Nothing Special   »   [go: up one dir, main page]

WO2016105012A1 - Member for gas sensor, having a metal oxide semiconductor tube wall with micropores and macropores, gas sensor, and method for manufacturing same - Google Patents

Member for gas sensor, having a metal oxide semiconductor tube wall with micropores and macropores, gas sensor, and method for manufacturing same Download PDF

Info

Publication number
WO2016105012A1
WO2016105012A1 PCT/KR2015/013707 KR2015013707W WO2016105012A1 WO 2016105012 A1 WO2016105012 A1 WO 2016105012A1 KR 2015013707 W KR2015013707 W KR 2015013707W WO 2016105012 A1 WO2016105012 A1 WO 2016105012A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
apoferritin
nanoparticle catalyst
catalyst
polymer
Prior art date
Application number
PCT/KR2015/013707
Other languages
French (fr)
Korean (ko)
Inventor
김일두
장지수
김상준
최선진
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150034024A external-priority patent/KR101753953B1/en
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to US15/111,173 priority Critical patent/US10274446B2/en
Publication of WO2016105012A1 publication Critical patent/WO2016105012A1/en
Priority to US16/352,620 priority patent/US11099147B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors

Definitions

  • the present invention relates to an optimal sensing material structure in which gas is rapidly diffused and reacted, and a method for manufacturing the same.
  • the present invention relates to metal particles and spherical polymer regeneration surrounded by a protein contained in a metal salt precursor / polymer composite nanofiber prepared by electrospinning.
  • Metal oxide semiconductor nanotubes having a dual mean pore distribution functionalized by catalyst particles containing micropores and macropores simultaneously formed at the same time as the layer template is subjected to high temperature pyrolysis, and for the gas sensor using the same, a member, a gas sensor, and a manufacturing method thereof It is about. Background Art
  • the metal oxide semiconductor-based gas sensor detects a gas by measuring a change in electrical resistance during the adsorption and desorption process caused by the interaction of oxygen ions adsorbed on the metal oxide surface with a specific gas to be detected.
  • the metal oxide gas sensor since the metal oxide gas sensor has an advantage of easy miniaturization, a recent research has been attempted to mount the gas sensor in a mobile device or a wearable device from the viewpoint of commercialization.
  • nanostructure sensing materials have a larger area of reaction with gases than thick film or thin film materials. Since it is relatively wide, it can have excellent gas sensing characteristics, and because it has a porous structure that can sufficiently diffuse gas molecules into the sensing material, it can induce ultrafast reaction properties. In particular, having micropores and macropores
  • the surface area can be expected to be increased by 2-10 times or more than the nanofibers of the thin film structure, and thus, high sensing characteristics can be predicted, and pores of various sizes are distributed on the surface of the ribs.
  • gas molecules can move freely, maximizing sensor characteristics.
  • the catalytic nanoparticles are uniformly bound to the one-dimensional porous nanotubes without any mutual concavity, the catalytic effect can be maximized even with a small amount of catalyst.
  • a catalyst is a catalyst are functionalized by the exposure forms on the surface of the built-in inside the dense sensing material than the structure in which the reaction of the gas does not easily done, the sensing material in order to maximize the effectiveness of the catalyst, of the gas catalytic banung It is ideal to be able to maximize.
  • These catalysts can be broadly classified into two types:-Chemical sensitization, which enhances the gas sensor characteristics by increasing the concentration of gases participating in the surface reaction using metal catalysts such as platinum (Pt) and gold (Au).
  • the catalysts when viewed from the viewpoint of the nanoparticle catalyst that is bound to the sensing material, the catalysts should be well dispersed in all regions of the sensing material uniformly and well to induce the most effective catalysis. In this respect, it is difficult to optimize the sensor characteristics because it is difficult to avoid agglomeration between the catalyst nanoparticles during the nanoparticle synthesis and the binding process between the sensing material and the catalyst particle using the polyol process method widely used in the conventional sensor field. Situation.
  • the spherical polymer colloids that serve as a regenerative layer template to form the macropores are dispersed in the electrospinning solution, and the high temperature heat treatment after the electrospinning, spherical polymer template (> 200 nm ) Macropores (50 nm-300 nm) are formed on the surface of the nanotubes through pyrolysis, and macropore covering and protein templates (12 nm) are sequentially generated through the diffusion of metal oxides generated during the formation of the ribs.
  • a one-dimensional porous metal oxide nano-leave electrospinning synthesis method to simultaneously form micropores (0.1 nm-50 nm) on the surface of the nanotube through pyrolysis of.
  • a highly dispersed protein-based nanoparticle catalyst in an electrospinning solution, a double average having a macropore (50 nm-300 nm) and micropores (0.1 nm-50 nm) in which the nanoparticle catalyst is uniformly bound
  • a one-dimensional porous metal oxide nanotube electrospinning method having a pore distribution.
  • macropores are formed (50 nm-300 nm) through decomposition of the sacrificial layer template polymer through high temperature heat treatment using a polymer regenerative layer template having a size of 200 nm or more. It forms on the surface of the fiber, and in order to form the metal oxide nano-lube sequentially, diffusion of the metal oxide occurs in the direction of the macropores formed on the surface to fill a part of the macropores, thereby forming micropores having a size distribution of 0.1 nm-50 nm.
  • the protein template, apo-ferritin, used in the present invention is a spherical thickened protein material having an empty space of about 8 nm, and includes a nanoparticle catalyst in the empty inside of the apoferritin protein. It is possible to provide a method for electrospinning a metal oxide nanotube comprising a functionalized nanoparticle catalyst from apoferritin particles including a nanoparticle catalyst.
  • the Ostwald ripening phenomenon synthesizes a metal oxide nanotube structure having a large surface area, and the nanoparticle catalyst also forms a nanotube.
  • the ultra-sensitive nanotube sensing material synthesis technology and gas sensor application technology that can satisfy both the specific surface area increase and the catalytic effect, which are uniformly dispersed in the shell, which are important indicators of gas sensor characteristics. .
  • nanoparticle catalysts of very small (1 nm-3 nm) size are evenly distributed inside and outside the metal oxide without intermingling each other.
  • Metal oxide nanotube structures containing a large number of micropores (0.1 nm-50 nm) and macropores (50 nm-300 nm) can be easily synthesized in a single electrospinning and post-heating process, while being dispersed and bound. It is an object of the present invention to provide a gas sensor member, a gas sensor using the same, and a method of manufacturing the same.
