Nothing Special   »   [go: up one dir, main page]

WO2017002547A1 - 車両用空気調和装置 - Google Patents

車両用空気調和装置 Download PDF

Info

Publication number
WO2017002547A1
WO2017002547A1 PCT/JP2016/066858 JP2016066858W WO2017002547A1 WO 2017002547 A1 WO2017002547 A1 WO 2017002547A1 JP 2016066858 W JP2016066858 W JP 2016066858W WO 2017002547 A1 WO2017002547 A1 WO 2017002547A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
mode
valve
compressor
air
Prior art date
Application number
PCT/JP2016/066858
Other languages
English (en)
French (fr)
Inventor
鈴木 謙一
竜 宮腰
耕平 山下
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to CN201680037737.8A priority Critical patent/CN107709067B/zh
Priority to DE112016003000.2T priority patent/DE112016003000T5/de
Priority to US15/738,857 priority patent/US10647178B2/en
Publication of WO2017002547A1 publication Critical patent/WO2017002547A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00792Arrangement of detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3213Control means therefor for increasing the efficiency in a vehicle heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H2001/006Noise reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3248Cooling devices information from a variable is obtained related to pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • B60H2001/3272Cooling devices output of a control signal related to a compressing unit to control the revolving speed of a compressor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/3285Cooling devices output of a control signal related to an expansion unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle, and more particularly to a vehicle air conditioner suitable for a hybrid vehicle or an electric vehicle.
  • an air conditioner that can be applied to such a vehicle, a compressor that compresses and discharges the refrigerant, a radiator that is provided on the vehicle interior side and dissipates the refrigerant, and is provided on the vehicle interior side.
  • a heat absorber that absorbs the refrigerant and an outdoor heat exchanger that is provided outside the passenger compartment to dissipate or absorb heat from the passenger compartment, dissipate the refrigerant discharged from the compressor in the radiator, and dissipate the refrigerant dissipated in the radiator Heating mode for absorbing heat in the outdoor heat exchanger, dehumidifying heating mode for dissipating the refrigerant discharged from the compressor in the radiator, and absorbing the refrigerant dissipated in the radiator in the heat absorber and the outdoor heat exchanger, and from the compressor Dissipate the discharged refrigerant with a radiator, depressurize the released refrigerant, and then absorb the heat with a heat absorber, and the refrigerant discharged from the compressor with a radiator and Dehumidifying and cooling mode in which heat is radiated by the outdoor heat exchanger, the radiated refrigerant is decompressed, and the heat is absorbed by the heat absorber, and the
  • a heating solenoid valve (open / close valve) is provided between the outlet of the outdoor heat exchanger and the accumulator on the suction side of the compressor, and the cooling mode or
  • the solenoid valve for heating is opened.However, since the pressure difference before and after the solenoid valve is large at the time of switching, the compressor Relatively loud noise is generated by the refrigerant that flows rapidly to the suction side (accumulator).
  • the outdoor heat exchanger is provided with a dehumidifying solenoid valve (open / close valve) in parallel, and opens the dehumidifying solenoid valve when switching from the cooling mode or the dehumidifying cooling mode to the internal cycle mode.
  • a dehumidifying solenoid valve open / close valve
  • the pressure difference before and after the solenoid valve at the time of this switching is also large, there is a problem that a large noise is similarly generated by the refrigerant that suddenly flows toward the heat absorber when the solenoid valve is opened.
  • the present invention has been made in view of the conventional situation, and in a so-called heat pump type vehicle air conditioner, eliminates or reduces noise generated when the on-off valve is opened when the operation mode is switched. With the goal.
  • An air conditioner for a vehicle includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that radiates the refrigerant and supplies the refrigerant to the vehicle interior from the air flow passage.
  • At least the refrigerant discharged from the compressor is radiated by the radiator, and the radiated refrigerant is decompressed and then absorbed by the heat absorber and the outdoor heat exchanger.
  • Dehumidifying and heating mode dehumidifying and cooling mode in which the refrigerant discharged from the compressor dissipates heat with a radiator and an outdoor heat exchanger, the refrigerant that has been depressurized is depressurized, and heat is absorbed by the heat absorber, and discharged from the compressor Outdoor refrigerant
  • the air is radiated by the heat exchanger, the refrigerant that has been radiated is decompressed, and the operation mode of the cooling mode in which heat is absorbed by the heat absorber is switched and executed, and is connected to the outlet side of the outdoor heat exchanger, and is dehumidified and heated.
  • the noise improvement control for opening each on-off valve is executed after reducing the pressure difference before and after each on-off valve.
  • a vehicle air conditioner includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that radiates the refrigerant and supplies the refrigerant from the air flow passage to the vehicle interior.
  • a heat radiator for heating the refrigerant, a heat absorber for absorbing the refrigerant to cool the air supplied from the air flow passage to the vehicle interior, and an outdoor heat exchange for dissipating or absorbing the refrigerant provided outside the vehicle compartment
  • an internal cycle mode in which at least the refrigerant discharged from the compressor is radiated by the radiator and the radiated refrigerant is depressurized and then absorbed by the heat absorber.
  • the refrigerant discharged from the compressor dissipates heat with a radiator and an outdoor heat exchanger, and after depressurizing the dissipated refrigerant, the dehumidifying and cooling mode in which heat is absorbed by the heat absorber, and the refrigerant discharged from the compressor with the outdoor heat Heat dissipation with an exchanger
  • the refrigerant that has radiated heat is decompressed and then switched between the operation modes of the cooling mode in which heat is absorbed by the heat absorber, and is connected in parallel to the outdoor heat exchanger and opened in the internal cycle mode.
  • the dehumidifying on-off valve is provided, and the control means reduces the pressure difference before and after the on-off valve when switching from the cooling mode and / or the dehumidifying cooling mode to the internal cycle mode, and then opens the on-off valve. It is characterized by performing.
  • a vehicle air conditioner includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that radiates the refrigerant and supplies the refrigerant from the air flow passage to the vehicle interior.
  • a heat radiator for heating the refrigerant, a heat absorber for absorbing the refrigerant to cool the air supplied from the air flow passage to the vehicle interior, and an outdoor heat exchange for dissipating or absorbing the refrigerant provided outside the vehicle compartment
  • a heating mode in which at least the refrigerant discharged from the compressor is radiated by the radiator and the radiated refrigerant is decompressed and then absorbed by the outdoor heat exchanger.
  • the refrigerant discharged from the compressor is radiated by a radiator and an outdoor heat exchanger, and after depressurizing the radiated refrigerant, the dehumidifying and cooling mode in which heat is absorbed by the heat absorber, and the refrigerant discharged from the compressor is outdoors.
  • Heat is dissipated by heat exchanger , After depressurizing the radiated refrigerant, and switching and executing each operation mode of the cooling mode in which heat is absorbed by the heat absorber, which is connected to the outlet side of the outdoor heat exchanger and is opened in the heating mode
  • the control means performs noise improvement control for opening the on-off valve after reducing the pressure difference before and after the on-off valve. It is characterized by.
  • an air conditioning apparatus for a vehicle, comprising: a compressor that compresses a refrigerant; an air flow passage through which air supplied to the vehicle interior flows; and air that radiates the refrigerant and supplies the refrigerant from the air flow passage to the vehicle interior.
  • a heat radiator for heating the refrigerant, a heat absorber for absorbing the refrigerant to cool the air supplied from the air flow passage to the vehicle interior, and an outdoor heat exchange for dissipating or absorbing the refrigerant provided outside the vehicle compartment And a heating mode in which at least the refrigerant discharged from the compressor is radiated by the radiator and the radiated refrigerant is decompressed and then absorbed by the outdoor heat exchanger.
  • Dehumidifying heating mode in which the refrigerant discharged from the compressor is radiated by a radiator, the radiated refrigerant is decompressed, and then absorbed by the heat absorber and the outdoor heat exchanger, and the refrigerant discharged from the compressor is radiated Dissipate heat with a
  • the operation mode of the internal cycle mode in which heat is absorbed by the heat absorber is switched and executed, connected to the outlet side of the outdoor heat exchanger and opened in the heating mode and the dehumidifying heating mode.
  • the vehicle air conditioner of the invention of claim 5 is characterized in that, in each of the above inventions, the control means reduces the rotational speed of the compressor in the noise improvement control.
  • the vehicle air conditioner according to a sixth aspect of the invention is characterized in that, in the first to fourth aspects of the invention, the control means stops the compressor in the noise improvement control.
  • the vehicle air conditioner of the invention of claim 7 is characterized in that, in the above invention, the control means stops the compressor and opens the on-off valve after a predetermined time.
  • the air conditioner for a vehicle according to an eighth aspect of the present invention is the air conditioning apparatus for a vehicle according to the fifth or sixth aspect, wherein the control means reduces the rotational speed of the compressor or stops the compressor to After the difference is reduced to a predetermined value or less, the on-off valve is opened.
  • the air conditioning apparatus for a vehicle according to claim 9 is characterized in that, in the above invention, the control means increases the predetermined value of the pressure difference before and after the on-off valve as the vehicle speed increases.
  • a vehicle air conditioner includes an indoor blower for supplying air to the air flow passage in the eighth or ninth aspect of the invention, and the control means has a larger air volume of the indoor blower. The predetermined value of the pressure difference before and after the on-off valve is increased.
  • An air conditioner for a vehicle includes an indoor fan for supplying air to the air flow passage in each of the above inventions, and an outdoor fan for ventilating the outside air to the outdoor heat exchanger, Is characterized by increasing the air volume of the indoor fan and / or the outdoor fan when switching the operation mode.
  • An air conditioner for a vehicle includes an indoor blower for supplying air to the air flow passage in each of the above inventions, and the control means has a vehicle speed equal to or higher than a predetermined value and / or When the air volume of the indoor blower is equal to or greater than a predetermined value, the noise improvement control is not executed.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by radiating the refrigerant are heated.
  • a dehumidifying heating mode in which at least the refrigerant discharged from the compressor is radiated by the radiator by the control means, and the radiated refrigerant is decompressed and then absorbed by the heat absorber and the outdoor heat exchanger.
  • the refrigerant discharged from the compressor is radiated by a radiator and an outdoor heat exchanger, and after depressurizing the radiated refrigerant, the dehumidifying and cooling mode in which heat is absorbed by the heat absorber, and the refrigerant discharged from the compressor is outdoors.
  • Heat is dissipated by heat exchanger
  • a vehicle air conditioner that switches and executes each operation mode of a cooling mode in which heat is absorbed by a heat absorber after depressurizing the radiated refrigerant, connected to the outlet side of the outdoor heat exchanger and opened in a dehumidifying heating mode
  • a heating on / off valve and a dehumidifying on / off valve connected in parallel to the outdoor heat exchanger and opened in the dehumidifying heating mode, and the control means dehumidifies from the cooling mode and / or the dehumidifying cooling mode.
  • noise reduction control that opens each on-off valve is performed after reducing the pressure difference before and after each on-off valve, so when switching from the cooling mode or dehumidifying cooling mode to the dehumidifying heating mode, heating is performed.
  • the on-off valve is opened, it is possible to greatly suppress or eliminate the sudden flow of the refrigerant toward the suction side of the compressor.
  • the dehumidifying on-off valve when the dehumidifying on-off valve is opened, it is possible to similarly suppress or eliminate the sudden flow of the refrigerant toward the heat absorber, so that the cooling mode and the dehumidifying cooling mode can be prevented.
  • noise generated when the heating on-off valve and the dehumidifying on-off valve are opened can be eliminated or reduced.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by dissipating the refrigerant are heated.
  • a heat sink for absorbing the refrigerant to cool the air supplied from the air flow passage to the vehicle interior
  • an outdoor heat exchanger for dissipating or absorbing heat provided outside the vehicle compartment
  • control An internal cycle mode in which at least the refrigerant discharged from the compressor is radiated by the radiator by the control means, and the radiated refrigerant is depressurized and then absorbed by the heat absorber, and discharged from the compressor.
  • the dehumidified cooling mode in which the discharged refrigerant is radiated with a radiator and an outdoor heat exchanger, the radiated refrigerant is depressurized, and then absorbed with the heat absorber, and the refrigerant discharged from the compressor is with the outdoor heat exchanger.
  • Radiated, radiated In a vehicle air conditioner that switches and executes each operation mode of a cooling mode in which heat is absorbed by a heat absorber after decompressing the refrigerant, the vehicle is connected in parallel to the outdoor heat exchanger and opened in an internal cycle mode.
  • the control means When switching from the cooling mode and / or the dehumidifying cooling mode to the internal cycle mode, the control means performs noise improvement control that opens the on-off valve after reducing the pressure difference before and after the on-off valve.
