WO2016203668A1 - Three-dimensional measurement device - Google Patents
Three-dimensional measurement device Download PDFInfo
- Publication number
- WO2016203668A1 WO2016203668A1 PCT/JP2015/082098 JP2015082098W WO2016203668A1 WO 2016203668 A1 WO2016203668 A1 WO 2016203668A1 JP 2015082098 W JP2015082098 W JP 2015082098W WO 2016203668 A1 WO2016203668 A1 WO 2016203668A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measurement
- light pattern
- measured
- measurement value
- image data
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
Definitions
- the present invention relates to a three-dimensional measurement apparatus that performs height measurement using a phase shift method.
- cream solder is first printed on a predetermined electrode pattern disposed on the printed circuit board.
- an electronic component is temporarily fixed on the printed circuit board based on the viscosity of the cream solder.
- the printed circuit board is guided to a reflow furnace, and soldering is performed through a predetermined reflow process.
- a three-dimensional measuring device is sometimes used for such inspection.
- a combination of a light source that emits predetermined light and a grating that converts light from the light source into a light pattern having a sinusoidal (stripe) light intensity distribution is irradiated onto the object to be measured (in this case, cream solder printed on the printed circuit board) by the irradiation means.
- the imaging means which has arrange
- the imaging means a CCD camera or the like including a lens and an imaging element is used.
- the light intensity (luminance) I of each coordinate (pixel) on the image data imaged by the imaging means is given by the following equation (R1).
- I f ⁇ sin ⁇ + e (R1) Where f: gain, e: offset, and ⁇ : phase of the light pattern.
- the phase of the light pattern is changed in, for example, four stages ( ⁇ + 0, ⁇ + 90 °, ⁇ + 180 °, ⁇ + 270 °), and intensity distributions I 0 , I 1 , I 2 corresponding thereto.
- I 3 is taken in, f (gain) and e (offset) are canceled based on the following formula (R2), and the phase ⁇ is obtained.
- actual measured objects may be high or low.
- the period of the light pattern to be irradiated (the interval between the stripes) is increased in accordance with the maximum height of these objects to be measured, the resolution becomes rough and the measurement accuracy may be deteriorated.
- the accuracy can be improved by narrowing the period of the light pattern, there is a risk that the measurement range in which the height can be measured will be insufficient (the fringe order will be different). .
- the phase is changed in four steps (or three steps), and four patterns ( (Or three ways) after imaging, the second light pattern of the second period is irradiated, the phase is changed in four steps (or three steps), and four (or three) images under these
- the time required for measurement of the single printed board is further several times that time. Therefore, further shortening of the measurement time is required.
- the present invention has been made in view of the above circumstances, and its purpose is to expand the measurement range using a plurality of lights having different periods when performing height measurement using the phase shift method.
- An object of the present invention is to provide a three-dimensional measuring apparatus that can shorten the measuring time.
- An irradiating means capable of irradiating the object to be measured with a plurality of light patterns having at least a striped light intensity distribution and different periods (stripe pitch)
- Phase control means capable of changing the phase of the light pattern irradiated from the irradiation means in a plurality of ways
- Imaging means capable of imaging reflected light from the object to be measured irradiated with the light pattern
- Image processing means capable of performing three-dimensional measurement of the object to be measured by a phase shift method based on image data picked up by the image pickup means;
- the image processing means includes Based on the first predetermined number of image data captured by irradiating the first light pattern of the first period with a first predetermined number (for example, three or four) phases, the measurement target on the image data
- First measurement value acquisition means for performing measurement related to coordinates (pixels) and acquiring the measurement values (height measurement values or phase measurement values) as first measurement values related to the measured coordinates
- Gain offset acquisition means for acquiring a gain
- Second measurement value acquisition means for acquiring (measurement value) as a second measurement value related to the measured coordinates;
- a three-dimensional measurement comprising: height data acquisition means capable of acquiring height data specified from the first measurement value and the second measurement value as height data related to the measured coordinates. apparatus.
- the three-dimensional measurement is performed based on the image data obtained by irradiating the measurement target with the first light pattern of the first period, and the measurement value is acquired as the first measurement value.
- Three-dimensional measurement is performed based on image data obtained by irradiating the measurement object with the second light pattern of the second period, and the measurement value is acquired as the second measurement value.
- the height data specified from the first measurement value and the second measurement value is acquired as the true height data related to the measured coordinates.
- the second light when measuring with the second light pattern by using the gain and offset values of each coordinate obtained from the image data captured at the time of measurement with the first light pattern, the second light is used.
- the number of images to be imaged under the pattern (number of imaging times) may be smaller than the number of images to be imaged under the first light pattern.
- the first light pattern is irradiated with four phases
- four images are captured under the first light pattern
- the second light pattern is irradiated with one phase
- one image is captured under the second light pattern.
- the number of times of imaging is five times, and the imaging time is significantly reduced.
- the total number of times of imaging can be reduced and the imaging time can be shortened as compared with the conventional technique in which only two types of light patterns having different periods are used. As a result, the measurement time can be dramatically shortened.
- the second measurement value acquisition unit calculates the phase ⁇ of the second light pattern that satisfies at least the relationship of the following formula (S1) when acquiring the second measurement value.
- the three-dimensional measuring apparatus according to means 1, characterized in that:
- V 0 Asin ⁇ + B (S1) Where V 0 is the luminance value of the measured coordinate, A is the gain of the measured coordinate, and B is the offset of the measured coordinate.
- the effect of the means 1 is more effective.
- phase ⁇ sin ⁇ 1 ⁇ (V 0 ⁇ B) / A ⁇ (S3)
- the second measurement value acquisition unit obtains the second light pattern satisfying the relationship of at least the following formulas (T1) and (T2) when acquiring the second measurement value.
- the three-dimensional measuring apparatus according to means 1, wherein the phase ⁇ is calculated.
- V 0 Asin ⁇ + B (T1)
- V 1 Asin ( ⁇ + 90 °) + B (T2)
- V 0 , V 1 brightness value of measured coordinate of two kinds of image data, A: gain of measured coordinate, B: offset of measured coordinate.
- phase ⁇ tan ⁇ 1 ⁇ (V 0 ⁇ B) / (V 1 ⁇ B) ⁇ (T8)
- the phase ⁇ can be specified by the known luminance values V 0 and V 1 acquired by the second light pattern and the known offset B acquired by the first light pattern.
- the phase ⁇ can be obtained based on the arithmetic expression using “tan ⁇ 1 ”, the height can be measured in the range of 360 ° from ⁇ 180 ° to 180 °. The range can be increased.
- Means 4. The three-dimensional measuring apparatus according to claim 1, wherein the object to be measured is cream solder printed on a printed circuit board or solder bumps formed on a wafer substrate.
- the above means 4 it is possible to measure the height of cream solder printed on a printed circuit board or solder bumps formed on a wafer substrate. As a result, in the inspection of cream solder or solder bumps, the quality of cream solder or solder bumps can be determined based on the measured values. Therefore, in such an inspection, the effect of each means described above is exhibited, and the quality determination can be performed with high accuracy. As a result, it is possible to improve the inspection accuracy in the solder printing inspection apparatus or the solder bump inspection apparatus.
- FIG. 1 is a schematic configuration diagram schematically illustrating a substrate inspection apparatus 1 including a three-dimensional measurement apparatus according to the present embodiment.
- the substrate inspection apparatus 1 includes a mounting table 3 for mounting a printed circuit board 2 on which cream solder as an object to be measured is printed, and a predetermined angle from above on the surface of the printed circuit board 2.
- Illumination device 4 as an irradiating means for irradiating a light pattern
- a camera 5 as an imaging means for imaging a portion irradiated with a light pattern on printed circuit board 2, and various controls and images in substrate inspection apparatus 1
- a control device 6 for performing processing and arithmetic processing.
- the mounting table 3 is provided with motors 15 and 16, and the motors 15 and 16 are driven and controlled by the control device 6 (motor control means 23), whereby the printed circuit board mounted on the mounting table 3. 2 can be slid in any direction (X-axis direction and Y-axis direction).
- the illumination device 4 includes a light source 4a that emits predetermined light, and a liquid crystal lattice 4b that converts light from the light source 4a into a light pattern having a sinusoidal (stripe) light intensity distribution.
- a light source 4a that emits predetermined light
- a liquid crystal lattice 4b that converts light from the light source 4a into a light pattern having a sinusoidal (stripe) light intensity distribution.
- the light emitted from the light source 4a is guided to a pair of condensing lenses by an optical fiber, and is converted into parallel light there.
- the parallel light is guided to the projection lens through the liquid crystal grating 4b. Then, a striped light pattern is irradiated onto the printed circuit board 2 from the projection lens.
- the liquid crystal lattice 4b includes a liquid crystal layer formed between a pair of transparent substrates, a common electrode disposed on one transparent substrate, and a plurality of strips arranged in parallel on the other transparent substrate so as to face the common electrode.
- Each of the grids corresponding to each band electrode by controlling on and off the switching elements (thin film transistors, etc.) connected to each band electrode by a drive circuit and controlling the voltage applied to each band electrode.
- the light transmittance of the line is switched to form a striped lattice pattern composed of a “bright portion” having a high light transmittance and a “dark portion” having a low light transmittance.
- the light irradiated on the printed circuit board 2 via the liquid crystal grating 4b becomes a light pattern having a sinusoidal light intensity distribution due to blur caused by diffraction action or the like.
- the illumination device 4 is configured to be able to switch and irradiate a plurality of types of light patterns having different periods (stripe pitch).
- two types of light patterns a first light pattern with a period of 600 ⁇ m and a second light pattern with a period of 800 ⁇ m, are switched and irradiated.
- “600 ⁇ m” corresponds to the “first period”
- “800 ⁇ m” corresponds to the “second period”.
- the liquid crystal grating 4b is controlled, for example, a sinusoidal wave having a width of six grid lines (a “bright part” of three grid lines and a “dark part” of three grid lines) as one cycle.
- a sinusoidal wave having a width of six grid lines (a “bright part” of three grid lines and a “dark part” of three grid lines) as one cycle.
- a sinusoidal light pattern with a width of 8 grating lines (a “bright part” for 4 grating lines and a “dark part” for 4 grating lines) as one period, a period of 800 ⁇ m is generated.
- the second light pattern can be irradiated.
- the camera 5 includes a lens, an image sensor, and the like.
- a CMOS sensor is used as the image sensor.
- the imaging device is not limited to this, and a CCD sensor or the like may be employed, for example.
- Image data captured by the camera 5 is converted into a digital signal inside the camera 5 and then input to the control device 6 (image data storage means 24) in the form of a digital signal. Then, the control device 6 performs image processing, inspection processing, and the like, which will be described later, based on the image data. In this sense, the control device 6 constitutes image processing means.
- the control device 6 includes a camera control unit 21 that controls the imaging timing of the camera 5, an illumination control unit 22 that controls the illumination device 4, and a motor control unit 23 that controls the motors 15 and 16.
- Image data storage means 24 for storing image data (luminance data) picked up by the camera 5, and gain / offset storage means 25 for storing gain A and offset B values calculated later based on the image data.
- Three-dimensional measurement means 26 for performing three-dimensional measurement based on at least the image data, a measurement value storage means 27 for storing the measurement result of the three-dimensional measurement means 26, and the measurement value storage means 27.
- Height data acquisition means 28 for acquiring true height data (absolute height data) based on the measurement value, and based on the height data obtained by the height data acquisition means 28 And a determination unit 30 for checking the print status of the ream solder 4.
- the phase control means in this embodiment is constituted by the illumination control means 22 that controls the illumination device 4 (liquid crystal grating 4b).
- the board inspection apparatus 1 includes an input unit composed of a keyboard and a touch panel, a display unit having a display screen such as a CRT or a liquid crystal, a storage unit for storing inspection results, and a solder printer. Output means for outputting inspection results and the like.
- This inspection routine is executed by the control device 6.
- the control device 6 (motor control means 23) first drives and controls the motors 15 and 16 to move the printed circuit board 2, and adjusts the field of view of the camera 5 to a predetermined inspection area (measurement range) on the printed circuit board 2.
