Nothing Special   »   [go: up one dir, main page]

WO2017094392A1 - Linear organopolysiloxane having different functional groups at both terminals, and method for producing same - Google Patents

Linear organopolysiloxane having different functional groups at both terminals, and method for producing same Download PDF

Info

Publication number
WO2017094392A1
WO2017094392A1 PCT/JP2016/081233 JP2016081233W WO2017094392A1 WO 2017094392 A1 WO2017094392 A1 WO 2017094392A1 JP 2016081233 W JP2016081233 W JP 2016081233W WO 2017094392 A1 WO2017094392 A1 WO 2017094392A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
represented
functional group
silicone
Prior art date
Application number
PCT/JP2016/081233
Other languages
French (fr)
Japanese (ja)
Inventor
薫 岡村
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016188535A external-priority patent/JP2017105753A/en
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020187015139A priority Critical patent/KR20180089414A/en
Priority to CN201680071072.2A priority patent/CN108473513A/en
Priority to US15/780,195 priority patent/US20180362716A1/en
Priority to EP16870332.0A priority patent/EP3385268A4/en
Publication of WO2017094392A1 publication Critical patent/WO2017094392A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F30/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F30/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F30/08Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a linear organopolysiloxane having different functional groups at both ends and a method for producing the same. Moreover, this invention provides the polysiloxane compound which has a terminal amino group and another terminal functional group, and its manufacturing method.
  • organopolysiloxanes containing organic functional groups have been widely used as resin modifiers in the fields of paints, molding materials, medical materials, various coating materials, etc., and have heat resistance, weather resistance, mold release properties for organic resins. Properties such as heat resistance, molding processability and thermal shock resistance.
  • Patent Document 1 describes a compound having functional groups at both ends of dimethylpolysiloxane.
  • Patent Document 2 proposes methylpolysiloxane having a functional group in the side chain. However, all of these organopolysiloxanes have only one type of functional group.
  • An organopolysiloxane having one type of functional group at both ends and / or side chains has characteristics according to the functional group, and it is not possible to give organopolysiloxane various characteristics possessed by a plurality of functional groups. Have difficulty. Also, since the difference in reactivity depending on the type of functional group cannot be used with the same functional group alone, it is difficult to precisely control the reaction such as using different crosslinking methods or using polymerization and crosslinking separately. is there.
  • Patent Document 3 describes organopolysiloxanes having different types of functional groups in one molecule. Patent Document 3 describes that a heterofunctional organopolysiloxane having a different functional group in the side chain is produced by reacting a different allyl compound with the side chain type hydrogen polysiloxane.
  • the organopolysiloxane described in Patent Document 3 has a functional group in the side chain having a large steric hindrance, and the introduced functional group exists as an average, and the structure is not clear. Control is not enough.
  • Patent Document 4 describes an organosiloxane having a hydrophilic group and a polymerizable group at its terminal, which is useful as a medical device material.
  • Patent Document 4 discloses a heterogeneous terminal organosiloxane having a first functional group and a hydrogensilyl group after purification by introducing a first functional group by reacting a first allyl compound with a both-end type hydrogensiloxane. And further reacting the remaining hydrogensilyl group with a second allyl compound to produce an organosiloxane having different functional groups at both ends.
  • Patent Document 4 requires distillation or column purification in the step of obtaining an organosiloxane having a first functional group and a hydrogensilyl group. In principle, only low molecular weight organosiloxanes can be produced by this method. Therefore, in the compound obtained by the manufacturing method described in Patent Document 4, the content of siloxane is low. Even if the siloxane is used as a raw material, the characteristics of the siloxane cannot be sufficiently imparted to the polymer or the like.
  • JP 58-217515 A Japanese Patent No. 3779187 Japanese Patent No. 3067312 Special table 2014-505067 gazette JP 2009-256660 A JP-A-2-49793
  • Organopolysiloxane compounds having different functional groups at their ends are useful in fields such as resin modifiers and medical device materials, but there is currently no material with a clear structure and sufficient siloxane properties. It is.
  • terminal amino-functional silicone compounds are known, and these are both terminal amino-functional silicone compounds having amino groups at both ends and one-terminal amino-functional silicone compounds having functional groups only at one end.
  • Patent Documents 5 and 6 A silicone compound having an amino group at one end and another terminal functional group at the other end can react with two different substrates depending on the reactivity of the two functional groups in a single compound. Although it is considered useful as a resin modifier, it has not been studied at present.
  • a method for producing a silicone having a terminal amino group and other terminal functional groups by reacting both terminal amino functional silicones and both terminal carbinol functional silicones in the presence of trifluoromethanesulfonic acid is considered. It is done.
  • an object of the present invention is to provide a hetero-functional organopolysiloxane compound having different functional groups at both ends of the polysiloxane and having a sufficient siloxane content, and a method for producing the same. Moreover, this invention provides the polysiloxane compound which has a terminal amino group and another terminal functional group, and its manufacturing method.
  • the present inventor has made a step of reacting a cyclic siloxane or disiloxane having a first organic functional group with an organometallic compound, a metal silicate compound obtained by the step and a second silicate compound. It has been found that a silicone compound having a different organic functional group at both ends and a controlled content of siloxane can be produced by a production method including a step of reacting a halogenated silyl compound having an organic functional group of Invented the invention.
  • the present invention provides a silicone compound represented by the following general formula (I).
  • R 1 is independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms which may have an unsaturated bond, and m is an integer of 1 to 300.
  • Q 1 and Q 2 may each independently contain one or more bonds selected from the group consisting of an amide bond, an ether bond, an ester bond, a urethane bond, or an unsaturated bond, substituted or unsubstituted ,
  • a divalent hydrocarbon group having 1 to 20 carbon atoms and A is a functional group that is non-reactive with an organometallic compound, a functional group that has radical polymerizability, or a functional group that is reactive with an organometallic compound, or
  • B is a hydrogen atom, or a group or atom selected from the options of A, provided that A and B are different functional groups or atoms, b is 0 or 1, and B is a hydrogen atom. Case b is 0, and b is 1 when B is other than a hydrogen atom. ).
  • this invention provides the manufacturing method of the silicone compound represented by the said general formula (I).
  • the production method comprises a cyclic siloxane represented by the following formula (iii) (Y is an integer of 3 to 10, R 1 and Q 1 are as described above, and A 1 is a functional group that is non-reactive with the organometallic compound) Or Disiloxane represented by the following formula (iv): (R 1 and Q 1 are as described above, and A 1 is a functional group that is non-reactive with the organometallic compound) Reaction with an organometallic compound results in the following formula (v) (R 1 and Q 1 are as described above, Mt is an alkali metal atom, and A 1 is a functional group that is non-reactive with the organometallic compound)
  • the metal silicate compound represented by the above formula (v) and a cyclic siloxane are reacted to form the following formula (8 ′).
  • this invention is represented by the following general formula (1).
  • m represents an integer of 1 to 6
  • X represents an organic functional group having 0 to 48 carbon atoms
  • R 1 independently of each other represents a substituted or unsubstituted hydrocarbon group having 1 to 6 carbon atoms.
  • a silicone compound having a terminal amino group and another terminal functional group and a method for producing the same are provided (hereinafter sometimes referred to as Production Method B).
  • the silicone compound having a terminal amino group represented by the general formula (1) and another terminal functional group is a compound represented by the following formula (4) Wherein m, X, and R 1 are as described above, and R 2 is a C 1-3 alkyl group. Is produced by desilylation reaction.
  • the compound represented by the general formula (4) is a hydrogen silicone represented by the following general formula (3): (Wherein m, R 1 and R 2 are as described above) It can be obtained by addition reaction of an organic functional group represented by the following formula (5) and a compound having a double bond.
  • CH 2 CH-X (5) (Wherein X is as described above.)
  • the compound represented by the above formula (3) is a compound represented by the following general formula (2) (Wherein, m and R 1 are as described above)
  • One-terminal Si—H is subjected to an addition reaction with bis (tri-C 1-3 alkylsilyl) allylamine represented by the following formula (6). It is manufactured by.
  • CH 2 CHCH 2 N (SiR 2 3 ) 2 (6) (Wherein R 2 is as described above.)
  • the silicone compound of the present invention has different functional groups at both ends. According to the production method of the present invention, the reaction can be precisely controlled, and the siloxane content of the resulting silicone compound can be appropriately adjusted. Therefore, the silicone compound of the present invention is useful as a resin modifier or a medical device material, and can sufficiently impart the characteristics of polysiloxane in these applications.
  • the silicone represented by the above formula (1) is very high. Can be produced in purity. In the reaction of hydrogenpolysiloxane conventionally known and amines, dehydrogenation reaction due to amino groups often occurs. Surprisingly, in the production method of the present invention, the dehydrogenation reaction due to generated amino groups is negligible. Highly pure silicones having terminal amino groups and other terminal functional groups can be obtained. Even if an acid is allowed to act to accelerate the desilylation reaction, the siloxane chain is hardly broken and only the silyl group is selectively desilylated.
  • the target compound represented by the above general formula (1) Can be produced with high purity. Furthermore, it has also been found that desilylation proceeds better with an optimal combination of a specific alcohol and a specific acid catalyst.
  • a silicone compound having an amino group at one end and another terminal functional group at the other end reacts with two different substrates depending on the reactivity of the two functional groups in a single compound. Can do.
  • the other terminal functional group can be introduced into the resin by reacting the compound with a resin having a group that reacts with an amino group. In a system in which a resin having a group that reacts with an amino group and a resin having a group that reacts with the other functional group are mixed, each resin can be selectively modified.
  • a silicone compound having an amino group at one end and another terminal functional group at the other end is useful as a resin modifier.
  • the compound represented by the above formula (3) can be produced with high purity by the production method of the present invention for the compound represented by the above formula (3).
  • purity refers to a compound having a specific structure (that is, m is a specific integer and X, R 1 , R 2 and R 3 are each a specific group) It occupies a peak area of 90% or more, preferably 95% or more in the GPC or GC chromatogram.
  • the object has a high molecular weight, for example, the compound of formula (1) or (4) is analyzed by GPC, and when it has a low molecular weight, for example, the compound of formula (1), formula (2) or (3) Analyzed by.
  • 1 is a 1 H-NMR chart of a product in Example B1.
  • 2 is a 1 H-NMR chart of a product in Example B2.
  • 2 is a 1 H-NMR chart of a residue obtained by distillation under reduced pressure in Example B3. It is a GPC chart of the residue of vacuum distillation in Example B3.
  • the present invention is a silicone compound represented by the following general formula (I).
  • R 1 is independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms which may have an unsaturated bond, and m is an integer of 1 to 300.
  • Q 1 and Q 2 may each independently contain one or more bonds selected from the group consisting of an amide bond, an ether bond, an ester bond, a urethane bond, or an unsaturated bond, substituted or unsubstituted ,
  • a divalent hydrocarbon group having 1 to 20 carbon atoms and A is a functional group that is non-reactive with an organometallic compound, a functional group that has radical polymerizability, or a functional group that is reactive with an organometallic compound, or
  • B is a hydrogen atom, or a group or atom selected from the options of A, provided that A and B are different functional groups or atoms, b is 0 or 1, and B is a hydrogen atom. Case b is 0, and b is 1 when B is other than a hydrogen atom. ).
  • R 1 s independently of each other, have 1 to 20 carbon atoms which may have an unsubstituted unsaturated bond, preferably 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, Particularly preferred is a monovalent hydrocarbon group having 1 to 6 carbon atoms, or a group in which part or all of the hydrogen atoms bonded to the carbon atoms of these monovalent hydrocarbon groups are substituted with a functional group or a halogen atom. .
  • Examples of the unsubstituted monovalent hydrocarbon group include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and other alkyl groups; cyclopentyl group, and cyclohexyl group.
  • a cycloalkyl group such as a group; an aryl group such as a phenyl group and a tolyl group; an alkenyl group such as a vinyl group and an allyl group; and an aralkyl group such as a benzyl group.
  • Some or all of the hydrogen atoms bonded to the carbon atoms of these groups are hydroxy groups, hydroxyalkyl groups, amino groups, aminoalkyl groups, amide groups, alkylamide groups, alkoxy groups, alkoxyalkyl groups, alkoxycarbonyl groups, and It may be substituted with a functional group such as an alkoxycarbonylalkyl group or a halogen atom such as chlorine and fluorine.
  • m is an integer of 1 to 300, preferably an integer of 2 to 200, more preferably an integer of 3 to 100, but this is not particularly limited. What is necessary is just to select suitably according to the characteristic of the target silicone compound.
  • a and B are different functional groups or atoms.
  • a and B may be different functional groups or atoms, and the combination may be appropriately selected according to the function of the target silicone compound.
  • a) A is a functional group that is non-reactive with the organometallic compound, and B is a hydrogen atom, a functional group having radical polymerizability, or a functional group or atom that is reactive with the organometallic compound B)
  • A is a functional group having radical polymerizability, and B is a hydrogen atom, a functional group that is non-reactive with an organometallic compound, or a functional group or atom that is reactive with an organometallic compound, or
  • C A is a functional group or atom reactive with an organometallic compound, and B is a hydrogen atom or a combination different from A and a functional group or atom reactive with an organometallic compound.
  • the functional group non-reactive with the organometallic compound is a silylated hydroxyl group, a benzylated hydroxyl group, a silylated 1,2-ethanediol group, a benzylated 1,2-ethanediol group, an alkoxy group.
  • radical polymerizable functional group examples include (meth) acryloyl group and (meth) acrylamide group.
  • Examples of functional groups reactive with organometallic compounds include epoxy groups, carboxyl groups, isocyanate groups, alkoxysilyl groups, hydroxyl groups, 1,2-ethanediol groups, primary amino groups, secondary amino groups, and phenol groups. And thiol groups.
  • the atom reactive with the organometallic compound is, for example, a halogen atom.
  • A is a hydroxyl group, a silylated hydroxyl group, a benzylated hydroxyl group, a 1,2-ethanediol group, a silylated 1,2-ethanediol group, a benzylated 1,2-ethanediol group, an alkoxy group, It may be selected from an alkenyl group, a primary amino group, a tertiary amino group, a silylated tertiary amino group, a quaternary ammonium group, and a halogen atom.
  • A is a group selected from a silylated hydroxyl group, an alkoxy group, an alkenyl group, a benzylated hydroxyl group, a hydroxyl group, a primary amino group, and a tertiary amino group
  • B is a hydrogen atom
  • (meth) It may be a group selected from an acryloyl group, a (meth) acrylamide group, a hydroxyl group, a primary amino group, a tertiary amino group, an epoxy group, and an alkoxysilyl group.
  • a and B are different functional groups.
  • A is selected from a silylated tertiary amino group, a benzylated tertiary amino group, a quaternary ammonium group, and a halogen atom
  • B is a (meth) acryloyl group, a (meth) acrylamide group.
  • the present invention particularly provides a silicone compound in which one of A and B is a radical polymerizable functional group.
  • the silicone compound can give a colorless and transparent polymer by polymerizing with a copolymer described later, and can function suitably for providing an ophthalmic device.
  • Q 1 and Q 2 each independently contain one or more bonds selected from the group consisting of an amide bond, an ether bond, an ester bond, a urethane bond, or an unsaturated bond. Alternatively, it is an unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms.
  • divalent hydrocarbon group examples include ethylene, 1,3-propylene, 1-methylpropylene, 1,1-dimethylpropylene, 2-methylpropylene, 1,2-dimethylpropylene, 1,1,2-trimethylpropylene, 1,4-butylene, 2-methyl-1,4-butylene, 2,2-dimethyl-1,4-butylene, 3-methyl-1,4-butylene, 2,2-dimethyl-1,4-butylene, 2,3-dimethyl-1,4-butylene, 2,2,3-trimethyl-1,4-butylene, 1,5-pentylene, 1,6-hexanylene, 1,7-heptanylene, 1,8-octanylene, Divalent groups such as 1,9-nonanylene and 1,10-decanylene groups, and a part or all of hydrogen atoms bonded to carbon atoms of these groups are hydroxy groups, hydroxyalkyl groups, amino groups Groups substituted with aminoalkyl groups, amide groups, alkylamide groups, alkoxy groups,
  • Q 1 and Q 2 are independently of each other and preferably represented by the following (i) or (ii).
  • k is an integer from 0 to 6, when k is 0, g is an integer from 1 to 4, and when k is not 0, g is an integer from 1 to 17. Yes, and 1 ⁇ 3k + g ⁇ 20.
  • the part indicated by * is bonded to the silicon atom of the formula (I), and the part indicated by ** is bonded to A or B.
  • k is preferably 1 and g is an integer of 1 to 4.
  • the structure is preferably a methylene, ethylene, propylene, or butylene group, and particularly preferably a propylene group.
  • the present invention further provides a method for producing a silicone compound represented by the above formula (I).
  • the production method (production method A) of the present invention comprises a compound represented by the following formula (8): (R 1 , Q 1 , m and A are as described above, and Mt is an alkali metal atom, for example, lithium)
  • the above reaction can be performed according to a conventionally known method.
  • the addition amount of the halogenated silyl compound represented by the above formula (7) is preferably an amount ratio of 0.8 to 2.0 mol, more preferably, 1 mol of the compound represented by the above formula (8).
  • An amount ratio of 0.9 to 1.5 mol is preferable, and an amount ratio of 1.0 to 1.2 mol is more preferable.
  • the production method A of the present invention is a cyclic siloxane represented by the following formula (iii) (Y is an integer of 3 to 10, R 1 and Q 1 are as described above, and A 1 is a functional group or atom that is non-reactive with the organometallic compound.)
  • Reaction with an organometallic compound results in the following formula (v) (R 1 , Q 1 , and Mt are as described above, and A 1 is a functional group or atom that is non-reactive with the organometallic compound.)
  • the metal silicate compound represented by the above formula (v) is reacted with a cyclic siloxane such as hexamethylcyclotrisiloxane to obtain the following formula (8 ′).
  • the cyclic siloxane to be reacted with the metal silicate compound represented by the above formula (v) is, for example, an alkylcyclopolysiloxane such as hexamethylcyclotrisiloxane, and the cyclic siloxane represented by the above formula (iii). It is a compound different from siloxane.
  • A is a functional group that is non-reactive with the organometallic compound.
  • A may be inactive (non-reactive with the organometallic compound) during the reaction with the organometallic compound.
  • a functional group having reactivity for inactivation may be protected with a conventionally known protecting group.
  • the protecting group for hydroxyl group and amino group include silyl group and benzyl group.
  • These protecting groups may be removed by a conventionally known method after the reaction with the organometallic compound.
  • the silyl group can be removed in the presence of water or alcohol. The reaction can be accelerated in the presence of acid or base.
  • the compound represented by the above formula (iii) or (iv) can be produced according to a conventionally known method.
  • it can be obtained by a hydrosilylation reaction between 2,4,6,8-tetramethylcyclotetrasiloxane or 1,3-tetramethyldisiloxane and an organic compound having an unsaturated bond.
  • the reaction may be carried out under a conventionally known catalyst.
  • a noble metal catalyst particularly a platinum catalyst derived from chloroplatinic acid is preferred, and a karsted catalyst is more preferred.
  • the reaction may be performed according to a conventionally known method.
  • the organometallic compound is a polymerization initiator and may be any one that is usually used for ring-opening polymerization of cyclic siloxane.
  • an organic compound having an alkali metal atom particularly an organic lithium compound.
  • the organolithium compound is a compound having a carbon-lithium bond. These may be any conventionally known compounds. Examples of the organic lithium compound include methyl lithium, ethyl lithium, butyl lithium, phenyl lithium, benzyl lithium and the like.
  • an organolithium compound diluted in a hydrocarbon-based compound such as hexane or cyclohexane is preferable, and a hexane solution of n-butyllithium is more preferable in view of handleability and availability.
  • An organomagnesium compound can also be used as the organometallic compound.
  • the organomagnesium compound is a compound having a carbon-magnesium bond and a magnesium-halogen bond.
  • the amount of the organometallic compound may be an amount ratio of 1 mol with respect to 1 mol of the siloxane represented by the above formula (iii) or the above formula (iv).
  • the amount of the organometallic compound is larger than the above, a side reaction of the organometallic compound occurs, which is not preferable.
  • less than the said lower limit since there exists a possibility that the siloxane shown by the said Formula (iii) or the said Formula (iv) may remain
  • the above reaction can be carried out according to a conventionally known method.
  • the compound represented by the above formula (iii) or (iv) is reacted by adding an organometallic compound of 1 molar equivalent or less, and subsequently hexamethylcyclotrisiloxane is added and reacted.
  • an organometallic compound of 1 molar equivalent or less
  • hexamethylcyclotrisiloxane is added and reacted.
  • 2,4,6,8-tetramethyl-2,4,6,8-tetra (N, N-dimethylaminopropyl) cyclotetrasiloxane is reacted with BuLi, BuMe (C 3 H 6 NMe 2 ) SiOLi Occurs.
  • hexamethylcyclotrisiloxane is ring-opened and reacted to obtain a compound represented by the above formula (8 ′). Further, a halogenated silyl compound is added and reacted to obtain a silicone compound represented by the above formula (I).
  • the addition of the organometallic compound, hexamethylcyclotrisiloxane, and halogenated silyl compound is typically performed at a temperature of about 0 ° C to about 40 ° C. Although reaction temperature is not specifically limited, The temperature of the grade which does not exceed the boiling point of the solvent to be used is preferable.
  • the end point of the reaction of hexamethylcyclotrisiloxane is confirmed by the disappearance of the peak in the GC measurement, for example, after the completion of the dropping and after aging under heating, the presence or absence of the raw material hexamethylcyclotrisiloxane.
  • the solvent is not particularly limited.
  • hydrocarbon solvents such as hexane and heptane
  • aromatic solvents such as toluene
  • ether solvents such as tetrahydrofuran
  • ketone solvents such as methyl ethyl ketone and N, N-dimethylformamide.
  • An ester solvent such as ethyl acetate can be preferably used.
  • the product After completion of the reaction, it may be purified according to a conventionally known method.
  • the product can be isolated by washing the organic layer with water and then removing the solvent. Further, vacuum distillation or activated carbon treatment may be used.
  • the second embodiment of the production method A of the present invention is: A silicone compound having a functional group that is non-reactive with an organometallic compound at one end and a SiH group at the other end, represented by the following formula (Ia-1) by the process described in AI) above: Manufacture and Subsequently, the compound represented by the formula (Ia-1) and a compound having a terminal vinyl group represented by the following formula (vi) are subjected to an addition reaction, and CH 2 ⁇ CH—Q 3 —B 2 (Vi) (Wherein Q 3 is a single bond or a substituted or unsubstituted bond that may include one or more bonds selected from the group consisting of an amide bond, an ether bond, an ester bond, a urethane bond, or an unsaturated bond, A divalent hydrocarbon group having 1 to 18 carbon atoms, and B 2 is a functional group having radical polymerizability, a functional group or atom having reactivity with an organometallic compound,
  • one end (A 1 ) has a functional group that is non-reactive with the organometallic compound
  • the other end (B 2 ) has a radically polymerizable functional group, the organometallic compound and the reactivity.
  • functional groups or atoms having, or a 1 is different from the silicone compound having an organic metal compound and a non-reactive functional groups are obtained.
  • Examples of the compound represented by the formula (vi) include 2-allyloxyethanol (allyl glycol), allylamine, allyloxyethyl methacrylate, diethylene glycol allyl methyl ether, dimethylallylamine, allyl glycidyl ether, 3-butenoic acid, and Examples include allyl isocyanate.
  • acidic functional groups other than the above, basic functional groups, and the like may be included.
  • the addition reaction with the compound represented by the above formula (vi) can be carried out without using a reaction solvent, but a reaction solvent is preferably used.
  • a reaction solvent examples include aliphatic hydrocarbon solvents such as hexane, methylcyclohexane, and ethylcyclohexane, aromatic hydrocarbon solvents such as toluene and xylene, alcohol solvents such as ethanol and isopropyl alcohol, and ester solvents such as ethyl acetate and butyl acetate.
  • solvents examples thereof include solvents, ether solvents such as dioxane, dibutyl ether and dimethoxyethane, ketone solvents such as methyl isobutyl ketone, and chlorine solvents such as chloroform.
  • ether solvents such as dioxane, dibutyl ether and dimethoxyethane
  • ketone solvents such as methyl isobutyl ketone
  • chlorine solvents such as chloroform.
  • aromatic hydrocarbons such as toluene are most suitable.
  • the amount of the solvent is not particularly limited and may be adjusted as appropriate.
  • the addition reaction is preferably performed in the presence of a hydrosilylation catalyst.
  • the hydrosilylation catalyst may be a conventionally known catalyst.
  • noble metal catalysts in particular platinum catalysts derived from chloroplatinic acid, are suitable.
  • the addition amount of the catalyst may be a catalyst amount for causing the addition reaction to proceed.
  • the temperature of the addition reaction is not particularly limited and may be adjusted as appropriate. In particular, the temperature is 20 ° C to 150 ° C, more preferably 50 ° C to 120 ° C.
  • the reaction time is, for example, 1 to 12 hours, preferably 3 to 8 hours.
  • the amount of the compound represented by the formula (vi) is preferably an amount that provides an excess mole relative to the compound represented by the general formula (Ia-1). For example, an amount ratio of 1.01 to 3 mol, preferably 1.05 to 2 mol, and more preferably 1.1 to 1.5 mol is preferable with respect to 1 mol of the compound represented by the general formula (Ia-1).
  • a silicone compound having an OP group at the terminal represented by the following formula (Ia-2) is produced by the process described in AI) above (P is a hydroxyl-protecting group), (In the above formula (Ia-2), R 1 , Q 1 , Q 2 , b and m are as described in (1-1b) above, and B 3 is a functional group having reactivity with a hydrogen atom or an organometallic compound.
  • a production method comprising a step of obtaining a compound of the following formula (Ia-3) by removing the protecting group P from the compound of the above formula (Ia-2).
  • the method for removing the protecting group may be a conventionally known method.
  • the fourth embodiment of the production method A of the present invention is a silylated hydroxyl group, benzylated hydroxyl group, silylated 1 at one end by the process described in the above AI) or A-II).
  • one end (A) has a functional group reactive with an organometallic compound, and the other end (B) does not react with a hydrogen atom, a radical polymerizable functional group, or an organometallic compound.
  • a silicone compound having a functional group or an atom reactive with an organometallic compound different from A is a silicone compound having a functional group or an atom reactive with an organometallic compound different from A.
  • the removal of the protecting group may be performed according to a conventionally known method.
  • the silyl group can be removed in the presence of water or alcohol.
  • alcohol for example, methanol, ethanol, isopropyl alcohol, 1-propanol, isobutanol, 1-butanol and the like are preferably used.
  • isopropyl alcohol is preferred.
  • the reaction may be performed in the presence of an acid or a base.
  • the acid catalyst is not particularly limited as long as it is a catalyst conventionally used for desilylation. Examples thereof include solid acid catalysts such as acetic acid, acrylic acid, paranitrobenzoic acid, fumaric acid, and carboxylic acid type. In particular, acetic acid is most preferred.
  • the amount of the acid catalyst, the reaction temperature, and the like are not particularly limited, and may be a conventionally known method.
  • a siloxane represented by the above formula (iii) or the above formula (iv) is diluted with 50% by mass of toluene, and 1 molar equivalent of n-butyllithium (n -Hexane solution) is added. Subsequently, hexamethylcyclotrisiloxane dissolved in 200% by weight of tetrahydrofuran is added. The reaction is completed by reacting at room temperature for about 3 hours. At that time, the progress of the reaction can be confirmed by monitoring hexamethylcyclotrisiloxane by GC measurement or the like.
  • the silicone compound represented by the above formula (I) can be obtained by distilling off the solvent and unreacted raw materials present in the organic layer under reduced pressure.
  • the present invention provides a silicone compound represented by the following general formula (1) having an amino group at one end and another functional group at the other end, and a method for producing the same (Production Method B).
  • m is an integer of 1 to 300, preferably an integer of 2 to 200, more preferably an integer of 3 to 100, and particularly m is an integer of 1 to 6.
  • R 1 is independently of each other a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms which may have an unsaturated bond, in particular, a substituted or unsubstituted group having 1 to 6 carbon atoms. It is a hydrocarbon group.
  • X is an organic functional group having 0 to 48 carbon atoms, represented by —Q 4 B ′, and Q 4 is a group consisting of a single bond, an amide bond, an ether bond, an ester bond, a urethane bond, or an unsaturated bond.
  • the silicone compound having a terminal amino group represented by the general formula (1) and another terminal functional group is a compound represented by the following formula (4) Wherein m, X, and R 1 are as described above, and R 2 is a C 1-3 alkyl group. Is produced by desilylation reaction.
  • the compound represented by the general formula (4) is a hydrogen silicone represented by the following general formula (3): (Wherein m, R 1 and R 2 are as described above) It can be obtained by addition reaction of an organic functional group represented by the following formula (5) and a compound having a double bond.
  • CH 2 CH-X (5) (Wherein X is as described above.)
  • the compound represented by the above formula (3) is a compound represented by the following general formula (2) (Wherein, m and R 1 are as described above)
  • One-terminal Si—H is subjected to an addition reaction with bis (tri-C 1-3 alkylsilyl) allylamine represented by the following formula (6). It is manufactured by.
  • CH 2 CHCH 2 N (SiR 2 3 ) 2 (6) (Wherein R 2 is as described above.)
  • the production method B will be described in more detail.
  • m is particularly preferably an integer of 1 to 6, and more preferably an integer of 2 to 5. It is. If m is larger than the upper limit, it may be difficult to purify by distillation.
  • R 1 is independently of each other preferably a substituted or unsubstituted hydrocarbon group having 1 to 6 carbon atoms, and examples thereof include alkyl groups such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and a hexyl group.
  • Aryl groups such as phenyl groups, and those obtained by substituting some or all of the hydrogen atoms of these groups with fluorine, such as trifluoropropyl groups.
  • X is an organic functional group having 0 to 48 carbon atoms, for example, an alkoxy group such as a hydroxyl group, a methoxy group or an ethoxy group, an alkenyl group such as a vinyl group or an allyl group, a secondary amino group, a tertiary amino group, 4 grade ammonium group, a halogen atom, a nitro group, an azido group, an epoxy group, an arylalkenyl group such as a styryl group, a phenol group, a thiol group, a carboxyl group, and C 1 ⁇ C 48 alkyl group substituted with one of these groups
  • the carbon-carbon bond of the alkyl group may be interrupted by a hetero atom such as an oxygen atom or a sulfur atom
  • the carbon-carbon bond of the C 1 -C 48 alkyl group may be interrupted with one or more oxygen atoms to form a mono or polyether.
  • the C 1 -C 48 alkyl group is preferably a C 1 -C 24 alkyl group.
  • the substituent include halogen atoms such as fluorine, bromine and chlorine, and a cyano group.
  • R 2 is the same or different from each other and independently of each other an alkyl group having 1 to 3 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group.
  • the compound represented by the general formula (4) is desilylated.
  • the siloxane chain is hardly broken and the silyl group is selectively desilylated.
  • the target compound represented by (1) can be produced with high purity.
  • This desilylation reaction is carried out in alcohol or water, preferably in alcohol.
  • the amount of alcohol may be appropriately adjusted and is not particularly limited. For example, it may be half to twice the mass of the silicone precursor having a terminal amino group and other terminal functional groups, and is approximately the same amount as the silicone precursor having a terminal amino group and other terminal functional groups. Is good.
  • the alcohol methanol, ethanol, isopropyl alcohol, 1-propanol, isobutanol, 1-butanol and the like are preferably used. In particular, isopropyl alcohol is preferred.
  • the desilylation reaction is preferably carried out in the presence of an acid catalyst.
  • the acid catalyst is not particularly limited as long as it is a catalyst conventionally used for desilylation.
  • a weak acid having an acid dissociation constant (pKa) in water of 2.0 or more is preferable in order to suppress the cleavage of the siloxane chain.
  • Specific examples include solid acid catalysts such as acetic acid, acrylic acid, paranitrobenzoic acid, fumaric acid, and carboxylic acid type.
  • acetic acid is most preferred.
  • the amount of the acid catalyst is not particularly limited. For example, when a weak acid such as acetic acid is used, it is 0.1 to 5.0% by weight, preferably 0.5 to 2.0% by weight, based on the silicone precursor having a terminal amino group and another terminal functional group. Is preferred.
  • This desilylation reaction can also be carried out at room temperature, but in that case, a large amount of acid is required to complete the reaction. Therefore, it is better to desilylate under heating using a relatively small amount of acid.
  • the reaction conditions for desilylation are not particularly limited, and may be conventionally known conditions.
  • the reaction temperature is, for example, a temperature in the range of 40 to 100 ° C., preferably 50 to 80 ° C. If the temperature is lower than this, a large amount of acid is required to complete the reaction, and there is a risk of reducing the reaction efficiency or siloxane chain scission. Evaporation can reduce product purity and yield.
  • the reaction time may be, for example, 0.5 to 48 hours, preferably 1 to 6 hours.
  • the silicone represented by the general formula (4) is diluted with the same mass of isopropyl alcohol, and 1.0 mass% with respect to the silicone represented by the general formula (4).
  • the desilylation is completed by stirring at 80 ° C. for 3 hours.
  • GC gas chromatography
  • the silicone having the terminal amino group and other terminal functional groups obtained has a high molecular weight, it is confirmed that the reaction is completed by checking the amount of silylated isopropyl alcohol produced by the reaction by GC measurement. it can.
  • high purity in the present invention has a specific structure (that is, m is a specific integer, and X, R 1 , R 2, and R 3 are each a specific 1
  • the compound (which is a kind of group) has a peak area of 90% or more, preferably 95% or more in the GPC or GC chromatogram.
  • the compound represented by the above formula (4) is a hydrogen silicone represented by the following general formula (3): (Wherein m, R 1 and R 2 are as described above) It can be obtained by addition reaction of an organic functional group represented by the following formula (5) and a compound having a double bond.
  • Examples of the compound having an organic functional group and a double bond represented by the formula (5) include 2-allyloxyethanol (allyl glycol), diethylene glycol allyl methyl ether, dimethylallylamine, allyl chloride, allyl glycidyl ether, 3 -Butenoic acid and the like, and may contain acidic functional groups or basic functional groups other than those described above.
  • the compound represented by the general formula (4) can be easily produced with high purity.
  • This addition reaction can be carried out without using a reaction solvent, but a reaction solvent is preferably used.
  • the solvent include aliphatic hydrocarbon solvents such as hexane, methylcyclohexane, and ethylcyclohexane, aromatic hydrocarbon solvents such as toluene and xylene, alcohol solvents such as ethanol and isopropyl alcohol, and esters such as ethyl acetate and butyl acetate.
  • examples thereof include ether solvents such as dioxane, dibutyl ether and dimethoxyethane, ketone solvents such as methyl isobutyl ketone, and chlorine solvents such as chloroform.
  • aromatic hydrocarbons such as toluene are most suitable.
  • the amount of the solvent is not particularly limited and may be adjusted as appropriate.
  • hydrosilylation catalyst may be a conventionally known catalyst.
  • noble metal catalysts in particular platinum catalysts derived from chloroplatinic acid, are suitable.
  • a complex (karsted catalyst) of 1,1,3,3-tetramethyl-1,3-divinyldisiloxane and a neutralized sodium bicarbonate of chloroplatinic acid is most suitable as a reaction catalyst.
  • the addition amount of the hydrosilylation catalyst may be a catalyst amount for causing the addition reaction to proceed.
  • a complex of 1,1,3,3-tetramethyl-1,3-divinyldisiloxane and a neutralized multilayered product of chloroplatinic acid is converted into platinum with respect to the mass of the compound represented by the general formula (3).
  • the amount is from 5 ppm to 80 ppm.
  • a small amount of catalyst is not preferable because the reaction rate is slow. Also, if the amount of the catalyst is too large, the reaction rate is not particularly improved and it becomes uneconomical.
  • the temperature of this addition reaction is not particularly limited and may be adjusted as appropriate.
  • the temperature is 20 ° C to 150 ° C, more preferably 50 ° C to 120 ° C. All the raw materials for this reaction can be charged and reacted together.
  • the compound represented by the formula (5), the reaction solvent, and the hydrosilylation catalyst are charged into the reactor, and then the compound represented by the general formula (3) is dropped and reacted.
  • the temperature of the reaction solution at the time of dropping is particularly preferably around 80 ° C to 90 ° C.
  • the reaction time is, for example, 1 to 12 hours, preferably 3 to 8 hours.
  • the amount of the compound having both the organic functional group represented by the formula (5) and the double bond is preferably an amount that is an excess mole relative to the compound represented by the general formula (3).
  • an amount ratio of 1.01 to 3 mol, preferably 1.05 to 2 mol, more preferably 1.1 to 1.5 mol is preferable with respect to 1 mol of the compound represented by the general formula (3).
  • the compound represented by the above formula (3) is a dihydrogen polysiloxane represented by the following general formula (2): (Wherein m and R 1 are as described above) Bis (triC 1-3 alkylsilyl) allylamine CH 2 ⁇ CHCH 2 N (SiR 2 3 ) 2 (6) represented by the following formula (6) (Wherein R 2 is as described above) And an addition reaction.
  • This addition reaction is preferably carried out in accordance with the reaction conditions described in the section “ii) Production of silicone precursor having terminal amino group and other terminal functional group”.
  • the compound represented by the above formula (3) can be obtained by rectifying this adduct by distillation. By this method, the compound represented by the general formula (3) can be easily produced with high purity.
  • the silicone compound of the present invention has different functional groups at both ends and can have a sufficient siloxane content. Therefore, the silicone compound of the present invention is useful as a material for resin modification and as a material for medical devices, particularly as a material for ophthalmic devices.
  • the silicone compound having a radical polymerizable functional group at one end (any one of A and B) in the above formula (I) can give a polymer having a repeating unit derived by radical polymerization.
  • the silicone compound has good compatibility with other compounds having a group that polymerizes with the radical polymerizable functional group of the silicone compound, such as a (meth) acryl group (hereinafter referred to as a polymerizable monomer or a hydrophilic monomer). is there.
  • a colorless and transparent copolymer can be obtained by copolymerizing with a polymerizable monomer. It is also possible to polymerize alone.
  • a silicone compound having a radical polymerizable functional group is particularly suitable as a monomer for producing an ophthalmic device.
  • polymerizable monomer examples include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, (poly) ethylene glycol dimethacrylate, polyalkylene glycol mono (meth) acrylate, polyalkylene glycol monoalkyl ether ( Acrylic monomers such as (meth) acrylate, trifluoroethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2,3-dihydroxypropyl (meth) acrylate; N, N-dimethylacrylamide, N, N-diethylacrylamide Acrylic acid derivatives such as N-acryloylmorpholine and N-methyl (meth) acrylamide; other unsaturated aliphatic or aromatic compounds such as crotonic acid, cinnamic acid, vinylbenzoic acid; and (meth) Silicone monomers having a polymerizable group such as acryl group. These may be used alone or in combination of two
  • the copolymerization of the compound of the present invention and the other polymerizable monomer may be performed by a conventionally known method.
  • a known polymerization initiator such as a thermal polymerization initiator or a photopolymerization initiator.
  • the polymerization initiator include 2-hydroxy-2-methyl-1-phenyl-propan-1-one, azobisisobutyronitrile, azobisdimethylvaleronitrile, benzoyl peroxide, tert-butyl hydroperoxide, cumene And hydroperoxide.
  • These polymerization initiators can be used alone or in admixture of two or more.
  • the blending amount of the polymerization initiator is 0.001 to 2 parts by mass, preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the total of the polymerization components.
  • the polymer containing a repeating unit derived from the silicone compound of the present invention has a sufficient siloxane content, and therefore has excellent oxygen permeability. Therefore, it is suitable for manufacturing ophthalmic devices such as contact lenses, intraocular lenses, and artificial corneas.
  • the manufacturing method of the ophthalmic device using the polymer is not particularly limited, and may be a conventional ophthalmic device manufacturing method. For example, when forming into a lens shape such as a contact lens or an intraocular lens, a cutting method or a mold method can be used.
  • Examples A1 to 22 (Production method A) In Examples A1 to A22 below, the viscosity was measured using a Cannon-Fenske viscometer and the specific gravity was measured using a buoyancy meter. The refractive index was measured using a digital refractometer RX-5000 (manufactured by Atago Co., Ltd.). 1 H-NMR analysis was performed using JNM-ECP500 (manufactured by JEOL Ltd.) and deuterated chloroform as a measurement solvent.
  • Example A1 (Production method AI) A 2,4,6,8-tetramethyl-2,4,6,8-tetra (N, N-dimethylaminopropyl) cyclotetrasiloxane 92 was added to a 3 L three-necked eggplant flask equipped with a Dimroth, thermometer, and dropping funnel. .4 g was added, and 294.0 g of n-butyllithium hexane solution was added dropwise from the dropping funnel. After completion of the dropwise addition, the reaction solution was stirred at room temperature for 1 hour, and disappearance of the starting material was confirmed by gas chromatography (GC) to complete the reaction.
  • GC gas chromatography
  • Example A2 (Production method AI) Instead of 2,4,6,8-tetramethyl-2,4,6,8-tetra (N, N-dimethylaminopropyl) cyclotetrasiloxane, 2,4,6,8-tetramethyl-2,4 Example 1 was repeated except that 6,8-tetra (N, N-bistrimethylsilylaminopropyl) cyclotetrasiloxane was used to obtain a silicone compound represented by the following formula (10). Yield 863.6g. The 1 H-NMR data is described below.
  • Example A3 (Production method AI) Instead of 2,4,6,8-tetramethyl-2,4,6,8-tetra (N, N-dimethylaminopropyl) cyclotetrasiloxane, 2,4,6,8-tetramethyl-2,4 Example 1 was repeated except that 6,8-tetra (polyethylene oxidepropyl) cyclotetrasiloxane was used to obtain a silicone compound represented by the following formula (11). Yield 894.1 g. The 1 H-NMR data is described below.
  • Example A4 (Production method AI) Instead of 2,4,6,8-tetramethyl-2,4,6,8-tetra (N, N-dimethylaminopropyl) cyclotetrasiloxane, 2,4,6,8-tetramethyl-2,4 Example 1 was repeated except that 6,8-tetra (trimethylsilylpropylene glycol) cyclotetrasiloxane was used to obtain a silicone compound represented by the following formula (12). Yield 840.0 g. The 1 H-NMR data is described below.
  • Example A5 (Production method AI) Instead of 2,4,6,8-tetramethyl-2,4,6,8-tetra (N, N-dimethylaminopropyl) cyclotetrasiloxane, 2,4,6,8-tetramethyl-2,4 Example 1 was repeated except that 6,8-tetra (benzylpropylene glycol) cyclotetrasiloxane was used to obtain a silicone compound represented by the following formula (13). Yield 865.6g. The 1 H-NMR data is described below.
  • Example A6 (Production method AI) Instead of 2,4,6,8-tetramethyl-2,4,6,8-tetra (N, N-dimethylaminopropyl) cyclotetrasiloxane, 2,4,6,8-tetramethyl-2,4 Example 1 was repeated except that 6,8-tetravinylcyclotetrasiloxane was used to obtain a silicone compound represented by the following formula (14). Yield 813.1 g. The 1 H-NMR data is described below.
  • Example A7 (Production method AI) Example 1 was repeated except that dimethylchlorosilane was used instead of methacryloyloxypropyldimethylchlorosilane to obtain a silicone compound represented by the following formula (15). Yield 723.2g.
  • the 1 H-NMR data is described below. 0.0 ppm (45H), 0.6 ppm (4H), 0.9 ppm (3H), 1.3 ppm (4H), 1.5 ppm (2H), 2.2 ppm (8H), 4.7 ppm (1H).
  • Example A8 (Production method AI) Example 2 was repeated except that dimethylchlorosilane was used instead of methacryloyloxypropyldimethylchlorosilane to obtain a silicone compound represented by the following formula (16). Yield 753.6g.
  • the 1 H-NMR data is described below. 0.0 ppm (63H), 0.6 ppm (4H), 0.9 ppm (3H), 1.3 ppm (4H), 1.5 ppm (2H), 2.2 ppm (2H), 4.7 ppm (1H).
  • Example A9 (Production method AI) Example 5 was repeated except that dimethylchlorosilane was used instead of methacryloyloxypropyldimethylchlorosilane to obtain a silicone compound represented by the following formula (17). Yield 750.0g.
  • the 1 H-NMR data is described below. 0.0ppm (45H), 0.6ppm (4H), 0.9ppm (3H), 1.3ppm (4H), 1.5ppm (2H), 3.3-3.7ppm (6H), 4.4ppm ( 2H), 4.7 ppm (1H), 7.2-7.3 ppm (5H).
  • Example A10 (Production method A-II) To a 500 mL three-necked eggplant flask equipped with a Dimroth, thermometer, and dropping funnel was added 100.0 g of the compound represented by the above formula (15) obtained in Example A7 and 50.0 g of toluene, and the temperature was raised to 80 ° C. did. 0.1 g of a toluene solution of a chloroplatinic acid neutralized sodium bicarbonate / vinylsiloxane complex (platinum content: 0.5%) was charged into the flask. From the dropping funnel, 20.0 g of allyl glycol was dropped, and after the dropping, the mixture was aged at 80 to 90 ° C. for 2 hours.
  • Example A11 (Production method A-II) Except having used allylamine instead of allyl glycol, Example A10 was repeated and the silicone compound represented by following formula (19) was obtained. Yield 105.5g.
  • the 1 H-NMR data is described below. 0.0 ppm (45H), 0.6 ppm (6H), 0.9 ppm (3H), 1.3 ppm (4H), 1.5 ppm (4H), 2.2 ppm (10H).
  • Example A12 (Production method A-II) Example A10 was repeated except that allyl glycol instead of allyl glycol was used to obtain a silicone compound represented by the following formula (9). Yield 108.2g.
  • the 1 H-NMR data is described below. 0.0 ppm (45H), 0.6 ppm (6H), 0.9 ppm (3H), 1.3 ppm (4H), 1.5 ppm (2H), 1.7 ppm (2H), 2.0 ppm (3H), 2 2 ppm (8H), 4.1 ppm (2H), 5.5 ppm (1H), 6.1 ppm (1H).
  • Example A13 (Production method A-II) Example A10 was repeated except that the silicone compound represented by the above formula (16) obtained in Example A8 was used instead of the compound represented by the above formula (15), and represented by the following formula (20). A silicone compound was obtained. Yield 109.7g.
  • the 1 H-NMR data is described below. 0.0ppm (63H), 0.6ppm (6H), 0.9ppm (3H), 1.3ppm (4H), 1.5ppm (4H), 2.2ppm (2H), 3.3-3.7ppm ( 21H).
  • Example A14 (Production method A-IV) To a 300 mL three-necked eggplant flask equipped with a Dimroth, a thermometer, and a dropping funnel, 100.0 g of the silicone compound represented by the above formula (20) obtained in Example A13 and 100.0 g of isopropyl alcohol were added, and 80 ° C. The temperature was raised to. 0.4 g of trifluoroacetic acid was added to the flask. Aging was carried out at 70 to 80 ° C. for 2 hours. 2.0 g of Kyoward (registered trademark) 500 (manufactured by Kyowa Chemical Industry Co., Ltd.) was added and stirred at room temperature for 1 hour, and then the reaction solution was filtered.
  • Kyoward (registered trademark) 500 manufactured by Kyowa Chemical Industry Co., Ltd.
  • Example A15 (Production method A-II) Example A12 was repeated except that the silicone compound represented by the above formula (17) obtained in Example A9 was used instead of the compound represented by the above formula (15), and represented by the following formula (13). A silicone compound was obtained. Yield 103.4g.
  • the 1 H-NMR data is described below. 0.0 ppm (45H), 0.6 ppm (6H), 0.9 ppm (3H), 1.3 ppm (4H), 1.5 ppm (2H), 1.7 ppm (2H), 2.0 ppm (3H), 3 3.3-3.7 ppm (6H), 4.1 ppm (2H), 4.4 ppm (2H), 5.5 ppm (1H), 6.1 ppm (1H), 7.2-7.3 ppm (5H).
  • Example A16 (Production method A-IV) To a 300 mL three-necked eggplant flask equipped with a Dimroth, thermometer, and dropping funnel was added 100.0 g of the silicone compound represented by the above formula (13) obtained in Example A15, 50.0 g of ethyl acetate, and 50.0 g of ethanol. The temperature was raised to 80 ° C. 0.2 g of palladium carbon (palladium content 5%) was put into the flask. The mixture was aged for 2 hours at 80 to 90 ° C. under normal pressure in a hydrogen stream. Further, after stirring at room temperature for 1 hour, the reaction solution was filtered.
  • Example A17 (Production method A-II) Example A10 was repeated except that allyl glycidyl ether was used instead of allyl glycol to obtain a silicone compound represented by the following formula (23). Yield 107.5g.
  • the 1 H-NMR data is described below. 0.0 ppm (45H), 0.6 ppm (6H), 0.9 ppm (3H), 1.3 ppm (4H), 1.5 ppm (4H), 2.2 ppm (8H), 2.6 ppm (1H), 2 0.8 ppm (1H), 3.1 ppm (1H), 3.4 ppm (3H), 3.7 ppm (1H).
  • Example A18 (Production method A-IV)
  • Example A16 was repeated except that the silicone compound represented by the above formula (17) obtained in Example A9 was used instead of the silicone compound represented by the above formula (13), and represented by the following formula (24).
  • a silicone compound was obtained. Yield 76.5g.
  • the 1 H-NMR data is described below. 0.0ppm (45H), 0.6ppm (4H), 0.9ppm (3H), 1.3ppm (4H), 1.5ppm (2H), 3.3-3.7ppm (6H), 4.7ppm ( 1H).
  • Example A19 (Production method A-II) Example A17 was repeated except that the silicone compound represented by the above formula (24) obtained in Example A18 was used instead of the compound represented by the above formula (15), and represented by the following formula (25). A silicone compound was obtained. Yield 88.0 g.
  • the 1 H-NMR data is described below. 0.0ppm (45H), 0.6ppm (6H), 0.9ppm (3H), 1.3ppm (6H), 1.5ppm (2H), 3.3-3.7ppm (6H), 2.6ppm ( 1H), 2.8 ppm (1H), 3.1 ppm (1H), 3.4 ppm (3H), 3.7 ppm (1H).
  • Example A20 (Production method A-III) In a 300 mL three-necked eggplant flask equipped with a Dimroth, thermometer, and dropping funnel, 50.0 g of the silicone compound represented by the above formula (25) obtained in Example A19, 50.0 g of normal hexane, and 5.0 g of triethylamine were added. Added and cooled to 10 ° C. In a nitrogen stream, 6.5 g of methacrylic acid chloride was added dropwise, and the mixture was further stirred at room temperature for 1 hour. Thereafter, 4.0 g of ethanol was added, and the mixture was further stirred at room temperature for 1 hour.
  • Example A21 (Production method AI) In Example A1, 6.2 g of 2,4,6,8-tetramethyl-2,4,6,8-tetra (N, N-dimethylaminopropyl) cyclotetrasiloxane and 19. Example A1 was repeated except that 6 g and methacryloyloxypropyldimethylchlorosilane were changed to 10.6 g to obtain a silicone compound represented by the following formula (27). Yield 730.1g. The 1 H-NMR data is described below.
  • Example A22 (Production method AI) In Example A1, 3.1 g of 2,4,6,8-tetramethyl-2,4,6,8-tetra (N, N-dimethylaminopropyl) cyclotetrasiloxane and 9.n of n-butyllithium hexane solution were used. Example A1 was repeated except that 8 g and methacryloyloxypropyldimethylchlorosilane were changed to 5.3 g to obtain a silicone compound represented by the following formula (28). Yield 712.0 g. The 1 H-NMR data is described below.
  • Examples B1 to 7 (Production method B) In the following, 1 H-NMR analysis was performed using ECS500 (manufactured by JEOL Ltd.) and deuterated chloroform as a measurement solvent. The purity is obtained by the following measuring method. Silicone purity measurement method (GC method) In this specification, all gas chromatographic measurements were performed under the following conditions. Agilent gas chromatography (FID detector) was used. Capillary column: HP-5MS (0.25 mm ⁇ 30 m ⁇ 0.25 ⁇ m) from J & W Temperature rising program: 50 ° C. (5 minutes) ⁇ 10 ° C./minute ⁇ 250° C.
  • Measuring device Tosoh HLC-8220 Measurement condition: Column temperature: 40 ° C Flow rate: 0.6 ml / min Mobile phase: THF Column configuration: TSK gel Super H2500 (6 * 150) TSK gel Super HM-N (6 * 150) * Guard column TSK gel guardcolumn Super HH (4.6 * 35) Injection volume: 50 ⁇ l Sample concentration: 0.3% Detector: RI In the following, Me means a methyl group.
  • Example B1 Synthesis of compound of general formula (3) 714 g (2 mol) of dihydrogenpolysiloxane represented by the following formula (a), was charged into a 2 L flask equipped with a Jim funnel, a thermometer, a dropping funnel and a stirrer, and the temperature was raised to 80 ° C. 1.6 g (10 ppm in terms of platinum with respect to the mass of (a)) of toluene solution of chloroplatinic acid sodium bicarbonate / vinylsiloxane complex (platinum content: 0.5 wt%) was charged into the flask.
  • Example B2 Synthesis of Compound of General Formula (4) 26 g (0.3 mol) of dimethylallylamine and 90 g of toluene were charged into a 1 L flask equipped with a Dim funnel, a thermometer, a dropping funnel and a stirrer and heated to 80 ° C. To the flask, 0.8 g of a toluene solution of chloroplatinic acid sodium bicarbonate / vinylsiloxane complex (platinum content: 0.5 wt%) was added (25 ppm in terms of platinum with respect to the mass of (b)).
  • Example 2 150 g (0.27 mol) of the hydrogen silicone (b) obtained in Example 1 was charged in the dropping funnel and dropped into the flask at 80 to 90 ° C. over 1 hour. After dropping, the mixture was aged at 80 to 90 ° C. for 1 hour. After aging, the reaction mixture was sampled and it was confirmed whether or not hydrogen gas was generated due to alkali. As a result, it was confirmed that hydrogen gas was not generated and thus the charged hydrogen silicone did not remain. Toluene and unreacted dimethylallylamine charged excessively were distilled off under reduced pressure at an internal temperature of 100 ° C. to obtain 161 g of a colorless and transparent residue. From 1 H-NMR analysis, it was confirmed to be a heterogeneous terminal silicone represented by the following formula (c) (0.25 mol, yield 93%).
  • FIG. 2 shows 1 H-NMR data.
  • Example B3 Synthesis of silicone having terminal amino group and other terminal functional group Heterogeneous terminal silicone c obtained in Example 2 above) 160 g (0.25 mol), isopropyl alcohol 160 g (2.67 mol, partly acting as a solvent), Then, 1.6 g of acetic acid was charged into a 1 L flask equipped with a Dimroth, a thermometer and a stirrer, and reacted at 80 ° C. for 3 hours. A peak of trimethylsilylated isopropyl alcohol was confirmed by GC measurement. The completion of the reaction was confirmed by 1 H-NMR.
  • Example B4 Synthesis of Compound of General Formula (4) 30 g (0.3 mol) of allyl glycol and 90 g of toluene were charged into a 1 L flask equipped with a Dim funnel, a thermometer, a dropping funnel, and a stirrer and heated to 80 ° C. 0.8 g of a toluene solution of chloroplatinic acid sodium bicarbonate / vinylsiloxane complex (platinum content: 0.5 wt%) was added to the flask. Next, 150 g (0.27 mol) of the hydrogen silicone of formula (b) obtained in Example 1 was charged into the dropping funnel and dropped into the flask at 80 to 90 ° C. over 1 hour.
  • Example B5 Synthesis of silicone having terminal amino group of general formula (1) and other terminal functional groups Silicone (e) 170 g (0.26 mol) obtained in Example 4 above, 170 g of isopropyl alcohol, and 1.7 g of acetic acid were added to Dimroth. Into a 1 L flask equipped with a thermometer and a stirrer, the mixture was reacted at 80 ° C. for 3 hours. A peak of trimethylsilylated isopropyl alcohol was confirmed by GC measurement. The completion of the desilylation reaction was confirmed from the area ratio of isopropyl alcohol to trimethylsilylated isopropyl alcohol. The completion of the reaction was also confirmed by 1 H-NMR.
  • Example B6 Synthesis of Compound of General Formula (4) 48 g (0.3 mol) of diethylene glycol allyl methyl ether and 90 g of toluene were charged into a 1 L flask equipped with a Dim funnel, a thermometer, a dropping funnel and a stirrer and heated to 80 ° C. 0.8 g of a toluene solution of chloroplatinic acid sodium bicarbonate / vinylsiloxane complex (platinum content: 0.5 wt%) was added to the flask. Next, 150 g (0.27 mol) of the hydrogen silicone of formula (b) obtained in Example 1 was charged into the dropping funnel and dropped into the flask at 80 to 90 ° C. over 1 hour.
  • Example B7 Synthesis of silicone having terminal amino group and other terminal functional group Silicone g) obtained in Example 6 (185 g, 0.26 mol), isopropyl alcohol 185 g, and acetic acid 1.8 g were attached with Dimroth, thermometer and stirring device. The 1 L flask was charged and reacted at 80 ° C. for 3 hours. A peak of trimethylsilylated isopropyl alcohol was confirmed by GC measurement. The completion of the desilylation reaction was confirmed from the area ratio of isopropyl alcohol to trimethylsilylated isopropyl alcohol. The completion of the reaction was also confirmed by 1 H-NMR.
  • Hydrotalcite (KYOWARD (registered trademark) 500, manufactured by Kyowa Chemical Industry Co., Ltd.) was added in an amount of 2.0 g, and after stirring for 1 hour, the reaction mixture was filtered to obtain 770 g of a colorless transparent filtrate. When this filtrate was subjected to GC measurement, silicones having various structures were confirmed, and it was impossible to isolate silicones having terminal amino groups and terminal hydroxyl groups.
  • the compounds of the present invention make it possible to perform different modifications using a single compound due to differences in the reactivity of two different terminal functional groups.
  • the silicone compound of the present invention has different functional groups at both ends of the polysiloxane and can have a sufficient siloxane content.
  • the compound of the present invention and the method for producing the compound are useful as materials for resin modification and medical devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Silicon Polymers (AREA)

