WO2017098925A1 - オキサジン化合物、組成物及び硬化物 - Google Patents
オキサジン化合物、組成物及び硬化物 Download PDFInfo
- Publication number
- WO2017098925A1 WO2017098925A1 PCT/JP2016/084727 JP2016084727W WO2017098925A1 WO 2017098925 A1 WO2017098925 A1 WO 2017098925A1 JP 2016084727 W JP2016084727 W JP 2016084727W WO 2017098925 A1 WO2017098925 A1 WO 2017098925A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- resin
- composition
- ppm
- compound
- Prior art date
Links
- YQTCLSSGUVVSMR-UHFFFAOYSA-N C#CCOc(cc1)ccc1-c(cc1C2)ccc1OCN2c(cc1)ccc1OCC#C Chemical compound C#CCOc(cc1)ccc1-c(cc1C2)ccc1OCN2c(cc1)ccc1OCC#C YQTCLSSGUVVSMR-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D265/00—Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
- C07D265/04—1,3-Oxazines; Hydrogenated 1,3-oxazines
- C07D265/12—1,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems
- C07D265/14—1,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D265/00—Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
- C07D265/04—1,3-Oxazines; Hydrogenated 1,3-oxazines
- C07D265/12—1,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems
- C07D265/14—1,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring
- C07D265/16—1,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring with only hydrogen or carbon atoms directly attached in positions 2 and 4
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/14—Layered products comprising a layer of metal next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/42—Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/241—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
- C08J5/243—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/249—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/02—Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
- C08L101/025—Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing nitrogen atoms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/145—Organic substrates, e.g. plastic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3737—Organic materials with or without a thermoconductive filler
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0201—Thermal arrangements, e.g. for cooling, heating or preventing overheating
- H05K1/0203—Cooling of mounted components
- H05K1/0204—Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/0366—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/0373—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/08—PCBs, i.e. printed circuit boards
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/12—Copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/32—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
- C08G2261/324—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
- C08G2261/3245—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and oxygen as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2365/00—Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/293—Organic, e.g. plastic
- H01L23/295—Organic, e.g. plastic containing a filler
Definitions
- the present invention relates to an oxazine compound excellent in heat resistance, dielectric properties, and low moisture absorption, and a composition, a cured product, and a laminate containing the oxazine compound.
- the present invention also relates to a heat-resistant material, a heat-resistant member, an electronic material, and an electronic member containing the oxazine compound.
- resin materials such as epoxy resins, cyanate ester resins, bismaleimide-triazine resins, and benzoxazine resins are used as resin materials for electronic components used for semiconductor sealing materials and insulating layers for multilayer printed circuit boards.
- resin materials for electronic components used for semiconductor sealing materials and insulating layers for multilayer printed circuit boards.
- materials and compositions that further improve performance such as heat resistance and dielectric properties, and that also exhibit low hygroscopicity.
- benzoxazine which can be easily prepared by combining a phenol compound, an amine compound, and formaldehyde, is ring-opening polymerized by heating alone, and has a high heat resistance due to the strong hydrogen bond structure formed in the crosslinked structure.
- benzoxazines composed of bifunctional phenols such as bisphenol F and bisphenol A and aniline are disclosed in Patent Document 1 and Patent Document 2.
- an oxazine compound characterized by having an aromatic ring structure and a group having a plurality of specified carbon-carbon triple bond structures solves the above problems. It was.
- the present invention provides an oxazine compound having the structure of the general formula (1) and further having at least two or more functional groups R 1 represented by the general formula (2). This solves the above problem.
- Ar 1 represents a substituted or unsubstituted aromatic group
- Ring A represents a substituted or unsubstituted aromatic ring
- the compound of the formula (1) may have an alkyl group having 1 to 3 carbon atoms and a substituted or unsubstituted aromatic group.
- X 1 , X 2 , and Y 1 each independently represent a single bond or a divalent linking group, and R 2 is contained in a hydrogen atom, a hydrocarbon group, or a hydrocarbon group.
- the present invention also provides a composition containing the oxazine compound of the present invention, a cured product containing the composition, and a laminate having the cured product layer. Moreover, this invention provides the composition for heat-resistant materials characterized by containing the composition containing the oxazine compound of this invention, and the composition for electronic materials.
- the cured product of the oxazine compound of the present invention is excellent in heat decomposability, dielectric properties and low hygroscopicity, so that it can be suitably used for heat resistant members and electronic members.
- it can be suitably used for semiconductor encapsulants, circuit boards, build-up films, build-up boards and the like.
- it can be used suitably also for the matrix resin of a fiber reinforced resin, and is especially suitable as a highly heat resistant prepreg.
- the oxazine compound of the present invention has a structure of the general formula (1), and further has at least two functional groups R 1 represented by the general formula (2) independently.
- Ar 1 represents a substituted or unsubstituted aromatic group
- Ring A represents a substituted or unsubstituted aromatic ring
- the compound of the formula (1) may have an alkyl group having 1 to 3 carbon atoms and a substituted or unsubstituted aromatic group.
- X 1 , X 2 , and Y 1 each independently represent a single bond or a divalent linking group, and R 2 is contained in a hydrogen atom, a hydrocarbon group, or a hydrocarbon group.
- the bonding site of the functional group R 1 is not particularly limited, and two or more may be bonded to the oxazine ring portion, two or more may be bonded to the ring A, or oxazine. It may be bonded to each of the ring and ring A. Further, it may be bonded to the aromatic group Ar 1 in the formula (1).
- a structure in which the functional group R 1 is bonded to each of the aromatic group Ar 1 and the ring A in the formula (1) is preferable because heat resistance is improved.
- the structure is represented by the following formula (1-1).
- a functional group represented by the general formula R 1 is independently (2) or (3), R 3 and R 4 are independently hydrogen, carbon atoms 1 to 3 alkyl groups and a substituted or unsubstituted aromatic group.
- the hydrogen atom of the carbon atom may be substituted.
- it is preferably an alkyl group having 1 to 3 carbon atoms, or a substituted or unsubstituted aromatic group.
- the site where the hydrogen atom is substituted is not particularly limited.
- the functional group R 1 is a group having a carbon-carbon triple bond structure, specifically, a group represented by the formula (2).
- the oxazine compound of the present invention undergoes two types of curing, namely a curing reaction derived from ring-opening polymerization of the oxazine ring and a curing reaction derived from the polymerization reaction of a carbon-carbon triple bond. Since the structure is formed, the heat resistance, particularly the heat decomposition temperature is improved.
- the oxazine compound of the present invention is characterized by having two or more functional groups R 1 , and this is polyfunctionalized so that the cured product forms a denser three-dimensional cross-link, and is further heat resistant. It is for improving.
- the functional group R 1 is a group represented by the formula (2), and there are two or more groups in the formula (1). However, the structure of the functional group R 1 may be different or the same. .
- X 1 , X 2 , and Y 1 each independently represent a single bond or a divalent linking group, and R 2 is contained in a hydrogen atom, a hydrocarbon group, or a hydrocarbon group.
- the divalent linking group in each of X 1 , X 2 and Y 1 in the formula (2) is an oxygen atom, a divalent hydrocarbon group, or one or more hydrogen atoms contained in a divalent hydrocarbon group.
- divalent hydrocarbon group examples include an alkylene group, an alkenylene group, an alkynylene group, a cycloalkylene group, an arylene group, and an aralkylene group (a divalent group having an alkylene group and an arylene group).
- Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, and a hexylene group.
- Examples of the alkenylene group include a vinylene group, a 1-methylvinylene group, a propenylene group, a butenylene group, and a pentenylene group.
- Examples of the alkynylene group include an ethynylene group, a propynylene group, a butynylene group, a pentynylene group, and a hexynylene group.
- Examples of the cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, and a cyclohexylene group.
- Examples of the arylene group include a phenylene group, a tolylene group, a xylylene group, and a naphthylene group.
- Examples of the aralkylene group include an aralkylene group having 7 to 20 carbon atoms having an alkylene group and an arylene group.
- one or more hydrogen atoms contained in the hydrocarbon group represent a hydroxyl group, an alkoxy group, or a divalent group substituted with a halogen atom, a hydroxyl group-containing alkylene group, an alkoxy group-containing alkylene group, a halogenated alkylene group, a hydroxyl group Containing alkenylene group, alkoxy group containing alkenylene group, halogenated alkenylene group, hydroxyl group containing alkynylene group, alkoxy group containing alkynylene group, halogenated alkynylene group, hydroxyl group containing cycloalkylene group, alkoxy group containing cycloalkylene group, halogenated cycloalkylene group, Examples thereof include a hydroxyl group-containing arylene group, an alkoxy group-containing arylene group, a halogenated arylene group, a hydroxyl group-containing aralkylene group, an alkoxy group
- Examples of the hydroxyl group-containing alkylene group include a hydroxyethylene group and a hydroxypropylene group.
- Examples of the alkoxy group-containing alkylene group include a methoxyethylene group, a methoxypropylene group, an allyloxymethylene group, an allyloxypropylene group, a propargyloxymethylene group, and a propargyloxypropylene group.
- halogenated alkylene group examples include a chloromethylene group, a chloroethylene group, a chloropropylene group, a bromomethylene group, a bromoethylene group, a bromopropylene group, a fluoromethylene group, a fluoroethylene group, and a fluoropropylene group.
- Examples of the hydroxyl group-containing alkenylene group include a hydroxybutenylene group and a hydroxypentenylene group.
- Examples of the alkoxy group-containing alkenylene group include a methoxybutenylene group and an ethoxyhexenylene group.
- Examples of the halogenated alkenylene group include a chloropropenylene group and a bromopentenylene group.
- Examples of the hydroxyl group-containing alkynylene group include a hydroxypentynylene group and a hydroxyhexynylene group.