- the inspection area is one area in which the surface of the printed circuit board 2 is divided in advance with the size of the field of view of the camera 5 as one unit.
- control device 6 switches and controls the liquid crystal grating 4b of the illumination device 4, sets the position of the grating formed in the liquid crystal grating 4b to a predetermined reference position (phase “0 °”), and the pitch thereof. Is set to a period of 600 ⁇ m corresponding to the first light pattern.
- the control device 6 When the switching setting of the liquid crystal lattice 4b is completed, the control device 6 first causes the illumination control means 22 to emit light from the light source 4a of the illumination device 4, starts irradiation of the first light pattern (period 600 ⁇ m), and the camera control means 21. Then, the camera 5 is driven and controlled to image the inspection area portion irradiated with the first light pattern. Here, the image data captured by the camera 5 is transferred to and stored in the image data storage device 24.
- the above-described series of imaging processes is performed under the three first light patterns (phase “90 °”, phase “180 °”, phase “270 °”) with the phase shifted by 90 °.
- four types of image data captured under the first light pattern with the phase shifted by 90 ° for a predetermined inspection area are acquired.
- the control device 6 calculates the phase theta 1 of the first light pattern in each coordinate from the image data of four types above (luminance value).
- the luminance values V 10 , V 11 , V 12 , and V 13 at the respective coordinates of the four types of image data can be expressed by the following formulas (H1), (H2), (H3), and (H4). .
- the series of processing functions constitute the first measurement value acquisition means in the present embodiment.
- the gain A and the offset B at each coordinate are specified from the above-described four kinds of image data captured under the first light pattern.
- Such processing functions constitute the gain offset acquisition means in the present embodiment.
- the gain A and offset B calculation processing is performed in parallel with the calculation processing of the first height measurement value after the acquisition of the four types of image data.
- the gain A and the offset B at each coordinate calculated in this way are stored in the gain / offset storage means 25.
- the control device 6 starts an imaging process related to the second light pattern (period 800 ⁇ m).
- the imaging process related to the second light pattern is started immediately after the series of imaging processes related to the first light pattern is completed. That is, the calculation process of the first height measurement value and the calculation process of the gain A and the offset B are performed in parallel.
- control device 6 switches and controls the liquid crystal grating 4b of the illuminating device 4, sets the position of the grating formed in the liquid crystal grating 4b to the reference position (phase “0 °”), and the pitch thereof. Is set to a period of 800 ⁇ m corresponding to the second light pattern.
- the control device 6 When the switching setting of the liquid crystal lattice 4b is completed, the control device 6 first causes the illumination control means 22 to emit light from the light source 4a of the illumination device 4, starts irradiation of the second light pattern (period 800 ⁇ m), and the camera control means 21. Then, the camera 5 is driven and controlled to image the inspection area portion irradiated with the second light pattern. Here, the image data captured by the camera 5 is transferred to and stored in the image data storage device 24.
- the imaging process related to the second light pattern in the present embodiment is performed only once under the second light pattern having the phase “0 °”. That is, in the present embodiment, only one type of image data captured under the second light pattern with the phase “0 °” is acquired for a predetermined inspection area.
- control device 6 uses a single image data (luminance value) imaged under the second light pattern, and a gain A and an offset B stored in the gain / offset storage means 25.
- the phase ⁇ 2 of the second light pattern at each coordinate is calculated based on this value.
- the luminance value V 20 at each coordinate of the one type of image data can be expressed by the following equation (H11).
- the series of processing functions constitute the second measurement value acquisition unit in the present embodiment.
- control device 6 (height data acquisition means 28), based on the first measurement value and the second measurement value relating to each coordinate stored in the measurement value storage means 27, the true height data relating to the coordinate. To get.
- Such processing functions constitute the height data acquisition means in this embodiment.
- ⁇ 300 ( ⁇ m) such as “ ⁇ 300 ( ⁇ m)”, “ ⁇ 200 ( ⁇ m)”, “ ⁇ 100 ( ⁇ m)”, etc.
- ⁇ 300 ( ⁇ m) by the first light pattern (period of 600 ⁇ m).
- +300 ( ⁇ m) can be measured with an accuracy of“ 100 ( ⁇ m) ”.
- +300 ( ⁇ m) corresponds to “ ⁇ 300 ( ⁇ m)” in the next higher stripe order.
- the true height data candidate for the measured coordinate is the fringe order [ 1] “+100 ( ⁇ m)”, fringe order [2] “+700 ( ⁇ m)”, or fringe order [3] “+1300 ( ⁇ m)”.
- the true height data of the measured coordinate is the fringe order [ 2], which is a value corresponding to the first measured value of “+700 ( ⁇ m)”.
- control apparatus 6 detects the printing range of the cream solder which became higher than a reference plane based on the true height data in each coordinate of the inspection area obtained in this way, and this range The amount of the printed cream solder is calculated by integrating the height of each part inside.
- control device 6 determines the data such as the position, area, height or quantity of the cream solder thus obtained with reference data stored in advance, and the comparison result is acceptable. Whether the printed state of the cream solder in the inspection area is good or bad is determined depending on whether or not it is within the range.
- control device 6 drives and controls the motors 15 and 16 to move the printed circuit board 2 to the next inspection area. Thereafter, the above series of processing is performed in all inspection areas. By being repeatedly performed, the inspection of the entire printed circuit board 2 is completed.
- the three-dimensional measurement is performed based on the image data obtained by irradiating the printed circuit board 2 with the first light pattern of the first period (period 600 ⁇ m), and the measurement is performed.
- a value is acquired as a first measurement value
- a three-dimensional measurement is performed based on image data obtained by irradiating the printed circuit board 2 with a second light pattern having a second period (period of 800 ⁇ m). Obtained as the second measurement value.
- the height data specified from the 1st measurement value and the 2nd measurement value are acquired as true height data.
- the number of images to be captured under the second light pattern may be smaller than the number of images to be captured under the first light pattern.
- the total number of times of imaging is five, and the imaging time is significantly reduced.
- the total number of times of imaging can be reduced and the imaging time can be shortened as compared with the conventional technique in which only two types of light patterns having different periods are used. As a result, the measurement time can be dramatically shortened.
- the three-dimensional measuring device is embodied as the substrate inspection device 1 that measures the height of the cream solder printed on the printed circuit board 2, but is not limited thereto, for example, printing on the substrate You may embody in the structure which measures the height of other things, such as the solder bump made and the electronic component mounted on the board
- the grating for converting the light from the light source 4a into a striped light pattern is constituted by the liquid crystal grating 4b, and the phase of the light pattern is shifted by switching this. It has a configuration.
- the grating member may be transferred by a transfer unit such as a piezo actuator to shift the phase of the light pattern.
- the phase shift method is used to increase the frequency based on the four image data captured under the four first light patterns whose phases are different by 90 ° at the time of measurement using the first light pattern.
- the present invention is not limited to this, and for example, a configuration in which height measurement is performed based on three types of image data captured under three types of first light patterns whose phases are different by 120 °. It is good. That is, the “first predetermined number” that is the number of times of imaging under the first light pattern may be any number that can at least perform height measurement by the phase shift method.
- a known gain is obtained based on one image data obtained by irradiating a second light pattern having one phase without phase shift at the time of measurement using the second light pattern.
- the height is measured using the values of A and offset B.
- height measurement is performed using the values of known gain A and / or offset B. It is good also as a structure to perform.
- the “second predetermined number” that is the number of times of imaging under the second light pattern may be a number smaller than at least the “first predetermined number” that is the number of times of imaging under the first light pattern.
- the second light when the measurement is performed using the first light pattern, if the height measurement is performed based on four types of image data captured under the first light pattern having four phases, the second light At the time of measurement using a pattern, height measurement is performed using known gain A and / or offset B values based on three types of image data captured under a second light pattern having three phases. It is good also as a structure. Even in such a case, the phase ⁇ 2 of the second light pattern can be obtained based on a relatively simple arithmetic expression as compared with the conventional case, and the processing speed can be increased.
- (E) As a configuration for performing height measurement based on two types of image data captured under two types of second light patterns having different phases, for example, two types of second light patterns having phases different by 90 ° are used. There is a configuration in which height measurement is performed based on two types of image data captured below.
- the phase ⁇ 2 of the second light pattern at each coordinate includes the known luminance values V 20 and V 21 at each coordinate on the two types of image data acquired by the second light pattern, and the first It can be specified by the known offset B acquired by the light pattern [see the above formula (T8)].
- the phase ⁇ 2 can be obtained based on an arithmetic expression using “tan ⁇ 1 ”, so that the height can be measured in a range of 360 ° from ⁇ 180 ° to 180 °. The range can be increased.
- the present invention is not limited to the configuration in which the height measurement is performed based on the two types of image data captured under the two types of second light patterns whose phases are different by 90 °.
- the two types of second light whose phases are different by 180 °.
- the height may be measured based on two types of image data captured under the pattern.
- the first measurement is performed (the first measurement value is acquired) using the first light pattern having the shorter cycle (cycle 600 ⁇ m), and the second light pattern having the longer cycle (cycle 800 ⁇ m).
- the present invention is not limited to this, and the first measurement is performed with the light pattern with the longer cycle, and the first measurement is performed with the light pattern with the shorter cycle. It is good also as a structure which performs 2 measurement.
- (G) In the above embodiment, a case where measurement is performed up to a height of 1500 ⁇ m by combining a first light pattern with a period of 600 ⁇ m and a second light pattern with a period of 800 ⁇ m is illustrated.
- the pattern period, resolution, and measurement range are not limited to this.
- the period of the first light pattern may be shorter (for example, 400 ⁇ m), and the first light pattern may have a configuration in which measurement can be performed in a range in which the stripe order of the first light pattern is 4 or more.
- the height measurement value is stored in the measurement value storage means 27 as the first measurement value and the second measurement value.
- the phase measurement values (phases ⁇ 1 and ⁇ 2 ) may be stored as two measurement values.
- the measurement range is expanded by irradiating two types of light patterns having different periods.
- the present invention is not limited to this, and three or more types of light patterns having different periods are irradiated. It is good also as a structure which expands a measurement range.
- the measurement using the light pattern with the period ⁇ is not limited to the measurement performed first among the three types of measurement, and may be measurement performed second.
- the offset B is used.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Provided is a three-dimensional measurement device that, when measuring height using a phase shift method, uses light of a plurality of differing periods to broaden a measurement range and shorten a measurement time. A substrate inspection device 1 is provided with an illumination device 4 capable of irradiating two light patterns onto a printed circuit board 2 from diagonally above, a camera 5 for imaging the part of the printed circuit board 2 onto which the light patterns are irradiated, and a control device 6 for carrying out various control, image processing, and calculation in the substrate inspection device 1. The control device 6 acquires a first height measurement value from image data obtained from the irradiation of a first light pattern having a first period and acquires gain and offset values from the image data. Next, the control device 6 uses the gain and offset values to acquire a second height measurement value from image data obtained by irradiating a second light pattern having a second period. The control device 6 acquires height data specified on the basis of the first measurement value and second measurement value as true height data.
Description
本発明は、位相シフト法を利用して高さ計測を行う三次元計測装置に関するものである。
The present invention relates to a three-dimensional measurement apparatus that performs height measurement using a phase shift method.
一般に、プリント基板上に電子部品を実装する場合、まずプリント基板上に配設された所定の電極パターン上にクリーム半田が印刷される。次に、該クリーム半田の粘性に基づいてプリント基板上に電子部品が仮止めされる。その後、前記プリント基板がリフロー炉へ導かれ、所定のリフロー工程を経ることで半田付けが行われる。昨今では、リフロー炉に導かれる前段階においてクリーム半田の印刷状態を検査する必要があり、かかる検査に際して三次元計測装置が用いられることがある。
Generally, when an electronic component is mounted on a printed circuit board, cream solder is first printed on a predetermined electrode pattern disposed on the printed circuit board. Next, an electronic component is temporarily fixed on the printed circuit board based on the viscosity of the cream solder. Thereafter, the printed circuit board is guided to a reflow furnace, and soldering is performed through a predetermined reflow process. In recent years, it is necessary to inspect the printed state of the cream solder in a stage before being led to the reflow furnace, and a three-dimensional measuring device is sometimes used for such inspection.
