Nothing Special   »   [go: up one dir, main page]

WO2017150118A1 - 研磨用組成物およびこれを用いた研磨方法 - Google Patents

研磨用組成物およびこれを用いた研磨方法 Download PDF

Info

Publication number
WO2017150118A1
WO2017150118A1 PCT/JP2017/004621 JP2017004621W WO2017150118A1 WO 2017150118 A1 WO2017150118 A1 WO 2017150118A1 JP 2017004621 W JP2017004621 W JP 2017004621W WO 2017150118 A1 WO2017150118 A1 WO 2017150118A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing composition
water
anionic surfactant
less
Prior art date
Application number
PCT/JP2017/004621
Other languages
English (en)
French (fr)
Inventor
恵 谷口
公亮 土屋
真希 浅田
大輝 市坪
久典 丹所
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to US16/074,994 priority Critical patent/US11332640B2/en
Priority to EP17759589.9A priority patent/EP3425016B1/en
Priority to JP2018502985A priority patent/JP6892434B2/ja
Priority to KR1020187024450A priority patent/KR102645587B1/ko
Publication of WO2017150118A1 publication Critical patent/WO2017150118A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing

Definitions

  • the present invention relates to a polishing composition and a polishing method using the same.
  • Metals or semiconductors such as silicon, aluminum, nickel, tungsten, copper, tantalum, titanium, stainless steel, or alloys thereof; compound semiconductor wafer materials such as silicon carbide, gallium nitride, gallium arsenide, etc. Polishing is done on demand and applied in various fields.
  • a polishing composition containing abrasive grains for example, colloidal particles such as colloidal silica
  • abrasive grains for example, colloidal particles such as colloidal silica
  • silicon dioxide such as colloidal silica
  • an alkali compound such as a sulfonic acid surfactant
  • an anionic surface activity such as a sulfonic acid surfactant.
  • a polishing composition containing an agent has been proposed. The above literature shows that the polishing composition can not only reduce the surface roughness of the polished silicon wafer but also improve the polishing rate.
  • haze is used as a measure of the roughness of the silicon wafer surface. If there is haze on the surface of the silicon wafer, irregularly reflected light generated by the haze may become noise and hinder the detection of defects by the surface defect inspection apparatus. For this reason, as the size of the defect to be detected, that is, the size of the defect to be managed becomes smaller, the necessity for improving the haze level is increasing.
  • the surface roughness of the silicon wafer can be reduced, and further the polishing Speed can be improved.
  • a silicon wafer can be obtained by containing a specific nonionic surfactant. The haze on the surface can be reduced.
  • a technique capable of further reducing the above-described haze on the surface of the silicon wafer is required.
  • the polishing composition which is excellent also in polishing rate is calculated
  • an object of the present invention is to provide a polishing composition that can reduce the haze of an object to be polished and is excellent in polishing rate.
  • Another object of the present invention is to provide a polishing method using such a polishing composition.
  • the problem includes abrasive grains, a water-soluble polymer, an anionic surfactant, a basic compound, and water, and the anionic surfactant has an oxyalkylene unit, and the anionic interface
  • the problem is solved by a polishing composition in which the average added mole number of the oxyalkylene unit of the activator is more than 3 and 25 or less.
  • polishing composition of the present invention will be described in detail.
  • One aspect of the present invention includes abrasive grains, a water-soluble polymer, an anionic surfactant, a basic compound, and water, and the anionic surfactant has an oxyalkylene unit, It is polishing composition whose average addition mole number of the said oxyalkylene unit of an anionic surfactant is more than 3 and 25 or less.
  • the polishing composition according to one embodiment of the present invention provides a polishing composition that can reduce the haze of an object to be polished and is excellent in polishing rate.
  • the present inventors have intensively studied from the viewpoint of further reducing the surface roughness and improving the polishing rate.
  • the surface roughness (haze) of the object to be polished is further reduced by essentially including an anionic surfactant having an average added mole number of oxyalkylene units within a specific range and a water-soluble polymer. And a good polishing rate were found to be compatible.
  • the polishing composition according to the present invention contains an anionic surfactant having an average addition mole number of oxyalkylene units within a specific range together with the water-soluble polymer, so that the water-soluble polymer and the anionic property are contained.
  • the surfactant acting moderately on the object to be polished it is considered that a reduction in the surface roughness of the object to be polished and a good polishing rate are both achieved.
  • the anionic surfactant may be a single crystal silicon substrate (hereinafter also referred to as “silicon wafer”) or the like.
  • silicon wafer single crystal silicon substrate
  • haze is easily reduced.
  • the average number of added moles is 3 or less, surface protection due to adsorption of the anionic surfactant is insufficient, and the haze level is deteriorated.
  • the surface protection of the object to be polished such as a silicon wafer becomes excessive, and it is assumed that the polishing rate is reduced. Is done. Therefore, when the average number of added moles of oxyalkylene units is 25 or less as in the present invention, excessive surface protection as described above is suppressed, and a good polishing rate can be maintained.
  • the polishing composition according to the present invention contains a water-soluble polymer. Therefore, since a water-soluble polymer film is formed on the surface of the object to be polished, it is considered that haze is reduced.
  • the polishing composition according to the present invention contains a specific anionic surfactant, a water-soluble polymer, abrasive grains, a basic compound, and water.
  • a specific anionic surfactant e.g., sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium
  • the polishing composition according to one embodiment of the present invention essentially contains a specific anionic surfactant.
  • the “anionic surfactant” refers to a compound having a functional group that becomes dissociated in water and becomes an anion and a hydrophobic group, and has a surface active action.
  • the anionic surfactant contained in the polishing composition according to the present invention has a function of reducing haze together with the water-soluble polymer.
  • the addition of an anionic surfactant imparts hydrophilicity to the polished surface after polishing to improve cleaning efficiency after polishing, prevent adhesion of dirt, etc., and improve the dispersion stability of the polishing composition You can expect the effect.
  • the anionic surfactant contained in the polishing composition according to the present invention has oxyalkylene units, and the average number of added moles is more than 3 and 25 or less.
  • the effect of the average added mole number being in the range is as described above, but from the viewpoint of achieving both reduction of haze and improvement of the polishing rate, the lower limit of the average added mole number of the oxyalkylene unit is: It is preferably 4 or more, and more preferably 4.5 or more.
  • the upper limit of the average number of added moles of oxyalkylene units is preferably 20 or less, and more preferably 18 or less.
  • the average number of added moles of oxyalkylene units is preferably 4 or more and 20 or less, and more preferably 4.5 or more and 18 or less.
  • the “average number of moles added” means the average value of the number of moles of oxyalkylene groups added in 1 mole of anionic surfactant. When two or more different oxyalkylene units are contained in the anionic surfactant, the average value is adopted.
  • the average number of moles added of the oxyalkylene unit should be appropriately measured by 1 H-NMR, gas chromatography (GC), gel permeation chromatography (GPC), gel filtration chromatography (GFC), titration method, etc. However, in this specification, the value measured by the method described in Examples is adopted as the average added mole number.
  • the oxyalkylene unit in the anionic surfactant is represented by the chemical formula “—AO—”, and “A” is preferably an alkylene group having 2 to 18 carbon atoms. That is, the oxyalkylene unit is preferably an oxyalkylene group having 2 to 18 carbon atoms.
  • the alkylene group may be substituted with an aryl group. Examples of such oxyalkylene groups include ethylene oxide groups, propylene oxide groups, 1,2-butylene oxide groups, 2,3-butylene oxide groups, and styrene oxide groups.
  • the oxyalkylene unit has 2 or more carbon atoms. It is more preferably an oxyalkylene group having 10 or less, and particularly preferably an oxyalkylene group having 2 to 4 carbon atoms. Further, among these, the oxyalkylene unit is preferably an ethylene oxide group and a propylene oxide group, and more preferably an ethylene oxide group.
  • two or more different oxyalkylene units may be present in the anionic surfactant.
  • the oxyalkylene units are preferably the same repeat.
  • anionic surfactant is not particularly limited, anionic surfactants, sulfuric acid esters (3 R-O-SO - H +) and salt (R-O-SO 3 - M +), sulfonic acid (R-SO 3 - H + ) and its salts (R-SO 3 - M + ), carboxylic acid (R-COO - H +) and its salts (R—COO ⁇ M + ), and phosphate esters (R—O—PO (O ⁇ H + ) 2 ) and their salts (R—O—PO (O ⁇ H + ) (O ⁇ M + ) or R It is preferably selected from the group consisting of —O—PO (O ⁇ M + ) 2 ).
  • R represents an organic group containing the above-described oxyalkylene unit (—AO— or —OA—, wherein the average added mole number is more than 3 and 25 or less).
  • M + represents various cations such as metal cations and ammonium cations.
  • the anionic surfactant is preferably selected from the group consisting of sulfate ester and salt thereof, carboxylic acid and salt thereof, and phosphate ester and salt thereof, and sulfate ester and salt thereof. And carboxylic acids and their salts are even more preferred.
  • the carboxylic acid and its salt are preferably acetic acid (R—CH 2 COO ⁇ H + ) and its salt (R—CH 2 COO ⁇ M + ).
  • the anionic surfactant is particularly preferably a sulfate ester and a salt thereof, and acetic acid and a salt thereof.
  • the types of the salt include alkali metal salts such as sodium and potassium, group 2 element salts such as calcium and magnesium, ammonium salts, alkanolamine salts such as triethanolamine, and the like Is mentioned.
  • the above-mentioned anion moiety may contain two or more.
  • the sulfate ester and its salt used as an anionic surfactant in the present invention are not particularly limited.
  • the sulfonic acid and its salt used as an anionic surfactant in the present invention are not particularly limited.
  • polyoxyethylene octyl sulfonic acid, polyoxyethylene lauryl sulfonic acid, polyoxyethylene palmityl sulfonic acid, polyoxy Examples include ethylene octylbenzene sulfonic acid, polyoxyethylene lauryl benzene sulfonic acid; sodium polyoxyethylene octyl sulfonate, sodium polyoxyethylene lauryl sulfonate, sodium polyoxyethylene palmityl sulfonate, and the like.
  • polyoxyethylene octyl sulfonic acid and sodium polyoxyethylene octyl sulfonate are preferable.
  • carboxylic acid and its salt used as an anionic surfactant in this invention
  • Examples include ether ammonium acetate. Among these, sodium polyoxyethylene lauryl ether acetate and ammonium polyoxyethylene lauryl ether acetate are preferable.
  • the phosphate ester and its salt used as an anionic surfactant in the present invention are not particularly limited.
  • polyoxyethylene alkyl (12-15) ether phosphate and sodium polyoxyethylene lauryl ether phosphate are preferable.
  • examples of the anionic surfactant containing two or more of the above anionic moieties in one molecule include polyoxyethylene lauryl sulfosuccinic acid disodium salt and sulfosuccinic acid polyoxyethylene lauroyl ethanolamide disodium salt.
  • the structure of the hydrophobic group at the ⁇ -position in the anionic surfactant is not particularly limited.
  • a substituted or unsubstituted C2 to C30 alkyl group a substituted or unsubstituted C3 to C20 cycloalkyl Group, substituted or unsubstituted C1 to C30 alkyl ester group, substituted or unsubstituted C6 to C20 aryl group, C1 to C30 alkyl group mono or dialkylamide group, C1 to C30 alkyl It may be substituted with a mono- or dialkylamino group having a group, or may have a sorbitan structure.
  • alkyl group examples include ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, Examples include 2-dimethylpropyl group, n-hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, n-decyl group, n-dodecyl group and the like.
  • Examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group.
  • alkyl ester group examples include, for example, a methyl ester group, an ethyl ester group, an n-propyl ester group, an i-propyl ester group, an n-butyl ester group, and a 2-methylpropyl ester group. It is done.
  • aryl group examples include a phenyl group, o-, m- or p-tolyl group.
  • substituted or (or) unsubstituted means that the hydrogen atom in the substituent is a fluorine atom; a chlorine atom; a bromine atom; a cyano group; a nitro group; a hydroxy group;
  • the following linear or branched alkyl group C1 or more and C10 or less linear or branched alkoxy group; C6 or more and C30 or less aryl group; C2 or more and C30 or less heteroaryl group; C5 or more and C20 or less Means substituted or unsubstituted with a substituent such as a cycloalkyl group;
  • the above anionic surfactants may be used singly or in combination of two or more.
  • the average added mole number of ethylene oxide units is more than 3 and 25 or less.
  • the lower limit of the average added mole number of ethylene oxide units is preferably 4 or more, and more preferably 4.5 or more.
  • the upper limit of the average added mole number of ethylene oxide units is preferably 20 or less, and more preferably 18 or less.
  • the average added mole number of ethylene oxide groups is preferably 4 or more and 20 or less, and more preferably 4.5 or more and 18 or less. preferable.
  • the weight average molecular weight of the anionic surfactant is preferably 5,000 or less, more preferably 4,000 or less, more preferably 3 in terms of polyethylene oxide, from the viewpoint of improving the polishing rate and reducing haze. , 000 or less.
  • the weight average molecular weight of the anionic surfactant is preferably 200 or more, more preferably 300 or more, and further preferably 400 or more.
  • the weight average molecular weight of an anionic surfactant can be measured by gel permeation chromatography (GPC), for example.
  • the surface of a single crystal silicon substrate (silicon wafer), which is a preferable polishing object, is generally finished to a high-quality mirror surface through a lapping process (rough polishing process) and a polishing process (precision polishing process).
  • the polishing step is usually composed of a plurality of polishing steps including a preliminary polishing step (preliminary polishing step) and a final polishing step (final polishing step).
  • a polishing composition having a high processing power (polishing power) is used in a step of roughly polishing a silicon wafer (for example, a preliminary polishing step), and a polishing power in a step of polishing more delicately (for example, a final polishing step).
  • polishing power a polishing composition having a high processing power
  • a polishing power is used in a step of roughly polishing a silicon wafer (for example, a preliminary polishing step), and a polishing power in a step of polishing more delicately (for example, a final polishing step
  • the polishing composition to be used has different polishing characteristics required for each polishing step, and therefore the content of the anionic surfactant contained in the polishing composition is also used by the polishing composition. Different ones may be employed depending on the stage of the polishing process being performed.
  • the content of the anionic surfactant in the polishing composition used in the preliminary polishing step is not particularly limited, but from the viewpoint of improving the haze reduction effect, polishing. Is preferably 1 ⁇ 10 ⁇ 7 mass% or more, more preferably 1 ⁇ 10 ⁇ 6 mass% or more, and 5 ⁇ 10 ⁇ 5 mass% or more with respect to the total mass of the composition for use. Is particularly preferred. On the other hand, from the viewpoint of further improving the polishing rate, it is preferably 0.5% by mass or less, and preferably 0.05% by mass or less, based on the total mass of the polishing composition used in the preliminary polishing step. More preferably, it is particularly preferably 0.005% by mass or less.
  • the content of the anionic surfactant in the polishing composition used in the final polishing step is not particularly limited, but from the viewpoint of improving the haze reduction effect, polishing. It is preferably 1 ⁇ 10 ⁇ 6 mass% or more, more preferably 5 ⁇ 10 ⁇ 5 mass% or more, and 1 ⁇ 10 ⁇ 4 mass% or more with respect to the total mass of the composition for use. Is particularly preferred. On the other hand, from the viewpoint of further improving the polishing rate, it is preferably 1% by mass or less, more preferably 0.1% by mass or less, based on the total mass of the polishing composition used in the finish polishing step. The content is particularly preferably 0.01% by mass or less.
  • the polishing composition according to one embodiment of the present invention essentially contains a water-soluble polymer. Since the water-soluble polymer forms a water-soluble polymer film on the surface of the object to be polished, haze can be reduced. The water-soluble polymer has a function of reducing the haze of the object to be polished together with the anionic surfactant.
  • the “water-soluble polymer” refers to a polymer having a solubility in water (25 ° C.) of 0.01 g / 100 mL or more.
  • Polymer means a polymer having a weight average molecular weight of 5,000 or more. The weight average molecular weight can be measured by gel permeation chromatography (GPC), and more specifically, a value measured by the method described in Examples is adopted.
  • water-soluble polymer those having at least one functional group selected from a cationic group, an anionic group and a nonionic group in the molecule can be used.
  • Specific examples of the water-soluble polymer include those containing a hydroxyl group, carboxyl group, acyloxy group, sulfo group, quaternary ammonium structure, heterocyclic structure, vinyl structure, polyoxyalkylene structure and the like in the molecule.
  • Nonionic water-soluble polymers can be preferably employed from the viewpoint of reducing aggregates and improving detergency.
  • Preferred examples include polymers containing oxyalkylene units, polymers containing nitrogen atoms (nitrogen-containing water-soluble polymers), polyvinyl alcohol, polymers containing constituent units derived from vinyl alcohol, cellulose derivatives, starch derivatives and the like. .
  • it is at least one selected from a polymer containing an oxyalkylene unit, a polymer containing a nitrogen atom, polyvinyl alcohol, a polymer containing a structural unit derived from vinyl alcohol, and a cellulose derivative. More preferred are a polymer containing a nitrogen atom, a polymer containing a structural unit derived from vinyl alcohol, and a cellulose derivative.
  • polystyrene resin examples include polyethylene oxide (PEO), a block copolymer of ethylene oxide (EO) and propylene oxide (PO), and a random copolymer of EO and PO.
  • the block copolymer of EO and PO may be a diblock body, a triblock body or the like including a polyethylene oxide (PEO) block and a polypropylene oxide (PPO) block.
  • the triblock body includes a PEO-PPO-PEO type triblock body and a PPO-PEO-PPO type triblock body. Usually, a PEO-PPO-PEO type triblock body is more preferable.
  • the molar ratio (EO / PO) of EO and PO constituting the copolymer is determined from the viewpoint of solubility in water, detergency, and the like. It is preferably larger than 1, more preferably 2 or more, and particularly preferably 3 or more (for example, 5 or more).
  • the polymer containing a nitrogen atom is not particularly limited as long as it has one or more nitrogen atoms in the monomer unit or one or more nitrogen atoms in a part of the side chain.
  • Imine, amide, imide, carbodiimide, hydrazide, urethane compound and the like are used, and any of linear, cyclic, primary, secondary, and tertiary may be used.
  • it may be a nitrogen-containing water-soluble polymer having a salt structure formed with a nitrogen atom as a cation.
  • both a polymer containing a nitrogen atom in the main chain and a polymer having a nitrogen atom in a side chain functional group (pendant group) can be used.
  • Examples of the nitrogen-containing water-soluble polymer having a salt structure include quaternary ammonium salts.