Abstract

[Problem] The present invention addresses the problem of providing: a different-terminal functional organopolysiloxane compound, in which different functional groups are provided respectively at both terminals of a polysiloxane, and which has a satisfactory siloxane content; and a method for producing the compound. The present invention also provides: a polysiloxane compound having a terminal amino group and another terminal functional group; and a method for producing the polysiloxane compound. [Solution] The present invention provides a silicone compound which is represented by general formula (I) and has different functional groups respectively at both terminals. The silicone compound has a functional group that is unreactive with an organometallic compound, a functional group that has radical polymerizability or a functional group that is reactive with an organometallic compound (a first organic functional group) or an atom at one terminal of a diorganopolysiloxane (i.e., a terminal A in general formula (I)) and also has a hydrogen atom or a group selected from the alternatives for the aforementioned organic functional group (a second organic functional group) or an atom, which is a functional group or atom different from that located at the aforementioned terminal (the terminal A), at the other terminal (i.e., a terminal B in general formula (I)). The present invention also provides a method for producing a silicone compound represented by general formula (I). This production method comprises the steps of: reacting a cyclic siloxane or a disiloxane each having a first organic functional group with an organometallic compound; and reacting a metal silicate compound produced by the aforementioned step with a halogenated silyl compound having a second organic functional group.