近年、光を用いたいわゆる非接触式の三次元計測装置が種々提案されており、例えば位相シフト法を用いた三次元計測装置に関する技術が提案されている。
In recent years, various so-called non-contact type three-dimensional measuring apparatuses using light have been proposed. For example, a technique relating to a three-dimensional measuring apparatus using a phase shift method has been proposed.
当該位相シフト法を利用した三次元計測装置においては、所定の光を発する光源と、当該光源からの光を正弦波状(縞状)の光強度分布を有する光パターンに変換する格子との組み合わせからなる照射手段により、光パターンを被計測物(この場合、プリント基板に印刷されたクリーム半田)に照射する。そして、基板上の点を真上に配置した撮像手段を用いて観測する。撮像手段としては、レンズ及び撮像素子等からなるCCDカメラ等が用いられる。
In the three-dimensional measuring device using the phase shift method, a combination of a light source that emits predetermined light and a grating that converts light from the light source into a light pattern having a sinusoidal (stripe) light intensity distribution. The light pattern is irradiated onto the object to be measured (in this case, cream solder printed on the printed circuit board) by the irradiation means. And it observes using the imaging means which has arrange | positioned the point on a board | substrate directly above. As the imaging means, a CCD camera or the like including a lens and an imaging element is used.
上記構成の下、撮像手段により撮像された画像データ上の各座標(画素)の光の強度(輝度)Iは下式(R1)で与えられる。
Under the above configuration, the light intensity (luminance) I of each coordinate (pixel) on the image data imaged by the imaging means is given by the following equation (R1).
I=f・sinφ+e ・・(R1)
但し、f:ゲイン、e:オフセット、φ:光パターンの位相。 I = f · sinφ + e (R1)
Where f: gain, e: offset, and φ: phase of the light pattern.
但し、f:ゲイン、e:オフセット、φ:光パターンの位相。 I = f · sinφ + e (R1)
Where f: gain, e: offset, and φ: phase of the light pattern.
ここで、上記格子を切替制御することにより、光パターンの位相を例えば4段階(φ+0、φ+90°、φ+180°、φ+270°)に変化させ、これらに対応する強度分布I0、I1、I2、I3をもつ画像データを取り込み、下記式(R2)に基づいてf(ゲイン)とe(オフセット)をキャンセルし、位相φを求める。
Here, by switching and controlling the grating, the phase of the light pattern is changed in, for example, four stages (φ + 0, φ + 90 °, φ + 180 °, φ + 270 °), and intensity distributions I 0 , I 1 , I 2 corresponding thereto. , I 3 is taken in, f (gain) and e (offset) are canceled based on the following formula (R2), and the phase φ is obtained.
φ=tan-1[(I1-I3)/(I2-I0)] ・・(R2)
そして、この位相φを用いて、三角測量の原理に基づき、クリーム半田等の被計測物上の各座標(X,Y)における高さ(Z)が求められる。 φ = tan −1 [(I 1 −I 3 ) / (I 2 −I 0 )] (R2)
Then, using this phase φ, the height (Z) at each coordinate (X, Y) on the object to be measured such as cream solder is obtained based on the principle of triangulation.
そして、この位相φを用いて、三角測量の原理に基づき、クリーム半田等の被計測物上の各座標(X,Y)における高さ(Z)が求められる。 φ = tan −1 [(I 1 −I 3 ) / (I 2 −I 0 )] (R2)
Then, using this phase φ, the height (Z) at each coordinate (X, Y) on the object to be measured such as cream solder is obtained based on the principle of triangulation.
しかしながら、実際の被計測物には、高いものもあれば低いものもある。例えばクリーム半田に関して言えば、薄膜状のものもあれば、円錐台状をなして突起しているものもある。そして、これら被計測物のうち最大の高さに合わせて、照射する光パターンの周期(縞の間隔)を広くすると、分解能が粗くなってしまい、計測精度が悪化してしまうおそれがある。一方で、光パターンの周期を狭くすることで、精度の向上を図ることはできるものの、高さ計測可能な計測レンジが足りなくなってしまう(縞次数が別のものとなってしまう)おそれがある。
However, actual measured objects may be high or low. For example, when it comes to cream solder, there is a thin film type, and there are some that protrude in the shape of a truncated cone. If the period of the light pattern to be irradiated (the interval between the stripes) is increased in accordance with the maximum height of these objects to be measured, the resolution becomes rough and the measurement accuracy may be deteriorated. On the other hand, although the accuracy can be improved by narrowing the period of the light pattern, there is a risk that the measurement range in which the height can be measured will be insufficient (the fringe order will be different). .
これに鑑み、近年では、レンジ不足を解消するため、周期が異なる2種類の光パターンを利用して計測を行う三次元計測装置も提案されている(例えば、特許文献1参照)。
In view of this, in recent years, a three-dimensional measurement apparatus that performs measurement using two types of light patterns with different periods has been proposed in order to solve the shortage of the range (see, for example, Patent Document 1).
しかしながら、上記のとおり、位相シフト法を利用した三次元計測においては、照射する光パターンの位相を4段階(又は3段階)に変化させ、4通り(又は3通り)の画像を撮像する必要がある。
However, as described above, in the three-dimensional measurement using the phase shift method, it is necessary to change the phase of the light pattern to be irradiated in four steps (or three steps) and capture four (or three) images. is there.
従って、周期が異なる2種類の光パターンを用いる場合には、まず第1周期の第1光パターンを照射し、その位相を4段階(又は3段階)に変化させ、これらの下で4通り(又は3通り)の画像を撮像した後、第2周期の第2光パターンを照射し、その位相を4段階(又は3段階)に変化させ、これらの下で4通り(又は3通り)の画像を撮像するといったように、各光パターンにつき4回(又は3回)ずつ、計8回(又は6回)の撮像が必要となり、撮像時間が大幅に増大するおそれがあった。
Accordingly, when two types of light patterns having different periods are used, first, the first light pattern of the first period is irradiated, the phase is changed in four steps (or three steps), and four patterns ( (Or three ways) after imaging, the second light pattern of the second period is irradiated, the phase is changed in four steps (or three steps), and four (or three) images under these In other words, it is necessary to image four times (or three times) for each light pattern, for a total of eight times (or six times), and there is a risk that the imaging time will increase significantly.
また、一枚のプリント基板上に計測対象範囲が多数設定されているような場合には、当該一枚のプリント基板の計測に要する時間はさらにその数倍となる。そのため、計測時間のさらなる短縮化が求められる。
In addition, when a large number of measurement target ranges are set on a single printed board, the time required for measurement of the single printed board is further several times that time. Therefore, further shortening of the measurement time is required.
尚、上記課題は、必ずしもプリント基板上に印刷されたクリーム半田等の高さ計測に限らず、他の三次元計測装置の分野においても内在するものである。
Note that the above-described problem is not necessarily limited to the height measurement of cream solder or the like printed on a printed circuit board, but is inherent in the field of other three-dimensional measurement apparatuses.
本発明は、上記事情に鑑みてなされたものであり、その目的は、位相シフト法を利用して高さ計測を行うにあたり、周期の異なる複数の光を利用して計測レンジの拡大を図ると共に、計測時間の短縮化を図ることのできる三次元計測装置を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to expand the measurement range using a plurality of lights having different periods when performing height measurement using the phase shift method. An object of the present invention is to provide a three-dimensional measuring apparatus that can shorten the measuring time.
以下、上記課題を解決するのに適した各手段につき項分けして説明する。なお、必要に応じて対応する手段に特有の作用効果を付記する。
Hereafter, each means suitable for solving the above-mentioned problems will be described in terms of items. In addition, the effect specific to the means to respond | corresponds as needed is added.
手段1.少なくとも縞状の光強度分布を有しかつ周期(縞ピッチ)の異なる複数の光パターンを被計測物に対し照射可能な照射手段と、
前記照射手段から照射する前記光パターンの位相を複数通りに変化可能な位相制御手段と、
前記光パターンの照射された前記被計測物からの反射光を撮像可能な撮像手段と、
前記撮像手段により撮像された画像データを基に位相シフト法により前記被計測物の三次元計測を実行可能な画像処理手段とを備え、
前記画像処理手段は、
第1周期の第1光パターンを第1所定数通り(例えば3通り又は4通り)の位相で照射し撮像された前記第1所定数通りの画像データを基に、該画像データ上の被計測座標(画素)に係る計測を行い、該計測値(高さ計測値又は位相計測値)を前記被計測座標に係る第1計測値として取得する第1計測値取得手段と、
前記第1光パターンの下で撮像された前記第1所定数通りの画像データを基に、前記被計測座標に係るゲイン及び/又はオフセットの値を取得するゲインオフセット取得手段と、
前記第1周期とは異なる第2周期の第2光パターンを前記第1所定数通りよりも少ない第2所定数通り(例えば1通り又は2通り)の位相で照射し撮像された前記第2所定数通りの画像データを基に、前記ゲインオフセット取得手段により取得されたゲイン及び/又はオフセットの値を利用して、前記被計測座標に係る計測を行い、該計測値(高さ計測値又は位相計測値)を前記被計測座標に係る第2計測値として取得する第2計測値取得手段と、
前記第1計測値及び前記第2計測値から特定される高さデータを、前記被計測座標に係る高さデータとして取得可能な高さデータ取得手段とを備えたことを特徴とする三次元計測装置。Means 1. An irradiating means capable of irradiating the object to be measured with a plurality of light patterns having at least a striped light intensity distribution and different periods (stripe pitch)
Phase control means capable of changing the phase of the light pattern irradiated from the irradiation means in a plurality of ways;
Imaging means capable of imaging reflected light from the object to be measured irradiated with the light pattern;
Image processing means capable of performing three-dimensional measurement of the object to be measured by a phase shift method based on image data picked up by the image pickup means;
The image processing means includes
Based on the first predetermined number of image data captured by irradiating the first light pattern of the first period with a first predetermined number (for example, three or four) phases, the measurement target on the image data First measurement value acquisition means for performing measurement related to coordinates (pixels) and acquiring the measurement values (height measurement values or phase measurement values) as first measurement values related to the measured coordinates;
Gain offset acquisition means for acquiring a gain and / or an offset value related to the measured coordinates based on the first predetermined number of image data imaged under the first light pattern;
The second predetermined pattern imaged by irradiating a second light pattern having a second period different from the first period with a second predetermined number (for example, one or two) of phases smaller than the first predetermined number. Based on several kinds of image data, using the gain and / or offset value acquired by the gain offset acquisition means, measurement is performed on the measured coordinates, and the measurement value (height measurement value or phase) is measured. Second measurement value acquisition means for acquiring (measurement value) as a second measurement value related to the measured coordinates;
A three-dimensional measurement comprising: height data acquisition means capable of acquiring height data specified from the first measurement value and the second measurement value as height data related to the measured coordinates. apparatus.