  • the nitrogen-containing water-soluble polymer include polycondensation polyamides such as water-soluble nylon, polycondensation polyesters such as water-soluble polyesters, polyaddition polyamines, polyaddition polyimines, polyaddition (meth) acrylamides, and alkyls. Examples thereof include a water-soluble polymer having a nitrogen atom in at least a part of the main chain and a water-soluble polymer having a nitrogen atom in at least a part of the side chain.
  • the water-soluble polymer having a nitrogen atom in the side chain also includes a water-soluble polymer having a quaternary nitrogen in the side chain.
  • Specific examples of the polyaddition type nitrogen-containing water-soluble polymer include polyvinyl imidazole, polyvinyl carbazole, polyvinyl pyrrolidone, poly N-vinyl formamide, polyvinyl caprolactam, polyvinyl piperidine and the like.
  • the nitrogen-containing water-soluble polymer may partially have a hydrophilic structure such as a methacrylic acid structure, a vinyl sulfonic acid structure, or an oxyalkylene structure.
  • the polymer which has multiple types of structures may be sufficient.
  • the nitrogen-containing water-soluble polymer may be any of those having a cation in part or all of the molecule, those having an anion, those having both an anion and a cation, and those having a nonion.
  • Examples of the polymer containing a nitrogen atom in the main chain include homopolymers and copolymers of N-acylalkylenimine type monomers. Specific examples of the N-acylalkyleneimine monomer include N-acetylethyleneimine, N-propionylethyleneimine and the like.
  • Examples of the polymer having a nitrogen atom in the pendant group include homopolymers and copolymers of N- (meth) acryloyl type monomers, homopolymers and copolymers of N-alkoxyalkyl (meth) acrylamide type monomers, Homopolymers and copolymers of N-hydroxyalkyl (meth) acrylamide type monomers, homopolymers and copolymers of N-alkyl (meth) acrylamide type monomers, N-dialkyl (meth) acrylamide type monomers Examples thereof include homopolymers and copolymers, homopolymers and copolymers of N-vinyl type monomers, and the like.
  • (meth) acryloyl is a meaning that comprehensively refers to acrylic and methacrylic.
  • Specific examples of the N- (meth) acryloyl type monomer include N- (meth) acryloylmorpholine, N- (meth) acryloylpiperidine and the like.
  • Specific examples of the N-alkoxyalkyl (meth) acrylamide type monomer include N-methoxymethyl (meth) acrylamide, N-ethoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide and the like.
  • N-hydroxyalkyl (meth) acrylamide type monomer examples include N- (2-hydroxyethyl) (meth) acrylamide, N- (1,1-dimethyl-2-hydroxyethyl) (meth) acrylamide and the like. It is done.
  • N-alkyl (meth) acrylamide type monomer examples include N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide and the like. .
  • N-dialkyl (meth) acrylamide type monomer examples include N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N, N-dipropyl (meth) acrylamide and the like.
  • N-vinyl type monomer examples include N-vinyl pyrrolidone.
  • copolymer refers to various copolymers such as a random copolymer, an alternating copolymer, a block copolymer, and a graft copolymer unless otherwise specified. is there.
  • Polyvinyl alcohol can be obtained by saponifying polyvinyl acetate. At this time, the degree of saponification is not particularly limited.
  • the polymer containing a constitutional unit derived from vinyl alcohol is a vinyl alcohol unit (a structural part represented by —CH 2 —CH (OH) — in one molecule; hereinafter also referred to as “VA unit”) and non-vinyl alcohol.
  • VA unit a structural part represented by —CH 2 —CH (OH) — in one molecule
  • non-VA units A copolymer containing units (constituent units derived from monomers other than vinyl alcohol, hereinafter also referred to as “non-VA units”). That is, a part of a polymer of one molecule is a copolymer composed of VA units and the other part is composed of non-VA units.
  • non-VA unit examples include a structural unit derived from vinyl pyrrolidone, a structural unit derived from ethylene, an alkyl vinyl ether unit, a structural unit obtained by acetalizing polyvinyl alcohol and an aldehyde, and the like. .
  • a vinyl ether unit (alkyl vinyl ether unit) having an alkyl group having 1 to 10 carbon atoms, a vinyl ester unit derived from a monocarboxylic acid having 1 to 7 carbon atoms (monocarboxylic acid).
  • Acid vinyl ester unit) and polyvinyl alcohol and an aldehyde having an alkyl group having 1 to 7 carbon atoms are preferably selected from the group consisting of structural units obtained by acetalization.
  • Examples of vinyl ether units having an alkyl group having 1 to 10 carbon atoms include propyl vinyl ether units, butyl vinyl ether units, 2-ethylhexyl vinyl ether units, and the like.
  • Examples of vinyl ester units derived from monocarboxylic acids having 1 to 7 carbon atoms include vinyl propanoate units, vinyl butanoate units, vinyl pentanoate units, vinyl hexanoate units, and the like.
  • the polymer containing a structural unit derived from vinyl alcohol may contain only one type of non-VA unit, or may contain two or more types of non-VA units.
  • the content ratio (molar ratio) between the VA unit and the non-VA unit is not particularly limited.
  • the ratio of VA unit: non-VA unit (molar ratio) is preferably 99: 1 to 1:99, 95: It is more preferably 5 to 50:50, and particularly preferably 95: 5 to 80:20.
  • polymers containing structural units derived from vinyl alcohol include, for example, copolymers having vinyl alcohol units and vinyl pyrrolidone units, copolymers having vinyl alcohol units and ethylene units, vinyl alcohol units and methyl vinyl ether units.
  • the polymer containing a polyvinyl alcohol and a structural unit derived from vinyl alcohol may be a modified polyvinyl alcohol having a hydrophilic functional group in its side chain.
  • functional groups include oxyalkylene groups, carboxy groups, sulfo groups, amino groups, hydroxyl groups, amide groups, imide groups, nitrile groups, ether groups, ester groups, and salts thereof.
  • modified polyvinyl alcohol for example, cationized polyvinyl alcohol having a cationic group such as a quaternary ammonium structure may be used.
  • cationized polyvinyl alcohol include those derived from a monomer having a cationic group such as diallyldialkylammonium salt and N- (meth) acryloylaminoalkyl-N, N, N-trialkylammonium salt.
  • Cellulose derivative refers to a cellulose in which part of hydroxyl groups is substituted with other different substituents.
  • examples of the cellulose derivative include cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose, and pullulan.
  • Starch derivatives include pregelatinized starch, pullulan, cyclodextrin and the like. Of these, pullulan is preferred.
  • the water-soluble polymers may be used alone or in combination of two or more.
  • the water-soluble polymer is a polymer containing a nitrogen atom, a cellulose derivative, and a polymer containing a structural unit derived from vinyl alcohol. It is preferable that at least one selected from the group consisting of:
  • a water-soluble polymer film is more easily formed on the surface of the object to be polished (especially a silicon wafer) than in the case of using other water-soluble polymers. Reduction effect is further improved.
  • the water-soluble polymer contains a cellulose derivative.
  • hydroxyethyl cellulose is particularly preferable from the viewpoint that a water-soluble polymer film is easily formed on the surface of the object to be polished and the haze reduction effect is high.
  • the weight average molecular weight of the water-soluble polymer is preferably 2,000,000 or less, more preferably 1,000,000 or less, more preferably 1,000,000 or less, in terms of polyethylene oxide, from the viewpoint of improving the polishing rate and reducing haze. Preferably it is 500,000 or less, most preferably 300,000 or less. Further, the weight average molecular weight of the water-soluble polymer in the polishing composition is preferably 10,000 or more, more preferably 20,000 or more, and further preferably 30,000 or more. Moreover, when the weight average molecular weight is within the above range, it is also preferable from the viewpoint of the dispersion stability of the polishing composition and the cleaning property of the silicon wafer when the polishing target is a single crystal silicon substrate (silicon wafer). In addition, the weight average molecular weight of water-soluble polymer can be measured by gel permeation chromatography (GPC), for example, and the value measured by the method as described in an Example is employ
  • GPC gel permeation chromatography
  • the content of the water-soluble polymer contained in the polishing composition may be different depending on the stage of the polishing process in which the polishing composition is used.
  • the polishing rate is improved by reducing the content of the water-soluble polymer.
  • the content of the water-soluble polymer in the polishing composition used in the preliminary polishing step is the viewpoint of improving the wettability of the polished surface and further reducing haze. Therefore , it is preferably 1 ⁇ 10 ⁇ 6 mass% or more, more preferably 5 ⁇ 10 ⁇ 5 mass% or more, and further preferably 1 ⁇ 10 ⁇ 4 mass% or more. On the other hand, from the viewpoint of improving the polishing rate, it is preferably 1% by mass or less, more preferably 0.1% by mass or less, and further preferably 0.02% by mass or less.
  • the content of the water-soluble polymer in the polishing composition used in the final polishing step is the viewpoint of improving the wettability of the polished surface and further reducing haze. Therefore, it is preferably 1 ⁇ 10 ⁇ 4 mass% or more, more preferably 1 ⁇ 10 ⁇ 3 mass% or more, still more preferably 2 ⁇ 10 ⁇ 3 mass% or more, and even more preferably 3 ⁇ 10 -3 % by mass or more, particularly preferably 5 ⁇ 10 -3 % by mass or more.
  • it is preferably 1% by mass or less, more preferably 0.1% by mass or less, and further preferably 0.02% by mass or less.
  • a cellulose derivative for example, hydroxyethyl cellulose
  • it may be used in combination with polyvinyl pyrrolidone.
  • the polishing composition according to one embodiment of the present invention essentially contains abrasive grains.
  • the abrasive grains serve to mechanically polish the surface of the object to be polished.
  • the material and properties of the abrasive grains are not particularly limited, and can be appropriately selected according to the purpose of use and usage of the polishing composition.
  • the abrasive grains include inorganic particles, organic particles, and organic-inorganic composite particles.
  • the inorganic particles include silica particles, alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, oxide particles such as bengara particles;
  • examples thereof include nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate.
  • organic particles include polymethyl methacrylate (PMMA) particles and poly (meth) acrylic acid particles (here, (meth) acrylic acid is a generic term for acrylic acid and methacrylic acid). And polyacrylonitrile particles.
  • PMMA polymethyl methacrylate
  • acrylic acid is a generic term for acrylic acid and methacrylic acid.
  • polyacrylonitrile particles include polyacrylonitrile particles.
  • An abrasive grain may be used individually by 1 type, and may be used in combination of 2 or more type.
  • abrasive inorganic particles are preferable, and particles made of metal or metalloid oxide are particularly preferable.
  • Particularly preferred abrasive grains include silica particles. Examples of the silica particles include colloidal silica, fumed silica, and precipitated silica.
  • colloidal silica and fumed silica are preferable, and colloidal silica is particularly preferable.
  • colloidal silica or fumed silica is used, particularly when colloidal silica is used, scratches generated on the surface of the silicon wafer in the polishing process are reduced.
  • polishing composition Depending on the stage of the polishing process in which the polishing composition is used, different contents and particle sizes of the abrasive grains contained in the polishing composition can be employed.
  • the polishing rate for the surface of the object to be polished is improved by increasing the content of abrasive grains.
  • the dispersion stability of the polishing composition is improved, and the abrasive grains on the polished surface tend to be reduced.
  • the content of abrasive grains in the polishing composition used in the preliminary polishing step is not particularly limited, but is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and 0 More preferably, the content is 1% by mass or more, and particularly preferably 0.2% by mass or more.
  • the content of abrasive grains in the polishing composition used in the preliminary polishing step is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 1% by mass or less. Most preferably, it is 0.8 mass% or less.
  • the content of abrasive grains in the polishing composition used in the final polishing step is not particularly limited, but is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and 0 It is still more preferable that it is 0.05 mass% or more, and it is especially preferable that it is 0.1 mass% or more.
  • the content of abrasive grains in the polishing composition used in the final polishing step is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 1% by mass or less. Yes, and most preferably 0.5% by mass or less.
  • the average primary particle diameter of the abrasive grains used in the preliminary polishing step is not particularly limited, but is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 20 nm or more, and even more preferably 30 nm or more. Further, the average primary particle diameter of the abrasive grains used in the preliminary polishing step is preferably 100 nm or less, more preferably 80 nm or less, and further preferably 60 nm or less.
  • the average primary particle diameter of the abrasive grains in the polishing composition used in the final polishing step is not particularly limited, but is preferably 5 nm or more, more preferably 10 nm or more, and further preferably 20 nm or more. Moreover, the average primary particle diameter of the abrasive grains in the polishing composition used in the finish polishing step is preferably 60 nm or less, more preferably 50 nm or less, and further preferably 40 nm or less.
  • the average secondary particle diameter of the abrasive grains in the polishing composition used in the preliminary polishing step is not particularly limited, but is preferably 10 nm or more, preferably 20 nm or more, and 40 nm or more. Is more preferable. Further, the average secondary particle diameter of the abrasive grains in the polishing composition used in the preliminary polishing step is preferably 250 nm or less, more preferably 180 nm or less, and further preferably 150 nm or less.
  • the average secondary particle diameter of the abrasive grains in the polishing composition used in the final polishing step is preferably 20 nm or more, and more preferably 40 nm or more. Further, the average secondary particle diameter of the abrasive grains in the polishing composition used in the final polishing step is preferably 100 nm or less, more preferably 90 nm or less, and further preferably 80 nm or less.
  • the value of the average primary particle diameter of an abrasive grain is calculated from the specific surface area measured by BET method, for example.
  • the specific surface area of the abrasive grains can be measured using, for example, “Flow SorbII 2300” manufactured by Micromeritex Corporation.
  • the average secondary particle diameter of the abrasive grains is measured, for example, by a dynamic light scattering method, and can be measured using, for example, “Nanotrack (registered trademark) UPA-UT151” manufactured by Nikkiso Co., Ltd.
  • the polishing composition according to one embodiment of the present invention essentially contains a basic compound.
  • the basic compound refers to a compound having a function of increasing the pH of the composition when added to the polishing composition.
  • the basic compound has a function of chemically polishing the surface of the object to be polished by etching and a function of improving the dispersion stability of the abrasive grains.
  • a basic compound can be used as a pH adjuster.
  • the basic compound examples include a Group 2 element or alkali metal hydroxide or salt, a quaternary ammonium compound, ammonia or a salt thereof, an amine, and the like.
  • the Group 2 element is not particularly limited, but an alkaline earth metal can be preferably used, and examples thereof include calcium.
  • the alkali metal include potassium and sodium.
  • the salt include carbonate, hydrogen carbonate, sulfate, acetate and the like.
  • hydroxides or salts of Group 2 elements or alkali metals include calcium hydroxide, potassium hydroxide, potassium carbonate, potassium bicarbonate, potassium sulfate, potassium acetate, potassium chloride, sodium hydroxide, sodium bicarbonate, And sodium carbonate.
  • Examples of the quaternary ammonium compound include hydroxides such as tetramethylammonium, tetraethylammonium, and tetrabutylammonium, and salts such as chlorides, carbonates, bicarbonates, sulfates, and phosphates.
  • tetraalkylammonium hydroxide such as tetramethylammonium hydroxide, tetraethylammonium hydroxide and tetrabutylammonium hydroxide
  • tetraalkylammonium carbonate such as tetramethylammonium carbonate, tetraethylammonium carbonate and tetrabutylammonium carbonate
  • tetraalkylammonium chloride such as tetramethylammonium chloride, tetraethylammonium chloride, and tetrabutylammonium chloride.
  • ammonium salts include ammonium carbonate and ammonium bicarbonate.
  • amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- ( ⁇ -aminoethyl) ethanolamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, anhydrous piperazine , Piperazine hexahydrate, 1- (2-aminoethyl) piperazine, N-methylpiperazine, guanidine and the like.
  • a preferable compound can be selected according to its expected function.
  • the basic compound in the polishing composition used in the preliminary polishing step it is preferable to use a quaternary ammonium hydroxide compound such as tetramethylammonium hydroxide from the viewpoint of improving the polishing rate.
  • the basic compound in the polishing composition used in the preliminary polishing step preferably contains a carbonate or bicarbonate from the viewpoint of improving the polishing rate, and includes potassium carbonate, potassium bicarbonate, ammonium carbonate, It is preferable to contain ammonium hydrogen carbonate, sodium carbonate, sodium hydrogen carbonate or the like.
  • the polishing composition has a buffering action, and from the viewpoint of maintaining the stability of pH for each polishing step. preferable.
  • the basic compound in the polishing composition used in the final polishing step does not contain alkaline earth metal, alkali metal, or transition metal from the viewpoint that it does not remain attached to the polished object after polishing. Is preferred. Therefore, as the basic compound, for example, quaternary ammonium hydroxide, amine, and ammonia are preferable. From the viewpoint of easy handling, quaternary ammonium hydroxide and ammonia are more preferable, and ammonia is the most. preferable.
  • the content of the basic compound in the polishing composition (when two or more types are used, the total amount thereof) is preferably 0.001% by mass or more, more preferably 0.003% by mass or more. By increasing the content of the basic compound, a high polishing rate can be easily obtained. On the other hand, the content of the basic compound in the polishing composition (the total amount when two or more are used) is preferably 0.2% by mass or less, more preferably 0.1% by mass or less. is there. By reducing the content of the basic compound, haze is easily reduced.
  • the content of the basic compound may be decreased stepwise.
  • the content of the basic compound in the preliminary polishing composition is the largest, and the content of the basic compound in the final polishing composition is preferably in the range of 2 to 20 times.
  • the polishing composition according to one embodiment of the present invention essentially contains water. Water acts as a solvent for dissolving other components or a dispersion medium for dispersing.
  • water containing as little impurities as possible is preferable.
  • water having a total content of transition metal ions of 100 ppb or less is preferable.
  • the purity of water can be increased by operations such as removal of impurity ions using an ion exchange resin, removal of foreign matters by a filter, distillation, and the like.
  • ion exchange water deionized water
  • pure water, ultrapure water, distilled water, or the like is preferably used as water.
  • the polishing composition according to one embodiment of the present invention may contain other components as necessary in addition to the abrasive grains, the water-soluble polymer, the anionic surfactant, the basic compound, and water.
  • the polishing composition according to the present invention does not substantially contain an oxidizing agent.
  • an oxidizing agent is contained in the polishing composition, the composition is supplied to a polishing object (for example, a silicon wafer), whereby the surface of the polishing object is oxidized to form an oxide film, This can reduce the polishing rate.