  • the control means When switching from the cooling mode or the dehumidifying cooling mode to the internal cycle mode, when the on / off valve for dehumidification is opened, the sudden flow of refrigerant toward the heat absorber is greatly suppressed or eliminated. be able to.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by dissipating the refrigerant are heated.
  • the discharged refrigerant radiates heat with a radiator and an outdoor heat exchanger, depressurizes the radiated refrigerant, and then dehumidifies and cools the heat absorbed by the heat absorber, and the refrigerant discharged from the compressor is transferred to the outdoor heat exchanger
  • a vehicle air conditioner that switches and executes each operation mode of a cooling mode in which heat is absorbed by a heat absorber after decompressing the refrigerant, it is connected to the outlet side of the outdoor heat exchanger and is opened in the heating mode.
  • the control means reduces the pressure difference before and after the on / off valve and then performs noise improvement control to open the on / off valve. Therefore, when switching from the cooling mode or the dehumidifying cooling mode to the heating mode, when the heating on-off valve is opened, it is possible to greatly suppress or eliminate the sudden flow of refrigerant toward the suction side of the compressor. .
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by radiating the refrigerant are heated.
  • the discharged refrigerant dissipates heat with a radiator, and after depressurizing the dissipated refrigerant, dehumidifying heating mode in which heat is absorbed by a heat absorber and an outdoor heat exchanger, and the refrigerant discharged from the compressor is dissipated
  • the refrigerant that dissipated heat In the vehicle air conditioner that switches and executes each operation mode of the internal cycle mode in which heat is absorbed by the heat absorber after the pressure is reduced, it is connected to the outlet side of the outdoor heat exchanger and opened in the heating mode and the dehumidifying heating mode.
  • the control means executes noise improvement control for opening the on-off valve after reducing the pressure difference before and after the on-off valve.
  • control means lowers the rotational speed of the compressor in the noise improvement control as in the invention of claim 5, the refrigerant upstream of the dehumidifying on-off valve or the heating on-off valve in the noise improvement control.
  • control means stops the compressor in the noise improvement control as in the invention of claim 6, the pressure on the upstream side of the refrigerant of the dehumidifying on-off valve and the heating on-off valve in the noise improvement control is controlled. It is possible to reduce the pressure difference before and after each on-off valve more effectively by reducing it more quickly.
  • control means stops the compressor and opens the on-off valve after a predetermined time as in the invention of claim 7, the pressure difference before and after the on-off valve is sufficiently reduced while simplifying the control. , Noise can be effectively eliminated or reduced.
  • control means lowers the rotational speed of the compressor or stops the compressor and opens the on-off valve after the pressure difference before and after the on-off valve is reduced to a predetermined value or less. By doing so, it is possible to more reliably eliminate or suppress the generation of noise due to the pressure difference before and after the on-off valve.
  • the control means increases the predetermined value of the pressure difference before and after the opening / closing valve as the vehicle speed increases, the opening / closing of the opening / closing valve is less likely to be noticed.
  • the on-off valve can be opened early and the operation mode can be switched quickly.
  • control means opens the on-off valve earlier by increasing the predetermined value of the pressure difference before and after the on-off valve as the air volume of the indoor fan increases, and similarly switches the operation mode. Can be done quickly.
  • the noise caused by the opening of the on-off valve can also be increased by increasing the air volume of the indoor fan or the outdoor fan for passing outside air to the outdoor heat exchanger. It becomes possible to make it hard to be concerned.
  • the control means as in the invention of claim 12
  • the noise improvement control is not performed, and the on-off valve is opened immediately, so that both discomfort due to noise and delay in switching the operation mode can be avoided.
  • FIG. 1 It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied (Example 1). It is a block diagram of the electric circuit of the controller of the vehicle air conditioner of FIG. The figure explaining the state of the outdoor expansion valve of the vehicle air conditioner of FIG. 1 when switching from the cooling (dehumidifying cooling) mode to the dehumidifying heating mode, the state of each electromagnetic valve and the evaporation capability control valve, and the pressure difference between them It is. It is a timing chart of each apparatus explaining the noise improvement control (the 1) which the controller of FIG. 2 performs when switching from air_conditioning
  • FIG. 3 is a timing chart of each device for explaining noise improvement control (part 2) executed by the controller of FIG. 2 when switching from a cooling (dehumidifying cooling) mode to an internal cycle mode.
  • FIG. 2 is a diagram for explaining a state of an outdoor expansion valve, each electromagnetic valve and an evaporation capacity control valve of the vehicle air conditioner of FIG. 1 when switching from a cooling (dehumidifying cooling) mode to a heating mode, and the pressure difference before and after those valves. is there.
  • FIG. 3 is a timing chart of each device for explaining noise improvement control (part 3) executed by the controller of FIG. 2 when switching from a cooling (dehumidifying cooling) mode to a heating mode. It is a figure explaining the state of the outdoor expansion valve of the vehicle air conditioner of FIG. 1 when switching from an internal cycle mode to a dehumidification heating mode, each solenoid valve, and an evaporation capability control valve, and the pressure difference before and behind them. It is a timing chart of each apparatus explaining the noise improvement control (the 4) which the controller of FIG. 2 performs when switching from internal cycle mode to dehumidification heating mode. It is a figure explaining the state of the outdoor expansion valve of the vehicle air conditioner of FIG.
  • each solenoid valve when switching from an internal cycle mode to a heating mode, each solenoid valve, and an evaporation capability control valve, and the pressure difference before and behind them. It is a timing chart of each apparatus explaining the noise improvement control (the 5) which the controller of FIG. 2 performs when switching from internal cycle mode to heating mode. It is a block diagram of the air conditioning apparatus for vehicles of other embodiment which can apply this invention (Example 2).
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • a vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery.
  • EV electric vehicle
  • the vehicle air conditioner 1 of the present invention is also driven by the power of the battery. That is, the vehicle air conditioner 1 of the embodiment performs heating by heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further performs each of dehumidification heating, internal cycle, cooling dehumidification, and cooling.
  • the operation mode is selectively executed.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
  • the vehicle air conditioner 1 performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, and dissipates the refrigerant into the vehicle compartment.
  • an outdoor expansion valve 6 composed of an electric valve that decompresses and expands the refrigerant during heating, and an outdoor heat exchange that functions as a radiator during cooling and performs heat exchange between the refrigerant and the outside air so as to function as an evaporator during heating.
  • an indoor expansion valve 8 comprising a motor-operated valve (which may be a mechanical expansion valve) for decompressing and expanding the refrigerant, and heat absorption provided in the air flow passage 3 to absorb heat from outside and inside the vehicle compartment during cooling and dehumidification.
  • the heat sink 9 and the heat sink 9 That the evaporation capacity control valve 11 for adjusting the evaporating ability, the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, and thereby stops the vehicle (that is, the vehicle speed VSP is 0 km / h).
  • the outdoor heat exchanger 7 is configured to ventilate the outside air.
  • the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 in order on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 serves as an on-off valve for cooling that is opened during cooling.
  • An electromagnetic valve (for cooling) 17 is connected to the receiver dryer section 14, and an outlet of the supercooling section 16 is connected to the indoor expansion valve 8 via a check valve 18.
  • the receiver dryer section 14 and the supercooling section 16 structurally constitute a part of the outdoor heat exchanger 7, and the check valve 18 has a forward direction on the indoor expansion valve 8 side.
  • the refrigerant pipe 13B between the check valve 18 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C exiting the evaporation capacity control valve 11 located on the outlet side of the heat absorber 9, and internal heat is generated by both.
  • the exchanger 19 is configured.
  • the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9 and passed through the evaporation capacity control valve 11.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched, and this branched refrigerant pipe 13D is internally connected via an electromagnetic valve (for heating) 21 as a heating on-off valve that is opened during heating.
  • the refrigerant pipe 13 ⁇ / b> C is connected in communication with the downstream side of the heat exchanger 19.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is branched in front of the outdoor expansion valve 6, and this branched refrigerant pipe 13F is an electromagnetic valve (dehumidifying) as a dehumidifying on-off valve that is opened during dehumidification.
  • the refrigerant pipe 13 ⁇ / b> B on the downstream side of the check valve 18 is connected in communication via 22. That is, the electromagnetic valve 22 is connected in parallel to the outdoor heat exchanger 7.
  • a bypass pipe 13J is connected in parallel to the outdoor expansion valve 6.
  • the bypass pipe 13J is opened in a cooling mode and bypasses the on-off valve for bypassing the outdoor expansion valve 6 to flow the refrigerant.
  • As an electromagnetic valve (for bypass) 20 is interposed.
  • the piping between the outdoor expansion valve 6 and the electromagnetic valve 20 and the outdoor heat exchanger 7 is 13I.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment. Yes. Furthermore, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • an air mix damper 28 is provided in the air flow passage 3 on the air upstream side of the radiator 4 to adjust the degree of flow of inside air and outside air to the radiator 4. Further, in the air flow passage 3 on the downstream side of the radiator 4, foot, vent, and differential air outlets (represented by the air outlet 29 in FIG. 1) are formed. Is provided with a blower outlet switching damper 31 for switching and controlling the blowing of air from each of the blowout ports.
  • 32 is a controller (ECU) as a control means constituted by a microcomputer, and in this embodiment, an input to the controller 32 is an outside air temperature sensor 33 for detecting the outside air temperature Tam of the vehicle, An outside air humidity sensor 34 that detects the outside air humidity of the vehicle, an HVAC suction temperature sensor 36 that detects the temperature of air sucked into the air flow passage 3 from the suction port 25, and an inside air that detects the temperature of the air (inside air) in the vehicle interior A temperature sensor 37, an indoor air humidity sensor 38 for detecting the humidity of the air in the vehicle interior, an indoor CO 2 concentration sensor 39 for detecting the carbon dioxide concentration in the vehicle interior, and the temperature of the air blown into the vehicle interior from the outlet 29
  • the discharge temperature sensor 43 for detecting the temperature (discharge temperature) Td of the compressor
  • a photosensor-type solar radiation sensor 51 for detecting the amount of solar radiation into the passenger compartment
  • a vehicle speed sensor 52 for detecting the moving speed of the vehicle (vehicle speed VSP)
  • switching between set temperature and operation mode for example, a photosensor-type solar radiation sensor 51 for detecting the amount of solar radiation into the passenger compartment, a vehicle speed sensor 52 for detecting the moving speed of the vehicle (vehicle speed VSP), and switching between set temperature and operation mode.
  • Each output of the air conditioning (air conditioner) operation unit 53 for setting and the outdoor heat exchanger temperature sensor 54 for detecting the refrigerant temperature (outdoor heat exchanger temperature) TXO of the outdoor heat exchanger 7 is connected.
  • the output of the controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet switching damper 31, and the outdoor expansion.
  • the valve 6, the indoor expansion valve 8, the electromagnetic valves 22, 17, 21, 20 and the evaporation capacity control valve 11 are connected. And the controller 32 controls these based on the output of each sensor, and the setting input in the air-conditioning operation part 53.
  • the cooling solenoid valve 17 and the bypass solenoid valve 20 described above are so-called normally open solenoid valves that are opened when the power is not supplied.
  • the heating solenoid valve 21 and the dehumidification solenoid valve 22 described above are so-called normally closed solenoid valves that are closed when no power is supplied, so that even when the power is cut off, the discharge side of the compressor 2 ⁇ Consideration is made so that an annular refrigerant circuit communicating with the suction side of the radiator 4 -the outdoor heat exchanger 7 -the heat absorber 9 -the compressor 2 is constructed.
  • the controller 32 is roughly divided into a heating mode, a dehumidifying heating mode, an internal cycle mode, a dehumidifying cooling mode, and a cooling mode, and executes them.
  • a heating mode a dehumidifying heating mode
  • an internal cycle mode a dehumidifying cooling mode
  • a cooling mode a cooling mode
  • (1) Heating mode When the heating mode is selected by the controller 32 or by manual operation to the air conditioning operation unit 53, the controller 32 opens the heating electromagnetic valve 21, the cooling electromagnetic valve 17, and the dehumidifying device. The solenoid valve 22 and the bypass solenoid valve 20 are closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 sets the air blown out from the indoor blower 27 to the heat radiator 4. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. Deprived, cooled, and condensed into liquid.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R serves as a heat pump, and the outdoor heat exchanger 7 functions as a refrigerant evaporator.
  • the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D, and is separated into gas and liquid there. Repeated circulation inhaled. Since the air heated by the radiator 4 is blown out from the air outlet 29, the vehicle interior is thereby heated.