前記照射手段から照射する前記光パターンの位相を複数通りに変化可能な位相制御手段と、
前記光パターンの照射された前記被計測物からの反射光を撮像可能な撮像手段と、
前記撮像手段により撮像された画像データを基に位相シフト法により前記被計測物の三次元計測を実行可能な画像処理手段とを備え、
前記画像処理手段は、
第1周期の第1光パターンを第1所定数通り(例えば3通り又は4通り)の位相で照射し撮像された前記第1所定数通りの画像データを基に、該画像データ上の被計測座標(画素)に係る計測を行い、該計測値(高さ計測値又は位相計測値)を前記被計測座標に係る第1計測値として取得する第1計測値取得手段と、
前記第1光パターンの下で撮像された前記第1所定数通りの画像データを基に、前記被計測座標に係るゲイン及び/又はオフセットの値を取得するゲインオフセット取得手段と、
前記第1周期とは異なる第2周期の第2光パターンを前記第1所定数通りよりも少ない第2所定数通り(例えば1通り又は2通り)の位相で照射し撮像された前記第2所定数通りの画像データを基に、前記ゲインオフセット取得手段により取得されたゲイン及び/又はオフセットの値を利用して、前記被計測座標に係る計測を行い、該計測値(高さ計測値又は位相計測値)を前記被計測座標に係る第2計測値として取得する第2計測値取得手段と、
前記第1計測値及び前記第2計測値から特定される高さデータを、前記被計測座標に係る高さデータとして取得可能な高さデータ取得手段とを備えたことを特徴とする三次元計測装置。
Phase control means capable of changing the phase of the light pattern irradiated from the irradiation means in a plurality of ways;
Imaging means capable of imaging reflected light from the object to be measured irradiated with the light pattern;
Image processing means capable of performing three-dimensional measurement of the object to be measured by a phase shift method based on image data picked up by the image pickup means;
The image processing means includes
Based on the first predetermined number of image data captured by irradiating the first light pattern of the first period with a first predetermined number (for example, three or four) phases, the measurement target on the image data First measurement value acquisition means for performing measurement related to coordinates (pixels) and acquiring the measurement values (height measurement values or phase measurement values) as first measurement values related to the measured coordinates;
Gain offset acquisition means for acquiring a gain and / or an offset value related to the measured coordinates based on the first predetermined number of image data imaged under the first light pattern;
The second predetermined pattern imaged by irradiating a second light pattern having a second period different from the first period with a second predetermined number (for example, one or two) of phases smaller than the first predetermined number. Based on several kinds of image data, using the gain and / or offset value acquired by the gain offset acquisition means, measurement is performed on the measured coordinates, and the measurement value (height measurement value or phase) is measured. Second measurement value acquisition means for acquiring (measurement value) as a second measurement value related to the measured coordinates;
A three-dimensional measurement comprising: height data acquisition means capable of acquiring height data specified from the first measurement value and the second measurement value as height data related to the measured coordinates. apparatus.
上記手段1によれば、第1周期の第1光パターンを被計測物に照射して得られた画像データを基に三次元計測を行い、当該計測値を第1計測値として取得すると共に、第2周期の第2光パターンを被計測物に照射して得られた画像データ等を基に三次元計測を行い、当該計測値を第2計測値として取得する。そして、第1計測値及び第2計測値から特定される高さデータを、被計測座標に係る真の高さデータとして取得する。これにより、周期の長い光パターンを利用するメリットである計測可能な高さレンジを大きくできること、及び、周期の短い光パターンを利用するメリットである分解能の高い高精度な計測を実現できることの双方の効果を得ることができる。結果として、広い計測レンジで高分解能の計測を行うことができ、より高精度な計測を実現することができる。
According to the means 1, the three-dimensional measurement is performed based on the image data obtained by irradiating the measurement target with the first light pattern of the first period, and the measurement value is acquired as the first measurement value. Three-dimensional measurement is performed based on image data obtained by irradiating the measurement object with the second light pattern of the second period, and the measurement value is acquired as the second measurement value. Then, the height data specified from the first measurement value and the second measurement value is acquired as the true height data related to the measured coordinates. This makes it possible to increase the measurable height range, which is an advantage of using a light pattern with a long period, and to realize high-precision measurement with high resolution, which is an advantage of using an optical pattern with a short period. An effect can be obtained. As a result, high-resolution measurement can be performed in a wide measurement range, and more accurate measurement can be realized.
さらに、本手段では、第1光パターンによる計測時に撮像された画像データから得られる各座標のゲインやオフセットの値を利用することにより、第2光パターンによる計測を行う際には、第2光パターンの下で撮像すべき画像数(撮像回数)が、第1光パターンの下で撮像すべき画像数より少なくて済む。
Furthermore, in this means, when measuring with the second light pattern by using the gain and offset values of each coordinate obtained from the image data captured at the time of measurement with the first light pattern, the second light is used. The number of images to be imaged under the pattern (number of imaging times) may be smaller than the number of images to be imaged under the first light pattern.
例えば第1光パターンを4通りの位相で照射し、その下で4通りの画像を撮像した後、第2光パターンを1通りの位相で照射し、その下で1通りの画像を撮像する場合には、撮像回数が計5回となり、撮像時間が大幅に減少する。
For example, when the first light pattern is irradiated with four phases, four images are captured under the first light pattern, the second light pattern is irradiated with one phase, and one image is captured under the second light pattern. In this case, the number of times of imaging is five times, and the imaging time is significantly reduced.
従って、単に周期が異なる2種類の光パターンを用いるだけの従来技術に比べ、総合的な撮像回数が少なくて済み、撮像時間を短縮することができる。結果として、計測時間を飛躍的に短縮することができる。
Therefore, the total number of times of imaging can be reduced and the imaging time can be shortened as compared with the conventional technique in which only two types of light patterns having different periods are used. As a result, the measurement time can be dramatically shortened.
手段2.前記第2所定数が1の場合、前記第2計測値取得手段は、前記第2計測値を取得する際に、少なくとも下記式(S1)の関係を満たす前記第2光パターンの位相θを算出することを特徴とする手段1に記載の三次元計測装置。
Means 2. When the second predetermined number is 1, the second measurement value acquisition unit calculates the phase θ of the second light pattern that satisfies at least the relationship of the following formula (S1) when acquiring the second measurement value. The three-dimensional measuring apparatus according to means 1, characterized in that:
V0=Asinθ+B ・・・(S1)
但し、V0:被計測座標の輝度値、A:被計測座標のゲイン、B:被計測座標のオフセット。 V 0 = Asinθ + B (S1)
Where V 0 is the luminance value of the measured coordinate, A is the gain of the measured coordinate, and B is the offset of the measured coordinate.
但し、V0:被計測座標の輝度値、A:被計測座標のゲイン、B:被計測座標のオフセット。 V 0 = Asinθ + B (S1)
Where V 0 is the luminance value of the measured coordinate, A is the gain of the measured coordinate, and B is the offset of the measured coordinate.
上記手段2によれば、第2光パターンの下での撮像回数が1回で済むため、上記手段1の作用効果がより奏効することとなる。
According to the means 2, since the number of times of imaging under the second light pattern is only one, the effect of the means 1 is more effective.
上記式(S1)を「sinθ」について整理すると、下記式(S2)のようになる。
When the above formula (S1) is arranged with respect to “sin θ”, the following formula (S2) is obtained.
sinθ=(V0-B)/A ・・・(S2)
ここで、上記式(S2)を位相θについて解くと、下記式(S3)を導き出すことができる。 sinθ = (V 0 −B) / A (S2)
Here, when the above equation (S2) is solved for the phase θ, the following equation (S3) can be derived.
ここで、上記式(S2)を位相θについて解くと、下記式(S3)を導き出すことができる。 sinθ = (V 0 −B) / A (S2)
Here, when the above equation (S2) is solved for the phase θ, the following equation (S3) can be derived.
θ=sin-1{(V0-B)/A} ・・・(S3)
このように、位相θは、第2光パターンにより取得した既知の輝度値V0,並びに、第1光パターンにより取得した既知のゲインA及びオフセットBにより特定することができる。 θ = sin −1 {(V 0 −B) / A} (S3)
Thus, the phase θ can be specified by the known luminance value V 0 acquired by the second light pattern and the known gain A and offset B acquired by the first light pattern.
このように、位相θは、第2光パターンにより取得した既知の輝度値V0,並びに、第1光パターンにより取得した既知のゲインA及びオフセットBにより特定することができる。 θ = sin −1 {(V 0 −B) / A} (S3)
Thus, the phase θ can be specified by the known luminance value V 0 acquired by the second light pattern and the known gain A and offset B acquired by the first light pattern.
手段3.前記第2所定数が2の場合、前記第2計測値取得手段は、前記第2計測値を取得する際に、少なくとも下記式(T1),(T2)の関係を満たす前記第2光パターンの位相θを算出することを特徴とする手段1に記載の三次元計測装置。
Means 3. When the second predetermined number is 2, the second measurement value acquisition unit obtains the second light pattern satisfying the relationship of at least the following formulas (T1) and (T2) when acquiring the second measurement value. The three-dimensional measuring apparatus according to means 1, wherein the phase θ is calculated.
V0=Asinθ+B ・・・(T1)
V1=Asin(θ+90°)+B ・・・(T2)
但し、V0,V1:2通りの画像データの被計測座標の輝度値、A:被計測座標のゲイン、B:被計測座標のオフセット。 V 0 = Asinθ + B (T1)
V 1 = Asin (θ + 90 °) + B (T2)
V 0 , V 1 : brightness value of measured coordinate of two kinds of image data, A: gain of measured coordinate, B: offset of measured coordinate.
V1=Asin(θ+90°)+B ・・・(T2)
但し、V0,V1:2通りの画像データの被計測座標の輝度値、A:被計測座標のゲイン、B:被計測座標のオフセット。 V 0 = Asinθ + B (T1)
V 1 = Asin (θ + 90 °) + B (T2)
V 0 , V 1 : brightness value of measured coordinate of two kinds of image data, A: gain of measured coordinate, B: offset of measured coordinate.
上記手段3によれば、位相が90°異なる2通りの第2光パターンの下で撮像を2回行うだけでよいため、上記手段1の作用効果がより奏効することとなる。
According to the above means 3, since it is only necessary to perform imaging twice under the two second light patterns whose phases are different by 90 °, the effect of the means 1 is more effective.
上記式(T2)から下記式(T3)が導き出される。
The following formula (T3) is derived from the above formula (T2).
V1=Asin(θ+90°)+B
=Acosθ+B ・・・(T3)
上記式(T3)を「cosθ」について整理すると、下記式(T4)のようになる。 V 1 = Asin (θ + 90 °) + B
= Acosθ + B (T3)
When the above equation (T3) is arranged with respect to “cos θ”, the following equation (T4) is obtained.
=Acosθ+B ・・・(T3)
上記式(T3)を「cosθ」について整理すると、下記式(T4)のようになる。 V 1 = Asin (θ + 90 °) + B
= Acosθ + B (T3)
When the above equation (T3) is arranged with respect to “cos θ”, the following equation (T4) is obtained.
cosθ=(V1-B)/A ・・・(T4)
また、上記式(T1)を「sinθ」について整理すると、下記式(T5)のようになる。 cos θ = (V 1 −B) / A (T4)
Further, when the above formula (T1) is arranged with respect to “sin θ”, the following formula (T5) is obtained.
また、上記式(T1)を「sinθ」について整理すると、下記式(T5)のようになる。 cos θ = (V 1 −B) / A (T4)
Further, when the above formula (T1) is arranged with respect to “sin θ”, the following formula (T5) is obtained.
sinθ=(V0-B)/A ・・・(T5)
次に上記式(T4)、(T5)を下記式(T6)に代入すると下記式(T7)が導き出される。 sinθ = (V 0 −B) / A (T5)
Next, when the above formulas (T4) and (T5) are substituted into the following formula (T6), the following formula (T7) is derived.
次に上記式(T4)、(T5)を下記式(T6)に代入すると下記式(T7)が導き出される。 sinθ = (V 0 −B) / A (T5)
Next, when the above formulas (T4) and (T5) are substituted into the following formula (T6), the following formula (T7) is derived.
tanθ=sinθ/cosθ ・・・(T6)
={(V0-B)/A}/{(V1-B)/A}
=(V0-B)/(V1-B) ・・・(T7)
ここで、上記式(T7)を位相θについて解くと、下記式(T8)を導き出すことができる。 tanθ = sinθ / cosθ (T6)
= {(V 0 -B) / A} / {(V 1 -B) / A}
= (V 0 -B) / (V 1 -B) (T7)
Here, when the above equation (T7) is solved for the phase θ, the following equation (T8) can be derived.
={(V0-B)/A}/{(V1-B)/A}
=(V0-B)/(V1-B) ・・・(T7)
ここで、上記式(T7)を位相θについて解くと、下記式(T8)を導き出すことができる。 tanθ = sinθ / cosθ (T6)
= {(V 0 -B) / A} / {(V 1 -B) / A}
= (V 0 -B) / (V 1 -B) (T7)
Here, when the above equation (T7) is solved for the phase θ, the following equation (T8) can be derived.
θ=tan-1{(V0-B)/(V1-B)} ・・・(T8)
このように、位相θは、第2光パターンにより取得した既知の輝度値V0,V1、並びに、第1光パターンにより取得した既知のオフセットBにより特定することができる。 θ = tan −1 {(V 0 −B) / (V 1 −B)} (T8)
Thus, the phase θ can be specified by the known luminance values V 0 and V 1 acquired by the second light pattern and the known offset B acquired by the first light pattern.