  • polishing composition does not contain an oxidizing agent substantially means not containing an oxidizing agent at least intentionally. Accordingly, a trace amount (for example, the molar concentration of the oxidizing agent in the polishing composition is 0.0005 mol / L or less, preferably 0.0001 mol / L or less, more preferably 0.00001, derived from the raw material, the manufacturing method, or the like.
  • the polishing composition that inevitably contains an oxidizing agent of mol / L or less, particularly preferably 0.000001 mol / L or less) is a concept of a polishing composition that does not substantially contain an oxidizing agent here. Can be included.
  • polishing composition examples include, for example, chelating agents, preservatives and fungicides, surfactants other than the above anionic surfactants, and other known additives (for example, organic acids, organic Acid salts, inorganic acids, inorganic acid salts, and the like), but are not limited thereto.
  • the polishing composition according to one embodiment of the present invention may contain a chelating agent.
  • the chelating agent captures metal impurities originally contained in the polishing composition and metal impurities generated from the polishing object or polishing apparatus during polishing or mixed from outside to form a complex, thereby forming a complex. Suppresses metal impurities from remaining in objects.
  • the object to be polished is a semiconductor
  • the metal contamination of the semiconductor is prevented by suppressing the remaining metal impurities, and the deterioration of the quality of the semiconductor is suppressed.
  • chelating agents include aminocarboxylic acid chelating agents and organic phosphonic acid chelating agents.
  • aminocarboxylic acid chelating agent examples include ethylenediaminetetraacetic acid, sodium ethylenediaminetetraacetate, nitrilotriacetic acid, sodium nitrilotriacetate, ammonium nitrilotriacetate, hydroxyethylethylenediaminetriacetic acid, sodium hydroxyethylethylenediaminetriacetate, diethylenetriamine Examples include acetic acid, sodium diethylenetriaminepentaacetate, triethylenetetraminehexaacetic acid, sodium triethylenetetraminehexaacetate, and the like.
  • organic phosphonic acid chelating agent examples include 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (methylene Phosphonic acid), triethylenetetramine hexa (methylenephosphonic acid), ethane-1,1-diphosphonic acid, ethane-1,1,2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1 -Hydroxy-1,1,2-triphosphonic acid, ethane-1,2-dicarboxy-1,2-diphosphonic acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane-2, 3,4-tricarboxylic acid, ⁇ -methylphosphonosucci And the like.
  • chelating agents may be used alone or in combination of two or more.
  • organic phosphonic acid chelates are preferable, and ethylenediaminetetrakis (methylenephosphonic acid) is more preferable.
  • the content of the chelating agent in the polishing composition (the total amount when two or more are used) is preferably 0.0001% by mass or more, more preferably 0.0005% by mass or more, and still more preferably. It is 0.005 mass% or more.
  • the content of the chelating agent in the polishing composition (the total amount when two or more are used) is preferably less than 0.5% by mass, more preferably less than 0.3% by mass, More preferably, it is less than 0.1 mass%, Most preferably, it is less than 0.05 mass%.
  • the polishing composition according to one embodiment of the present invention may further contain an antiseptic / antifungal agent.
  • antiseptics and fungicides examples include isothiazoline preservatives such as 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazolin-3-one, and paraoxybenzoic acid esters. , And phenoxyethanol.
  • antiseptics and fungicides may be used singly or in combination of two or more.
  • the polishing composition according to an aspect of the present invention includes an anionic surfactant having an average addition mole number of oxyalkylene units within a specific range as long as the effect of the present invention is not impaired.
  • a surfactant other than the anionic surfactant may be further contained.
  • Such a surfactant can be added for the purpose of further improving the cleaning efficiency after polishing and preventing the adhesion of dirt by imparting hydrophilicity to the polished surface after polishing.
  • the surfactant may be any of a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant.
  • surfactants may be used alone or in combination of two or more.
  • the content of the surfactant other than the anionic surfactant in the polishing composition is not particularly limited from the viewpoint of further improving the cleaning efficiency after polishing. It is preferably 1 ⁇ 10 ⁇ 6 mass% or more. On the other hand, the upper limit of the content is preferably 1% by mass or less from the viewpoint of improving the polishing rate.
  • the polishing composition may further contain a known additive generally contained in the polishing composition, for example, an organic acid, an organic acid salt, an inorganic acid, an inorganic acid salt, or the like, if necessary.
  • a known additive generally contained in the polishing composition for example, an organic acid, an organic acid salt, an inorganic acid, an inorganic acid salt, or the like, if necessary.
  • Examples of the organic acid include monocarboxylic acids such as formic acid, acetic acid and propionic acid, aromatic carboxylic acids such as benzoic acid and phthalic acid, and dicarboxylic acids such as oxalic acid, tartaric acid, malic acid, maleic acid, fumaric acid and succinic acid.
  • Examples thereof include polycarboxylic acids such as acid, citric acid, and (meth) acrylic acid (also referred to as methacrylic acid), organic sulfonic acids, and organic phosphonic acids.
  • Examples of the organic acid salt include alkali metal salts such as sodium salt and potassium salt of organic acid, or ammonium salt.
  • inorganic acids include sulfuric acid, nitric acid, hydrochloric acid, and carbonic acid.
  • examples of the inorganic acid salt include alkali metal salts such as sodium salt and potassium salt of inorganic acid, or ammonium salt.
  • Organic acids and salts thereof and inorganic acids and salts thereof may be used alone or in combination of two or more.
  • the method for producing the polishing composition according to the present invention is not particularly limited. For example, it can be produced by sequentially adding abrasive grains, a water-soluble polymer, an anionic surfactant, a basic compound, and other components added as necessary, and stirring in water. .
  • the polishing composition according to the present invention may be a one-part type or a multi-part type composed of two or more parts. Further, the polishing composition described above may be used for polishing as it is, or when the concentrated liquid of the polishing composition is diluted by adding water, or in the case of a multi-component polishing composition. It may be prepared by diluting with water and an aqueous solution containing a part of the components and used for polishing. For example, after the concentrated liquid of the polishing composition is stored or transported, it can be diluted at the time of use to prepare the polishing composition.
  • polishing composition in the technology disclosed herein is used as a polishing liquid diluted with a polishing liquid (working slurry) that is supplied to a polishing object and used for polishing the polishing object.
  • polishing liquid working slurry
  • Both concentrated liquid polishing liquid stock solution
  • Concentrated polishing composition is advantageous from the viewpoints of convenience, cost reduction, etc. during production, distribution, storage and the like.
  • the concentration factor can be, for example, about 2 to 100 times in terms of volume, and usually about 5 to 50 times is appropriate.
  • the concentration ratio of the polishing composition according to a preferred embodiment is 10 times or more and 40 times or less, for example, 15 times or more and 25 times or less.
  • the polishing composition according to the present invention is preferably alkaline, and its pH is preferably 8 or more, more preferably 9 or more, and particularly preferably 9.5 or more.
  • the pH is preferably 12 or less, more preferably 11 or less, and particularly preferably 10.8 or less.
  • the pH of the polishing composition is lowered, the surface accuracy tends to be improved.
  • the pH of the polishing composition is preferably in the above range.
  • the polishing composition may be adjusted so that the pH is in the above range, if necessary, when it is reused.
  • a known pH adjusting agent may be used, or the above basic compound may be used.
  • the pH value of the polishing composition can be confirmed with a pH meter. Detailed measurement methods are described in the examples.
  • the polishing object to be polished using the polishing composition according to one embodiment of the present invention is not particularly limited, and can be applied to polishing of a polishing object having various materials and shapes.
  • the material of the object to be polished is, for example, silicon material, aluminum, nickel, tungsten, steel, tantalum, titanium, stainless steel or other metal or semimetal, or alloys thereof; quartz glass, aluminosilicate glass, glassy carbon Glass materials such as; ceramic materials such as alumina, silica, sapphire, silicon nitride, tantalum nitride, titanium carbide; compound semiconductor substrate materials such as silicon carbide, gallium nitride, gallium arsenide; resin materials such as polyimide resin; Can be mentioned.
  • polishing target object may be comprised with the some material among the said materials.
  • the polishing composition according to one embodiment of the present invention is preferably used for polishing a silicon material.
  • the silicon material preferably includes at least one material selected from the group consisting of silicon single crystal, amorphous silicon and polysilicon.
  • the silicon material is more preferably a silicon single crystal or polysilicon, and particularly preferably a silicon single crystal, from the viewpoint that the effects of the present invention can be obtained more remarkably. That is, the polishing object is preferably a single crystal silicon substrate.
  • the shape of the object to be polished is not particularly limited.
  • the polishing composition according to the present invention can be preferably applied to polishing a polishing object having a flat surface such as a plate shape or a polyhedron shape.
  • polishing method including polishing an object to be polished using the polishing composition. Since the polishing composition according to the present invention is excellent in the haze reduction effect, it is particularly suitably used in the final polishing step. That is, the polishing method according to the present invention is suitably used in the final polishing step. Therefore, according to this invention, the manufacturing method (for example, manufacturing method of a silicon wafer) of the polishing thing including the final polishing process using the said polishing composition is also provided.
  • the final polishing step refers to the final polishing step in the object manufacturing process (that is, a step in which no further polishing is performed after that step).
  • the polishing composition according to the present invention is also applied to a polishing step upstream of the final polishing step (refers to a step between the rough polishing step and the final polishing step), for example, a polishing step performed immediately before the final polishing step. May be used.
  • the polishing composition according to the present invention is particularly preferably used for polishing a single crystal silicon substrate as described above. And it is suitable as a polishing composition used in the final polishing step of the single crystal silicon substrate. More specifically, the polishing composition according to the present invention is applied to polishing a single crystal silicon substrate prepared in a surface state having a surface roughness of 0.01 nm or more and 100 nm or less by a process upstream of the final polishing process. It is preferable.
  • a polishing apparatus As a polishing apparatus, a general holder having a polishing surface plate on which a holder for holding a substrate having a polishing object and a motor capable of changing the number of rotations are attached and a polishing pad (polishing cloth) can be attached.
  • a polishing apparatus can be used.
  • polishing pad a general nonwoven fabric type, polyurethane type, suede type or the like can be used without particular limitation. It is preferable that the polishing pad is grooved so that the polishing composition accumulates.
  • Polishing conditions are appropriately set depending on the stage of the polishing process in which the polishing composition is used.
  • a double-side polishing apparatus can be suitably used, and is usually about 10 rpm to 100 rpm, preferably about 20 rpm to 50 rpm.
  • the rotational speeds of the upper rotating surface plate and the lower rotating surface plate may be different, but are usually set to the same relative speed with respect to the wafer.
  • a single-side polishing apparatus can be preferably used, and is usually about 10 rpm to 100 rpm, preferably about 20 rpm to 50 rpm, and more preferably about 25 rpm to 50 rpm. With such a rotation speed, the haze level of the surface of the polishing object can be significantly reduced.
  • the object to be polished is usually pressurized by a surface plate.
  • the pressure at this time can be appropriately selected.
  • it is usually preferably about 5 kPa to 30 kPa, and more preferably about 10 kPa to 25 kPa.
  • the finish polishing step it is usually preferably about 5 kPa to 30 kPa, and more preferably about 10 kPa to 20 kPa. With such a pressure, the haze level of the surface of the polishing object can be significantly reduced.
  • the supply rate of the polishing composition can also be appropriately selected according to the size of the surface plate, in consideration of economy, in the case of the preliminary polishing step, usually about 0.1 L / min to about 5 L / min is preferable, Preferably, it is about 0.2 L / min or more and 2 L / min or less. In the case of the finish polishing step, it is usually preferably about 0.1 L / min to 5 L / min, and preferably about 0.2 L / min to 2 L / min. With such a supply speed, the surface of the object to be polished can be efficiently polished, and the haze level of the surface of the object to be polished can be significantly reduced.
  • the holding temperature of the polishing composition in the polishing apparatus is not particularly limited, but from the viewpoints of stability of polishing rate and reduction of haze level, the temperature is usually preferably about 15 ° C. or higher and 40 ° C. or lower, and 18 ° C. or higher and 25 ° C. The following degree is more preferable.
  • polishing conditions are merely examples, and may be out of the above range, or the settings may be changed as appropriate. Such conditions can be appropriately set by those skilled in the art.
  • SC-1 cleaning is preferably performed as a step of cleaning the object to be polished.
  • SC-1 cleaning is a cleaning method performed using, for example, a mixed solution of ammonia and hydrogen peroxide (for example, 40 ° C. to 80 ° C.). By performing the SC-1 cleaning, the surface of the silicon wafer can be thinly etched to remove particles on the surface of the silicon wafer.
  • polishing compositions of Examples 1 to 4 and Comparative Examples 1 to 5 having a pH of 10.0 were prepared by mixing the following materials in deionized water so as to have the compositions shown in Table 1. (Mixing temperature: about 20 ° C., mixing time: about 5 minutes). The pH of the polishing composition (liquid temperature: 20 ° C.) was confirmed with a pH meter (trade name: LAQUA (registered trademark) manufactured by Horiba, Ltd.). At this time, standard buffer solution (phthalate pH buffer solution pH: 4.01 (25 ° C.), neutral phosphate pH buffer solution pH: 6.86 (25 ° C.), carbonate pH buffer solution pH: 10. 01 (25 ° C.) was used to calibrate three points, a glass electrode was inserted into the polishing composition, and after 2 minutes had passed, the value after stabilization was measured.
  • Abrasive grains (colloidal silica, average primary particle size: 24 nm, average secondary particle size: 46 nm) ⁇ Water-soluble polymer (hydroxyethylcellulose (HEC), weight average molecular weight: 250,000) ⁇ Basic compound (ammonia water (29% by mass)) Surfactant Table 1 summarizes the characteristics of each polishing composition.
  • Abrasive grains colloidal silica, average primary particle size: 24 nm, average secondary particle size: 46 nm
  • Basic compound ammonia water (29% by mass)
  • Surfactant Table 2 summarizes the characteristics of each polishing composition.
  • the materials used are as follows.
  • Abrasive grains (colloidal silica, average primary particle size: 24 nm, average secondary particle size: 46 nm) ⁇ Water-soluble polymer (hydroxyethylcellulose (HEC), weight average molecular weight: 250,000) ⁇ Water-soluble polymer (polyvinylpyrrolidone (PVP), weight average molecular weight: 50,000) ⁇ Basic compound (ammonia water (29% by mass)) -Surfactant Table 3 summarizes the characteristics of each polishing composition.
  • HEC hydroxyethylcellulose
  • PVP polyvinylpyrrolidone
  • Basic compound ammonia water (29% by mass)
  • Example 7 and Comparative Example 9 Except having changed the kind and addition amount of the material which were added so that it might become the composition shown in Table 4, it carried out similarly to the said Example 1, and prepared the polishing composition of Example 7 and the comparative example 9, respectively. .
  • the materials used are as follows.
  • Abrasive grains (colloidal silica, average primary particle size: 24 nm, average secondary particle size: 46 nm)
  • Water-soluble polymer Random copolymer (hydrophobic modified PVA) having a vinyl alcohol unit and an n-propyl vinyl ether unit at a molar ratio of 85:15, weight average molecular weight: 16,000)
  • Basic compound ammonia water (29% by mass)
  • Table 4 The characteristics of each polishing composition are summarized in Table 4.
  • the weight average molecular weight of the water-soluble polymer was measured using GPC (gel permeation chromatography) under the following measurement conditions.
  • ⁇ GPC measurement conditions Column: TSKgel GMPWxl ⁇ 2 + G2500PWxl ( ⁇ 7.8 mm ⁇ 300 mm ⁇ 3) (manufactured by Tosoh Corporation) Eluent: 200 mM sodium nitrate aqueous solution Sample concentration: 0.05% by mass Flow rate: 1.0 mL / min Injection volume: 200 ⁇ L Standard substance: Polyethylene oxide Column temperature: 40 ° C Detector: differential refractometer (RI).
  • the EO average added mole number of the surfactant was measured using GPC under the following measurement conditions.
  • the average primary particle diameter of the abrasive grains is a value measured using a surface area measuring device (trade name: Flow Sorb II 2300, manufactured by Micromeritex Co., Ltd.).
  • the average secondary particle size of the abrasive grains is a value measured using a dynamic light scattering particle size analyzer (trade name: Nanotrac (registered trademark) UPA-UT151 manufactured by Nikkiso Co., Ltd.) The same).
  • Polishing machine Single wafer polishing machine PNX-322 (Okamoto Machine Tool Manufacturing Co., Ltd.)
  • Polishing pad POLYPAS (registered trademark) FP55 (nonwoven fabric type, thickness of about 2 mm, density of about 0.3 g / cm 3 , compression rate of about 7%, compression elastic modulus of about 90%, hardness of about 50 °, manufactured by Fujibo Ehime Co., Ltd. )
  • Polishing load 15 kPa Platen (plate) rotation speed: 30rpm Head (carrier) rotation speed: 30 rpm Supply rate of polishing composition: 0.5 L / min Polishing time: 3 min Surface plate cooling water temperature: 20 ° C Holding temperature of polishing composition: 20 ° C.
  • Polishing machine Single wafer polishing machine PNX-322 (Okamoto Machine Tool Manufacturing Co., Ltd.)
  • Polishing pad POLYPAS (registered trademark) 27NX (suede type, thickness of about 1.5 mm, density of about 0.4 g / cm 3 , compression rate of about 20%, compression modulus of about 90%, hardness of about 40 °, average pore diameter About 45 ⁇ m, about 25% open area, manufactured by Fujibo Atago Co., Ltd.)
  • Polishing load 15 kPa Platen (plate) rotation speed: 30rpm Head (carrier) rotation speed: 30 rpm Supply rate of polishing composition: 0.4 L / min Polishing time: 4 min Surface plate cooling water temperature: 20 ° C Holding temperature of polishing composition: 20 ° C.
  • the polishing composition according to the present invention can reduce haze and is excellent in the polishing rate as compared with the polishing composition of the comparative example.
  • the polishing compositions in Comparative Examples 2 to 4 contain an anionic surfactant having no oxyalkylene units or an average added mole number of 3 or less, but these have a low effect of reducing haze. I understood that.
  • fills the requirements of this invention the polishing composition of the comparative example 1 which does not contain water-soluble polymer was very low in the effect of reducing haze.
  • the surfactant used in Comparative Examples 5 to 9 corresponds to the anionic surfactant used in Example 2 having substantially the same chemical structure as the nonionic part, but the effect of reducing the polishing rate and haze. It was inferior to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