  • the controller 32 is a high-pressure side pressure of the refrigerant circuit R converted from the discharge temperature Td detected by the discharge temperature sensor 43, or a high-pressure side pressure (discharge pressure Pd) of the refrigerant circuit R detected by the discharge pressure sensor 42, or heat dissipation.
  • the rotational speed Nc of the compressor 2 is controlled based on the high-pressure side pressure (radiator pressure PCI) of the refrigerant circuit R detected by the radiator pressure sensor 47, and the temperature and heat radiation of the radiator 4 detected by the radiator temperature sensor 46 are controlled.
  • the valve opening degree of the outdoor expansion valve 6 is controlled, and the supercooling degree of the refrigerant at the outlet of the radiator 4 is controlled.
  • the controller 32 opens the dehumidifying electromagnetic valve 22 in the heating mode.
  • a part of the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 is diverted to reach the indoor expansion valve 8 via the electromagnetic valve 22 from the refrigerant pipe 13F and the refrigerant pipe 13B via the internal heat exchanger 19.
  • the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and then repeats circulation sucked into the compressor 2 through the accumulator 12. . Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
  • the controller 32 is a high-pressure side pressure of the refrigerant circuit R converted from the discharge temperature Td detected by the discharge temperature sensor 43, or a high-pressure side pressure (discharge pressure Pd) of the refrigerant circuit R detected by the discharge pressure sensor 42, or heat dissipation.
  • the rotational speed Nc of the compressor 2 is controlled based on the high-pressure side pressure (radiator pressure PCI) of the refrigerant circuit R detected by the compressor pressure sensor 47, and the heat absorber temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48 is detected.
  • the valve opening degree of the outdoor expansion valve 6 is controlled based on Te.
  • the controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying and heating mode state (fully closed position), and also bypasses the electromagnetic valve 20 and the heating valve.
  • the solenoid valve 21 is also closed. Since the outdoor expansion valve 6 and the electromagnetic valves 20 and 21 are closed, the inflow of refrigerant to the outdoor heat exchanger 7 and the outflow of refrigerant from the outdoor heat exchanger 7 are prevented.
  • the condensed refrigerant flowing through the refrigerant pipe 13E via the vessel 4 flows through the refrigerant pipe 13F via the bypass solenoid valve 22.
  • coolant piping 13F reaches the indoor expansion valve 8 through the internal heat exchanger 19 from the refrigerant
  • the refrigerant is decompressed by the indoor expansion valve 8 and then flows into the heat absorber 9 to evaporate. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 flows through the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and repeats circulation sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidification heating is performed in the vehicle interior, but in this internal cycle mode, the air flow path on the indoor side 3, the refrigerant is circulated between the radiator 4 (heat radiation) and the heat absorber 9 (heat absorption), so that heat from the outside air is not pumped up, and the heating capacity for the power consumption of the compressor 2 Is demonstrated. Further, since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than that in the dehumidifying and heating mode, but the heating capacity is lowered.
  • the controller 32 controls the rotational speed Nc of the compressor 2 based on the heat absorber temperature Te of the heat absorber 9 or the high-pressure side pressure of the refrigerant circuit R described above. At this time, the controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotational speeds obtained from either calculation, depending on the heat absorber temperature Te or the high pressure side pressure of the heat absorber 9.
  • the controller 32 opens the cooling electromagnetic valve 17 and closes the heating electromagnetic valve 21, the dehumidifying electromagnetic valve 22, and the bypass electromagnetic valve 20. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 sets the air blown out from the indoor blower 27 to the heat radiator 4. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19.
  • the refrigerant is decompressed by the indoor expansion valve 8 and then flows into the heat absorber 9 to evaporate. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 ⁇ / b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 ⁇ / b> C.
  • the air cooled and dehumidified by the heat absorber 9 is reheated (having a lower heat dissipation capacity than that during heating) in the process of passing through the radiator 4, thereby dehumidifying and cooling the vehicle interior. .
  • the controller 32 controls the rotational speed Nc of the compressor 2 on the basis of the heat absorber temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48, and on the outdoor expansion valve 6 based on the high-pressure side pressure of the refrigerant circuit R described above. And the radiator pressure PCI of the radiator 4 is controlled.
  • the controller 32 opens the electromagnetic valve 20 in the dehumidifying and cooling mode state (in this case, the outdoor expansion valve 6 is fully opened (the valve opening is the upper limit of control)).
  • the air mix damper 28 includes a state in which air is not ventilated through the radiator 4 and controls the amount of air flow. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is not ventilated to the radiator 4, it only passes here, and when it is ventilated, it is radiated to the air.
  • the refrigerant exiting the radiator 4 reaches the electromagnetic valve 20 and the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the refrigerant bypasses the outdoor expansion valve 6 and passes through the bypass pipe 13J, and flows into the outdoor heat exchanger 7 as it is, where it travels or is ventilated by the outdoor fan 15. It is air-cooled by the outside air and becomes condensed liquid.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled.
  • the refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 ⁇ / b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 ⁇ / b> C.
  • the air cooled and dehumidified by the heat absorber 9 does not pass through the radiator 4 or passes through it slightly and is blown out from the air outlet 29 into the vehicle interior, thereby cooling the vehicle interior.
  • the controller 32 controls the rotational speed Nc of the compressor 2 based on the heat absorber temperature Te of the heat absorber 9 detected by the heat absorber temperature sensor 48.
  • the controller 32 selects an operation mode based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target blowing temperature TAO at the time of activation. In addition, after the start-up, each of the operation modes is selected and switched according to changes in the environment such as the outside air temperature Tam and the target blowing temperature TAO and the set conditions.
  • FIG. 3 shows an outdoor expansion valve 6, a bypass solenoid valve 20, a heating solenoid valve 21, a cooling solenoid valve 17, a dehumidification solenoid valve 22, and evaporation in the cooling (dehumidifying and cooling) mode and the dehumidifying and heating mode.
  • the timing chart of FIG. 4 shows the pressure difference ⁇ Pox before and after the heating solenoid valve 21 when switching from the cooling (or dehumidifying cooling) mode to the dehumidifying heating mode, and the pressure difference before and after the dehumidifying electromagnetic valve 22.
  • the state of ⁇ Pce, the rotational speed Nc of the compressor 2, the outdoor expansion valve 6, the electromagnetic valve 21, and the electromagnetic valve 22 is shown.
  • the pressure difference ⁇ Pox before and after the solenoid valve 21 is the pressure upstream of the refrigerant upstream of the solenoid valve 21 converted from the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 54 and the heat absorber temperature.
  • the pressure difference ⁇ Pce before and after the electromagnetic valve 22 is detected by the radiator pressure PCI (pressure upstream of the refrigerant upstream of the electromagnetic valve 22) detected by the radiator pressure sensor 47 and the outdoor heat exchanger temperature sensor 54.
  • the pressure difference ⁇ Pox before and after the heating solenoid valve 21 becomes medium to small as shown in FIG. .
  • the pressure difference ⁇ Pce before and after the dehumidifying electromagnetic valve 22 also becomes medium to small, which is a comparatively large value. Therefore, when each solenoid valve 21 and the solenoid valve 22 that are closed in the cooling mode or the dehumidifying cooling mode are opened to enter the dehumidifying heating mode with such a pressure difference, the compressor passes from the outdoor heat exchanger 7 through the solenoid valve 21.
  • the refrigerant suddenly flows in the direction of the suction side 2 (accumulator 12 side) of 2 and the refrigerant suddenly flows in the direction of the heat absorber 9 side (indoor expansion valve 8 side) from the radiator 4 through the electromagnetic valve 22.
  • a loud sound (noise) is generated in the valves 21 and 22.
  • the controller 32 executes noise improvement control described below. That is, when switching from the cooling mode or the dehumidifying cooling mode to the dehumidifying heating mode, the controller 32 first stops the compressor 2 in the embodiment before switching the operation mode. When the compressor 2 stops, the pressure in the refrigerant circuit R approaches an equilibrium state (the high-pressure side pressure decreases and the low-pressure side pressure increases), so that the pressure differences ⁇ Pox and ⁇ Pce before and after the solenoid valve 21 and the solenoid valve 22 Also getting smaller.
  • the controller 32 opens the heating electromagnetic valve 21 and the pressure difference ⁇ Pce is reduced to a predetermined value B (eg, 0.5 MPa) or less.
  • the controller 32 opens the electromagnetic valve 22 for dehumidification.
  • the controller 32 starts the compressor 2 and starts the air conditioning operation in the dehumidifying heating mode.
  • the controller 32 when the controller 32 switches from the cooling mode or the dehumidifying cooling mode to the dehumidifying heating mode, the controller 32 reduces the pressure differences ⁇ Pox and ⁇ Pce before and after the heating solenoid valve 21 and the dehumidification solenoid valve 22, and then sets each solenoid valve. Since the noise improvement control for opening 21 and 22 is executed, when switching from the cooling mode or the dehumidifying cooling mode to the dehumidifying heating mode, when the heating solenoid valve 21 is opened, the refrigerant moves toward the suction side of the compressor 2. Can be largely suppressed or eliminated.
  • the electromagnetic valve 22 for dehumidification when the electromagnetic valve 22 for dehumidification is opened, the sudden flow of the refrigerant toward the heat absorber 9 can be similarly suppressed or eliminated, so that the cooling mode and the dehumidifying cooling can be performed. At the time of switching from the mode to the dehumidifying heating mode, noise generated when the heating electromagnetic valve 21 and the dehumidifying electromagnetic valve 22 are opened can be eliminated or reduced.
  • the controller 32 stops the compressor 2 in the noise improvement control, the pressure on the upstream side of the refrigerant of the electromagnetic valve 22 for dehumidification and the electromagnetic valve 21 for heating is more quickly reduced in the noise improvement control.
  • the pressure differences ⁇ Pce and ⁇ Pox before and after the valves 22 and 21 can be reduced more effectively.
  • the controller 32 stops the compressor 2 and opens the solenoid valves 21 and 22 after the pressure differences ⁇ Pox and ⁇ Pce before and after the solenoid valves 21 and 22 are reduced to the predetermined values A and B, respectively.
  • the generation of noise due to the pressure difference before and after the valves 21 and 22 can be more reliably eliminated or suppressed.
  • the controller 32 when the controller 32 reduces the pressure differences ⁇ Pox and ⁇ Pce before and after the heating solenoid valve 21 and the dehumidification solenoid valve 22 to a predetermined value A and a predetermined value B or less, respectively.
  • the electromagnetic valves 21 and 22 are opened, and the compressor 2 is started when both are reduced.
  • the present invention is not limited to this, and as shown by a broken line in FIG.
  • the two solenoid valves 21 and 22 may be opened after the time t1 (for example, 20 seconds) has elapsed, and the compressor 2 may be started.
  • the control itself is simplified as compared with the example in which the control is performed by reducing the pressure difference up to the predetermined values A and B described above.
  • the electromagnetic valves 21 and 22 can be set by appropriately setting the predetermined time t1.
  • the controller 32 stops the compressor 2.
  • the present invention is not limited to this, and the rotational speed Nc of the compressor 2 may be decreased. Since the pressure on the refrigerant upstream side of the dehumidifying solenoid valve 22 and the heating solenoid valve 21 can also be reduced by reducing the rotational speed Nc of the compressor 2, the pressure difference between the front and rear of the solenoid valves 22 and 21 can be reduced. This is because ⁇ Pce and ⁇ Pox can be effectively reduced (the same applies to the following noise reduction control).
  • FIG. 5 shows the outdoor expansion valve 6, the bypass solenoid valve 20, the heating solenoid valve 21, the cooling solenoid valve 17, the dehumidification solenoid valve 22, and the evaporation in the cooling (dehumidifying cooling) mode and the internal cycle mode.
  • the timing chart of FIG. 6 shows the pressure difference ⁇ Pox before and after the heating solenoid valve 21 and the pressure difference before and after the dehumidification solenoid valve 22 when the cooling (or dehumidification cooling) mode is switched to the internal cycle mode.
  • the state of ⁇ Pce, the rotational speed Nc of the compressor 2, the outdoor expansion valve 6, the electromagnetic valve 21, and the electromagnetic valve 22 is shown. Since the solenoid valve 21 is closed in both the cooling (or dehumidifying and cooling) mode and the internal cycle mode, the pressure difference ⁇ Pox before and after the solenoid valve 21 is not considered in this case.
  • the pressure difference ⁇ Pce before and after the dehumidifying electromagnetic valve 22 becomes medium to small, and becomes a large value compared to the others. Therefore, when the electromagnetic valve 22 that is closed in the cooling mode or the dehumidifying cooling mode is opened in order to enter the internal cycle mode with such a pressure difference, the heat absorber 9 side (the indoor expansion valve 8) passes through the electromagnetic valve 22 from the radiator 4. The refrigerant suddenly flows in the direction of (side), and a large noise (noise) is generated in the electromagnetic valve 22.