このように、位相θは、第2光パターンにより取得した既知の輝度値V0,V1、並びに、第1光パターンにより取得した既知のオフセットBにより特定することができる。 θ = tan −1 {(V 0 −B) / (V 1 −B)} (T8)
Thus, the phase θ can be specified by the known luminance values V 0 and V 1 acquired by the second light pattern and the known offset B acquired by the first light pattern.
また、上記手段3によれば、「tan-1」を用いた演算式に基づいて位相θを求めることができるため、-180°~180°の360°の範囲で高さ計測可能となり、計測レンジをより大きくすることができる。
Further, according to the above means 3, since the phase θ can be obtained based on the arithmetic expression using “tan −1 ”, the height can be measured in the range of 360 ° from −180 ° to 180 °. The range can be increased.
手段4.前記被計測物が、プリント基板に印刷されたクリーム半田、又は、ウエハ基板に形成された半田バンプであることを特徴とする手段1乃至3のいずれかに記載の三次元計測装置。
Means 4. 4. The three-dimensional measuring apparatus according to claim 1, wherein the object to be measured is cream solder printed on a printed circuit board or solder bumps formed on a wafer substrate.
上記手段4によれば、プリント基板に印刷されたクリーム半田、又は、ウエハ基板に形成された半田バンプの高さ計測等を行うことができる。ひいては、クリーム半田又は半田バンプの検査において、その計測値に基づいてクリーム半田又は半田バンプの良否判定を行うことができる。従って、かかる検査において、上記各手段の作用効果が奏されることとなり、精度よく良否判定を行うことができる。結果として、半田印刷検査装置又は半田バンプ検査装置における検査精度の向上を図ることができる。
According to the above means 4, it is possible to measure the height of cream solder printed on a printed circuit board or solder bumps formed on a wafer substrate. As a result, in the inspection of cream solder or solder bumps, the quality of cream solder or solder bumps can be determined based on the measured values. Therefore, in such an inspection, the effect of each means described above is exhibited, and the quality determination can be performed with high accuracy. As a result, it is possible to improve the inspection accuracy in the solder printing inspection apparatus or the solder bump inspection apparatus.
以下、一実施形態について図面を参照しつつ説明する。図1は、本実施形態における三次元計測装置を具備する基板検査装置1を模式的に示す概略構成図である。同図に示すように、基板検査装置1は、被計測物としてのクリーム半田が印刷されてなるプリント基板2を載置するための載置台3と、プリント基板2の表面に対し斜め上方から所定の光パターンを照射する照射手段としての照明装置4と、プリント基板2上の光パターンの照射された部分を撮像するための撮像手段としてのカメラ5と、基板検査装置1内における各種制御や画像処理、演算処理を実施するための制御装置6とを備えている。
Hereinafter, an embodiment will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram schematically illustrating a substrate inspection apparatus 1 including a three-dimensional measurement apparatus according to the present embodiment. As shown in the figure, the substrate inspection apparatus 1 includes a mounting table 3 for mounting a printed circuit board 2 on which cream solder as an object to be measured is printed, and a predetermined angle from above on the surface of the printed circuit board 2. Illumination device 4 as an irradiating means for irradiating a light pattern, a camera 5 as an imaging means for imaging a portion irradiated with a light pattern on printed circuit board 2, and various controls and images in substrate inspection apparatus 1 And a control device 6 for performing processing and arithmetic processing.
載置台3には、モータ15,16が設けられており、該モータ15,16が制御装置6(モータ制御手段23)により駆動制御されることによって、載置台3上に載置されたプリント基板2が任意の方向(X軸方向及びY軸方向)へスライドさせられるようになっている。
The mounting table 3 is provided with motors 15 and 16, and the motors 15 and 16 are driven and controlled by the control device 6 (motor control means 23), whereby the printed circuit board mounted on the mounting table 3. 2 can be slid in any direction (X-axis direction and Y-axis direction).
照明装置4は、所定の光を発する光源4aと、当該光源4aからの光を正弦波状(縞状)の光強度分布を有する光パターンに変換する液晶格子4bとを備えており、プリント基板2に対し、斜め上方から複数通りに位相変化する縞状の光パターンを照射可能となっている。
The illumination device 4 includes a light source 4a that emits predetermined light, and a liquid crystal lattice 4b that converts light from the light source 4a into a light pattern having a sinusoidal (stripe) light intensity distribution. On the other hand, it is possible to irradiate a striped light pattern whose phase changes in a plurality of ways from obliquely above.
より詳しくは、光源4aから発せられた光は、光ファイバーにより一対の集光レンズに導かれ、そこで平行光にされる。その平行光が、液晶格子4bを介して投影レンズに導かれる。そして、投影レンズからプリント基板2に対し縞状の光パターンが照射される。
More specifically, the light emitted from the light source 4a is guided to a pair of condensing lenses by an optical fiber, and is converted into parallel light there. The parallel light is guided to the projection lens through the liquid crystal grating 4b. Then, a striped light pattern is irradiated onto the printed circuit board 2 from the projection lens.
液晶格子4bは、一対の透明基板間に液晶層が形成されると共に、一方の透明基板上に配置された共通電極と、これと対向するように他方の透明基板上に複数並設された帯状電極とを備え、駆動回路により、各帯状電極にそれぞれ接続されたスイッチング素子(薄膜トランジスタ等)をオンオフ制御し、各帯状電極に印加される電圧を制御することにより、各帯状電極に対応する各格子ラインの光透過率が切替えられ、光透過率の高い「明部」と、光透過率の低い「暗部」とからなる縞状の格子パターンを形成する。そして、液晶格子4bを介してプリント基板2上に照射される光は、回折作用に起因したボケ等により、正弦波状の光強度分布を有する光パターンとなる。
The liquid crystal lattice 4b includes a liquid crystal layer formed between a pair of transparent substrates, a common electrode disposed on one transparent substrate, and a plurality of strips arranged in parallel on the other transparent substrate so as to face the common electrode. Each of the grids corresponding to each band electrode by controlling on and off the switching elements (thin film transistors, etc.) connected to each band electrode by a drive circuit and controlling the voltage applied to each band electrode. The light transmittance of the line is switched to form a striped lattice pattern composed of a “bright portion” having a high light transmittance and a “dark portion” having a low light transmittance. And the light irradiated on the printed circuit board 2 via the liquid crystal grating 4b becomes a light pattern having a sinusoidal light intensity distribution due to blur caused by diffraction action or the like.
また、照明装置4は、周期(縞ピッチ)の異なる複数種類の光パターンを切換えて照射可能に構成されている。本実施形態では、周期が600μmの第1光パターンと、周期が800μmの第2光パターンとの2種類の光パターンを切換えて照射可能に構成されている。ここで、「600μm」が「第1周期」に相当し、「800μm」が「第2周期」に相当する。
Further, the illumination device 4 is configured to be able to switch and irradiate a plurality of types of light patterns having different periods (stripe pitch). In the present embodiment, two types of light patterns, a first light pattern with a period of 600 μm and a second light pattern with a period of 800 μm, are switched and irradiated. Here, “600 μm” corresponds to the “first period”, and “800 μm” corresponds to the “second period”.
より詳しくは、液晶格子4bを制御し、例えば格子ライン6本分の幅(格子ライン3本分の「明部」と、格子ライン3本分の「暗部」)を一周期とした正弦波状の光パターンを生成することにより、周期600μmの第1光パターンを照射可能となる。
More specifically, the liquid crystal grating 4b is controlled, for example, a sinusoidal wave having a width of six grid lines (a “bright part” of three grid lines and a “dark part” of three grid lines) as one cycle. By generating the light pattern, the first light pattern with a period of 600 μm can be irradiated.
一方、格子ライン8本分の幅(格子ライン4本分の「明部」と、格子ライン4本分の「暗部」)を一周期とした正弦波状の光パターンを生成することにより、周期800μmの第2光パターンを照射可能となる。
On the other hand, by generating a sinusoidal light pattern with a width of 8 grating lines (a “bright part” for 4 grating lines and a “dark part” for 4 grating lines) as one period, a period of 800 μm is generated. The second light pattern can be irradiated.
カメラ5は、レンズや撮像素子等からなる。撮像素子としては、CMOSセンサを採用している。勿論、撮像素子はこれに限定されるものではなく、例えばCCDセンサ等を採用してもよい。カメラ5によって撮像された画像データは、当該カメラ5内部においてデジタル信号に変換された上で、デジタル信号の形で制御装置6(画像データ記憶手段24)に入力される。そして、制御装置6は、当該画像データを基に、後述するような画像処理や検査処理等を実施する。かかる意味で、制御装置6は画像処理手段を構成する。
The camera 5 includes a lens, an image sensor, and the like. A CMOS sensor is used as the image sensor. Of course, the imaging device is not limited to this, and a CCD sensor or the like may be employed, for example. Image data captured by the camera 5 is converted into a digital signal inside the camera 5 and then input to the control device 6 (image data storage means 24) in the form of a digital signal. Then, the control device 6 performs image processing, inspection processing, and the like, which will be described later, based on the image data. In this sense, the control device 6 constitutes image processing means.
次に、制御装置6の電気的構成について説明する。図2に示すように、制御装置6は、カメラ5の撮像タイミングを制御するカメラ制御手段21と、照明装置4を制御する照明制御手段22と、モータ15,16を制御するモータ制御手段23と、カメラ5により撮像された画像データ(輝度データ)を記憶する画像データ記憶手段24と、前記画像データを基に算出される後述するゲインA及びオフセットBの値を記憶するゲイン・オフセット記憶手段25と、少なくとも前記画像データを基に三次元計測を行う三次元計測手段26と、該三次元計測手段26の計測結果を記憶する計測値記憶手段27と、該計測値記憶手段27に記憶された計測値を基に真の高さデータ(絶対高さデータ)を取得する高さデータ取得手段28と、該高さデータ取得手段28により得られた高さデータを基にクリーム半田4の印刷状態を検査する判定手段30とを備えている。照明装置4(液晶格子4b)を制御する照明制御手段22により本実施形態における位相制御手段が構成される。
Next, the electrical configuration of the control device 6 will be described. As shown in FIG. 2, the control device 6 includes a camera control unit 21 that controls the imaging timing of the camera 5, an illumination control unit 22 that controls the illumination device 4, and a motor control unit 23 that controls the motors 15 and 16. Image data storage means 24 for storing image data (luminance data) picked up by the camera 5, and gain / offset storage means 25 for storing gain A and offset B values calculated later based on the image data. Three-dimensional measurement means 26 for performing three-dimensional measurement based on at least the image data, a measurement value storage means 27 for storing the measurement result of the three-dimensional measurement means 26, and the measurement value storage means 27. Height data acquisition means 28 for acquiring true height data (absolute height data) based on the measurement value, and based on the height data obtained by the height data acquisition means 28 And a determination unit 30 for checking the print status of the ream solder 4. The phase control means in this embodiment is constituted by the illumination control means 22 that controls the illumination device 4 (liquid crystal grating 4b).
なお、図示は省略するが、基板検査装置1は、キーボードやタッチパネルで構成される入力手段、CRTや液晶などの表示画面を有する表示手段、検査結果等を格納するための記憶手段、半田印刷機等に対し検査結果等を出力する出力手段等を備えている。
Although not shown in the drawings, the board inspection apparatus 1 includes an input unit composed of a keyboard and a touch panel, a display unit having a display screen such as a CRT or a liquid crystal, a storage unit for storing inspection results, and a solder printer. Output means for outputting inspection results and the like.
次に基板検査装置1よるプリント基板2の検査手順について、各検査エリアごとに行われる検査ルーチンを基に詳しく説明する。この検査ルーチンは、制御装置6にて実行されるものである。
Next, the procedure for inspecting the printed circuit board 2 by the substrate inspection apparatus 1 will be described in detail based on the inspection routine performed for each inspection area. This inspection routine is executed by the control device 6.