Description

両末端に異なる官能基を有する直鎖オルガノポリシロキサン、及びその製造方法Linear organopolysiloxane having different functional groups at both ends, and method for producing the same
 本発明は、両末端に異なる官能基を有する直鎖オルガノポリシロキサン及びその製造方法に関する。また本発明は、末端アミノ基および他の末端官能基を有するポリシロキサン化合物及びその製造方法を提供する。 The present invention relates to a linear organopolysiloxane having different functional groups at both ends and a method for producing the same. Moreover, this invention provides the polysiloxane compound which has a terminal amino group and another terminal functional group, and its manufacturing method.
 従来より、有機官能基を含有するオルガノポリシロキサンは、塗料、成形材料、医療用材料、各種コーティング材料等の分野で樹脂改質剤として広く利用され、有機樹脂に耐熱性、耐候性、離型性、成形加工性、及び耐熱衝撃性等の特性を付与するものである。 Conventionally, organopolysiloxanes containing organic functional groups have been widely used as resin modifiers in the fields of paints, molding materials, medical materials, various coating materials, etc., and have heat resistance, weather resistance, mold release properties for organic resins. Properties such as heat resistance, molding processability and thermal shock resistance.
 このような有機官能基を含有するオルガノポリシロキサンとして、特許文献1にはジメチルポリシロキサンの両末端に官能基を有する化合物が記載されている。また、特許文献2には側鎖に官能基を有するメチルポリシロキサンが提案されている。しかし、これらのオルガノポリシロキサンはいずれも、1種類の官能基しか有さない。 As an organopolysiloxane containing such an organic functional group, Patent Document 1 describes a compound having functional groups at both ends of dimethylpolysiloxane. Patent Document 2 proposes methylpolysiloxane having a functional group in the side chain. However, all of these organopolysiloxanes have only one type of functional group.
 1種類の官能基を両末端及び/又は側鎖に有するオルガノポリシロキサンは、その官能基に応じた特性を有するものであり、複数の官能基がもつ様々な特性をオルガノポリシロキサンに与えることは困難である。また、同一の官能基のみでは、官能基の種類による反応性の差を利用することができないので、架橋方法を分けたり、重合と架橋を分けて使用するなどの反応の精密な制御が困難である。 An organopolysiloxane having one type of functional group at both ends and / or side chains has characteristics according to the functional group, and it is not possible to give organopolysiloxane various characteristics possessed by a plurality of functional groups. Have difficulty. Also, since the difference in reactivity depending on the type of functional group cannot be used with the same functional group alone, it is difficult to precisely control the reaction such as using different crosslinking methods or using polymerization and crosslinking separately. is there.
 特許文献3には、異なる種類の官能基を1分子内に有するオルガノポリシロキサンが記載されている。特許文献3は、側鎖型ハイドロジェンポリシロキサンに異なるアリル化合物を反応させることで側鎖に異なる官能基を有する異種官能オルガノポリシロキサンを製造することを記載している。 Patent Document 3 describes organopolysiloxanes having different types of functional groups in one molecule. Patent Document 3 describes that a heterofunctional organopolysiloxane having a different functional group in the side chain is produced by reacting a different allyl compound with the side chain type hydrogen polysiloxane.
 しかし、上記特許文献3に記載のオルガノポリシロキサンは立体障害の大きい側鎖に官能基を有すこと、導入される官能基が平均として存在しており、構造明確ではないことから反応の精密な制御が十分とは言えない。 However, the organopolysiloxane described in Patent Document 3 has a functional group in the side chain having a large steric hindrance, and the introduced functional group exists as an average, and the structure is not clear. Control is not enough.
 また、特許文献4には、医療用デバイス材料として有用である、末端に親水基と重合性基を有するオルガノシロキサンが記載されている。特許文献4は、両末端型ハイドロジェンシロキサンに第一のアリル化合物を反応させることで第一の官能基を導入し、精製を経て第一の官能基とハイドロジェンシリル基を有する異種末端オルガノシロキサンを合成し、更に残るハイドロジェンシリル基と第二のアリル化合物を反応させて両末端に異なる官能基を有するオルガノシロキサンを製造する方法を記載している。 Patent Document 4 describes an organosiloxane having a hydrophilic group and a polymerizable group at its terminal, which is useful as a medical device material. Patent Document 4 discloses a heterogeneous terminal organosiloxane having a first functional group and a hydrogensilyl group after purification by introducing a first functional group by reacting a first allyl compound with a both-end type hydrogensiloxane. And further reacting the remaining hydrogensilyl group with a second allyl compound to produce an organosiloxane having different functional groups at both ends.
 しかし特許文献4に記載の製造方法では、第一の官能基とハイドロジェンシリル基とを有するオルガノシロキサンを得る工程において、蒸留やカラム精製が必要である。該方法では、その原理的に低分子のオルガノシロキサンしか製造することができない。そのため、特許文献4に記載の製造方法で得られる化合物では、シロキサンの含有率は低いものとなる。該シロキサンを原料として使用しても、シロキサンの特性を重合体等に十分に付与することができない。 However, the production method described in Patent Document 4 requires distillation or column purification in the step of obtaining an organosiloxane having a first functional group and a hydrogensilyl group. In principle, only low molecular weight organosiloxanes can be produced by this method. Therefore, in the compound obtained by the manufacturing method described in Patent Document 4, the content of siloxane is low. Even if the siloxane is used as a raw material, the characteristics of the siloxane cannot be sufficiently imparted to the polymer or the like.
特開昭58-217515号公報JP 58-217515 A 特許第3779187号公報Japanese Patent No. 3779187 特許第3063712号公報Japanese Patent No. 3067312 特表2014-505067号公報Special table 2014-505067 gazette 特開2009-256660号公報JP 2009-256660 A 特開平2-49793号公報JP-A-2-49793
 異なる官能基を末端に有するオルガノポリシロキサン化合物は、樹脂改質剤や医療用デバイス材料などの分野において有用であるが、構造明確かつシロキサンの特性を十分に生かせる材料が存在していないのが現状である。 Organopolysiloxane compounds having different functional groups at their ends are useful in fields such as resin modifiers and medical device materials, but there is currently no material with a clear structure and sufficient siloxane properties. It is.
 また、さまざまな末端アミノ官能性シリコーン化合物が公知であるが、これらはアミノ基を両末端に有する両末端アミノ官能性シリコーン化合物や片末端のみに官能基を有する片末端アミノ官能性シリコーン化合物である(特許文献5,6)。片末端にアミノ基を有し、もう片末端に他の末端官能基を有するシリコーン化合物は、単一化合物における二つの官能基の反応性の違いにより異なる2の基質と反応を行うことができるため、樹脂改質剤として有用であると考えられるが、ほとんど検討されていないのが現状である。 Various terminal amino-functional silicone compounds are known, and these are both terminal amino-functional silicone compounds having amino groups at both ends and one-terminal amino-functional silicone compounds having functional groups only at one end. (Patent Documents 5 and 6). A silicone compound having an amino group at one end and another terminal functional group at the other end can react with two different substrates depending on the reactivity of the two functional groups in a single compound. Although it is considered useful as a resin modifier, it has not been studied at present.
 例えば、[1]両末端アミノ官能性シリコーンと両末端カルビノール官能性シリコーンをトリフルオロメタンスルホン酸存在下で反応させることにより、末端アミノ基および他の末端官能基を有するシリコーンを製造する方法が考えられる。 For example, [1] A method for producing a silicone having a terminal amino group and other terminal functional groups by reacting both terminal amino functional silicones and both terminal carbinol functional silicones in the presence of trifluoromethanesulfonic acid is considered. It is done.
 また、[2]ビニル化合物と大過剰の両末端ハイドロジェンシリコーンを白金触媒存在下で反応させた後に、蒸留等で精製し、これとアリルアミンを反応させて、末端アミノ基および他の末端官能基を有するシリコーンを製造する方法が考えられる。 [2] After reacting a vinyl compound and a large excess of both-end hydrogen silicones in the presence of a platinum catalyst, purification is performed by distillation or the like, and this is reacted with allylamine to produce terminal amino groups and other terminal functional groups. A method for producing a silicone having the following is conceivable.
しかし、前項[1]の方法では、1分子内に異種の官能基を有するものを選択的に得ることは困難であり、また、その単離も生成物の構造の分布の広さから現実的ではない。前項[2]の方法では、片末端にハイドロジェンを残す為には、ビニル化合物に対し大過剰の両末端ハイドロジェンポリシロキサンが必要になること、その後の精製が難しいこと、およびアリルアミンが触媒毒であるために白金触媒が多量に必要となり、現実的ではない。さらには、アリルアミンと‐SiHとの脱水素が副反応として起こるため、末端アミノ基および他の末端官能基を有するシリコーンの純度は高くない。 However, in the method of [1], it is difficult to selectively obtain those having different functional groups in one molecule, and the isolation is practical because of the wide distribution of the structure of the product. is not. In the method of [2] above, in order to leave hydrogen at one end, a large excess of hydrogenpolysiloxane at both ends relative to the vinyl compound is required, subsequent purification is difficult, and allylamine is a catalyst poison. Therefore, a large amount of platinum catalyst is required, which is not realistic. Furthermore, since dehydrogenation of allylamine and —SiH occurs as a side reaction, the purity of the silicone having a terminal amino group and other terminal functional groups is not high.
上記の方法では末端アミノ基および他の末端官能基を有するシリコーン化合物を高い純度で合成することが困難である故に、高い純度の末端アミノ基および他の末端官能基を有するシリコーン化合物や、その製造方法が求められている。 Since it is difficult to synthesize a silicone compound having a terminal amino group and other terminal functional groups with high purity by the above method, a silicone compound having a terminal amino group with high purity and other terminal functional groups, and its production There is a need for a method.
 従って本発明は、ポリシロキサンの両末端に異なる官能基を有し、十分なシロキサン含有率を有する異種末端官能オルガノポリシロキサン化合物、及びその製造方法を提供することを目的とする。また、本発明は、末端アミノ基および他の末端官能基を有するポリシロキサン化合物及びその製造方法を提供する。 Accordingly, an object of the present invention is to provide a hetero-functional organopolysiloxane compound having different functional groups at both ends of the polysiloxane and having a sufficient siloxane content, and a method for producing the same. Moreover, this invention provides the polysiloxane compound which has a terminal amino group and another terminal functional group, and its manufacturing method.
 本発明者は上記課題を解決するために鋭意検討した結果、第一の有機官能基を有する環状シロキサン又はジシロキサンと有機金属化合物とを反応させる工程、該工程により得られる金属シリケート化合物と第二の有機官能基を有するハロゲン化シリル化合物とを反応させる工程を含む製造方法により、両末端に異なる有機官能基を有し、且つ、シロキサンの含有率を制御したシリコーン化合物を製造できることを見出し、本発明を成すに至った。 As a result of intensive studies to solve the above problems, the present inventor has made a step of reacting a cyclic siloxane or disiloxane having a first organic functional group with an organometallic compound, a metal silicate compound obtained by the step and a second silicate compound. It has been found that a silicone compound having a different organic functional group at both ends and a controlled content of siloxane can be produced by a production method including a step of reacting a halogenated silyl compound having an organic functional group of Invented the invention.
 すなわち本発明は、下記一般式(I)で表されるシリコーン化合物を提供する。
Figure JPOXMLDOC01-appb-C000016
(式(I)中、Rは、互いに独立に、置換又は非置換の、不飽和結合を有してよい炭素数1~10の一価炭化水素基であり、mは1~300の整数であり、Q及びQは、互いに独立に、アミド結合、エーテル結合、エステル結合、ウレタン結合、又は不飽和結合から成る群より選ばれる1以上の結合を含んでよい、置換又は非置換の、炭素数1~20の二価炭化水素基であり、Aは、有機金属化合物と非反応性である官能基、ラジカル重合性を有する官能基、又は有機金属化合物と反応性を有する官能基または原子であり、Bは水素原子、又は前記Aの選択肢から選ばれる基又は原子であり、但し、AとBは異なる官能基又は原子であり、bは0又は1であり、Bが水素原子の場合bは0であり、Bが水素原子以外の場合bは1である)。
That is, the present invention provides a silicone compound represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000016
(In the formula (I), R 1 is independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms which may have an unsaturated bond, and m is an integer of 1 to 300. Q 1 and Q 2 may each independently contain one or more bonds selected from the group consisting of an amide bond, an ether bond, an ester bond, a urethane bond, or an unsaturated bond, substituted or unsubstituted , A divalent hydrocarbon group having 1 to 20 carbon atoms, and A is a functional group that is non-reactive with an organometallic compound, a functional group that has radical polymerizability, or a functional group that is reactive with an organometallic compound, or An atom, B is a hydrogen atom, or a group or atom selected from the options of A, provided that A and B are different functional groups or atoms, b is 0 or 1, and B is a hydrogen atom. Case b is 0, and b is 1 when B is other than a hydrogen atom. ).
また、本発明は上記一般式(I)で表されるシリコーン化合物の製造方法を提供する。
該製造方法は、下記式(iii)で表される環状シロキサン
Figure JPOXMLDOC01-appb-C000017
(yは3~10の整数であり、R及びQは上記の通りであり、Aは有機金属化合物と非反応性である官能基である)
又は、
下記式(iv)で表されるジシロキサンと
Figure JPOXMLDOC01-appb-C000018
(R及びQは上記の通りであり、Aは有機金属化合物と非反応性である官能基である)
有機金属化合物とを反応させて下記式(v)
Figure JPOXMLDOC01-appb-C000019
(R及びQは上記の通りであり、Mtはアルカリ金属原子であり、Aは有機金属化合物と非反応性である官能基である)
で表される金属シリケート化合物を得る工程、
次いで、上記式(v)で表される金属シリケート化合物と環状シロキサンとを反応させて下記式(8’)
Figure JPOXMLDOC01-appb-C000020
(R、Q、m、及びMtは上記の通りであり、Aは有機金属化合物と非反応性である官能基である)
で表されるシロキサンを得る工程、及び、上記式(8’)で表されるシロキサンとハロゲン化シリル化合物とを反応させる工程を含む(以下において製造方法Aということがある)。
Moreover, this invention provides the manufacturing method of the silicone compound represented by the said general formula (I).
The production method comprises a cyclic siloxane represented by the following formula (iii)
Figure JPOXMLDOC01-appb-C000017
(Y is an integer of 3 to 10, R 1 and Q 1 are as described above, and A 1 is a functional group that is non-reactive with the organometallic compound)
Or
Disiloxane represented by the following formula (iv):
Figure JPOXMLDOC01-appb-C000018
(R 1 and Q 1 are as described above, and A 1 is a functional group that is non-reactive with the organometallic compound)
Reaction with an organometallic compound results in the following formula (v)
Figure JPOXMLDOC01-appb-C000019
(R 1 and Q 1 are as described above, Mt is an alkali metal atom, and A 1 is a functional group that is non-reactive with the organometallic compound)
A step of obtaining a metal silicate compound represented by:
Next, the metal silicate compound represented by the above formula (v) and a cyclic siloxane are reacted to form the following formula (8 ′).
Figure JPOXMLDOC01-appb-C000020
(R 1 , Q 1 , m, and Mt are as described above, and A 1 is a functional group that is non-reactive with the organometallic compound)
And a step of reacting the siloxane represented by the above formula (8 ′) with the halogenated silyl compound (hereinafter, also referred to as production method A).
 さらに本発明は、下記一般式(1)で表される
Figure JPOXMLDOC01-appb-C000021
(ここでmは1~6の整数を示し、Xは炭素数0~48の有機官能基を示し、Rは、互に独立に、炭素数1~6の置換又は非置換の炭化水素基を示す)
末端アミノ基および他の末端官能基を有するシリコーン化合物及びその製造方法を提供する(以下において製造方法Bということがある)。
Furthermore, this invention is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000021
(Wherein m represents an integer of 1 to 6, X represents an organic functional group having 0 to 48 carbon atoms, and R 1 independently of each other represents a substituted or unsubstituted hydrocarbon group having 1 to 6 carbon atoms. Indicates)
A silicone compound having a terminal amino group and another terminal functional group and a method for producing the same are provided (hereinafter sometimes referred to as Production Method B).
上記一般式(1)で表される末端アミノ基および他の末端官能基を有するシリコーン化合物は、下記式(4)で表される化合物
Figure JPOXMLDOC01-appb-C000022
(式中、m、X、およびRは上記の通りであり、RはC1~3アルキル基である)
を脱シリル化反応させることにより製造される。
The silicone compound having a terminal amino group represented by the general formula (1) and another terminal functional group is a compound represented by the following formula (4)
Figure JPOXMLDOC01-appb-C000022
Wherein m, X, and R 1 are as described above, and R 2 is a C 1-3 alkyl group.
Is produced by desilylation reaction.
上記一般式(4)で表わされる化合物は、下記一般式(3)で表されるハイドロジェンシリコーンと
Figure JPOXMLDOC01-appb-C000023
(式中、m、R及びRは前述の通りである)
下記式(5)で表される、有機官能基と二重結合を併せ持つ化合物とを付加反応させて得ることができる。
  CH=CH-X   (5)
(式中、Xは前述の通りである。)
上記式(3)で表わされる化合物は、下記一般式(2)で表わされる化合物
Figure JPOXMLDOC01-appb-C000024
(式中、m、及びRは前述の通りである)の一方の末端のSi-Hに、下記式(6)で表されるビス(トリC1~3アルキルシリル)アリルアミンを付加反応させることにより製造される。
CH=CHCHN(SiR 2   (6)
 (式中、Rは前述の通りである。)
The compound represented by the general formula (4) is a hydrogen silicone represented by the following general formula (3):
Figure JPOXMLDOC01-appb-C000023
(Wherein m, R 1 and R 2 are as described above)
It can be obtained by addition reaction of an organic functional group represented by the following formula (5) and a compound having a double bond.
CH 2 = CH-X     (5)
(Wherein X is as described above.)
The compound represented by the above formula (3) is a compound represented by the following general formula (2)
Figure JPOXMLDOC01-appb-C000024
(Wherein, m and R 1 are as described above) One-terminal Si—H is subjected to an addition reaction with bis (tri-C 1-3 alkylsilyl) allylamine represented by the following formula (6). It is manufactured by.
CH 2 = CHCH 2 N (SiR 2 3 ) 2 (6)
(Wherein R 2 is as described above.)
 本発明のシリコーン化合物は、両末端に異なる官能基を有する。本発明の製造方法に従えば、反応の精密な制御が可能であり、得られるシリコーン化合物が有するシロキサン含有量を適宜調整することができる。従って、本発明のシリコーン化合物は、樹脂改質剤や医療用デバイス材料として有用であり、これらの用途においてポリシロキサンの特性を十分に付与することができる。 The silicone compound of the present invention has different functional groups at both ends. According to the production method of the present invention, the reaction can be precisely controlled, and the siloxane content of the resulting silicone compound can be appropriately adjusted. Therefore, the silicone compound of the present invention is useful as a resin modifier or a medical device material, and can sufficiently impart the characteristics of polysiloxane in these applications.
さらに、化合物(4)から上記式(1)で表される末端アミノ基および他の末端官能基を有するシリコーンを得る本発明の方法によって、上記式(1)で表されるシリコーンを非常に高純度で製造することができる。従来知られているハイドロジェンポリシロキサンとアミン類との反応ではアミノ基による脱水素反応が多く起こるが、驚くべきことに本発明の製造方法では生成したアミノ基による脱水素反応は極僅かであり、高純度で末端アミノ基および他の末端官能基を有するシリコーンを得ることができる。脱シリル化反応を促進するために酸を作用させてもシロキサン鎖の切断が非常に少なく、シリル基のみが選択的に脱シリル化されるため、上記一般式(1)で表される目的化合物を高純度で製造することができる。さらに、脱シリル化は特定のアルコールと特定の酸触媒を最適な組み合わせとすることでより良好に進行することも見出された。
 一つの片末端にアミノ基を有し、他方の片末端に他の末端官能基を有するシリコーン化合物は、単一化合物における二つの官能基の反応性の違いにより異なる2の基質と反応を行うことができる。例えば、アミノ基と反応する基を有する樹脂と該化合物とを反応させることによって、当該他の末端官能基を樹脂に導入することができる。アミノ基と反応する基を有する樹脂と、当該他の官能基と反応する基を有する樹脂が混在する系において、夫々の樹脂を選択的に改質できる。このように、本発明に従い、片末端にアミノ基を有し、他方の片末端に他の末端官能基を有するシリコーン化合物は、樹脂改質剤として有用である。
また、上記式(3)で表される化合物の本発明の製造方法により、上記式(3)で表される化合物を高純度で製造することができる。
本発明において、純度は、特定の一の構造を有する(即ち、mが特定の一つの整数であり、X、R、RおよびRが夫々特定の一の基である)化合物が、GPCまたはGCクロマトグラムにおいて90%以上、好ましくは95%以上のピーク面積を占めることである。対象物が高分子量である場合、たとえば式(1)または(4)の化合物はGPCにより分析され、低分子量である場合、例えば式(1)、式(2)または(3)の化合物はGCによって分析される。
Furthermore, by the method of the present invention for obtaining a silicone having a terminal amino group represented by the above formula (1) and other terminal functional groups from the compound (4), the silicone represented by the above formula (1) is very high. Can be produced in purity. In the reaction of hydrogenpolysiloxane conventionally known and amines, dehydrogenation reaction due to amino groups often occurs. Surprisingly, in the production method of the present invention, the dehydrogenation reaction due to generated amino groups is negligible. Highly pure silicones having terminal amino groups and other terminal functional groups can be obtained. Even if an acid is allowed to act to accelerate the desilylation reaction, the siloxane chain is hardly broken and only the silyl group is selectively desilylated. Therefore, the target compound represented by the above general formula (1) Can be produced with high purity. Furthermore, it has also been found that desilylation proceeds better with an optimal combination of a specific alcohol and a specific acid catalyst.
A silicone compound having an amino group at one end and another terminal functional group at the other end reacts with two different substrates depending on the reactivity of the two functional groups in a single compound. Can do. For example, the other terminal functional group can be introduced into the resin by reacting the compound with a resin having a group that reacts with an amino group. In a system in which a resin having a group that reacts with an amino group and a resin having a group that reacts with the other functional group are mixed, each resin can be selectively modified. Thus, according to the present invention, a silicone compound having an amino group at one end and another terminal functional group at the other end is useful as a resin modifier.
Moreover, the compound represented by the above formula (3) can be produced with high purity by the production method of the present invention for the compound represented by the above formula (3).
In the present invention, purity refers to a compound having a specific structure (that is, m is a specific integer and X, R 1 , R 2 and R 3 are each a specific group) It occupies a peak area of 90% or more, preferably 95% or more in the GPC or GC chromatogram. When the object has a high molecular weight, for example, the compound of formula (1) or (4) is analyzed by GPC, and when it has a low molecular weight, for example, the compound of formula (1), formula (2) or (3) Analyzed by.
実施例B1における生成物のH-NMRチャートである。 1 is a 1 H-NMR chart of a product in Example B1. 実施例B2における生成物のH-NMRチャートである。2 is a 1 H-NMR chart of a product in Example B2. 実施例B3における減圧留去の残留物のH-NMRチャートである。2 is a 1 H-NMR chart of a residue obtained by distillation under reduced pressure in Example B3. 実施例B3における減圧留去の残留物のGPCチャートである。It is a GPC chart of the residue of vacuum distillation in Example B3.
以下、本発明についてさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
本発明は下記一般式(I)で表されるシリコーン化合物である。
Figure JPOXMLDOC01-appb-C000025
(式(I)中、Rは、互いに独立に、置換又は非置換の、不飽和結合を有してよい炭素数1~10の一価炭化水素基であり、mは1~300の整数であり、Q及びQは、互いに独立に、アミド結合、エーテル結合、エステル結合、ウレタン結合、又は不飽和結合から成る群より選ばれる1以上の結合を含んでよい、置換又は非置換の、炭素数1~20の二価炭化水素基であり、Aは、有機金属化合物と非反応性である官能基、ラジカル重合性を有する官能基、又は有機金属化合物と反応性を有する官能基または原子であり、Bは水素原子、又は前記Aの選択肢から選ばれる基又は原子であり、但し、AとBは異なる官能基又は原子であり、bは0又は1であり、Bが水素原子の場合bは0であり、Bが水素原子以外の場合bは1である)。
The present invention is a silicone compound represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000025
(In the formula (I), R 1 is independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms which may have an unsaturated bond, and m is an integer of 1 to 300. Q 1 and Q 2 may each independently contain one or more bonds selected from the group consisting of an amide bond, an ether bond, an ester bond, a urethane bond, or an unsaturated bond, substituted or unsubstituted , A divalent hydrocarbon group having 1 to 20 carbon atoms, and A is a functional group that is non-reactive with an organometallic compound, a functional group that has radical polymerizability, or a functional group that is reactive with an organometallic compound, or An atom, B is a hydrogen atom, or a group or atom selected from the options of A, provided that A and B are different functional groups or atoms, b is 0 or 1, and B is a hydrogen atom. Case b is 0, and b is 1 when B is other than a hydrogen atom. ).
 上記式(I)において、Rは、互いに独立に、非置換の、不飽和結合を有してよい炭素数1~20、好ましくは炭素数1~10、さらに好ましくは炭素数1~8、特に好ましくは炭素数1~6の一価炭化水素基、又は、これら一価炭化水素基の炭素原子に結合する水素原子の一部又は全部が官能基又はハロゲン原子で置換されている基である。非置換の一価炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等のアルキル基;シクロペンチル基、及びシクロヘキシル基等のシクロアルキル基;フェニル基、及びトリル基等のアリール基;ビニル基、及びアリル基等のアルケニル基、ベンジル基等のアラルキル基が挙げられる。これらの基の炭素原子に結合した水素原子の一部または全部がヒドロキシ基、ヒドロキシアルキル基、アミノ基、アミノアルキル基、アミド基、アルキルアミド基、アルコキシ基、アルコキシアルキル基、アルコキシカルボニル基、及びアルコキシカルボニルアルキル基等の官能基、又は、塩素、及びフッ素等のハロゲン原子で置換されていてもよい。好ましくは、炭素数1~6のアルキル基、フェニル基、及びこれらの基の炭素原子に結合する水素原子の一部又は全部がフッ素原子で置換された基である。 In the above formula (I), R 1 s , independently of each other, have 1 to 20 carbon atoms which may have an unsubstituted unsaturated bond, preferably 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, Particularly preferred is a monovalent hydrocarbon group having 1 to 6 carbon atoms, or a group in which part or all of the hydrogen atoms bonded to the carbon atoms of these monovalent hydrocarbon groups are substituted with a functional group or a halogen atom. . Examples of the unsubstituted monovalent hydrocarbon group include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and other alkyl groups; cyclopentyl group, and cyclohexyl group. A cycloalkyl group such as a group; an aryl group such as a phenyl group and a tolyl group; an alkenyl group such as a vinyl group and an allyl group; and an aralkyl group such as a benzyl group. Some or all of the hydrogen atoms bonded to the carbon atoms of these groups are hydroxy groups, hydroxyalkyl groups, amino groups, aminoalkyl groups, amide groups, alkylamide groups, alkoxy groups, alkoxyalkyl groups, alkoxycarbonyl groups, and It may be substituted with a functional group such as an alkoxycarbonylalkyl group or a halogen atom such as chlorine and fluorine. Preferred are alkyl groups having 1 to 6 carbon atoms, phenyl groups, and groups in which some or all of hydrogen atoms bonded to carbon atoms of these groups are substituted with fluorine atoms.
 上記式(I)において、mは1~300の整数であり、好ましくは2~200の整数であり、更に好ましくは3~100の整数であるが、これは特に限定されるものではない。目的とするシリコーン化合物の特性に応じて適宜選択されればよい。 In the above formula (I), m is an integer of 1 to 300, preferably an integer of 2 to 200, more preferably an integer of 3 to 100, but this is not particularly limited. What is necessary is just to select suitably according to the characteristic of the target silicone compound.
 上記式(I)においてAとBは異なる官能基又は原子である。AとBは異なる官能基又は原子であればよく、その組合せは目的とするシリコーン化合物の機能に応じて適宜選択されればよい。好ましくは、a)Aが有機金属化合物と非反応性である官能基であり、Bが水素原子、ラジカル重合性を有する官能基、又は有機金属化合物と反応性を有する官能基又は原子である組合せ、b)Aがラジカル重合性を有する官能基であり、Bが水素原子、有機金属化合物と非反応性である官能基、又は有機金属化合物と反応性を有する官能基又は原子である組合せ、あるいは、c)Aが有機金属化合物と反応性を有する官能基又は原子であり、Bが水素原子、または、Aとは異なる、有機金属化合物と反応性を有する官能基又は原子である組合せである。 In the above formula (I), A and B are different functional groups or atoms. A and B may be different functional groups or atoms, and the combination may be appropriately selected according to the function of the target silicone compound. Preferably, a) A is a functional group that is non-reactive with the organometallic compound, and B is a hydrogen atom, a functional group having radical polymerizability, or a functional group or atom that is reactive with the organometallic compound B) A is a functional group having radical polymerizability, and B is a hydrogen atom, a functional group that is non-reactive with an organometallic compound, or a functional group or atom that is reactive with an organometallic compound, or C) A is a functional group or atom reactive with an organometallic compound, and B is a hydrogen atom or a combination different from A and a functional group or atom reactive with an organometallic compound.
 上記式(I)において、有機金属化合物と非反応性の官能基は、シリル化ヒドロキシル基、ベンジル化ヒドロキシル基、シリル化1,2-エタンジオール基、ベンジル化1,2-エタンジオール基、アルコキシ基、アルケニル基、3級アミノ基、シリル化3級アミノ基、ベンジル化3級アミノ基、4級アンモニウム基、スチリル基、ニトロ基、アジド基、アリール基、アリールアルケニル基、シリル化フェノール基、シリル化チオール基である。 In the above formula (I), the functional group non-reactive with the organometallic compound is a silylated hydroxyl group, a benzylated hydroxyl group, a silylated 1,2-ethanediol group, a benzylated 1,2-ethanediol group, an alkoxy group. Group, alkenyl group, tertiary amino group, silylated tertiary amino group, benzylated tertiary amino group, quaternary ammonium group, styryl group, nitro group, azide group, aryl group, arylalkenyl group, silylated phenol group, It is a silylated thiol group.
 ラジカル重合性官能基としては、例えば(メタ)アクリロイル基、(メタ)アクリルアミド基などが挙げられる。 Examples of the radical polymerizable functional group include (meth) acryloyl group and (meth) acrylamide group.
 有機金属化合物と反応性の官能基としては、例えば、エポキシ基、カルボキシル基、イソシアネート基、アルコキシシリル基、ヒドロキシル基、1,2-エタンジオール基、1級アミノ基、2級アミノ基、フェノール基、チオール基などが挙げられる。有機金属化合物と反応性の原子とは、例えばハロゲン原子である。 Examples of functional groups reactive with organometallic compounds include epoxy groups, carboxyl groups, isocyanate groups, alkoxysilyl groups, hydroxyl groups, 1,2-ethanediol groups, primary amino groups, secondary amino groups, and phenol groups. And thiol groups. The atom reactive with the organometallic compound is, for example, a halogen atom.
 好ましくは、Aは、ヒドロキシル基、シリル化ヒドロキシル基、ベンジル化ヒドロキシル基、1,2-エタンジオール基、シリル化1,2-エタンジオール基、ベンジル化1,2-エタンジオール基、アルコキシ基、アルケニル基、1級アミノ基、3級アミノ基、シリル化3級アミノ基、4級アンモニウム基、及びハロゲン原子から選ばれるのがよい。 Preferably, A is a hydroxyl group, a silylated hydroxyl group, a benzylated hydroxyl group, a 1,2-ethanediol group, a silylated 1,2-ethanediol group, a benzylated 1,2-ethanediol group, an alkoxy group, It may be selected from an alkenyl group, a primary amino group, a tertiary amino group, a silylated tertiary amino group, a quaternary ammonium group, and a halogen atom.
 好ましい組合せは、Aがシリル化ヒドロキシル基、アルコキシ基、アルケニル基、ベンジル化ヒドロキシル基、ヒドロキシル基、1級アミノ基、及び3級アミノ基から選ばれる基であり、Bが水素原子、(メタ)アクリロイル基、(メタ)アクリルアミド基、ヒドロキシル基、1級アミノ基、3級アミノ基、エポキシ基、及びアルコキシシリル基から選ばれる基であるのがよい。但しAとBは異なる官能基である。 In a preferred combination, A is a group selected from a silylated hydroxyl group, an alkoxy group, an alkenyl group, a benzylated hydroxyl group, a hydroxyl group, a primary amino group, and a tertiary amino group, B is a hydrogen atom, (meth) It may be a group selected from an acryloyl group, a (meth) acrylamide group, a hydroxyl group, a primary amino group, a tertiary amino group, an epoxy group, and an alkoxysilyl group. However, A and B are different functional groups.
 別の好ましい組合せは、Aが、シリル化3級アミノ基、ベンジル化3級アミノ基、4級アンモニウム基、及びハロゲン原子から選ばれ、且つ、Bが(メタ)アクリロイル基、(メタ)アクリルアミド基、エポキシ基、及びアルコキシシリル基から選ばれる基であるのがよい。 Another preferred combination is that A is selected from a silylated tertiary amino group, a benzylated tertiary amino group, a quaternary ammonium group, and a halogen atom, and B is a (meth) acryloyl group, a (meth) acrylamide group. , An epoxy group, and an alkoxysilyl group.
 また、本発明は特には、A及びBのうちいずれかがラジカル重合性官能基であるシリコーン化合物を提供する。該シリコーン化合物は後述するコポリマーと重合させることにより無色透明な重合体を与えることができ、眼科デバイスを提供するために好適に機能することができる。 In addition, the present invention particularly provides a silicone compound in which one of A and B is a radical polymerizable functional group. The silicone compound can give a colorless and transparent polymer by polymerizing with a copolymer described later, and can function suitably for providing an ophthalmic device.
 上記式(I)において、Q及びQは、互いに独立に、アミド結合、エーテル結合、エステル結合、ウレタン結合、又は不飽和結合から成る群より選ばれる1以上の結合を含んでよい、置換又は非置換の、炭素数1~20の二価炭化水素基である。該二価炭化水素基としては、エチレン、1,3-プロピレン、1-メチルプロピレン、1,1-ジメチルプロピレン、2-メチルプロピレン、1,2-ジメチルプロピレン、1,1,2-トリメチルプロピレン、1,4-ブチレン、2-メチル-1,4-ブチレン、2、2-ジメチル-1,4-ブチレン、3-メチル-1,4-ブチレン、2,2-ジメチル-1,4-ブチレン、2,3-ジメチル-1,4-ブチレン、2,2,3-トリメチル-1,4-ブチレン、1,5-ペンチレン、1,6-ヘキサニレン、1,7-ヘプタニレン、1,8-オクタニレン、1,9-ノナニレン、1,10-デカニレン基等の2価の基、及びこれらの基の炭素原子に結合した水素原子の一部または全部が、ヒドロキシ基、ヒドロキシアルキル基、アミノ基、アミノアルキル基、アミド基、アルキルアミド基、アルコキシ基、アルコキシアルキル基、アルコキシカルボニル基、アルコキシカルボニルアルキル基等で置換された基、及び、塩素、フッ素等のハロゲン原子で置換されたハロゲン化アルキレン基等が挙げられる。エーテル結合を含む基としては、例えば、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリエチレン-プロピレンオキサイド等のポリアルキレンオキサイドが挙げられる。 In the above formula (I), Q 1 and Q 2 each independently contain one or more bonds selected from the group consisting of an amide bond, an ether bond, an ester bond, a urethane bond, or an unsaturated bond. Alternatively, it is an unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms. Examples of the divalent hydrocarbon group include ethylene, 1,3-propylene, 1-methylpropylene, 1,1-dimethylpropylene, 2-methylpropylene, 1,2-dimethylpropylene, 1,1,2-trimethylpropylene, 1,4-butylene, 2-methyl-1,4-butylene, 2,2-dimethyl-1,4-butylene, 3-methyl-1,4-butylene, 2,2-dimethyl-1,4-butylene, 2,3-dimethyl-1,4-butylene, 2,2,3-trimethyl-1,4-butylene, 1,5-pentylene, 1,6-hexanylene, 1,7-heptanylene, 1,8-octanylene, Divalent groups such as 1,9-nonanylene and 1,10-decanylene groups, and a part or all of hydrogen atoms bonded to carbon atoms of these groups are hydroxy groups, hydroxyalkyl groups, amino groups Groups substituted with aminoalkyl groups, amide groups, alkylamide groups, alkoxy groups, alkoxyalkyl groups, alkoxycarbonyl groups, alkoxycarbonylalkyl groups, and the like, and halogenated alkylene groups substituted with halogen atoms such as chlorine and fluorine Etc. Examples of the group containing an ether bond include polyalkylene oxides such as polyethylene oxide, polypropylene oxide, and polyethylene-propylene oxide.
 Q及びQは互いに独立に、好ましくは下記(i)又は(ii)で示される。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