本発明は、砥粒と、水溶性高分子と、アニオン性界面活性剤と、塩基性化合物と、水と、を含み、前記アニオン性界面活性剤がオキシアルキレン単位を有し、前記アニオン性界面活性剤の前記オキシアルキレン単位の平均付加モル数が3を超えて25以下である、研磨用組成物に関する。本発明によれば、研磨対象物のヘイズを低減することができると共に、研磨速度にも優れる研磨用組成物を提供しうる。

Description

研磨用組成物およびこれを用いた研磨方法
 本発明は、研磨用組成物およびこれを用いた研磨方法に関する。
 シリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン、ステンレス鋼等の金属もしくは半導体、またはこれらの合金;炭化ケイ素、窒化ガリウム、ヒ化ガリウム等の化合物半導体ウェハ材料等は、平坦化などの各種要求により研磨がなされ、各種分野で応用されている。
 中でも、集積回路等の半導体素子を作るために、高平坦でキズや不純物の無い高品質な鏡面を持つミラーウェハを作るため、単結晶シリコン基板(シリコンウェハ)を研磨する技術については様々な研究がなされている。
 研磨では、ウェハ表面を高精度な鏡面に仕上げるため、砥粒(例えば、コロイダルシリカなどのコロイド状の粒子)を含有する研磨用組成物が用いられる。例えば、特開2005-268665号公報(米国特許出願公開第2005/205837号明細書に相当)では、コロイダルシリカ等の二酸化ケイ素と、アルカリ化合物と、スルホン酸系界面活性剤等のアニオン性界面活性剤とを含む研磨用組成物が提案されている。そして、上記文献には、上記研磨用組成物により、研磨後のシリコンウェハの表面粗さが低減されるだけでなく、研磨速度の向上も可能であることが示されている。
 ところで、研磨後の鏡面に仕上げられたシリコンウェハ表面に強い光を照射すると、シリコンウェハ表面の非常に微細な荒れに起因する乱反射により、曇りが見られることがある。この曇りはヘイズと呼ばれ、ヘイズはシリコンウェハ表面の粗さの尺度として用いられる。シリコンウェハ表面にヘイズがあると、ヘイズにより生じる乱反射光がノイズとなって表面欠陥検査装置による欠陥検出の妨げになることがある。そのため、検出しようとする欠陥のサイズ、つまり管理しようとする欠陥のサイズが小さくなるにつれて、ヘイズレベルの改善の必要性が高まっている。
 かような要請に対し、例えば、国際公開第2012/039390号(米国特許出願公開第2013/183826号明細書に相当)では、シリコンウェハ表面のヘイズをより低減するため、水と、塩基性化合物と、ポリオキシエチレン付加物からなるノニオン性界面活性剤とを含む研磨用組成物が提案されている。
 特開2005-268665号公報(米国特許出願公開第2005/205837号明細書に相当)に開示された研磨用組成物によれば、シリコンウェハの表面粗さを小さくすることができ、さらに、研磨速度を向上させることができる。また、国際公開第2012/039390号(米国特許出願公開第2013/183826号明細書に相当)に開示された研磨用組成物によれば、特定のノニオン性界面活性剤を含有することでシリコンウェハ表面のヘイズを小さくすることができる。しかしながら、シリコンウェハの表面粗さについて、要求される品質が高くなってきていることに伴い、上述したシリコンウェハ表面のヘイズをさらに低減することができる技術が求められている。また、製造効率の観点から、研磨速度においても優れる研磨用組成物が求められている。
 そこで本発明は、上記課題に鑑みてなされたものであり、研磨対象物のヘイズを低減することができると共に、研磨速度にも優れる研磨用組成物を提供することを目的とする。また、本発明は、かような研磨用組成物を用いた研磨方法の提供もまた目的とする。
 上記課題は、砥粒と、水溶性高分子と、アニオン性界面活性剤と、塩基性化合物と、水と、を含み、前記アニオン性界面活性剤がオキシアルキレン単位を有し、前記アニオン性界面活性剤の前記オキシアルキレン単位の平均付加モル数が3を超えて25以下である、研磨用組成物によって解決される。
 以下、本発明の実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。また、特記しない限り、操作および物性等の測定は室温(20℃以上25℃以下の範囲)/相対湿度40~50%RHの条件で測定する。
 以下、本発明の研磨用組成物につき、詳細を説明する。
 〔研磨用組成物〕
 本発明の一形態は、砥粒と、水溶性高分子と、アニオン性界面活性剤と、塩基性化合物と、水と、を含み、前記アニオン性界面活性剤がオキシアルキレン単位を有し、前記アニオン性界面活性剤の前記オキシアルキレン単位の平均付加モル数が3を超えて25以下である、研磨用組成物である。本発明の一形態に係る研磨用組成物によれば、研磨対象物のヘイズを低減することができると共に、研磨速度にも優れる研磨用組成物が提供される。
 本発明者らは、表面粗さのさらなる低減と研磨速度の向上という観点から鋭意検討を行った。その結果、オキシアルキレン単位の平均付加モル数が特定の範囲内にあるアニオン性界面活性剤と、水溶性高分子とを必須に含むことにより、研磨対象物の表面粗さ(ヘイズ)のさらなる低減と良好な研磨速度との両立が図られることを見出した。
 本発明の研磨用組成物により上記効果が得られる作用機序は不明であるが、以下のように考えられる。すなわち、本発明に係る研磨用組成物は、水溶性高分子と共に、オキシアルキレン単位の平均付加モル数が特定の範囲内であるアニオン性界面活性剤を含むことにより、水溶性高分子およびアニオン性界面活性剤が研磨対象物に適度に作用する結果、研磨対象物の表面粗さの低減と良好な研磨速度との両立が達成されると考えられる。
 より詳細には、アニオン性界面活性剤のオキシアルキレン単位の平均付加モル数が3を超える場合、アニオン性界面活性剤が単結晶シリコン基板(以下、「シリコンウェハ」とも称することがある)等の研磨対象物表面を保護するため、ヘイズが低減されやすくなるが、上記平均付加モル数が3以下である場合、アニオン性界面活性剤の吸着による表面保護が不十分となり、ヘイズレベルが悪化する。
 また、アニオン性界面活性剤のオキシアルキレン単位の平均付加モル数が25を超える場合、シリコンウェハ等の研磨対象物の表面保護が過剰になってしまうことから、研磨速度が低下してしまうと推測される。よって、本発明のように、オキシアルキレン単位の平均付加モル数が25以下である場合、上記のような過剰な表面保護が抑制され、良好な研磨速度を維持することができる。
 上記アニオン性界面活性剤に加え、本発明に係る研磨用組成物は、水溶性高分子を含む。これにより、研磨対象物の表面に水溶性高分子膜が形成されるため、ヘイズが低減されると考えられる。
 なお、上記メカニズムは推測に基づくものであり、その正誤が本願の技術的範囲に影響を及ぼすものではない。
 本発明に係る研磨用組成物は、特定のアニオン性界面活性剤と、水溶性高分子と、砥粒と、塩基性化合物と、水と、を含む。以下、各成分について詳細に説明する。
 ≪アニオン性界面活性剤≫
 本発明の一形態に係る研磨用組成物は、特定のアニオン性界面活性剤を必須に含む。ここで、「アニオン性界面活性剤」とは、水中で解離して陰イオンとなる官能基および疎水性基を有し、界面活性作用を有する化合物をいう。本発明に係る研磨用組成物に含まれるアニオン性界面活性剤は、水溶性高分子と共にヘイズを低減する働きを有する。さらに、アニオン性界面活性剤の添加により、研磨後の研磨表面に親水性を付与して研磨後の洗浄効率を良くし、汚れの付着等を防いだり、研磨用組成物の分散安定性を向上させたりする効果が期待できる。
 本発明に係る研磨用組成物に含まれるアニオン性界面活性剤は、オキシアルキレン単位を有し、その平均付加モル数は、3を超えて25以下である。平均付加モル数が当該範囲内にあることの効果は上述の通りであるが、ヘイズの低減と研磨速度の向上とを両立させるという観点からは、オキシアルキレン単位の平均付加モル数の下限は、4以上であると好ましく、4.5以上であるとより好ましい。また、同様の観点から、オキシアルキレン単位の平均付加モル数の上限は、20以下であると好ましく、18以下であるとより好ましい。
 以上より、ヘイズの低減と研磨速度の向上とを両立させるという観点からは、オキシアルキレン単位の平均付加モル数は、4以上20以下であると好ましく、4.5以上18以下であるとより好ましい。なお、「平均付加モル数」とは、アニオン性界面活性剤1モル中において付加しているオキシアルキレン基のモル数の平均値を意味する。2以上の異なるオキシアルキレン単位がアニオン性界面活性剤中に含まれる場合は、その平均値を採用するものとする。また、上記オキシアルキレン単位の平均付加モル数は、H-NMR、ガスクロマトグラフィー(GC)、ゲルパーミエーションクロマトグラフィー(GPC)、ゲル濾過クロマトグラフィー(GFC)、滴定法等により適宜測定することができるが、本明細書中、平均付加モル数は、実施例に記載の方法により測定した値を採用する。
 また、アニオン界面活性剤中のオキシアルキレン単位は、化学式「-AO-」によって表され、「A」は、炭素原子数2以上18以下のアルキレン基であると好ましい。すなわち、オキシアルキレン単位は、炭素原子数2以上18以下のオキシアルキレン基であると好ましい。ここで、アルキレン基は、アリール基で置換されていてもよい。かようなオキシアルキレン基の例としては、エチレンオキシド基、プロピレンオキシド基、1,2-ブチレンオキシド基、2,3-ブチレンオキシド基、およびスチレンオキシド基等が挙げられる。なかでも、入手の容易性や、研磨用組成物中においてアニオン性界面活性剤が分散しやすくなり、より研磨表面のヘイズを低減しやすいという観点からは、オキシアルキレン単位は、炭素原子数2以上10以下のオキシアルキレン基であるとより好ましく、炭素原子数2以上4以下のオキシアルキレン基であると特に好ましい。さらに、これらの中でも、オキシアルキレン単位は、エチレンオキシド基およびプロピレンオキシド基であると好ましく、エチレンオキシド基であるとより好ましい。
 場合によっては、アニオン性界面活性剤中において、2以上の異なるオキシアルキレン単位が存在していてもよい。ただし、ポリオキシアルキレン鎖の製造の容易性や構造の制御のし易さを考慮すると、オキシアルキレン単位は、同一の繰り返しであることが好ましい。
 オキシアルキレン単位の平均付加モル数が上記範囲にある限り、アニオン性界面活性剤の種類は特に限定されないが、アニオン性界面活性剤は、硫酸エステル(R-O-SO )およびその塩(R-O-SO )、スルホン酸(R-SO )およびその塩(R-SO )、カルボン酸(R-COO)およびその塩(R-COO)、ならびにリン酸エステル(R-O-PO(O)およびその塩(R-O-PO(O)(O)またはR-O-PO(O)からなる群から選択されると好ましい。なお、上記において、「R」は、上述のオキシアルキレン単位(-AO-または-OA-:ただし、平均付加モル数が3を超えて25以下である)を含む有機基を表す。また、上記において、「M」は、金属カチオンやアンモニウムカチオン等の種々のカチオンを表す。ヘイズを低減しやすいという観点から、アニオン性界面活性剤は、硫酸エステルおよびその塩、カルボン酸およびその塩、ならびにリン酸エステルおよびその塩からなる群から選択されると好ましく、硫酸エステルおよびその塩、ならびにカルボン酸およびその塩であるとさらにより好ましい。ここで、ヘイズをより効果的に低減できるという観点から、カルボン酸およびその塩は、酢酸(R-CHCOO)およびその塩(R-CHCOO)であると好ましい。よって、ヘイズ低減効果をより向上するという観点から、アニオン性界面活性剤は、硫酸エステルおよびその塩、ならびに酢酸およびその塩であると特に好ましい。
 上記「M」によって分類した場合において、上記塩の種類としては、ナトリウム、カリウム等のアルカリ金属塩、カルシウム、マグネシウム等の2族元素の塩、アンモニウム塩、トリエタノールアミン等のアルカノールアミン塩等が挙げられる。
 また、アニオン性界面活性剤の一分子において、上記のアニオン部分(すなわち、「-O-SO 」部分、「-SO 」部分、「-COO」部分、「-O-PO(OH)O」部分および「-O-PO(O」部分)は、二種以上が含まれていてもよい。
 本発明においてアニオン性界面活性剤として用いられる硫酸エステルおよびその塩としては、特に制限されないが、例えば、ポリオキシエチレンラウリルエーテル硫酸、ポリオキシエチレンミリスチルエーテル硫酸、ポリオキシエチレンパルミチルエーテル硫酸;ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸アンモニウム、ポリオキシエチレンラウリルエーテル硫酸トリエタノールアミン、ポリオキシエチレンミリスチルエーテル硫酸ナトリウム、ポリオキシエチレンミリスチルエーテル硫酸アンモニウム、ポリオキシエチレンミリスチルエーテル硫酸トリエタノールアミン、ポリオキシエチレンパルミチルエーテル硫酸ナトリウム、ポリオキシエチレンパルミチルエーテル硫酸アミン、ポリオキシエチレンパルミチルエーテル硫酸トリエタノールアミン等が挙げられる。これらの中でも、ポリオキシエチレンラウリルエーテル硫酸ナトリウムおよびポリオキシエチレンラウリルエーテル硫酸アンモニウムが好ましい。
 本発明においてアニオン性界面活性剤として用いられるスルホン酸およびその塩としては、特に制限されないが、例えば、ポリオキシエチレンオクチルスルホン酸、ポリオキシエチレンラウリルスルホン酸、ポリオキシエチレンパルミチルスルホン酸、ポリオキシエチレンオクチルベンゼンスルホン酸、ポリオキシエチレンラウリルベンゼンスルホン酸;ポリオキシエチレンオクチルスルホン酸ナトリウム、ポリオキシエチレンラウリルスルホン酸ナトリウム、ポリオキシエチレンパルミチルスルホン酸ナトリウム等が挙げられる。これらの中でも、ポリオキシエチレンオクチルスルホン酸およびポリオキシエチレンオクチルスルホン酸ナトリウムが好ましい。
 本発明においてアニオン性界面活性剤として用いられるカルボン酸およびその塩(酢酸およびその塩)としては、特に制限されないが、例えば、ポリオキシエチレンラウリルエーテル酢酸、ポリオキシエチレントリデシルエーテル酢酸、ポリオキシエチレンオクチルエーテル酢酸;ポリオキシエチレンラウリルエーテル酢酸ナトリウム、ポリオキシエチレンラウリルエーテル酢酸アンモニウム、ポリオキシエチレントリデシルエーテル酢酸ナトリウム、ポリオキシエチレントリデシルエーテル酢酸アンモニウム、ポリオキシエチレンオクチルエーテル酢酸ナトリウム、ポリオキシエチレンオクチルエーテル酢酸アンモニウム等が挙げられる。これらの中でも、ポリオキシエチレンラウリルエーテル酢酸ナトリウムおよびポリオキシエチレンラウリルエーテル酢酸アンモニウムが好ましい。
 本発明においてアニオン性界面活性剤として用いられるリン酸エステルおよびその塩としては、特に制限されないが、例えば、ポリオキシエチレンラウリルエーテルリン酸、ポリオキシエチレンアルキル(12-15)エーテルリン酸;ポリオキシエチレンラウリルエーテルリン酸ナトリウム、ポリオキシエチレンオレイルエーテルリン酸ナトリウム、ポリオキシエチレンパルミチルエーテルリン酸ナトリウム、ポリオキシエチレンアルキル(12-15)エーテルリン酸カリウム等が挙げられる。これらの中でも、ポリオキシエチレンアルキル(12-15)エーテルリン酸およびポリオキシエチレンラウリルエーテルリン酸ナトリウムが好ましい。
 また、一分子中に上記のアニオン部分を二種以上含むアニオン性界面活性剤としては、ポリオキシエチレンラウリルスルホコハク酸二ナトリウム塩、スルホコハク酸ポリオキシエチレンラウロイルエタノールアミド二ナトリウム塩等が挙げられる。
 本発明においてアニオン性界面活性剤におけるω位末端疎水性基の構造は特に制限されないが、例えば、置換または非置換のC2以上C30以下のアルキル基、置換もしくは非置換のC3以上C20以下のシクロアルキル基、置換もしくは非置換のC1以上C30以下のアルキルエステル基、置換もしくは非置換のC6以上C20以下のアリール基、C1以上30以下のアルキル基を有するモノもしくはジアルキルアミド基、C1以上C30以下のアルキル基を有するモノもしくはジアルキルアミノ基等で置換されていてもよく、またソルビタン構造を有していてもよい。
 上記アルキル基としては、例えば、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、1,2-ジメチルプロピル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、n-デシル基、n-ドデシル基などが挙げられる。
 上記シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基などが挙げられる。
 上記アルキルエステル基としては、例えば、アルキルエステル基としては、メチルエステル基、エチルエステル基、n-プロピルエステル基、i-プロピルエステル基、n-ブチルエステル基、2-メチルプロピルエステル基などが挙げられる。
 上記アリール基としては、例えば、フェニル基、o-,m-もしくはp-トリル基などが挙げられる。
 本明細書において、「置換または(もしくは)非置換の」との記載は、当該置換基中の水素原子が、フッ素原子;塩素原子;臭素原子;シアノ基;ニトロ基;ヒドロキシ基;C1以上C10以下の直鎖状もしくは分枝状のアルキル基;C1以上C10以下の直鎖状もしくは分岐状のアルコキシ基;C6以上C30以下のアリール基;C2以上C30以下のヘテロアリール基;C5以上C20以下のシクロアルキル基;などの置換基で置換されているか、または非置換であることを意味する。
 上記アニオン性界面活性剤は、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 上記において例示したアニオン性界面活性剤について、エチレンオキシド単位の平均付加モル数は、3を超えて25以下である。ヘイズの低減と研磨速度の向上とを両立させるという観点からは、エチレンオキシド単位の平均付加モル数の下限は、4以上であると好ましく、4.5以上であるとより好ましい。また、同様の観点から、エチレンオキシド単位の平均付加モル数の上限は、20以下であると好ましく、18以下であるとより好ましい。