制御装置6(モータ制御手段23)は、まずモータ15,16を駆動制御してプリント基板2を移動させ、カメラ5の視野をプリント基板2上の所定の検査エリア(計測範囲)に合わせる。なお、検査エリアは、カメラ5の視野の大きさを1単位としてプリント基板2の表面を予め分割しておいた中の1つのエリアである。
The control device 6 (motor control means 23) first drives and controls the motors 15 and 16 to move the printed circuit board 2, and adjusts the field of view of the camera 5 to a predetermined inspection area (measurement range) on the printed circuit board 2. The inspection area is one area in which the surface of the printed circuit board 2 is divided in advance with the size of the field of view of the camera 5 as one unit.
続いて、制御装置6は、照明装置4の液晶格子4bを切替制御し、当該液晶格子4bに形成される格子の位置を所定の基準位置(位相「0°」)に設定すると共に、そのピッチを第1光パターンに対応した周期600μmに設定する。
Subsequently, the control device 6 switches and controls the liquid crystal grating 4b of the illumination device 4, sets the position of the grating formed in the liquid crystal grating 4b to a predetermined reference position (phase “0 °”), and the pitch thereof. Is set to a period of 600 μm corresponding to the first light pattern.
液晶格子4bの切替設定が完了すると、制御装置6は、まず照明制御手段22により照明装置4の光源4aを発光させ、第1光パターン(周期600μm)の照射を開始すると共に、カメラ制御手段21によりカメラ5を駆動制御して、当該第1光パターンが照射された検査エリア部分を撮像する。ここで、カメラ5により撮像された画像データは、画像データ記憶装置24へ転送され記憶される。
When the switching setting of the liquid crystal lattice 4b is completed, the control device 6 first causes the illumination control means 22 to emit light from the light source 4a of the illumination device 4, starts irradiation of the first light pattern (period 600 μm), and the camera control means 21. Then, the camera 5 is driven and controlled to image the inspection area portion irradiated with the first light pattern. Here, the image data captured by the camera 5 is transferred to and stored in the image data storage device 24.
同様に、上記一連の撮像処理を、位相を90°ずつシフトさせた3通り(位相「90°」、位相「180°」、位相「270°」)の第1光パターンの下で行う。これにより、所定の検査エリアにつき、位相を90°ずつシフトさせた第1光パターンの下で撮像された4通りの画像データが取得される。
Similarly, the above-described series of imaging processes is performed under the three first light patterns (phase “90 °”, phase “180 °”, phase “270 °”) with the phase shifted by 90 °. As a result, four types of image data captured under the first light pattern with the phase shifted by 90 ° for a predetermined inspection area are acquired.
そして、制御装置6(三次元計測手段26)は、位相シフト法により、上記4通りの画像データ(輝度値)から各座標における第1光パターンの位相θ1を算出する。
The control device 6 (three-dimensional measurement means 26), by the phase shift method, calculates the phase theta 1 of the first light pattern in each coordinate from the image data of four types above (luminance value).
ここで、上記4通りの画像データの各座標における輝度値V10,V11,V12,V13は、下記式(H1)、(H2)、(H3)、(H4)により表すことができる。
Here, the luminance values V 10 , V 11 , V 12 , and V 13 at the respective coordinates of the four types of image data can be expressed by the following formulas (H1), (H2), (H3), and (H4). .
上記式(H1)、(H2)、(H3)、(H4)を位相θ1について解くと、下記式(H5)を導き出すことができる。
When the above equations (H1), (H2), (H3), and (H4) are solved for the phase θ 1 , the following equation (H5) can be derived.
そして、上記のように算出された位相θ1を用いて、三角測量の原理に基づき各座標における第1高さ計測値を算出し、かかる第1高さ計測値を第1計測値として計測値記憶手段27に記憶する。従って、これら一連の処理機能により本実施形態における第1計測値取得手段が構成される。
Then, using the phase θ 1 calculated as described above, a first height measurement value at each coordinate is calculated based on the principle of triangulation, and the first height measurement value is used as a first measurement value. Store in the storage means 27. Accordingly, the series of processing functions constitute the first measurement value acquisition means in the present embodiment.
次に第1光パターンの下で撮像された上記4通りの画像データから各座標におけるゲインA及びオフセットBを特定する。かかる処理機能により本実施形態におけるゲインオフセット取得手段が構成される。但し、ゲインA及びオフセットBの算出処理は、上記4通りの画像データの取得後、上記第1高さ計測値の算出処理と並行して行われる。
Next, the gain A and the offset B at each coordinate are specified from the above-described four kinds of image data captured under the first light pattern. Such processing functions constitute the gain offset acquisition means in the present embodiment. However, the gain A and offset B calculation processing is performed in parallel with the calculation processing of the first height measurement value after the acquisition of the four types of image data.
ここでゲインA及びオフセットBを算出する手順についてより詳しく説明する。4通りの画像データの各座標における輝度値V10,V11,V12,V13と、ゲインA及びオフセットBとの関係は、上記式(H1)~(H4)のとおりである。
Here, the procedure for calculating the gain A and the offset B will be described in more detail. The relationship between the luminance values V 10 , V 11 , V 12 , and V 13 at each coordinate of the four types of image data, the gain A, and the offset B are as shown in the above formulas (H1) to (H4).
ここで、4通りの画像データの輝度値V10,V11,V12,V13を加算し、上記式(H1)~(H4)を下記[数3]に示すように整理すると、下記式(H6)を導き出すことができる。
Here, the luminance values V 10 , V 11 , V 12 and V 13 of the four kinds of image data are added, and the above equations (H1) to (H4) are arranged as shown in the following [Equation 3], the following equations (H6) can be derived.
また、上記式(H1)、(H3)から、下記式(H7)を導き出すことができる。
Moreover, the following formula (H7) can be derived from the above formulas (H1) and (H3).
また、上記式(H2)、(H4)から、下記式(H8)を導き出すことができる。
Further, the following formula (H8) can be derived from the above formulas (H2) and (H4).
そして、下記[数6]に示すように、上記式(H7)、(H8)を下記式(H9)に代入し、整理していくと、下記式(H10)を導き出すことができる。
Then, as shown in [Equation 6] below, when the above formulas (H7) and (H8) are substituted into the following formula (H9) and rearranged, the following formula (H10) can be derived.
このように算出された各座標におけるゲインA及びオフセットBは、ゲイン・オフセット記憶手段25に記憶される。
The gain A and the offset B at each coordinate calculated in this way are stored in the gain / offset storage means 25.
次に制御装置6は、第2光パターン(周期800μm)に係る撮像処理を開始する。但し、第2光パターンに係る撮像処理は、第1光パターンに係る一連の撮像処理の終了後、直ちに開始される。つまり、上記第1高さ計測値の算出処理、及び、ゲインA及びオフセットBの算出処理と並行して行われる。
Next, the control device 6 starts an imaging process related to the second light pattern (period 800 μm). However, the imaging process related to the second light pattern is started immediately after the series of imaging processes related to the first light pattern is completed. That is, the calculation process of the first height measurement value and the calculation process of the gain A and the offset B are performed in parallel.
より詳しくは、制御装置6は、照明装置4の液晶格子4bを切替制御し、当該液晶格子4bに形成される格子の位置を再び基準位置(位相「0°」)に設定すると共に、そのピッチを第2光パターンに対応した周期800μmに設定する。
More specifically, the control device 6 switches and controls the liquid crystal grating 4b of the illuminating device 4, sets the position of the grating formed in the liquid crystal grating 4b to the reference position (phase “0 °”), and the pitch thereof. Is set to a period of 800 μm corresponding to the second light pattern.
液晶格子4bの切替設定が完了すると、制御装置6は、まず照明制御手段22により照明装置4の光源4aを発光させ、第2光パターン(周期800μm)の照射を開始すると共に、カメラ制御手段21によりカメラ5を駆動制御して、当該第2光パターンが照射された検査エリア部分を撮像する。ここで、カメラ5により撮像された画像データは、画像データ記憶装置24へ転送され記憶される。
When the switching setting of the liquid crystal lattice 4b is completed, the control device 6 first causes the illumination control means 22 to emit light from the light source 4a of the illumination device 4, starts irradiation of the second light pattern (period 800 μm), and the camera control means 21. Then, the camera 5 is driven and controlled to image the inspection area portion irradiated with the second light pattern. Here, the image data captured by the camera 5 is transferred to and stored in the image data storage device 24.
尚、本実施形態における第2光パターンに係る撮像処理は、位相「0°」の第2光パターンの下で行われる1回のみである。つまり、本実施形態では、所定の検査エリアにつき、位相「0°」の第2光パターンの下で撮像された1通りの画像データのみが取得されることとなる。
Note that the imaging process related to the second light pattern in the present embodiment is performed only once under the second light pattern having the phase “0 °”. That is, in the present embodiment, only one type of image data captured under the second light pattern with the phase “0 °” is acquired for a predetermined inspection area.
そして、制御装置6(三次元計測手段26)は、第2光パターンの下で撮像された1通りの画像データ(輝度値)と、ゲイン・オフセット記憶手段25に記憶されたゲインA及びオフセットBの値を基に、各座標における第2光パターンの位相θ2を算出する。
Then, the control device 6 (three-dimensional measuring means 26) uses a single image data (luminance value) imaged under the second light pattern, and a gain A and an offset B stored in the gain / offset storage means 25. The phase θ 2 of the second light pattern at each coordinate is calculated based on this value.
ここで、上記1通りの画像データの各座標における輝度値V20は、下記式(H11)により表すことができる。
Here, the luminance value V 20 at each coordinate of the one type of image data can be expressed by the following equation (H11).
上記式(H11)を位相θ2について解くと、下記式(H12)を導き出すことができる。
When the above equation (H11) is solved for the phase θ 2 , the following equation (H12) can be derived.
そして、上記のように算出された位相θ2を用いて、三角測量の原理に基づき各座標における第2高さ計測値を算出し、かかる第2高さ計測値を第2計測値として計測値記憶手段27に記憶する。従って、これら一連の処理機能により本実施形態における第2計測値取得手段が構成される。
Then, using the phase θ 2 calculated as described above, a second height measurement value at each coordinate is calculated based on the principle of triangulation, and the second height measurement value is used as a second measurement value. Store in the storage means 27. Therefore, the series of processing functions constitute the second measurement value acquisition unit in the present embodiment.
次に制御装置6(高さデータ取得手段28)は、計測値記憶手段27に記憶された各座標に係る第1計測値及び第2計測値を基に、該座標に係る真の高さデータを取得する。かかる処理機能により本実施形態における高さデータ取得手段が構成される。
Next, the control device 6 (height data acquisition means 28), based on the first measurement value and the second measurement value relating to each coordinate stored in the measurement value storage means 27, the true height data relating to the coordinate. To get. Such processing functions constitute the height data acquisition means in this embodiment.
ここで、高さデータの取得方法について図3に例示した具体例を基に説明する。かかる例では、第1光パターン(周期600μm)により、「-300(μm)」、「-200(μm)」、「-100(μm)」・・・といったように、「-300(μm)」~「+300(μm)」の範囲内にある高さを、「100(μm)」刻みの精度で計測可能となっている。尚、「+300(μm)」は1つ上の縞次数における「-300(μm)」に相当する。
Here, the height data acquisition method will be described based on the specific example illustrated in FIG. In this example, “−300 (μm)”, such as “−300 (μm)”, “−200 (μm)”, “−100 (μm)”, etc., by the first light pattern (period of 600 μm). ”To“ +300 (μm) ”can be measured with an accuracy of“ 100 (μm) ”. Note that “+300 (μm)” corresponds to “−300 (μm)” in the next higher stripe order.
一方、第2光パターン(周期800μm)によっては、「-400(μm)」、「-300(μm)」、「-200(μm)」・・・といったように、「-400(μm)」~「+400(μm)」の範囲内にある高さを、「100(μm)」刻みの精度で計測可能となっている。尚、「+400(μm)」は1つ上の縞次数における「-400(μm)」に相当する。
On the other hand, depending on the second light pattern (period 800 μm), “−400 (μm)”, “−300 (μm)”, “−200 (μm)”, etc. The height within the range of “+400 (μm)” can be measured with an accuracy of “100 (μm)”. Note that “+400 (μm)” corresponds to “−400 (μm)” in the stripe order one level higher.