  • the controller 32 executes the noise improvement control described below also when the operation mode is switched from the cooling mode or the dehumidifying cooling mode to the internal cycle mode. That is, when switching from the cooling mode or the dehumidifying cooling mode to the internal cycle mode, the controller 32 first stops the compressor 2 before switching the operation mode. When the compressor 2 is stopped, the pressure in the refrigerant circuit R goes to an equilibrium state, so the pressure difference ⁇ Pce before and after the electromagnetic valve 22 also decreases.
  • the controller 32 opens the electromagnetic valve 22 for dehumidification. Further, when the electromagnetic valve 22 is opened, the controller 32 activates the compressor 2 and starts the air conditioning operation in the internal cycle mode.
  • the controller 32 executes the noise improvement control for opening the electromagnetic valve 22 after reducing the pressure difference ⁇ Pce before and after the dehumidifying electromagnetic valve 22. Therefore, when switching from the cooling mode or the dehumidifying cooling mode to the internal cycle mode, it is possible to suppress or eliminate the sudden flow of refrigerant toward the heat absorber 9 when the dehumidifying electromagnetic valve 22 is opened. become. This makes it possible to eliminate or reduce noise generated when the dehumidifying electromagnetic valve 22 is opened when switching from the cooling mode or the dehumidifying cooling mode to the internal cycle mode.
  • the controller 32 stops the compressor 2
  • the pressure on the upstream side of the refrigerant of the dehumidifying solenoid valve 22 is more quickly lowered to further increase the pressure difference ⁇ Pce before and after the solenoid valve 22. It becomes possible to reduce the size effectively.
  • the controller 32 stops the compressor 2 and opens the electromagnetic valve 22 after the pressure difference ⁇ Pce before and after the electromagnetic valve 22 is reduced to a predetermined value B or less. Therefore, noise due to the pressure difference before and after the electromagnetic valve 22 is released. Can be more reliably eliminated or suppressed.
  • the electromagnetic valve 22 is opened and the compressor 2 is started.
  • the controller 32 may decrease the rotational speed Nc of the compressor 2.
  • the controller 32 changes the operation mode of the vehicle air conditioner 1 from the cooling mode or the dehumidifying cooling mode (which may be either or both) to the heating mode.
  • An example of the noise improvement control to be executed will be described. 7 shows the outdoor expansion valve 6, the bypass solenoid valve 20, the heating solenoid valve 21, the cooling solenoid valve 17, the dehumidification solenoid valve 22, and the evaporation capability in the cooling (dehumidifying cooling) mode and the heating mode.
  • the pressure difference ⁇ Pox before and after the heating solenoid valve 21 becomes medium to small, and becomes a large value compared to the others. Therefore, when the electromagnetic valve 21 that is closed in the cooling mode or the dehumidifying cooling mode is opened in order to enter the heating mode with such a pressure difference, the suction side (accumulator) of the compressor 2 passes through the electromagnetic valve 21 from the outdoor heat exchanger 7. The refrigerant suddenly flows in the direction (12 side), and a large noise (noise) is generated in the solenoid valve 21.
  • the controller 32 executes the noise improvement control described below also when the operation mode is switched from the cooling mode or the dehumidifying cooling mode to the heating mode. That is, when switching from the cooling mode or the dehumidifying cooling mode to the heating mode, the controller 32 first stops the compressor 2 before switching the operation mode. When the compressor 2 is stopped, the pressure in the refrigerant circuit R goes to an equilibrium state, so the pressure difference ⁇ Pox before and after the electromagnetic valve 21 also decreases.
  • the controller 32 opens the heating solenoid valve 21. Further, when the electromagnetic valve 21 is opened, the controller 32 starts the compressor 2 and starts the air conditioning operation in the heating mode.
  • the controller 32 executes the noise improvement control for opening the electromagnetic valve 21 after reducing the pressure difference ⁇ Pox before and after the heating electromagnetic valve 21.
  • the controller 32 executes the noise improvement control for opening the electromagnetic valve 21 after reducing the pressure difference ⁇ Pox before and after the heating electromagnetic valve 21.
  • the controller 32 stops the compressor 2, so that the pressure upstream of the refrigerant upstream of the solenoid valve 21 for heating is more quickly reduced to further increase the pressure difference ⁇ Pox before and after the solenoid valve 21. It becomes possible to reduce the size effectively.
  • the controller 32 stops the compressor 2 and opens the solenoid valve 21 after the pressure difference ⁇ Pox before and after the solenoid valve 21 is reduced to a predetermined value A or less. Therefore, noise due to the pressure difference before and after the solenoid valve 21 is released. Can be more reliably eliminated or suppressed.
  • the controller 32 opens the solenoid valve 21 and starts the compressor 2 when the pressure difference ⁇ Pox before and after the heating solenoid valve 21 decreases to a predetermined value A or less.
  • the electromagnetic valve 21 is opened after the predetermined time t ⁇ b> 1 has elapsed since the compressor 2 is stopped, and the compressor 2 is started. Good.
  • the controller 32 may decrease the rotational speed Nc of the compressor 2.
  • FIG. 9 shows the outdoor expansion valve 6, the bypass solenoid valve 20, the heating solenoid valve 21, the cooling solenoid valve 17, the dehumidification solenoid valve 22, and the evaporation capacity control valve in the internal cycle mode and the dehumidifying heating mode.
  • 11 shows the open / closed states of 11 and the pressure difference before and after each valve when the internal cycle mode is switched to the dehumidifying heating mode (the difference in pressure between the refrigerant upstream side and the refrigerant downstream side of each valve).
  • the timing chart of FIG. 10 shows the pressure difference ⁇ Pox before and after the heating solenoid valve 21 when switching from the internal cycle mode to the dehumidifying heating mode, the pressure difference ⁇ Pce before and after the solenoid valve 22 for dehumidification, and compression.
  • the rotation speed Nc of the machine 2 and the states of the outdoor expansion valve 6, the electromagnetic valve 21, and the electromagnetic valve 22 are shown. Since the solenoid valve 22 is open in both the internal cycle mode and the dehumidifying heating mode, the pressure difference ⁇ Pce before and after the solenoid valve 22 is not considered in this case.
  • the pressure difference ⁇ Pox before and after the heating solenoid valve 21 becomes medium to small, and becomes a large value compared to the others. Therefore, when the electromagnetic valve 21 that is closed in the internal cycle mode is opened to enter the dehumidifying and heating mode with such a pressure difference, the suction side (accumulator 12 side) of the compressor 2 passes through the electromagnetic valve 21 from the outdoor heat exchanger 7. ) suddenly flows in the direction of), and a large noise (noise) is generated in the solenoid valve 21.
  • the controller 32 executes the noise improvement control described below also when switching the operation mode from the internal cycle mode to the dehumidifying heating mode. That is, when switching from the internal cycle mode to the dehumidifying heating mode, the controller 32 first stops the compressor 2 before switching the operation mode. When the compressor 2 is stopped, the pressure in the refrigerant circuit R goes to an equilibrium state, so the pressure difference ⁇ Pox before and after the electromagnetic valve 21 also decreases.
  • the controller 32 opens the heating solenoid valve 21. Further, when the electromagnetic valve 21 is opened, the controller 32 starts the compressor 2 and starts the air conditioning operation in the dehumidifying and heating mode.
  • the controller 32 executes the noise improvement control for opening the electromagnetic valve 21 after reducing the pressure difference ⁇ Pox before and after the heating electromagnetic valve 21.
  • the controller 32 executes the noise improvement control for opening the electromagnetic valve 21 after reducing the pressure difference ⁇ Pox before and after the heating electromagnetic valve 21.
  • the controller 32 stops the compressor 2, so that the pressure upstream of the refrigerant upstream of the solenoid valve 21 for heating is more quickly reduced to further increase the pressure difference ⁇ Pox before and after the solenoid valve 21. It becomes possible to reduce the size effectively.
  • the controller 32 stops the compressor 2 and opens the solenoid valve 21 after the pressure difference ⁇ Pox before and after the solenoid valve 21 is reduced to a predetermined value A or less. Therefore, noise due to the pressure difference before and after the solenoid valve 21 is released. Can be more reliably eliminated or suppressed.
  • the controller 32 opens the solenoid valve 21 and starts the compressor 2 when the pressure difference ⁇ Pox before and after the heating solenoid valve 21 decreases to a predetermined value A or less.
  • the electromagnetic valve 21 is opened after the predetermined time t ⁇ b> 1 elapses after the compressor 2 is stopped, and the compressor 2 is started. Good.
  • the controller 32 may decrease the rotational speed Nc of the compressor 2.
  • Noise improvement control (part 5)
  • FIGS. 11 and 12 show the outdoor expansion valve 6, the bypass solenoid valve 20, the heating solenoid valve 21, the cooling solenoid valve 17, the dehumidifying solenoid valve 22, and the evaporation capability control valve 11 in the internal cycle mode and the heating mode.
  • the pressure difference before and after each valve when the internal cycle mode is switched to the heating mode difference in pressure between the refrigerant upstream side and the refrigerant downstream side of each valve).
  • the timing chart of FIG. 12 shows the pressure difference ⁇ Pox before and after the heating solenoid valve 21 when switching from the internal cycle mode to the heating mode, the pressure difference ⁇ Pce before and after the dehumidifying solenoid valve 22, and the compressor. 2 shows the rotational speed Nc, and the states of the outdoor expansion valve 6, the electromagnetic valve 21, and the electromagnetic valve 22.
  • the electromagnetic valve 22 is open in the internal cycle mode and is closed in the heating mode. In this case, the pressure difference ⁇ Pce before and after the electromagnetic valve 22 is not considered.
  • the pressure difference ⁇ Pox before and after the heating solenoid valve 21 becomes medium to small, and becomes a large value compared to the others. Therefore, when the solenoid valve 21 that is closed in the internal cycle mode is opened to enter the heating mode while maintaining such a pressure difference, the suction side (accumulator 12 side) of the compressor 2 passes through the solenoid valve 21 from the outdoor heat exchanger 7. As a result, the refrigerant suddenly flows in the direction of, and a loud sound (noise) is generated in the electromagnetic valve 21.
  • the controller 32 executes the noise improvement control described below also when switching the operation mode from the internal cycle mode to the heating mode. That is, when switching from the internal cycle mode to the heating mode, the controller 32 first stops the compressor 2 before switching the operation mode. When the compressor 2 is stopped, the pressure in the refrigerant circuit R goes to an equilibrium state, so the pressure difference ⁇ Pox before and after the electromagnetic valve 21 also decreases.
  • the controller 32 opens the heating solenoid valve 21. Further, when the electromagnetic valve 21 is opened, the controller 32 starts the compressor 2 and starts the air conditioning operation in the heating mode.
  • the controller 32 executes the noise improvement control for opening the electromagnetic valve 21 after reducing the pressure difference ⁇ Pox before and after the heating electromagnetic valve 21.
  • the noise improvement control for opening the electromagnetic valve 21 after reducing the pressure difference ⁇ Pox before and after the heating electromagnetic valve 21.
  • the controller 32 stops the compressor 2, so that the pressure upstream of the refrigerant upstream of the solenoid valve 21 for heating is more quickly reduced to further increase the pressure difference ⁇ Pox before and after the solenoid valve 21. It becomes possible to reduce the size effectively.
  • the controller 32 stops the compressor 2 and opens the solenoid valve 21 after the pressure difference ⁇ Pox before and after the solenoid valve 21 is reduced to a predetermined value A or less. Therefore, noise due to the pressure difference before and after the solenoid valve 21 is released. Can be more reliably eliminated or suppressed.
  • the controller 32 opens the solenoid valve 21 and starts the compressor 2 when the pressure difference ⁇ Pox before and after the heating solenoid valve 21 decreases to a predetermined value A or less. In this case, however, as indicated by the broken line in FIG. 12, the electromagnetic valve 21 is opened after the predetermined time t1 has elapsed since the compressor 2 was stopped, and the compressor 2 is started. Good. Similarly, in the noise improvement control of the above embodiment, the controller 32 may decrease the rotational speed Nc of the compressor 2.
  • the controller 32 is based on the vehicle speed VSP from the vehicle speed sensor 52, and the predetermined value of the pressure difference ⁇ Pox described above in the direction of increasing the vehicle speed VSP. A and a predetermined value B of the pressure ⁇ Pce are changed. In a situation where the vehicle speed VSP is high, noise due to the opening of the solenoid valves 21 and 22 is less noticeable. Therefore, the controller 32 increases the predetermined values A and B of the pressure differences ⁇ Pox and ⁇ Pce between the solenoid valves 21 and 22 as the vehicle speed VSP increases.
  • the predetermined values A and B are increased so that the solenoid valves 21 and 22 are opened early, and the operation mode can be switched quickly. To be able to do.
  • the controller 32 increases the predetermined values A and B of the pressure differences ⁇ Pox and ⁇ Pce before and after the electromagnetic valves 21 and 22 based on the operation state of the indoor blower 27 as the air volume increases.
  • the controller 32 allows the electromagnetic valves 21 and 22 to be opened early, and similarly the operation mode It is possible to quickly switch between.
  • FIG. 13 shows another configuration diagram of the vehicle air conditioner 1 of the present invention.
  • the outdoor heat exchanger 7 is not provided with the receiver dryer section 14 and the supercooling section 16, and the refrigerant pipe 13 ⁇ / b> A exiting from the outdoor heat exchanger 7 is connected via the electromagnetic valve 17 and the check valve 18. It is connected to the refrigerant pipe 13B.
  • the refrigerant pipe 13D branched from the refrigerant pipe 13A is connected to the refrigerant pipe 13C on the downstream side of the internal heat exchanger 19 via the electromagnetic valve 21.
  • the present invention is also effective in the vehicle air conditioner 1 of the refrigerant circuit R that employs the outdoor heat exchanger 7 that does not include the receiver dryer section 14 and the supercooling section 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