式(i)及び(ii)中、kは0~6の整数であり、kが0の場合、gは1~4の整数であり、kが0でない場合、gは1~17の整数であり、且つ、1≦3k+g≦20であり、式中*で示される箇所が式(I)のケイ素原子と結合しており、**で示される箇所がA又はBと結合している。kが0でない場合、好ましくは、kが1であり、gが1~4の整数であるのがよい。
Q 1 and Q 2 are independently of each other and preferably represented by the following (i) or (ii).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
In formulas (i) and (ii), k is an integer from 0 to 6, when k is 0, g is an integer from 1 to 4, and when k is not 0, g is an integer from 1 to 17. Yes, and 1 ≦ 3k + g ≦ 20. In the formula, the part indicated by * is bonded to the silicon atom of the formula (I), and the part indicated by ** is bonded to A or B. When k is not 0, k is preferably 1 and g is an integer of 1 to 4.
 Q及びQは特に好ましくは、酸素原子及び窒素原子を有さず、非置換である二価の炭化水素基であるのがよい。すなわち、上記式(i)及び(ii)においてk=0である構造が好ましい。該構造としては、メチレン、エチレン、プロピレン、又はブチレン基であるのがよく、特に好ましくはプロピレン基である。 Q 1 and Q 2 are particularly preferably a divalent hydrocarbon group which does not have an oxygen atom and a nitrogen atom and is unsubstituted. That is, a structure where k = 0 in the above formulas (i) and (ii) is preferable. The structure is preferably a methylene, ethylene, propylene, or butylene group, and particularly preferably a propylene group.
 本発明は更に上記式(I)で示されるシリコーン化合物の製造方法を提供する。
本発明の製造方法(製造方法A)は、下記式(8)で表される化合物と
Figure JPOXMLDOC01-appb-C000028
(R、Q、m及びAは上記の通りであり、Mtはアルカリ金属原子であり、例えばリチウムである)
下記式(7)で表されるハロゲン化シリル化合物と
Figure JPOXMLDOC01-appb-C000029
(R、Q、b及びBは上記の通りであり、Xはハロゲン原子であり、例えば、塩素原子、フッ素原子、又は臭素原子であり、好ましくは塩素原子である)
を反応させて
上記式(I)で表されるシリコーン化合物を得る工程を含む。
The present invention further provides a method for producing a silicone compound represented by the above formula (I).
The production method (production method A) of the present invention comprises a compound represented by the following formula (8):
Figure JPOXMLDOC01-appb-C000028
(R 1 , Q 1 , m and A are as described above, and Mt is an alkali metal atom, for example, lithium)
A halogenated silyl compound represented by the following formula (7):
Figure JPOXMLDOC01-appb-C000029
(R 1 , Q 2 , b and B are as described above, and X 1 is a halogen atom, for example, a chlorine atom, a fluorine atom or a bromine atom, preferably a chlorine atom)
And a step of obtaining a silicone compound represented by the above formula (I).
 上記反応は従来公知の方法に従い行うことができる。上記式(7)で表されるハロゲン化シリル化合物の添加量は、上記式(8)で表される化合物1モルに対し0.8~2.0モルとなる量比が好ましく、より好ましくは0.9~1.5モルとなる量比が好ましく、さらに好ましくは1.0~1.2モルとなる量比が好ましい。 The above reaction can be performed according to a conventionally known method. The addition amount of the halogenated silyl compound represented by the above formula (7) is preferably an amount ratio of 0.8 to 2.0 mol, more preferably, 1 mol of the compound represented by the above formula (8). An amount ratio of 0.9 to 1.5 mol is preferable, and an amount ratio of 1.0 to 1.2 mol is more preferable.
更に本発明の製造方法Aは、下記式(iii)で表される環状シロキサン
Figure JPOXMLDOC01-appb-C000030
(yは3~10の整数であり、R及びQは上記の通りであり、Aは有機金属化合物と非反応性である官能基または原子である。)
又は、
下記式(iv)で表されるジシロキサンと
Figure JPOXMLDOC01-appb-C000031
(R及びQは上記の通りであり、Aは有機金属化合物と非反応性である官能基または原子である。)
有機金属化合物とを反応させて下記式(v)
Figure JPOXMLDOC01-appb-C000032
(R、Q、及びMtは上記の通りであり、Aは有機金属化合物と非反応性である官能基または原子である。)
で表される金属シリケート化合物を得て、次いで、上記式(v)で表される金属シリケート化合物とヘキサメチルシクロトリシロキサン等の環状シロキサンとを反応させて
下記式(8’)
Figure JPOXMLDOC01-appb-C000033
(R、Q、m、及びMtは上記の通りであり、Aは有機金属化合物と非反応性である官能基または原子である)
で表されるシロキサンを得る工程を含む。
なお、上記工程において、上記式(v)で表される金属シリケート化合物と反応させる環状シロキサンは、例えばヘキサメチルシクロトリシロキサン等のアルキルシクロポリシロキサンであり、上記式(iii)で表される環状シロキサンとは異なる化合物である。
Furthermore, the production method A of the present invention is a cyclic siloxane represented by the following formula (iii)
Figure JPOXMLDOC01-appb-C000030
(Y is an integer of 3 to 10, R 1 and Q 1 are as described above, and A 1 is a functional group or atom that is non-reactive with the organometallic compound.)
Or
Disiloxane represented by the following formula (iv):
Figure JPOXMLDOC01-appb-C000031
(R 1 and Q 1 are as described above, and A 1 is a functional group or atom that is non-reactive with the organometallic compound.)
Reaction with an organometallic compound results in the following formula (v)
Figure JPOXMLDOC01-appb-C000032
(R 1 , Q 1 , and Mt are as described above, and A 1 is a functional group or atom that is non-reactive with the organometallic compound.)
Next, the metal silicate compound represented by the above formula (v) is reacted with a cyclic siloxane such as hexamethylcyclotrisiloxane to obtain the following formula (8 ′).
Figure JPOXMLDOC01-appb-C000033
(R 1 , Q 1 , m, and Mt are as described above, and A 1 is a functional group or atom that is non-reactive with the organometallic compound)
The process of obtaining the siloxane represented by these is included.
In the above step, the cyclic siloxane to be reacted with the metal silicate compound represented by the above formula (v) is, for example, an alkylcyclopolysiloxane such as hexamethylcyclotrisiloxane, and the cyclic siloxane represented by the above formula (iii). It is a compound different from siloxane.
 該工程では、上記式(iii)又は上記式(iv)で示される化合物と有機金属化合物とを反応させる。そのため式(iii)及び(iv)においてAは有機金属化合物と非反応性である官能基である。このときAは、有機金属化合物との反応時に不活性(有機金属化合物と非反応性)であればよい。従って、不活性にさせるために反応性を有する官能基が従来公知の保護基で保護されたものでもよい。例えば、ヒドロキシル基やアミノ基の保護基としては、シリル基やベンジル基が挙げられる。これら保護基は有機金属化合物との反応後に従来公知の方法で除去されてもよい。例えば、シリル基は、水あるいはアルコール存在下で除去することができる。該反応は酸や塩基存在下で加速され得る。 In this step, the compound represented by the above formula (iii) or the above formula (iv) is reacted with an organometallic compound. Therefore, in formulas (iii) and (iv), A is a functional group that is non-reactive with the organometallic compound. At this time, A may be inactive (non-reactive with the organometallic compound) during the reaction with the organometallic compound. Accordingly, a functional group having reactivity for inactivation may be protected with a conventionally known protecting group. For example, examples of the protecting group for hydroxyl group and amino group include silyl group and benzyl group. These protecting groups may be removed by a conventionally known method after the reaction with the organometallic compound. For example, the silyl group can be removed in the presence of water or alcohol. The reaction can be accelerated in the presence of acid or base.
 上記式(iii)又は(iv)で表される化合物は、従来公知の方法に従い製造することができる。例えば、2,4,6,8-テトラメチルシクロテトラシロキサンあるいは1,3-テトラメチルジシロキサンと不飽和結合を有する有機化合物とをヒドロシリル化反応させることで得ることができる。該反応は、従来公知の触媒下で行われてもよく、例えば、貴金属触媒、特には塩化白金酸から誘導される白金触媒が好適であり、更にはカルステッド触媒が好適である。反応は従来公知の方法に従い行えばよい。 The compound represented by the above formula (iii) or (iv) can be produced according to a conventionally known method. For example, it can be obtained by a hydrosilylation reaction between 2,4,6,8-tetramethylcyclotetrasiloxane or 1,3-tetramethyldisiloxane and an organic compound having an unsaturated bond. The reaction may be carried out under a conventionally known catalyst. For example, a noble metal catalyst, particularly a platinum catalyst derived from chloroplatinic acid is preferred, and a karsted catalyst is more preferred. The reaction may be performed according to a conventionally known method.
 有機金属化合物は重合開始剤であり、環状シロキサンの開環重合に通常使用されるものであればよい。例えば、アルカリ金属原子を有する有機化合物であり、特には有機リチウム化合物である。有機リチウム化合物は、炭素-リチウム結合を有する化合物である。これらは従来公知の化合物であればよい。有機リチウム化合物としては、メチルリチウム、エチルリチウム、ブチルリチウム、フェニルリチウム、ベンジルリチウム等が例示される。特には、ヘキサンやシクロヘキサン等の炭化水素系化合物に希釈された有機リチウム化合物が好ましく、取扱い性や入手の容易さからn-ブチルリチウムのヘキサン溶液がより好ましい。また、有機金属化合物として有機マグネシウム化合物を使用することもできる。有機マグネシウム化合物とは、炭素-マグネシウム結合およびマグネシウム-ハロゲン結合を有する化合物である。 The organometallic compound is a polymerization initiator and may be any one that is usually used for ring-opening polymerization of cyclic siloxane. For example, an organic compound having an alkali metal atom, particularly an organic lithium compound. The organolithium compound is a compound having a carbon-lithium bond. These may be any conventionally known compounds. Examples of the organic lithium compound include methyl lithium, ethyl lithium, butyl lithium, phenyl lithium, benzyl lithium and the like. In particular, an organolithium compound diluted in a hydrocarbon-based compound such as hexane or cyclohexane is preferable, and a hexane solution of n-butyllithium is more preferable in view of handleability and availability. An organomagnesium compound can also be used as the organometallic compound. The organomagnesium compound is a compound having a carbon-magnesium bond and a magnesium-halogen bond.
 有機金属化合物の量は、上記式(iii)又は上記式(iv)で示されるシロキサン1モルに対して、1モルとなる量比であればよい。有機金属化合物の量が上記より多いと、有機金属化合物の副反応が起こるため好ましくない。また、上記下限値より少ないと、上記式(iii)又は上記式(iv)で示されるシロキサンが残存してしまう恐れがあるため好ましくない。 The amount of the organometallic compound may be an amount ratio of 1 mol with respect to 1 mol of the siloxane represented by the above formula (iii) or the above formula (iv). When the amount of the organometallic compound is larger than the above, a side reaction of the organometallic compound occurs, which is not preferable. Moreover, when less than the said lower limit, since there exists a possibility that the siloxane shown by the said Formula (iii) or the said Formula (iv) may remain | survive, it is not preferable.
 上記反応は、従来公知の方法に従い行うことができる。例えば、上記式(iii)又は(iv)で表される化合物に、1モル当量以下の有機金属化合物を添加して反応させ、続けてヘキサメチルシクロトリシロキサンを加えて反応させる。例えば、2,4,6,8-テトラメチル-2,4,6,8-テトラ(N、N-ジメチルアミノプロピル)シクロテトラシロキサンとBuLiを反応させるとBuMe(CNMe)SiOLiが生じる。これを開始剤としてヘキサメチルシクロトリシロキサンを開環し反応させて、上記式(8’)で示される化合物を得る。さらにハロゲン化シリル化合物を添加し、反応させて、上記式(I)で示されるシリコーン化合物を得る。有機金属化合物、ヘキサメチルシクロトリシロキサン、ハロゲン化シリル化合物の添加は、典型的には、約0℃から約40℃の温度で行われる。反応温度は特に限定されるものではないが、使用する溶媒の沸点を超えない程度の温度が好ましい。ヘキサメチルシクロトリシロキサンの反応の終点は、滴下終了後、加温下で熟成した後、原料ヘキサメチルシクロトリシロキサンの有無を、例えばGC測定においてピークが消失したことで確認する。反応終点をGC測定により確認することにより、ヘキサメチルシクロトリシロキサンが生成物中に残存しないためより高純度のシリコーン化合物を得ることができる。 The above reaction can be carried out according to a conventionally known method. For example, the compound represented by the above formula (iii) or (iv) is reacted by adding an organometallic compound of 1 molar equivalent or less, and subsequently hexamethylcyclotrisiloxane is added and reacted. For example, when 2,4,6,8-tetramethyl-2,4,6,8-tetra (N, N-dimethylaminopropyl) cyclotetrasiloxane is reacted with BuLi, BuMe (C 3 H 6 NMe 2 ) SiOLi Occurs. Using this as an initiator, hexamethylcyclotrisiloxane is ring-opened and reacted to obtain a compound represented by the above formula (8 ′). Further, a halogenated silyl compound is added and reacted to obtain a silicone compound represented by the above formula (I). The addition of the organometallic compound, hexamethylcyclotrisiloxane, and halogenated silyl compound is typically performed at a temperature of about 0 ° C to about 40 ° C. Although reaction temperature is not specifically limited, The temperature of the grade which does not exceed the boiling point of the solvent to be used is preferable. The end point of the reaction of hexamethylcyclotrisiloxane is confirmed by the disappearance of the peak in the GC measurement, for example, after the completion of the dropping and after aging under heating, the presence or absence of the raw material hexamethylcyclotrisiloxane. By confirming the reaction end point by GC measurement, since the hexamethylcyclotrisiloxane does not remain in the product, a higher purity silicone compound can be obtained.
 上記反応はいずれも溶剤下で行って良い。溶剤は特に制限されるものでないが、例えば、ヘキサン、ヘプタンなどの炭化水素系溶剤、トルエンなどの芳香族系溶剤、テトラヒドロフランなどのエーテル系溶剤、メチルエチルケトン、N,N-ジメチルホルムアミドなどのケトン系溶剤、酢酸エチルなどのエステル系溶剤、等が好適に使用できる。 Any of the above reactions may be performed in a solvent. The solvent is not particularly limited. For example, hydrocarbon solvents such as hexane and heptane, aromatic solvents such as toluene, ether solvents such as tetrahydrofuran, ketone solvents such as methyl ethyl ketone and N, N-dimethylformamide. An ester solvent such as ethyl acetate can be preferably used.
 反応終了後は、従来公知の方法に従い精製すればよい。例えば、有機層を水で洗浄した後、溶媒を除去することにより生成物を単離することができる。また減圧蒸留や活性炭処理などを使用してもよい。 After completion of the reaction, it may be purified according to a conventionally known method. For example, the product can be isolated by washing the organic layer with water and then removing the solvent. Further, vacuum distillation or activated carbon treatment may be used.
以下、本発明の製造方法Aについてさらに詳細に説明する。
A-I)本発明の製造方法Aの一つの態様は、
下記式(8’)で表されるシロキサンと
Figure JPOXMLDOC01-appb-C000034
(R、Q、m、及びMtは上記の通りであり、Aは有機金属化合物と非反応性である官能基である)
下記式(7)で表されるハロゲン化シリル化合物と
Figure JPOXMLDOC01-appb-C000035
(R、Q、は上記の通りであり、Cはハロゲン原子であり、Bは、水素原子、ラジカル重合性を有する官能基、有機金属化合物と反応性を有する官能基又は原子、又は、Aとは異なる、有機金属化合物と非反応性の官能基であり、bは0又は1であり、Bが水素原子の場合、bは0である)
を反応させて、下記式(Ia)で表されるシリコーン化合物を得る工程を含む製造方法である。
Figure JPOXMLDOC01-appb-C000036
(R、A、Q、Q、B、b及びmは上記の通りである)
下記式(8’)で表されるシロキサンとハロゲン化シリル化合物との反応の条件等は上記した通りである。該工程により、片末端に有機金属化合物と非反応性である官能基を有し、他の官能基を他方の末端に有するシリコーン化合物が得られる。
Hereinafter, the production method A of the present invention will be described in more detail.
AI) One embodiment of the production method A of the present invention is:
A siloxane represented by the following formula (8 ′):
Figure JPOXMLDOC01-appb-C000034
(R 1 , Q 1 , m, and Mt are as described above, and A 1 is a functional group that is non-reactive with the organometallic compound)
A halogenated silyl compound represented by the following formula (7):
Figure JPOXMLDOC01-appb-C000035
(R 1 and Q 2 are as described above, C is a halogen atom, B is a hydrogen atom, a functional group having radical polymerizability, a functional group or atom having reactivity with an organometallic compound, or A functional group that is different from A 1 and is non-reactive with an organometallic compound, b is 0 or 1, and b is 0 when B is a hydrogen atom)
Is a production method including a step of obtaining a silicone compound represented by the following formula (Ia).
Figure JPOXMLDOC01-appb-C000036
(R, A 1 , Q 1 , Q 2 , B, b and m are as described above)
The conditions for the reaction between the siloxane represented by the following formula (8 ′) and the silyl halide compound are as described above. By this step, a silicone compound having a functional group that is non-reactive with the organometallic compound at one end and another functional group at the other end is obtained.
A-II)本発明の製造方法Aの二つ目の態様は、
上記A-I)に記載の工程により下記式(Ia-1)で表される、片末端に有機金属化合物と非反応性である官能基を有し、他方の末端にSiH基を有するシリコーン化合物を製造し、
Figure JPOXMLDOC01-appb-C000037
ついで、該式(Ia-1)で表される化合物と、下記式(vi)で表される末端ビニル基を有する化合物とを付加反応させて
  CH=CH-Q-B    (vi)
(式中、Qは、単結合、又は、アミド結合、エーテル結合、エステル結合、ウレタン結合、又は不飽和結合から成る群より選ばれる1以上の結合を含んでよい、置換又は非置換の、炭素数1~18の二価炭化水素基であり、Bはラジカル重合性を有する官能基、有機金属化合物と反応性を有する官能基又は原子、又は、式(Ia-1)のAとは異なる、有機金属化合物と非反応性の官能基である)
下記式(Ib)で表されるシリコーン化合物を得る工程を含む製造方法である。
Figure JPOXMLDOC01-appb-C000038
(R、A、Q、Q、B及びmは上記の通りである)
当該製造方法により、片末端(A)に有機金属化合物と非反応性である官能基を有し、他方の末端(B)にラジカル重合性を有する官能基、有機金属化合物と反応性を有する官能基又は原子、又はAとは異なる、有機金属化合物と非反応性の官能基を有するシリコーン化合物が得られる。
A-II) The second embodiment of the production method A of the present invention is:
A silicone compound having a functional group that is non-reactive with an organometallic compound at one end and a SiH group at the other end, represented by the following formula (Ia-1) by the process described in AI) above: Manufacture and
Figure JPOXMLDOC01-appb-C000037
Subsequently, the compound represented by the formula (Ia-1) and a compound having a terminal vinyl group represented by the following formula (vi) are subjected to an addition reaction, and CH 2 ═CH—Q 3 —B 2     (Vi)
(Wherein Q 3 is a single bond or a substituted or unsubstituted bond that may include one or more bonds selected from the group consisting of an amide bond, an ether bond, an ester bond, a urethane bond, or an unsaturated bond, A divalent hydrocarbon group having 1 to 18 carbon atoms, and B 2 is a functional group having radical polymerizability, a functional group or atom having reactivity with an organometallic compound, or A 1 of the formula (Ia-1) Are different functional groups that are non-reactive with organometallic compounds)
It is a manufacturing method including the process of obtaining the silicone compound represented by following formula (Ib).
Figure JPOXMLDOC01-appb-C000038
(R 1 , A 1 , Q 1 , Q 2 , B 2 and m are as described above)
According to the production method, one end (A 1 ) has a functional group that is non-reactive with the organometallic compound, and the other end (B 2 ) has a radically polymerizable functional group, the organometallic compound and the reactivity. functional groups or atoms having, or a 1 is different from the silicone compound having an organic metal compound and a non-reactive functional groups are obtained.
上記式(vi)で表される化合物としては、例えば、2-アリルオキシエタノール(アリルグリコール)、アリルアミン、アリルオキシエチルメタクリレート、ジエチレングリコールアリルメチルエーテル、ジメチルアリルアミン、アリルグリシジルエーテル、3-ブテン酸、及びアリルイソシアネート等が挙げられる。また、上記以外の酸性官能基や塩基性官能基などを含んでいてもよい。 Examples of the compound represented by the formula (vi) include 2-allyloxyethanol (allyl glycol), allylamine, allyloxyethyl methacrylate, diethylene glycol allyl methyl ether, dimethylallylamine, allyl glycidyl ether, 3-butenoic acid, and Examples include allyl isocyanate. Moreover, acidic functional groups other than the above, basic functional groups, and the like may be included.
上記式(vi)で表される化合物との付加反応は反応溶剤を使用せずに行うことが可能であるが、好ましくは反応溶剤を使用する。溶剤としては、たとえば、ヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂肪族炭化水素溶剤、トルエン、キシレン等の芳香族炭化水素溶剤、エタノール、イソプロピルアルコール等のアルコール溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、ジオキサン、ジブチルエーテル、ジメトキシエタン等のエーテル系溶剤、メチルイソブチルケトン等のケトン系溶剤、クロロホルム等の塩素系溶剤などが挙げられる。特には、トルエンのような芳香族炭化水素が最も好適である。溶剤の量は特に制限されず適宜調整すればよい。 The addition reaction with the compound represented by the above formula (vi) can be carried out without using a reaction solvent, but a reaction solvent is preferably used. Examples of the solvent include aliphatic hydrocarbon solvents such as hexane, methylcyclohexane, and ethylcyclohexane, aromatic hydrocarbon solvents such as toluene and xylene, alcohol solvents such as ethanol and isopropyl alcohol, and ester solvents such as ethyl acetate and butyl acetate. Examples thereof include solvents, ether solvents such as dioxane, dibutyl ether and dimethoxyethane, ketone solvents such as methyl isobutyl ketone, and chlorine solvents such as chloroform. In particular, aromatic hydrocarbons such as toluene are most suitable. The amount of the solvent is not particularly limited and may be adjusted as appropriate.
 付加反応はヒドロシリル化触媒の存在下で行われるのがよい。ヒドロシリル化触媒は従来公知の触媒であればよい。例えば貴金属触媒、特には塩化白金酸から誘導される白金触媒が好適である。特には、塩化白金酸の塩素イオンを重曹で完全中和して白金触媒の安定性を向上させることがよい。触媒の添加量は上記付加反応を進行させるための触媒量であればよい。付加反応の温度も特に制限されるものでなく適宜調整すればよい。特には20℃~150℃、より好ましくは50℃~120℃がよい。反応時間は例えば1~12時間、好ましくは3~8時間がよい。 The addition reaction is preferably performed in the presence of a hydrosilylation catalyst. The hydrosilylation catalyst may be a conventionally known catalyst. For example, noble metal catalysts, in particular platinum catalysts derived from chloroplatinic acid, are suitable. In particular, it is preferable to improve the stability of the platinum catalyst by completely neutralizing the chlorine ion of chloroplatinic acid with sodium bicarbonate. The addition amount of the catalyst may be a catalyst amount for causing the addition reaction to proceed. The temperature of the addition reaction is not particularly limited and may be adjusted as appropriate. In particular, the temperature is 20 ° C to 150 ° C, more preferably 50 ° C to 120 ° C. The reaction time is, for example, 1 to 12 hours, preferably 3 to 8 hours.
式(vi)で表される化合物の量は、一般式(Ia-1)で表わされる化合物に対し過剰モルとなる量が好ましい。例えば一般式(Ia-1)で表わされる化合物1モルに対し1.01~3モル、好ましくは1.05~2モル、さらに好ましくは1.1~1.5モルとなる量比が好ましい。 The amount of the compound represented by the formula (vi) is preferably an amount that provides an excess mole relative to the compound represented by the general formula (Ia-1). For example, an amount ratio of 1.01 to 3 mol, preferably 1.05 to 2 mol, and more preferably 1.1 to 1.5 mol is preferable with respect to 1 mol of the compound represented by the general formula (Ia-1).
A-III)本発明の製造方法Aの三つ目の態様は、
上記A-I)に記載の工程により下記式(Ia-2)で表される、末端にOP基を有するシリコーン化合物を製造し(Pは水酸基の保護基である)、
Figure JPOXMLDOC01-appb-C000039
(上記式(Ia-2)において、R、Q、Q、b及びmは上記(1-1b)の通りであり、Bは、水素原子、有機金属化合物と反応性を有する官能基、又は、有機金属化合物と非反応性の官能基であり、bは0又は1であり、Bが水素原子の場合、bは0であり、Pは水酸基の保護基であり、例えば、トリメチルシリル基、ベンジル基等が挙げられる)
上記式(Ia-2)の化合物から保護基Pを除くことにより下記式(Ia-3)の化合物を得る工程を含む製造方法である。保護基を除く方法は従来公知の方法に従えばよい。
Figure JPOXMLDOC01-appb-C000040
(R、Q、Q、m、B、及びbは上記の通りである)
また、さらに、上記式(Ia-3)で表される化合物と、末端にラジカル重合性官能基を有するハロゲン化合物、例えば(メタ)アクリル酸クロリド等を反応させて、下記式(Ic)で表される化合物を得ることができる。該反応は従来公知の方法に従い行えばよい。
Figure JPOXMLDOC01-appb-C000041
(上記式(Ic)において、R、Q、Q、m、Bは上記の通りであり、Aはラジカル重合性を有する官能基である)
該製造方法により、片末端にラジカル重合性官能基を有し、他方の末端に他の官能基を有するシリコーン化合物を得ることができる。
A-III) The third embodiment of the production method A of the present invention is:
A silicone compound having an OP group at the terminal represented by the following formula (Ia-2) is produced by the process described in AI) above (P is a hydroxyl-protecting group),
Figure JPOXMLDOC01-appb-C000039
(In the above formula (Ia-2), R 1 , Q 1 , Q 2 , b and m are as described in (1-1b) above, and B 3 is a functional group having reactivity with a hydrogen atom or an organometallic compound. Or a functional group that is non-reactive with the organometallic compound, b is 0 or 1, b 3 is a hydrogen atom, b is 0, P is a hydroxyl protecting group, (A trimethylsilyl group, a benzyl group, etc. are mentioned)
A production method comprising a step of obtaining a compound of the following formula (Ia-3) by removing the protecting group P from the compound of the above formula (Ia-2). The method for removing the protecting group may be a conventionally known method.
Figure JPOXMLDOC01-appb-C000040
(R 1 , Q 1 , Q 2 , m, B 3 , and b are as described above)
Furthermore, the compound represented by the above formula (Ia-3) is reacted with a halogen compound having a radical polymerizable functional group at the terminal, for example, (meth) acrylic acid chloride, and the like, and represented by the following formula (Ic). Can be obtained. The reaction may be performed according to a conventionally known method.
Figure JPOXMLDOC01-appb-C000041
(In the above formula (Ic), R 1 , Q 1 , Q 2 , m and B 3 are as described above, and A 3 is a functional group having radical polymerizability)
By this production method, a silicone compound having a radical polymerizable functional group at one end and having another functional group at the other end can be obtained.
 A-IV)本発明の製造方法Aの四つ目の態様は、上記A-I)又はA-II)に記載の工程により、片末端にシリル化ヒドロキシル基、ベンジル化ヒドロキシル基、シリル化1,2-エタンジオール基、ベンジル化1,2-エタンジオール基、又はベンジル化3級アミノ基等の保護された官能基を有するシリコーン化合物を製造し、該官能基から保護基を除く工程を含む製造方法である。該製造方法により、片末端(A)に有機金属化合物と反応性を有する官能基を有し、他方の末端(B)に、水素原子、ラジカル重合性を有する官能基、有機金属化合物と非反応性を有する官能基、又は、Aとは異なる有機金属化合物と反応性を有する官能基又は原子を有するシリコーン化合物を与えることができる。 A-IV) The fourth embodiment of the production method A of the present invention is a silylated hydroxyl group, benzylated hydroxyl group, silylated 1 at one end by the process described in the above AI) or A-II). A step of producing a silicone compound having a protected functional group such as 1,2-ethanediol group, benzylated 1,2-ethanediol group, or benzylated tertiary amino group, and removing the protective group from the functional group It is a manufacturing method. By this production method, one end (A) has a functional group reactive with an organometallic compound, and the other end (B) does not react with a hydrogen atom, a radical polymerizable functional group, or an organometallic compound. Or a silicone compound having a functional group or an atom reactive with an organometallic compound different from A.
 保護基の除去は従来公知の方法に従えばよい。例えば、シリル基は、水あるいはアルコール存在下で除去することができる。好ましくはアルコール中であり、例えば、メタノール、エタノール、イソプロピルアルコール、1-プロパノール、イソブタノール、及び1-ブタノール等が好適に使用される。特にはイソプロピルアルコールが好ましい。該反応は酸や塩基存在下で行っても良い。酸触媒は特に制限されるものでなく、脱シリル化のために従来使用される触媒であればよい。例えば、酢酸、アクリル酸、パラニトロ安息香酸、フマル酸、及びカルボン酸型等の固体酸触媒等が挙げられる。特に、酢酸が最も好適である。酸触媒の量、反応温度等は特に制限されるものでなく、従来公知の方法に従えばよい。 The removal of the protecting group may be performed according to a conventionally known method. For example, the silyl group can be removed in the presence of water or alcohol. Preferably in alcohol, for example, methanol, ethanol, isopropyl alcohol, 1-propanol, isobutanol, 1-butanol and the like are preferably used. In particular, isopropyl alcohol is preferred. The reaction may be performed in the presence of an acid or a base. The acid catalyst is not particularly limited as long as it is a catalyst conventionally used for desilylation. Examples thereof include solid acid catalysts such as acetic acid, acrylic acid, paranitrobenzoic acid, fumaric acid, and carboxylic acid type. In particular, acetic acid is most preferred. The amount of the acid catalyst, the reaction temperature, and the like are not particularly limited, and may be a conventionally known method.
 より詳細には、本発明の製造方法の一例としては、上記式(iii)又は上記式(iv)で示されるシロキサンを50質量%のトルエンで希釈し、1モル当量のn-ブチルリチウム(n-ヘキサン溶液)を添加する。続いて、200質量%のテトラヒドロフランで溶解したヘキサメチルシクロトリシロキサンを添加する。室温下で3時間程度反応させることにより反応は完結する。また、その際にヘキサメチルシクロトリシロキサンをGC測定等でモニタリングすることで反応の進行を確認できる。ヘキサメチルシクロトリシロキサンの反応後、1モル当量のハロゲン化シリル化合物を添加し、室温下で1時間程度反応させることにより反応は完結する。反応の完結後、有機層を水で洗浄し、洗浄液のpHが中性付近(pH=6~8)になったところで有機層を取り出す。有機層に存在する溶媒および未反応の原料を減圧留去することで、上記式(I)で示されるシリコーン化合物を得ることができる。 More specifically, as an example of the production method of the present invention, a siloxane represented by the above formula (iii) or the above formula (iv) is diluted with 50% by mass of toluene, and 1 molar equivalent of n-butyllithium (n -Hexane solution) is added. Subsequently, hexamethylcyclotrisiloxane dissolved in 200% by weight of tetrahydrofuran is added. The reaction is completed by reacting at room temperature for about 3 hours. At that time, the progress of the reaction can be confirmed by monitoring hexamethylcyclotrisiloxane by GC measurement or the like. After the reaction of hexamethylcyclotrisiloxane, 1 molar equivalent of a silyl halide compound is added, and the reaction is completed by reacting at room temperature for about 1 hour. After completion of the reaction, the organic layer is washed with water, and the organic layer is taken out when the pH of the washing solution becomes near neutral (pH = 6 to 8). The silicone compound represented by the above formula (I) can be obtained by distilling off the solvent and unreacted raw materials present in the organic layer under reduced pressure.
 さらに本発明は、下記一般式(1)で表される、片末端にアミノ基を有し他方の末端に他の官能基を有するシリコーン化合物及びその製造方法(製造方法B)を提供する。
Figure JPOXMLDOC01-appb-C000042
ここでmは1~300の整数であり、好ましくは2~200の整数であり、更に好ましくは3~100の整数であり、特にはmは1~6の整数である。Rは、互いに独立に、置換又は非置換の、不飽和結合を有してよい炭素数1~10の一価炭化水素基であり、特には、炭素数1~6の置換又は非置換の炭化水素基である。Xは-QB’で示される、炭素数0~48の有機官能基であり、Qは、単結合又は、アミド結合、エーテル結合、エステル結合、ウレタン結合、又は不飽和結合から成る群より選ばれる1以上の結合を含んでよい、置換又は非置換の、炭素数1~18の二価炭化水素基であり、B’は、有機金属化合物と非反応性である官能基、ラジカル重合性を有する官能基、又は有機金属化合物と反応性を有する官能基である。
Furthermore, the present invention provides a silicone compound represented by the following general formula (1) having an amino group at one end and another functional group at the other end, and a method for producing the same (Production Method B).
Figure JPOXMLDOC01-appb-C000042
Here, m is an integer of 1 to 300, preferably an integer of 2 to 200, more preferably an integer of 3 to 100, and particularly m is an integer of 1 to 6. R 1 is independently of each other a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms which may have an unsaturated bond, in particular, a substituted or unsubstituted group having 1 to 6 carbon atoms. It is a hydrocarbon group. X is an organic functional group having 0 to 48 carbon atoms, represented by —Q 4 B ′, and Q 4 is a group consisting of a single bond, an amide bond, an ether bond, an ester bond, a urethane bond, or an unsaturated bond. A substituted or unsubstituted divalent hydrocarbon group having 1 to 18 carbon atoms, which may contain one or more bonds selected from B, and B ′ is a functional group that is non-reactive with an organometallic compound, radical polymerization A functional group having reactivity, or a functional group having reactivity with an organometallic compound.
上記一般式(1)で表される末端アミノ基および他の末端官能基を有するシリコーン化合物は、下記式(4)で表される化合物
Figure JPOXMLDOC01-appb-C000043
(式中、m、X、およびRは上記の通りであり、RはC1~3アルキル基である)
を脱シリル化反応させることにより製造される。
The silicone compound having a terminal amino group represented by the general formula (1) and another terminal functional group is a compound represented by the following formula (4)
Figure JPOXMLDOC01-appb-C000043
Wherein m, X, and R 1 are as described above, and R 2 is a C 1-3 alkyl group.
Is produced by desilylation reaction.
上記一般式(4)で表わされる化合物は、下記一般式(3)で表されるハイドロジェンシリコーンと
Figure JPOXMLDOC01-appb-C000044
(式中、m、R及びRは前述の通りである)
下記式(5)で表される、有機官能基と二重結合を併せ持つ化合物とを付加反応させて得ることができる。
  CH=CH-X   (5)
(式中、Xは前述の通りである。)
上記式(3)で表わされる化合物は、下記一般式(2)で表わされる化合物
Figure JPOXMLDOC01-appb-C000045
(式中、m、及びRは前述の通りである)の一方の末端のSi-Hに、下記式(6)で表されるビス(トリC1~3アルキルシリル)アリルアミンを付加反応させることにより製造される。
CH=CHCHN(SiR 2   (6)
 (式中、Rは前述の通りである。)
以下、当該製造方法Bについてより詳細に説明する。
The compound represented by the general formula (4) is a hydrogen silicone represented by the following general formula (3):
Figure JPOXMLDOC01-appb-C000044
(Wherein m, R 1 and R 2 are as described above)
It can be obtained by addition reaction of an organic functional group represented by the following formula (5) and a compound having a double bond.
CH 2 = CH-X     (5)
(Wherein X is as described above.)
The compound represented by the above formula (3) is a compound represented by the following general formula (2)
Figure JPOXMLDOC01-appb-C000045
(Wherein, m and R 1 are as described above) One-terminal Si—H is subjected to an addition reaction with bis (tri-C 1-3 alkylsilyl) allylamine represented by the following formula (6). It is manufactured by.
CH 2 = CHCH 2 N (SiR 2 3 ) 2 (6)
(Wherein R 2 is as described above.)
Hereinafter, the production method B will be described in more detail.
B-i)末端アミノ基および他の末端官能基を有するシリコーンの製造
 本発明の一般式(1)において、特に好ましくは、mは1~6の整数であり、更に好ましくは2~5の整数である。mが上限より大きいと、蒸留により精製するのが困難になるおそれがある。Rは、互いに独立に、好ましくは炭素数1~6の置換又は非置換の炭化水素基であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基等のアルキル基、フェニル基等のアリール基、これらの基の水素原子の一部又は全部をフッ素で置換したもの、例えばトリフロロプロピル基等が挙げられる。Xは炭素数0~48の有機官能基であり、例えば、ヒドロキシル基、メトキシ基、エトキシ基等のアルコキシ基、ビニル基、アリル基等のアルケニル基、2級アミノ基、3級アミノ基、4級アンモニウム基、ハロゲン原子、ニトロ基、アジド基、エポキシ基、スチリル基等のアリールアルケニル基、フェノール基、チオール基、カルボキシル基、およびこれら基の一つで置換されたC~C48アルキル基から選ばれた有機官能基であり、アルキル基の炭素‐炭素結合がヘテロ原子、たとえば酸素原子、硫黄原子で中断されていてもよい。例えば、C~C48アルキル基の炭素‐炭素結合が1以上の酸素原子で中断されて、モノあるいはポリエーテルとなっていてもよい。C~C48アルキル基は好ましくは、C~C24アルキル基である。置換基としては、フッ素、臭素、塩素などのハロゲン原子、シアノ基などが挙げられる。
一般式(4)において、Rは互いに同一又は異種の、互に独立に、炭素数1~3のアルキル基であり、例えばメチル基、エチル基、プロピル基が挙げられる。
一般式(1)で表される末端アミノ基および他の末端官能基を有するシリコーンの製造方法は、一般式(4)で表される化合物を脱シリル化反応させる。
