である請求項13に記載の室外機。
  15. [規則91に基づく訂正 20.06.2017] 
     前記扁平部の外周部の断面における長半径をd1、前記扁平部の外周部の断面における短半径をd2とした場合、
     (d1-d2)/{(d1+d2)/2}≧0.1である請求項13に記載の室外機。
  16.  前記曲がり部は金属製であり、
     前記曲がり部の一部に、該曲がり部の他の箇所よりも結晶の粒径が大きい粗大部が形成されており、
     前記破断誘導構造は、該粗大部である請求項1~請求項15のいずれか一項に記載の室外機。
PCT/JP2016/059862 2016-03-28 2016-03-28 室外機 WO2017168503A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2016/059862 WO2017168503A1 (ja) 2016-03-28 2016-03-28 室外機
CN201680083697.0A CN108885038A (zh) 2016-03-28 2016-03-28 室外机
CN202210591371.6A CN114777216A (zh) 2016-03-28 2016-03-28 室外机
EP16896723.0A EP3438573B1 (en) 2016-03-28 2016-03-28 Outdoor unit
US16/072,033 US11105521B2 (en) 2016-03-28 2016-03-28 Outdoor unit
JP2018507829A JP6639644B2 (ja) 2016-03-28 2016-03-28 室外機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/059862 WO2017168503A1 (ja) 2016-03-28 2016-03-28 室外機

Publications (1)

Publication Number Publication Date
WO2017168503A1 true WO2017168503A1 (ja) 2017-10-05

Family

ID=59963641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059862 WO2017168503A1 (ja) 2016-03-28 2016-03-28 室外機

Country Status (5)

Country Link
US (1) US11105521B2 (ja)
EP (1) EP3438573B1 (ja)
JP (1) JP6639644B2 (ja)
CN (2) CN114777216A (ja)
WO (1) WO2017168503A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018025326A (ja) * 2016-08-09 2018-02-15 パナソニックIpマネジメント株式会社 冷凍サイクル装置
WO2018193974A1 (ja) * 2017-04-20 2018-10-25 Agc株式会社 熱サイクルシステム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11209195B2 (en) * 2017-03-31 2021-12-28 Daikin Industries, Ltd. Air conditioner with a refrigerant having a property of undergoing disproportionation
CN112703309B (zh) * 2019-08-07 2022-10-14 株式会社小松制作所 混合连接器以及发动机
WO2023188386A1 (ja) * 2022-03-31 2023-10-05 三菱電機株式会社 熱交換器および空気調和機