- Examples of the alkoxy group-containing alkynylene group include an ethoxyhexynylene group and a methoxyheptynylene group.
- Examples of the halogenated alkynylene group include a chlorohexynylene group and a fluorooctynylene group.
- Examples of the hydroxyl group-containing cycloalkylene group include a hydroxycyclohexanylene group.
- Examples of the alkoxy group-containing cycloalkylene group include a methoxycyclopentanylene group.
- Examples of the halogenated cycloalkylene group include a dichlorocyclopentanylene group.
- Examples of the hydroxyl group-containing arylene group include a hydroxyphenylene group.
- Examples of the alkoxy group-containing arylene group include a methoxyphenylene group, an ethoxyphenylene group, an allyloxyphenylene group, and a propargyloxyphenylene group.
- Examples of the halogenated arylene group include a chlorophenyl group, a bromophenyl group, a fluorophenyl group, a chloronaphthyl group, a bromonaphthyl group, and a fluoronaphthyl group.
- the divalent linking group in each of X 1 , X 2 , and Y 1 may be an unsaturated hydrocarbon group-containing arylene group.
- the unsaturated hydrocarbon group-containing arylene group include vinyl phenylene, allyl phenylene, ethynyl phenylene, and propargyl phenylene.
- Y 1 is preferably any linking group selected from the group consisting of a single bond, an oxygen atom, an alkylene group, and an aralkylene group.
- the divalent linking group in each of X 1 , X 2 and Y 1 is preferably a single bond or a divalent hydrocarbon group or an oxygen atom, and the divalent hydrocarbon group includes an alkylene group and an arylene group. preferable.
- a particularly preferred combination is when X 1 is a single bond or a phenylene group, X 2 is a methylene group (—CH 2 —), and Y 1 is an oxygen atom.
- the formula (2) preferably includes the following structure.
- R 5 is a hydrogen atom, a hydrocarbon group, or a hydrocarbon group in which one or more hydrogen atoms contained in the hydrocarbon group are substituted with any of a hydroxyl group, an alkoxy group, and a halogen atom. Represents.
- Ar 1 represents a substituted or unsubstituted aromatic group, and specifically includes an phenylene group, a naphthylene group, an arylene group including an anthracene skeleton or a phenanthrene skeleton, and the like.
- Ring A represents a substituted or unsubstituted aromatic ring.
- the aromatic ring include a benzene ring, a naphthalene ring, an anthracene ring, and a phenanthrene ring.
- oxazine compound of the present invention preferred structures are compounds represented by the following formulas (1-a) to (1-c).
- particularly preferred structures are compounds represented by the formulas (1-d) and (1-g).
- the oxazine compound of the present invention can be obtained by reacting formaldehyde with a phenol compound having a reactive functional group introduced into the molecular skeleton and an aromatic amino compound having a reactive functional group introduced therein.
- the reactive functional group include an ethynyl group and a propargyloxy group.
- Examples of the phenol compound having a reactive functional group introduced include 2-propargyloxyphenol, 3-propargyloxyphenol, 4-propargyloxyphenol, 4′-propargyloxy-4-biphenol, 4′-propargyloxy-3-biphenol, 4′-propargyloxy-2-biphenol, 2-propargyloxy-1-naphthol, 3-propargyloxy-1-naphthol, 4-propargyloxy-1-naphthol, 5-propargyloxy-1-naphthol, 6-propargyloxy 1-naphthol, 7-propargyloxy-1-naphthol, 8-propargyloxy-1-naphthol, 1-propargyloxy-2-naphthol, 3-propargyloxy-2-naphthol, 6-propargyloxy-2-naphthol, 7-P Such as Parugiruokishi-2-naphthol, and the
- aromatic amino compounds into which a reactive functional group has been introduced include 2-propargyloxyaniline, 3-propargyloxyaniline, 4-propargyloxyaniline, 4′-propargyloxybiphenyl-4-amine, 4′-propargyloxybiphenyl- 3-Amine, 4'-propargyloxybiphenyl-2-amine, 2-propargyloxy-1-aminonaphthalene, 3-propargyloxy-1-aminonaphthalene, 4-propargyloxy-1-aminonaphthalene, 5-propargyloxy- 1-aminonaphthalene, 6-propargyloxy-1-aminonaphthalene, 7-propargyloxy-1-aminonaphthalene, 8-propargyloxy-1-aminonaphthalene, 1-propargyloxy-2-aminonaphthalene, 3-propargyloxy- 2- Mino naphthalene, 6-propargyloxy-2-aminonaphthalen
- the resin composition of the present invention contains the oxazine compound of the present invention.
- the cured product obtained by curing the resin composition of the present invention is excellent in heat decomposability and excellent in dielectric properties and low moisture absorption, and therefore can be suitably used for heat resistant members and electronic members.
- the resin composition of the present invention may have a composition other than the oxazine compound of the present invention.
- you may have reactive compounds other than the oxazine compound of this invention.
- the reactive compound mentioned here is a compound having a reactive group, and may be a monomer, an oligomer, or a polymer.
- the reactive group may be a functional group that does not react with the oxazine compound of the present invention or a functional group that reacts, but in order to further improve heat resistance, the functional group must be a functional group that reacts with the oxazine compound of the present invention. preferable.
- the functional group that reacts with the oxazine compound of the present invention include an epoxy group, a cyanato group, a maleimide group, and a phenolic hydroxyl group.
- Examples of the compound having an epoxy group include an epoxy resin and a phenoxy resin.
- Examples of the compound having a cyanato group include cyanate ester resins.
- Examples of the compound having a maleimide group include a maleimide resin and a bismaleimide compound.
- Examples of the compound having a phenolic hydroxyl group include a phenol resin and a phenol compound.
- the reactive compound described above may have only one type of reactive group or a plurality of types, and the number of functional groups may be one or plural.
- Preferred reactive compounds include epoxy resins, phenoxy resins, cyanate ester resins, maleimide compounds, phenol compounds, and oxazine compounds other than the oxazine compounds obtained by the present invention.
- the epoxy resin is not particularly limited as long as it has an epoxy group.
- bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol sulfide type epoxy resin, Phenylene ether type epoxy resin, naphthylene ether type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, terphenyl type epoxy resin, polyhydroxynaphthalene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, Triphenylol methane type epoxy resin, tetraphenylol methane type epoxy resin, tetraphenylol ethane type epoxy resin, dicyclopentadiene-phenol addition Responsive epoxy resin, phenol aralkyl epoxy resin, naphthol novolak epoxy resin, naphthol aralkyl epoxy resin, biphenyl aralkyl epoxy resin, naphthol-phenol co-con
- the phenoxy resin is a high molecular weight thermoplastic polyether resin based on diphenol and epihalohydrin such as epichlorohydrin, and preferably has a weight average molecular weight of 20,000 to 100,000.
- Examples of the structure of the phenoxy resin include bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenolacetophenone skeleton, novolac skeleton, biphenyl skeleton, fluorene skeleton, dicyclopentadiene skeleton, norbornene skeleton, naphthalene skeleton, anthracene skeleton, adamantane skeleton, Examples thereof include those having one or more skeletons selected from a terpene skeleton and a trimethylcyclohexane skeleton.
- cyanate ester resin examples include bisphenol A type cyanate ester resin, bisphenol F type cyanate ester resin, bisphenol E type cyanate ester resin, bisphenol S type cyanate ester resin, bisphenol sulfide type cyanate ester resin, phenylene ether type cyanate ester resin, Naphthylene ether type cyanate ester resin, biphenyl type cyanate ester resin, tetramethylbiphenyl type cyanate ester resin, polyhydroxynaphthalene type cyanate ester resin, phenol novolac type cyanate ester resin, cresol novolac type cyanate ester resin, triphenylmethane type cyanate ester Resin, tetraphenylethane type cyanate ester resin, di Clopentadiene-phenol addition reaction type cyanate ester resin, phenol aralkyl type cyanate ester resin, naphthol novolak type cyanate ester resin, napht
- cyanate ester resins bisphenol A-type cyanate ester resins, bisphenol F-type cyanate ester resins, bisphenol E-type cyanate ester resins, and polyhydroxynaphthalene-type cyanate ester resins are particularly preferred in that a cured product having excellent heat resistance can be obtained.
- a naphthylene ether type cyanate ester resin or a novolak type cyanate ester resin is preferably used, and a dicyclopentadiene-phenol addition reaction type cyanate ester resin is preferred in that a cured product having excellent dielectric properties can be obtained.
- maleimide compounds include various compounds represented by any of the following structural formulas (i) to (iii).
- R is an m-valent organic group
- ⁇ and ⁇ are each a hydrogen atom, a halogen atom, an alkyl group, or an aryl group, and s is an integer of 1 or more.
- R is a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, a halogen atom, a hydroxyl group or an alkoxy group, s is an integer of 1 to 3, and t is an average of 0 to 10 repeating units.
- R is a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, a halogen atom, a hydroxyl group or an alkoxy group, s is an integer of 1 to 3, and t is an average of 0 to 10 repeating units.
- the phenolic hydroxyl group-containing compound is not particularly limited as long as it has a phenolic hydroxyl group.
- the oxazine compound other than the oxazine compound obtained by the present invention is not particularly limited.
- a reaction product of bisphenol F, formalin and aniline (Fa type benzoxazine resin), 4,4′-diaminodiphenylmethane, Reaction product of formalin and phenol (Pd type benzoxazine resin), reaction product of bisphenol A, formalin and aniline, reaction product of dihydroxydiphenyl ether, formalin and aniline, reaction product of diaminodiphenyl ether, formalin and phenol, Reaction product of dicyclopentadiene-phenol addition type resin with formalin and aniline, reaction product of phenolphthalein with formalin and aniline, reaction product of dihydroxydiphenyl sulfide with formalin and aniline And the like.