  • a surface charge characteristic in dispersibility is excellent i synthesizing nanoparticle catalyst, and the dispersibility is excellent sphericity of polymeric regenerative layer template colloid at the same time, the electrospinning solution
  • the nanoparticle catalyst is easily uniformly bound in a single process, and includes a porous 1-dimensional metal oxide nanotube formed with micropores and macropores at the same time : a sensing material and a method for manufacturing a gas sensor member using the same.
  • Sensing material according to the present embodiment and a method for manufacturing a gas sensor member using the same step (a) synthesizing a dispersion solution in which the metal nanoparticle catalyst surrounded by a protein contained in the hollow structure of the apoferritin uniformly dispersed ; (b) mixing a dispersion solution in which metal nanoparticle catalysts piled up uniformly by proteins contained in the internal hollow structure of the apoferritin with a spherical polymer sacrificial layer template dispersion solution, and combining these with a metal oxide precursor (metal salt precursor) The solution is mixed with a solution in which the polymer is dissolved.
  • a metal oxide precursor metal salt precursor
  • the additive electrospinning solution is subjected to electrospinning and has at least one spherical polymer sacrificial layer template and a metal nanoparticle catalyst contained in the inner hollow structure of the apoferritin protein on the inside and the surface of the metal oxide precursor / polymer composite nanofiber. Evenly in plural Forming a distributed composite nanofiber; (d) formation of macropores on the surface of the fiber (50 nm-300 nm) through decomposition of the regenerative layer template polymer through high heat treatment, and the diffusion of the metal oxide on the surface to sequentially form metal oxide nanotubes.
  • nanoparticle catalyst having a dividing surface pore distribution is uniformly bound to the inner and inner and outer surfaces of the plepids constituting the nano-leuve, and to disperse the porous metal oxide nanotubes having micropores and macropores.
  • pulverizing manufacturing a resistance-type semiconductor gas sensor using at least one coating process on the sensor electrode for measuring a semiconductor gas sensor by using drop coating, spin coating, inkjet printing, and dispensing; It includes a method for producing a catalyst-metal oxide nanotube composite sensing material having a binary surface pore distribution for the gas sensor capable of detecting the environmentally harmful gas and biomarker gas for disease diagnosis comprising a.
  • apoferritin is a protein having a hollow structure (hollow structure) of about 8 nm from the protein called ferritin (ferritin) containing iron components present in the small intestine mucosa cells
  • the total size is 12 nm.
  • Various metal ions were diffused into the apoferritin structure, and various kinds of nanoparticle catalysts could be easily synthesized by reducing them.
  • the types and forms of metal salts that can be substituted inside apoferritin can vary widely.
  • Representative salt type catalysts include copper (II) nitrate, copper (II) chloride, cobalt (II) nitrate, cobalt (II) acetate, lanthanum (III) nitrate, lanthanum (III) acetate, platinum ( IV) chloride, platinum (II) acetate, gold (I, III) chloride, gold (III) acetate, silver chloride, silver acetate, Iron (III) chloride, Iron (III) acetate, nickel (II) chloride, nickel ( II) acetate, ruthenium (III) chloride, ruthenium acetate, iridium (III) chloride, iridium acetate, tantalum (V) chloride, palladium (II) chloride .
  • the form of a salt containing a metal silver is not limited to the type of special metal salt
  • a single metal particles are formed in the hollow portion of the apoferritin, the synthesis using two metal salts at the same time
  • the nanoparticle catalyst formed in the vaporization portion of the apoferritin in the form of a metal alloy (metal alloy) having a strong binding force because it is easy to bond with the heterogeneous type, and the phases can be separated from each other due to the strong homogeneous binding force. can do.
  • the surface of the hook is surrounded by a protein having a surface charge, and thus, it is possible to effectively maintain a dispersed state without mutual congestion.
  • step (b) is to prepare an electrospinning solution for the electrospinning process, dissolving the polymer and metal oxide precursor serving as a template for effectively synthesizing the nanofibers during the electrospinning process in a solvent, spinning solution Can be prepared.
  • Representative polymers used here include polymethylmethacrylate (PMMA), polyvinylpyridone (PVP), polyvinylacetate (PVAc),.
  • Polyvinyl alcohol PVA
  • Polyacrylonitrile PAN
  • polyethylene oxide PEO
  • polypropylene oxide PPO
  • polyethylene oxide co-polymer polypropylene oxide copolymer
  • PC polycarbonate
  • polyvinyl chloride polyvinylchloride (PVC)
  • PVC polycaprolactone
  • Representative metal salts include acetate, chloride, acetylacetonate, nitrate, methoxide, ethoxide, Subtypes, isopropoxide, sulfide and the like.
  • the colloidal electrospinning solution was prepared by uniformly dispersing the nanoparticle catalyst solution accumulated in the apoferritin protein synthesized in step (a) and the spherical polymer sacrificial layer template colloid having excellent dispersibility in the electrospinning solution. can do.
  • the sacrificial layer template of the spherical shape used for the formation of the large pore means a template that can be removed during high temperature heat treatment, there is no particular restriction on the type of template.
  • polymethyl methacrylate
  • polyvinylpyridone PVP
  • polyvinylacetate PVAc
  • polyvinyl alcohol PVA
  • polystyrene PS
  • polyacrylonitrile PAN
  • polyvinyl It may be one or two or more mixtures selected from among the following: fluoride fluoride (PVDF), polyacrylic acid (PAA), polydiaryldimethylammonium chloride (PDADMAC), polystyrenesulfonate (PSS).
  • PVDF fluoride fluoride
  • PAA polyacrylic acid
  • PDADMAC polydiaryldimethylammonium chloride
  • PSS polystyrenesulfonate
  • the sacrificial layer template has a size in the range of 50 nm -1 U m, and preferably, when mixed with an electrospinning solution, is characterized by being dispersed without decomposition, and the regenerative layer colloid is a polymer that is dissolved in a solvent. Even though, colloid Charged silver on the surface Black colloidal polymers that do not dissolve in solvents form anionic or cationic surfactants.
  • the step (c) is a metal salt / polymer composite nanosam oil in which metal nanoparticles (a metal nanoparticle catalyst) and a spherical polymer regenerative layer template (polymeric beads) in apoferritin are uniformly bound using an electrospinning technique. Synthesis step.
  • the shape of the composite nanofibers is characterized by having a rugged shape by the built-in polymer regenerative layer template.
  • the polymer constituting the polymer / metal oxide precursor composite nanofibers is decomposed and removed by high temperature heat treatment, and at the same time, a nanoparticle catalyst.