ヒートポンプ方式の車両用空気調和装置において、運転モードの切換時に開閉弁(電磁弁)を開放する際に生じる騒音を解消、若しくは、低減する。冷媒を放熱器4にて放熱させ、減圧した後、吸熱器9及び室外熱交換器7にて吸熱させる除湿暖房モードと、冷媒を室外熱交換器にて放熱させ、減圧した後、吸熱器にて吸熱させる冷房モードを有する。除湿暖房モードで開放される電磁弁21と電磁弁22を備える。冷房モードから除湿暖房モードに切り換える際、各電磁弁前後の圧力差を縮小した後、それらを開放する。

Description

車両用空気調和装置
 本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置、特にハイブリッド自動車や電気自動車に好適な車両用空気調和装置に関するものである。
 近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器と、車室内側に設けられて冷媒を吸熱させる吸熱器と、車室外側に設けられて冷媒を放熱又は吸熱させる室外熱交換器を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器において放熱させ、放熱器において放熱した冷媒を吸熱器及び室外熱交換器において吸熱させる除湿暖房モードと、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる内部サイクルモードと、圧縮機から吐出された冷媒を放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房モードと、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モードの各運転モードを切り換えて実行するものが開発されている(例えば、特許文献1参照)。
特開2014-94671号公報 特開2014-88151号公報
 前記特許文献1のような車両用空気調和装置では、室外熱交換器の出口と圧縮機の吸込側のアキュムレータの間には、暖房用の電磁弁(開閉弁)が設けられ、上記冷房モード又は除湿冷房モードから除湿暖房モードに切り換える際には、この暖房用の電磁弁を開放するものであるが、この切り換えの際の電磁弁前後の圧力差は大きいため、電磁弁の開放時に圧縮機の吸込側(アキュムレータ)に急激に流れる冷媒によって比較的大きい騒音が発生する。
 また、室外熱交換器には並列に除湿用の電磁弁(開閉弁)が設けられており、上記冷房モードや除湿冷房モードから内部サイクルモードに切り換える際、前記除湿用の電磁弁を開放するものであるが、この切り換えの際の電磁弁前後の圧力差も大きいため、電磁弁の開放時に吸熱器側に急激に流れる冷媒によって同様に大きな騒音が発生する問題があった。
 ここで、暖房と冷房を切り換える際に、冷媒回路の高圧側と低圧側の圧力差を下げてから電磁弁を開放することで異音の発生を抑えるものが提案されている(例えば、特許文献2参照)。
 本発明は、係る従来の実情に鑑み成されたものであり、所謂ヒートポンプ方式の車両用空気調和装置において、運転モードの切換時に開閉弁を開放する際に生じる騒音を解消、若しくは、低減することを目的とする。
 請求項1の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させるための室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器及び室外熱交換器にて吸熱させる除湿暖房モードと、圧縮機から吐出された冷媒を放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房モードと、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モードの各運転モードを切り換えて実行するものであって、室外熱交換器の出口側に接続され、除湿暖房モードにおいて開放される暖房用の開閉弁と、室外熱交換器に対して並列に接続され、除湿暖房モードにおいて開放される除湿用の開閉弁を備え、制御手段は、冷房モード及び/又は除湿冷房モードから除湿暖房モードに切り換える際、各開閉弁前後の圧力差を縮小した後、各開閉弁を開放する騒音改善制御を実行することを特徴とする。
 請求項2の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させるための室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる内部サイクルモードと、圧縮機から吐出された冷媒を放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房モードと、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モードの各運転モードを切り換えて実行するものであって、室外熱交換器に対して並列に接続され、内部サイクルモードにおいて開放される除湿用の開閉弁を備え、制御手段は、冷房モード及び/又は除湿冷房モードから内部サイクルモードに切り換える際、開閉弁前後の圧力差を縮小した後、当該開閉弁を開放する騒音改善制御を実行することを特徴とする。
 請求項3の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させるための室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房モードと、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モードの各運転モードを切り換えて実行するものであって、室外熱交換器の出口側に接続され、暖房モードにおいて開放される暖房用の開閉弁を備え、制御手段は、冷房モード及び/又は除湿冷房モードから暖房モードに切り換える際、開閉弁前後の圧力差を縮小した後、当該開閉弁を開放する騒音改善制御を実行することを特徴とする。
 請求項4の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させるための室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器及び室外熱交換器にて吸熱させる除湿暖房モードと、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる内部サイクルモードの各運転モードを切り換えて実行するものであって、室外熱交換器の出口側に接続され、暖房モード及び除湿暖房モードにおいて開放される暖房用の開閉弁を備え、制御手段は、内部サイクルモードから暖房モード及び/又は除湿暖房モードに切り換える際、開閉弁前後の圧力差を縮小した後、当該開閉弁を開放する騒音改善制御を実行する。
 請求項5の発明の車両用空気調和装置は、上記各発明において制御手段は、騒音改善制御において、圧縮機の回転数を低下させることを特徴とする。
 請求項6の発明の車両用空気調和装置は、請求項1乃至請求項4の発明において制御手段は、騒音改善制御において、圧縮機を停止することを特徴とする。
 請求項7の発明の車両用空気調和装置は、上記発明において制御手段は、圧縮機を停止し、所定時間経過後に開閉弁を開放することを特徴とする。
 請求項8の発明の車両用空気調和装置は、請求項5又は請求項6の発明において制御手段は、圧縮機の回転数を低下させ、又は、当該圧縮機を停止し、開閉弁前後の圧力差が所定値以下に縮小した後、当該開閉弁を開放することを特徴とする。
 請求項9の発明の車両用空気調和装置は、上記発明において制御手段は、車速が高い程、開閉弁前後の圧力差の所定値を高くすることを特徴とする。
 請求項10の発明の車両用空気調和装置は、請求項8又は請求項9の発明において空気流通路に空気を送給するための室内送風機を備え、制御手段は、室内送風機の風量が多い程、開閉弁前後の圧力差の所定値を高くすることを特徴とする。
 請求項11の発明の車両用空気調和装置は、上記各発明において空気流通路に空気を送給するための室内送風機と、室外熱交換器に外気を通風するための室外送風機を備え、制御手段は、運転モードを切り換える際、室内送風機及び/又は室外送風機の風量を増加させることを特徴とする。
 請求項12の発明の車両用空気調和装置は、上記各発明において空気流通路に空気を送給するための室内送風機を備え、制御手段は、車速が所定値以上である場合、及び/又は、室内送風機の風量が所定値以上である場合、騒音改善制御を実行しないことを特徴とする。
 請求項1の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させるための室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器及び室外熱交換器にて吸熱させる除湿暖房モードと、圧縮機から吐出された冷媒を放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房モードと、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モードの各運転モードを切り換えて実行する車両用空気調和装置において、室外熱交換器の出口側に接続され、除湿暖房モードにおいて開放される暖房用の開閉弁と、室外熱交換器に対して並列に接続され、除湿暖房モードにおいて開放される除湿用の開閉弁を備え、制御手段は、冷房モード及び/又は除湿冷房モードから除湿暖房モードに切り換える際、各開閉弁前後の圧力差を縮小した後、各開閉弁を開放する騒音改善制御を実行するようにしたので、冷房モードや除湿冷房モードから除湿暖房モードに切り換える際、暖房用の開閉弁を開放したときに、圧縮機の吸込側に向かって冷媒が急激に流れることを大幅に抑制又は解消することができる。
 また、除湿用の開閉弁を開放したときに、吸熱器側に向かって冷媒が急激に流れることも同様に抑制又は解消することができるようになるので、これらにより、冷房モードや除湿冷房モードから除湿暖房モードへの切換時に、暖房用の開閉弁及び除湿用の開閉弁を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 請求項2の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させるための室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる内部サイクルモードと、圧縮機から吐出された冷媒を放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房モードと、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モードの各運転モードを切り換えて実行する車両用空気調和装置において、室外熱交換器に対して並列に接続され、内部サイクルモードにおいて開放される除湿用の開閉弁を備え、制御手段は、冷房モード及び/又は除湿冷房モードから内部サイクルモードに切り換える際、開閉弁前後の圧力差を縮小した後、当該開閉弁を開放する騒音改善制御を実行するようにしたので、冷房モードや除湿冷房モードから内部サイクルモードに切り換える際、除湿用の開閉弁を開放したときに、吸熱器側に向かって冷媒が急激に流れることを大幅に抑制又は解消することができる。
 これにより、冷房モードや除湿冷房モードから内部サイクルモードへの切換時に、除湿用の開閉弁を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 請求項3の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させるための室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房モードと、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モードの各運転モードを切り換えて実行する車両用空気調和装置において、室外熱交換器の出口側に接続され、暖房モードにおいて開放される暖房用の開閉弁を備え、制御手段は、冷房モード及び/又は除湿冷房モードから暖房モードに切り換える際、開閉弁前後の圧力差を縮小した後、当該開閉弁を開放する騒音改善制御を実行するようにしたので、冷房モードや除湿冷房モードから暖房モードに切り換える際、暖房用の開閉弁を開放したときに、圧縮機の吸込側に向かって冷媒が急激に流れることを大幅に抑制又は解消することができる。
 これにより、冷房モードや除湿冷房モードから暖房モードへの切換時に、暖房用の開閉弁を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 請求項4の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させるための室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器及び室外熱交換器にて吸熱させる除湿暖房モードと、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる内部サイクルモードの各運転モードを切り換えて実行する車両用空気調和装置において、室外熱交換器の出口側に接続され、暖房モード及び除湿暖房モードにおいて開放される暖房用の開閉弁を備え、制御手段は、内部サイクルモードから暖房モード及び/又は除湿暖房モードに切り換える際、開閉弁前後の圧力差を縮小した後、当該開閉弁を開放する騒音改善制御を実行するようにしたので、内部サイクルモードから暖房モードや除湿暖房モードに切り換える際、暖房用の開閉弁を開放したときに、圧縮機の吸込側に向かって冷媒が急激に流れることを大幅に抑制又は解消することができる。
 これにより、内部サイクルモードから暖房モードや除湿暖房モードへの切換時に、暖房用の開閉弁を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 これらの場合、請求項5の発明の如く制御手段が、騒音改善制御において圧縮機の回転数を低下させるようにすれば、騒音改善制御において除湿用の開閉弁や暖房用の開閉弁の冷媒上流側の圧力を下げることで各開閉弁前後の圧力差を効果的に縮小させることができるようになる。
 また、請求項6の発明の如く制御手段が、騒音改善制御において、圧縮機を停止するようにすれば、騒音改善制御において除湿用の開閉弁や暖房用の開閉弁の冷媒上流側の圧力をより迅速に下げて各開閉弁前後の圧力差を一層効果的に縮小させることができるようになる。
 この場合、請求項7の発明の如く制御手段が圧縮機を停止し、所定時間経過後に開閉弁を開放するようにすれば、制御を簡素化しながら開閉弁前後の圧力差の縮小を十分に図り、騒音を効果的に解消、若しくは、低減することが可能となる。
 また、請求項8の発明の如く制御手段が圧縮機の回転数を低下させ、又は、当該圧縮機を停止し、開閉弁前後の圧力差が所定値以下に縮小した後、当該開閉弁を開放するようにすれば、開閉弁前後の圧力差による騒音の発生をより確実に解消、若しくは、抑制することができるようになる。
 この場合、車速が高い状況では開閉弁の開放による騒音は気になり難くなる。そこで、請求項9の発明の如く制御手段が、車速が高い程、開閉弁前後の圧力差の所定値を高くするようにすれば、開閉弁の開放による騒音が気になり難い状況では、開閉弁前後の圧力差の所定値を高くすることで開閉弁を早期に開放し、運転モードの切り換えを迅速に行うことができるようになる。
 また、空気流通路に空気を送給するための室内送風機の風量が多い状況でも開閉弁の開放による騒音は気になり難くなる。その場合も請求項10の発明の如く制御手段が、室内送風機の風量が多い程、開閉弁前後の圧力差の所定値を高くすることで開閉弁を早期に開放し、同様に運転モードの切り換えを迅速に行うことができるようになる。
 更に、請求項11の発明の如く制御手段が、運転モードを切り換える際、室内送風機や、室外熱交換器に外気を通風するための室外送風機の風量を増加させることでも開閉弁の開放による騒音を気になり難くすることが可能となる。
 そして、請求項12の発明の如く制御手段が、車速が所定値以上である場合、及び/又は、室内送風機の風量が所定値以上である場合、騒音改善制御を実行しないようにすれば、開閉弁の開放による騒音が気になり難い状況では騒音改善制御を実施せず、開閉弁を直ぐに開放して、騒音による不快感と運転モード切換の遅延の双方を回避することができるようになる。
本発明を適用した一実施形態の車両用空気調和装置の構成図である(実施例1)。 図1の車両用空気調和装置のコントローラの電気回路のブロック図である。 冷房(除湿冷房)モードから除湿暖房モードに切り換えるときの図1の車両用空気調和装置の室外膨張弁、各電磁弁と蒸発能力制御弁の状態、及び、それらの前後の圧力差を説明する図である。 冷房(除湿冷房)モードから除湿暖房モードに切り換えるときに図2のコントローラが実行する騒音改善制御(その1)を説明する各機器のタイミングチャートである。 冷房(除湿冷房)モードから内部サイクルモードに切り換えるときの図1の車両用空気調和装置の室外膨張弁、各電磁弁と蒸発能力制御弁の状態、及び、それらの前後の圧力差を説明する図である。 冷房(除湿冷房)モードから内部サイクルモードに切り換えるときに図2のコントローラが実行する騒音改善制御(その2)を説明する各機器のタイミングチャートである。 冷房(除湿冷房)モードから暖房モードに切り換えるときの図1の車両用空気調和装置の室外膨張弁、各電磁弁と蒸発能力制御弁の状態、及び、それらの前後の圧力差を説明する図である。 冷房(除湿冷房)モードから暖房モードに切り換えるときに図2のコントローラが実行する騒音改善制御(その3)を説明する各機器のタイミングチャートである。 内部サイクルモードから除湿暖房モードに切り換えるときの図1の車両用空気調和装置の室外膨張弁、各電磁弁と蒸発能力制御弁の状態、及び、それらの前後の圧力差を説明する図である。 内部サイクルモードから除湿暖房モードに切り換えるときに図2のコントローラが実行する騒音改善制御(その4)を説明する各機器のタイミングチャートである。 内部サイクルモードから暖房モードに切り換えるときの図1の車両用空気調和装置の室外膨張弁、各電磁弁と蒸発能力制御弁の状態、及び、それらの前後の圧力差を説明する図である。 内部サイクルモードから暖房モードに切り換えるときに図2のコントローラが実行する騒音改善制御(その5)を説明する各機器のタイミングチャートである。 本発明を適用可能な他の実施形態の車両用空気調和装置の構成図である(実施例2)。
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。