- These may be used alone or in combination of two or more.
- the composition of the present invention may further contain a filler in addition to the oxazine compound.
- a filler include inorganic fillers and organic fillers.
- examples of the inorganic filler include inorganic fine particles.
- those having excellent heat resistance include alumina, magnesia, titania, zirconia, silica (quartz, fumed silica, precipitated silica, silicic anhydride, fused silica, crystalline silica, amorphous fine powder amorphous Silica etc.) etc .; those excellent in heat conduction such as boron nitride, aluminum nitride, alumina oxide, titanium oxide, magnesium oxide, zinc oxide, silicon oxide etc .; those excellent in conductivity include simple metals or alloys (for example, Metal fillers and / or metal-coated fillers using iron, copper, magnesium, aluminum, gold, silver, platinum, zinc, manganese, stainless steel, etc .; those having excellent barrier properties include mica, clay, kaolin, talc, Minerals such as zeolite, wollastonite, smectite, potassium titanate, magnesium sulfate Sepiolite, Zonolite, Aluminum
- These inorganic fine particles may be appropriately selected depending on the application, and may be used alone or in combination of two or more. In addition, the inorganic fine particles have various characteristics in addition to the characteristics described in the examples, and therefore may be selected according to the timely use.
- silica when silica is used as the inorganic fine particles, there is no particular limitation, and known silica fine particles such as powdered silica and colloidal silica can be used.
- known silica fine particles such as powdered silica and colloidal silica can be used.
- commercially available powdered silica fine particles include Aerosil 50 and 200 manufactured by Nippon Aerosil Co., Ltd., Sildex H31, H32, H51, H52, H121, and H122 manufactured by Asahi Glass Co., Ltd., and E220A manufactured by Nippon Silica Industry Co., Ltd. , E220, SYLYSIA470 manufactured by Fuji Silysia Co., Ltd., SG flake manufactured by Nippon Sheet Glass Co., Ltd., and the like.
- colloidal silica examples include methanol silica sol, IPA-ST, MEK-ST, NBA-ST, XBA-ST, DMAC-ST, ST-UP, ST-OUP, manufactured by Nissan Chemical Industries, Ltd. ST-20, ST-40, ST-C, ST-N, ST-O, ST-50, ST-OL and the like can be mentioned.
- silica fine particles may be used.
- the silica fine particles may be surface-treated with a reactive silane coupling agent having a hydrophobic group or those modified with a compound having a (meth) acryloyl group.
- a reactive silane coupling agent having a hydrophobic group or those modified with a compound having a (meth) acryloyl group.
- a commercially available powdery silica modified with a compound having a (meth) acryloyl group as a commercially available colloidal silica modified with a compound having a (meth) acryloyl group, such as Aerosil RM50, R711 manufactured by Nippon Aerosil Co., Ltd. Examples include MIBK-SD manufactured by Nissan Chemical Industries, Ltd.
- the shape of the silica fine particles is not particularly limited, and those having a spherical shape, a hollow shape, a porous shape, a rod shape, a plate shape, a fiber shape, or an indefinite shape can be used.
- the primary particle size is preferably in the range of 5 to 200 nm. If the thickness is less than 5 nm, the dispersion of the inorganic fine particles in the dispersion becomes insufficient, and if the diameter exceeds 200 nm, sufficient strength of the cured product may not be maintained.
- titanium oxide fine particles not only extender pigments but also ultraviolet light responsive photocatalysts can be used.
- anatase type titanium oxide, rutile type titanium oxide, brookite type titanium oxide and the like can be used.
- particles designed to respond to visible light by doping a different element in the crystal structure of titanium oxide can also be used.
- an element to be doped in titanium oxide anionic elements such as nitrogen, sulfur, carbon, fluorine and phosphorus, and cationic elements such as chromium, iron, cobalt and manganese are preferably used.
- a sol or slurry dispersed in powder an organic solvent or water can be used.
- Examples of commercially available powdered titanium oxide fine particles include Aerosil P-25 manufactured by Nippon Aerosil Co., Ltd., ATM-100 manufactured by Teika Co., Ltd., and the like. Moreover, examples of commercially available slurry-like titanium oxide fine particles include Teika Co., Ltd. TKD-701.
- the composition of the present invention may further contain a fibrous substrate in addition to the oxazine compound.
- the fibrous substrate of the present invention is not particularly limited, but those used for fiber reinforced resins are preferable, and examples thereof include inorganic fibers and organic fibers.
- Inorganic fibers include carbon fibers, glass fibers, boron fibers, alumina fibers, silicon carbide fibers, etc., as well as carbon fibers, activated carbon fibers, graphite fibers, glass fibers, tungsten carbide fibers, silicon carbide fibers (silicon carbide fibers). ), Ceramic fibers, alumina fibers, natural fibers, basalt and other mineral fibers, boron fibers, boron nitride fibers, boron carbide fibers, and metal fibers.
- the metal fiber include aluminum fiber, copper fiber, brass fiber, stainless steel fiber, and steel fiber.
- Organic fibers include polybenzazole, aramid, PBO (polyparaphenylene benzoxazole), polyphenylene sulfide, polyester, acrylic, polyamide, polyolefin, polyvinyl alcohol, polyarylate and other synthetic fibers, cellulose, pulp, Mention may be made of natural fibers such as cotton, wool and silk, regenerated fibers such as proteins, polypeptides and alginic acid.
- carbon fiber and glass fiber are preferable because they have a wide industrial application range. Of these, only one type may be used, or a plurality of types may be used simultaneously.
- the fibrous substrate of the present invention may be an aggregate of fibers, or may be continuous, discontinuous, woven or non-woven. Moreover, the fiber bundle which arranged the fiber in one direction may be sufficient, and the sheet form which arranged the fiber bundle may be sufficient. Further, it may be a three-dimensional shape in which the aggregate of fibers has a thickness.
- the composition of the present invention may use a dispersion medium for the purpose of adjusting the solid content and viscosity of the composition.
- the dispersion medium may be a liquid medium that does not impair the effects of the present invention, and examples thereof include various organic solvents and liquid organic polymers.
- organic solvent examples include ketones such as acetone, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK), cyclic ethers such as tetrahydrofuran (THF) and dioxolane, and esters such as methyl acetate, ethyl acetate, and butyl acetate.
- ketones such as acetone, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK)
- cyclic ethers such as tetrahydrofuran (THF) and dioxolane
- esters such as methyl acetate, ethyl acetate, and butyl acetate.
- Aromatics such as toluene and xylene
- alcohols such as carbitol, cellosolve, methanol, isopropanol, butanol, and propylene glycol monomethyl ether.
- the liquid organic polymer is a liquid organic polymer that does not directly contribute to the curing reaction.
- modified carboxyl group-containing polymer Floren G-900, NC-500: Kyoeisha
- acrylic polymer Floren WK-20: Kyoeisha
- amine salts of specially modified phosphate esters HIPLAAD ED-251: Enomoto Kasei
- modified acrylic block copolymers DISPERBYK2000; Big Chemie
- the composition of this invention may have resin other than an oxazine compound.
- resin a known and commonly used resin may be blended as long as the effects of the present invention are not impaired.
- a thermosetting resin or a thermoplastic resin can be used.
- thermosetting resin is a resin having characteristics that can be substantially insoluble and infusible when cured by heating or means such as radiation or a catalyst. Specific examples include phenol resin, urea resin, melamine resin, benzoguanamine resin, alkyd resin, unsaturated polyester resin, vinyl ester resin, diallyl terephthalate resin, epoxy resin, silicone resin, urethane resin, furan resin, ketone resin, xylene. Examples thereof include resins, thermosetting polyimide resins, and benzoxazine resins other than the oxazine compound obtained by the present invention. These thermosetting resins can be used alone or in combination of two or more.
- Thermoplastic resin refers to a resin that can be melt-molded by heating. Specific examples thereof include polyethylene resin, polypropylene resin, polystyrene resin, rubber-modified polystyrene resin, acrylonitrile-butadiene-styrene (ABS) resin, acrylonitrile-styrene (AS) resin, polymethyl methacrylate resin, acrylic resin, polyvinyl chloride resin, Polyvinylidene chloride resin, polyethylene terephthalate resin, ethylene vinyl alcohol resin, cellulose acetate resin, ionomer resin, polyacrylonitrile resin, polyamide resin, polyacetal resin, polybutylene terephthalate resin, polylactic acid resin, polyphenylene ether resin, modified polyphenylene ether resin, polycarbonate Resin, polysulfone resin, polyphenylene sulfide resin, polyetherimide resin, polyethersulfone Fat, polyarylate resins, thermoplastic polyimide resins, polyamide
- the composition of the present invention may use a curing agent depending on the formulation.
- a curing agent depending on the formulation.
- an amine curing agent an amide curing agent, an acid anhydride type
- Various curing agents such as a curing agent, a phenol-based curing agent, an aminotriazine novolak resin, an active ester resin, and a resin having a functional group that reacts with an epoxy group such as a carboxyl group or a thiol may be used in combination.
- amine curing agents include diaminodiphenylmethane, diaminodiphenylethane, diaminodiphenyl ether, diaminodiphenylsulfone, orthophenylenediamine, metaphenylenediamine, paraphenylenediamine, metaxylenediamine, paraxylenediamine, diethyltoluenediamine, diethylenetriamine, triethylenetetramine, Examples include isophorone diamine, imidazole, BF3-amine complex, guanidine derivative, and guanamine derivative.
- amide-based curing agent examples include polyamide resins synthesized from dimer of dicyandiamide and linolenic acid and ethylenediamine.
- acid anhydride curing agents examples include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexa And hydrophthalic anhydride.