Bi) Production of silicone having terminal amino group and other terminal functional group In the general formula (1) of the present invention, m is particularly preferably an integer of 1 to 6, and more preferably an integer of 2 to 5. It is. If m is larger than the upper limit, it may be difficult to purify by distillation. R 1 is independently of each other preferably a substituted or unsubstituted hydrocarbon group having 1 to 6 carbon atoms, and examples thereof include alkyl groups such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and a hexyl group. Aryl groups such as phenyl groups, and those obtained by substituting some or all of the hydrogen atoms of these groups with fluorine, such as trifluoropropyl groups. X is an organic functional group having 0 to 48 carbon atoms, for example, an alkoxy group such as a hydroxyl group, a methoxy group or an ethoxy group, an alkenyl group such as a vinyl group or an allyl group, a secondary amino group, a tertiary amino group, 4 grade ammonium group, a halogen atom, a nitro group, an azido group, an epoxy group, an arylalkenyl group such as a styryl group, a phenol group, a thiol group, a carboxyl group, and C 1 ~ C 48 alkyl group substituted with one of these groups The carbon-carbon bond of the alkyl group may be interrupted by a hetero atom such as an oxygen atom or a sulfur atom. For example, the carbon-carbon bond of the C 1 -C 48 alkyl group may be interrupted with one or more oxygen atoms to form a mono or polyether. The C 1 -C 48 alkyl group is preferably a C 1 -C 24 alkyl group. Examples of the substituent include halogen atoms such as fluorine, bromine and chlorine, and a cyano group.
In the general formula (4), R 2 is the same or different from each other and independently of each other an alkyl group having 1 to 3 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group.
In the method for producing a silicone having a terminal amino group represented by the general formula (1) and another terminal functional group, the compound represented by the general formula (4) is desilylated.
 本発明の製造方法では、前述の一般式(4)で表わされる化合物に酸を作用させてもシロキサン鎖の切断が非常に少なく、シリル基が選択的に脱シリル化されるため、上記一般式(1)で表される目的化合物を高純度で製造することができる。 In the production method of the present invention, even when an acid is allowed to act on the compound represented by the general formula (4), the siloxane chain is hardly broken and the silyl group is selectively desilylated. The target compound represented by (1) can be produced with high purity.
この脱シリル化反応は、アルコール中または水中で行われ、アルコール中が好ましい。
アルコールの量は適宜調整されればよく、特に制限されるものでない。例えば末端アミノ基および他の末端官能基を有するシリコーン前駆体の質量に対し半量から倍量であればよく、さらには末端アミノ基および他の末端官能基を有するシリコーン前駆体とほぼ同量であるのが良い。アルコールとしては、メタノール、エタノール、イソプロピルアルコール、1-プロパノール、イソブタノール、及び1-ブタノール等が好適に使用される。特にはイソプロピルアルコールが好ましい。
This desilylation reaction is carried out in alcohol or water, preferably in alcohol.
The amount of alcohol may be appropriately adjusted and is not particularly limited. For example, it may be half to twice the mass of the silicone precursor having a terminal amino group and other terminal functional groups, and is approximately the same amount as the silicone precursor having a terminal amino group and other terminal functional groups. Is good. As the alcohol, methanol, ethanol, isopropyl alcohol, 1-propanol, isobutanol, 1-butanol and the like are preferably used. In particular, isopropyl alcohol is preferred.
またこの脱シリル化反応は酸触媒存在下で行われるのが好ましい。酸触媒は特に制限されるものでなく、脱シリル化のために従来使用される触媒であればよい。特に好ましくは、シロキサン鎖の切断を抑制するため、水中での酸解離定数(pKa)が2.0以上で表される弱酸が良い。具体的には、酢酸、アクリル酸、パラニトロ安息香酸、フマル酸、及びカルボン酸型等の固体酸触媒等が挙げられる。特に、酢酸が最も好適である。この酸触媒の量は特に制限されるものでない。例えば、酢酸などの弱酸を使用する場合は、末端アミノ基および他の末端官能基を有するシリコーン前駆体に対して0.1~5.0質量%、好ましくは0.5~2.0質量%であるのが好ましい。 The desilylation reaction is preferably carried out in the presence of an acid catalyst. The acid catalyst is not particularly limited as long as it is a catalyst conventionally used for desilylation. Particularly preferably, a weak acid having an acid dissociation constant (pKa) in water of 2.0 or more is preferable in order to suppress the cleavage of the siloxane chain. Specific examples include solid acid catalysts such as acetic acid, acrylic acid, paranitrobenzoic acid, fumaric acid, and carboxylic acid type. In particular, acetic acid is most preferred. The amount of the acid catalyst is not particularly limited. For example, when a weak acid such as acetic acid is used, it is 0.1 to 5.0% by weight, preferably 0.5 to 2.0% by weight, based on the silicone precursor having a terminal amino group and another terminal functional group. Is preferred.
この脱シリル化反応は室温で行うこともできるが、その場合、反応を完結するのに多量の酸を必要とする。それ故、比較的少量の酸を使用して加温下で脱シリル化した方が良い。脱シリル化の反応条件は特に制限されるものでなく従来公知の条件に従えばよい。反応温度は、例えば40~100℃の範囲にある温度、好ましくは50~80℃の温度である。これより温度が低い場合には、反応を完結するのに多量の酸を必要とし、反応効率の低下やシロキサン鎖の切断のおそれがあり、これより高い場合には、シロキサン鎖の切断やアルコールの蒸発により、生成物の純度及び収率が低下するおそれがある。反応時間は、例えば0.5~48時間であればよく、好ましくは1~6時間である。 This desilylation reaction can also be carried out at room temperature, but in that case, a large amount of acid is required to complete the reaction. Therefore, it is better to desilylate under heating using a relatively small amount of acid. The reaction conditions for desilylation are not particularly limited, and may be conventionally known conditions. The reaction temperature is, for example, a temperature in the range of 40 to 100 ° C., preferably 50 to 80 ° C. If the temperature is lower than this, a large amount of acid is required to complete the reaction, and there is a risk of reducing the reaction efficiency or siloxane chain scission. Evaporation can reduce product purity and yield. The reaction time may be, for example, 0.5 to 48 hours, preferably 1 to 6 hours.
本発明の製造方法の一例を挙げると、一般式(4)で表されるシリコーンを同質量のイソプロピルアルコールで希釈し、一般式(4)で表されるシリコーンに対して1.0質量%の酢酸を添加する。80℃にて3時間攪拌することにより脱シリル化が完結する。得られる末端アミノ基および他の末端官能基を有するシリコーンが低分子量である場合には、GC(ガスクロマトグラフィー)測定にて反応が完結したことを確認できる。また得られる末端アミノ基および他の末端官能基を有するシリコーンが高分子量である場合には、反応にて生成するシリル化イソプロピルアルコールの量をGC測定でチェックすることで反応が完結したことを確認できる。反応が完結した後も長時間加熱を行うと目的の末端アミノ基および他の末端官能基を有するシリコーンの純度が低下する恐れがあるので好ましくない。反応完結を確認した後、使用した酸の5倍質量のハイドロタルサイト(商品名:キョーワード(登録商標)500、協和化学工業株式会社製)を反応液に添加して、室温で1時間撹拌して酸を中和し、ろ紙濾過によりハイドロタルサイトを除去し、濾液から溶剤として働いたイソプロピルアルコールを減圧留去することで、上記一般式(1)で表される末端アミノ基および他の末端官能基を有するシリコーンが得られる。この方法は非常に簡便であり、また得られる末端アミノ基および他の末端官能基を有するシリコーンは高純度である。
なお、上記したように、本発明において高純度とは、特定の一の構造を有する(即ち、mが特定の一つの整数であり、X、R、RおよびRが夫々特定の1種類の基である)化合物が、GPCまたはGCクロマトグラムにおいて90%以上、好ましくは95%以上のピーク面積を有することである。
As an example of the production method of the present invention, the silicone represented by the general formula (4) is diluted with the same mass of isopropyl alcohol, and 1.0 mass% with respect to the silicone represented by the general formula (4). Add acetic acid. The desilylation is completed by stirring at 80 ° C. for 3 hours. When the obtained silicone having a terminal amino group and other terminal functional groups has a low molecular weight, it can be confirmed by GC (gas chromatography) measurement that the reaction has been completed. In addition, when the silicone having the terminal amino group and other terminal functional groups obtained has a high molecular weight, it is confirmed that the reaction is completed by checking the amount of silylated isopropyl alcohol produced by the reaction by GC measurement. it can. Heating for a long time after completion of the reaction is not preferable because the purity of the target terminal amino group and silicone having other terminal functional groups may be lowered. After confirming the completion of the reaction, hydrotalcite (trade name: KYOWARD (registered trademark) 500, manufactured by Kyowa Chemical Industry Co., Ltd.) 5 times the mass of the acid used was added to the reaction solution and stirred at room temperature for 1 hour. Then, neutralizing the acid, removing hydrotalcite by filtration with filter paper, and distilling off isopropyl alcohol that worked as a solvent from the filtrate under reduced pressure, the terminal amino group represented by the above general formula (1) and other Silicones having terminal functional groups are obtained. This method is very simple and the resulting silicone with terminal amino groups and other terminal functional groups is of high purity.
As described above, high purity in the present invention has a specific structure (that is, m is a specific integer, and X, R 1 , R 2, and R 3 are each a specific 1 The compound (which is a kind of group) has a peak area of 90% or more, preferably 95% or more in the GPC or GC chromatogram.
B-ii)末端アミノ基および他の末端官能基を有するシリコーンの前駆体の製造
 次に、上記式(1)で表される末端アミノ基および他の末端官能基を有するシリコーンの原料である上記式(4)で表される化合物を製造する方法を説明する。上記式(4)で表される化合物は、下記一般式(3)で表されるハイドロジェンシリコーンと
Figure JPOXMLDOC01-appb-C000046
(式中、m、R及びRは前述の通りである)
下記式(5)で表される、有機官能基と二重結合を併せ持つ化合物とを付加反応させて得ることができる。
  CH=CH-X   (5)
(式中、Xは前述の通りである。)
式(5)で表される、有機官能基と二重結合を併せ持つ化合物としては、例えば、2-アリルオキシエタノール(アリルグリコール)、ジエチレングリコールアリルメチルエーテル、ジメチルアリルアミン、アリルクロライド、アリルグリシジルエーテル、3-ブテン酸等が挙げられ、上記した以外の酸性官能基や塩基性官能基などを含んでいてもよい。この方法により一般式(4)で表される化合物を容易にかつ高純度で製造することが出来る。
B-ii) Production of silicone precursor having terminal amino group and other terminal functional group Next, the above-mentioned silicone raw material having terminal amino group and other terminal functional group represented by the above formula (1) A method for producing the compound represented by the formula (4) will be described. The compound represented by the above formula (4) is a hydrogen silicone represented by the following general formula (3):
Figure JPOXMLDOC01-appb-C000046
(Wherein m, R 1 and R 2 are as described above)
It can be obtained by addition reaction of an organic functional group represented by the following formula (5) and a compound having a double bond.
CH 2 = CH-X     (5)
(Wherein X is as described above.)
Examples of the compound having an organic functional group and a double bond represented by the formula (5) include 2-allyloxyethanol (allyl glycol), diethylene glycol allyl methyl ether, dimethylallylamine, allyl chloride, allyl glycidyl ether, 3 -Butenoic acid and the like, and may contain acidic functional groups or basic functional groups other than those described above. By this method, the compound represented by the general formula (4) can be easily produced with high purity.
この付加反応は反応溶剤を使用せずに行うことが可能であるが、好ましくは反応溶剤を使用する。この溶剤としては、たとえば、ヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂肪族炭化水素溶剤、トルエン、キシレン等の芳香族炭化水素溶剤、エタノール、イソプロピルアルコール等のアルコール溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、ジオキサン、ジブチルエーテル、ジメトキシエタン等のエーテル系溶剤、メチルイソブチルケトン等のケトン系溶剤、クロロホルム等の塩素系溶剤などが挙げられる。特には、トルエンのような芳香族炭化水素が最も好適である。溶剤の量は特に制限されず適宜調整すればよい。 This addition reaction can be carried out without using a reaction solvent, but a reaction solvent is preferably used. Examples of the solvent include aliphatic hydrocarbon solvents such as hexane, methylcyclohexane, and ethylcyclohexane, aromatic hydrocarbon solvents such as toluene and xylene, alcohol solvents such as ethanol and isopropyl alcohol, and esters such as ethyl acetate and butyl acetate. Examples thereof include ether solvents such as dioxane, dibutyl ether and dimethoxyethane, ketone solvents such as methyl isobutyl ketone, and chlorine solvents such as chloroform. In particular, aromatic hydrocarbons such as toluene are most suitable. The amount of the solvent is not particularly limited and may be adjusted as appropriate.
 この付加反応はヒドロシリル化触媒の存在下で行われるのがよい。ヒドロシリル化触媒は従来公知の触媒であればよい。例えば貴金属触媒、特には塩化白金酸から誘導される白金触媒が好適である。 This addition reaction is preferably carried out in the presence of a hydrosilylation catalyst. The hydrosilylation catalyst may be a conventionally known catalyst. For example, noble metal catalysts, in particular platinum catalysts derived from chloroplatinic acid, are suitable.
塩化白金酸の塩素イオンを重曹で完全中和して白金触媒の安定性を向上させることがよい。例えば1,1,3,3-テトラメチル-1,3-ジビニルジシロキサンと塩化白金酸の重曹中和物との錯体(カルステッド触媒)が、反応触媒として最も好適である。 It is preferable to improve the stability of the platinum catalyst by completely neutralizing the chlorine ion of chloroplatinic acid with sodium bicarbonate. For example, a complex (karsted catalyst) of 1,1,3,3-tetramethyl-1,3-divinyldisiloxane and a neutralized sodium bicarbonate of chloroplatinic acid is most suitable as a reaction catalyst.
ヒドロシリル化触媒の添加量は上記付加反応を進行させるための触媒量であればよい。例えば、1,1,3,3-テトラメチル-1,3-ジビニルジシロキサンと塩化白金酸の重層中和物との錯体を、一般式(3)で表わされる化合物の質量に対し、白金換算量で5ppm~80ppmとなる量である。触媒の量が少ないと反応速度が遅いため好ましくない。また、触媒の量が多すぎても反応速度性は格別に向上せず、不経済となるので好ましくない。 The addition amount of the hydrosilylation catalyst may be a catalyst amount for causing the addition reaction to proceed. For example, a complex of 1,1,3,3-tetramethyl-1,3-divinyldisiloxane and a neutralized multilayered product of chloroplatinic acid is converted into platinum with respect to the mass of the compound represented by the general formula (3). The amount is from 5 ppm to 80 ppm. A small amount of catalyst is not preferable because the reaction rate is slow. Also, if the amount of the catalyst is too large, the reaction rate is not particularly improved and it becomes uneconomical.
この付加反応の温度は特に制限されるものでなく適宜調整すればよい。特には20℃~150℃、より好ましくは50℃~120℃がよい。この反応の原料を全て仕込み一括にて反応させることができる。しかし、より好適には、式(5)で表される化合物、反応溶剤、及びヒドロシリル化触媒を反応器に仕込み、次いで一般式(3)で表わされる化合物を滴下して反応させるのが良い。滴下時の反応液の温度は80℃~90℃付近であるのが特に好ましい。反応時間は例えば1~12時間、好ましくは3~8時間がよい。 The temperature of this addition reaction is not particularly limited and may be adjusted as appropriate. In particular, the temperature is 20 ° C to 150 ° C, more preferably 50 ° C to 120 ° C. All the raw materials for this reaction can be charged and reacted together. However, more preferably, the compound represented by the formula (5), the reaction solvent, and the hydrosilylation catalyst are charged into the reactor, and then the compound represented by the general formula (3) is dropped and reacted. The temperature of the reaction solution at the time of dropping is particularly preferably around 80 ° C to 90 ° C. The reaction time is, for example, 1 to 12 hours, preferably 3 to 8 hours.
式(5)で表される有機官能基と二重結合を併せ持つ化合物の量は、一般式(3)で表わされる化合物に対し過剰モルとなる量が好ましい。例えば一般式(3)で表わされる化合物1モルに対し1.01~3モル、好ましくは1.05~2モル、さらに好ましくは1.1~1.5モルとなる量比が好ましい。 The amount of the compound having both the organic functional group represented by the formula (5) and the double bond is preferably an amount that is an excess mole relative to the compound represented by the general formula (3). For example, an amount ratio of 1.01 to 3 mol, preferably 1.05 to 2 mol, more preferably 1.1 to 1.5 mol is preferable with respect to 1 mol of the compound represented by the general formula (3).
一般式(3)で表わされる化合物の滴下終了後、例えば80~90℃で2時間熟成した後、未反応の一般式(3)で表わされる化合物の有無を、例えばガスクロマトグラフィー(GC)分析においてピークが消失したことで確認する。次に、反応溶剤たとえばトルエン、および過剰に仕込んだ未反応の式(5)の化合物を内温130℃でストリップすることで、前述した一般式(4)で表される化合物が高純度で得られる。 After completion of the dropwise addition of the compound represented by the general formula (3), for example, after aging at 80 to 90 ° C. for 2 hours, the presence or absence of the unreacted compound represented by the general formula (3) is analyzed by, for example, gas chromatography (GC) This is confirmed by the disappearance of the peak. Next, a reaction solvent such as toluene and an excessively charged unreacted compound of the formula (5) are stripped at an internal temperature of 130 ° C., whereby the compound represented by the general formula (4) is obtained with high purity. It is done.
B-iii)ハイドロジェンシリコーンの製造
次に、前述の式(3)で表される化合物ハイドロジェンシリコーンを製造する方法を説明する。上記式(3)で表される化合物は、下記一般式(2)で表されるジハイドロジェンポリシロキサンと
Figure JPOXMLDOC01-appb-C000047
(式中、m及びRは前述の通りである)
下記式(6)で表されるビス(トリC1~3アルキルシリル)アリルアミン
CH=CHCHN(SiR 2   (6)
 (式中、Rは前述の通りである)
とを付加反応させることにより製造される。この付加反応は上記「ii)末端アミノ基および他の末端官能基を有するシリコーンの前駆体の製造」の項で記載した反応条件に従って行うことが好ましい。
この付加物を蒸留にて精留することで前述の式(3)で表される化合物を得ることができる。この方法により前述一般式(3)で表される化合物を容易にかつ高純度で製造することが出来る。
B-iii) Production of hydrogen silicone Next, a method for producing the compound hydrogen silicone represented by the formula (3) will be described. The compound represented by the above formula (3) is a dihydrogen polysiloxane represented by the following general formula (2):
Figure JPOXMLDOC01-appb-C000047
(Wherein m and R 1 are as described above)
Bis (triC 1-3 alkylsilyl) allylamine CH 2 ═CHCH 2 N (SiR 2 3 ) 2 (6) represented by the following formula (6)
(Wherein R 2 is as described above)
And an addition reaction. This addition reaction is preferably carried out in accordance with the reaction conditions described in the section “ii) Production of silicone precursor having terminal amino group and other terminal functional group”.
The compound represented by the above formula (3) can be obtained by rectifying this adduct by distillation. By this method, the compound represented by the general formula (3) can be easily produced with high purity.
 本発明のシリコーン化合物は、両末端に異なる官能基を有し、且つ、十分なシロキサン含有率を有することができる。従って、本発明のシリコーン化合物は、樹脂改質用途、及び医療用デバイスの材料、特には眼科デバイスの材料として有用である。特に、上記式(I)において片末端(A及びBのいずれかの末端)にラジカル重合性官能基を有するシリコーン化合物は、ラジカル重合により導かれる繰り返し単位を有する重合体を与えることができる。該シリコーン化合物は、(メタ)アクリル基など、上記シリコーン化合物のラジカル重合性官能基と重合する基を有する他の化合物(以下、重合性モノマー、または親水性モノマーという)との相溶性が良好である。そのため、重合性モノマーと共重合することにより無色透明の共重合体を与えることができる。また、単独で重合することも可能である。ラジカル重合性官能基を有するシリコーン化合物は、眼科デバイス製造用モノマーとして特に好適である。 The silicone compound of the present invention has different functional groups at both ends and can have a sufficient siloxane content. Therefore, the silicone compound of the present invention is useful as a material for resin modification and as a material for medical devices, particularly as a material for ophthalmic devices. In particular, the silicone compound having a radical polymerizable functional group at one end (any one of A and B) in the above formula (I) can give a polymer having a repeating unit derived by radical polymerization. The silicone compound has good compatibility with other compounds having a group that polymerizes with the radical polymerizable functional group of the silicone compound, such as a (meth) acryl group (hereinafter referred to as a polymerizable monomer or a hydrophilic monomer). is there. Therefore, a colorless and transparent copolymer can be obtained by copolymerizing with a polymerizable monomer. It is also possible to polymerize alone. A silicone compound having a radical polymerizable functional group is particularly suitable as a monomer for producing an ophthalmic device.
 重合性モノマーとしては、例えば、(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、(ポリ)エチレングリコールジメタクリレート、ポリアルキレングリコールモノ(メタ)アクリレート、ポリアルキレングリコールモノアルキルエーテル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2,3―ジヒドロキシプロピル(メタ)アクリレート等のアクリル系モノマー;N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、N-アクリロイルモルホリン、N-メチル(メタ)アクリルアミド等のアクリル酸誘導体;その他の不飽和脂肪族もしくは芳香族化合物、例えばクロトン酸、桂皮酸、ビニル安息香酸;及び(メタ)アクリル基などの重合性基を有するシリコーンモノマーが挙げられる。これらは1種単独でも、2種以上を併用してもよい。 Examples of the polymerizable monomer include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, (poly) ethylene glycol dimethacrylate, polyalkylene glycol mono (meth) acrylate, polyalkylene glycol monoalkyl ether ( Acrylic monomers such as (meth) acrylate, trifluoroethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2,3-dihydroxypropyl (meth) acrylate; N, N-dimethylacrylamide, N, N-diethylacrylamide Acrylic acid derivatives such as N-acryloylmorpholine and N-methyl (meth) acrylamide; other unsaturated aliphatic or aromatic compounds such as crotonic acid, cinnamic acid, vinylbenzoic acid; and (meth) Silicone monomers having a polymerizable group such as acryl group. These may be used alone or in combination of two or more.
 本発明の化合物と上記他の重合性モノマーとの共重合は従来公知の方法により行えばよい。例えば、熱重合開始剤や光重合開始剤など既知の重合開始剤を使用して行うことができる。該重合開始剤としては、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル、ベンゾイルパーオキサイド、tert-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイドなどがあげられる。これら重合開始剤は単独でまたは2種以上を混合して用いることができる。重合開始剤の配合量は、重合成分の合計100質量部に対して0.001~2質量部、好ましくは0.01~1質量部であるのがよい。 The copolymerization of the compound of the present invention and the other polymerizable monomer may be performed by a conventionally known method. For example, it can be carried out using a known polymerization initiator such as a thermal polymerization initiator or a photopolymerization initiator. Examples of the polymerization initiator include 2-hydroxy-2-methyl-1-phenyl-propan-1-one, azobisisobutyronitrile, azobisdimethylvaleronitrile, benzoyl peroxide, tert-butyl hydroperoxide, cumene And hydroperoxide. These polymerization initiators can be used alone or in admixture of two or more. The blending amount of the polymerization initiator is 0.001 to 2 parts by mass, preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the total of the polymerization components.
 また、本発明のシリコーン化合物から導かれる繰返し単位を含む重合体は、十分なシロキサン含有率を有するため、酸素透過性に優れる。従って、眼科デバイス、例えば、コンタクトレンズ、眼内レンズ、人工角膜を製造するのに好適である。該重合体を用いた眼科デバイスの製造方法は特に制限されるものでなく、従来公知の眼科デバイスの製造方法に従えばよい。例えば、コンタクトレンズ、眼内レンズなどレンズの形状に成形する際には、切削加工法や鋳型(モールド)法などを使用できる。 Further, the polymer containing a repeating unit derived from the silicone compound of the present invention has a sufficient siloxane content, and therefore has excellent oxygen permeability. Therefore, it is suitable for manufacturing ophthalmic devices such as contact lenses, intraocular lenses, and artificial corneas. The manufacturing method of the ophthalmic device using the polymer is not particularly limited, and may be a conventional ophthalmic device manufacturing method. For example, when forming into a lens shape such as a contact lens or an intraocular lens, a cutting method or a mold method can be used.
 以下、実施例及び比較例を示し、本発明をより詳細に説明するが、本発明は下記の実施例に制限されるものではない。 Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated in detail, this invention is not restrict | limited to the following Example.
[実施例A1~22]
(製造方法A)
下記実施例A1~A22において、粘度はキャノンフェンスケ粘度計を用い、比重は浮秤計を用いて測定した。屈折率はデジタル屈折率計RX-5000(アタゴ社製)を用いて測定した。H-NMR分析は、JNM-ECP500(日本電子社製)を用い、測定溶媒として重クロロホルムを使用して実施した。
[Examples A1 to 22]
(Production method A)
In Examples A1 to A22 below, the viscosity was measured using a Cannon-Fenske viscometer and the specific gravity was measured using a buoyancy meter. The refractive index was measured using a digital refractometer RX-5000 (manufactured by Atago Co., Ltd.). 1 H-NMR analysis was performed using JNM-ECP500 (manufactured by JEOL Ltd.) and deuterated chloroform as a measurement solvent.
[実施例A1](製造方法A-I)
 ジムロート、温度計、滴下漏斗を付けた3Lの三口ナスフラスコに、2,4,6,8-テトラメチル-2,4,6,8-テトラ(N、N-ジメチルアミノプロピル)シクロテトラシロキサン92.4gを添加し、n-ブチルリチウムヘキサン溶液294.0gを滴下漏斗から滴下した。滴下終了後、反応液を室温で1時間撹拌し、ガスクロマトグラフィー(GC)で出発物質の消失を確認して反応終了とした。反応終了後にヘキサメチルシクロトリシロキサン776.0g、トルエン776.0g、DMF36.4gを添加し、40℃で4時間撹拌撹拌し、ガスクロマトグラフィー(GC)でヘキサメチルシクロトリシロキサンの消失を確認して反応終了とした。反応終了後にメタクリロイルオキシプロピルジメチルクロロシラン159.5g、トリエチルアミン3.50g、2,6-ジ-t-ブチル-4-メチルフェノール0.25gを添加し、室温で1時間撹拌した。反応終了後、有機層を分液漏斗に移して水道水で5回洗浄した。有機層を分離し、溶媒及び未反応の原料を内温90℃で減圧留去し、下記式(9)で表されるシリコーン化合物を得た。収量845.6g。以下にH-NMRデータを記載する。
0.0ppm(45H)、0.6ppm(6H)、0.9ppm(3H)、1.3ppm(4H)、1.5ppm(2H)、1.7ppm(2H)、2.0ppm(3H)、2.2ppm(8H)、4.1ppm(2H)、5.5ppm(1H)、6.1ppm(1H)。
Figure JPOXMLDOC01-appb-C000048
[Example A1] (Production method AI)
A 2,4,6,8-tetramethyl-2,4,6,8-tetra (N, N-dimethylaminopropyl) cyclotetrasiloxane 92 was added to a 3 L three-necked eggplant flask equipped with a Dimroth, thermometer, and dropping funnel. .4 g was added, and 294.0 g of n-butyllithium hexane solution was added dropwise from the dropping funnel. After completion of the dropwise addition, the reaction solution was stirred at room temperature for 1 hour, and disappearance of the starting material was confirmed by gas chromatography (GC) to complete the reaction. After completion of the reaction, 776.0 g of hexamethylcyclotrisiloxane, 776.0 g of toluene and 36.4 g of DMF were added, stirred and stirred at 40 ° C. for 4 hours, and disappearance of hexamethylcyclotrisiloxane was confirmed by gas chromatography (GC). The reaction was completed. After completion of the reaction, 159.5 g of methacryloyloxypropyldimethylchlorosilane, 3.50 g of triethylamine, and 0.25 g of 2,6-di-tert-butyl-4-methylphenol were added and stirred at room temperature for 1 hour. After completion of the reaction, the organic layer was transferred to a separatory funnel and washed 5 times with tap water. The organic layer was separated, and the solvent and unreacted raw material were distilled off under reduced pressure at an internal temperature of 90 ° C. to obtain a silicone compound represented by the following formula (9). Yield 845.6g. The 1 H-NMR data is described below.
0.0 ppm (45H), 0.6 ppm (6H), 0.9 ppm (3H), 1.3 ppm (4H), 1.5 ppm (2H), 1.7 ppm (2H), 2.0 ppm (3H), 2 2 ppm (8H), 4.1 ppm (2H), 5.5 ppm (1H), 6.1 ppm (1H).
Figure JPOXMLDOC01-appb-C000048
[実施例A2](製造方法A-I)
  2,4,6,8-テトラメチル-2,4,6,8-テトラ(N、N-ジメチルアミノプロピル)シクロテトラシロキサンの代わりに2,4,6,8-テトラメチル-2,4,6,8-テトラ(N、N-ビストリメチルシリルアミノプロピル)シクロテトラシロキサンを用いた以外は、実施例1を繰り返し、下記式(10)で表されるシリコーン化合物を得た。収量863.6g。以下にH-NMRデータを記載する。
0.0ppm(63H)、0.6ppm(6H)、0.9ppm(3H)、1.3ppm(4H)、1.5ppm(2H)、1.7ppm(2H)、2.0ppm(3H)、2.2ppm(2H)、4.1ppm(2H)、5.5ppm(1H)、6.1ppm(1H)。
Figure JPOXMLDOC01-appb-C000049
[Example A2] (Production method AI)
Instead of 2,4,6,8-tetramethyl-2,4,6,8-tetra (N, N-dimethylaminopropyl) cyclotetrasiloxane, 2,4,6,8-tetramethyl-2,4 Example 1 was repeated except that 6,8-tetra (N, N-bistrimethylsilylaminopropyl) cyclotetrasiloxane was used to obtain a silicone compound represented by the following formula (10). Yield 863.6g. The 1 H-NMR data is described below.
0.0 ppm (63H), 0.6 ppm (6H), 0.9 ppm (3H), 1.3 ppm (4H), 1.5 ppm (2H), 1.7 ppm (2H), 2.0 ppm (3H), 2 2 ppm (2H), 4.1 ppm (2H), 5.5 ppm (1H), 6.1 ppm (1H).
Figure JPOXMLDOC01-appb-C000049
[実施例A3](製造方法A-I)
  2,4,6,8-テトラメチル-2,4,6,8-テトラ(N、N-ジメチルアミノプロピル)シクロテトラシロキサンの代わりに2,4,6,8-テトラメチル-2,4,6,8-テトラ(ポリエチレンオキシドプロピル)シクロテトラシロキサンを用いた以外は、実施例1を繰り返し、下記式(11)で表されるシリコーン化合物を得た。収量894.1g。以下にH-NMRデータを記載する。
0.0ppm(45H)、0.6ppm(6H)、0.9ppm(3H)、1.3ppm(4H)、1.5ppm(2H)、1.7ppm(2H)、2.0ppm(3H)、3.3-3.7ppm(21H)、4.1ppm(2H)、5.5ppm(1H)、6.1ppm(1H)。
Figure JPOXMLDOC01-appb-C000050
[Example A3] (Production method AI)
Instead of 2,4,6,8-tetramethyl-2,4,6,8-tetra (N, N-dimethylaminopropyl) cyclotetrasiloxane, 2,4,6,8-tetramethyl-2,4 Example 1 was repeated except that 6,8-tetra (polyethylene oxidepropyl) cyclotetrasiloxane was used to obtain a silicone compound represented by the following formula (11). Yield 894.1 g. The 1 H-NMR data is described below.
0.0 ppm (45H), 0.6 ppm (6H), 0.9 ppm (3H), 1.3 ppm (4H), 1.5 ppm (2H), 1.7 ppm (2H), 2.0 ppm (3H), 3 3.3-3.7 ppm (21H), 4.1 ppm (2H), 5.5 ppm (1H), 6.1 ppm (1H).
Figure JPOXMLDOC01-appb-C000050
[実施例A4](製造方法A-I)
 2,4,6,8-テトラメチル-2,4,6,8-テトラ(N、N-ジメチルアミノプロピル)シクロテトラシロキサンの代わりに2,4,6,8-テトラメチル-2,4,6,8-テトラ(トリメチルシリルプロピレングリコール)シクロテトラシロキサンを用いた以外は、実施例1を繰り返し、下記式(12)で表されるシリコーン化合物を得た。収量840.0g。以下にH-NMRデータを記載する。
0.0ppm(54H)、0.6ppm(6H)、0.9ppm(3H)、1.3ppm(4H)、1.5ppm(2H)、1.7ppm(2H)、2.0ppm(3H)、2.2ppm(1H)、3.3-3.7ppm(6H)、4.1ppm(2H)、5.5ppm(1H)、6.1ppm(1H)。
Figure JPOXMLDOC01-appb-C000051
[Example A4] (Production method AI)
Instead of 2,4,6,8-tetramethyl-2,4,6,8-tetra (N, N-dimethylaminopropyl) cyclotetrasiloxane, 2,4,6,8-tetramethyl-2,4 Example 1 was repeated except that 6,8-tetra (trimethylsilylpropylene glycol) cyclotetrasiloxane was used to obtain a silicone compound represented by the following formula (12). Yield 840.0 g. The 1 H-NMR data is described below.
0.0ppm (54H), 0.6ppm (6H), 0.9ppm (3H), 1.3ppm (4H), 1.5ppm (2H), 1.7ppm (2H), 2.0ppm (3H), 2 2 ppm (1H), 3.3-3.7 ppm (6H), 4.1 ppm (2H), 5.5 ppm (1H), 6.1 ppm (1H).
Figure JPOXMLDOC01-appb-C000051
[実施例A5](製造方法A-I)
  2,4,6,8-テトラメチル-2,4,6,8-テトラ(N、N-ジメチルアミノプロピル)シクロテトラシロキサンの代わりに2,4,6,8-テトラメチル-2,4,6,8-テトラ(ベンジルプロピレングリコール)シクロテトラシロキサンを用いた以外は、実施例1を繰り返し、下記式(13)で表されるシリコーン化合物を得た。収量865.6g。以下にH-NMRデータを記載する。
0.0ppm(45H)、0.6ppm(6H)、0.9ppm(3H)、1.3ppm(4H)、1.5ppm(2H)、1.7ppm(2H)、2.0ppm(3H)、3.3-3.7ppm(6H)、4.1ppm(2H)、4.4ppm(2H)、5.5ppm(1H)、6.1ppm(1H)、7.2-7.3ppm(5H)。
Figure JPOXMLDOC01-appb-C000052
[Example A5] (Production method AI)
Instead of 2,4,6,8-tetramethyl-2,4,6,8-tetra (N, N-dimethylaminopropyl) cyclotetrasiloxane, 2,4,6,8-tetramethyl-2,4 Example 1 was repeated except that 6,8-tetra (benzylpropylene glycol) cyclotetrasiloxane was used to obtain a silicone compound represented by the following formula (13). Yield 865.6g. The 1 H-NMR data is described below.
0.0 ppm (45H), 0.6 ppm (6H), 0.9 ppm (3H), 1.3 ppm (4H), 1.5 ppm (2H), 1.7 ppm (2H), 2.0 ppm (3H), 3 3.3-3.7 ppm (6H), 4.1 ppm (2H), 4.4 ppm (2H), 5.5 ppm (1H), 6.1 ppm (1H), 7.2-7.3 ppm (5H).
Figure JPOXMLDOC01-appb-C000052
[実施例A6](製造方法A-I)
 2,4,6,8-テトラメチル-2,4,6,8-テトラ(N、N-ジメチルアミノプロピル)シクロテトラシロキサンの代わりに2,4,6,8-テトラメチル-2,4,6,8-テトラビニルシクロテトラシロキサンを用いた以外は、実施例1を繰り返し、下記式(14)で表されるシリコーン化合物を得た。収量813.1g。以下にH-NMRデータを記載する。
0.0ppm(45H)、0.6ppm(4H)、0.9ppm(3H)、1.3ppm(4H)、1.7ppm(2H)、2.0ppm(3H)、4.1ppm(2H)、5.5ppm(1H)、5.7ppm(1H)、5.9ppm(1H)、6.0ppm(1H)、6.1ppm(1H)。
Figure JPOXMLDOC01-appb-C000053
[Example A6] (Production method AI)
Instead of 2,4,6,8-tetramethyl-2,4,6,8-tetra (N, N-dimethylaminopropyl) cyclotetrasiloxane, 2,4,6,8-tetramethyl-2,4 Example 1 was repeated except that 6,8-tetravinylcyclotetrasiloxane was used to obtain a silicone compound represented by the following formula (14). Yield 813.1 g. The 1 H-NMR data is described below.
0.0 ppm (45H), 0.6 ppm (4H), 0.9 ppm (3H), 1.3 ppm (4H), 1.7 ppm (2H), 2.0 ppm (3H), 4.1 ppm (2H), 5 .5 ppm (1 H), 5.7 ppm (1 H), 5.9 ppm (1 H), 6.0 ppm (1 H), 6.1 ppm (1 H).
Figure JPOXMLDOC01-appb-C000053
[実施例A7](製造方法A-I)
 メタクリロイルオキシプロピルジメチルクロロシランの代わりにジメチルクロロシランを用いた以外は、実施例1を繰り返し、下記式(15)で表されるシリコーン化合物を得た。収量723.2g。以下にH-NMRデータを記載する。
0.0ppm(45H)、0.6ppm(4H)、0.9ppm(3H)、1.3ppm(4H)、1.5ppm(2H)、2.2ppm(8H)、4.7ppm(1H)。
Figure JPOXMLDOC01-appb-C000054
[Example A7] (Production method AI)
Example 1 was repeated except that dimethylchlorosilane was used instead of methacryloyloxypropyldimethylchlorosilane to obtain a silicone compound represented by the following formula (15). Yield 723.2g. The 1 H-NMR data is described below.
0.0 ppm (45H), 0.6 ppm (4H), 0.9 ppm (3H), 1.3 ppm (4H), 1.5 ppm (2H), 2.2 ppm (8H), 4.7 ppm (1H).
Figure JPOXMLDOC01-appb-C000054
[実施例A8](製造方法A-I)
 メタクリロイルオキシプロピルジメチルクロロシランの代わりにジメチルクロロシランを用いた以外は、実施例2を繰り返し、下記式(16)で表されるシリコーン化合物を得た。収量753.6g。以下にH-NMRデータを記載する。
0.0ppm(63H)、0.6ppm(4H)、0.9ppm(3H)、1.3ppm(4H)、1.5ppm(2H)、2.2ppm(2H)、4.7ppm(1H)。
Figure JPOXMLDOC01-appb-C000055
[Example A8] (Production method AI)
Example 2 was repeated except that dimethylchlorosilane was used instead of methacryloyloxypropyldimethylchlorosilane to obtain a silicone compound represented by the following formula (16). Yield 753.6g. The 1 H-NMR data is described below.
0.0 ppm (63H), 0.6 ppm (4H), 0.9 ppm (3H), 1.3 ppm (4H), 1.5 ppm (2H), 2.2 ppm (2H), 4.7 ppm (1H).
Figure JPOXMLDOC01-appb-C000055
[実施例A9](製造方法A-I)
 メタクリロイルオキシプロピルジメチルクロロシランの代わりにジメチルクロロシランを用いた以外は、実施例5を繰り返し、下記式(17)で表されるシリコーン化合物を得た。収量750.0g。以下にH-NMRデータを記載する。
0.0ppm(45H)、0.6ppm(4H)、0.9ppm(3H)、1.3ppm(4H)、1.5ppm(2H)、3.3-3.7ppm(6H)、4.4ppm(2H)、4.7ppm(1H)、7.2-7.3ppm(5H)。
Figure JPOXMLDOC01-appb-C000056
[Example A9] (Production method AI)
Example 5 was repeated except that dimethylchlorosilane was used instead of methacryloyloxypropyldimethylchlorosilane to obtain a silicone compound represented by the following formula (17). Yield 750.0g. The 1 H-NMR data is described below.
0.0ppm (45H), 0.6ppm (4H), 0.9ppm (3H), 1.3ppm (4H), 1.5ppm (2H), 3.3-3.7ppm (6H), 4.4ppm ( 2H), 4.7 ppm (1H), 7.2-7.3 ppm (5H).
Figure JPOXMLDOC01-appb-C000056
[実施例A10](製造方法A-II)
 ジムロート、温度計、滴下漏斗を付けた500mLの三口ナスフラスコに、実施例A7で得た上記式(15)で表される化合物100.0g、トルエン50.0gを添加し、80℃まで昇温した。塩化白金酸の重曹中和物・ビニルシロキサン錯体のトルエン溶液(白金含有量0.5%)0.1gを該フラスコに投入した。滴下漏斗からアリルグリコール20.0gを滴下し、滴下後、80~90℃で2時間熟成した。トルエンと過剰量のアリルグリコールを内温130℃で減圧留去したところ、下記式(18)で表されるシリコーン化合物106.2gを得た。以下にH-NMRデータを記載する。
0.0ppm(45H)、0.6ppm(6H)、0.9ppm(3H)、1.3ppm(4H)、1.5ppm(4H)、2.2ppm(8H)、3.3-3.7ppm(21H)。
Figure JPOXMLDOC01-appb-C000057
[Example A10] (Production method A-II)