 図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房を行い、更に、除湿暖房や内部サイクル、冷房除湿や冷房の各運転モードを選択的に実行するものである。
 尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁(機械式膨張弁でもよい)から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱器9と、吸熱器9における蒸発能力を調整する蒸発能力制御弁11と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。
 尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速VSPが0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される冷房用の開閉弁としての電磁弁(冷房用)17を介してレシーバドライヤ部14に接続され、過冷却部16の出口が逆止弁18を介して室内膨張弁8に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成しており、逆止弁18は室内膨張弁8側が順方向とされている。
 また、逆止弁18と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側に位置する蒸発能力制御弁11を出た冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出て蒸発能力制御弁11を経た低温の冷媒により冷却(過冷却)される構成とされている。
 また、室外熱交換器7から出た冷媒配管13Aは分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される暖房用の開閉弁としての電磁弁(暖房用)21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前で分岐しており、この分岐した冷媒配管13Fは除湿時に開放される除湿用の開閉弁としての電磁弁(除湿用)22を介して逆止弁18の下流側の冷媒配管13Bに連通接続されている。即ち、電磁弁22は室外熱交換器7に対して並列に接続されている。
 また、室外膨張弁6には並列にバイパス配管13Jが接続されており、このバイパス配管13Jには、冷房モードにおいて開放され、室外膨張弁6をバイパスして冷媒を流すためのバイパス用の開閉弁としての電磁弁(バイパス用)20が介設されている。尚、これら室外膨張弁6及び電磁弁20と室外熱交換器7との間の配管は13Iとする。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、放熱器4の空気上流側における空気流通路3内には、内気や外気の放熱器4への流通度合いを調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、フット、ベント、デフの各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
 次に、図2において32はマイクロコンピュータから構成された制御手段としてのコントローラ(ECU)であり、このコントローラ32の入力には、実施例では車両の外気温度Tamを検出する外気温度センサ33と、車両の外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒の圧力(吐出圧力)Pdを検出する吐出圧力センサ42と、圧縮機2の吐出冷媒の温度(吐出温度)Tdを検出する吐出温度センサ43と、圧縮機2の吸込冷媒の温度(吸込温度)Tsを検出する吸込温度センサ44と、放熱器4の冷媒温度(放熱器温度)TCIを検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器圧力)PCIを検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器温度)Teを検出する吸熱器温度センサ48と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速VSP)を検出するための車速センサ52と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53と、室外熱交換器7の冷媒温度(室外熱交換器温度)TXOを検出する室外熱交換器温度センサ54の各出力が接続されている。
 一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、各電磁弁22、17、21、20と、蒸発能力制御弁11が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御する。
 ここで、前述した冷房用の電磁弁17とバイパス用の電磁弁20は、非通電時に開放する所謂ノーマルオープンの電磁弁である。また、前述した暖房用の電磁弁21と除湿用の電磁弁22は、非通電時に閉じる所謂ノーマルクローズの電磁弁であり、これにより、電源が断たれた状態でも、圧縮機2の吐出側-放熱器4-室外熱交換器7-吸熱器9-圧縮機2の吸込側と連通する環状の冷媒回路が構成されるように配慮されている。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では大きく分けて暖房モードと、除湿暖房モードと、内部サイクルモードと、除湿冷房モードと、冷房モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れについて説明する。
 (1)暖房モード
 コントローラ32により、或いは、空調操作部53へのマニュアル操作により暖房モードが選択されると、コントローラ32は暖房用の電磁弁21を開放し、冷房用の電磁弁17、除湿用の電磁弁22及びバイパス用の電磁弁20を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなり、室外熱交換器7は冷媒の蒸発器として機能する。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
 コントローラ32は吐出温度センサ43が検出する吐出温度Tdから換算される冷媒回路Rの高圧側圧力、又は、吐出圧力センサ42が検出する冷媒回路Rの高圧側圧力(吐出圧力Pd)、若しくは、放熱器圧力センサ47が検出する冷媒回路Rの高圧側圧力(放熱器圧力PCI)に基づいて圧縮機2の回転数Ncを制御すると共に、放熱器温度センサ46が検出する放熱器4の温度及び放熱器圧力センサ47が検出する放熱器4の冷媒圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。
 (2)除湿暖房モード
 次に、除湿暖房モードでは、コントローラ32は上記暖房モードの状態において除湿用の電磁弁22を開放する。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部が分流され、電磁弁22を経て冷媒配管13F及び冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cにて冷媒配管13Dからの冷媒と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。コントローラ32は吐出温度センサ43が検出する吐出温度Tdから換算される冷媒回路Rの高圧側圧力、又は、吐出圧力センサ42が検出する冷媒回路Rの高圧側圧力(吐出圧力Pd)、若しくは、放熱器圧力センサ47が検出する冷媒回路Rの高圧側圧力(放熱器圧力PCI)に基づいて圧縮機2の回転数Ncを制御すると共に、吸熱器温度センサ48が検出する吸熱器9の吸熱器温度Teに基づいて室外膨張弁6の弁開度を制御する。
 (3)内部サイクルモード
 次に、内部サイクルモードでは、コントローラ32は上記除湿暖房モードの状態において室外膨張弁6を全閉とする(全閉位置)と共に、バイパス用の電磁弁20、暖房用の電磁弁21も閉じる。この室外膨張弁6と電磁弁20、21が閉じられることにより、室外熱交換器7への冷媒の流入、及び、室外熱交換器7からの冷媒の流出は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒はバイパス用の電磁弁22を経て冷媒配管13Fに全て流れるようになる。そして、冷媒配管13Fを流れる冷媒は冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至る。この室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになるが、この内部サイクルモードでは室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。また、除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房モードに比較すると除湿能力は高いが、暖房能力は低くなる。
 コントローラ32は吸熱器9の吸熱器温度Te、又は、前述した冷媒回路Rの高圧側圧力に基づいて圧縮機2の回転数Ncを制御する。このとき、コントローラ32は吸熱器9の吸熱器温度Teによるか高圧側圧力によるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。
 (4)除湿冷房モード
 次に、除湿冷房モードでは、コントローラ32は冷房用の電磁弁17を開放し、暖房用の電磁弁21、除湿用の電磁弁22及びバイパス用の電磁弁20を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。この室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。コントローラ32は吸熱器温度センサ48が検出する吸熱器9の吸熱器温度Teに基づいて圧縮機2の回転数Ncを制御すると共に、前述した冷媒回路Rの高圧側圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の放熱器圧力PCIを制御する。
 (5)冷房モード
 次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において電磁弁20を開き(この場合、室外膨張弁6は全開(弁開度を制御上限)を含む何れの弁開度でもよい)、エアミックスダンパ28は放熱器4に空気が通風されない状態を含み、通風量を制御する状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4に空気流通路3内の空気が通風されない場合には、ここは通過するのみとなり、通風される場合には空気に放熱される。放熱器4を出た冷媒は冷媒配管13Eを経て電磁弁20及び室外膨張弁6に至る。
 このとき電磁弁20は開放されているので冷媒は室外膨張弁6を迂回してバイパス配管13Jを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過することなく、あるいは若干通過し、吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の吸熱器温度Teに基づいて圧縮機2の回転数Ncを制御する。
 コントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて運転モードを選択する。また、起動後は外気温度Tamや目標吹出温度TAO等の環境や設定条件の変化に応じて前記各運転モードを選択し、切り換えていくものである。
 (6)騒音改善制御(その1)
 次に、図3及び図4を参照しながら、車両用空気調和装置1の運転モードを、前述した冷房モード又は除湿冷房モード(両方若しくは何れかでもよい)から除湿暖房モードに切り換える際にコントローラ32が実行する騒音改善制御の一例について説明する。図3は冷房(除湿冷房)モードと除湿暖房モードにおける室外膨張弁6、バイパス用の電磁弁20、暖房用の電磁弁21、冷房用の電磁弁17、除湿用の電磁弁22、及び、蒸発能力制御弁11の各開閉状態と、冷房(除湿冷房)モードから除湿暖房モードに切り換えた時の各弁前後の圧力差(各弁の冷媒上流側と冷媒下流側の圧力の差)を示している。尚、図3の冷房(除湿冷房)の欄で電磁弁20について開(閉)と示すのは、冷房モードでは開、除湿冷房モードでは閉を意味している(図5、図7において同じ)。
 また、図4のタイミングチャートは、冷房(又は除湿冷房)モードから除湿暖房モードに切り換わる際の暖房用の電磁弁21の前後の圧力差ΔPoxと、除湿用の電磁弁22の前後の圧力差ΔPceと、圧縮機2の回転数Ncと、室外膨張弁6、電磁弁21、及び、電磁弁22の状態を示している。
 尚、電磁弁21の前後の圧力差ΔPoxは、室外熱交換器温度センサ54が検出する室外熱交換器温度TXOから換算される電磁弁21の冷媒上流側(前)の圧力Pox1と吸熱器温度センサ48が検出する吸熱器温度Teから換算される電磁弁21の冷媒下流側(後)の圧力Pox2との差(ΔPox=Pox1-Pox2)であり、コントローラ32が算出する。また、電磁弁22の前後の圧力差ΔPceは、放熱器圧力センサ47が検出する放熱器圧力PCI(電磁弁22の冷媒上流側(前)の圧力)と、室外熱交換器温度センサ54が検出する室外熱交換器温度TXOから換算される電磁弁22の冷媒下流側(後)の圧力Pox1との差(ΔPce=PCI-Pox1)であり、これもコントローラ32が算出している(以下の騒音改善制御においても同じ)。
 運転モードが冷房モード又は除湿冷房モードから除湿暖房モードに切り換わる際、暖房用の電磁弁21の前後の圧力差ΔPoxは図3に示すように中~小となり、他に比べて大きい値となる。また、除湿用の電磁弁22の前後の圧力差ΔPceも中~小となり、比較大きな値となる。そのため、冷房モード又は除湿冷房モードでは閉じている各電磁弁21及び電磁弁22を、係る圧力差のまま除湿暖房モードとするために開放すると、室外熱交換器7から電磁弁21を経て圧縮機2の吸込側(アキュムレータ12側)の方向に冷媒が急激に流れると共に、放熱器4から電磁弁22を経て吸熱器9側(室内膨張弁8側)の方向に冷媒が急激に流れ、各電磁弁21、22において大きな音(騒音)が発生することになる。
 そこで、コントローラ32は冷房モードや除湿冷房モードから除湿暖房モードに運転モードを切り換える際、以下に説明する騒音改善制御を実行する。即ち、コントローラ32は冷房モードや除湿冷房モードから除湿暖房モードに切り換える場合、運転モードを切り換える前に、実施例では先ず圧縮機2を停止する。圧縮機2が停止することで、冷媒回路R内の圧力が平衡状態に向かうため(高圧側圧力は下がり、低圧側圧力は上がる)、電磁弁21及び電磁弁22の前後の圧力差ΔPox 及びΔPceも小さくなっていく。
 そして、圧力差ΔPoxが所定値A(例えば0.1MPa)以下に縮小した場合、コントローラ32は暖房用の電磁弁21を開くと共に、圧力差ΔPceが所定値B(例えば0.5MPa)以下に縮小した場合、コントローラ32は除湿用の電磁弁22を開く。また、両電磁弁21、22を開いた時点(実施例では電磁弁22を開いた時点)で、コントローラ32は圧縮機2を起動し、除湿暖房モードの空調運転を開始する。
 このようにコントローラ32は、冷房モードや除湿冷房モードから除湿暖房モードに切り換える際、暖房用の電磁弁21及び除湿用の電磁弁22の前後の圧力差ΔPox、ΔPceを縮小した後、各電磁弁21、22を開放する騒音改善制御を実行するので、冷房モードや除湿冷房モードから除湿暖房モードに切り換える際、暖房用の電磁弁21を開放したときに、圧縮機2の吸込側に向かって冷媒が急激に流れることを大幅に抑制又は解消することができる。
 また、除湿用の電磁弁22を開放したときに、吸熱器9側に向かって冷媒が急激に流れることも同様に抑制又は解消することができるようになるので、これらにより、冷房モードや除湿冷房モードから除湿暖房モードへの切換時に、暖房用の電磁弁21及び除湿用の電磁弁22を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 また、コントローラ32は上記騒音改善制御において、圧縮機2を停止するので、騒音改善制御において除湿用の電磁弁22や暖房用の電磁弁21の冷媒上流側の圧力をより迅速に下げて各電磁弁22、21の前後の圧力差ΔPce、ΔPoxを一層効果的に縮小させることができるようになる。
 更に、コントローラ32は圧縮機2を停止し、電磁弁21、22の前後の圧力差ΔPox、ΔPceが所定値A、B以下に縮小した後、当該電磁弁21、22をそれぞれ開放するので、電磁弁21、22の前後の圧力差による騒音の発生をより確実に解消、若しくは、抑制することができるようになる。
 尚、上記実施例の騒音改善制御では、コントローラ32が暖房用の電磁弁21と除湿用の電磁弁22の前後の圧力差ΔPox、ΔPceが所定値A、所定値B以下にそれぞれ縮小したときに各電磁弁21、22を開放し、双方とも縮小したときに圧縮機2を起動するようにしたが、それに限らず、図4中に破線で示すように、圧縮機2を停止してから所定時間t1(例えば20秒等)経過後に両電磁弁21、22を開放し、圧縮機2を起動するようにしてもよい。
 このような圧縮機2の停止からの経過時間による制御によれば、前述した所定値A、Bまでの圧力差の縮小で制御する例に比して制御そのものが簡素化される。但し、状況によっては前述した所定値A、Bによる直接的な制御に比べて運転モードの切り換えに要する時間が延びる場合もあるが、所定時間t1を適切に設定することにより、電磁弁21、22の前後の圧力差ΔPox、ΔPceの縮小を十分に図って騒音を効果的に解消、若しくは、低減することが可能となる(以下の騒音低減制御においても同様)。
 また、上記実施例の騒音改善制御では、コントローラ32が圧縮機2を停止するようにしたが、それに限らず、圧縮機2の回転数Ncを低下させるようにしてもよい。圧縮機2の回転数Ncを低下させることでも、除湿用の電磁弁22や暖房用の電磁弁21の冷媒上流側の圧力を下げることができるので、各電磁弁22、21の前後の圧力差ΔPce、ΔPoxを効果的に縮小させることができるからである(以下の騒音低減制御においても同様)。
 (7)騒音改善制御(その2)
 次に、図5及び図6を参照しながら、車両用空気調和装置1の運転モードを、前述した冷房モード又は除湿冷房モード(両方若しくは何れかでもよい)から内部サイクルモードに切り換える際にコントローラ32が実行する騒音改善制御の一例について説明する。図5は冷房(除湿冷房)モードと内部サイクルモードにおける室外膨張弁6、バイパス用の電磁弁20、暖房用の電磁弁21、冷房用の電磁弁17、除湿用の電磁弁22、及び、蒸発能力制御弁11の各開閉状態と、冷房(除湿冷房)モードから内部サイクルモードに切り換えた時の各弁前後の圧力差(各弁の冷媒上流側と冷媒下流側の圧力の差)を示している。