- phenolic curing agents include bisphenol A, bisphenol F, bisphenol S, resorcin, catechol, hydroquinone, fluorene bisphenol, 4,4'-biphenol, 4,4 ', 4 "-trihydroxytriphenylmethane, naphthalenediol, 1 , 1,2,2-tetrakis (4-hydroxyphenyl) ethane, calixarene, phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin (Xylok) Resin), polyhydric phenol novolak resin synthesized from formaldehyde and polyhydric hydroxy compound represented by resorcinol novolak resin, naphthol aralkyl resin, trimethylo Rumethane resin, tetraphenylolethane resin, naphthol novolak resin, naphthol-phenol co-
- the curing accelerator can be used alone or in combination with the above-mentioned curing agent.
- Various compounds that accelerate the curing reaction of the epoxy resin can be used as the curing accelerator, and examples thereof include phosphorus compounds, tertiary amine compounds, imidazole compounds, organic acid metal salts, Lewis acids, and amine complex salts.
- the use of an imidazole compound, a phosphorus compound, and a tertiary amine compound is preferable, and particularly when used as a semiconductor sealing material, it is excellent in curability, heat resistance, electrical characteristics, moisture resistance reliability, and the like.
- Triphenylphosphine is preferable for phosphorus compounds, and 1,8-diazabicyclo- [5.4.0] -undecene (DBU) is preferable for tertiary amines.
- composition of the present invention may have other blends.
- catalyst, polymerization initiator, inorganic pigment, organic pigment, extender pigment, clay mineral, wax, surfactant, stabilizer, flow regulator, coupling agent, dye, leveling agent, rheology control agent, UV absorber, An antioxidant, a flame retardant, a plasticizer, etc. are mentioned.
- the cured product obtained by curing the composition of the present invention is excellent in heat decomposability, dielectric properties and low hygroscopicity, and can be suitably used for heat resistant members and electronic members.
- the composition may be molded alone, or may be laminated with a substrate to form a laminate.
- the base material of the laminate may be used as appropriate depending on the application, such as inorganic materials such as metal and glass, or organic materials such as plastic and wood, and the shape of the laminate may be flat, sheet, or three-dimensional. It may have a three-dimensional shape.
- the shape may be any shape according to the purpose, such as one having curvature on the entire surface or part thereof. Moreover, there is no restriction
- the cured product of the present invention may be used as a base material, and the cured product of the present invention may be further laminated.
- metal foils include copper foils, aluminum foils, gold foils, and silver foils. Is preferred.
- the cured product layer may be formed directly on the substrate by coating or molding, or already molded products may be laminated.
- the coating method is not particularly limited, spray method, spin coating method, dip method, roll coating method, blade coating method, doctor roll method, doctor blade method, curtain coating method, slit coating method, A screen printing method, an inkjet method, etc. are mentioned.
- direct molding in-mold molding, insert molding, vacuum molding, extrusion lamination molding, press molding and the like can be mentioned.
- laminating a molded composition an uncured or semi-cured composition layer may be laminated and then cured, or a cured product layer obtained by completely curing the composition may be laminated on a substrate. Good.
- the cured product of the present invention may be laminated by applying and curing a precursor that can be a substrate, and the precursor that can be a substrate or the composition of the present invention is uncured or semi-cured. You may make it harden
- a precursor which can become a base material Various curable resin compositions etc. are mentioned.
- the composition containing the fibrous substrate can be used as a fiber reinforced resin.
- the method for incorporating the fibrous substrate into the composition is not particularly limited as long as it does not impair the effects of the present invention, and the fibrous substrate and the composition are kneaded, coated, impregnated, poured, crimped, etc.
- the method of compounding by a method is mentioned, It can select suitably according to the form of a fiber, and the use of a fiber reinforced resin.
- the method for molding the fiber reinforced resin of the present invention is not particularly limited. If a plate-shaped product is to be manufactured, an extrusion molding method is generally used, but a flat press is also possible. In addition, an extrusion molding method, a blow molding method, a compression molding method, a vacuum molding method, an injection molding method, or the like can be used. If a film-like product is manufactured, the solution casting method can be used in addition to the melt extrusion method. When the melt molding method is used, inflation film molding, cast molding, extrusion lamination molding, calendar molding, sheet molding are used. , Fiber molding, blow molding, injection molding, rotational molding, coating molding, and the like.
- cured material can be manufactured using the various hardening method using an active energy ray.
- a thermosetting resin is used as the main component of the matrix resin
- a molding method in which a molding material is made into a prepreg and pressurized and heated by a press or an autoclave can be cited.
- RTM (Resin Transfer Molding) molding examples thereof include VaRTM (Vaccum Assist Resin Transfer Molding) molding, laminate molding, hand layup molding, and the like.
- the fiber reinforced resin of the present invention can form a state called an uncured or semi-cured prepreg. After the product is distributed in a prepreg state, final curing may be performed to form a cured product. In the case of forming a laminate, it is preferable to form a prepreg and then laminate other layers and then perform final curing to form a laminate in which the layers are in close contact with each other.
- the mass ratio of the composition to be used at this time and the fibrous substrate is not particularly limited, but it is usually preferable that the resin content in the prepreg is adjusted to 20 to 60 mass%.
- the cured product of the oxazine compound of the present invention is excellent in thermal decomposition resistance, dielectric properties, and low hygroscopicity, it can be suitably used for heat resistant members and electronic members.
- it can be suitably used for semiconductor encapsulants, circuit boards, build-up films, build-up boards and the like.
- it can be used suitably also for the matrix resin of a fiber reinforced resin, and is especially suitable as a highly heat resistant prepreg.
- the heat-resistant member and electronic member thus obtained can be suitably used for various applications, such as industrial machine parts, general machine parts, automobile / railway / vehicle parts, space / aviation-related parts, electronic / electric parts, Examples include, but are not limited to, building materials, containers / packaging members, daily necessities, sports / leisure products, wind power generation casing members, and the like.
- Semiconductor encapsulating material As a method for obtaining a semiconductor encapsulating material from the composition of the present invention, the composition, and a compounding agent such as a curing accelerator and an inorganic filler, if necessary, an extruder, a kneader, A method of sufficiently melting and mixing until uniform using a roll or the like can be mentioned. At that time, fused silica is usually used as the inorganic filler, but when used as a high thermal conductive semiconductor encapsulant for power transistors and power ICs, crystalline silica, alumina, nitridation having higher thermal conductivity than fused silica.
- a compounding agent such as a curing accelerator and an inorganic filler, if necessary, an extruder, a kneader, A method of sufficiently melting and mixing until uniform using a roll or the like can be mentioned.
- fused silica is usually used as the inorganic filler, but when used as a high thermal conductive
- High filling such as silicon, or fused silica, crystalline silica, alumina, silicon nitride, or the like may be used.
- the filling rate is preferably in the range of 30 to 95% by mass of inorganic filler per 100 parts by mass of the curable resin composition. Among them, flame retardancy, moisture resistance and solder crack resistance are improved, linear expansion coefficient In order to achieve a lowering of 70 parts by mass, 70 parts by mass or more is more preferable, and 80 parts by mass or more is more preferable.
- semiconductor device As semiconductor package molding for obtaining a semiconductor device from the curable resin composition of the present invention, the above-mentioned semiconductor sealing material is molded using a casting, transfer molding machine, injection molding machine or the like, and further 50 to 250 ° C. And heating for 2 to 10 hours.
- Printed Circuit Board As a method for obtaining a printed circuit board from the composition of the present invention, the above-mentioned prepreg is laminated by a conventional method, and a copper foil is appropriately stacked, and the pressure is applied at 1 to 10 MPa at 170 to 300 ° C. for 10 minutes to The method of carrying out thermocompression bonding for 3 hours is mentioned.
- the method for obtaining a build-up substrate from the composition of the present invention includes, for example, the following steps. First, the above-mentioned composition containing rubber, filler, etc. as appropriate is applied to a circuit board on which a circuit is formed using a spray coating method, a curtain coating method or the like and then cured (step 1). Then, after drilling a predetermined through-hole part, etc., if necessary, the surface is treated with a roughening agent, the surface is washed with hot water to form irregularities, and a metal such as copper is plated (process) 2).
- a step of repeating such an operation sequentially as desired, and alternately building up and forming a resin insulating layer and a conductor layer having a predetermined circuit pattern (step 3).
- the through-hole portion is formed after the outermost resin insulating layer is formed.
- the build-up board of the present invention is obtained by subjecting a copper foil with a resin obtained by semi-curing the resin composition on a copper foil to thermocompression bonding at 170 to 300 ° C. on a wiring board on which a circuit is formed. It is also possible to produce a build-up substrate by forming the chemical surface and omitting the plating process.
- the above composition is applied to the surface of a support film (Y) as a substrate, and an organic solvent is further applied by heating or hot air blowing. It can be produced by drying to form a layer (X) of the composition.
- organic solvent used herein examples include ketones such as acetone, methyl ethyl ketone, and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate, cellosolve, butyl carbitol, and the like.
- ketones such as acetone, methyl ethyl ketone, and cyclohexanone
- acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate, cellosolve, butyl carbitol, and the like.
- Carbitols, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. are preferably
- the thickness of the layer (X) to be formed is usually not less than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 ⁇ m, the thickness of the resin composition layer is preferably 10 to 100 ⁇ m.
- the layer (X) of the said composition in this invention may be protected with the protective film mentioned later. By protecting with a protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches.
- the above-mentioned support film and protective film are made of polyolefin such as polyethylene, polypropylene and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyester such as polyethylene naphthalate, polycarbonate, polyimide, and further. Examples thereof include metal foil such as pattern paper, copper foil, and aluminum foil.