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1858280A (en) * 1930-02-24 1932-05-17 Perfection Stove Co Safety blow-off device
JPH07332811A (ja) * 1994-06-09 1995-12-22 Matsushita Refrig Co Ltd 冷凍装置と冷凍装置の冷媒回収方法と冷凍装置の改造方法
JP2000130896A (ja) * 1998-10-29 2000-05-12 Sanden Corp 安全装置を備えた空調装置
JP2004069295A (ja) * 2003-10-02 2004-03-04 Mitsubishi Electric Corp 可燃性冷媒を用いた冷蔵庫
JP2010078285A (ja) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp ヒートポンプ給湯機
JP2010249085A (ja) * 2009-04-20 2010-11-04 Mitsubishi Electric Corp 圧縮機
JP2011510255A (ja) * 2008-01-17 2011-03-31 キャリア コーポレイション 高圧冷凍システムにおける圧力除去装置の取付
JP2014173753A (ja) * 2013-03-06 2014-09-22 Mitsubishi Electric Corp 空気調和機の室外機
JP2015114067A (ja) * 2013-12-13 2015-06-22 ダイキン工業株式会社 空気調和機
WO2015140876A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 冷凍サイクル装置
WO2015141676A1 (ja) * 2014-03-17 2015-09-24 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JP2015215123A (ja) * 2014-05-09 2015-12-03 旭硝子株式会社 熱サイクルシステム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173767B1 (en) * 1996-10-11 2001-01-16 Sgcm Partnership, L.P. Pressure release device for cooling coils
JP3454647B2 (ja) * 1996-11-07 2003-10-06 東芝キヤリア株式会社 空気調和機
US6820685B1 (en) * 2004-02-26 2004-11-23 Baltimore Aircoil Company, Inc. Densified heat transfer tube bundle
JP4063296B2 (ja) * 2005-10-31 2008-03-19 ダイキン工業株式会社 閉鎖弁サポート部材及びそれを備えた空気調和装置の室外ユニット
CN101249599A (zh) * 2008-03-28 2008-08-27 叶鹏飞 一种制冷设备用管配件的制造工艺
US20120119136A1 (en) * 2010-11-12 2012-05-17 Honeywell International Inc. Low gwp heat transfer compositions
JP5935798B2 (ja) 2011-05-19 2016-06-15 旭硝子株式会社 作動媒体および熱サイクルシステム
JP2014240702A (ja) * 2011-10-06 2014-12-25 パナソニック株式会社 冷凍装置
JP6011171B2 (ja) 2012-09-06 2016-10-19 コニカミノルタ株式会社 現像装置および画像形成装置
JP2015021676A (ja) * 2013-07-19 2015-02-02 三菱電機株式会社 室内熱交換器、室内機、室外熱交換器、室外機、及び空気調和機
JP6453849B2 (ja) * 2014-03-14 2019-01-16 三菱電機株式会社 冷凍サイクル装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1858280A (en) * 1930-02-24 1932-05-17 Perfection Stove Co Safety blow-off device
JPH07332811A (ja) * 1994-06-09 1995-12-22 Matsushita Refrig Co Ltd 冷凍装置と冷凍装置の冷媒回収方法と冷凍装置の改造方法
JP2000130896A (ja) * 1998-10-29 2000-05-12 Sanden Corp 安全装置を備えた空調装置
JP2004069295A (ja) * 2003-10-02 2004-03-04 Mitsubishi Electric Corp 可燃性冷媒を用いた冷蔵庫
JP2011510255A (ja) * 2008-01-17 2011-03-31 キャリア コーポレイション 高圧冷凍システムにおける圧力除去装置の取付
JP2010078285A (ja) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp ヒートポンプ給湯機
JP2010249085A (ja) * 2009-04-20 2010-11-04 Mitsubishi Electric Corp 圧縮機
JP2014173753A (ja) * 2013-03-06 2014-09-22 Mitsubishi Electric Corp 空気調和機の室外機
JP2015114067A (ja) * 2013-12-13 2015-06-22 ダイキン工業株式会社 空気調和機
WO2015140876A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 冷凍サイクル装置
WO2015141676A1 (ja) * 2014-03-17 2015-09-24 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JP2015215123A (ja) * 2014-05-09 2015-12-03 旭硝子株式会社 熱サイクルシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3438573A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018025326A (ja) * 2016-08-09 2018-02-15 パナソニックIpマネジメント株式会社 冷凍サイクル装置
WO2018193974A1 (ja) * 2017-04-20 2018-10-25 Agc株式会社 熱サイクルシステム
US11009269B2 (en) 2017-04-20 2021-05-18 AGC Inc. Heat cycle system

Also Published As

Publication number Publication date
CN108885038A (zh) 2018-11-23
US11105521B2 (en) 2021-08-31
EP3438573A4 (en) 2019-04-03
EP3438573B1 (en) 2020-02-26
CN114777216A (zh) 2022-07-22
EP3438573A1 (en) 2019-02-06
JP6639644B2 (ja) 2020-02-05
US20190032929A1 (en) 2019-01-31
JPWO2017168503A1 (ja) 2018-11-22

Similar Documents

Publication Publication Date Title
WO2017168503A1 (ja) 室外機
JP6223546B2 (ja) 冷凍サイクル装置
JP5137494B2 (ja) 冷凍サイクルを用いた機器及び空気調和機
EP2952821A1 (en) Outdoor unit and refrigeration cycle device
EP3112768B1 (en) Air conditioner
JP5936785B1 (ja) 空気調和装置
JP6787482B2 (ja) 空気調和装置
WO2018139304A1 (ja) 冷凍装置
JPWO2015140887A1 (ja) 冷凍サイクル装置
JP6808008B2 (ja) 室外機及び冷凍サイクル装置
CN105899889A (zh) 制冷装置
US11326819B2 (en) Refrigeration apparatus
WO2016038659A1 (ja) 冷凍サイクル装置
WO2017056214A1 (ja) 空気調和装置
WO2020049646A1 (ja) 水冷式空気調和装置
JPWO2016016999A1 (ja) 冷凍サイクル装置
WO2020075238A1 (ja) プレート式熱交換器およびヒートポンプ装置
WO2021149222A1 (ja) 冷凍サイクル装置の室外機
JP2024116457A (ja) 空気調和装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018507829

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016896723

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016896723

Country of ref document: EP

Effective date: 20181029

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896723

Country of ref document: EP

Kind code of ref document: A1