 以上より、さらに、ヘイズの低減と研磨速度の向上とを両立させるという観点からは、エチレンオキシド基の平均付加モル数は、4以上20以下であると好ましく、4.5以上18以下であるとより好ましい。
 アニオン性界面活性剤の重量平均分子量は、研磨速度の向上とヘイズを低減させるという観点から、ポリエチレンオキサイド換算で5,000以下であることが好ましく、より好ましくは4,000以下、さらに好ましくは3,000以下である。また、アニオン性界面活性剤の重量平均分子量は200以上であることが好ましく、300以上であることがより好ましく、400以上であることがさらに好ましい。なお、アニオン性界面活性剤の重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)により測定することができる。
 ここで、好ましい研磨対象物である単結晶シリコン基板(シリコンウェハ)の表面は、一般に、ラッピング工程(粗研磨工程)とポリシング工程(精密研磨工程)とを経て高品質な鏡面に仕上げられる。そして、上記ポリシング工程は、通常、予備研磨工程(予備ポリシング工程)と仕上げ研磨工程(ファイナルポリシング工程)とを含む複数の研磨工程により構成されている。例えば、シリコンウェハを大まかに研磨する段階(例えば、予備研磨工程)では加工力(研磨力)の高い研磨用組成物が使用され、より繊細に研磨する段階(例えば、仕上げ研磨工程)では研磨力の低い研磨用組成物が使用される傾向にある。このように、使用される研磨用組成物は、研磨工程ごとに求められる研磨特性が異なるため、研磨用組成物に含まれるアニオン性界面活性剤の含有量もまた、その研磨用組成物が使用される研磨工程の段階に依存して、異なったものが採用されうる。
 予備研磨工程に用いられる研磨用組成物中のアニオン性界面活性剤の含有量(二種以上用いる場合はその合計量)は、特に制限されないが、ヘイズの低減効果を向上させるという観点から、研磨用組成物の総質量に対して、1×10-7質量%以上であることが好ましく、1×10-6質量%以上であることがより好ましく、5×10-5質量%以上であることが特に好ましい。一方、研磨速度をより向上させる観点から、予備研磨工程に用いられる研磨用組成物の総質量に対して、0.5質量%以下であることが好ましく、0.05質量%以下であることがより好ましく、0.005質量%以下であることが特に好ましい。
 仕上げ研磨工程に用いられる研磨用組成物中のアニオン性界面活性剤の含有量(二種以上用いる場合はその合計量)は、特に制限されないが、ヘイズの低減効果を向上させるという観点から、研磨用組成物の総質量に対して、1×10-6質量%以上であることが好ましく、5×10-5質量%以上であることがより好ましく、1×10-4質量%以上であることが特に好ましい。一方、研磨速度をより向上させる観点から、仕上げ研磨工程に用いられる研磨用組成物の総質量に対して、1質量%以下であることが好ましく、0.1質量%以下であることがより好ましく、0.01質量%以下であることが特に好ましい。
 ≪水溶性高分子≫
 本発明の一形態に係る研磨用組成物は、水溶性高分子を必須に含む。水溶性高分子は、研磨対象物の表面に水溶性高分子膜を形成するため、ヘイズを低減することができる。また、水溶性高分子は、上記アニオン性界面活性剤と共に、研磨対象物のヘイズを低減する働きを有する。本明細書中、「水溶性高分子」とは、水(25℃)に対する溶解度が0.01g/100mL以上である高分子をいう。また、「高分子」とは、重量平均分子量が5,000以上のものをいう。重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定することができ、より詳細には、実施例に記載の方法により測定される値を採用する。
 水溶性高分子としては、分子中に、カチオン基、アニオン基およびノニオン基から選ばれる少なくとも一種の官能基を有するものを使用することができる。具体的な水溶性高分子としては、分子中に水酸基、カルボキシル基、アシルオキシ基、スルホ基、第四級アンモニウム構造、複素環構造、ビニル構造、ポリオキシアルキレン構造などを含むものが挙げられる。凝集物の低減や洗浄性向上などの観点から、ノニオン性の水溶性高分子を好ましく採用し得る。好適例として、オキシアルキレン単位を含むポリマー、窒素原子を含有するポリマー(含窒素水溶性高分子)、ポリビニルアルコール、ビニルアルコールに由来する構成単位を含むポリマー、セルロース誘導体、デンプン誘導体などが例示される。
 より好ましくは、オキシアルキレン単位を含むポリマー、窒素原子を含有するポリマー、ポリビニルアルコール、ビニルアルコールに由来する構成単位を含むポリマーおよびセルロース誘導体から選ばれる少なくとも1種である。さらに好ましくは、窒素原子を含有するポリマー、ビニルアルコールに由来する構成単位を含むポリマーおよびセルロース誘導体である。
 オキシアルキレン単位を含むポリマーとしては、ポリエチレンオキサイド(PEO)、エチレンオキサイド(EO)とプロピレンオキサイド(PO)とのブロック共重合体、EOとPOとのランダム共重合体などが挙げられる。EOとPOとのブロック共重合体は、ポリエチレンオキサイド(PEO)ブロックとポリプロピレンオキサイド(PPO)ブロックとを含むジブロック体、トリブロック体などであり得る。上記トリブロック体には、PEO-PPO-PEO型トリブロック体およびPPO-PEO-PPO型トリブロック体が含まれる。通常は、PEO-PPO-PEO型トリブロック体がより好ましい。EOとPOとのブロック共重合体またはランダム共重合体において、該共重合体を構成するEOとPOとのモル比(EO/PO)は、水への溶解性や洗浄性などの観点から、1より大きいことが好ましく、2以上であることがより好ましく、3以上(例えば5以上)であることが特に好ましい。
 窒素原子を含有するポリマーとしては、単量体単位中に窒素原子を1個以上有するもの、または、側鎖の一部に窒素原子を1個以上有するものであれば特に限定されず、例えばアミン、イミン、アミド、イミド、カルボジイミド、ヒドラジド、ウレタン化合物などが用いれられ、鎖状、環状、1級、2級、3級のいずれでもよい。また、窒素原子をカチオンとして形成される塩の構造を有する含窒素水溶性高分子であってもよい。また、主鎖に窒素原子を含有するポリマーおよび側鎖官能基(ペンダント基)に窒素原子を有するポリマーのいずれも使用可能である。塩の構造を有する含窒素水溶性高分子としては、例えば、第四級アンモニウム塩が挙げられる。含窒素水溶性高分子としては、例えば、水溶性ナイロンなどの重縮合系ポリアミド、水溶性ポリエステルなどの重縮合系ポリエステル、重付加系ポリアミン、重付加系ポリイミン、重付加系(メタ)アクリルアミド、アルキル主鎖の少なくとも一部に窒素原子を有する水溶性高分子、側鎖の少なくとも一部に窒素原子を有する水溶性高分子などが挙げられる。なお、側鎖に窒素原子を有する水溶性高分子は、側鎖に第四級窒素を有する水溶性高分子も含む。重付加系の含窒素水溶性高分子の具体例としては、ポリビニルイミダゾール、ポリビニルカルバゾール、ポリビニルピロリドン、ポリN-ビニルホルムアミド、ポリビニルカプロラクタム、ポリビニルピペリジンなどが挙げられる。また、含窒素水溶性高分子は、メタクリル酸構造、ビニルスルホン酸構造、オキシアルキレン構造などの親水性を有する構造を部分的に有するものであってもよい。また、これらのジブロック型やトリブロック型、ランダム型、交互型といった複数種の構造を有する重合体であってもよい。含窒素水溶性高分子は、分子中の一部または全部にカチオンを持つもの、アニオンを持つもの、アニオンとカチオンとの両方を持つもの、ノニオンを持つもののいずれであってもよい。主鎖に窒素原子を含有するポリマーの例としては、N-アシルアルキレンイミン型モノマーの単独重合体および共重合体が挙げられる。N-アシルアルキレンイミン型モノマーの具体例としては、N-アセチルエチレンイミン、N-プロピオニルエチレンイミン等が挙げられる。ペンダント基に窒素原子を有するポリマーとしては、例えばN-(メタ)アクリロイル型のモノマーの単独重合体および共重合体、N-アルコキシアルキル(メタ)アクリルアミド型のモノマーの単独重合体および共重合体、N-ヒドロキシアルキル(メタ)アクリルアミド型のモノマーの単独重合体および共重合体、N-アルキル(メタ)アクリルアミド型のモノマーの単独重合体および共重合体、N-ジアルキル(メタ)アクリルアミド型のモノマーの単独重合体および共重合体、N-ビニル型のモノマーの単独重合体および共重合体等が挙げられる。ここで「(メタ)アクリロイル」とは、アクリルおよびメタクリルを包括的に指す意味である。N-(メタ)アクリロイル型モノマーの具体例としては、N-(メタ)アクリロイルモルホリン、N-(メタ)アクリロイルピペリジン等が挙げられる。N-アルコキシアルキル(メタ)アクリルアミド型モノマーの具体例としては、N-メトキシメチル(メタ)アクリルアミド、N-エトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド等が挙げられる。N-ヒドロキシアルキル(メタ)アクリルアミド型モノマーの具体例としては、N-(2-ヒドロキシエチル)(メタ)アクリルアミド、N-(1,1-ジメチル-2-ヒドロキシエチル)(メタ)アクリルアミド等が挙げられる。N-アルキル(メタ)アクリルアミド型モノマーの具体例としては、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド等が挙げられる。N-ジアルキル(メタ)アクリルアミド型モノマーの具体例としては、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジプロピル(メタ)アクリルアミド等が挙げられる。N-ビニル型モノマーの具体例としては、N-ビニルピロリドン等が挙げられる。なお、本明細書中において共重合体とは、特記しない場合、ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体等の各種の共重合体を包括的に指す意味である。
 ポリビニルアルコールは、ポリ酢酸ビニルをけん化することにより得られる。このとき、けん化度は特に限定されない。
 ビニルアルコールに由来する構成単位を含むポリマーとは、一分子中にビニルアルコール単位(-CH-CH(OH)-により表される構造部分;以下「VA単位」ともいう。)および非ビニルアルコール単位(ビニルアルコール以外のモノマーに由来する構成単位、以下「非VA単位」ともいう。)を含む共重合体である。すなわち、一分子のポリマーのうち一部分はVA単位により構成され、他の一部分は非VA単位により構成されてなる共重合体である。非VA単位の例としては、特に制限されず、ビニルピロリドンに由来する構成単位、エチレンに由来する構成単位、アルキルビニルエーテル単位、ポリビニルアルコールとアルデヒドとをアセタール化して得られた構成単位等が挙げられる。
 これらの中でも、非VA単位としては、炭素原子数1以上10以下のアルキル基を有するビニルエーテル単位(アルキルビニルエーテル単位)、炭素原子数1以上7以下のモノカルボン酸に由来するビニルエステル単位(モノカルボン酸ビニルエステル単位)、および、ポリビニルアルコールと炭素原子数1以上7以下のアルキル基を有するアルデヒドとをアセタール化して得られた構成単位からなる群から選択されると好ましい。
 炭素原子数1以下10以上のアルキル基を有するビニルエーテル単位の例としては、プロピルビニルエーテル単位、ブチルビニルエーテル単位、2-エチルヘキシルビニルエーテル単位等が挙げられる。炭素原子数1以上7以下のモノカルボン酸に由来するビニルエステル単位の例としては、プロパン酸ビニル単位、ブタン酸ビニル単位、ペンタン酸ビニル単位、ヘキサン酸ビニル単位等が挙げられる。
 ビニルアルコールに由来する構成単位を含むポリマーは、一種類の非VA単位のみを含んでもよく、二種類以上の非VA単位を含んでもよい。なお、VA単位と非VA単位との含有比率(モル比)は特に制限されず、例えば、VA単位:非VA単位(モル比)は、99:1~1:99であると好ましく、95:5~50:50であるとより好ましく、95:5~80:20であると特に好ましい。
 ビニルアルコールに由来する構成単位を含むポリマーの例として、例えば、ビニルアルコール単位およびビニルピロリドン単位を有する共重合体、ビニルアルコール単位およびエチレン単位を有する共重合体、ビニルアルコール単位およびメチルビニルエーテル単位を有する共重合体、ビニルアルコール単位およびn-プロピルビニルエーテル単位を有する共重合体、ビニルアルコール単位およびi-プロピルビニルエーテル単位を有する共重合体、ビニルアルコール単位およびn-ブチルビニルエーテル単位を有する共重合体、ビニルアルコール単位およびi-ブチルビニルエーテル単位を有する共重合体、ビニルアルコール単位およびt-ブチルビニルエーテル単位を有する共重合体、ビニルアルコール単位および2-エチルヘキシルビニルエーテル単位を有する共重合体、ポリビニルアルコール単位の一部をn-ブチルアルデヒドでアセタール化したポリマー等が挙げられる。
 上記ポリビニルアルコールおよびビニルアルコールに由来する構成単位を含むポリマー(VA単位および非VA単位を含む共重合体)は、その側鎖に親水性の官能基を有する変性ポリビニルアルコールであってもよい。かような官能基としては、例えば、オキシアルキレン基、カルボキシ基、スルホ基、アミノ基、水酸基、アミド基、イミド基、ニトリル基、エーテル基、エステル基、およびこれらの塩が挙げられる。
 かような変性ポリビニルアルコールとして、例えば、第四級アンモニウム構造等のカチオン性基を有するカチオン化ポリビニルアルコールを使用してもよい。上記カチオン化ポリビニルアルコールとしては、例えば、ジアリルジアルキルアンモニウム塩、N-(メタ)アクリロイルアミノアルキル-N,N,N-トリアルキルアンモニウム塩等のカチオン性基を有するモノマーに由来するものが挙げられる。
 「セルロース誘導体」とは、セルロースの持つ水酸基の一部が他の異なった置換基に置換されたものをいう。セルロース誘導体としては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロースなどなどのセルロース誘導体およびプルランが挙げられる。
 デンプン誘導体としては、アルファ化デンプン、プルラン、シクロデキストリンなどが挙げられる。なかでもプルランが好ましい。
 上記水溶性高分子は、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 上記水溶性高分子の中でも、研磨対象物のヘイズをより低減しやすいという観点からは、水溶性高分子は、窒素原子を含有するポリマー、セルロース誘導体およびビニルアルコールに由来する構成単位を含むポリマーからなる群から選択される少なくとも一種を含んでいると好ましい。水溶性高分子として上記化合物を用いると、他の水溶性高分子を用いた場合と比較して、研磨対象物(特にシリコンウェハ)表面においてより水溶性高分子膜が形成されやすいため、ヘイズの低減効果がより向上する。かような観点から、水溶性高分子は、セルロース誘導体を含んでいると特に好ましい。さらに、セルロース誘導体の中でも、研磨対象物表面において水溶性高分子膜が形成されやすく、ヘイズ低減効果が高いという観点から、ヒドロキシエチルセルロースが特に好ましい。
 水溶性高分子の重量平均分子量は、研磨速度の向上とヘイズを低減させるという観点から、ポリエチレンオキサイド換算で2,000,000以下であることが好ましく、より好ましくは1,000,000以下、さらに好ましくは500,000以下、最も好ましくは300,000以下である。また、研磨用組成物中の水溶性高分子の重量平均分子量は10,000以上であることが好ましく、20,000以上であることがより好ましく、30,000以上であることがさらに好ましい。また、重量平均分子量が上記範囲内であると、研磨用組成物の分散安定性や、研磨対象物を単結晶シリコン基板(シリコンウェハ)としたとき、シリコンウェハの洗浄性の観点からも好ましい。なお、水溶性高分子の重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)により測定することができ、より詳細には、実施例に記載の方法により測定される値を採用する。
 研磨用組成物に含まれる水溶性高分子の含有量は、その研磨用組成物が使用される研磨工程の段階に依存して、それぞれ異なったものが採用されうる。
 水溶性高分子の含有量の増加によって、研磨対象物表面での水溶性高分子膜形成が促進され、ヘイズを低減することができる。一方、水溶性高分子の含有量の減少によって、研磨速度が向上する。
 予備研磨工程に用いられる研磨用組成物中の水溶性高分子の含有量(二種以上用いる場合はその合計量)としては、研磨面の濡れ性を向上させ、また、ヘイズをより低減させる観点から、好ましくは1×10-6質量%以上であり、より好ましくは5×10-5質量%以上であり、さらに好ましくは1×10-4質量%以上である。他方で、研磨速度を向上させる観点から、好ましくは1質量%以下であり、より好ましくは0.1質量%以下であり、さらに好ましくは0.02質量%以下である。
 仕上げ研磨工程に用いられる研磨用組成物中の水溶性高分子の含有量(二種以上用いる場合はその合計量)としては、研磨面の濡れ性を向上させ、また、ヘイズをより低減させる観点から、好ましくは1×10-4質量%以上であり、より好ましくは1×10-3質量%以上であり、さらに好ましくは2×10-3質量%以上であり、さらにより好ましくは3×10-3質量%以上であり、特に好ましくは5×10-3質量%以上である。他方で、研磨速度を向上させる観点から、好ましくは1質量%以下であり、より好ましくは0.1質量%以下であり、さらに好ましくは0.02質量%以下である。
 上記のうち、特に、研磨用組成物中の水溶性高分子として、セルロース誘導体(例えばヒドロキシエチルセルロース)を用いる場合、ポリビニルピロリドンと併用してもよい。