To a 500 mL three-necked eggplant flask equipped with a Dimroth, thermometer, and dropping funnel was added 100.0 g of the compound represented by the above formula (15) obtained in Example A7 and 50.0 g of toluene, and the temperature was raised to 80 ° C. did. 0.1 g of a toluene solution of a chloroplatinic acid neutralized sodium bicarbonate / vinylsiloxane complex (platinum content: 0.5%) was charged into the flask. From the dropping funnel, 20.0 g of allyl glycol was dropped, and after the dropping, the mixture was aged at 80 to 90 ° C. for 2 hours. When toluene and an excessive amount of allyl glycol were distilled off under reduced pressure at an internal temperature of 130 ° C., 106.2 g of a silicone compound represented by the following formula (18) was obtained. The 1 H-NMR data is described below.
0.0ppm (45H), 0.6ppm (6H), 0.9ppm (3H), 1.3ppm (4H), 1.5ppm (4H), 2.2ppm (8H), 3.3-3.7ppm ( 21H).
Figure JPOXMLDOC01-appb-C000057
[実施例A11](製造方法A-II)
 アリルグリコールの代わりにアリルアミンを用いた以外は、実施例A10を繰り返し、下記式(19)で表されるシリコーン化合物を得た。収量105.5g。以下にH-NMRデータを記載する。
0.0ppm(45H)、0.6ppm(6H)、0.9ppm(3H)、1.3ppm(4H)、1.5ppm(4H)、2.2ppm(10H)。
Figure JPOXMLDOC01-appb-C000058
[Example A11] (Production method A-II)
Except having used allylamine instead of allyl glycol, Example A10 was repeated and the silicone compound represented by following formula (19) was obtained. Yield 105.5g. The 1 H-NMR data is described below.
0.0 ppm (45H), 0.6 ppm (6H), 0.9 ppm (3H), 1.3 ppm (4H), 1.5 ppm (4H), 2.2 ppm (10H).
Figure JPOXMLDOC01-appb-C000058
[実施例A12](製造方法A-II)
 アリルグリコールの代わりにアリロキシエチルメタクリレートを用いた以外は、実施例A10を繰り返し、下記式(9)で表されるシリコーン化合物を得た。収量108.2g。以下にH-NMRデータを記載する。
0.0ppm(45H)、0.6ppm(6H)、0.9ppm(3H)、1.3ppm(4H)、1.5ppm(2H)、1.7ppm(2H)、2.0ppm(3H)、2.2ppm(8H)、4.1ppm(2H)、5.5ppm(1H)、6.1ppm(1H)。
Figure JPOXMLDOC01-appb-C000059
[Example A12] (Production method A-II)
Example A10 was repeated except that allyl glycol instead of allyl glycol was used to obtain a silicone compound represented by the following formula (9). Yield 108.2g. The 1 H-NMR data is described below.
0.0 ppm (45H), 0.6 ppm (6H), 0.9 ppm (3H), 1.3 ppm (4H), 1.5 ppm (2H), 1.7 ppm (2H), 2.0 ppm (3H), 2 2 ppm (8H), 4.1 ppm (2H), 5.5 ppm (1H), 6.1 ppm (1H).
Figure JPOXMLDOC01-appb-C000059
[実施例A13](製造方法A-II)
 上記式(15)で表される化合物の代わりに実施例A8で得た上記式(16)で表されるシリコーン化合物を用いた以外は、実施例A10を繰り返し、下記式(20)で表されるシリコーン化合物を得た。収量109.7g。以下にH-NMRデータを記載する。
0.0ppm(63H)、0.6ppm(6H)、0.9ppm(3H)、1.3ppm(4H)、1.5ppm(4H)、2.2ppm(2H)、3.3-3.7ppm(21H)。
Figure JPOXMLDOC01-appb-C000060
[Example A13] (Production method A-II)
Example A10 was repeated except that the silicone compound represented by the above formula (16) obtained in Example A8 was used instead of the compound represented by the above formula (15), and represented by the following formula (20). A silicone compound was obtained. Yield 109.7g. The 1 H-NMR data is described below.
0.0ppm (63H), 0.6ppm (6H), 0.9ppm (3H), 1.3ppm (4H), 1.5ppm (4H), 2.2ppm (2H), 3.3-3.7ppm ( 21H).
Figure JPOXMLDOC01-appb-C000060
[実施例A14](製造方法A-IV)
 ジムロート、温度計、滴下漏斗を付けた300mLの三口ナスフラスコに、実施例A13で得られた上記式(20)で表されるシリコーン化合物100.0g、イソプロピルアルコール100.0gを添加し、80℃まで昇温した。トリフロロ酢酸0.4gを該フラスコに投入した。70~80℃で2時間熟成した。キョーワード(登録商標)500(協和化学工業株式会社製)を2.0g投入し、室温で1時間攪拌後、反応液を濾過した。濾液から溶媒および低分子化合物を内温130℃まで減圧留去したところ、下記式(21)で表されるシリコーン化合物を得た。以下にH-NMRデータを記載する。
0.0ppm(45H)、0.6ppm(6H)、0.9ppm(3H)、1.3ppm(4H)、1.5ppm(4H)、2.2ppm(2H)、3.3-3.7ppm(21H)。
Figure JPOXMLDOC01-appb-C000061
[Example A14] (Production method A-IV)
To a 300 mL three-necked eggplant flask equipped with a Dimroth, a thermometer, and a dropping funnel, 100.0 g of the silicone compound represented by the above formula (20) obtained in Example A13 and 100.0 g of isopropyl alcohol were added, and 80 ° C. The temperature was raised to. 0.4 g of trifluoroacetic acid was added to the flask. Aging was carried out at 70 to 80 ° C. for 2 hours. 2.0 g of Kyoward (registered trademark) 500 (manufactured by Kyowa Chemical Industry Co., Ltd.) was added and stirred at room temperature for 1 hour, and then the reaction solution was filtered. When the solvent and the low molecular weight compound were distilled off from the filtrate under reduced pressure to an internal temperature of 130 ° C., a silicone compound represented by the following formula (21) was obtained. The 1 H-NMR data is described below.
0.0ppm (45H), 0.6ppm (6H), 0.9ppm (3H), 1.3ppm (4H), 1.5ppm (4H), 2.2ppm (2H), 3.3-3.7ppm ( 21H).
Figure JPOXMLDOC01-appb-C000061
[実施例A15](製造方法A-II)
 上記式(15)で表される化合物の代わりに実施例A9で得た上記式(17)で表されるシリコーン化合物を用いた以外は、実施例A12を繰り返し、下記式(13)で表されるシリコーン化合物を得た。収量103.4g。以下にH-NMRデータを記載する。
0.0ppm(45H)、0.6ppm(6H)、0.9ppm(3H)、1.3ppm(4H)、1.5ppm(2H)、1.7ppm(2H)、2.0ppm(3H)、3.3-3.7ppm(6H)、4.1ppm(2H)、4.4ppm(2H)、5.5ppm(1H)、6.1ppm(1H)、7.2-7.3ppm(5H)。
Figure JPOXMLDOC01-appb-C000062
[Example A15] (Production method A-II)
Example A12 was repeated except that the silicone compound represented by the above formula (17) obtained in Example A9 was used instead of the compound represented by the above formula (15), and represented by the following formula (13). A silicone compound was obtained. Yield 103.4g. The 1 H-NMR data is described below.
0.0 ppm (45H), 0.6 ppm (6H), 0.9 ppm (3H), 1.3 ppm (4H), 1.5 ppm (2H), 1.7 ppm (2H), 2.0 ppm (3H), 3 3.3-3.7 ppm (6H), 4.1 ppm (2H), 4.4 ppm (2H), 5.5 ppm (1H), 6.1 ppm (1H), 7.2-7.3 ppm (5H).
Figure JPOXMLDOC01-appb-C000062
[実施例A16](製造方法A-IV)
 ジムロート、温度計、滴下漏斗を付けた300mLの三口ナスフラスコに、実施例A15で得た上記式(13)で表されるシリコーン化合物100.0g、酢酸エチル50.0g、エタノール50.0gを添加し、80℃まで昇温した。パラジウムカーボン(パラジウム含有量5%)0.2gを該フラスコに投入した。水素気流中、常圧で80~90℃で2時間熟成した。さらに室温で1時間攪拌後、反応液を濾過した。濾液から溶媒および低分子化合物を内温100℃で減圧留去したところ、下記式(22)で表されるシリコーン化合物80.5gを得た。以下にH-NMRデータを記載する。
0.0ppm(45H)、0.6ppm(6H)、0.9ppm(3H)、1.3ppm(4H)、1.5ppm(2H)、1.7ppm(2H)、2.0ppm(3H)、3.3-3.7ppm(6H)、4.1ppm(2H)、5.5ppm(1H)、6.1ppm(1H)。
Figure JPOXMLDOC01-appb-C000063
[Example A16] (Production method A-IV)
To a 300 mL three-necked eggplant flask equipped with a Dimroth, thermometer, and dropping funnel was added 100.0 g of the silicone compound represented by the above formula (13) obtained in Example A15, 50.0 g of ethyl acetate, and 50.0 g of ethanol. The temperature was raised to 80 ° C. 0.2 g of palladium carbon (palladium content 5%) was put into the flask. The mixture was aged for 2 hours at 80 to 90 ° C. under normal pressure in a hydrogen stream. Further, after stirring at room temperature for 1 hour, the reaction solution was filtered. When the solvent and the low molecular weight compound were distilled off from the filtrate at an internal temperature of 100 ° C. under reduced pressure, 80.5 g of a silicone compound represented by the following formula (22) was obtained. The 1 H-NMR data is described below.
0.0 ppm (45H), 0.6 ppm (6H), 0.9 ppm (3H), 1.3 ppm (4H), 1.5 ppm (2H), 1.7 ppm (2H), 2.0 ppm (3H), 3 3.3-3.7 ppm (6H), 4.1 ppm (2H), 5.5 ppm (1H), 6.1 ppm (1H).
Figure JPOXMLDOC01-appb-C000063
[実施例A17](製造方法A-II)
 アリルグリコールの代わりにアリルグリシジルエーテルを用いた以外は、実施例A10を繰り返し、下記式(23)で表されるシリコーン化合物を得た。収量107.5g。以下にH-NMRデータを記載する。
0.0ppm(45H)、0.6ppm(6H)、0.9ppm(3H)、1.3ppm(4H)、1.5ppm(4H)、2.2ppm(8H)、2.6ppm(1H)、2.8ppm(1H)、3.1ppm(1H)、3.4ppm(3H)、3.7ppm(1H)。
Figure JPOXMLDOC01-appb-C000064
[実施例A18](製造方法A-IV)
 上記式(13)で表されるシリコーン化合物の代わりに実施例A9で得た上記式(17)で表されるシリコーン化合物を用いた以外は、実施例A16を繰り返し、下記式(24)で表されるシリコーン化合物を得た。収量76.5g。以下にH-NMRデータを記載する。
0.0ppm(45H)、0.6ppm(4H)、0.9ppm(3H)、1.3ppm(4H)、1.5ppm(2H)、3.3-3.7ppm(6H)、4.7ppm(1H)。
Figure JPOXMLDOC01-appb-C000065
[Example A17] (Production method A-II)
Example A10 was repeated except that allyl glycidyl ether was used instead of allyl glycol to obtain a silicone compound represented by the following formula (23). Yield 107.5g. The 1 H-NMR data is described below.
0.0 ppm (45H), 0.6 ppm (6H), 0.9 ppm (3H), 1.3 ppm (4H), 1.5 ppm (4H), 2.2 ppm (8H), 2.6 ppm (1H), 2 0.8 ppm (1H), 3.1 ppm (1H), 3.4 ppm (3H), 3.7 ppm (1H).
Figure JPOXMLDOC01-appb-C000064
[Example A18] (Production method A-IV)
Example A16 was repeated except that the silicone compound represented by the above formula (17) obtained in Example A9 was used instead of the silicone compound represented by the above formula (13), and represented by the following formula (24). A silicone compound was obtained. Yield 76.5g. The 1 H-NMR data is described below.
0.0ppm (45H), 0.6ppm (4H), 0.9ppm (3H), 1.3ppm (4H), 1.5ppm (2H), 3.3-3.7ppm (6H), 4.7ppm ( 1H).
Figure JPOXMLDOC01-appb-C000065
[実施例A19](製造方法A-II)
 上記式(15)で表される化合物の代わりに実施例A18で得た上記式(24)で表されるシリコーン化合物を用いた以外は、実施例A17を繰り返し、下記式(25)で表されるシリコーン化合物を得た。収量88.0g。以下にH-NMRデータを記載する。
0.0ppm(45H)、0.6ppm(6H)、0.9ppm(3H)、1.3ppm(6H)、1.5ppm(2H)、3.3-3.7ppm(6H)、2.6ppm(1H)、2.8ppm(1H)、3.1ppm(1H)、3.4ppm(3H)、3.7ppm(1H)。
Figure JPOXMLDOC01-appb-C000066
[Example A19] (Production method A-II)
Example A17 was repeated except that the silicone compound represented by the above formula (24) obtained in Example A18 was used instead of the compound represented by the above formula (15), and represented by the following formula (25). A silicone compound was obtained. Yield 88.0 g. The 1 H-NMR data is described below.
0.0ppm (45H), 0.6ppm (6H), 0.9ppm (3H), 1.3ppm (6H), 1.5ppm (2H), 3.3-3.7ppm (6H), 2.6ppm ( 1H), 2.8 ppm (1H), 3.1 ppm (1H), 3.4 ppm (3H), 3.7 ppm (1H).
Figure JPOXMLDOC01-appb-C000066
[実施例A20](製造方法A-III)
 ジムロート、温度計、滴下漏斗を付けた300mLの三口ナスフラスコに、実施例A19で得られた上記式(25)で表されるシリコーン化合物50.0g、ノルマルヘキサン50.0g、トリエチルアミン5.0gを添加し、10℃まで冷却した。窒素気流中、メタクリル酸クロリド6.5gを滴下し、さらに室温で1時間攪拌した。その後、エタノールを4.0g添加し、さらに室温で1時間攪拌した。これを50.0gの純水で3回洗浄し、上層から溶媒および低分子化合物を内温100℃で減圧留去したところ、下記式(26)で表されるシリコーン化合物46.3gを得た。以下にH-NMRデータを記載する。
0.0ppm(45H)、0.6ppm(6H)、0.9ppm(3H)、1.3ppm(6H)、1.5ppm(2H)、3.3-3.7ppm(4H)、2.6ppm(1H)、2.8ppm(1H)、3.1ppm(1H)、3.4ppm(3H)、3.7ppm(1H)、4.1ppm(2H)、5.5ppm(1H)、6.1ppm(1H)。
Figure JPOXMLDOC01-appb-C000067
[Example A20] (Production method A-III)
In a 300 mL three-necked eggplant flask equipped with a Dimroth, thermometer, and dropping funnel, 50.0 g of the silicone compound represented by the above formula (25) obtained in Example A19, 50.0 g of normal hexane, and 5.0 g of triethylamine were added. Added and cooled to 10 ° C. In a nitrogen stream, 6.5 g of methacrylic acid chloride was added dropwise, and the mixture was further stirred at room temperature for 1 hour. Thereafter, 4.0 g of ethanol was added, and the mixture was further stirred at room temperature for 1 hour. This was washed 3 times with 50.0 g of pure water, and the solvent and the low-molecular compound were distilled off from the upper layer under reduced pressure at an internal temperature of 100 ° C. to obtain 46.3 g of a silicone compound represented by the following formula (26). . The 1 H-NMR data is described below.
0.0ppm (45H), 0.6ppm (6H), 0.9ppm (3H), 1.3ppm (6H), 1.5ppm (2H), 3.3-3.7ppm (4H), 2.6ppm ( 1H), 2.8 ppm (1H), 3.1 ppm (1H), 3.4 ppm (3H), 3.7 ppm (1H), 4.1 ppm (2H), 5.5 ppm (1H), 6.1 ppm (1H) ).
Figure JPOXMLDOC01-appb-C000067
[実施例A21](製造方法A-I)
 実施例A1において2,4,6,8-テトラメチル-2,4,6,8-テトラ(N、N-ジメチルアミノプロピル)シクロテトラシロキサンを6.2g、n-ブチルリチウムヘキサン溶液を19.6g、メタクリロイルオキシプロピルジメチルクロロシランを10.6gとした以外は、実施例A1を繰り返し、下記式(27)で表されるシリコーン化合物を得た。収量730.1g。以下にH-NMRデータを記載する。
0.0ppm(549H)、0.6ppm(6H)、0.9ppm(3H)、1.3ppm(4H)、1.5ppm(2H)、1.7ppm(2H)、2.0ppm(3H)、2.2ppm(8H)、4.1ppm(2H)、5.5ppm(1H)、6.1ppm(1H)。
Figure JPOXMLDOC01-appb-C000068
[Example A21] (Production method AI)
In Example A1, 6.2 g of 2,4,6,8-tetramethyl-2,4,6,8-tetra (N, N-dimethylaminopropyl) cyclotetrasiloxane and 19. Example A1 was repeated except that 6 g and methacryloyloxypropyldimethylchlorosilane were changed to 10.6 g to obtain a silicone compound represented by the following formula (27). Yield 730.1g. The 1 H-NMR data is described below.
0.0 ppm (549H), 0.6 ppm (6H), 0.9 ppm (3H), 1.3 ppm (4H), 1.5 ppm (2H), 1.7 ppm (2H), 2.0 ppm (3H), 2 2 ppm (8H), 4.1 ppm (2H), 5.5 ppm (1H), 6.1 ppm (1H).
Figure JPOXMLDOC01-appb-C000068
[実施例A22](製造方法A-I)
 実施例A1において2,4,6,8-テトラメチル-2,4,6,8-テトラ(N、N-ジメチルアミノプロピル)シクロテトラシロキサンを3.1g、n-ブチルリチウムヘキサン溶液を9.8g、メタクリロイルオキシプロピルジメチルクロロシランを5.3gとした以外は、実施例A1を繰り返し、下記式(28)で表されるシリコーン化合物を得た。収量712.0g。以下にH-NMRデータを記載する。
0.0ppm(1119H)、0.6ppm(6H)、0.9ppm(3H)、1.3ppm(4H)、1.5ppm(2H)、1.7ppm(2H)、2.0ppm(3H)、2.2ppm(8H)、4.1ppm(2H)、5.5ppm(1H)、6.1ppm(1H)。
Figure JPOXMLDOC01-appb-C000069
[Example A22] (Production method AI)
In Example A1, 3.1 g of 2,4,6,8-tetramethyl-2,4,6,8-tetra (N, N-dimethylaminopropyl) cyclotetrasiloxane and 9.n of n-butyllithium hexane solution were used. Example A1 was repeated except that 8 g and methacryloyloxypropyldimethylchlorosilane were changed to 5.3 g to obtain a silicone compound represented by the following formula (28). Yield 712.0 g. The 1 H-NMR data is described below.
0.0 ppm (1119H), 0.6 ppm (6H), 0.9 ppm (3H), 1.3 ppm (4H), 1.5 ppm (2H), 1.7 ppm (2H), 2.0 ppm (3H), 2 2 ppm (8H), 4.1 ppm (2H), 5.5 ppm (1H), 6.1 ppm (1H).
Figure JPOXMLDOC01-appb-C000069
[実施例B1~7]
(製造方法B)
下記においてH-NMR分析は、ECS500(日本電子社製)を用い、測定溶媒として重クロロホルムを使用して実施した。
また純度は以下測定法で得られたものである。
シリコーンの純度測定法(GC法)
本明細書において、ガスクロマトグラフ測定は、すべて下記の条件で行われた。
Agilent社ガスクロマトグラフィー(FID検出器)を使用した。 
キャピラリーカラム:J&W社 HP-5MS(0.25mm×30m×0.25μm)
昇温プログラム:50℃(5分)→10℃/分→250℃(保持)
注入口温度250℃、検出器温度FID300℃
キャリアガス:ヘリウム(1.0ml/分)
スプリット比:50:1  注入量:1μL
また、下記実施例4において、目的化合物のシロキサン結合が切断されているか否かをGPC測定により確認した。GPC測定は、下記の条件で行った。
測定装置:東ソー HLC-8220
測定条件:
カラム温度:40℃
流速:0.6ml/min
移動相:THF
カラム構成:
 TSK gel Super H2500 (6*150)
 TSK gel Super HM-N (6*150)
 ※ガードカラム TSK gel guardcolumn Super H-H (4.6*35)
注入量:50μl
サンプル濃度:0.3%
検出器:RI
下記において、Meはメチル基を意味する。
[Examples B1 to 7]
(Production method B)
In the following, 1 H-NMR analysis was performed using ECS500 (manufactured by JEOL Ltd.) and deuterated chloroform as a measurement solvent.
The purity is obtained by the following measuring method.
Silicone purity measurement method (GC method)
In this specification, all gas chromatographic measurements were performed under the following conditions.
Agilent gas chromatography (FID detector) was used.
Capillary column: HP-5MS (0.25 mm × 30 m × 0.25 μm) from J & W
Temperature rising program: 50 ° C. (5 minutes) → 10 ° C./minute→250° C. (holding)
Inlet temperature 250 ° C, detector temperature FID 300 ° C
Carrier gas: Helium (1.0 ml / min)
Split ratio: 50: 1 Injection volume: 1 μL
In Example 4 below, it was confirmed by GPC measurement whether or not the siloxane bond of the target compound was cleaved. GPC measurement was performed under the following conditions.
Measuring device: Tosoh HLC-8220
Measurement condition:
Column temperature: 40 ° C
Flow rate: 0.6 ml / min
Mobile phase: THF
Column configuration:
TSK gel Super H2500 (6 * 150)
TSK gel Super HM-N (6 * 150)
* Guard column TSK gel guardcolumn Super HH (4.6 * 35)
Injection volume: 50 μl
Sample concentration: 0.3%
Detector: RI
In the following, Me means a methyl group.
[実施例B1]
一般式(3)の化合物の合成
 下記式(a)で表されるジハイドロジェンポリシロキサン714g(2mol)、
Figure JPOXMLDOC01-appb-C000070
を、ジムロート、温度計、滴下ロート及び攪拌装置を付けた2Lフラスコに仕込み80℃まで昇温した。該フラスコに塩化白金酸重曹中和物・ビニルシロキサン錯体のトルエン溶液(白金含有量0.5wt%)を1.6g((a)の質量に対し、白金換算量で10ppm)投入した。次いで滴下ロートに仕込んだビス(トリメチルシリル)アリルアミン201g(1mol)を、80~90℃で1時間かけて前記フラスコ内に滴下した。滴下後、80~90℃にて1時間熟成した。熟成後、反応液をサンプリングし、GCにより分析をすることで、ビス(トリメチルシリル)アリルアミンが残存していないことを確認した。得られた反応混合物を、圧力1mmHg、温度130℃で減圧蒸留し、無色透明な生成物447gを得た。H-NMR分析より下記式(b)で表されるハイドロジェンシリコーンであることが確認された。GC測定による該化合物の純度は98.1%だった。収量0.80mol、収率80% 
Figure JPOXMLDOC01-appb-C000071
図1にH-NMRデータを記載する。
[Example B1]
Synthesis of compound of general formula (3) 714 g (2 mol) of dihydrogenpolysiloxane represented by the following formula (a),
Figure JPOXMLDOC01-appb-C000070
Was charged into a 2 L flask equipped with a Jim funnel, a thermometer, a dropping funnel and a stirrer, and the temperature was raised to 80 ° C. 1.6 g (10 ppm in terms of platinum with respect to the mass of (a)) of toluene solution of chloroplatinic acid sodium bicarbonate / vinylsiloxane complex (platinum content: 0.5 wt%) was charged into the flask. Next, 201 g (1 mol) of bis (trimethylsilyl) allylamine charged in the dropping funnel was dropped into the flask at 80 to 90 ° C. over 1 hour. After dropping, the mixture was aged at 80 to 90 ° C. for 1 hour. After aging, the reaction solution was sampled and analyzed by GC to confirm that bis (trimethylsilyl) allylamine did not remain. The obtained reaction mixture was distilled under reduced pressure at a pressure of 1 mmHg and a temperature of 130 ° C. to obtain 447 g of a colorless and transparent product. From 1 H-NMR analysis, it was confirmed to be a hydrogen silicone represented by the following formula (b). The purity of the compound as measured by GC was 98.1%. Yield 0.80 mol, Yield 80%  
Figure JPOXMLDOC01-appb-C000071
It describes The 1 H-NMR data in Figure 1.
[実施例B2]
一般式(4)の化合物の合成
 ジメチルアリルアミン26g(0.3mol)、トルエン90gをジムロート、温度計、滴下ロートおよび攪拌装置を付けた1Lフラスコに仕込み80℃まで昇温した。該フラスコに塩化白金酸重曹中和物・ビニルシロキサン錯体のトルエン溶液(白金含有量0.5wt%)を0.8g((b)の質量に対し、白金換算量で25ppm)投入した。次いで上記実施例1で得られたハイドロジェンシリコーン(b)150g(0.27mol)を滴下ロートに仕込み、80~90℃で1時間かけて前記フラスコ内に滴下した。滴下後、80~90℃にて1時間熟成した。熟成後、反応混合物をサンプリングし、アルカリによる水素ガス発生の有無を確認したところ、水素ガスは発生せず、従って仕込んだハイドロジェンシリコーンが残存していないことが確認された。トルエンと、過剰に仕込んだ未反応のジメチルアリルアミンを内温100℃で減圧留去したところ、無色透明な残留物161gを得た。H-NMR分析より下記式(c)で表される異種末端シリコーンであることが確認された(0.25mol、収率93%)。図2にH-NMRデータを記載する。
Figure JPOXMLDOC01-appb-C000072
[Example B2]
Synthesis of Compound of General Formula (4) 26 g (0.3 mol) of dimethylallylamine and 90 g of toluene were charged into a 1 L flask equipped with a Dim funnel, a thermometer, a dropping funnel and a stirrer and heated to 80 ° C. To the flask, 0.8 g of a toluene solution of chloroplatinic acid sodium bicarbonate / vinylsiloxane complex (platinum content: 0.5 wt%) was added (25 ppm in terms of platinum with respect to the mass of (b)). Next, 150 g (0.27 mol) of the hydrogen silicone (b) obtained in Example 1 was charged in the dropping funnel and dropped into the flask at 80 to 90 ° C. over 1 hour. After dropping, the mixture was aged at 80 to 90 ° C. for 1 hour. After aging, the reaction mixture was sampled and it was confirmed whether or not hydrogen gas was generated due to alkali. As a result, it was confirmed that hydrogen gas was not generated and thus the charged hydrogen silicone did not remain. Toluene and unreacted dimethylallylamine charged excessively were distilled off under reduced pressure at an internal temperature of 100 ° C. to obtain 161 g of a colorless and transparent residue. From 1 H-NMR analysis, it was confirmed to be a heterogeneous terminal silicone represented by the following formula (c) (0.25 mol, yield 93%). FIG. 2 shows 1 H-NMR data.
Figure JPOXMLDOC01-appb-C000072
[実施例B3]
末端アミノ基および他の末端官能基を有するシリコーンの合成
 上記実施例2で得られた異種末端シリコーンc)160g(0.25mol)、イソプロピルアルコール160g(2.67mol、一部は溶剤として働く)、及び酢酸1.6gをジムロート、温度計及び攪拌装置を付けた1Lフラスコに仕込み、80℃で3時間反応させた。GC測定にてトリメチルシリル化イソプロピルアルコールのピークが確認された。反応完結はH-NMRで確認された。フラスコ内容物を室温まで冷却し、ハイドロタルサイト(キョーワード(登録商標)500、協和化学工業株式会社製)を8.0g投入し、1時間攪拌後、反応混合物を濾過した。濾液からイソプロピルアルコールを内温100℃まで減圧留去して、無色透明な残留物115gを得た。H-NMR分析によりこれが、下記式(d)で表される末端アミノ基および他の末端官能基を有するシリコーンであることを確認した(0.23mol、収率92%)。図3にH-NMRデータを記載する。該残留物のGPCを測定したところシロキサン結合の切断は見られなかった。GPCデータを、図4として添付する。GPC測定による主成分のピークはポリスチレン換算でMn=1160, Mw=1170, Mw/Mn=1.00であり、そのピーク面積は96.5%だった。
Figure JPOXMLDOC01-appb-C000073
[Example B3]
Synthesis of silicone having terminal amino group and other terminal functional group Heterogeneous terminal silicone c obtained in Example 2 above) 160 g (0.25 mol), isopropyl alcohol 160 g (2.67 mol, partly acting as a solvent), Then, 1.6 g of acetic acid was charged into a 1 L flask equipped with a Dimroth, a thermometer and a stirrer, and reacted at 80 ° C. for 3 hours. A peak of trimethylsilylated isopropyl alcohol was confirmed by GC measurement. The completion of the reaction was confirmed by 1 H-NMR. The flask contents were cooled to room temperature, 8.0 g of hydrotalcite (Kyoward (registered trademark) 500, manufactured by Kyowa Chemical Industry Co., Ltd.) was added, and after stirring for 1 hour, the reaction mixture was filtered. Isopropyl alcohol was distilled off from the filtrate under reduced pressure to an internal temperature of 100 ° C. to obtain 115 g of a colorless and transparent residue. 1 H-NMR analysis confirmed that this was a silicone having a terminal amino group represented by the following formula (d) and another terminal functional group (0.23 mol, yield 92%). FIG. 3 shows 1 H-NMR data. When the GPC of the residue was measured, no siloxane bond breakage was observed. GPC data is attached as FIG. The peak of the main component by GPC measurement was Mn = 1160, Mw = 1170, Mw / Mn = 1.00 in terms of polystyrene, and the peak area was 96.5%.
Figure JPOXMLDOC01-appb-C000073
[実施例B4]
一般式(4)の化合物の合成
 アリルグリコール30g(0.3mol)、トルエン90gをジムロート、温度計、滴下ロート、および攪拌装置を付けた1Lフラスコに仕込み80℃まで昇温した。該フラスコに塩化白金酸重曹中和物・ビニルシロキサン錯体のトルエン溶液(白金含有量0.5wt%)を0.8g投入した。次いで実施例1で得られた式(b)のハイドロジェンシリコーン150g(0.27mol)を滴下ロートに仕込み、80~90℃で1時間かけて前記フラスコ内に滴下した。滴下後、80~90℃にて1時間熟成した。熟成後、反応液をサンプリングし、アルカリによる水素ガス発生の有無を確認したところ、水素ガスは発生せず、従って式(b)のハイドロジェンシリコーンが残存していないことを確認した。トルエンと過剰に仕込んだ未反応のアリルグリコールを内温100℃で減圧留去したところ、無色透明な残留物171gを得た。H-NMR分析よりこれが下記式(e)で表されるシリコーンであることが確認された(0.26mol、収率96%)。 
Figure JPOXMLDOC01-appb-C000074
[Example B4]
Synthesis of Compound of General Formula (4) 30 g (0.3 mol) of allyl glycol and 90 g of toluene were charged into a 1 L flask equipped with a Dim funnel, a thermometer, a dropping funnel, and a stirrer and heated to 80 ° C. 0.8 g of a toluene solution of chloroplatinic acid sodium bicarbonate / vinylsiloxane complex (platinum content: 0.5 wt%) was added to the flask. Next, 150 g (0.27 mol) of the hydrogen silicone of formula (b) obtained in Example 1 was charged into the dropping funnel and dropped into the flask at 80 to 90 ° C. over 1 hour. After dropping, the mixture was aged at 80 to 90 ° C. for 1 hour. After aging, the reaction solution was sampled, and it was confirmed whether or not hydrogen gas was generated by alkali. As a result, it was confirmed that hydrogen gas was not generated and hydrogen hydrogen of formula (b) did not remain. When toluene and the unreacted allyl glycol charged excessively were distilled off under reduced pressure at an internal temperature of 100 ° C., 171 g of a colorless and transparent residue was obtained. From 1 H-NMR analysis, it was confirmed that this was a silicone represented by the following formula (e) (0.26 mol, yield 96%).  
Figure JPOXMLDOC01-appb-C000074
[実施例B5]
一般式(1)の末端アミノ基および他の末端官能基を有するシリコーンの合成
 上記実施例4で得られたシリコーン(e)170g(0.26mol)、イソプロピルアルコール170g、及び酢酸1.7gをジムロート、温度計および攪拌装置を付けた1Lフラスコに仕込み、80℃で3時間反応させた。GC測定にてトリメチルシリル化イソプロピルアルコールのピークが確認された。イソプロピルアルコールとトリメチルシリル化イソプロピルアルコールとの面積比より、脱シリル化反応の完結が確認された。また、反応完結はH-NMRでも確認された。フラスコ内容物を室温まで冷却し、ハイドロタルタイト(キョーワード(登録商標)500、協和化学工業株式会社製)を8.5g投入し、1時間攪拌後、反応混合物を濾過した。濾液からイソプロピルアルコールを内温100℃まで減圧留去し、無色透明な残留物121gを得た。H-NMR分析によりこれが下記式(f)で表されるシリコーンであることを確認した(0.23mol、収率90%)。該残留物のGPCを測定したところシロキサン結合の切断は見られなかった。GPC測定による主成分のピークはポリスチレン換算でMn=1210, Mw=1210, Mw/Mn=1.00であり、そのピーク面積は96.5%だった。
Figure JPOXMLDOC01-appb-C000075
[Example B5]
Synthesis of silicone having terminal amino group of general formula (1) and other terminal functional groups Silicone (e) 170 g (0.26 mol) obtained in Example 4 above, 170 g of isopropyl alcohol, and 1.7 g of acetic acid were added to Dimroth. Into a 1 L flask equipped with a thermometer and a stirrer, the mixture was reacted at 80 ° C. for 3 hours. A peak of trimethylsilylated isopropyl alcohol was confirmed by GC measurement. The completion of the desilylation reaction was confirmed from the area ratio of isopropyl alcohol to trimethylsilylated isopropyl alcohol. The completion of the reaction was also confirmed by 1 H-NMR. The flask contents were cooled to room temperature, 8.5 g of hydrotaltite (Kyoward (registered trademark) 500, manufactured by Kyowa Chemical Industry Co., Ltd.) was added, and the reaction mixture was filtered after stirring for 1 hour. Isopropyl alcohol was distilled off from the filtrate under reduced pressure to an internal temperature of 100 ° C. to obtain 121 g of a colorless and transparent residue. It was confirmed by 1 H-NMR analysis that this was a silicone represented by the following formula (f) (0.23 mol, yield 90%). When the GPC of the residue was measured, no siloxane bond breakage was observed. The peak of the main component by GPC measurement was Mn = 1210, Mw = 1210, Mw / Mn = 1.00 in terms of polystyrene, and the peak area was 96.5%.
Figure JPOXMLDOC01-appb-C000075
[実施例B6]
一般式(4)の化合物の合成
 ジエチレングリコールアリルメチルエーテル48g(0.3mol)、トルエン90gをジムロート、温度計、滴下ロートおよび攪拌装置を付けた1Lフラスコに仕込み80℃まで昇温した。該フラスコに塩化白金酸重曹中和物・ビニルシロキサン錯体のトルエン溶液(白金含有量0.5wt%)を0.8g投入した。次いで実施例1で得られた式(b)のハイドロジェンシリコーン150g(0.27mol)を滴下ロートに仕込み、80~90℃で1時間かけて前記フラスコ内に滴下した。滴下後、80~90℃にて1時間熟成した。熟成後、反応混合物をサンプリングし、アルカリによる水素ガス発生の有無を確認したところ、水素ガスは発生せず、従って式(b)のハイドロジェンシリコーンが残存していないことを確認した。トルエンと過剰に仕込んだ未反応のジエチレングリコールアリルメチルエーテルを内温100℃で減圧留去したところ、無色透明な残留物186gを得た。H-NMR分析より下記式(g)で表されるシリコーンであることが確認された(0.26mol、収率96%)。
Figure JPOXMLDOC01-appb-C000076
[Example B6]
Synthesis of Compound of General Formula (4) 48 g (0.3 mol) of diethylene glycol allyl methyl ether and 90 g of toluene were charged into a 1 L flask equipped with a Dim funnel, a thermometer, a dropping funnel and a stirrer and heated to 80 ° C. 0.8 g of a toluene solution of chloroplatinic acid sodium bicarbonate / vinylsiloxane complex (platinum content: 0.5 wt%) was added to the flask. Next, 150 g (0.27 mol) of the hydrogen silicone of formula (b) obtained in Example 1 was charged into the dropping funnel and dropped into the flask at 80 to 90 ° C. over 1 hour. After dropping, the mixture was aged at 80 to 90 ° C. for 1 hour. After aging, the reaction mixture was sampled, and it was confirmed whether or not hydrogen gas was generated by alkali. As a result, it was confirmed that hydrogen gas was not generated and therefore hydrogen silicone of formula (b) did not remain. When toluene and unreacted diethylene glycol allyl methyl ether charged excessively were distilled off under reduced pressure at an internal temperature of 100 ° C., 186 g of a colorless and transparent residue was obtained. From 1 H-NMR analysis, it was confirmed to be a silicone represented by the following formula (g) (0.26 mol, yield 96%).
Figure JPOXMLDOC01-appb-C000076
[実施例B7]
末端アミノ基および他の末端官能基を有するシリコーンの合成
 実施例6で得られたシリコーンg)185g(0.26mol)、イソプロピルアルコール185g、及び酢酸1.8gをジムロート、温度計及び攪拌装置を付けた1Lフラスコに仕込み、80℃で3時間反応させた。GC測定にてトリメチルシリル化イソプロピルアルコールのピークが確認された。イソプロピルアルコールとトリメチルシリル化イソプロピルアルコールとの面積比より、脱シリル化反応の完結が確認された。また、反応完結はH-NMRでも確認された。フラスコ内容物を室温まで冷却し、ハイドロタルサイト(キョーワード(登録商標)500、協和化学工業株式会社製)を9.0g投入し、1時間攪拌後、反応混合物を濾過した。濾液からイソプロピルアルコールを内温100℃まで減圧留去し、無色透明な残留物138gを得た。H-NMR分析によりこれが下記式(h)で表されるシリコーンであることを確認した(0.24mol、収率92%)。該残留物のGPCを測定したところシロキサン結合の切断は見られなかった。GPC測定による主成分のピークはポリスチレン換算でMn=1330, Mw=1340, Mw/Mn=1.00であり、そのピーク面積は96.5%だった。
Figure JPOXMLDOC01-appb-C000077
[Example B7]
Synthesis of silicone having terminal amino group and other terminal functional group Silicone g) obtained in Example 6 (185 g, 0.26 mol), isopropyl alcohol 185 g, and acetic acid 1.8 g were attached with Dimroth, thermometer and stirring device. The 1 L flask was charged and reacted at 80 ° C. for 3 hours. A peak of trimethylsilylated isopropyl alcohol was confirmed by GC measurement. The completion of the desilylation reaction was confirmed from the area ratio of isopropyl alcohol to trimethylsilylated isopropyl alcohol. The completion of the reaction was also confirmed by 1 H-NMR. The flask contents were cooled to room temperature, 9.0 g of hydrotalcite (Kyoward (registered trademark) 500, manufactured by Kyowa Chemical Industry Co., Ltd.) was added, and after stirring for 1 hour, the reaction mixture was filtered. Isopropyl alcohol was distilled off from the filtrate under reduced pressure to an internal temperature of 100 ° C. to obtain 138 g of a colorless and transparent residue. It was confirmed by 1 H-NMR analysis that this was a silicone represented by the following formula (h) (0.24 mol, yield 92%). When the GPC of the residue was measured, no siloxane bond breakage was observed. The peak of the main component by GPC measurement was Mn = 1330, Mw = 1340, Mw / Mn = 1.00 in terms of polystyrene, and the peak area was 96.5%.
Figure JPOXMLDOC01-appb-C000077
[比較例B1]
末端アミノ基および末端ヒドロキシル基を有するシリコーンの合成
ジ(エチレングリコールプロピル)テトラメチルジシロキサン339g(1.0mol)、ビス(アミノプロピル)テトラメチルジシロキサン249g(1.0mol)、オクタメチルテトラシロキサン223g(0.75mol) をジムロート、温度計及び攪拌装置を付けた1Lフラスコに仕込んだ。該フラスコにトリフルオロメタンスルホン酸を0.4g投入し、反応混合物を25℃で8時間反応させた。ハイドロタルサイト(キョーワード(登録商標)500、協和化学工業株式会社製)を2.0g投入し、1時間攪拌後、反応混合物を濾過し、無色透明なろ液770gを得た。このろ液をGC測定したところ、多様な構造のシリコーンが確認され、末端アミノ基および末端ヒドロキシル基を有するシリコーンを単離することが不可能であった。
[Comparative Example B1]
Synthesis of silicone having terminal amino group and terminal hydroxyl group 339 g (1.0 mol) of di (ethylene glycolpropyl) tetramethyldisiloxane, 249 g (1.0 mol) of bis (aminopropyl) tetramethyldisiloxane, octa 223 g (0.75 mol) of methyltetrasiloxane was charged into a 1 L flask equipped with a Dimroth, a thermometer and a stirrer. 0.4 g of trifluoromethanesulfonic acid was added to the flask, and the reaction mixture was reacted at 25 ° C. for 8 hours. Hydrotalcite (KYOWARD (registered trademark) 500, manufactured by Kyowa Chemical Industry Co., Ltd.) was added in an amount of 2.0 g, and after stirring for 1 hour, the reaction mixture was filtered to obtain 770 g of a colorless transparent filtrate. When this filtrate was subjected to GC measurement, silicones having various structures were confirmed, and it was impossible to isolate silicones having terminal amino groups and terminal hydroxyl groups.
[比較例B2]
下記式(a)で表されるジハイドロジェンポリシロキサン714g(2mol)、
Figure JPOXMLDOC01-appb-C000078
を、ジムロート、温度計、滴下ロートおよび攪拌装置を付けた2Lフラスコに仕込み、80℃まで昇温した。該フラスコに塩化白金酸重曹中和物・ビニルシロキサン錯体のトルエン溶液(白金含有量0.5wt%)を1.6g投入した。次いでアリルアミン57g(1mol)を滴下ロートに仕込み、80~90℃で1時間かけて前記フラスコ内に滴下した。滴下後、GCにより分析を行ったところ、脱水素反応による副生成物と思われる高分子量体など多様な構造の化合物が確認された。
[Comparative Example B2]
714 g (2 mol) of dihydrogenpolysiloxane represented by the following formula (a),
Figure JPOXMLDOC01-appb-C000078
Was charged into a 2 L flask equipped with a Jim funnel, a thermometer, a dropping funnel and a stirrer, and the temperature was raised to 80 ° C. 1.6 g of a toluene solution of chloroplatinic acid sodium bicarbonate / vinylsiloxane complex (platinum content: 0.5 wt%) was added to the flask. Next, 57 g (1 mol) of allylamine was charged into the dropping funnel and dropped into the flask at 80 to 90 ° C. over 1 hour. After the dropwise addition, an analysis was performed by GC. As a result, compounds having various structures such as a high molecular weight compound considered to be a byproduct due to a dehydrogenation reaction were confirmed.
 本発明の化合物は、二つの異なる末端官能基の反応性の違いにより単一化合物を用いて異なる改質を行うことを可能にする。特に、本発明のシリコーン化合物は、ポリシロキサンの両末端に異なる官能基を有し、十分なシロキサン含有率を有することができる。本発明の化合物及び該化合物の製造方法は、樹脂改質用途、医療用デバイスの材料として有用である。 The compounds of the present invention make it possible to perform different modifications using a single compound due to differences in the reactivity of two different terminal functional groups. In particular, the silicone compound of the present invention has different functional groups at both ends of the polysiloxane and can have a sufficient siloxane content. The compound of the present invention and the method for producing the compound are useful as materials for resin modification and medical devices.