  • the surrounding apoferritin protein shell and spherical polymeric regenerative layer template are removed.
  • the macropores formed on the surface of the nanofibers are produced by decomposing a polymer having a size of 200 nm or more through high temperature heat treatment, while metal oxide crystallizes and diffuses outward in the process of forming metal oxide nanotubes sequentially.
  • the micropores partially cover the plurality of micropores.
  • apopertin particles which are aggregated between the plurality of polymer sacrificial layer templates, are decomposed to contribute to the formation of micropores.
  • the gain rate during the heat treatment process plays a very important role in forming the nanotube structure.
  • the heat treatment is rapidly performed at a temperature increase rate of 10 ° C / min, the double pore distribution including the metal nanoparticle catalyst obtained in the decomposition of the apoferritin protein formed inside the vaporization structure of the nanoparticle catalyst in the metal oxide nanoflube structure ( Micropore and Giant Machining Simultaneously Co-existing distribution) can be more effectively synthesized one-dimensional porous metal oxide nanotubes.
  • the heat treatment at a relatively slow 4 0 C / min nanotube structure may not be formed well.
  • a sensor electrode prepared in advance for dispersing the dispersion solution obtained by dispersing the one-dimensional porous metal oxide nano-lever obtained in the step (d) in a solvent (electric conductivity and electrical resistance change can be measured.
  • the coating may be performed on alumina insulator giffin :) in which a parallel electrode is formed, using a coating process such as dram coating, spin coating, inkjet printing, dispensing, and the like.
  • a coating process such as dram coating, spin coating, inkjet printing, dispensing, and the like.
  • the fabricated one-dimensional porous metal oxide nanotube structure having a dilution pore distribution may be determined in the thickness range of 10 nm to 50 nm between the inner wall and the outer wall, and the diameter of the nanotube is in the range of 50 nm to 5 ⁇ length. It can have The length of the nanotubes may have a length ranging from 1 ⁇ to 100 nm. It also contains a plurality of micropores having a range of 0.1 nm-50 nm on the outside of the tube and macropores having a size range of 5 to 300 nm.
  • dispersibility is excellent composite nanoparticles catalyst, uniformly them in and out of the ease of single-step method of the one-dimensional metal oxide nanotubes with Binding material having a large surface area and at the same time uniformly distributed nanoparticle catalyst ' and Provided are a method for manufacturing a gas sensor member.
  • This method relates to a method for manufacturing a member for a gas sensor, in which a catalyst particle having a high dispersion property is bound to a nanotube alone without mixing the polymer template and catalyst particles described above.
  • Sensing material according to the present embodiment and a method for manufacturing a gas sensor member using the same comprises the steps of: (a) synthesizing a nanoparticle catalyst using apoferritin; (b) preparing a metal oxide precursor / polymer mixed electrospinning solution comprising the nanoparticle catalyst included in the hollow structure of apoferritin; (c) forming a metal oxide precursor / polymer composite nanofiber comprising a nanoparticle catalyst contained in a hollow structure of apoferritin on or inside the metal oxide precursor / polymer composite fiber using an electrospinning technique; 1) Apoptotin and the polymeric material surrounding the nanoparticle catalyst are removed by pyrolysis through a high temperature heat treatment at a high temperature and speed.
  • the step (b) is to prepare a spinning solution for the electrospinning, to dissolve a metal salt acting as a precursor and a metal salt acting as a precursor (template) to easily form nanofibers in a solvent
  • a spinning solution can be prepared.
  • the polymer is polymethyl methacrylate (PMMA), polyvinylpyridone (PVP), polyvinylacetate (PVAc), polyvinyl alcohol (PVA), polymirylonitrile (PAN), polyethylene oxide ( polypropylene oxide (PEO), polypropylene oxide (PPO), polyethylene oxide co-polymer, polypropylene oxide copolymer, polycarbonate (PC), polyvinylchloride (PVC), polycaprolactone , Polyvinylidene fluoride, and the like, and representative metal salts include acetates, chlorides, acetylacetonates, nitrates, methoxides, eigensides, side-effects, isopropoxide, and sulfides including metal salts.
  • PMMA polymethyl methacrylate
  • PVP polyvinylpyridone
  • PVAc polyvinylacetate
  • PVA polyvinyl alcohol
  • PAN polymirylonitrile
  • PAN polyethylene oxide
  • the nanoparticle catalyst prepared in step (a) may be added to the electrospinning solution of the apoferritin protein formed in the hollow structure of the electrospinning solution.
  • the concentration of apoferritin protein in which the nanoparticle catalyst is formed inside the hollow structure may be controlled in a range of 0.001 wt%-50 wt%.
  • the content of the nanoparticle catalyst contained in the shell of the metal oxide nanotubes is controlled according to the concentration of apoferritin protein.
  • the step (C) is a step of synthesizing the metal salt / polymer composite nanofibers using an electrospinning technique
  • the nanoparticle catalyst synthesized in the step (a) is an excellent powder of the apoferritin protein formed inside the hollow structure Because of the acidity, the apoferritin protein including the nanoparticle catalyst may be distributed evenly inside the metal oxide precursor / polymer composite nanofibers.
  • the polymer constituting the polymer / metal oxide precursor composite nanofiber is decomposed and removed through high temperature heat treatment, and the metal oxide precursor undergoes an oxidation process and an Ostwald ripening process
  • the metal oxide nano-lube structure including the nanoparticle catalyst of the one-dimensional structure can be formed, in particular, the temperature increase rate during the heat treatment process plays a very important role in forming the nano-lube structure.
  • the heat treatment proceeds rapidly at a temperature increase rate of 10 ° C / min
  • nanoparticle catalyst is formed inside the hollow structure of apoferritin protein.
  • Metal oxide nanotubes containing the metal nanoparticle catalyst obtained by decomposition in a quaternary structure can be more effectively synthesized.
  • the heat treatment at a relatively slow 4 ° C / min nanotube structure may not be formed well.
  • the dispersion solution in which the polycrystalline metal oxide nanotubes to which the nanoparticle catalyst obtained in the step (d) is bound in a solvent is prepared in advance to measure a change in electrical conductivity and electrical resistance.
  • Alumina insulator substrate having a parallel electrode formed thereon by using a coating process such as dram coating, spin coating, inkjet printing, dispensing, or the like.
  • Sensor board If the nanoparticle catalyst is able to uniformly coat the polycrystalline metal oxide nanotubes including the metal nanoparticle catalyst obtained by decomposing the apoferritin protein formed inside the vapor deposition structure in the shell structure, the coating method is not particularly limited. Does not.