そして、所定の被計測座標に関し、第1計測値として得られた値が例えば「+100(μm)」であった場合には、当該被計測座標の真の高さデータの候補は、縞次数[1]の「+100(μm)」、縞次数[2]の「+700(μm)」、又は縞次数[3]の「+1300(μm)」となる。
If the value obtained as the first measurement value is “+100 (μm)” for a predetermined measured coordinate, the true height data candidate for the measured coordinate is the fringe order [ 1] “+100 (μm)”, fringe order [2] “+700 (μm)”, or fringe order [3] “+1300 (μm)”.
ここで、同一の被計測座標につき、第2計測値として得られた値が例えば「-100(μm)」であった場合には、当該被計測座標の真の高さデータは、縞次数[2]の第1計測値に対応する値である「+700(μm)」と特定される。
Here, when the value obtained as the second measurement value is, for example, “−100 (μm)” for the same measured coordinate, the true height data of the measured coordinate is the fringe order [ 2], which is a value corresponding to the first measured value of “+700 (μm)”.
そして、制御装置6(判定手段30)は、このように得られた検査エリアの各座標における真の高さデータに基づいて、基準面より高くなったクリーム半田の印刷範囲を検出し、この範囲内での各部位の高さを積分することにより、印刷されたクリーム半田の量を算出する。
And the control apparatus 6 (determination means 30) detects the printing range of the cream solder which became higher than a reference plane based on the true height data in each coordinate of the inspection area obtained in this way, and this range The amount of the printed cream solder is calculated by integrating the height of each part inside.
続けて、制御装置6(判定手段30)は、このようにして求めたクリーム半田の位置、面積、高さ又は量等のデータを、予め記憶した基準データと比較判定し、この比較結果が許容範囲内にあるか否かによって、その検査エリアにおけるクリーム半田の印刷状態の良否を判定する。
Subsequently, the control device 6 (determination means 30) compares and determines the data such as the position, area, height or quantity of the cream solder thus obtained with reference data stored in advance, and the comparison result is acceptable. Whether the printed state of the cream solder in the inspection area is good or bad is determined depending on whether or not it is within the range.
かかる処理が行われている間に、制御装置6は、モータ15,16を駆動制御してプリント基板2を次の検査エリアへと移動せしめ、以降、上記一連の処理が、全ての検査エリアで繰り返し行われることで、プリント基板2全体の検査が終了する。
While such processing is being performed, the control device 6 drives and controls the motors 15 and 16 to move the printed circuit board 2 to the next inspection area. Thereafter, the above series of processing is performed in all inspection areas. By being repeatedly performed, the inspection of the entire printed circuit board 2 is completed.
以上詳述したように、本実施形態によれば、第1周期(周期600μm)の第1光パターンをプリント基板2に照射して得られた画像データを基に三次元計測を行い、当該計測値を第1計測値として取得すると共に、第2周期(周期800μm)の第2光パターンをプリント基板2に照射して得られた画像データ等を基に三次元計測を行い、当該計測値を第2計測値として取得する。そして、第1計測値及び第2計測値から特定される高さデータを、真の高さデータとして取得する。これにより、周期の長い第2光パターンを利用するメリットである計測可能な高さレンジを大きくできること、及び、周期の短い第1光パターンを利用するメリットである分解能の高い高精度な計測を実現できることの双方の効果を得ることができる。結果として、広い計測レンジで高分解能の計測を行うことができ、より高精度な計測を実現することができる。
As described above in detail, according to the present embodiment, the three-dimensional measurement is performed based on the image data obtained by irradiating the printed circuit board 2 with the first light pattern of the first period (period 600 μm), and the measurement is performed. A value is acquired as a first measurement value, and a three-dimensional measurement is performed based on image data obtained by irradiating the printed circuit board 2 with a second light pattern having a second period (period of 800 μm). Obtained as the second measurement value. And the height data specified from the 1st measurement value and the 2nd measurement value are acquired as true height data. This makes it possible to increase the measurable height range, which is the merit of using the second light pattern with a long period, and realizes high-precision measurement with high resolution, which is the merit of using the first light pattern with a short period. Both effects can be obtained. As a result, high-resolution measurement can be performed in a wide measurement range, and more accurate measurement can be realized.
さらに、本実施形態では、第1光パターンによる計測時に撮像された画像データから得られる各座標のゲインAやオフセットBの値を利用することにより、第2光パターンによる計測を行う際には、第2光パターンの下で撮像すべき画像数(撮像回数)が、第1光パターンの下で撮像すべき画像数より少なくて済む。
Furthermore, in the present embodiment, when performing measurement using the second light pattern by using the values of the gain A and offset B of each coordinate obtained from the image data captured during measurement using the first light pattern, The number of images to be captured under the second light pattern (number of times of imaging) may be smaller than the number of images to be captured under the first light pattern.
具体的には、第1光パターンを4通りの位相で照射し、その下で4通りの画像を撮像した後、第2光パターンを1通りの位相で照射し、その下で1通りの画像を撮像する構成となっているため、撮像回数が計5回となり、撮像時間が大幅に減少する。
Specifically, after irradiating the first light pattern with four different phases, capturing four images under the first light pattern, irradiating the second light pattern with one phase, and one image under the second light pattern. Therefore, the total number of times of imaging is five, and the imaging time is significantly reduced.
従って、単に周期が異なる2種類の光パターンを用いるだけの従来技術に比べ、総合的な撮像回数が少なくて済み、撮像時間を短縮することができる。結果として、計測時間を飛躍的に短縮することができる。
Therefore, the total number of times of imaging can be reduced and the imaging time can be shortened as compared with the conventional technique in which only two types of light patterns having different periods are used. As a result, the measurement time can be dramatically shortened.
尚、上記実施形態の記載内容に限定されず、例えば次のように実施してもよい。勿論、以下において例示しない他の応用例、変更例も当然可能である。
In addition, it is not limited to the description content of the said embodiment, For example, you may implement as follows. Of course, other application examples and modification examples not illustrated below are also possible.
(a)上記実施形態では、三次元計測装置を、プリント基板2に印刷形成されたクリーム半田の高さを計測する基板検査装置1に具体化したが、これに限らず、例えば基板上に印刷された半田バンプや、基板上に実装された電子部品など、他のものの高さを計測する構成に具体化してもよい。
(A) In the above-described embodiment, the three-dimensional measuring device is embodied as the substrate inspection device 1 that measures the height of the cream solder printed on the printed circuit board 2, but is not limited thereto, for example, printing on the substrate You may embody in the structure which measures the height of other things, such as the solder bump made and the electronic component mounted on the board | substrate.
(b)上記実施形態では、光源4aからの光を縞状の光パターンに変換するための格子を、液晶格子4bにより構成すると共に、これを切替制御することにより、光パターンの位相をシフトさせる構成となっている。これに限らず、例えば格子部材をピエゾアクチュエータ等の移送手段により移送させ、光パターンの位相をシフトさせる構成としてもよい。
(B) In the above embodiment, the grating for converting the light from the light source 4a into a striped light pattern is constituted by the liquid crystal grating 4b, and the phase of the light pattern is shifted by switching this. It has a configuration. For example, the grating member may be transferred by a transfer unit such as a piezo actuator to shift the phase of the light pattern.
(c)上記実施形態では、第1光パターンによる計測時において、位相が90°ずつ異なる4通りの第1光パターンの下で撮像された4通りの画像データを基に、位相シフト法により高さ計測を行う構成となっているが、これに限らず、例えば位相が120°ずつ異なる3通りの第1光パターンの下で撮像された3通りの画像データを基に高さ計測を行う構成としてもよい。つまり、第1光パターンの下での撮像回数である「第1所定数」は、少なくとも位相シフト法により高さ計測を実行可能な数であれば良い。
(C) In the above-described embodiment, the phase shift method is used to increase the frequency based on the four image data captured under the four first light patterns whose phases are different by 90 ° at the time of measurement using the first light pattern. However, the present invention is not limited to this, and for example, a configuration in which height measurement is performed based on three types of image data captured under three types of first light patterns whose phases are different by 120 °. It is good. That is, the “first predetermined number” that is the number of times of imaging under the first light pattern may be any number that can at least perform height measurement by the phase shift method.
(d)上記実施形態では、第2光パターンによる計測時において、位相シフトせず、1通りの位相の第2光パターンを照射して得られた1通りの画像データを基に、既知のゲインA及びオフセットBの値を利用して高さ計測を行う構成となっている。これに限らず、例えば位相が異なる2通りの第2光パターンの下で撮像された2通りの画像データを基に、既知のゲインA及び/又はオフセットBの値を利用して高さ計測を行う構成としてもよい。
(D) In the above embodiment, a known gain is obtained based on one image data obtained by irradiating a second light pattern having one phase without phase shift at the time of measurement using the second light pattern. The height is measured using the values of A and offset B. Not limited to this, for example, based on two types of image data captured under two types of second light patterns having different phases, height measurement is performed using the values of known gain A and / or offset B. It is good also as a structure to perform.
つまり、第2光パターンの下での撮像回数である「第2所定数」は、少なくとも第1光パターンの下での撮像回数である「第1所定数」よりも少ない数であれば良い。例えば第1光パターンによる計測時において、4通りの位相の第1光パターンの下で撮像された4通りの画像データを基に高さ計測を行う構成となっている場合には、第2光パターンによる計測時において、3通りの位相の第2光パターンの下で撮像された3通りの画像データを基に、既知のゲインA及び/又はオフセットBの値を利用して高さ計測を行う構成としてもよい。かかる場合においても、従来に比べれば、比較的簡単な演算式に基づいて第2光パターンの位相θ2を求めることができ、処理の高速化が可能となる。
That is, the “second predetermined number” that is the number of times of imaging under the second light pattern may be a number smaller than at least the “first predetermined number” that is the number of times of imaging under the first light pattern. For example, when the measurement is performed using the first light pattern, if the height measurement is performed based on four types of image data captured under the first light pattern having four phases, the second light At the time of measurement using a pattern, height measurement is performed using known gain A and / or offset B values based on three types of image data captured under a second light pattern having three phases. It is good also as a structure. Even in such a case, the phase θ 2 of the second light pattern can be obtained based on a relatively simple arithmetic expression as compared with the conventional case, and the processing speed can be increased.
(e)位相が異なる2通りの第2光パターンの下で撮像された2通りの画像データを基に高さ計測を行う構成としては、例えば位相が90°異なる2通りの第2光パターンの下で撮像された2通りの画像データを基に高さ計測を行う構成が挙げられる。
(E) As a configuration for performing height measurement based on two types of image data captured under two types of second light patterns having different phases, for example, two types of second light patterns having phases different by 90 ° are used. There is a configuration in which height measurement is performed based on two types of image data captured below.
かかる構成によれば、各座標における第2光パターンの位相θ2は、第2光パターンにより取得した2通りの画像データ上の各座標における既知の輝度値V20,V21、並びに、第1光パターンにより取得した既知のオフセットBにより特定することができる〔上記式(T8)参照〕。また、かかる構成によれば、「tan-1」を用いた演算式に基づいて位相θ2を求めることができるため、-180°~180°の360°の範囲で高さ計測可能となり、計測レンジをより大きくすることができる。
According to such a configuration, the phase θ 2 of the second light pattern at each coordinate includes the known luminance values V 20 and V 21 at each coordinate on the two types of image data acquired by the second light pattern, and the first It can be specified by the known offset B acquired by the light pattern [see the above formula (T8)]. Further, according to such a configuration, the phase θ 2 can be obtained based on an arithmetic expression using “tan −1 ”, so that the height can be measured in a range of 360 ° from −180 ° to 180 °. The range can be increased.
勿論、位相が90°異なる2通りの第2光パターンの下で撮像された2通りの画像データを基に高さ計測を行う構成に限らず、例えば位相が180°異なる2通りの第2光パターンの下で撮像された2通りの画像データを基に高さ計測を行う構成としてもよい。
Of course, the present invention is not limited to the configuration in which the height measurement is performed based on the two types of image data captured under the two types of second light patterns whose phases are different by 90 °. For example, the two types of second light whose phases are different by 180 °. The height may be measured based on two types of image data captured under the pattern.