 また、図6のタイミングチャートは、冷房(又は除湿冷房)モードから内部サイクルモードに切り換わる際の暖房用の電磁弁21の前後の圧力差ΔPoxと、除湿用の電磁弁22の前後の圧力差ΔPceと、圧縮機2の回転数Ncと、室外膨張弁6、電磁弁21、及び、電磁弁22の状態を示している。尚、電磁弁21は冷房(又は除湿冷房)モードと内部サイクルモードの双方で閉じているので、この場合、電磁弁21の前後の圧力差ΔPoxは考慮しない。
 運転モードが冷房モード又は除湿冷房モードから内部サイクルモードに切り換わる際、除湿用の電磁弁22の前後の圧力差ΔPceは中~小となり、他と比較して大きな値となる。そのため、冷房モード又は除湿冷房モードでは閉じている電磁弁22を、係る圧力差のまま内部サイクルモードとするために開放すると、放熱器4から電磁弁22を経て吸熱器9側(室内膨張弁8側)の方向に冷媒が急激に流れ、電磁弁22において大きな音(騒音)が発生することになる。
 そこで、コントローラ32は冷房モードや除湿冷房モードから内部サイクルモードに運転モードを切り換える際も以下に説明する騒音改善制御を実行する。即ち、コントローラ32は冷房モードや除湿冷房モードから内部サイクルモードに切り換える場合、運転モードを切り換える前に、この場合も先ず圧縮機2を停止する。圧縮機2が停止することで、冷媒回路R内の圧力が平衡状態に向かうため、電磁弁22の前後の圧力差ΔPceも小さくなっていく。
 そして、圧力差ΔPceが前述した所定値B以下に縮小した場合、コントローラ32は除湿用の電磁弁22を開く。また、電磁弁22を開いた時点で、コントローラ32は圧縮機2を起動し、内部サイクルモードの空調運転を開始する。
 このようにコントローラ32は、冷房モードや除湿冷房モードから内部サイクルモードに切り換える際、除湿用の電磁弁22の前後の圧力差ΔPceを縮小した後、電磁弁22を開放する騒音改善制御を実行するので、冷房モードや除湿冷房モードから内部サイクルモードに切り換える際、除湿用の電磁弁22を開放したときに、吸熱器9側に向かって冷媒が急激に流れることを抑制又は解消することができるようになる。これにより、冷房モードや除湿冷房モードから内部サイクルモードへの切換時に、除湿用の電磁弁22を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 また、この場合の騒音改善制御においてもコントローラ32は圧縮機2を停止するので、除湿用の電磁弁22の冷媒上流側の圧力をより迅速に下げて電磁弁22の前後の圧力差ΔPceを一層効果的に縮小させることができるようになる。
 更に、コントローラ32は圧縮機2を停止し、電磁弁22の前後の圧力差ΔPceが所定値B以下に縮小した後、当該電磁弁22を開放するので、電磁弁22の前後の圧力差による騒音の発生をより確実に解消、若しくは、抑制することができるようになる。
 尚、上記実施例の騒音改善制御では、コントローラ32が除湿用の電磁弁22の前後の圧力差ΔPceが所定値B以下に縮小したときに電磁弁22を開放し、圧縮機2を起動するようにしたが、この場合も、図6中に破線で示すように、圧縮機2を停止してから前述した所定時間t1経過後に電磁弁22を開放し、圧縮機2を起動するようにしてもよい。また、上記実施例の騒音改善制御でも同様にはコントローラ32が圧縮機2の回転数Ncを低下させるようにしてもよい。
 (8)騒音改善制御(その3)
 次に、図7及び図8を参照しながら、車両用空気調和装置1の運転モードを、前述した冷房モード又は除湿冷房モード(両方若しくは何れかでもよい)から暖房モードに切り換える際にコントローラ32が実行する騒音改善制御の一例について説明する。図7は冷房(除湿冷房)モードと暖房モードにおける室外膨張弁6、バイパス用の電磁弁20、暖房用の電磁弁21、冷房用の電磁弁17、除湿用の電磁弁22、及び、蒸発能力制御弁11の各開閉状態と、冷房(除湿冷房)モードから暖房モードに切り換えた時の各弁前後の圧力差(各弁の冷媒上流側と冷媒下流側の圧力の差)を示している。
 また、図8のタイミングチャートは、冷房(又は除湿冷房)モードから暖房モードに切り換わる際の暖房用の電磁弁21の前後の圧力差ΔPoxと、除湿用の電磁弁22の前後の圧力差ΔPceと、圧縮機2の回転数Ncと、室外膨張弁6、電磁弁21、及び、電磁弁22の状態を示している。尚、電磁弁22は冷房(又は除湿冷房)モードと暖房モードの双方で閉じているので、この場合、電磁弁22の前後の圧力差ΔPceは考慮しない。
 運転モードが冷房モード又は除湿冷房モードから暖房モードに切り換わる際、暖房用の電磁弁21の前後の圧力差ΔPoxは中~小となり、他と比較して大きな値となる。そのため、冷房モード又は除湿冷房モードでは閉じている電磁弁21を、係る圧力差のまま暖房モードとするために開放すると、室外熱交換器7から電磁弁21を経て圧縮機2の吸込側(アキュムレータ12側)の方向に冷媒が急激に流れ、電磁弁21において大きな音(騒音)が発生することになる。
 そこで、コントローラ32は冷房モードや除湿冷房モードから暖房モードに運転モードを切り換える際も以下に説明する騒音改善制御を実行する。即ち、コントローラ32は冷房モードや除湿冷房モードから暖房モードに切り換える場合、運転モードを切り換える前に、この場合も先ず圧縮機2を停止する。圧縮機2が停止することで、冷媒回路R内の圧力が平衡状態に向かうため、電磁弁21の前後の圧力差ΔPoxも小さくなっていく。
 そして、圧力差ΔPoxが前述した所定値A以下に縮小した場合、コントローラ32は暖房用の電磁弁21を開く。また、電磁弁21を開いた時点で、コントローラ32は圧縮機2を起動し、暖房モードの空調運転を開始する。
 このようにコントローラ32は、冷房モードや除湿冷房モードから暖房モードに切り換える際、暖房用の電磁弁21の前後の圧力差ΔPoxを縮小した後、電磁弁21を開放する騒音改善制御を実行するので、冷房モードや除湿冷房モードから暖房モードに切り換える際、暖房用の電磁弁21を開放したときに、圧縮機2の吸込側(アキュムレータ12側)の方向に冷媒が急激に流れることを抑制又は解消することができるようになる。これにより、冷房モードや除湿冷房モードから暖房モードへの切換時に、暖房用の電磁弁21を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 また、この場合の騒音改善制御においてもコントローラ32は圧縮機2を停止するので、暖房用の電磁弁21の冷媒上流側の圧力をより迅速に下げて電磁弁21の前後の圧力差ΔPoxを一層効果的に縮小させることができるようになる。
 更に、コントローラ32は圧縮機2を停止し、電磁弁21の前後の圧力差ΔPoxが所定値A以下に縮小した後、当該電磁弁21を開放するので、電磁弁21の前後の圧力差による騒音の発生をより確実に解消、若しくは、抑制することができるようになる。
 尚、上記実施例の騒音改善制御では、コントローラ32が暖房用の電磁弁21の前後の圧力差ΔPoxが所定値A以下に縮小したときに電磁弁21を開放し、圧縮機2を起動するようにしたが、この場合も、図8中に破線で示すように、圧縮機2を停止してから前述した所定時間t1経過後に電磁弁21を開放し、圧縮機2を起動するようにしてもよい。また、上記実施例の騒音改善制御でも同様にはコントローラ32が圧縮機2の回転数Ncを低下させるようにしてもよい。
 (9)騒音改善制御(その4)
 次に、図9及び図10を参照しながら、車両用空気調和装置1の運転モードを、前述した内部サイクルモードから除湿暖房モードに切り換える際にコントローラ32が実行する騒音改善制御の一例について説明する。図9は内部サイクルモードと除湿暖房モードにおける室外膨張弁6、バイパス用の電磁弁20、暖房用の電磁弁21、冷房用の電磁弁17、除湿用の電磁弁22、及び、蒸発能力制御弁11の各開閉状態と、内部サイクルモードから除湿暖房モードに切り換えた時の各弁前後の圧力差(各弁の冷媒上流側と冷媒下流側の圧力の差)を示している。
 また、図10のタイミングチャートは、内部サイクルモードから除湿暖房モードに切り換わる際の暖房用の電磁弁21の前後の圧力差ΔPoxと、除湿用の電磁弁22の前後の圧力差ΔPceと、圧縮機2の回転数Ncと、室外膨張弁6、電磁弁21、及び、電磁弁22の状態を示している。尚、電磁弁22は内部サイクルモードと除湿暖房モードの双方で開いているので、この場合、電磁弁22の前後の圧力差ΔPceは考慮しない。
 運転モードが内部サイクルモードから除湿暖房モードに切り換わる際、暖房用の電磁弁21の前後の圧力差ΔPoxは中~小となり、他と比較して大きな値となる。そのため、内部サイクルモードでは閉じている電磁弁21を、係る圧力差のまま除湿暖房モードとするために開放すると、室外熱交換器7から電磁弁21を経て圧縮機2の吸込側(アキュムレータ12側)の方向に冷媒が急激に流れ、電磁弁21において大きな音(騒音)が発生することになる。
 そこで、コントローラ32は内部サイクルモードから除湿暖房モードに運転モードを切り換える際も以下に説明する騒音改善制御を実行する。即ち、コントローラ32は内部サイクルモードから除湿暖房モードに切り換える場合、運転モードを切り換える前に、この場合も先ず圧縮機2を停止する。圧縮機2が停止することで、冷媒回路R内の圧力が平衡状態に向かうため、電磁弁21の前後の圧力差ΔPoxも小さくなっていく。
 そして、圧力差ΔPoxが前述した所定値A以下に縮小した場合、コントローラ32は暖房用の電磁弁21を開く。また、電磁弁21を開いた時点で、コントローラ32は圧縮機2を起動し、除湿暖房モードの空調運転を開始する。
 このようにコントローラ32は、内部サイクルモードから除湿暖房モードに切り換える際、暖房用の電磁弁21の前後の圧力差ΔPoxを縮小した後、電磁弁21を開放する騒音改善制御を実行するので、内部サイクルモードから除湿暖房モードに切り換える際、暖房用の電磁弁21を開放したときに、圧縮機2の吸込側(アキュムレータ12側)の方向に冷媒が急激に流れることを抑制又は解消することができるようになる。これにより、内部サイクルモードから除湿暖房モードへの切換時に、暖房用の電磁弁21を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 また、この場合の騒音改善制御においてもコントローラ32は圧縮機2を停止するので、暖房用の電磁弁21の冷媒上流側の圧力をより迅速に下げて電磁弁21の前後の圧力差ΔPoxを一層効果的に縮小させることができるようになる。
 更に、コントローラ32は圧縮機2を停止し、電磁弁21の前後の圧力差ΔPoxが所定値A以下に縮小した後、当該電磁弁21を開放するので、電磁弁21の前後の圧力差による騒音の発生をより確実に解消、若しくは、抑制することができるようになる。
 尚、上記実施例の騒音改善制御では、コントローラ32が暖房用の電磁弁21の前後の圧力差ΔPoxが所定値A以下に縮小したときに電磁弁21を開放し、圧縮機2を起動するようにしたが、この場合も、図10中に破線で示すように、圧縮機2を停止してから前述した所定時間t1経過後に電磁弁21を開放し、圧縮機2を起動するようにしてもよい。また、上記実施例の騒音改善制御でも同様にはコントローラ32が圧縮機2の回転数Ncを低下させるようにしてもよい。
 (10)騒音改善制御(その5)
 次に、図11及び図12を参照しながら、車両用空気調和装置1の運転モードを、前述した内部サイクルモードから暖房モードに切り換える際にコントローラ32が実行する騒音改善制御の一例について説明する。図11は内部サイクルモードと暖房モードにおける室外膨張弁6、バイパス用の電磁弁20、暖房用の電磁弁21、冷房用の電磁弁17、除湿用の電磁弁22、及び、蒸発能力制御弁11の各開閉状態と、内部サイクルモードから暖房モードに切り換えた時の各弁前後の圧力差(各弁の冷媒上流側と冷媒下流側の圧力の差)を示している。
 また、図12のタイミングチャートは、内部サイクルモードから暖房モードに切り換わる際の暖房用の電磁弁21の前後の圧力差ΔPoxと、除湿用の電磁弁22の前後の圧力差ΔPceと、圧縮機2の回転数Ncと、室外膨張弁6、電磁弁21、及び、電磁弁22の状態を示している。尚、電磁弁22は内部サイクルモードでは開いており、暖房モードで閉じられるので、この場合、電磁弁22の前後の圧力差ΔPceは考慮しない。
 運転モードが内部サイクルモードから暖房モードに切り換わる際、暖房用の電磁弁21の前後の圧力差ΔPoxは中~小となり、他と比較して大きな値となる。そのため、内部サイクルモードでは閉じている電磁弁21を、係る圧力差のまま暖房モードとするために開放すると、室外熱交換器7から電磁弁21を経て圧縮機2の吸込側(アキュムレータ12側)の方向に冷媒が急激に流れ、電磁弁21において大きな音(騒音)が発生することになる。
 そこで、コントローラ32は内部サイクルモードから暖房モードに運転モードを切り換える際も以下に説明する騒音改善制御を実行する。即ち、コントローラ32は内部サイクルモードから暖房モードに切り換える場合、運転モードを切り換える前に、この場合も先ず圧縮機2を停止する。圧縮機2が停止することで、冷媒回路R内の圧力が平衡状態に向かうため、電磁弁21の前後の圧力差ΔPoxも小さくなっていく。
 そして、圧力差ΔPoxが前述した所定値A以下に縮小した場合、コントローラ32は暖房用の電磁弁21を開く。また、電磁弁21を開いた時点で、コントローラ32は圧縮機2を起動し、暖房モードの空調運転を開始する。
 このようにコントローラ32は、内部サイクルモードから暖房モードに切り換える際、暖房用の電磁弁21の前後の圧力差ΔPoxを縮小した後、電磁弁21を開放する騒音改善制御を実行するので、内部サイクルモードから暖房モードに切り換える際、暖房用の電磁弁21を開放したときに、圧縮機2の吸込側(アキュムレータ12側)の方向に冷媒が急激に流れることを抑制又は解消することができるようになる。これにより、内部サイクルモードから暖房モードへの切換時に、暖房用の電磁弁21を開放したときに生じる騒音を解消、若しくは、低減することができるようになる。
 また、この場合の騒音改善制御においてもコントローラ32は圧縮機2を停止するので、暖房用の電磁弁21の冷媒上流側の圧力をより迅速に下げて電磁弁21の前後の圧力差ΔPoxを一層効果的に縮小させることができるようになる。
 更に、コントローラ32は圧縮機2を停止し、電磁弁21の前後の圧力差ΔPoxが所定値A以下に縮小した後、当該電磁弁21を開放するので、電磁弁21の前後の圧力差による騒音の発生をより確実に解消、若しくは、抑制することができるようになる。
 尚、上記実施例の騒音改善制御では、コントローラ32が暖房用の電磁弁21の前後の圧力差ΔPoxが所定値A以下に縮小したときに電磁弁21を開放し、圧縮機2を起動するようにしたが、この場合も、図12中に破線で示すように、圧縮機2を停止してから前述した所定時間t1経過後に電磁弁21を開放し、圧縮機2を起動するようにしてもよい。また、上記実施例の騒音改善制御でも同様にはコントローラ32が圧縮機2の回転数Ncを低下させるようにしてもよい。
 (11)車速VSPによる所定値A、所定値Bの変更制御
 また、コントローラ32は車速センサ52からの車速VSPに基づき、当該車速VSPが高い程、高くする方向で前述した圧力差ΔPoxの所定値A、及び、圧力ΔPceの所定値Bを変更する。車速VSPが高い状況では電磁弁21、22の開放による騒音は気になり難くなる。そこで、コントローラ32は車速VSPが高い程、電磁弁21、22前後の圧力差ΔPox、ΔPceの所定値A、Bを高くする。
 これにより、電磁弁21、22の開放による騒音が気になり難い状況では、所定値A、Bを高くして電磁弁21、22が早期に開放されるようにし、運転モードの切り換えを迅速に行うことができるようにする。
 (12)室内送風機27の風量による所定値A、所定値Bの変更制御
 また、空気流通路3に空気を送給する室内送風機27の風量が多い状況でも開閉弁の開放による騒音は気になり難くなる。そこで、コントローラ32は、室内送風機27の運転状況に基づき、その風量が多い程、電磁弁21、22の前後の圧力差ΔPox、ΔPceの所定値A、Bを高くする。
 これにより、係る室内送風機27の風量が多く、電磁弁21、22の開放による騒音が気になり難い状況でも、コントローラ32は電磁弁21、22が早期に開放されるようにし、同様に運転モードの切り換えを迅速に行うことができるようにする。
 (13)運転モード切換時の室内送風機27及び室外送風機15の制御
 尚、コントローラ32により、前述の如く運転モードを切り換える際、室内送風機27や室外送風機15の風量を増加させるようにしてもよい。係る制御によっても電磁弁21、22の開放による騒音を気になり難くすることが可能となる。
 (14)車速VSPや室内送風機27の風量による騒音改善制御の実施決定
 また、コントローラ32により、車速VSPが所定値以上である場合、及び/又は、室内送風機27の風量が所定値以上である場合には、前述した騒音改善制御を実行しないようにしてもよい。車速VSPが高く、或いは、室内送風機27の風量が多い場合、電磁弁21、22の開放による騒音が気になり難くなる。
 そこで、係る状況ではコントローラ32が前述した騒音改善制御を実施しないようにすることで、電磁弁21、22を直ぐに開放し、騒音による不快感と運転モード切換の遅延の双方を回避することが可能となる。
 次に、図13は本発明の車両用空気調和装置1の他の構成図を示している。この実施例では、室外熱交換器7にレシーバドライヤ部14と過冷却部16が設けられておらず、室外熱交換器7から出た冷媒配管13Aは電磁弁17と逆止弁18を介して冷媒配管13Bに接続されている。また、冷媒配管13Aから分岐した冷媒配管13Dは、同様に電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに接続されている。
 その他は、図1の例と同様である。このようにレシーバドライヤ部14と過冷却部16を有しない室外熱交換器7を採用した冷媒回路Rの車両用空気調和装置1においても本発明は有効である。
 尚、上記各実施例で説明した冷媒回路Rの構成や各数値はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 11 蒸発能力制御弁
 17、20、21、22 電磁弁(開閉弁)
 27 室内送風機(ブロワファン)
 32 コントローラ(制御手段)
 43 吐出温度センサ
 44 吸込温度センサ
 46 放熱器温度センサ
 47 放熱器圧力センサ
 48 吸熱器温度センサ
 54 室外熱交換器温度センサ
 R 冷媒回路