  • step (f) the metal oxide nanotubes having a different one-dimensional structure and different nanoparticle catalyst in the sensor having a metal oxide nano-lube structure containing the nanoparticle catalyst synthesized in the step (e)
  • Combination of two or more composite sensing material array sensor including a plurality of nanoparticle catalyst-metal oxide nanotube composite sensing material can be configured.
  • the fabricated one-dimensional metal oxide nanotube structure may be sealed in a thickness range of 10 nm to 50 nm between the inner wall and the outer wall, the length of the nano-lube may have a length range of 1 ⁇ to 500 ⁇ .
  • the nanoparticle catalyst is intensively and uniformly included in the 3 ⁇ 4 quality constituting the metal oxide nanotubes, thereby maximizing the catalyst's talk and maximizing the sensitivity of the sensing material.
  • the weight ratio of the nanoparticle catalyst in the nanoparticle catalyst-metal oxide nanotube composite sensing material produced by the above method may be selected in the range of 0.001 wt%-50 wt to the weight of the metal oxide nanoleuubric, and included in a human exhalation. Gas can be detected to monitor the presence of diseases, as well as to detect harmful environmental gases indoors and outdoors.
  • Embodiments of the present invention form a nanoparticle catalysts having a size of 1 nm 3 nm using a protein template that has a positive charge on the surface and is dispersible due to the repulsive force between each other, and the formed nanoparticle catalysts are electrospinning solutions. It is characterized in that the spherical template colloid is also mixed with the electrospinning solution and electrospun to distribute the spherical template and the catalyst uniformly on the composite nanofibers.
  • the nanoparticle catalyst is uniformly bound by using the Ostwald-lifeening phenomenon and the polymer decomposition phenomenon in the high heat treatment process, and the one-dimensional porous metal oxide structure having a double pore distribution on the metal oxide surface is used. It is characterized by forming. It is possible to detect various gases through various material composition change with high sensitivity characteristic that can detect trace amount of gas of about 10 ppb through catalytic effect and shape control to increase reaction surface, which are important factors for gas sensor characteristics. Gas sensor member, gas sensor and its manufacturing method that can be mass-produced by simultaneously performing nanotube shape control process including many catalyst binding and pores by simple process by controlling electrospinning and heat treatment process Has the effect to initiate.
  • one-dimensional porous metal oxide nanotubes including a plurality of circular to elliptic micropores and macropores using a spherical polymer regenerative layer template, polymer decomposition Using the time difference between the crystallization and diffusion process of the metal oxide and the metal oxide, one-dimensional porous nanotube structure including micropores and macropores is formed on the surface of the nanotube in a single process, and a plurality of polymers are formed.
  • the protein well template which is agglomerated in between, forms a porous tube structure having a specific surface area that is several tens of times larger than a general thin film structure and a several times larger specific surface area than a dense tube structure.
  • nanoparticle catalyst contained in the apoferritin in the electrospinning solution, all the proteins surrounding the nanoparticle catalyst by electrothermal heat treatment after electrospinning is removed, nanoparticles having a size in the range of 1 nm to 3 nm It is going to be exposed to the surface 1 and the newly formed through the porous nanotube inner and outer walls and pore diffusion through the process of Ostwald life turning process is to maximize the catalyst banung effect.
  • Proteins with an internal vaporization size of 8 nm can additionally form ultra-pores on the surface of the nanoleuve during removal.
  • a gas sensor member capable of producing, a gas sensor, and a manufacturing method thereof can be disclosed.
  • the ratio is more than six times larger than the general thin film structure It has a surface area and facilitates the movement of gas into the tube, improving the sensitivity to traces of gas.
  • the gas sensor member As mentioned above, by maximizing the surface area and catalytic reaction effect of the gas sensor member, it has a high sensitivity characteristic to detect a trace amount of gas, and has a good selectivity to detect a specific gas, and a mass sensor capable of mass production. It has the effect which can start a metal member, a gas sensor, and its manufacturing method.
  • FIG. 1 is a schematic diagram of a member for a one-dimensional porous metal oxide nanotube gas sensor in which the nanoparticle catalyst according to an embodiment of the present invention is uniformly bound and includes a plurality of circular to elliptic micropores and macropores.
  • FIG. 2 is a one-dimensional porous metal oxide nanotube structure including a nanoparticle catalyst synthesized using apoferritin according to an embodiment of the present invention and including a plurality of circular to elliptic micropores and macropores. It is a flowchart of the gas sensor manufacturing method.
  • FIG. 3 is a nanoparticle using an electrospinning method according to an embodiment of the present invention
  • Figure 1 shows the manufacturing process of a one-dimensional porous metal oxide nanotube structure having a double pore distribution including a catalyst and a plurality of circular to elliptic pores.
  • FIG. 4 is a view showing the principle that the micro-pores are generated by the crystal structure and diffusion of the metal oxide crystal sphere template and the sphere on the surface of the nanotube according to an embodiment of the present invention.
  • Figure 5 is a diagram showing the principle of generating micropores through the protein of the hollow structure according to an embodiment of the present invention.
  • FIG. 6 is a scanning electron microscope (SEM) photograph of a spherical polymer regenerative layer template serving as a regenerative layer template according to an embodiment of the present invention.
  • FIG. 7 (a) and 7 (b) are transmission electron microscopy (TEM) images of apoferritin particles containing Pt nanoparticle catalyst according to Example 1 of the present invention
  • Figure 7 (c) is the surface charge of the particles Zeta potential data is analyzed
  • FIG. 7 (d) shows the size distribution of Pt nanoparticle catalysts, respectively.
  • FIG. 8 is a metal oxide precursor / polyvinylpyridone (PVP) comprising a hollow structure of apoqueritin protein comprising a Pt nanoparticle catalyst and including a spherical polymer sacrificial layer template according to an embodiment of the present invention.
  • FIGS. 9 (a) and 9 (b) illustrate ' Pt nanoparticles and spheres synthesized using tin oxide precursor / polyvinylpyridinone (PVP) and apoferritin according to Example 2 of the present invention.
  • Electrospinning the spinning solution made by adding the colloidal template of the polymer regenerative layer in the form, and heat-treating the silver.
  • 10 (ac) is a transmission electron microscope (TEM) photograph of a one-dimensional porous metal oxide nanotube including a plurality of micropores and macropores, including a Pt nanoparticle catalyst according to Example 2 of the present invention.