 ≪砥粒≫
 本発明の一形態に係る研磨用組成物は、砥粒を必須に含む。砥粒は、研磨対象物の表面を機械的に研磨する働きをする。
 砥粒の材質や性状は特に制限されず、研磨用組成物の使用目的や使用態様等に応じて適宜選択することができる。砥粒の例としては、無機粒子、有機粒子、および有機無機複合粒子が挙げられる。無機粒子の具体例としては、シリカ粒子、アルミナ粒子、酸化セリウム粒子、酸化クロム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化マグネシウム粒子、二酸化マンガン粒子、酸化亜鉛粒子、ベンガラ粒子等の酸化物粒子;窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子;炭化ケイ素粒子、炭化ホウ素粒子等の炭化物粒子;ダイヤモンド粒子;炭酸カルシウムや炭酸バリウム等の炭酸塩等が挙げられる。有機粒子の具体例としては、ポリメタクリル酸メチル(PMMA)粒子やポリ(メタ)アクリル酸粒子(ここで(メタ)アクリル酸とは、アクリル酸およびメタクリル酸を包括的に指す意味である。)、ポリアクリロニトリル粒子等が挙げられる。砥粒は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 上記砥粒としては、無機粒子が好ましく、なかでも金属または半金属の酸化物からなる粒子が好ましい。特に好ましい砥粒としてシリカ粒子が挙げられる。シリカ粒子としてはコロイダルシリカ、フュームドシリカ、沈降シリカ等が挙げられる。
 シリカ粒子の中でも、コロイダルシリカおよびフュームドシリカが好ましく、コロイダルシリカが特に好ましい。コロイダルシリカまたはフュームドシリカを使用した場合、特にコロイダルシリカを使用した場合には、研磨工程においてシリコンウェハの表面に発生するスクラッチが減少する。
 研磨用組成物に含まれる砥粒の含有量や粒径は、その研磨用組成物が使用される研磨工程の段階に依存して、それぞれ異なったものが採用されうる。
 砥粒の含有量の増加によって、研磨対象物の表面に対する研磨速度が向上する。一方、砥粒の含有量の減少によって、研磨用組成物の分散安定性が向上し、かつ、研磨された面の砥粒の残渣が低減する傾向となる。
 予備研磨工程に用いられる研磨用組成物中における砥粒の含有量は、特に制限されないが、0.001質量%以上であることが好ましく、0.01質量%以上であることがより好ましく、0.1質量%以上であることがさらに好ましく、0.2質量%以上であることが特に好ましい。また、予備研磨工程に用いられる研磨用組成物中における砥粒の含有量は、10質量%以下であることが好ましく、より好ましくは5質量%以下であり、さらに好ましくは1質量%以下であり、最も好ましくは0.8質量%以下である。
 仕上げ研磨工程に用いられる研磨用組成物中における砥粒の含有量は、特に制限されないが、0.001質量%以上であることが好ましく、0.01質量%以上であることがより好ましく、0.05質量%以上であることがさらにより好ましく、0.1質量%以上であることが特に好ましい。また、仕上げ研磨工程に用いられる研磨用組成物中における砥粒の含有量は、10質量%以下であることが好ましく、より好ましくは5質量%以下であり、さらにより好ましくは1質量%以下であり、最も好ましくは0.5質量%以下である。
 また、砥粒の粒径の増大によって、研磨対象物の表面を機械的に研磨しやすくなり、研磨速度が向上する。一方、砥粒の粒径の減少によって、ヘイズが低減しやすくなる。
 予備研磨工程に用いられる砥粒の平均一次粒子径は、特に制限されないが、5nm以上が好ましく、より好ましくは10nm以上であり、さらに好ましくは20nm以上で、さらにより好ましくは30nm以上である。また、予備研磨工程に用いられる砥粒の平均一次粒子径は、100nm以下が好ましく、より好ましくは80nm以下であり、さらに好ましくは60nm以下である。
 仕上げ研磨工程に用いられる研磨用組成物中における砥粒の平均一次粒子径は、特に制限されないが、5nm以上が好ましく、より好ましくは10nm以上であり、さらに好ましくは20nm以上である。また、仕上げ研磨工程に用いられる研磨用組成物中における砥粒の平均一次粒子径は、60nm以下が好ましく、より好ましくは50nm以下であり、さらに好ましくは40nm以下である。
 また、予備研磨工程に用いられる研磨用組成物中における砥粒の平均二次粒子径は、特に制限されないが、10nm以上であることが好ましく、20nm以上であることが好ましく、40nm以上であることがより好ましい。また、予備研磨工程に用いられる研磨用組成物中における砥粒の平均二次粒子径は、250nm以下であることが好ましく、180nm以下であることがより好ましく、150nm以下がさらに好ましい。
 仕上げ研磨工程に用いられる研磨用組成物中における砥粒の平均二次粒子径は、20nm以上であることが好ましく、40nm以上であることがより好ましい。また、仕上げ研磨工程に用いられる研磨用組成物中における砥粒の平均二次粒子径は、100nm以下であることが好ましく、90nm以下であることがより好ましく、80nm以下であることがさらに好ましい。
 なお、砥粒の平均一次粒子径の値は、例えば、BET法により測定される比表面積から算出される。砥粒の比表面積の測定は、例えば、マイクロメリテックス社製の「Flow SorbII 2300」を用いて行うことができる。また、砥粒の平均二次粒子径は、例えば動的光散乱法により測定され、例えば、日機装株式会社製の「ナノトラック(登録商標)UPA-UT151」を用いて測定することができる。
 ≪塩基性化合物≫
 本発明の一形態に係る研磨用組成物は、塩基性化合物を必須に含む。ここで塩基性化合物とは、研磨用組成物に添加されることによって該組成物のpHを上昇させる機能を有する化合物を指す。塩基性化合物は、研磨対象物の面をエッチングにより化学的に研磨する働き、および砥粒の分散安定性を向上させる働きを有する。また、塩基性化合物は、pH調整剤として用いることができる。
 塩基性化合物の具体例としては、第2族元素またはアルカリ金属の水酸化物または塩、第四級アンモニウム化合物、アンモニアまたはその塩、アミンなどが挙げられる。
 第2族元素またはアルカリ金属の水酸化物または塩において、第2族元素としては、特に制限されないが、アルカリ土類金属を好ましく用いることができ、例えば、カルシウムなどが挙げられる。また、アルカリ金属としては、カリウム、ナトリウムなどが挙げられる。塩としては、炭酸塩、炭酸水素塩、硫酸塩、酢酸塩などが挙げられる。第2族元素またはアルカリ金属の水酸化物または塩としては、たとえば、水酸化カルシウム、水酸化カリウム、炭酸カリウム、炭酸水素カリウム、硫酸カリウム、酢酸カリウム、塩化カリウム、水酸化ナトリウム、炭酸水素ナトリウム、および炭酸ナトリウム等が挙げられる。
 第四級アンモニウム化合物としては、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウムなどの水酸化物、塩化物、炭酸塩、炭酸水素塩、硫酸塩、およびリン酸塩などの塩が挙げられる。具体例としては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウムなどの水酸化テトラアルキルアンモニウム;炭酸テトラメチルアンモニウム、炭酸テトラエチルアンモニウム、炭酸テトラブチルアンモニウムなどの炭酸テトラアルキルアンモニウム;塩化テトラメチルアンモニウム、塩化テトラエチルアンモニウム、塩化テトラブチルアンモニウムなどの塩化テトラアルキルアンモニウム等が挙げられる。
 他のアンモニウム塩としては、炭酸アンモニウム、炭酸水素アンモニウムなどが挙げられる。
 アミンの具体例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、N-(β-アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、無水ピペラジン、ピペラジン六水和物、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、グアニジンなどが挙げられる。
 ここで、塩基性化合物は、その期待される機能に応じて好ましい化合物を選択することができる。
 ここで、予備研磨工程に用いられる研磨用組成物中における塩基性化合物としては、研磨速度向上の観点から、水酸化テトラメチルアンモニウムなどの水酸化第四級アンモニウム化合物を用いることが好ましい。また、予備研磨工程に用いられる研磨用組成物中における塩基性化合物としては、研磨速度向上の観点から、炭酸塩または炭酸水素塩などを含むことが好ましく、炭酸カリウム、炭酸水素カリウム、炭酸アンモニウム、炭酸水素アンモニウム、炭酸ナトリウム、または炭酸水素ナトリウムなどを含むことが好適である。さらに、水酸化第四級アンモニウム化合物と炭酸塩または炭酸水素塩との混合物を塩基性化合物として用いると、研磨用組成物が緩衝作用を持ち、研磨工程ごとのpHの安定性を維持する観点から好ましい。
 また、仕上げ研磨工程に用いられる研磨用組成物中における塩基性化合物としては、研磨後の研磨対象物に付着して残らないという観点から、アルカリ土類金属、アルカリ金属、遷移金属を含まないものが好まれる。よって、塩基性化合物としては、例えば、水酸化第四級アンモニウム、アミン、アンモニアであることが好ましく、取り扱いのしやすさという観点から、水酸化第四級アンモニウム、アンモニアがさらに好ましく、アンモニアが最も好ましい。
 研磨用組成物中の塩基性化合物の含有量(二種以上用いる場合はその合計量)は、0.001質量%以上であることが好ましく、より好ましくは0.003質量%以上である。塩基性化合物の含有量を増加させることによって、高い研磨速度が得られ易くなる。他方で、研磨用組成物中の塩基性化合物の含有量(二種以上用いる場合はその合計量)は、0.2質量%以下であることが好ましく、より好ましくは0.1質量%以下である。塩基性化合物の含有量を減少させることによって、ヘイズが低減されやすくなる。
 なお、仕上げ研磨工程に近づくにつれて、塩基性化合物の含有量を段階的に少なくしていくとよい。一例を示すと、予備研磨用組成物の塩基性化合物の含有量が最も多く、仕上げ研磨用組成物における塩基性化合物の含有量の好ましくは2倍以上20倍以下の範囲である。
 ≪水≫
 本発明の一形態に係る研磨用組成物は、水を必須に含む。水は、他の成分を溶解させる溶媒または分散させる分散媒としての働きを有する。
 研磨対象物の汚染や他の成分の作用を阻害するという観点から、不純物をできる限り含有しない水が好ましい。たとえば、遷移金属イオンの合計含有量が100ppb以下である水が好ましい。ここで、水の純度は、たとえば、イオン交換樹脂を用いる不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって高めることができる。具体的には、水としては、たとえば、イオン交換水(脱イオン水)、純水、超純水、蒸留水などを用いることが好ましい。
 ≪他の成分≫
 本発明の一形態に係る研磨用組成物は、砥粒、水溶性高分子、アニオン性界面活性剤、塩基性化合物および水以外にも、必要に応じて他の成分を含有してもよい。しかし、一方で、本発明に係る研磨用組成物は、酸化剤を実質的に含まないことが好ましい。研磨用組成物中に酸化剤が含まれていると、当該組成物が研磨対象物(例えばシリコンウェハ)に供給されることにより、該研磨対象物の表面が酸化されて酸化膜が形成され、これにより研磨速度が低下しうる。ここでいう酸化剤の具体例としては、過酸化水素(H)、過硫酸ナトリウム、過硫酸アンモニウム、ジクロロイソシアヌル酸ナトリウム等が挙げられる。なお、研磨用組成物が酸化剤を実質的に含まないとは、少なくとも意図的には酸化剤を含有させないことをいう。したがって、原料や製法等に由来して微量(例えば、研磨用組成物中における酸化剤のモル濃度が0.0005モル/L以下、好ましくは0.0001モル/L以下、より好ましくは0.00001モル/L以下、特に好ましくは0.000001モル/L以下)の酸化剤が不可避的に含まれている研磨用組成物は、ここでいう酸化剤を実質的に含有しない研磨用組成物の概念に包含されうる。
 研磨用組成物に含まれうる他の成分としては、たとえば、キレート剤、防腐剤・防カビ剤、上記アニオン性界面活性剤以外の界面活性剤、その他公知の添加剤(例えば、有機酸、有機酸塩、無機酸、無機酸塩等)等が挙げられるが、これらに限定されない。
 (キレート剤)
 本発明の一形態に係る研磨用組成物は、キレート剤を含有していてもよい。キレート剤は、研磨用組成物中に元々含まれている金属不純物や研磨中に研磨対象物や研磨装置から生じる、あるいは外部から混入する金属不純物を捕捉して錯体を形成することで、研磨対象物への金属不純物の残留を抑制する。特に、研磨対象物が半導体の場合、金属不純物の残留を抑制することで半導体の金属汚染を防止し、半導体の品質低下を抑制する。
 キレート剤としては、例えば、アミノカルボン酸系キレート剤および有機ホスホン酸系キレート剤が挙げられる。
 アミノカルボン酸系キレート剤の具体例としては、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、ニトリロ三酢酸アンモニウム、ヒドロキシエチルエチレンジアミン三酢酸、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、ジエチレントリアミン五酢酸、ジエチレントリアミン五酢酸ナトリウム、トリエチレンテトラミン六酢酸、トリエチレンテトラミン六酢酸ナトリウムなどが挙げられる。
 有機ホスホン酸系キレート剤の具体例としては、2-アミノエチルホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、トリエチレンテトラミンヘキサ(メチレンホスホン酸)、エタン-1,1-ジホスホン酸、エタン-1,1,2-トリホスホン酸、エタン-1-ヒドロキシ-1,1-ジホスホン酸、エタン-1-ヒドロキシ-1,1,2-トリホスホン酸、エタン-1,2-ジカルボキシ-1,2-ジホスホン酸、メタンヒドロキシホスホン酸、2-ホスホノブタン-1,2-ジカルボン酸、1-ホスホノブタン-2,3,4-トリカルボン酸、α-メチルホスホノコハク酸などが挙げられる。
 これらのキレート剤は、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 キレート剤の中でも、有機ホスホン酸系キレートが好ましく、より好ましくはエチレンジアミンテトラキス(メチレンホスホン酸)である。
 研磨用組成物中のキレート剤の含有量(二種以上用いる場合はその合計量)は0.0001質量%以上であることが好ましく、より好ましくは0.0005質量%以上であり、さらに好ましくは0.005質量%以上である。キレート剤の含有量を増加させることによって、研磨対象物に残留する金属不純物を抑制する効果が高まる。また、研磨用組成物中のキレート剤の含有量(二種以上用いる場合はその合計量)は0.5質量%未満であることが好ましく、より好ましくは0.3質量%未満であり、さらにより好ましくは0.1質量%未満であり、最も好ましくは0.05質量%未満である。キレート剤の含有量を減少させることによって、研磨用組成物の保存安定性がより保たれる。
 (防腐剤・防カビ剤)
 本発明の一形態に係る研磨用組成物は、防腐剤・防カビ剤をさらに含んでいてもよい。
 防腐剤および防カビ剤としては、例えば、2-メチル-4-イソチアゾリン-3-オンや5-クロロ-2-メチル-4-イソチアゾリン-3-オン等のイソチアゾリン系防腐剤、パラオキシ安息香酸エステル類、およびフェノキシエタノール等が挙げられる。
 これら防腐剤および防カビ剤は、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 (上記アニオン性界面活性剤以外の界面活性剤)
 本発明の一形態に係る研磨用組成物は、オキシアルキレン単位の平均付加モル数が特定の範囲内であるアニオン性界面活性剤を必須に含むが、本発明の効果を損なわない限りにおいて、その他の、上記アニオン性界面活性剤以外の界面活性剤をさらに含んでいてもよい。かような界面活性剤は、研磨後の研磨表面に親水性を付与することにより、研磨後の洗浄効率をより向上させ、汚れの付着等を防ぐことを目的として添加されうる。
 上記界面活性剤は、カチオン性界面活性剤、両性界面活性剤、および非イオン性界面活性剤のいずれであってもよい。
 これらの界面活性剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 研磨用組成物中のアニオン性界面活性剤以外の界面活性剤の含有量(二種以上用いる場合はその合計量)は、研磨後の洗浄効率をより向上させるとの観点から、特に制限されないが、1×10-6質量%以上であることが好ましい。一方、上記含有量の上限は、研磨速度を向上させるという観点から、1質量%以下であると好ましい。
 (その他公知の添加剤)
 研磨用組成物は、必要に応じて研磨用組成物に一般に含有されている公知の添加剤、例えば有機酸、有機酸塩、無機酸、無機酸塩等をさらに含有してもよい。
 有機酸としては、例えば、ギ酸、酢酸、プロピオン酸等のモノカルボン酸、安息香酸、フタル酸等の芳香族カルボン酸、シュウ酸、酒石酸、リンゴ酸、マレイン酸、フマル酸、コハク酸等のジカルボン酸、クエン酸、(メタ)アクリル酸(メタクリル酸ともいう)等のポリカルボン酸、並びに、有機スルホン酸、および有機ホスホン酸が挙げられる。有機酸塩としては、例えば、有機酸のナトリウム塩およびカリウム塩等のアルカリ金属塩、またはアンモニウム塩が挙げられる。
 無機酸としては、例えば、硫酸、硝酸、塩酸、および炭酸が挙げられる。無機酸塩としては、無機酸のナトリウム塩およびカリウム塩等のアルカリ金属塩、またはアンモニウム塩が挙げられる。
 有機酸およびその塩、並びに無機酸およびその塩は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 〔研磨用組成物の製造方法〕