Claims (12)

  1.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記車室外に設けられて冷媒を放熱又は吸熱させるための室外熱交換器と、
     制御手段とを備え、
     該制御手段により少なくとも、
     前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器及び前記室外熱交換器にて吸熱させる除湿暖房モードと、
     前記圧縮機から吐出された冷媒を前記放熱器及び前記室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる除湿冷房モードと、
     前記圧縮機から吐出された冷媒を前記室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる冷房モードの各運転モードを切り換えて実行する車両用空気調和装置において、
     前記室外熱交換器の出口側に接続され、前記除湿暖房モードにおいて開放される暖房用の開閉弁と、前記室外熱交換器に対して並列に接続され、前記除湿暖房モードにおいて開放される除湿用の開閉弁を備え、
     前記制御手段は、前記冷房モード及び/又は前記除湿冷房モードから前記除湿暖房モードに切り換える際、前記各開閉弁前後の圧力差を縮小した後、各開閉弁を開放する騒音改善制御を実行することを特徴とする車両用空気調和装置。
  2.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記車室外に設けられて冷媒を放熱又は吸熱させるための室外熱交換器と、
     制御手段とを備え、
     該制御手段により少なくとも、
     前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる内部サイクルモードと、
     前記圧縮機から吐出された冷媒を前記放熱器及び前記室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる除湿冷房モードと、
     前記圧縮機から吐出された冷媒を前記室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる冷房モードの各運転モードを切り換えて実行する車両用空気調和装置において、
     前記室外熱交換器に対して並列に接続され、前記内部サイクルモードにおいて開放される除湿用の開閉弁を備え、
     前記制御手段は、前記冷房モード及び/又は前記除湿冷房モードから前記内部サイクルモードに切り換える際、前記開閉弁前後の圧力差を縮小した後、当該開閉弁を開放する騒音改善制御を実行することを特徴とする車両用空気調和装置。
  3.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記車室外に設けられて冷媒を放熱又は吸熱させるための室外熱交換器と、
     制御手段とを備え、
     該制御手段により少なくとも、
     前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房モードと、
     前記圧縮機から吐出された冷媒を前記放熱器及び前記室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる除湿冷房モードと、
     前記圧縮機から吐出された冷媒を前記室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる冷房モードの各運転モードを切り換えて実行する車両用空気調和装置において、
     前記室外熱交換器の出口側に接続され、前記暖房モードにおいて開放される暖房用の開閉弁を備え、
     前記制御手段は、前記冷房モード及び/又は前記除湿冷房モードから前記暖房モードに切り換える際、前記開閉弁前後の圧力差を縮小した後、当該開閉弁を開放する騒音改善制御を実行することを特徴とする車両用空気調和装置。
  4.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記車室外に設けられて冷媒を放熱又は吸熱させるための室外熱交換器と、
     制御手段とを備え、
     該制御手段により少なくとも、
     前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房モードと、
     前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器及び前記室外熱交換器にて吸熱させる除湿暖房モードと、
     前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる内部サイクルモードの各運転モードを切り換えて実行する車両用空気調和装置において、
     前記室外熱交換器の出口側に接続され、前記暖房モード及び前記除湿暖房モードにおいて開放される暖房用の開閉弁を備え、
     前記制御手段は、前記内部サイクルモードから前記暖房モード及び/又は前記除湿暖房モードに切り換える際、前記開閉弁前後の圧力差を縮小した後、当該開閉弁を開放する騒音改善制御を実行することを特徴とする車両用空気調和装置。
  5.  前記制御手段は、前記騒音改善制御において、前記圧縮機の回転数を低下させることを特徴とする請求項1乃至請求項4のうちの何れかに記載の車両用空気調和装置。
  6.  前記制御手段は、前記騒音改善制御において、前記圧縮機を停止することを特徴とする請求項1乃至請求項4のうちの何れかに記載の車両用空気調和装置。
  7.  前記制御手段は、前記圧縮機を停止し、所定時間経過後に前記開閉弁を開放することを特徴とする請求項6に記載の車両用空気調和装置。
  8.  前記制御手段は、前記圧縮機の回転数を低下させ、又は、当該圧縮機を停止し、前記開閉弁前後の圧力差が所定値以下に縮小した後、当該開閉弁を開放することを特徴とする請求項5又は請求項6に記載の車両用空気調和装置。
  9.  前記制御手段は、車速が高い程、前記開閉弁前後の圧力差の所定値を高くすることを特徴とする請求項8に記載の車両用空気調和装置。
  10.  前記空気流通路に空気を送給するための室内送風機を備え、
     前記制御手段は、前記室内送風機の風量が多い程、前記開閉弁前後の圧力差の所定値を高くすることを特徴とする請求項8又は請求項9に記載の車両用空気調和装置。
  11.  前記空気流通路に空気を送給するための室内送風機と、前記室外熱交換器に外気を通風するための室外送風機を備え、
     前記制御手段は、前記運転モードを切り換える際、前記室内送風機及び/又は前記室外送風機の風量を増加させることを特徴とする請求項1乃至請求項10のうちの何れかに記載の車両用空気調和装置。
  12.  前記空気流通路に空気を送給するための室内送風機を備え、
     前記制御手段は、車速が所定値以上である場合、及び/又は、前記室内送風機の風量が所定値以上である場合、前記騒音改善制御を実行しないことを特徴とする請求項1乃至請求項11のうちの何れかに記載の車両用空気調和装置。
PCT/JP2016/066858 2015-07-01 2016-06-07 車両用空気調和装置 WO2017002547A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680037737.8A CN107709067B (zh) 2015-07-01 2016-06-07 车用空调装置
DE112016003000.2T DE112016003000T5 (de) 2015-07-01 2016-06-07 Klimaanlage für ein Fahrzeug
US15/738,857 US10647178B2 (en) 2015-07-01 2016-06-07 Air conditioner for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015132541A JP6590558B2 (ja) 2015-07-01 2015-07-01 車両用空気調和装置
JP2015-132541 2015-07-01

Publications (1)

Publication Number Publication Date
WO2017002547A1 true WO2017002547A1 (ja) 2017-01-05

Family

ID=57608540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066858 WO2017002547A1 (ja) 2015-07-01 2016-06-07 車両用空気調和装置

Country Status (5)

Country Link
US (1) US10647178B2 (ja)
JP (1) JP6590558B2 (ja)
CN (1) CN107709067B (ja)
DE (1) DE112016003000T5 (ja)
WO (1) WO2017002547A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129495A1 (ja) * 2018-12-19 2020-06-25 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6418779B2 (ja) * 2014-05-08 2018-11-07 サンデンホールディングス株式会社 車両用空気調和装置
CN104776630B (zh) * 2015-04-28 2017-05-03 广东美的暖通设备有限公司 多联机系统
JP6738157B2 (ja) * 2016-02-26 2020-08-12 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
KR102658453B1 (ko) * 2017-02-02 2024-04-17 엘지전자 주식회사 차량용 냉장고, 및 차량
JP6948179B2 (ja) * 2017-07-18 2021-10-13 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2019064325A (ja) * 2017-09-28 2019-04-25 株式会社ヴァレオジャパン 車両用空調装置
JP6925288B2 (ja) * 2018-01-30 2021-08-25 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP7153174B2 (ja) * 2018-05-28 2022-10-14 サンデン株式会社 車両用空気調和装置
DE102018209769B4 (de) * 2018-06-18 2022-05-19 Audi Ag Verfahren zum Betreiben einer einen Kältemittelkreislauf aufweisenden Kälteanlage eines Fahrzeugs
JP7155649B2 (ja) * 2018-06-21 2022-10-19 株式会社デンソー 空調装置
JP7321906B2 (ja) * 2019-11-28 2023-08-07 株式会社ヴァレオジャパン 車両用空調装置及び運転モード切替方法
JP7535458B2 (ja) * 2021-01-13 2024-08-16 本田技研工業株式会社 車両用温調システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279180A (ja) * 2002-03-22 2003-10-02 Denso Corp 車両用冷凍サイクル装置
JP2011126409A (ja) * 2009-12-17 2011-06-30 Denso Corp 車両用冷凍サイクル装置
JP2012250708A (ja) * 2012-09-19 2012-12-20 Denso Corp 車両用空調装置
JP2013180743A (ja) * 2012-03-05 2013-09-12 Honda Motor Co Ltd 車両用空調装置
JP2014062675A (ja) * 2012-09-20 2014-04-10 Denso Corp 冷凍サイクル制御装置
JP2014088154A (ja) * 2012-10-31 2014-05-15 Mitsubishi Motors Corp 車両用空調装置
JP2014094671A (ja) * 2012-11-09 2014-05-22 Sanden Corp 車両用空気調和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155120A (ja) * 1985-12-27 1987-07-10 Hitachi Ltd 自動車用空気調和装置
US20030182955A1 (en) * 1999-06-07 2003-10-02 Toyotaka Hirao Vehicular air conditioner
KR101149206B1 (ko) * 2008-09-25 2012-05-25 한라공조주식회사 자동차용 공조장치의 압축기 제어방법
JP5482728B2 (ja) * 2011-05-20 2014-05-07 株式会社デンソー 冷凍サイクル装置
JP2014088151A (ja) 2012-10-31 2014-05-15 Mitsubishi Motors Corp 車両用空調装置
CN103786547A (zh) * 2012-10-31 2014-05-14 三菱自动车工业株式会社 车辆空调

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279180A (ja) * 2002-03-22 2003-10-02 Denso Corp 車両用冷凍サイクル装置
JP2011126409A (ja) * 2009-12-17 2011-06-30 Denso Corp 車両用冷凍サイクル装置
JP2013180743A (ja) * 2012-03-05 2013-09-12 Honda Motor Co Ltd 車両用空調装置
JP2012250708A (ja) * 2012-09-19 2012-12-20 Denso Corp 車両用空調装置
JP2014062675A (ja) * 2012-09-20 2014-04-10 Denso Corp 冷凍サイクル制御装置
JP2014088154A (ja) * 2012-10-31 2014-05-15 Mitsubishi Motors Corp 車両用空調装置
JP2014094671A (ja) * 2012-11-09 2014-05-22 Sanden Corp 車両用空気調和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129495A1 (ja) * 2018-12-19 2020-06-25 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置

Also Published As

Publication number Publication date
CN107709067A (zh) 2018-02-16
CN107709067B (zh) 2020-07-21
JP2017013635A (ja) 2017-01-19
JP6590558B2 (ja) 2019-10-16
DE112016003000T5 (de) 2018-03-15
US20180178629A1 (en) 2018-06-28
US10647178B2 (en) 2020-05-12

Similar Documents

Publication Publication Date Title
JP6590558B2 (ja) 車両用空気調和装置
JP6418787B2 (ja) 車両用空気調和装置
WO2018193770A1 (ja) 車両用空気調和装置
JP6496958B2 (ja) 車両用空気調和装置
JP6571405B2 (ja) 車両用空気調和装置
WO2017146270A1 (ja) 車両用空気調和装置
JP6619572B2 (ja) 車両用空気調和装置
WO2017146268A1 (ja) 車両用空気調和装置
WO2016208337A1 (ja) 車両用空気調和装置
JP6571430B2 (ja) 車両用空気調和装置
WO2018211958A1 (ja) 車両用空気調和装置
WO2017179596A1 (ja) 車両用空気調和装置
WO2017179594A1 (ja) 車両用空気調和装置
WO2016043309A1 (ja) 車両用空気調和装置
WO2017146266A1 (ja) 車両用空気調和装置
WO2018116962A1 (ja) 車両用空気調和装置
WO2017179597A1 (ja) 車両用空気調和装置
WO2017146267A1 (ja) 車両用空気調和装置
WO2018110211A1 (ja) 車両用空気調和装置
WO2018043152A1 (ja) 車両用空気調和装置
JP6917794B2 (ja) 車両用空気調和装置
WO2018159141A1 (ja) 車両用空気調和装置
JP2019055648A (ja) 車両用空気調和装置
WO2018123635A1 (ja) 車両用空気調和装置
WO2017179595A1 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817656

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15738857

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016003000

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817656

Country of ref document: EP

Kind code of ref document: A1