  • 10 (d) shows a SAED (Selected Area Electron Diffraction) pattern and
  • FIG. 10 (e) shows an EDS (Energy Dispersive X-ray Spectrometer) photograph.
  • 11 (a) and 11 (b) are thermogravimetric analysis of one-dimensional porous metal oxide nanotubes containing a Pt nanoparticle catalyst according to Example 2 of the present invention and including a plurality of micropores and macropores.
  • the (TGA) graph and the photoelectron spectrometer (XPS) analysis graph are shown, respectively.
  • Figure 13 (a) and Figure 13 (b) is a fast win speed condition for the metal oxide precursor / pulley vinylpyridone (PVP) composite nanofibers containing the spherical polymer regenerative layer template according to Comparative Example 2 of the present invention
  • Distribution of the porosity Eggplants are scanning electron micrographs of one-dimensional porous metal oxide nanotubes.
  • Figure 14 (a) is a one-dimensional porous metal oxide nanotubes containing a Pt nanoparticle catalyst according to Example 2 of the present invention, including a plurality of micropores and macropores and pure tin oxide according to Comparative Example 1 Nanotube structure, anti-acetone gas (100 ppb-5 ppm) at 350 ° C of a one-dimensional porous tin oxide nanotube structure with a bi-porous distribution with a plurality of circular and elliptic pores according to Comparative Example 2 Male graph.
  • Figure 14 (b) shows the acetone detection limit characteristics of the one-dimensional porous metal oxide nanotubes sensing material containing the R nanoparticle catalyst according to an embodiment 2 of the present invention and includes a plurality of micropores and macropores It is a graph.
  • FIG. 15 illustrates acetone (CH3COCH3) at 350 ° C of a gas sensor having a Pt nanoparticle catalyst according to Example 2 of the present invention and having a one-dimensional porous metal oxide nanotube structure including a plurality of micropores and macropores.
  • a semi-linear graph at 1 ppm for biomarker gases such as toluene (C6H5CH3), hydrogen sulfide (H2S), nitrogen monoxide (NO), carbon monoxide (CO), pentane (C5H12) and ammonia (NH3).
  • C6H5CH3 toluene
  • H2S hydrogen sulfide
  • NO nitrogen monoxide
  • CO carbon monoxide
  • C5H12 pentane
  • NH3 ammonia
  • FIG. 17 shows exhalations using an array of sensor materials prepared above according to an embodiment of the present invention, and analyzes the exhalations through Principal Component Analysis (PCA).
  • PCA Principal Component Analysis
  • FIG. 18 is a schematic view of a gas sensor member in which the nanoparticle catalyst according to the fourth embodiment of the present invention is uniformly bound inside and outside the one-dimensional metal oxide nano-lube.
  • FIG. 19 is a flowchart illustrating a method of manufacturing a gas sensor using a metal oxide nanotube structure including a nanoparticle catalyst synthesized using apoferritin according to Example 4 of the present invention.
  • 20 is a view showing a process for producing a one-dimensional metal oxide nano-lube structure including a nanoparticle catalyst using an electrospinning method according to an embodiment 4 of the present invention.
  • tin oxide precursor / polyvinylpyridone (PVP) composite spinning comprising apopertin protein containing a Pt nanoparticle catalyst and an Au nanoparticle catalyst respectively in a hollow structure according to an embodiment of the present invention. Scanning electron micrograph of the nanofibers obtained by electrospinning the solution.
  • PVP polyvinylpyridone
  • FIG. 22 is a scanning electron micrograph of tin oxide nanofibers obtained by electrospinning a high temperature heat treatment of a tin oxide precursor / polyvinylpyridone (PVP) composite spinning solution according to Comparative Example 3 of the present invention.
  • PVP polyvinylpyridone
  • FIG. 23 is a scanning electron microscope photograph of tin oxide nanotubes obtained by electrospinning a tin oxide precursor / polyvinylpyrrolidone (PVP) composite spinning solution according to Comparative Example 4 of the present invention and subjected to a high temperature heat treatment at a fast temperature increase rate condition to be.
  • FIG. 24 is a transmission electron microscope photograph of apoferritin particles including Pt nanoparticle catalyst and apoferritin particles including Au nanoparticle catalyst according to Example 3 of the present invention.
  • FIG. 25 shows the electrospinning of a spinning solution prepared by adding Pt nanoparticles and Au nanoparticles, respectively, synthesized using tin oxide precursor / polyvinylpyridin (PVP) and apoferritin according to Example 4 of the present invention.
  • FIG. 26 is a transmission electron microscope photograph and an energy dispersive x-ray spectrometer (EDS) photograph of a tin oxide nanotube structure including a Pt nanoparticle catalyst according to Example 4 of the present invention.
  • EDS energy dispersive x-ray spectrometer
  • FIG. 27 is a transmission electron micrograph and an EDS (Energy Dispersive X-ray Spectrometer) photograph of a tin oxide nanotube structure including an Au nanoparticle catalyst according to Example 4 of the present invention.
  • EDS Electronic Dispersive X-ray Spectrometer
  • Example 28 is a tin oxide nanotube structure including a Pt nanoparticle catalyst according to Example 4 of the present invention and a pure tin oxide nanotube structure according to Comparative Example 4 at 350 0 C of the tin oxide nanofiber structure according to Comparative Example 3 It is a semi-linear graph for acetone gas (1-5 ppm).
  • Example 30 is a tin oxide nanotube comprising a Pt nanoparticle catalyst according to Example 4 of the present invention and a pure tin oxide nanotube structure according to Comparative Example 4, at 350 ° C of the tin oxide nanofiber structure according to Comparative Example 3 Semi-finished graph for toluene gas (1-5 ppm).
  • Example 31 shows acetone (CH 3 COCH 3), toluene (C 6 H 5 CH 3), hydrogen sulfide (H 2 S) at 350 ° C. of a gas sensor using tin oxide having a one-dimensional nanotube structure to which a Pt nanoparticle catalyst is bound according to Example 4 of the present invention.
  • Graph of reactivity at 1 ppm for biomarker gases such as nitrogen monoxide (NO), carbon monoxide (CO), pentane (C5H12) and ammonia (NH3).
  • Example 32 is a tin oxide nanotube comprising an Au nanoparticle catalyst according to Example 4 of the present invention and a pure tin oxide nanotube structure according to Comparative Example 4, at 300 ° C of the tin oxide nanofiber structure according to Comparative Example 3 A semi-ungular graph for hydrogen sulfide gas (1-5 ppm).