 本発明に係る研磨用組成物の製造方法は特に制限されない。例えば、砥粒と、水溶性高分子と、アニオン性界面活性剤と、塩基性化合物と、必要に応じて添加される他の成分を順次添加し、水中で撹拌することにより製造することができる。
 〔研磨用組成物の形態等〕
 本発明に係る研磨用組成物は、一剤型であってもよいし、二剤以上から構成する多剤型であってもよい。また、上記で説明した研磨用組成物は、そのまま研磨に使用されてもよいし、研磨用組成物の濃縮液を、水を加えて希釈する、あるいは多剤型の研磨用組成物の場合は水と構成成分の一部を含有する水溶液で希釈することにより調製して研磨に使用されてもよい。例えば、研磨用組成物の濃縮液を保管または輸送した後に、使用時に希釈して研磨用組成物を調製することができる。すなわち、ここに開示される技術における研磨用組成物の概念には、研磨対象物に供給されて該研磨対象物の研磨に用いられる研磨液(ワーキングスラリー)と、希釈して研磨液として用いられる濃縮液(研磨液の原液)との双方が包含される。
 濃縮された形態の研磨用組成物は、製造、流通、保存等の際における利便性やコスト低減等の観点から有利である。濃縮倍率は、例えば、体積換算で2倍以上100倍以下程度とすることができ、通常は5倍以上50倍以下程度が適当である。好ましい一態様に係る研磨用組成物の濃縮倍率は10倍以上40倍以下であり、例えば15倍以上25倍以下である。
 本発明に係る研磨用組成物は、アルカリ性であると好ましく、そのpHは、8以上であると好ましく、9以上であるとより好ましく、9.5以上であると特に好ましい。研磨用組成物のpHが高くなると、研磨速度が向上する傾向にある。一方、pHは、12以下であると好ましく、11以下であるとより好ましく、10.8以下であると特に好ましい。研磨用組成物のpHが低くなると、表面の精度が向上する傾向にある。
 以上より、8以上12以下の範囲であると好ましく、9以上11以下の範囲であるとより好ましく、9.5以上10.8以下の範囲であると特に好ましい。特に研磨対象物が単結晶シリコン基板(シリコンウェハ)である場合、研磨用組成物のpHは、上記範囲であると好ましい。
 研磨用組成物は、これを再使用する際に、必要に応じてpHが上記範囲になるように調整してもよい。pHの調整には、公知のpH調整剤を用いてもよいし、上記塩基性化合物を用いてもよい。研磨用組成物のpHの値は、pHメータにより確認することができる。なお、詳細な測定方法は実施例に記載する。
 〔研磨対象物〕
 本発明の一形態に係る研磨用組成物を用いて研磨する研磨対象物は、特に制限されず、種々の材質および形状を有する研磨対象物の研磨に適用され得る。研磨対象物の材料は、例えば、シリコン材料、アルミニウム、ニッケル、タングステン、鋼、タンタル、チタン、ステンレス鋼等の金属もしくは半金属、またはこれらの合金;石英ガラス、アルミノシリケー卜ガラス、ガラス状カーボン等のガラス状物質;アルミナ、シリカ、サファイア、窒化ケイ素、窒化タンタル、炭化チタン等のセラミック材料;炭化ケイ素、窒化ガリウム、ヒ化ガリウム等の化合物半導体基板材料;ポリイミド樹脂等の樹脂材料;等が挙げられる。また、研磨対象物は、上記材料のうち、複数の材料により構成されていてもよい。
 これらの中でも、本発明に係る研磨用組成物の効果がより顕著に得られることから、シリコン材料であることが好ましい。すなわち、本発明の一形態に係る研磨用組成物が、シリコン材料の研磨に用いられることが好ましい。
 また、シリコン材料は、シリコン単結晶、アモルファスシリコンおよびポリシリコンからなる群より選択される少なくとも一種の材料を含むことが好ましい。シリコン材料としては、本発明の効果をより顕著に得ることができるとの観点から、シリコン単結晶またはポリシリコンであることがより好ましく、シリコン単結晶であることが特に好ましい。すなわち、研磨対象物は、単結晶シリコン基板であると好ましい。
 さらに、研磨対象物の形状は特に制限されない。本発明に係る研磨用組成物は、例えば、板状や多面体状等の、平面を有する研磨対象物の研磨に好ましく適用され得る。
 〔研磨方法〕
 本発明のその他の形態としては、上記研磨用組成物を用いて研磨対象物を研磨することを含む、研磨方法が提供される。本発明に係る研磨用組成物は、ヘイズの低減効果に優れるため、仕上げ研磨工程において特に好適に用いられる。すなわち、本発明に係る研磨方法は、仕上げ研磨工程において好適に用いられる。したがって、本発明によれば、上記研磨用組成物を用いた仕上げ研磨工程を含む研磨物の製造方法(例えば、シリコンウェハの製造方法)もまた提供される。なお、仕上げ研磨工程とは、目的物の製造プロセスにおける最後の研磨工程(すなわち、その工程の後にはさらなる研磨を行わない工程)を指す。本発明に係る研磨用組成物は、また、仕上げ研磨工程よりも上流の研磨工程(粗研磨工程と最終研磨工程との間の工程を指す)、例えば仕上げ研磨工程の直前に行われる研磨工程に用いられてもよい。
 本発明に係る研磨用組成物は、上述のように、単結晶シリコン基板の研磨に特に好ましく使用される。そして、単結晶シリコン基板の仕上げ研磨工程に用いられる研磨用組成物として好適である。より具体的には、本発明に係る研磨用組成物は、仕上げ研磨工程よりも上流の工程によって表面粗さ0.01nm以上100nm以下の表面状態に調製された単結晶シリコン基板の研磨へ適用されると好適である。
 研磨装置としては、研磨対象物を有する基板等を保持するホルダーと回転数を変更可能なモータ等とが取り付けてあり、研磨パッド(研磨布)を貼り付け可能な研磨定盤を有する一般的な研磨装置を用いることができる。
 前記研磨パッドとしては、一般的な不織布タイプ、ポリウレタンタイプ、スウェードタイプ等を特に制限なく使用することができる。研磨パッドには、研磨用組成物が溜まるような溝加工が施されていることが好ましい。
 研磨条件は、研磨用組成物が使用される研磨工程の段階に依存して、適宜設定される。
 予備研磨工程では、両面研磨装置が好適に使用でき、通常10rpm以上100rpm以下程度であり、好適には20rpm以上50rpm以下程度である。この際、上部回転定盤と下部回転定盤との回転速度は別であってもよいが、通常はウェハに対して同じ相対速度に設定される。また、仕上げ研磨工程では、片面研磨装置が好適に使用でき、通常10rpm以上100rpm以下程度であり、好適には20rpm以上50rpm以下程度であり、より好適には25rpm以上50rpm以下程度である。このような回転速度であると、研磨対象物の表面のヘイズレベルを顕著に低減することができる。
 研磨対象物は、通常、定盤により加圧されている。この際の圧力は、適宜選択することができるが、予備研磨工程では、通常5kPa以上30kPa以下程度が好ましく、10kPa以上25kPa以下程度であることがより好ましい。また、仕上げ研磨工程の場合、通常5kPa以上30kPa以下程度が好ましく、10kPa以上20kPa以下程度であることがより好ましい。このような圧力であると、研磨対象物の表面のヘイズレベルを顕著に低減することができる。
 研磨用組成物の供給速度も定盤のサイズに応じて適宜選択することができるが、経済性を考慮すると、予備研磨工程の場合、通常0.1L/分以上5L/分以下程度が好ましく、好適には0.2L/分以上2L/分以下程度である。仕上げ研磨工程の場合、通常0.1L/分以上5L/分以下程度が好ましく、好適には0.2L/分以上2L/分以下程度である。かような供給速度により、研磨対象物の表面を効率よく研磨し、研磨対象物の表面のヘイズレベルを顕著に低減することがでる。
 研磨用組成物の研磨装置における保持温度としても特に制限はないが、研磨速度の安定性、ヘイズレベルの低減といった観点から、いずれも通常15℃以上40℃以下程度が好ましく、18℃以上25℃以下程度がより好ましい。
 上記の研磨条件(研磨装置の設定)に関しては単に一例を述べただけであり、上記の範囲を外れてもよいし、適宜設定を変更することもできる。このような条件は当業者であれば適宜設定可能である。
 さらに、研磨後に洗浄・乾燥を行うことが好ましい。これら操作の方法や条件は特に制限されず、公知のものが適宜採用される。例えば、研磨対象物を洗浄する工程として、SC-1洗浄を行うと好ましい。「SC-1洗浄」とは、例えばアンモニアと過酸化水素水との混合液(例えば40℃~80℃)を用いて行う洗浄方法である。SC-1洗浄を行うことにより、シリコンウェハの表面を薄くエッチングして、このシリコンウェハ表面のパーティクルを除去することができる。
 本発明を、以下の実施例および比較例を用いてさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
 (1)研磨用組成物の調製
 <実施例1~4および比較例1~5>
 表1に示される組成となるように以下の材料を脱イオン水中で混合することにより、pHが10.0である実施例1~4および比較例1~5の研磨用組成物をそれぞれ調製した(混合温度:約20℃、混合時間:約5分)。なお、研磨用組成物(液温:20℃)のpHは、pHメータ(株式会社堀場製作所製 商品名:LAQUA(登録商標))により確認した。このとき、標準緩衝液(フタル酸塩pH緩衝液 pH:4.01(25℃)、中性リン酸塩pH緩衝液 pH:6.86(25℃)、炭酸塩pH緩衝液 pH:10.01(25℃))を用いて3点校正した後で、ガラス電極を研磨用組成物に挿入し、2分以上経過し、安定した後の値を測定した。
 ・砥粒(コロイダルシリカ、平均一次粒子径:24nm、平均二次粒子径:46nm)
 ・水溶性高分子(ヒドロキシエチルセルロース(HEC)、重量平均分子量:25万)
 ・塩基性化合物(アンモニア水(29質量%))
 ・界面活性剤
 各研磨用組成物の特徴を表1にまとめる。
 <実施例5および比較例6~7>
 表2に示される組成となるように添加した材料の種類および添加量を変更したこと以外は、上記実施例1と同様にして、実施例5および比較例6~7の研磨用組成物をそれぞれ調製した。使用した材料は、以下の通りである。
 ・砥粒(コロイダルシリカ、平均一次粒子径:24nm、平均二次粒子径:46nm)
 ・水溶性高分子(ポリビニルアルコール・ポリビニルピロリドン ランダム共重合体(PVA-PVP;PVA:PVP(モル比)=90:10)、重量平均分子量:1.5万)
 ・塩基性化合物(アンモニア水(29質量%))
 ・界面活性剤
 各研磨用組成物の特徴を表2にまとめる。
 <実施例6および比較例8>
 表3に示される組成となるように添加した材料の種類および添加量を変更したこと以外は、上記実施例1と同様にして、実施例6および比較例8の研磨用組成物をそれぞれ調製した。使用した材料は、以下の通りである。
 ・砥粒(コロイダルシリカ、平均一次粒子径:24nm、平均二次粒子径:46nm)
 ・水溶性高分子(ヒドロキシエチルセルロース(HEC)、重量平均分子量:25万)
 ・水溶性高分子(ポリビニルピロリドン(PVP)、重量平均分子量:5万)
 ・塩基性化合物(アンモニア水(29質量%))
 ・界面活性剤
 各研磨用組成物の特徴を表3にまとめる。
 <実施例7および比較例9>
 表4に示される組成となるように添加した材料の種類および添加量を変更したこと以外は、上記実施例1と同様にして、実施例7および比較例9の研磨用組成物をそれぞれ調製した。使用した材料は、以下の通りである。
 ・砥粒(コロイダルシリカ、平均一次粒子径:24nm、平均二次粒子径:46nm)
 ・水溶性高分子(ビニルアルコール単位とn-プロピルビニルエーテル単位とを85:15(モル比)で有するランダム共重合体(疎水変性PVA)、重量平均分子量:1.6万)
 ・塩基性化合物(アンモニア水(29質量%))
 ・界面活性剤
 各研磨用組成物の特徴を表4にまとめる。
 なお、水溶性高分子の重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)を用い、以下の測定条件により測定した。
 〈GPC測定条件〉
 カラム:TSKgel GMPWxl×2+G2500PWxl(φ7.8mm×300mm×3本)(東ソー株式会社製)
 溶離液:200mM 硝酸ナトリウム水溶液
 試料濃度:0.05質量%
 流量:1.0mL/min
 注入量:200μL
 標準物質:ポリエチレンオキサイド
 カラム温度:40℃
 検出器:示差屈折計(RI)。
 また、界面活性剤のEO平均付加モル数は、GPCを用い、以下の測定条件により測定した。
 〈GPC測定条件〉
 カラム:TSKgel G2500PWX(東ソー株式会社製)
 溶離液:水/メタノール=70/30(0.5%酢酸ナトリウム)
 試料濃度:0.25質量%
 流量:1.0mL/min
 注入量:200μL
 標準物質:ポリエチレンオキサイド
 カラム温度:40℃
 検出器:示差屈折計(RI)。
 さらに、上記砥粒の平均一次粒子径は、表面積測定装置(マイクロメリテックス社製 商品名:Flow Sorb II 2300)を用いて測定された値である。また、上記砥粒の平均二次粒子径は、動的光散乱式粒度分析計(日機装株式会社製 商品名:ナノトラック(登録商標)UPA-UT151)を用いて測定された値である(以下同様)。
 (2)評価
 <ヘイズ(相対値)の評価>
 ≪前処理≫
 1質量%の砥粒(コロイダルシリカ、一次粒子径:35nm、二次粒子径:70nm)および0.07質量%の水酸化カリウム(KOH)を含むスラリー(分散媒:水)を用い、単結晶シリコン基板(直径:300mm、p型、結晶方位<100>、抵抗率:0.1Ω・cm以上100Ω・cm未満、COPフリー)を以下の研磨条件(条件I)で前処理した。
 (条件I)
 研磨機:枚葉研磨機 PNX-322(株式会社岡本工作機械製作所製)
 研磨パッド:POLYPAS(登録商標) FP55(不織布タイプ、厚さ約2mm、密度約0.3g/cm、圧縮率約7%、圧縮弾性率約90%、硬度約50°、フジボウ愛媛株式会社製)
 研磨荷重:15kPa
 プラテン(定盤)回転数:30rpm
 ヘッド(キャリア)回転数:30rpm
 研磨用組成物の供給速度:0.5L/min
 研磨時間:3min
 定盤冷却水の温度:20℃
 研磨用組成物の保持温度:20℃。
 ≪研磨≫
 次に、上記(1)で得られた各研磨用組成物を用い、前処理した単結晶シリコン基板を以下の研磨条件(条件II)で研磨した。
 (条件II)
 研磨機:枚葉研磨機 PNX-322(株式会社岡本工作機械製作所製)
 研磨パッド:POLYPAS(登録商標) 27NX(スウェードタイプ、厚さ約1.5mm、密度約0.4g/cm、圧縮率約20%、圧縮弾性率約90%、硬度約40°、平均開孔径約45μm、開孔率約25%、フジボウ愛媛株式会社製)
 研磨荷重:15kPa
 プラテン(定盤)回転数:30rpm
 ヘッド(キャリア)回転数:30rpm
 研磨用組成物の供給速度:0.4L/min
 研磨時間:4min
 定盤冷却水の温度:20℃
 研磨用組成物の保持温度:20℃。
 ≪洗浄および乾燥≫
 上記研磨後の単結晶シリコン基板を、さらに洗浄液(NHOH(29質量%):H(31質量%):脱イオン水(DIW)=1:1:15(体積比))を用いて洗浄した(SC-1洗浄)。より具体的には、洗浄槽を2つ用意し、それら第1および第2の洗浄槽の各々に上記洗浄液を収容して60℃に保持し、研磨後の単結晶シリコン基板を第1の洗浄槽に5分、その後超純水による周波数950kHzの超音波発振器を取り付けたリンス槽を経て、第2の洗浄槽に5分、それぞれ上記超音波発振器を作動させた状態で浸漬した。その後、スピン乾燥を行った。
 ≪評価≫
 上記のように処理した単結晶シリコン基板について、上記条件IIによる研磨を行った後単結晶シリコン基板表面におけるヘイズレベルを測定した。ヘイズレベルの測定は、ウェハ検査装置「Surfscan SP2」(ケーエルエー・テンコール社製)を用いて、DWOモードでヘイズ(ppm)を測定した。得られた結果を、実施例1~4および比較例1~4については、比較例5のヘイズ値を100%とする相対値に換算して表1に示した。また、実施例5および比較例6については比較例7のヘイズ値を、実施例6については比較例8のヘイズ値を、実施例7については比較例9のヘイズ値を、それぞれ100%とする相対値に換算して表2、表3および表4にそれぞれ示した。なお、ヘイズ比が100%未満である場合に、ヘイズ低減効果が有意に確認できるものとする。
 <研磨速度(相対値)の評価>
 上記<ヘイズ(相対値)の評価>と同様に前処理および研磨を行い、研磨前後の研磨対象物(単結晶シリコン基板)の質量をそれぞれ測定した。これらの差分から、研磨前後の研磨対象物の質量変化量を求め、実施例1~4および比較例1~4については、比較例5の質量変化量を100%とする相対値に換算して表1に示した。また、実施例5および比較例6については比較例7の質量変化量を、実施例6については比較例8の質量変化量を、実施例7については比較例9の質量変化量を、それぞれ100%とする相対値に換算して表2、表3および表4にそれぞれ示した。なお、研磨速度比が100%を超える場合に、研磨速度向上効果が有意に確認できるものとする。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上記の結果から、本願発明に係る研磨用組成物は、比較例の研磨用組成物と比較して、ヘイズを低減させることができると共に、研磨速度にも優れることが確認された。比較例2~4における研磨用組成物は、オキシアルキレン単位を有していないか、または平均付加モル数が3以下であるアニオン性界面活性剤を含むが、これらはヘイズを低減する効果が低いことが分かった。また、アニオン性界面活性剤は本発明の要件を満たすものの、水溶性高分子を含まない比較例1の研磨用組成物は、ヘイズを低減する効果が極めて低かった。比較例5~9で用いられた界面活性剤は、実施例2で用いられたアニオン性界面活性剤の非イオン部の化学構造がほぼ同等なものに相当するが、研磨速度およびヘイズの低減効果に劣っていた。
 さらに、本出願は、2016年2月29日に出願された日本特許出願番号2016-38199号および2016年9月30日に出願された日本特許出願番号2016-193688号に基づいており、その開示内容は、参照により全体として組み入れられている。