- the support film and the protective film may be subjected to a release treatment in addition to the mud treatment and the corona treatment.
- the thickness of the support film is not particularly limited, but is usually 10 to 150 ⁇ m, and preferably 25 to 50 ⁇ m.
- the thickness of the protective film is preferably 1 to 40 ⁇ m.
- the support film (Y) described above is peeled off after being laminated on a circuit board or after forming an insulating layer by heat curing. If the support film (Y) is peeled after the curable resin composition layer constituting the build-up film is heat-cured, adhesion of dust and the like in the curing step can be prevented. In the case of peeling after curing, the support film is usually subjected to a release treatment in advance.
- a multilayer printed circuit board can be produced using the build-up film obtained as described above.
- the layer (X) is protected with a protective film
- the layer (X) is peeled and then laminated on one or both sides of the circuit board so as to be in direct contact with the circuit board, for example, by a vacuum laminating method.
- the laminating method may be a batch method or a continuous method using a roll. If necessary, the build-up film and the circuit board may be heated (preheated) as necessary before lamination.
- the laminating conditions are preferably a pressure bonding temperature (laminating temperature) of 70 to 140 ° C.
- Conductive paste Examples of a method for obtaining a conductive paste from the composition of the present invention include a method of dispersing conductive particles in the composition.
- the conductive paste can be a paste resin composition for circuit connection or an anisotropic conductive adhesive depending on the type of conductive particles used.
- Example 1 Synthesis of Oxazine Compound (A-1) 4-Propargyloxyaniline 147. while flowing nitrogen gas through a four-necked flask equipped with a dropping funnel, thermometer, stirring device, heating device, and cooling reflux tube. 2 g (1.0 mol), 148.2 g (1.0 mol) of 4-propargyloxyphenol were charged and dissolved in 750 g of toluene, and then 63.9 g (2.0 mol) of 94% paraformaldehyde was added. The temperature was raised to 80 ° C. while stirring, and the reaction was carried out at 80 ° C. for 7 hours. After the reaction, it was transferred to a separatory funnel and the aqueous layer was removed.
- Synthesis Example 2 Synthesis of Monopropargyl Ether-Containing Mixture (C-2) While flowing nitrogen gas through a four-necked flask equipped with a dropping funnel, thermometer, stirring device, heating device, and cooling reflux tube, 4,4 ′ -400.0 g (2.1 mol) of biphenol and 3000 mL of dehydrated THF were charged and dissolved with stirring. While maintaining the reaction solution at 10 ° C. or lower, 43.0 g (1.1 mol) of sodium hydride (60%, dispersed in liquid paraffin) was added in portions over 1 hour. After returning to room temperature over 1 hour, the temperature was raised to reflux.
- C-2 Monopropargyl Ether-Containing Mixture
- Example 2 Synthesis of Oxazine Compound (A-2) (Reactant A-2-1) While flowing nitrogen gas through a four-necked flask equipped with a dropping funnel, a thermometer, a stirrer, a heating device, and a cooling reflux tube, 29.4 g (0.2 mol) of 4-propargyloxyaniline and a mixture containing monopropargyl ether ( C-1) After charging 76.0 g and dissolving in 150 g of toluene, 12.8 g (0.4 mol) of 94% paraformaldehyde was added, the temperature was raised to 80 ° C. with stirring, and the mixture was heated at 80 ° C. for 7 hours. Reacted.
- Example 3 Synthesis of Oxazine Compound (A-2) (Reactant A-2-2)
- Example 2 except that the mixture (C-1) was changed to (C-2), the same operation was performed, and the reactant (A-2-2) 108 in which the purity of the oxazine compound A-2 was 91% .3 g was obtained.
- ⁇ Heat-resistant decomposition> The cured product having a thickness of 2.4 mm is finely cut and measured using a thermogravimetric analyzer (“TG / DTA6200” manufactured by SII Nanotechnology Co., Ltd.) at a heating rate of 5 ° C./min in a nitrogen atmosphere. The temperature (Td5) at which 5% weight loss occurs was determined.
- TG / DTA6200 manufactured by SII Nanotechnology Co., Ltd.
- Comparative Example 2 The composition in Comparative Example 2 was not cured under the above-described curing conditions, and it was impossible to obtain a test piece capable of evaluating physical properties.
- the cured product of the oxazine compound of the present invention is excellent in thermal decomposition resistance, dielectric properties, and low hygroscopicity, it can be suitably used for heat resistant members and electronic members.
- it can be suitably used for semiconductor encapsulants, circuit boards, build-up films, build-up boards and the like.
- it can be used suitably also for the matrix resin of a fiber reinforced resin, and is especially suitable as a highly heat resistant prepreg.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Reinforced Plastic Materials (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
- Phenolic Resins Or Amino Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
従来のベンゾオキサジンとしては、ビスフェノールFやビスフェノールAなどの二官能フェノール類とアニリンとからなるベンゾオキサジンが、特許文献1、特許文献2にて開示されている。しかし、これらの使用に際してはオキサジンの開環時にアニリン由来の成分が分解ガスとして発生するために、長期熱耐久性の指標となる耐熱分解性において、近年要求されているレベルには達していないことから、更なる改良、性能の向上が強く望まれている。
更に式(1)の化合物は炭素数1~3のアルキル基、置換または無置換の芳香族基を有していてもよい。)
(式(2)中、X1、X2、Y1はそれぞれ独立して単結合または2価の連結基を表し、R2は、水素原子、炭化水素基、又は、炭化水素基に含まれる1以上の水素原子が水酸基、アルコキシ基、ハロゲン原子のいずれかで置換された炭化水素基を表し、a1は、前記オキサジン化合物(1)との結合点であることを表す。)