  • Example 33 shows acetone (CH 3 COCH 3), toluene (C 6 H 5 CH 3), hydrogen sulfide (H 2 S) at 300 ° C. of a gas sensor using tin oxide of 1-dimensional nanotube structure to which Au nanoparticle catalyst is bound in Example 4 of the present invention.
  • Ethanol is a semi-finished graph at 1 ppm against biomarker gases such as (C2H50H) and ammonia (NH3).
  • Embodiments of the present invention include a nanoparticle catalyst synthesized with apoferritin, and the polystyrene polymer is decomposed during the high temperature heat treatment process of the metal oxide precursor / polymer composite nanofiber containing the spherical polystyrene colloid used as a sacrificial layer template Micropores (0.1 nm-50 nm) and macropores (50 nm-300 nm) are generated in the metal oxide nanotubes by using the sequential processes of crystallization and diffusion of metal oxides. At the same time, the contents of the one-dimensional porous nanotube gas sensor member in which the nanoparticle catalyst is uniformly distributed.
  • the process of uniformly synthesizing nanoparticle catalysts of several nm size requires several pretreatment processes, and it is relatively complicated and time-consuming and expensive to synthesize metal oxide nanotubes or pore-containing metal oxide nanolyuves. It has the disadvantage of being able to.
  • the present invention easily synthesizes nanoparticle catalysts having a uniform size distribution of about 1 nm-3 nm size using a protein template called apoferritin, and 200 nm.
  • the nanoparticle catalyst and the spherical polystyrene regenerative layer template were mixed with a metal oxide precursor / polymer mixed electrospinning solution together with a spherical polystyrene colloid with various size distributions between -1000 nm and then electrospinning.
  • the oxide precursor / polymer composite nanofibers were allowed to bind uniformly on and inside.
  • micropore (0.1 nm-50 nm) and macropore (50) of the synthesized composite nanofibers are formed by sequentially decomposing the regenerative layer polymer and 'crystallizing and diffusing the metal oxide in the high temperature heat treatment process.
  • nm-300 nm nm-300 nm
  • nanoparticle catalyst By forming a porous metal oxide nanotube structure, it is possible to synthesize a large amount of one-dimensional porous nanotube sensing material having a double pore distribution in which a specific surface area is large and nanoparticle catalysts are uniformly bound without a hole and maximize catalyst activity in a single process. It has features.
  • micropores with a size range of 0,1 nm-50 nm and macropores with a range of 50 nm-300 nm in the inner and outer walls of the nanotubes not only widen the specific surface area of the nanotubes but also serve as sensing materials. Maximize gas flow to improve detection.
  • the uniformly distributed nanoparticle catalysts on the inner and outer surfaces of the nano-lube and the surface exposed to the pores can maximize the effect of the catalyst when the gases react with the sensing material with a minimum amount of catalyst. Can be.
  • a synergistic effect can be expected with the morphological concept of the nanotube structure including a large number of pores and the catalytic activity distributed evenly without aggregation, and it is the highest sensitivity gas sensor sensing material compared to the existing sensing materials. Characterized in that can be produced. In particular, despite the use of a regenerative layer polymer template of several hundred nanometers (nm) in size, the natural phenomena of the material can be used to produce micropores in the 0.1 nm-50 nm range and macropores in the 50 nm-300 nm size. Can be formed on. Efficient and easy to manufacture a gas sensor member having the above characteristics A process for implementing a gas sensor member, a gas sensor, and a manufacturing method thereof.
  • FIG. 1 is a nanoparticle catalyst 110 and a plurality of micropores 121 and a macropores 131 according to an embodiment 2 of the present invention.
  • Gas sensor member using a one-dimensional porous nanotube 100 The schematic diagram of this is shown.
  • a metal oxide precursor / polymer composite nanofiber in which the core nanoparticle catalyst is uniformly bound is synthesized.
  • the composite nanofiber formed by the above method is subjected to a solid heat treatment to remove the regenerative layer template and the apoferritin protein shell and form micropores in the range of 0.1 nm-50 nm and macropores having a size of 50 nm-300 nm.
  • the metal oxide particles gather on the fiber surface, the metal oxide particles fill the micropores to form micropores, and the nanoparticle catalysts also gather on the surface to uniformly attach the nanoparticle catalyst inside and outside the tube structure. Characterized in that it can form a one-dimensional porous nanotubes including phosphorus micropores and macropores.
  • metals that can be synthesized inside the hollow structure of apoferritin are not particularly limited as long as they exist in ionic form. Specifically, copper (II) nitrate, copper (II) chloride, cobalt (II) nitrate, cobalt (II) acetate, lanthanum (III) nitrate, lanthanum (III) acetate, platinum (IV) chloride, platinum (II) acetate , gold (I, III) chloride, gold (III) acetate, silver chloride, silver acetate, iron (III) chloride, iron (III) acetate, nickel (II) chloride, nickel (II) acetate, ruthenium (III) chloride, ruthenium acetate, iridium (III ) chloride, iridium acetate, tantalum (V) chloride, palladium (II) chloride, and Pt, Pd, Rh, Ru, Ni, Co, Cr, Ir, Au
  • one heterogeneous nanoparticle catalyst selected from the metal-metal, metal-metal oxide, or metal oxide-metal oxide type group may be used.
  • Representative metal-metal oxide nanocatalysts include Pt / Ir02, Pt / Ru02, Pt / Rh203, Pt / NiO, Pt / Co304, Pt / CuO, Pt / Ag20, Pt / Fe203, Au / Ir02, Au / Ru02, Au / Rh203, Au / NiO, Au / Co304, Au / CuO, Au / Ag20, etc.
  • metal-metal nanocatalysts include Pt-Au, and n-type for metal oxide-metal oxide catalysts.
  • the nanoparticles can be synthesized to have a uniform size distribution, and the size of the nanoparticle catalyst can be controlled by controlling the amount of the metal precursor. have.
  • nanoparticle catalysts are surrounded by a protein shell called apoferritin.
  • the surface of apoferritin is positively charged around pH 7-8.5, so it does not clump together in the electrospinning solution. It has the advantage of being distributed.
  • the chemical sensitization effect increases the concentration of oxygen ions participating in the surface reaction by promoting the decomposition reaction of oxygen molecules between the surface of the metal oxide and the air layer.
  • Nanoparticle catalysts such as noble metals such as platinum (Pt) and gold (Au) may be used, and PdO, Co304, NiO, Cr203, CuO, Fe203, Fe304, Ti02, ZnO, Sn02, There may be a nanoparticle catalyst that exhibits an electronic sensitizing effect that causes a catalytic reaction through oxidation such as V205, V203, and the like.