Claims (6)

  1.  砥粒と、水溶性高分子と、アニオン性界面活性剤と、塩基性化合物と、水と、を含み、
     前記アニオン性界面活性剤がオキシアルキレン単位を有し、
     前記アニオン性界面活性剤の前記オキシアルキレン単位の平均付加モル数が3を超えて25以下である、研磨用組成物。
  2.  前記アニオン性界面活性剤が、硫酸エステルおよびその塩、スルホン酸およびその塩、カルボン酸およびその塩、ならびにリン酸エステルおよびその塩からなる群から選択される、請求項1に記載の研磨用組成物。
  3.  前記アニオン性界面活性剤の含有量が、1×10-6質量%以上1質量%以下である、請求項1または2に記載の研磨用組成物。
  4.  前記水溶性高分子が、窒素原子を含有するポリマー、セルロース誘導体およびビニルアルコールに由来する構成単位を含むポリマーからなる群から選択される少なくとも一種を含む、請求項1~3のいずれか1項に記載の研磨用組成物。
  5.  研磨対象物が単結晶シリコン基板である、請求項1~4のいずれか1項に記載の研磨用組成物。
  6.  請求項1~5のいずれか1項に記載の研磨用組成物を用いて研磨対象物を研磨することを含む、研磨方法。
PCT/JP2017/004621 2016-02-29 2017-02-08 研磨用組成物およびこれを用いた研磨方法 WO2017150118A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/074,994 US11332640B2 (en) 2016-02-29 2017-02-08 Polishing composition and polishing method using same
EP17759589.9A EP3425016B1 (en) 2016-02-29 2017-02-08 Polishing composition and polishing method using same
JP2018502985A JP6892434B2 (ja) 2016-02-29 2017-02-08 研磨用組成物およびこれを用いた研磨方法
KR1020187024450A KR102645587B1 (ko) 2016-02-29 2017-02-08 연마용 조성물 및 이것을 사용한 연마 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-038199 2016-02-29
JP2016038199 2016-02-29
JP2016193688 2016-09-30
JP2016-193688 2016-09-30

Publications (1)

Publication Number Publication Date
WO2017150118A1 true WO2017150118A1 (ja) 2017-09-08

Family

ID=59742895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004621 WO2017150118A1 (ja) 2016-02-29 2017-02-08 研磨用組成物およびこれを用いた研磨方法

Country Status (6)

Country Link
US (1) US11332640B2 (ja)
EP (1) EP3425016B1 (ja)
JP (1) JP6892434B2 (ja)
KR (1) KR102645587B1 (ja)
TW (1) TWI719144B (ja)
WO (1) WO2017150118A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131450A1 (ja) * 2017-12-27 2019-07-04 ニッタ・ハース株式会社 研磨用組成物
WO2019188747A1 (ja) * 2018-03-28 2019-10-03 株式会社フジミインコーポレーテッド ガリウム化合物系半導体基板研磨用組成物
WO2019187969A1 (ja) * 2018-03-30 2019-10-03 株式会社フジミインコーポレーテッド 研磨用組成物
JP2019179890A (ja) * 2018-03-30 2019-10-17 株式会社フジミインコーポレーテッド シリコンウェーハの研磨方法および研磨用組成物
US20220186078A1 (en) * 2019-03-28 2022-06-16 Fujimi Incorporated Polishing composition

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10858543B2 (en) * 2017-10-18 2020-12-08 Fujimi Incorporated Anti-corrosion polishing composition
JP7122097B2 (ja) * 2017-10-24 2022-08-19 山口精研工業株式会社 磁気ディスク基板用研磨剤組成物
JP7034667B2 (ja) * 2017-10-24 2022-03-14 山口精研工業株式会社 磁気ディスク基板用研磨剤組成物
JP7128684B2 (ja) * 2018-08-03 2022-08-31 山口精研工業株式会社 磁気ディスク基板用研磨剤組成物
JP7128685B2 (ja) * 2018-08-03 2022-08-31 山口精研工業株式会社 磁気ディスク基板の研磨方法、および磁気ディスク基板用研磨剤組成物
JP7477964B2 (ja) * 2019-12-13 2024-05-02 インテグリス・インコーポレーテッド 化学機械研磨組成物及びそれを用いた化学機械研磨方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123482A (ja) * 2003-10-17 2005-05-12 Fujimi Inc 研磨方法
US20050205837A1 (en) 2004-03-19 2005-09-22 Toshihiro Miwa Polishing composition and polishing method
JP2009218558A (ja) * 2008-02-12 2009-09-24 Hitachi Chem Co Ltd Cmp用研磨液、基板の研磨方法及び電子部品
JP2010095650A (ja) * 2008-10-17 2010-04-30 Hitachi Chem Co Ltd 研磨剤組成物及びこの研磨剤組成物を用いた基板の研磨方法
WO2012039390A1 (ja) 2010-09-24 2012-03-29 株式会社 フジミインコーポレーテッド 研磨用組成物およびリンス用組成物
JP2015007236A (ja) * 2010-03-12 2015-01-15 日立化成株式会社 スラリ、研磨液セット、研磨液及びこれらを用いた基板の研磨方法
WO2015146282A1 (ja) * 2014-03-28 2015-10-01 株式会社フジミインコーポレーテッド 研磨用組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317196A (ja) * 2001-04-19 2002-10-31 Minebea Co Ltd 研磨洗浄組成物
TW200526768A (en) 2003-09-30 2005-08-16 Fujimi Inc Polishing composition and polishing method
US20060135045A1 (en) * 2004-12-17 2006-06-22 Jinru Bian Polishing compositions for reducing erosion in semiconductor wafers
US7419519B2 (en) * 2005-01-07 2008-09-02 Dynea Chemicals Oy Engineered non-polymeric organic particles for chemical mechanical planarization
JP2009099819A (ja) * 2007-10-18 2009-05-07 Daicel Chem Ind Ltd Cmp用研磨組成物及び該cmp用研磨組成物を使用したデバイスウェハの製造方法
JP2009187984A (ja) * 2008-02-01 2009-08-20 Fujimi Inc 研磨用組成物及びそれを用いた研磨方法
JP5371416B2 (ja) * 2008-12-25 2013-12-18 富士フイルム株式会社 研磨液及び研磨方法
SG11201508398TA (en) * 2013-06-07 2015-11-27 Fujimi Inc Silicon wafer polishing composition
JP2015203081A (ja) * 2014-04-15 2015-11-16 株式会社フジミインコーポレーテッド 研磨用組成物
JP6259723B2 (ja) * 2014-06-18 2018-01-10 株式会社フジミインコーポレーテッド シリコンウェーハの研磨方法、研磨用組成物および研磨用組成物セット
JP6185432B2 (ja) 2014-06-24 2017-08-23 株式会社フジミインコーポレーテッド シリコンウェーハ研磨用組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123482A (ja) * 2003-10-17 2005-05-12 Fujimi Inc 研磨方法
US20050205837A1 (en) 2004-03-19 2005-09-22 Toshihiro Miwa Polishing composition and polishing method
JP2005268665A (ja) 2004-03-19 2005-09-29 Fujimi Inc 研磨用組成物
JP2009218558A (ja) * 2008-02-12 2009-09-24 Hitachi Chem Co Ltd Cmp用研磨液、基板の研磨方法及び電子部品
JP2010095650A (ja) * 2008-10-17 2010-04-30 Hitachi Chem Co Ltd 研磨剤組成物及びこの研磨剤組成物を用いた基板の研磨方法
JP2015007236A (ja) * 2010-03-12 2015-01-15 日立化成株式会社 スラリ、研磨液セット、研磨液及びこれらを用いた基板の研磨方法
WO2012039390A1 (ja) 2010-09-24 2012-03-29 株式会社 フジミインコーポレーテッド 研磨用組成物およびリンス用組成物
US20130183826A1 (en) 2010-09-24 2013-07-18 Fujimi Incorporated Composition for polishing and composition for rinsing
WO2015146282A1 (ja) * 2014-03-28 2015-10-01 株式会社フジミインコーポレーテッド 研磨用組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3425016A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019117907A (ja) * 2017-12-27 2019-07-18 ニッタ・ハース株式会社 研磨用組成物
WO2019131450A1 (ja) * 2017-12-27 2019-07-04 ニッタ・ハース株式会社 研磨用組成物
CN111512419B (zh) * 2017-12-27 2024-05-28 霓达杜邦股份有限公司 研磨用组合物
CN111512419A (zh) * 2017-12-27 2020-08-07 霓达杜邦股份有限公司 研磨用组合物
JP7424967B2 (ja) 2018-03-28 2024-01-30 株式会社フジミインコーポレーテッド ガリウム化合物系半導体基板研磨用組成物
WO2019188747A1 (ja) * 2018-03-28 2019-10-03 株式会社フジミインコーポレーテッド ガリウム化合物系半導体基板研磨用組成物
JPWO2019188747A1 (ja) * 2018-03-28 2021-04-08 株式会社フジミインコーポレーテッド ガリウム化合物系半導体基板研磨用組成物
WO2019187969A1 (ja) * 2018-03-30 2019-10-03 株式会社フジミインコーポレーテッド 研磨用組成物
JP7103823B2 (ja) 2018-03-30 2022-07-20 株式会社フジミインコーポレーテッド シリコンウェーハの研磨方法および研磨用組成物
JPWO2019187969A1 (ja) * 2018-03-30 2021-04-30 株式会社フジミインコーポレーテッド 研磨用組成物
JP7450532B2 (ja) 2018-03-30 2024-03-15 株式会社フジミインコーポレーテッド 研磨用組成物
JP2019179890A (ja) * 2018-03-30 2019-10-17 株式会社フジミインコーポレーテッド シリコンウェーハの研磨方法および研磨用組成物
US20220186078A1 (en) * 2019-03-28 2022-06-16 Fujimi Incorporated Polishing composition

Also Published As

Publication number Publication date
EP3425016A4 (en) 2019-03-13
TW201734160A (zh) 2017-10-01
JPWO2017150118A1 (ja) 2018-12-20
JP6892434B2 (ja) 2021-06-23
EP3425016B1 (en) 2021-01-27
KR102645587B1 (ko) 2024-03-11
US20190062595A1 (en) 2019-02-28
EP3425016A1 (en) 2019-01-09
KR20180113198A (ko) 2018-10-15
US11332640B2 (en) 2022-05-17
TWI719144B (zh) 2021-02-21

Similar Documents

Publication Publication Date Title
JP6892434B2 (ja) 研磨用組成物およびこれを用いた研磨方法
JP7148506B2 (ja) 研磨用組成物およびこれを用いた研磨方法
EP3053978B1 (en) Polishing composition and method for producing same
JP7566062B2 (ja) 基板の研磨方法および研磨用組成物セット
TW201615796A (zh) 矽晶圓研磨用組成物
KR102565682B1 (ko) 실리콘 기판 중간 연마용 조성물 및 실리콘 기판 연마용 조성물 세트
TW202043364A (zh) 研磨用組成物
JP7330676B2 (ja) シリコンウェーハ研磨用組成物
JP6761025B2 (ja) 研磨用組成物セット、前研磨用組成物、及びシリコンウェーハの研磨方法
KR101732331B1 (ko) 실리콘 웨이퍼 연마용 조성물
JP7550771B2 (ja) 研磨用組成物
JP7502267B2 (ja) ケイ素-ケイ素結合を有する材料を含む研磨対象物の研磨方法
WO2024190532A1 (ja) 研磨用組成物、研磨用組成物の濃縮液および研磨方法
WO2023140146A1 (ja) 研磨用組成物、研磨用組成物の濃縮液、および研磨方法
WO2022209758A1 (ja) 研磨方法、研磨用組成物セット
WO2015159506A1 (ja) シリコンウェーハ研磨用組成物
WO2024029457A1 (ja) 研磨用組成物
WO2024171892A1 (ja) 研磨用組成物
TW202138531A (zh) 研磨用組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018502985

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017759589

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017759589

Country of ref document: EP

Effective date: 20181001

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759589

Country of ref document: EP

Kind code of ref document: A1