Claims (28)

  1. 下記一般式(I)で表されるシリコーン化合物
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、Rは、互いに独立に、置換又は非置換の、不飽和結合を有してよい炭素数1~10の一価炭化水素基であり、mは1~300の整数であり、Q及びQは、互いに独立に、アミド結合、エーテル結合、エステル結合、ウレタン結合、又は不飽和結合から成る群より選ばれる1以上の結合を含んでよい、置換又は非置換の、炭素数1~20の二価炭化水素基であり、Aは、有機金属化合物と非反応性である官能基、ラジカル重合性を有する官能基、又は有機金属化合物と反応性を有する官能基または原子であり、Bは水素原子、又は前記Aの選択肢から選ばれる基又は原子であり、但し、AとBは異なる官能基であり、bは0又は1であり、Bが水素原子の場合bは0であり、Bが水素原子以外の場合bは1である)。
    Silicone compound represented by the following general formula (I)
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (I), R 1 is independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms which may have an unsaturated bond, and m is an integer of 1 to 300. Q 1 and Q 2 may each independently contain one or more bonds selected from the group consisting of an amide bond, an ether bond, an ester bond, a urethane bond, or an unsaturated bond, substituted or unsubstituted , A divalent hydrocarbon group having 1 to 20 carbon atoms, and A is a functional group that is non-reactive with an organometallic compound, a functional group that has radical polymerizability, or a functional group that is reactive with an organometallic compound, or An atom, B is a hydrogen atom, or a group or atom selected from the options of A, provided that A and B are different functional groups, b is 0 or 1, and b is a hydrogen atom. Is 0, and b is 1 when B is other than a hydrogen atom).
  2.  有機金属化合物と非反応性である官能基が、シリル化ヒドロキシル基、ベンジル化ヒドロキシル基、シリル化1,2-エタンジオール基、ベンジル化1,2-エタンジオール基、アルコキシ基、アルケニル基、3級アミノ基、シリル化3級アミノ基、ベンジル化3級アミノ基、4級アンモニウム基、スチリル基、ニトロ基、アジド基、アリール基、アリールアルケニル基、シリル化フェノール基、及びシリル化チオール基から選ばれる、請求項1記載のシリコーン化合物。 Functional groups that are non-reactive with organometallic compounds include silylated hydroxyl groups, benzylated hydroxyl groups, silylated 1,2-ethanediol groups, benzylated 1,2-ethanediol groups, alkoxy groups, alkenyl groups, 3 From primary amino group, silylated tertiary amino group, benzylated tertiary amino group, quaternary ammonium group, styryl group, nitro group, azide group, aryl group, arylalkenyl group, silylated phenol group, and silylated thiol group The silicone compound according to claim 1, which is selected.
  3.  ラジカル重合性を有する官能基が、(メタ)アクリロイル基又は(メタ)アクリルアミド基である、請求項1又は2記載のシリコーン化合物。 The silicone compound according to claim 1 or 2, wherein the functional group having radical polymerizability is a (meth) acryloyl group or a (meth) acrylamide group.
  4.  有機金属化合物と反応性を有する官能基または原子が、エポキシ基、カルボキシル基、イソシアネート基、アルコキシシリル基、ヒドロキシル基、1,2-エタンジオール基、1級アミノ基、2級アミノ基、フェノール基、及びチオール基から選ばれる基、又はハロゲン原子である、請求項1~3のいずれか1項記載のシリコーン化合物。 Functional group or atom having reactivity with organometallic compound is epoxy group, carboxyl group, isocyanate group, alkoxysilyl group, hydroxyl group, 1,2-ethanediol group, primary amino group, secondary amino group, phenol group The silicone compound according to any one of claims 1 to 3, which is a group selected from a thiol group or a halogen atom.
  5.  Q及びQが、互いに独立に、下記(i)又は(ii)で示される基である、請求項1~4のいずれか1項記載のシリコーン化合物
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (式中、kは0~6の整数であり、kが0の場合、gは1~4の整数であり、kが0でない場合、gは1~17の整数であり、且つ、1≦3k+g≦20であり、式中*で示される箇所が式(I)のケイ素原子と結合しており、**で示される箇所がA又はBと結合している)。
    The silicone compound according to any one of claims 1 to 4, wherein Q 1 and Q 2 are each independently a group represented by the following (i) or (ii):
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (Wherein k is an integer from 0 to 6, when k is 0, g is an integer from 1 to 4, when k is not 0, g is an integer from 1 to 17 and 1 ≦ 3k + g ≦ 20, where the part indicated by * is bonded to the silicon atom of formula (I), and the part indicated by ** is bonded to A or B).
  6.  kが1であり、gが1~4の整数である、請求項5記載のシリコーン化合物。 6. The silicone compound according to claim 5, wherein k is 1 and g is an integer of 1 to 4.
  7.  kが0である、請求項5記載のシリコーン化合物。 The silicone compound according to claim 5, wherein k is 0.
  8.  Aが、ヒドロキシル基、シリル化ヒドロキシル基、ベンジル化ヒドロキシル基、1,2-エタンジオール基、シリル化1,2-エタンジオール基、ベンジル化1,2-エタンジオール基、アルコキシ基、アルケニル基、1級アミノ基、3級アミノ基、シリル化3級アミノ基、4級アンモニウム基、及びハロゲン原子から選ばれる、請求項2~7のいずれか一項記載のシリコーン化合物。 A is a hydroxyl group, a silylated hydroxyl group, a benzylated hydroxyl group, a 1,2-ethanediol group, a silylated 1,2-ethanediol group, a benzylated 1,2-ethanediol group, an alkoxy group, an alkenyl group, The silicone compound according to any one of claims 2 to 7, which is selected from a primary amino group, a tertiary amino group, a silylated tertiary amino group, a quaternary ammonium group, and a halogen atom.
  9.  Aがシリル化ヒドロキシル基、アルコキシ基、アルケニル基、ベンジル化ヒドロキシル基、ヒドロキシル基、1級アミノ基、及び3級アミノ基から選ばれる基であり、Bが水素原子、又は(メタ)アクリロイル基、(メタ)アクリルアミド基、ヒドロキシル基、1級アミノ基、3級アミノ基、エポキシ基、及びアルコキシシリル基から選ばれる基であり、但しAとBは異なる官能基又は原子である、請求項8記載のシリコーン化合物。 A is a group selected from a silylated hydroxyl group, an alkoxy group, an alkenyl group, a benzylated hydroxyl group, a hydroxyl group, a primary amino group, and a tertiary amino group, and B is a hydrogen atom or a (meth) acryloyl group, 9. A group selected from a (meth) acrylamide group, a hydroxyl group, a primary amino group, a tertiary amino group, an epoxy group, and an alkoxysilyl group, wherein A and B are different functional groups or atoms. Silicone compounds.
  10.  A及びBのうちいずれかがラジカル重合性を有する官能基である、請求項1~9のいずれか1項記載のシリコーン化合物。 The silicone compound according to any one of claims 1 to 9, wherein one of A and B is a functional group having radical polymerizability.
  11.  請求項10記載のシリコーン化合物のラジカル重合性官能基の付加重合から導かれる繰返し単位を含む重合体。 A polymer containing a repeating unit derived from addition polymerization of a radically polymerizable functional group of the silicone compound according to claim 10.
  12.  請求項10記載のシリコーン化合物のラジカル重合性官能基と、これと重合性の基を有する他の化合物との重合から導かれる繰返し単位を含む共重合体。 A copolymer comprising a radically polymerizable functional group of the silicone compound according to claim 10 and a repeating unit derived from polymerization of the radically polymerizable functional group and another compound having a polymerizable group.
  13.  請求項12記載の共重合体からなる眼科デバイス。 An ophthalmic device comprising the copolymer according to claim 12.
  14.  下記一般式(1)で表される、末端アミノ基および他の末端官能基を有する、請求項4記載のシリコーン化合物
    Figure JPOXMLDOC01-appb-C000004
    (ここでmは1~300の整数であり、Rは、互いに独立に、置換又は非置換の、不飽和結合を有してよい炭素数1~10の一価炭化水素基であり、Xは-QB’で示される、炭素数0~48の有機官能基であり、Qは、単結合又は、アミド結合、エーテル結合、エステル結合、ウレタン結合、又は不飽和結合から成る群より選ばれる1以上の結合を含んでよい、置換又は非置換の、炭素数1~18の二価炭化水素基であり、B’は、有機金属化合物と非反応性である官能基、ラジカル重合性を有する官能基、又は有機金属化合物と反応性を有する官能基である)。
    The silicone compound of Claim 4 which has a terminal amino group and another terminal functional group represented by following General formula (1).
    Figure JPOXMLDOC01-appb-C000004
    (Wherein m is an integer of 1 to 300, and R 1 is, independently of each other, a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms which may have an unsaturated bond, and Is an organic functional group having 0 to 48 carbon atoms, represented by -Q 4 B ′, and Q 4 is a single bond or an amide bond, an ether bond, an ester bond, a urethane bond, or an unsaturated bond. A substituted or unsubstituted divalent hydrocarbon group having 1 to 18 carbon atoms, which may contain one or more selected bonds, and B ′ is a functional group that is non-reactive with an organometallic compound, radical polymerizable Or a functional group having reactivity with an organometallic compound).
  15.  下記一般式(1)において、mが1~6の整数であり、Rは、互いに独立に、置換又は非置換の、不飽和結合を有してよい炭素数1~6の一価炭化水素基である、請求項14記載のシリコーン化合物。 In the following general formula (1), m is an integer of 1 to 6, and R 1 is independently a substituted or unsubstituted monovalent hydrocarbon having 1 to 6 carbon atoms which may have an unsaturated bond The silicone compound according to claim 14, which is a group.
  16.  Xが、ヒドロキシル基、アルコキシ基、アルケニル基、2級アミノ基、3級アミノ基、4級アンモニウム基、ハロゲン原子、ニトロ基、アジド基、エポキシ基、アリール基、アリールアルケニル基、フェノール基、チオール基、カルボキシル基、およびこれら基の一つで置換されたC~C48アルキル基から選ばれた有機官能基であり、アルキル基の炭素-炭素結合がヘテロ原子で中断されていてもよい、請求項15記載の化合物。 X is hydroxyl group, alkoxy group, alkenyl group, secondary amino group, tertiary amino group, quaternary ammonium group, halogen atom, nitro group, azide group, epoxy group, aryl group, arylalkenyl group, phenol group, thiol An organic functional group selected from a group, a carboxyl group, and a C 1 -C 48 alkyl group substituted with one of these groups, wherein the carbon-carbon bond of the alkyl group may be interrupted by a heteroatom, 16. A compound according to claim 15.
  17. アルコキシ基がメトキシ基あるいはエトキシ基であり、アルケニル基がビニル基またはアリル基であり、アリールアルケニル基がスチリル基であり、C~C48アルキル基の炭素‐炭素結合がヘテロ原子で中断されていない、あるいは1以上の酸素原子で中断されている、請求項16記載の化合物。 The alkoxy group is a methoxy group or an ethoxy group, the alkenyl group is a vinyl group or an allyl group, the arylalkenyl group is a styryl group, and the carbon-carbon bond of the C 1 -C 48 alkyl group is interrupted by a heteroatom. 17. A compound according to claim 16 which is absent or interrupted by one or more oxygen atoms.
  18. Xがヒドロキシル基、アルコキシ基、3級アミノ基、およびこれらの基の一つで置換されたC2~10アルキル基から選ばれる鎖である、請求項16~17のいずれか1項記載の化合物。 The compound according to any one of claims 16 to 17, wherein X is a chain selected from a hydroxyl group, an alkoxy group, a tertiary amino group, and a C 2-10 alkyl group substituted with one of these groups. .
  19. 下記式(I)で表されるシリコーン化合物を製造する方法であって、
    Figure JPOXMLDOC01-appb-C000005
    (式(I)中、Rは、互いに独立に、置換又は非置換の、不飽和結合を有してよい炭素数1~10の一価炭化水素基であり、mは1~300の整数であり、Q及びQは、互いに独立に、アミド結合、エーテル結合、エステル結合、ウレタン結合、又は不飽和結合から成る群より選ばれる1以上の結合を含んでよい、置換又は非置換の、炭素数1~20の二価炭化水素基であり、Aは、有機金属化合物と非反応性である官能基、ラジカル重合性を有する官能基、又は有機金属化合物と反応性を有する官能基または原子であり、Bは水素原子、又は前記Aの選択肢から選ばれる基又は原子であり、但し、AとBは異なる官能基又は原子であり、bは0又は1であり、Bが水素原子の場合bは0であり、Bが水素原子以外の場合bは1である)
    該製造方法が、下記式(8)で表されるシロキサンと
    Figure JPOXMLDOC01-appb-C000006
    (R、Q、m、及びAは上記の通りであり、Mtはアルカリ金属原子である)
    下記式(7)で表されるハロゲン化シリル化合物と
    Figure JPOXMLDOC01-appb-C000007
    (R、Q、b及びBは上記の通りであり、Xはハロゲン原子である)
    を反応させて
    上記式(I)で表されるシリコーン化合物を得る工程を含む、前記製造方法。
    A method for producing a silicone compound represented by the following formula (I):
    Figure JPOXMLDOC01-appb-C000005
    (In the formula (I), R 1 is independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms which may have an unsaturated bond, and m is an integer of 1 to 300. Q 1 and Q 2 may each independently contain one or more bonds selected from the group consisting of an amide bond, an ether bond, an ester bond, a urethane bond, or an unsaturated bond, substituted or unsubstituted , A divalent hydrocarbon group having 1 to 20 carbon atoms, and A is a functional group that is non-reactive with an organometallic compound, a functional group that has radical polymerizability, or a functional group that is reactive with an organometallic compound, or An atom, B is a hydrogen atom, or a group or atom selected from the options of A, provided that A and B are different functional groups or atoms, b is 0 or 1, and B is a hydrogen atom. Case b is 0, and b is 1 when B is other than a hydrogen atom. )
    The production method comprises a siloxane represented by the following formula (8):
    Figure JPOXMLDOC01-appb-C000006
    (R 1 , Q 1 , m, and A are as described above, and Mt is an alkali metal atom)
    A halogenated silyl compound represented by the following formula (7):
    Figure JPOXMLDOC01-appb-C000007
    (R 1 , Q 2 , b and B are as described above, and X 1 is a halogen atom)
    The said manufacturing method including the process of making this react and obtaining the silicone compound represented by the said formula (I).
  20. 請求項19記載の製造方法であって、該製造方法が、
    下記式(iii)で表される環状シロキサン
    Figure JPOXMLDOC01-appb-C000008
    (yは3~10の整数であり、R及びQは上記の通りであり、Aは有機金属化合物と非反応性である官能基である)
    又は、
    下記式(iv)で表されるジシロキサンと
    Figure JPOXMLDOC01-appb-C000009
    (R、Q、及びAは上記の通りである)
    有機金属化合物とを反応させて下記式(v)
    Figure JPOXMLDOC01-appb-C000010
    (R、Q、Mt及びAは上記の通りである)
    で表される金属シリケート化合物を得る工程、
    上記式(v)で表される金属シリケート化合物と環状シロキサンとを反応させて下記式(8’)
    Figure JPOXMLDOC01-appb-C000011
    (R、Q、m、Mt、及びAは上記の通りである)
    で表されるシロキサンを得る工程、及び
    上記式(8’)で表されるシロキサンと上記式(7)で表されるハロゲン化シリル化合物とを反応させて上記式(I)で表されるシリコーン化合物を得る工程を含む、前記製造方法。
    The manufacturing method according to claim 19, wherein the manufacturing method comprises:
    Cyclic siloxane represented by the following formula (iii)
    Figure JPOXMLDOC01-appb-C000008
    (Y is an integer of 3 to 10, R 1 and Q 1 are as described above, and A 1 is a functional group that is non-reactive with the organometallic compound)
    Or
    Disiloxane represented by the following formula (iv):
    Figure JPOXMLDOC01-appb-C000009
    (R 1 , Q 1 , and A 1 are as described above)
    Reaction with an organometallic compound results in the following formula (v)
    Figure JPOXMLDOC01-appb-C000010
    (R 1 , Q 1 , Mt and A 1 are as described above)
    A step of obtaining a metal silicate compound represented by:
    The metal silicate compound represented by the above formula (v) is reacted with a cyclic siloxane to give the following formula (8 ′)
    Figure JPOXMLDOC01-appb-C000011
    (R 1 , Q 1 , m, Mt, and A 1 are as described above)
    And a silicone represented by the above formula (I) by reacting the siloxane represented by the above formula (8 ′) with the halogenated silyl compound represented by the above formula (7). The said manufacturing method including the process of obtaining a compound.
  21. 下記式(4)で表される化合物を
    Figure JPOXMLDOC01-appb-C000012
    (式中、mが1~6の整数であり、Rは、互いに独立に、置換又は非置換の、不飽和結合を有してよい炭素数1~6の一価炭化水素基であり、Xは炭素数0~48の有機官能基であり、RはC1~3アルキル基である)
    脱シリル化反応させることにより一般式(1)で表されるシリコーンを得る工程を含む、請求項14~17のいずれか1項に記載の化合物の製造方法。
    A compound represented by the following formula (4)
    Figure JPOXMLDOC01-appb-C000012
    (In the formula, m is an integer of 1 to 6, and R 1 is, independently of each other, a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms which may have an unsaturated bond; X is an organic functional group having 0 to 48 carbon atoms, and R 2 is a C 1-3 alkyl group)
    The method for producing a compound according to any one of claims 14 to 17, comprising a step of obtaining a silicone represented by the general formula (1) by desilylation reaction.
  22.  脱シリル化反応をアルコール存在下で行う、請求項21記載の製造方法。 The production method according to claim 21, wherein the desilylation reaction is performed in the presence of alcohol.
  23.  アルコールが、メタノール、エタノール、1-プロパノール、2-プロパノール、および1-ブタノールから選ばれる、請求項22に記載の製造方法。 The production method according to claim 22, wherein the alcohol is selected from methanol, ethanol, 1-propanol, 2-propanol, and 1-butanol.
  24.  脱シリル化反応を酸触媒の存在下で行う、請求項21~23のいずれか1項に記載の製造方法。 The production method according to any one of claims 21 to 23, wherein the desilylation reaction is carried out in the presence of an acid catalyst.
  25.  酸触媒が水中での酸解離定数(pKa)が2.0以上で表される酸である、請求項24記載の製造方法。 The production method according to claim 24, wherein the acid catalyst is an acid having an acid dissociation constant (pKa) in water of 2.0 or more.
  26. 下記式(3)で表される
    Figure JPOXMLDOC01-appb-C000013
    (式中、mが1~6の整数であり、Rは、互いに独立に、置換又は非置換の、不飽和結合を有してよい炭素数1~6の一価炭化水素基であり、RはC1~3アルキル基である)
    請求項9記載のシリコーン。
    It is represented by the following formula (3)
    Figure JPOXMLDOC01-appb-C000013
    (In the formula, m is an integer of 1 to 6, and R 1 is, independently of each other, a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms which may have an unsaturated bond; R 2 is a C 1-3 alkyl group)
    The silicone according to claim 9.
  27.  下記一般式(2)で表されるジハイドロジェンポリシロキサンと
    Figure JPOXMLDOC01-appb-C000014
    (式中、mが1~6の整数であり、Rは、互いに独立に、置換又は非置換の、不飽和結合を有してよい炭素数1~6の一価炭化水素基である)
    下記式(6)で表わされるビス(トリC1~3アルキルシリル)アリルアミン
    CH=CHCHN(SiR 2   (6)
     (式中、RはC1~3アルキル基である)
    を付加反応させて、一般式(3)
    (式中、m、R及びRは上記の通りである)
    で表されるシリコーンを製造する方法。
    Dihydrogenpolysiloxane represented by the following general formula (2):
    Figure JPOXMLDOC01-appb-C000014
    (In the formula, m is an integer of 1 to 6, and R 1 is, independently of each other, a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms which may have an unsaturated bond)
    Bis (triC 1-3 alkylsilyl) allylamine CH 2 ═CHCH 2 N (SiR 2 3 ) 2 (6) represented by the following formula (6)
    (Wherein R 2 is a C 1-3 alkyl group)
    Is added to form a general formula (3)
    (Wherein m, R 1 and R 2 are as described above)
    The method of manufacturing the silicone represented by these.
  28.  付加反応を、塩化白金酸あるいはカルステッド触媒の存在下で、上記ジハイドロジェンポリシロキサンに上記ビス(トリC1~3アルキルシリル)アリルアミンを滴下して行う、請求項27記載の製造方法。 The addition reaction in the presence of chloroplatinic acid or Karstedt catalyst, carried out by dropwise addition of the dihydrogenpolysiloxanes above bis (tri C 1 ~ 3 alkyl silyl) allylamine, manufacturing method of claim 27.
PCT/JP2016/081233 2015-12-04 2016-10-21 Linear organopolysiloxane having different functional groups at both terminals, and method for producing same WO2017094392A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187015139A KR20180089414A (en) 2015-12-04 2016-10-21 Straight-chain organopolysiloxanes having different functional groups at both ends and their preparation method
CN201680071072.2A CN108473513A (en) 2015-12-04 2016-10-21 There is the straight chain organopolysiloxane and its manufacturing method of different functional groups in two ends
US15/780,195 US20180362716A1 (en) 2015-12-04 2016-10-21 Linear organopolysiloxane having different functional groups at terminals, and a method for producing same
EP16870332.0A EP3385268A4 (en) 2015-12-04 2016-10-21 Linear organopolysiloxane having different functional groups at both terminals, and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015237342 2015-12-04
JP2015-237342 2015-12-04
JP2016-188535 2016-09-27
JP2016188535A JP2017105753A (en) 2015-12-04 2016-09-27 Straight chain organopolysiloxane having different functional group at both terminal, and method of producing the same