本発明のオキサジン化合物は、一般式(1)の構造を有し、さらに一般式(2)で表される官能基R1をそれぞれ独立して少なくとも2個以上有することを特徴とする。
更に式(1)の化合物は炭素数1~3のアルキル基、置換または無置換の芳香族基を有していてもよい。)
本発明において、官能基R1は炭素-炭素間三重結合構造を有する基であり、具体的には前記式(2)で表される基である。本発明のオキサジン化合物は、オキサジン環の開環重合に由来する硬化反応と、炭素-炭素間三重結合の重合反応に由来する硬化反応の2つの硬化が進行するため、硬化した際に密な架橋構造を形成することから、耐熱性、特に耐熱分解温度が向上する。特に、本発明のオキサジン化合物は、官能基R1を2つ以上有することを特徴としており、これは多官能化することで硬化物がより密な三次元架橋を形成し、より一層耐熱性が向上するためである。
アルケニレン基としては、ビニレン基、1-メチルビニレン基、プロペニレン基、ブテニレン基、ペンテニレン基等が挙げられる。
アルキニレン基としては、エチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基、へキシニレン基等が挙げられる。
シクロアルキレン基としては、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基等が挙げられる。
アリーレン基としては、フェニレン基、トリレン基、キシリレン基、ナフチレン基等が挙げられる。
アラルキレン基としては、アルキレン基とアリーレン基を有する炭素数7~20のアラルキレン基等が挙げられる。
前記式(1)の化合物においてAr1は、置換または無置換の芳香族基を表し、具体的にはフェニレン基、ナフチレン基、アントラセン骨格やフェナントレン骨格を含むアリーレン基等が挙げられる。
本発明のオキサジン化合物は、分子骨格に反応性官能基を導入したフェノール化合物、同じく反応性官能基を導入した芳香族アミノ化合物をホルムアルデヒドとを反応させることで得ることができる。反応性官能基としては、エチニル基、プロパルギルオキシ基などが挙げられる。反応性官能基を導入したフェノール化合物としては、2-プロパルギルオキシフェノール、3-プロパルギルオキシフェノール、4-プロパルギルオキシフェノール、4’-プロパルギルオキシ-4-ビフェノール、4’-プロパルギルオキシ-3-ビフェノール、4’-プロパルギルオキシ-2-ビフェノール、2-プロパルギルオキシ-1-ナフトール、3-プロパルギルオキシ-1-ナフトール、4-プロパルギルオキシ-1-ナフトール、5-プロパルギルオキシ-1-ナフトール、6-プロパルギルオキシ-1-ナフトール、7-プロパルギルオキシ-1-ナフトール、8-プロパルギルオキシ-1-ナフトール、1-プロパルギルオキシ-2-ナフトール、3-プロパルギルオキシ-2-ナフトール、6-プロパルギルオキシ-2-ナフトール、7-プロパルギルオキシ-2-ナフトールなどが挙げられる。反応性官能基を導入した芳香族アミノ化合物としては、2-プロパルギルオキシアニリン、3-プロパルギルオキシアニリン、4-プロパルギルオキシアニリン、4’-プロパルギルオキシビフェニル-4-アミン、4’-プロパルギルオキシビフェニル-3-アミン、4’-プロパルギルオキシビフェニル-2-アミン、2-プロパルギルオキシ-1-アミノナフタレン、3-プロパルギルオキシ-1-アミノナフタレン、4-プロパルギルオキシ-1-アミノナフタレン、5-プロパルギルオキシ-1-アミノナフタレン、6-プロパルギルオキシ-1-アミノナフタレン、7-プロパルギルオキシ-1-アミノナフタレン、8-プロパルギルオキシ-1-アミノナフタレン、1-プロパルギルオキシ-2-アミノナフタレン、3-プロパルギルオキシ-2-アミノナフタレン、6-プロパルギルオキシ-2-アミノナフタレン、7-プロパルギルオキシ-2-アミノナフタレンなどが挙げられる。反応は、例えば反応性官能基を導入したフェノール化合物、反応性官能基を導入した芳香族アミノ化合物を、ホルムアルデヒドと50~100℃の温度条件下で反応を行い、反応終了後に水層と有機層とを分離した後、有機層から有機溶媒を減圧乾燥させるなどしてオキサジン化合物を得ることが出来る。
また、ホルムアルデヒドは、溶液の状態であるホルマリン、或いは固形の状態であるパラホルムアルデヒドのどちらの形態で用いても良い。
本発明の樹脂組成物は、本発明のオキサジン化合物を含有する。
本発明の樹脂組成物を硬化して得られる硬化物は、耐熱分解性に優れ、なおかつ誘電特性及び低吸湿性に優れることから、耐熱部材や電子部材に好適に使用可能である。
本発明の樹脂組成物は、本発明のオキサジン化合物以外の配合物を有していてもよい。
例えば、本発明のオキサジン化合物以外の反応性化合物を有していてもよい。ここで言う反応性化合物とは、反応性基を有する化合物であり、モノマーであってもオリゴマーであってもポリマーであってもかまわない。
本発明のオキサジン化合物と反応する官能基としては、例えばエポキシ基、シアナト基、マレイミド基、フェノール性水酸基が挙げられる。
シアナト基を有する化合物としては、シアネートエステル樹脂が挙げられる。
マレイミド基を有する化合物としては、マレイミド樹脂、ビスマレイミド化合物が挙げられる。フェノール性水酸基を有する化合物としては、フェノール樹脂、フェノール化合物が挙げられる。
本発明の組成物は、オキサジン化合物の他に、更にフィラーを含有してもよい。フィラーとしては、無機フィラーと有機フィラーが挙げられる。無機フィラーとしては、例えば無機微粒子が挙げられる。
これらの無機微粒子は、用途によって適時選択すればよく、単独で使用しても、複数種組み合わせて使用してもかまわない。また、上記無機微粒子は、例に挙げた特性以外にも様々な特性を有することから、適時用途に合わせて選択すればよい。
また、市販のコロイダルシリカとしては、例えば、日産化学工業(株)製メタノ-ルシリカゾル、IPA-ST、MEK-ST、NBA-ST、XBA-ST、DMAC-ST、ST-UP、ST-OUP、ST-20、ST-40、ST-C、ST-N、ST-O、ST-50、ST-OL等を挙げることができる。
本発明の組成物は、オキサジン化合物の他に、更に繊維質基質を含有してもよい。本発明の繊維質基質は、特に限定はないが、繊維強化樹脂に用いられるものが好ましく、無機繊維や有機繊維が挙げられる。
本発明の組成物は、組成物の固形分量や粘度を調整する目的として、分散媒を使用してもよい。分散媒としては、本発明の効果を損ねることのない液状媒体であればよく、各種有機溶剤、液状有機ポリマー等が挙げられる。
また、本発明の組成物は、オキサジン化合物以外の樹脂を有していてもよい。樹脂としては、本発明の効果を損なわない範囲であれば公知慣用の樹脂を配合すればよく、例えば
熱硬化性樹脂や熱可塑性樹脂を用いることができる。
本発明の組成物は、配合物に応じて硬化剤を用いてもよい、例えば、エポキシ基を有する化合物を配合している場合には、アミン系硬化剤、アミド系硬化剤、酸無水物系硬化剤、フェノール系硬化剤、アミノトリアジンノボラック樹脂、活性エステル樹脂、カルボキシル基やチオールなどのエポキシ基と反応する官能基を有する樹脂などの各種の硬化剤を併用してもかまわない。
これらの硬化剤は、単独でも2種類以上の併用でも構わない。
本発明の組成物は、その他の配合物を有していてもかまわない。例えば、触媒、重合開始剤、無機顔料、有機顔料、体質顔料、粘土鉱物、ワックス、界面活性剤、安定剤、流動調整剤、カップリング剤、染料、レベリング剤、レオロジーコントロール剤、紫外線吸収剤、酸化防止剤、難燃剤、可塑剤等が挙げられる。
本発明の組成物を硬化して得られる硬化物は、耐熱分解性、誘電特性及び低吸湿性に優れることから、耐熱部材や電子部材に好適に使用可能である。硬化物の成形方法は特に限定は無く、組成物単独で成形してもよいし、基材と積層することで積層体としてもかまわない。
回路基板や半導体パッケージ基板といった用途の場合、金属箔を積層することが好ましく、金属箔としては銅箔、アルミ箔、金箔、銀箔などが挙げられ、加工性が良好なことから銅箔を用いることが好ましい。
成形された組成物を積層する場合、未硬化または半硬化された組成物層を積層してから硬化させてもよいし、組成物を完全硬化した硬化物層を基材に対し積層してもよい。
また、本発明の硬化物に対して、基材となりうる前駆体を塗工して硬化させることで積層させてもよく、基材となりうる前駆体または本発明の組成物が未硬化あるいは半硬化の状態で接着させた後に硬化させてもよい。基材となりうる前駆体としては特に限定はなく、各種硬化性樹脂組成物等が挙げられる。
本発明の組成物が繊維質基質を有し、該繊維質基質が強化繊維の場合、繊維質基質を含有する組成物は繊維強化樹脂として用いることができる。
組成物に対し繊維質基質を含有させる方法は、本発明の効果を損なわない範囲であればとくに限定はなく、繊維質基質と組成物とを、混練、塗布、含浸、注入、圧着、等の方法で複合化する方法が挙げられ、繊維の形態及び繊維強化樹脂の用途によって適時選択することができる。
本発明の繊維強化樹脂は、未硬化あるいは半硬化のプリプレグと呼ばれる状態を形成することができる。プリプレグの状態で製品を流通させた後、最終硬化をおこなって硬化物を形成してもよい。積層体を形成する場合は、プリプレグを形成した後、その他の層を積層してから最終硬化を行うことで、各層が密着した積層体を形成できるため、好ましい。
この時用いる組成物と繊維質基質の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20~60質量%となるように調製することが好ましい。
本発明のオキサジン化合物は、その硬化物が耐熱分解性、誘電特性及び低吸湿性に優れることから、耐熱部材や電子部材に好適に使用可能である。特に、半導体封止材、回路基板、ビルドアップフィルム、ビルドアップ基板等に好適に使用可能である。また、繊維強化樹脂のマトリクス樹脂にも好適に使用可能であり、高耐熱性のプリプレグとして特に適している。こうして得られる耐熱部材や電子部材は、各種用途に好適に使用可能であり、例えば、産業用機械部品、一般機械部品、自動車・鉄道・車両等部品、宇宙・航空関連部品、電子・電気部品、建築材料、容器・包装部材、生活用品、スポーツ・レジャー用品、風力発電用筐体部材等が挙げられるが、これらに限定される物ではない。
本発明の組成物から半導体封止材料を得る方法としては、前記組成物、及び硬化促進剤、及び無機充填剤等の配合剤とを必要に応じて押出機、ニ-ダ、ロ-ル等を用いて均一になるまで充分に溶融混合する方法が挙げられる。その際、無機充填剤としては、通常、溶融シリカが用いられるが、パワートランジスタ、パワーIC用高熱伝導半導体封止材として用いる場合は、溶融シリカよりも熱伝導率の高い結晶シリカ,アルミナ,窒化ケイ素などの高充填化、または溶融シリカ、結晶性シリカ、アルミナ、窒化ケイ素などを用いるとよい。その充填率は硬化性樹脂組成物100質量部当たり、無機充填剤を30~95質量%の範囲で用いることが好ましく、中でも、難燃性や耐湿性や耐ハンダクラック性の向上、線膨張係数の低下を図るためには、70質量部以上がより好ましく、80質量部以上であることがさらに好ましい。
本発明の硬化性樹脂組成物から半導体装置を得る半導体パッケージ成形としては、上記半導体封止材料を注型、或いはトランスファー成形機、射出成形機などを用いて成形し、さらに50~250℃で2~10時間の間、加熱する方法が挙げられる。
本発明の組成物からプリント回路基板を得る方法としては、上記プリプレグを、常法により積層し、適宜銅箔を重ねて、1~10MPaの加圧下に170~300℃で10分~3時間、加熱圧着させる方法が挙げられる。
本発明の組成物からビルドアップ基板を得る方法は、例えば以下の工程が挙げられる。まず、ゴム、フィラーなどを適宜配合した上記組成物を、回路を形成した回路基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる工程(工程1)。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって凹凸を形成させ、銅などの金属をめっき処理する工程(工程2)。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成する工程(工程3)。なお、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、本発明のビルドアップ基板は、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170~300℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。