  • a spherical regenerative layer template used for synthesizing a one-dimensional porous metal oxide having a double pore distribution
  • it means a template that can be removed during heat treatment, and the type of template is not particularly limited.
  • polymethyl methacrylate PMMA
  • polyvinylpyridone PVP
  • polyvinylacetate PVAc
  • polyvinyl alcohol PVA
  • polystyrene PS
  • PAN polyacrylonitrile
  • PVDF lithium denfluoride
  • PAA polyacrylic acid
  • PDADMAC polydianyldimethylammonium chloride
  • PSS polystyrenesulfonate
  • the regenerative layer template has a size in the range of 50 nm-1 ⁇ , and when mixed with the electrospinning solution, is characterized in that it does not decompose and is dispersed, even if the regenerative layer colloid is a polymer that is dissolved in a solvent, the colloid surface
  • chargeable or charged ionic surfactants anionic or cationic surfactants
  • Polymeric colloids that do not dissolve in solvents may be used.
  • the nanoparticle catalyst synthesized using the apoferritin described above and the spherical regenerative layer template are dispersed in the electrospinning solution and the electrospinning technique is used, the nanoparticle catalyst in the regenerative layer template and the apoferritin vapor deposition structure are uniformly distributed. And a metal oxide precursor / polymer composite nanofiber having a rugged structure can be prepared.
  • the composite nanofibers thus formed form micropores and macropores by sequentially decomposing the regenerative layer polymer, crystallizing and diffusing the metal oxide through high temperature heat treatment, and diffusing phenomenon of the nanoparticle catalyst during tube formation. Through the nanoparticle catalyst it is possible to synthesize a uniform one-dimensional porous nanotubes.
  • the diameters of the nanotube structures range from 50 nm to 5 ⁇ (with an outer diameter of 50 nm to 2 nm). Included, the inner diameter may be in the size range of 40 nm to 1.95 iim), the thickness between the inner wall and the outer wall (shell thickness) ranges from 10 nm to 50 nm, the length ranges from 1 nm to 100 urn Characterized in having a.
  • the one-dimensional porous nanotube having the metal oxide semiconductor double pore distribution constituting the nanostructure is not limited to a special material as long as the values of electrical resistance and conductivity can be changed by adsorption and desorption of gas. Specifically, ZnO, Sn02, W03, Fe203, Fe304, NiO, Ti02, CuO, In203, Zn2Sn04, Co304, PdO, LaCo03, NiCo204, Ca2Mn308, V205, Cr203, Nd203, Sm203, Eu203, Gd203, Tb407, Dy203, Ho203, Er203, Yb203, Lu203, Ag2V4011, Ag20, Li0.3La0.57TiO3, LiV308, InTa04, CaCu3Ti4012, Ag3P04, BaTi03, NiTi03, SrTi03, Sr2Nb207, Sr2Ta207, Ba0.5Sr0.5Co0.8Fe0.2 It may be a one-dimensional porous nanotube having a double pore
  • Figure 2 is a method of manufacturing a member for a gas sensor using a one-dimensional porous metal oxide semiconductor nanotubes having a double pore distribution comprising a nanoparticle catalyst and a plurality of pores through an electrospinning method according to an embodiment of the present invention Flowchart Is showing.
  • the gas sensor member manufacturing method using the apoferritin template having a hollow structure synthesizing a nano-indentation catalyst (S210 the synthesized nanoparticle catalyst and the spherical sacrificial layer template metal oxide Step (S220) to prepare a mixed electrospinning solution by stirring in the precursor / polymer electrospinning solution, the metal oxide precursor / polymer composite nanofibers in which the spherical sacrificial layer template and the nanoparticle catalyst is uniformly distributed through electrospinning Step (S230), by decomposing the spherical polymer regenerative layer template through the high temperature heat treatment to form a macropores (50 nm-300 nm), the polymer decomposition time and the metal oxide diffusion process is generated by using a fine Through the formation of pores (0.1 nm-50 nm) (S240) and continuous high temperature heat treatment, the nanoparticle catalyst is uniformly functionalized It is composed of the step (S250) of synthes
  • the apoferritin used in the step (S210) includes ferritin extracted from the equine spleen, and iron contained in the interior using ferritin obtained regardless of the extraction site such as liver or spleen of human or pig. Apoferritin having been removed may be used.
  • sodium chloride (NaCl) solution of various concentrations, including saline solution can be used as a solution for storing apoferritin, and storage at 4 ° C or less is required. Shall be.
  • the metal salt in order to embed the metal salt inside the apoferritin acidic state of pH 2-3 or pH 7.5-8.5 A basic solution in the range (or pH 7.5-9) is preferred and the apoferritin is immersed in a solution in which the metal salt is dissolved for 1 hour to 24 hours, allowing the metal salt to diffuse deeply into the apoferritin.
  • the concentration of the saline solution containing apoferritin should be in the range of 0.1-200 mg / ml.
  • the solvent used is ethanol, water, chloroform, ⁇ , ⁇ '—dimethylformamide, dimethylsulfoxide Compatible solvents such as N, N'-dimethylacetamide, N-methylpyrrolidone, etc.
  • nanoparticle catalysts embedded in apoferritin are Pt, Pd, Rh, Ru, Ni, Co, Cr, Ir, Au, Ag, Zn, W, Sn, Sr, In, Pb, Fe, Cu, V, Ta , Sb, Sc, Ti, Mn, Ga, Ge and the like, one or more of these nanoparticle catalysts composed of two or more can be synthesized in the alloy (alloy) form.
  • alloy nanoparticle catalyst one heterogeneous nanoparticle catalyst selected from the metal-metal, metal-metal oxide, or metal oxide-metal oxide type group may be used.
  • Representative metal-metal oxide nanocatalysts include Pt / Ir02, Pt / Ru02, Pt / Rh203, Pt / NiO, Pt / Co304, Pt / CuO, Pt / Ag20, Pt / Fe203, Au / Ir02, Au / Ru02, Au / Rh203, Au / NiO, Au / Co304, Au / CuO, Au / Ag20, with rounds.
  • Metal-metal nanocatalysts include Pt-Au, and metal oxide-metal oxide catalysts are n-type metals.
  • oxalic acid examples include (oxalic acid: C2H204), lithium A commonly used reducing agent such as aluminum aluminum hydride (LiAlH4) may be used, and any reducing agent capable of reducing a metal salt to form a metal nanoparticle catalyst may be used without particular limitation.