(f)上記実施形態では、周期が短い方の第1光パターン(周期600μm)によって第1計測を行い(第1計測値を取得し)、周期が長い方の第2光パターン(周期800μm)によって第2計測を行う(第2計測値を取得する)構成となっているが、これに限らず、周期が長い方の光パターンによって第1計測を行い、周期が短い方の光パターンによって第2計測を行う構成としてもよい。
(F) In the above-described embodiment, the first measurement is performed (the first measurement value is acquired) using the first light pattern having the shorter cycle (cycle 600 μm), and the second light pattern having the longer cycle (cycle 800 μm). However, the present invention is not limited to this, and the first measurement is performed with the light pattern with the longer cycle, and the first measurement is performed with the light pattern with the shorter cycle. It is good also as a structure which performs 2 measurement.
(g)上記実施形態では、周期600μmの第1光パターンと、周期800μmの第2光パターンとを組合わせて、高さ1500μmまでの計測を行う場合を例示しているが、勿論、各光パターンの周期や分解能、計測範囲はこれに限定されるものではない。例えば、第1光パターンの周期をより短く(例えば400μm)して、第1光パターンの縞次数が4以上となる範囲で計測可能な構成としてもよい。
(G) In the above embodiment, a case where measurement is performed up to a height of 1500 μm by combining a first light pattern with a period of 600 μm and a second light pattern with a period of 800 μm is illustrated. The pattern period, resolution, and measurement range are not limited to this. For example, the period of the first light pattern may be shorter (for example, 400 μm), and the first light pattern may have a configuration in which measurement can be performed in a range in which the stripe order of the first light pattern is 4 or more.
(h)上記実施形態では、第1計測値及び第2計測値として高さ計測値が計測値記憶手段27に記憶される構成となっているが、これに限らず、第1計測値及び第2計測値として位相計測値(位相θ1,θ2)が記憶される構成としてもよい。
(H) In the above embodiment, the height measurement value is stored in the measurement value storage means 27 as the first measurement value and the second measurement value. The phase measurement values (phases θ 1 and θ 2 ) may be stored as two measurement values.
(i)上記実施形態では、周期の異なる2種類の光パターンを照射して計測レンジを拡大する構成となっているが、これに限らず、周期の異なる3種類以上の光パターンを照射して計測レンジを拡大する構成としてもよい。
(I) In the above embodiment, the measurement range is expanded by irradiating two types of light patterns having different periods. However, the present invention is not limited to this, and three or more types of light patterns having different periods are irradiated. It is good also as a structure which expands a measurement range.
例えば3種類(周期α,β,γ)の光パターンを照射する場合には、このうち周期αの光パターンを「第1光パターン」と見れば、周期β及び/又は周期γの光パターンを「第2光パターン」と見ることができる。但し、周期αの光パターンによる計測は、3種類の計測のうち1番目に行われる計測に限らず、2番目に行われる計測であってもよい。周期αの光パターンによる計測が2番目に行われる計測である場合には、3番目に行われる周期β又は周期γの光パターンによる計測において、周期αの光パターンにより取得されたゲインA及び/又はオフセットBが利用されることとなる。
For example, when irradiating three types of light patterns (periods α, β, and γ), if the light pattern having the period α is regarded as the “first light pattern”, the light pattern having the period β and / or the period γ is represented. It can be seen as a “second light pattern”. However, the measurement using the light pattern with the period α is not limited to the measurement performed first among the three types of measurement, and may be measurement performed second. When the measurement using the light pattern with the period α is the second measurement, the gain A and / or obtained with the light pattern with the period α in the third measurement with the light pattern with the period β or the period γ. Alternatively, the offset B is used.
1…基板検査装置、2…プリント基板、4…照明装置、4a…光源、4b…液晶格子、5…カメラ、6…制御装置、22…照明制御手段、24…画像データ記憶手段、25…ゲイン・オフセット記憶手段、26…三次元計測手段、27…計測値記憶手段、28…高さデータ取得手段、A…ゲイン、B…オフセット。
DESCRIPTION OF SYMBOLS 1 ... Board | substrate inspection apparatus, 2 ... Printed circuit board, 4 ... Illumination apparatus, 4a ... Light source, 4b ... Liquid crystal lattice, 5 ... Camera, 6 ... Control apparatus, 22 ... Illumination control means, 24 ... Image data storage means, 25 ... Gain Offset storage means, 26 ... three-dimensional measurement means, 27 ... measurement value storage means, 28 ... height data acquisition means, A ... gain, B ... offset.
Claims (4)
- 少なくとも縞状の光強度分布を有しかつ周期の異なる複数の光パターンを被計測物に対し照射可能な照射手段と、
前記照射手段から照射する前記光パターンの位相を複数通りに変化可能な位相制御手段と、
前記光パターンの照射された前記被計測物からの反射光を撮像可能な撮像手段と、
前記撮像手段により撮像された画像データを基に位相シフト法により前記被計測物の三次元計測を実行可能な画像処理手段とを備え、
前記画像処理手段は、
第1周期の第1光パターンを第1所定数通りの位相で照射し撮像された前記第1所定数通りの画像データを基に、該画像データ上の被計測座標に係る計測を行い、該計測値を前記被計測座標に係る第1計測値として取得する第1計測値取得手段と、
前記第1光パターンの下で撮像された前記第1所定数通りの画像データを基に、前記被計測座標に係るゲイン及び/又はオフセットの値を取得するゲインオフセット取得手段と、
前記第1周期とは異なる第2周期の第2光パターンを前記第1所定数通りよりも少ない第2所定数通りの位相で照射し撮像された前記第2所定数通りの画像データを基に、前記ゲインオフセット取得手段により取得されたゲイン及び/又はオフセットの値を利用して、前記被計測座標に係る計測を行い、該計測値を前記被計測座標に係る第2計測値として取得する第2計測値取得手段と、
前記第1計測値及び前記第2計測値から特定される高さデータを、前記被計測座標に係る高さデータとして取得可能な高さデータ取得手段とを備えたことを特徴とする三次元計測装置。 An irradiation means capable of irradiating the object to be measured with a plurality of light patterns having at least a striped light intensity distribution and different periods;
Phase control means capable of changing the phase of the light pattern irradiated from the irradiation means in a plurality of ways;
Imaging means capable of imaging reflected light from the object to be measured irradiated with the light pattern;
Image processing means capable of performing three-dimensional measurement of the object to be measured by a phase shift method based on image data picked up by the image pickup means;
The image processing means includes
Based on the first predetermined number of image data imaged by irradiating the first light pattern of the first period with the first predetermined number of phases, the measurement of the measured coordinates on the image data is performed, First measurement value acquisition means for acquiring a measurement value as a first measurement value related to the measured coordinates;
Gain offset acquisition means for acquiring a gain and / or an offset value related to the measured coordinates based on the first predetermined number of image data imaged under the first light pattern;
Based on the second predetermined number of image data obtained by irradiating a second predetermined light pattern having a second period different from the first period with a second predetermined number of phases smaller than the first predetermined number of images. , Using the gain and / or offset value acquired by the gain offset acquisition means, performing measurement related to the measured coordinate, and acquiring the measured value as a second measured value related to the measured coordinate. 2 measurement value acquisition means;
A three-dimensional measurement comprising: height data acquisition means capable of acquiring height data specified from the first measurement value and the second measurement value as height data related to the measured coordinates. apparatus. - 前記第2所定数が1の場合、前記第2計測値取得手段は、前記第2計測値を取得する際に、少なくとも下記式(S1)の関係を満たす前記第2光パターンの位相θを算出することを特徴とする請求項1に記載の三次元計測装置。
V0=Asinθ+B ・・・(S1)
但し、V0:被計測座標の輝度値、A:被計測座標のゲイン、B:被計測座標のオフセット。 When the second predetermined number is 1, the second measurement value acquisition unit calculates the phase θ of the second light pattern that satisfies at least the relationship of the following formula (S1) when acquiring the second measurement value. The three-dimensional measuring apparatus according to claim 1, wherein:
V 0 = Asinθ + B (S1)
Where V 0 is the luminance value of the measured coordinate, A is the gain of the measured coordinate, and B is the offset of the measured coordinate. - 前記第2所定数が2の場合、前記第2計測値取得手段は、前記第2計測値を取得する際に、少なくとも下記式(T1),(T2)の関係を満たす前記第2光パターンの位相θを算出することを特徴とする請求項1に記載の三次元計測装置。
V0=Asinθ+B ・・・(T1)
V1=Asin(θ+90°)+B ・・・(T2)
但し、V0,V1:2通りの画像データの被計測座標の輝度値、A:被計測座標のゲイン、B:被計測座標のオフセット。 When the second predetermined number is 2, the second measurement value acquisition unit obtains the second light pattern satisfying the relationship of at least the following formulas (T1) and (T2) when acquiring the second measurement value. The three-dimensional measurement apparatus according to claim 1, wherein the phase θ is calculated.
V 0 = Asinθ + B (T1)
V 1 = Asin (θ + 90 °) + B (T2)
V 0 , V 1 : brightness value of measured coordinate of two kinds of image data, A: gain of measured coordinate, B: offset of measured coordinate. - 前記被計測物が、プリント基板に印刷されたクリーム半田、又は、ウエハ基板に形成された半田バンプであることを特徴とする請求項1乃至3のいずれかに記載の三次元計測装置。 4. The three-dimensional measuring apparatus according to claim 1, wherein the object to be measured is cream solder printed on a printed circuit board or solder bumps formed on a wafer substrate.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-120129 | 2015-06-15 | ||
JP2015120129A JP2017003513A (en) | 2015-06-15 | 2015-06-15 | Three-dimensional measurement device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016203668A1 true WO2016203668A1 (en) | 2016-12-22 |
Family
ID=57545296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/082098 WO2016203668A1 (en) | 2015-06-15 | 2015-11-16 | Three-dimensional measurement device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2017003513A (en) |
TW (1) | TWI606227B (en) |
WO (1) | WO2016203668A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7083695B2 (en) * | 2018-05-11 | 2022-06-13 | 株式会社荏原製作所 | Bump height inspection device, substrate processing device, bump height inspection method, storage medium |
JP7176969B2 (en) * | 2019-02-08 | 2022-11-22 | 株式会社キーエンス | inspection equipment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012053015A (en) * | 2010-09-03 | 2012-03-15 | Saki Corp:Kk | Visual inspection device and visual inspection method |
JP2013124938A (en) * | 2011-12-15 | 2013-06-24 | Ckd Corp | Three-dimensional measuring device |
-
2015
- 2015-06-15 JP JP2015120129A patent/JP2017003513A/en active Pending
- 2015-11-16 WO PCT/JP2015/082098 patent/WO2016203668A1/en active Application Filing
- 2015-11-27 TW TW104139541A patent/TWI606227B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012053015A (en) * | 2010-09-03 | 2012-03-15 | Saki Corp:Kk | Visual inspection device and visual inspection method |
JP2013124938A (en) * | 2011-12-15 | 2013-06-24 | Ckd Corp | Three-dimensional measuring device |
Also Published As
Publication number | Publication date |
---|---|
TWI606227B (en) | 2017-11-21 |
JP2017003513A (en) | 2017-01-05 |
TW201643370A (en) | 2016-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6109255B2 (en) | 3D measuring device | |
JP4744610B2 (en) | 3D measuring device | |
KR101152842B1 (en) | Three-dimensional measurement device and board inspecting machine | |
JP5709009B2 (en) | 3D measuring device | |
JP5957575B1 (en) | 3D measuring device | |
JP5847568B2 (en) | 3D measuring device | |
WO2017110115A1 (en) | Three-dimensional measurement device | |
TWI568988B (en) | Three - dimensional measuring device | |
JP2012053015A (en) | Visual inspection device and visual inspection method | |
JP2013124938A (en) | Three-dimensional measuring device | |
WO2016203668A1 (en) | Three-dimensional measurement device | |
JP7030079B2 (en) | 3D measuring device and 3D measuring method | |
CN107532889B (en) | Three-dimensional measuring device | |
TWI580927B (en) | Three - dimensional measuring device and three - dimensional measurement method | |
JP6062523B1 (en) | 3D measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15895687 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15895687 Country of ref document: EP Kind code of ref document: A1 |