本発明の組成物からビルドアップフィルムを得る方法としては、基材である支持フィルム(Y)の表面に、上記組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させて組成物の層(X)を形成させることにより製造することができる。
本発明の組成物から導電ペーストを得る方法としては、例えば、導電性粒子を該組成物中に分散させる方法が挙げられる。上記導電ペーストは、用いる導電性粒子の種類によって、回路接続用ペースト樹脂組成物や異方性導電接着剤とすることができる。
尚、1Hおよび13C-NMR、MSスペクトル、IRは以下の条件にて測定した。
磁場強度:600MHz
積算回数:16回
溶媒:DMSO-d6
試料濃度:30質量%
磁場強度:150MHz
積算回数:4000回
溶媒:DMSO-d6
試料濃度:30質量%
測定範囲:m/z=50.00~2000.00
変化率:25.6mA/min
最終電流値:40mA
カソード電圧:-10kV
滴下ロート、温度計、攪拌装置、加熱装置、冷却還流管を取り付けた4つ口フラスコに窒素ガスを流しながら、4-プロパルギルオキシアニリン147.2g(1.0モル)、4-プロパルギルオキシフェノール148.2g(1.0モル)を仕込み、トルエン 750gに溶解させた後、94%パラホルムアルデヒド63.9g(2.0モル)を加えて、攪拌しながら80℃まで昇温し、80℃で7時間反応させた。反応後、分液ロートに移し、水層を除去した。その後有機層から溶媒を加熱減圧下に除去し、オキサジン化合物(A-1)239gを得た。
1H-NMRは7.04ppm(2H)、6.87ppm(2H)、6.75ppm(2H)、6.62ppm(1H)、5.22ppm(2H)、4.59ppm(4H)、4.51ppm(2H)、2.49ppm(2H)のピークを示し、13C-NMRは152.8ppm、151.5ppm、149.0ppm、143.1ppm、121.3ppm、120.5ppm、117.5ppm、115.7ppm、115.0ppm、112.9ppm、80.4ppm、78.8ppm、78.8ppm、75.4ppm、75.4ppm、56.5ppm、56.2ppm、51.1ppmのピークを示し、マススペクトルはM+=319のピークを示したことから、下記式で表されるオキサジン化合物(A-1)が得られていることを確認した。
滴下ロート、温度計、攪拌装置、加熱装置、冷却還流管を取り付けた4つ口フラスコに窒素ガスを流しながら、4,4´-ビフェノール 400.0g(2.1モル)と脱水THF 5000mLを仕込み攪拌溶解した。反応溶液を10℃以下に保ちながら水素化ナトリウム(60%, 流動パラフィンに分散) 85.9g(2.1モル)を1時間かけて分割添加した。1時間かけて室温に戻した後、昇温し還流状態にした。還流下でプロパルギルブロミド(80%トルエン溶液) 319.4g(2.1モル)を1時間かけて滴下した。滴下終了後、還流下で24時間反応させた。
室温まで放冷後、臭化ナトリウムを濾別し、THF及びトルエンを減圧除去した。残渣に酢酸エチル 3600gを加え溶解させた後、10%水酸化ナトリウム水溶液1200gを用い3回アルカリ洗浄した。続いてイオン交換水 1800g用い2回水洗した。硫酸ナトリウムを加え乾燥後、濾別し酢酸エチルを減圧除去した。60℃で12時間真空乾燥し乳白色固体(C-1)を76.0g得た。1H-NMRは9.44ppm(1H)、7.51ppm-7.40ppm(4H)、7.01ppm(2H)、6.81ppm(2H)、4.80ppm(2H)、3.55ppm(1H)のピークを示し、13C-NMRは156.6ppm、156.0ppm、133.5ppm、130.6ppm、127.3ppm、126.9ppm、115.6ppm、115.5ppm、115.2ppm、79.3ppm、78.1ppm、55.4ppmのピークを示し、目的物であるモノプロパルギルエーテルを含有する混合物(C-1)であることを確認した。
<混合物(C-1)の組成>
モノプロパルギルエーテル 52.1%
ジプロパルギルエーテル 44.9%
HPLC面積% 検出波長254nm
滴下ロート、温度計、攪拌装置、加熱装置、冷却還流管を取り付けた4つ口フラスコに窒素ガスを流しながら、4,4´-ビフェノール 400.0g(2.1モル)と脱水THF 3000mLを仕込み攪拌溶解した。反応溶液を10℃以下に保ちながら水素化ナトリウム(60%, 流動パラフィンに分散) 43.0g(1.1モル)を1時間かけて分割添加した。1時間かけて室温に戻した後、昇温し還流状態にした。還流下でプロパルギルブロミド(80%トルエン溶液) 159.7g(1.1モル)を1時間かけて滴下した。滴下終了後、還流下で24時間反応させた。
室温まで放冷後、臭化ナトリウムを濾別し、THF及びトルエンを減圧除去した。残渣に酢酸エチル 2000gを加え溶解させた後、10%水酸化ナトリウム水溶液1200gを用い3回アルカリ洗浄した。続いてイオン交換水 1800g用い2回水洗した。硫酸ナトリウムを加え乾燥後、濾別し酢酸エチルを減圧除去した。60℃で12時間真空乾燥し乳白色固体(C-2)を98.7g得た。1H-NMRは9.44ppm(1H)、7.51ppm-7.40ppm(4H)、7.01ppm(2H)、6.81ppm(2H)、4.80ppm(2H)、3.55ppm(1H)のピークを示し、13C-NMRは156.6ppm、156.0ppm、133.5ppm、130.6ppm、127.3ppm、126.9ppm、115.6ppm、115.5ppm、115.2ppm、79.3ppm、78.1ppm、55.4ppmのピークを示し、目的物であるモノプロパルギルエーテルを含有する混合物(C-2)であることを確認した。
<混合物(C-2)の組成>
モノプロパルギルエーテル 81.7%
ジプロパルギルエーテル 18.3%
HPLC面積% 検出波長254nm
滴下ロート、温度計、攪拌装置、加熱装置、冷却還流管を取り付けた4つ口フラスコに窒素ガスを流しながら、4-プロパルギルオキシアニリン29.4g(0.2モル)、モノプロパルギルエーテル含有混合物(C-1)76.0gを仕込み、トルエン150gに溶解させた後、94%パラホルムアルデヒド12.8g(0.4モル)を加えて、攪拌しながら80℃まで昇温し、80℃で7時間反応させた。反応後、分液ロートに移し、水層を除去した。その後有機層から溶媒を加熱減圧下に除去し、オキサジン化合物(A-2)を含有する反応物84.9gを得た。
実施例2において、混合物(C-1)を(C-2)に代える以外は、同様の操作を行い、オキサジン化合物A-2の純度が91%である反応物(A-2-2)108.3gを得た。
滴下ロート、温度計、攪拌装置、加熱装置、冷却還流管を取り付けた4つ口フラスコに窒素ガスを流しながら、アニリン93.1g(1.0モル)、フェノール94.1g(1.0モル)を仕込み、トルエン 750gに溶解させた後、94%パラホルムアルデヒド63.9g(2.0モル)を加えて、攪拌しながら80℃まで昇温し、80℃で7時間反応させた。反応後、分液ロートに移し、水層を除去した。その後有機層から溶媒を加熱減圧下に除去し、オキサジン化合物(B-1)189gを得た。
1H-NMRは7.24ppm-7.05ppm(7H)、6.87ppm-6.70ppm(2H)、5.43ppm(2H)、4.64ppm(2H)のピークを示し、13C-NMRは154.0ppm、147.8ppm、129.1ppm、127.7ppm、127.2ppm、121.3ppm、120.5ppm、120.5ppm、117.4ppm、116.2ppm、78.4ppm、48.9ppmのピークを示し、マススペクトルはM+=211のピークを示したことから、下記式で表されるオキサジン化合物(B-1)が得られていることを確認した。
滴下ロート、温度計、攪拌装置、加熱装置、冷却還流管を取り付けた4つ口フラスコに窒素ガスを流しながら、1,4-ハイドロキノン 40.0g(0.4モル)とアセトン 1Lを仕込み攪拌溶解した。炭酸カリウム 110.5g(0.8モル)を添加後、昇温し還流状態にした。還流下で30分経過後、プロパルギルブロミド(80%トルエン溶液) 118.8g(0.8モル)を1時間かけて滴下した。滴下終了後、還流下で24時間反応させた。
室温まで放冷後、炭酸カリウムを濾別し、アセトンを減圧除去した。残渣にクロロホルム 200mLを加え溶解させた後、イオン交換水 200mLを用い2回水洗した。硫酸マグネシウムを加え乾燥後、濾別しクロロホルムを減圧除去した。さらに80℃で12時間真空乾燥し薄茶色結晶を64g得た。1H-NMRは6.93ppm-6.86ppm(4H)、4.70ppm(4H)、3.51ppm(2H)のピークを示し、13C-NMRは151.7ppm、115.8ppm、79.4ppm、78.0ppm、55.8ppmのピークを示し、下記式で表される目的物である1,4-ハイドロキノンジプロパルギルエーテルであることを確認した。
実施例1~3及び比較合成例1で得られたオキサジン化合物(A-1、A-2-1、A-2-2、B-1)、比較合成例2で得られた1,4-ハイドロキノンジプロパルギルエーテル(B-2)、比較用ジヒドロオキサジン化合物(四国化成製「P-d型ベンゾオキサジン」(4,4’-ジアミノジフェニルメタンとホルマリンとフェノールの反応生成物))、フェノール樹脂(DIC株式会社製「TD-2131」フェノールノボラック樹脂)を、表1に示す割合で配合し、組成物を調製した。
この組成物を以下の条件に付すことで硬化物を作製した。
硬化条件:170℃で2時間の後、200℃で2時間、更に250℃で2時間加熱硬化
成型後板厚:2.4mm
<ガラス転移温度>
厚さ2.4mmの硬化物を幅5mm、長さ54mmのサイズに切り出し、これを試験片1とした。この試験片1を粘弾性測定装置(DMA:日立ハイテクサイエンス社製固体粘弾性測定装置「DMS7100」、変形モード:両持ち曲げ、測定モード:正弦波振動、周波数1Hz、昇温速度3℃/分)を用いて、弾性率変化が最大となる(tanδ変化率が最も大きい)温度をガラス転移温度として評価した。
厚さ2.4mmの硬化物を細かく裁断し、熱重量分析装置(SIIナノテクノロジー社製「TG/DTA6200」)を用いて、昇温速度を5℃/分として窒素雰囲気下で測定を行い、5%重量減少する温度(Td5)を求めた。
Claims (18)
- 一般式(1)の構造を有し、さらに一般式(2)で表される官能基R1をそれぞれ独立して少なくとも2個以上有することを特徴とする、オキサジン化合物。
・・・(1)
(式(1)中、Ar1は置換または無置換の芳香族基を表し、環Aは置換または無置換の芳香環を表し、
更に式(1)の化合物は炭素数1~3のアルキル基、置換または無置換の芳香族基を有していてもよい。)
・・・(2)
(式(2)中、X1、X2、Y1はそれぞれ独立して単結合または2価の連結基を表し、R2は、水素原子、炭化水素基、又は、炭化水素基に含まれる1以上の水素原子が水酸基、アルコキシ基、ハロゲン原子のいずれかで置換された炭化水素基を表し、a1は、前記オキサジン化合物(1)との結合点であることを表す。) - 環Aが置換または無置換のベンゼン環、置換または無置換のナフタレン環である、請求項1または2に記載のオキサジン化合物。
- 請求項1から3に記載のオキサジン化合物を含有することを特徴とする、組成物。
- 更に、反応性化合物を含有する、請求項4に記載の組成物。
- 更に、フィラーを含有する、請求項4または5に記載の組成物。
- 更に、繊維質基質を含有する、請求項4~6のいずれかに記載の組成物。
- 請求項4~7のいずれかに記載の組成物を硬化してなる硬化物。
- 基材と請求項8に記載の硬化物層とを有することを特徴とする積層体。
- 請求項4~7のいずれかに記載の組成物を含有することを特徴とする、耐熱材料用組成物。
- 請求項8に記載の硬化物を含有することを特徴とする耐熱部材。
- 請求項4~7のいずれかに記載の組成物を含有することを特徴とする、電子材料用組成物。
- 請求項8に記載の硬化物を含有することを特徴とする電子部材。
- 請求項4~7のいずれかに記載の組成物を含有することを特徴とする、半導体封止材。
- 請求項7に記載の、繊維質基質を含有する組成物を含有することを特徴とするプリプレグ。
- 請求項15に記載のプリプレグに更に銅箔層を有することを特徴とする回路基板。
- ビルドアップフィルムである、請求項9に記載の積層体。
- 請求項17に記載のビルドアップフィルムを有することを特徴とするビルドアップ基板。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16872825.1A EP3388459A4 (en) | 2015-12-08 | 2016-11-24 | OXAZINE COMPOUND, COMPOSITION AND HARDENED PRODUCT |