Publications (1)

Publication Number Publication Date
WO2017094392A1 true WO2017094392A1 (en) 2017-06-08

Family

ID=58796969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081233 WO2017094392A1 (en) 2015-12-04 2016-10-21 Linear organopolysiloxane having different functional groups at both terminals, and method for producing same

Country Status (1)

Country Link
WO (1) WO2017094392A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3663302A4 (en) * 2017-08-01 2021-03-24 Shin-Etsu Chemical Co., Ltd. Siloxane compound and production method for same
CN115253393A (en) * 2022-07-26 2022-11-01 上海佰奥聚新材料科技有限公司 Preparation method and application of high-efficiency defoaming agent

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62178592A (en) * 1986-01-31 1987-08-05 Shin Etsu Chem Co Ltd Methacrylic acid ester
DE4234846A1 (en) * 1992-10-15 1994-04-21 Wacker Chemie Gmbh Organo:polysiloxane(s) with prim. and sec. amino gp. at one chain end - obtd. by reacting amino:alkyl-substd. cyclic silazane(s) with alpha-hydroxy:organo-(poly)siloxane(s)
DE4436077A1 (en) * 1994-10-10 1996-04-11 Huels Silicone Gmbh Organo-siloxane(s) useful as polymer compatibiliser or modifier for pigment and filler
JP2001122967A (en) * 1999-10-28 2001-05-08 Dow Corning Toray Silicone Co Ltd Diorganopolysiloxane and method of producing the same
US6242554B1 (en) * 1998-11-14 2001-06-05 Th. Goldschmidt Ag Polysiloxanes having polyether quat functions
JP2014505067A (en) * 2011-02-01 2014-02-27 ディーエスエム アイピー アセッツ ビー.ブイ. Silicone-containing monomers with hydrophilic end groups
CN104829842A (en) * 2015-05-11 2015-08-12 陕西科技大学 Preparation method and application of silicon-containing dendritic-linear greasing agent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62178592A (en) * 1986-01-31 1987-08-05 Shin Etsu Chem Co Ltd Methacrylic acid ester
DE4234846A1 (en) * 1992-10-15 1994-04-21 Wacker Chemie Gmbh Organo:polysiloxane(s) with prim. and sec. amino gp. at one chain end - obtd. by reacting amino:alkyl-substd. cyclic silazane(s) with alpha-hydroxy:organo-(poly)siloxane(s)
DE4436077A1 (en) * 1994-10-10 1996-04-11 Huels Silicone Gmbh Organo-siloxane(s) useful as polymer compatibiliser or modifier for pigment and filler
US6242554B1 (en) * 1998-11-14 2001-06-05 Th. Goldschmidt Ag Polysiloxanes having polyether quat functions
JP2001122967A (en) * 1999-10-28 2001-05-08 Dow Corning Toray Silicone Co Ltd Diorganopolysiloxane and method of producing the same
JP2014505067A (en) * 2011-02-01 2014-02-27 ディーエスエム アイピー アセッツ ビー.ブイ. Silicone-containing monomers with hydrophilic end groups
CN104829842A (en) * 2015-05-11 2015-08-12 陕西科技大学 Preparation method and application of silicon-containing dendritic-linear greasing agent

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
IL 'INA, M. A. ET AL.: "Spectral study of interaction between allyl ethers and hydrosiloxanes", RUSSIAN JOURNAL OF GENERAL CHEMISTRY, vol. 84, no. 1, 2014, pages 40 - 69, XP055392612 *
LI, CHUNFANG ET AL.: "Dendritic amphiphiles of carbosilane dendrimers with peripheral PEG for drug encapsulation", JOURNAL OF POLYMER RESEARCH, vol. 20, no. 8, 2013, pages 1 - 6, XP055496921 *
MALIC, NINO ET AL.: "Fast switching immobilized photochromic dyes", JOURNAL OF POLYMER SCIENCE , PART A: POLYMER CHEMISTRY, vol. 49, no. 2, 2011, pages 476 - 486, XP055392616 *
SUZUKI, TOSHIO ET AL.: "Poly(dimethylsiloxane) macromonomers having both alkenyl and polymerizable groups", APPLICATION TO CROSSLINKABLE COPOLYMERS, POLYMER, vol. 29, no. 11, 1988, pages 2095 - 2099, XP024120349 *
WANG, ZHEN ET AL.: "Amine-functionalized siloxane oligomer facilitated synthesis of subnanometer colloidal Au particles", JOURNAL OF MATERIALS CHEMISTRY A: MATERIALS FOR ENERGY AND SUSTAINABILITY, vol. 3, no. 4, 25 November 2014 (2014-11-25), pages 1743 - 1751, XP055392607 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3663302A4 (en) * 2017-08-01 2021-03-24 Shin-Etsu Chemical Co., Ltd. Siloxane compound and production method for same
CN115253393A (en) * 2022-07-26 2022-11-01 上海佰奥聚新材料科技有限公司 Preparation method and application of high-efficiency defoaming agent

Similar Documents

Publication Publication Date Title
JP2017105753A (en) Straight chain organopolysiloxane having different functional group at both terminal, and method of producing the same
JP4646152B2 (en) Monomers for ophthalmic device manufacturing
JP6990982B2 (en) Polysiloxane monomer and its manufacturing method
US20060229423A1 (en) Process for the production of monodisperse and narrow disperse monofunctional silicones
JPH0623255B2 (en) Method for producing perfluoroalkyl group-containing organopolysiloxane
AU629899B2 (en) Selective monohydrosilation of vinyl and ethynyl functional norbornenes and curable products produced thereby
JP5342795B2 (en) 籠 Structure-containing curable silicone copolymer, method for producing the same, curable resin composition using 籠 structure-containing curable silicone copolymer, and cured product thereof
JP5990909B2 (en) One-end functional group-containing organopolysiloxane and method for producing the same
KR101504308B1 (en) Curable silicone copolymer containing cage structure and process for production thereof, and curable resin composition comprising curable silicone copolymer containing cage structure and cured product thereof
KR20170042476A (en) Monofunctional branched organosiloxane compound and method for producing the same
WO2017094392A1 (en) Linear organopolysiloxane having different functional groups at both terminals, and method for producing same
WO2020246313A1 (en) Siloxane and method for producing same
EP2921497B1 (en) Silicone compound and a use thereof
JP2715652B2 (en) Method for producing hydrogen polysiloxane
KR20200089692A (en) Siloxane compound and its manufacturing method
KR101833070B1 (en) Glycerol (meth)acrylate-ended modified silicone and process for preparing the same
JP6390473B2 (en) Silacyclobutane ring-opened polymer modified at both ends and method for producing the same
JP6003856B2 (en) Terminally modified silacyclobutane ring-opening polymer and process for producing the same
JPH07224168A (en) (meth)acrylic function organopolysiloxane and its production
JP3257414B2 (en) Organopolysiloxane having cyclic ether group
JP2019123835A (en) Silicone production method
JPH01294738A (en) Production of linear polyorganosiloxane
JPH11106511A (en) Organosilicon compound and preparation thereof
JP2000034350A (en) Polysiloxane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870332

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187015139

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016870332

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016870332

Country of ref document: EP

Effective date: 20180704