CN201680072202.4A CN108368217B (zh) | 2015-12-08 | 2016-11-24 | 恶嗪化合物、组合物及固化物 |
KR1020187015498A KR102644662B1 (ko) | 2015-12-08 | 2016-11-24 | 옥사진 화합물, 조성물 및 경화물 |
US15/781,801 US11028059B2 (en) | 2015-12-08 | 2016-11-24 | Oxazine compound, composition and cured product |
JP2017539686A JP6268564B2 (ja) | 2015-12-08 | 2016-11-24 | オキサジン化合物、組成物及び硬化物 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015239362 | 2015-12-08 | ||
JP2015-239362 | 2015-12-08 | ||
JP2016-156537 | 2016-08-09 | ||
JP2016156537 | 2016-08-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017098925A1 true WO2017098925A1 (ja) | 2017-06-15 |
Family
ID=59013176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/084727 WO2017098925A1 (ja) | 2015-12-08 | 2016-11-24 | オキサジン化合物、組成物及び硬化物 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11028059B2 (ja) |
EP (1) | EP3388459A4 (ja) |
JP (1) | JP6268564B2 (ja) |
KR (1) | KR102644662B1 (ja) |
CN (1) | CN108368217B (ja) |
TW (1) | TWI708766B (ja) |
WO (1) | WO2017098925A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001507684A (ja) * | 1996-12-16 | 2001-06-12 | デュポン ファーマシューティカルズ カンパニー | ベンゾオキサジノン類の不斉合成 |
JP2008523171A (ja) * | 2004-12-03 | 2008-07-03 | ヘンケル コーポレイション | ナノ粒子シリカ充填ベンズオキサジン組成物 |
JP2009262227A (ja) * | 2008-04-02 | 2009-11-12 | Hitachi Chem Co Ltd | フラックス活性剤、接着剤樹脂組成物、接着ペースト、接着フィルム、半導体装置の製造方法、及び半導体装置 |
JP2011527356A (ja) * | 2008-07-09 | 2011-10-27 | ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン | 重合性組成物 |
JP2013508517A (ja) * | 2009-10-27 | 2013-03-07 | ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン | ベンゾオキサジン含有組成物 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5543516A (en) * | 1994-05-18 | 1996-08-06 | Edison Polymer Innovation Corporation | Process for preparation of benzoxazine compounds in solventless systems |
JPH1112258A (ja) | 1997-06-20 | 1999-01-19 | Shikoku Chem Corp | 3−アリールジヒドロ−1,3−ベンゾオキサジン化合物の製法 |
JP2000169456A (ja) | 1998-12-10 | 2000-06-20 | Shikoku Chem Corp | 3−アリールジヒドロ−1,3−ベンゾオキサジン化合物の製法 |
JP2002241495A (ja) | 2001-02-19 | 2002-08-28 | Shikoku Chem Corp | プロパルギルエーテル基を有する新規な1,3−ベンゾオキサジンモノマー及び当該モノマーを重合してなるポリベンゾオキサジン |
US6620905B1 (en) | 2002-02-23 | 2003-09-16 | National Starch And Chemical Investment Holding Corporation | Curable compositions containing benzoxazine |
CN1284776C (zh) * | 2003-07-11 | 2006-11-15 | 北京化工大学 | 含n-烯丙基的苯并噁嗪中间体和组合物及其制备方法 |
US8470918B2 (en) * | 2005-09-30 | 2013-06-25 | Sumitomo Bakelite Co., Ltd. | Epoxy resin composition and semiconductor device |
CN101235131B (zh) * | 2008-02-27 | 2010-12-15 | 山东大学 | 含炔丙基醚的新型苯并噁嗪中间体及其树脂的制备方法 |
JP5385635B2 (ja) | 2009-02-24 | 2014-01-08 | 住友電気工業株式会社 | 接着性樹脂組成物及びこれを用いた積層体並びにフレキシブル印刷配線板 |
CN102250117B (zh) * | 2011-05-11 | 2013-07-24 | 华东理工大学 | 一种含噁唑环的双苯并噁嗪及其制备方法 |
TWI529177B (zh) * | 2011-12-22 | 2016-04-11 | Nat Univ Chung Hsing | Phosphorus-containing benzoxazine compounds, curing compositions and cured products |
CN103289087B (zh) * | 2013-04-07 | 2015-10-14 | 四川东材绝缘技术有限公司 | 一种苯并恶嗪-环氧树脂的制备方法 |
CN103936686B (zh) * | 2014-03-21 | 2016-05-04 | 哈尔滨工程大学 | N-半芳香烃基双胺-双酚型四官能度芴基苯并噁嗪及制备方法 |
CN104962085A (zh) * | 2015-07-13 | 2015-10-07 | 华东理工大学 | 提高含硅芳炔树脂基复合材料力学性能的方法 |
CN108368069B (zh) * | 2015-12-16 | 2022-10-14 | Dic株式会社 | 恶嗪化合物、组合物及固化物 |
-
2016
- 2016-11-24 CN CN201680072202.4A patent/CN108368217B/zh active Active
- 2016-11-24 US US15/781,801 patent/US11028059B2/en active Active
- 2016-11-24 JP JP2017539686A patent/JP6268564B2/ja active Active
- 2016-11-24 WO PCT/JP2016/084727 patent/WO2017098925A1/ja active Application Filing
- 2016-11-24 KR KR1020187015498A patent/KR102644662B1/ko active IP Right Grant
- 2016-11-24 EP EP16872825.1A patent/EP3388459A4/en not_active Withdrawn
- 2016-12-07 TW TW105140339A patent/TWI708766B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001507684A (ja) * | 1996-12-16 | 2001-06-12 | デュポン ファーマシューティカルズ カンパニー | ベンゾオキサジノン類の不斉合成 |
JP2008523171A (ja) * | 2004-12-03 | 2008-07-03 | ヘンケル コーポレイション | ナノ粒子シリカ充填ベンズオキサジン組成物 |
JP2009262227A (ja) * | 2008-04-02 | 2009-11-12 | Hitachi Chem Co Ltd | フラックス活性剤、接着剤樹脂組成物、接着ペースト、接着フィルム、半導体装置の製造方法、及び半導体装置 |
JP2011527356A (ja) * | 2008-07-09 | 2011-10-27 | ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン | 重合性組成物 |
JP2013508517A (ja) * | 2009-10-27 | 2013-03-07 | ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン | ベンゾオキサジン含有組成物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3388459A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN108368217B (zh) | 2021-05-07 |
CN108368217A (zh) | 2018-08-03 |
JPWO2017098925A1 (ja) | 2017-12-07 |
EP3388459A1 (en) | 2018-10-17 |
TW201730162A (zh) | 2017-09-01 |
US20180362477A1 (en) | 2018-12-20 |
KR102644662B1 (ko) | 2024-03-07 |
US11028059B2 (en) | 2021-06-08 |
TWI708766B (zh) | 2020-11-01 |
EP3388459A4 (en) | 2019-05-22 |
JP6268564B2 (ja) | 2018-01-31 |
KR20180092953A (ko) | 2018-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6350890B2 (ja) | オキサジン化合物、組成物及び硬化物 | |
WO2018116948A1 (ja) | 組成物、硬化物および積層体 | |
JP6268566B2 (ja) | オキサジン化合物、組成物及び硬化物 | |
JP6697183B2 (ja) | オキサジン化合物、組成物及び硬化物 | |
JP6350889B2 (ja) | オキサジン化合物、組成物及び硬化物 | |
JP6268565B2 (ja) | オキサジン化合物、組成物及び硬化物 | |
JP2018100232A (ja) | 水酸基含有マレイミド化合物 | |
JP6268564B2 (ja) | オキサジン化合物、組成物及び硬化物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017539686 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16872825 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20187015498 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016872825 Country of ref document: EP |