  • the solution which reduced the metal salt in apoferritin using a reducing agent filters out the apoferritin protein including the nanoparticle catalyst through centrifugation, and the electrolysis rate of the centrifuge used here is preferably about 10,000 rpm-13,000 rpm.
  • step (S220) of preparing a metal oxide precursor / polymer mixed spinning solution including the nanoparticle catalyst embedded in the synthesized apoferritin hollow structure and a spherical regenerative layer template will be described.
  • the nanoparticle catalyst and the sacrificial layer template colloid are added to the metal oxide precursor / polymer mixed spinning solution, and the nanoparticle catalyst and the sacrificial layer template colloid are uniformly dispersed in the spinning solution. Stir to disperse to prepare a mixed spinning solution.
  • the solvents used in the preparation of the spinning solution include ⁇ , ⁇ '-dimethylformamide (N, N'-dimethyIformamide), dimethylsulfoxide, ⁇ , ⁇ '-dimethylacetamide (N, Compatible solvents such as N'-dimethylacetamide), N-methylpyrrolidone, DI water and Ethanol can be used, but they can dissolve metal oxide precursors and polymers at the same time. Solvent You must choose.
  • polymer and regenerative layer templates used herein do not have any particular limitations as long as they are removed during high heat treatment, and typically, polymethylmethacrylate (PMMA), polyvinylpyridone (PVP), and polyvinylacetate ( PVAc), polyvinyl alcohol (PVA), polyacrylonitrile (PAN), polypropylene oxide (PEO), polypropylene oxide (PPO), polyethylene oxide copolymer, polypropylene oxide copolymer, poly Polymers such as carbonate (PC), polyvinylchloride (PVC), polycaprolactone, polyvinylidene fluoride and the like.
  • PMMA polymethylmethacrylate
  • PVP polyvinylpyridone
  • PVAc polyvinylacetate
  • PVA polyvinyl alcohol
  • PAN polyacrylonitrile
  • PEO polypropylene oxide
  • PPO polypropylene oxide
  • polyethylene oxide copolymer polypropylene oxide copolymer
  • the metal oxide precursor used in this step must be dissolved in a solvent and upon high temperature heat treatment, Sn02, W03, CuO, NiO, ZnO, Zn2Sn04, Co304, Cr203, LaCo03, V205, Ir02, Ti02, Er203, Tb203, Lu203, If the precursor contains a metal salt capable of forming a semiconductor metal oxide nanofibers or nanotubes that may change resistance when adsorption and desorption of gases such as Ag20, SrTi03, Sr2Ta207, BaTi03, Ba0.5Sr0.5Co0.8Fe0.2O3-7, etc. There is no restriction on specific metal salts.
  • the weight ratio of the metal oxide precursor to the polymer for forming the spinning solution is preferably 1: 1 ⁇ 2, and the ratio of the polymer and the nanoparticle catalyst synthesized using apoferritin is about 1: 0.00001-0.1. Preferred and may be included in the range of 1: 0.000001-1.
  • the sacrificial layer template of the spherical form used in step (S220) is preferably a weight ratio of 1: 1 to about 1-2, and included in the range of 0.wt% -50 wt%. Can be.
  • the weight ratio of the metal nanoparticle catalyst surrounded by the protein may be included in the concentration range of 0.001 wt to 50 ⁇ % of the metal oxide precursor constituting the metal oxide precursor / polymer composite nanofibers.
  • the size of the spherical regenerative layer template having a size in the range of 50 nm-1 ⁇ is preferably selected in consideration of the size of the pore to be made. By doing so, it is possible to manufacture a gas sensor member having various characteristics.
  • the process of preparing the mixed electrospinning solution first dissolves the metal oxide precursor in a solvent, and then disperses the apoferritin and the spherical regenerative layer template including the pre-made nanoparticle catalyst in the solution.
  • a method of dispersing there is a method of stirring for 1 hour or more at a rotational speed of 500 rpm.
  • the polymer is added at an appropriate ratio and stirred until the polymer is completely dissolved in the solution.
  • Stirring conditions are preferably stirred at 50 ° C or less at room temperature, agitated in 5 hours to 48 hours and then apoptotin and the regenerative layer template colloid containing a nanoparticle catalyst in the metal oxide precursor and polymer solution Ensure uniform mixing.
  • the syringe (syringe) to the metal oxide precursor / polymer mixed spinning solution containing the prepared nanoparticle catalyst and the spherical regenerative layer template . After filling in, it pushes the syringe at a constant speed using a syringe pump to discharge a certain amount of spinning solution.
  • the electrospinning system may include a high voltage device, a grounded conductive substrate, a syringe, and a syringe nozzle, and a high voltage is applied between 5 kV and 30 kV between the solution filled in the syringe and the conductive substrate to form an electric field.
  • the spinning solution discharged through the syringe nozzle is elongated in the form of nanofibers.
  • the spinning solution in the form of a long spout is obtained by evaporating and volatilizing the solvent contained in the spinning solution to obtain a solid polymer fiber, and at the same time, a metal oxide precursor, a nanoparticle catalyst in apoferritin, and a spherical regenerative layer.
  • a composite fiber comprising a template is produced.
  • the discharge rate can be adjusted to within 0.01 ml / min or 0.5 ml / min, and the metal oxide precursor / polymer / nanoparticle catalyst composite nanofibers having a desired diameter and an unstructured structure can be manufactured by controlling voltage and discharge amount. Can be.
  • micropores and macropores are distributed on the surface of the metal oxide nanotubes and these nanotube structure nanoparticle catalysts are uniform
  • One-dimensional porous metal oxide nanotubes can be prepared ' .
  • 500- The high-temperature heat treatment in the range of 800 ° C removes both spherical polymer and apoferritin used as a regenerative layer template, forming macropores (50 nm-300 nm) and micropores (0.1 nm-50 nm).
  • macropores 50 nm-300 nm
  • micropores 0.1 nm-50 nm
  • step S250 the nanoparticle catalyst in the apoferritin is uniformly bound to the inner and outer walls of the porous nanotubes and the inner wall during the heat treatment process while the aperitin is removed.
  • the structure finally formed through the step (S250) is a nanoparticle catalyst is uniformly bound to the inner wall and outer wall and the inside of the tube, a one-dimensional porous metal oxide nanotube structure having a plurality of micropores and macropores.
  • an exemplary member for a gas sensor for example comprises a nanoparticle catalyst using the electrospinning process in accordance with and using the one-dimensional porous metal oxide nanotubes, a double pore distribution "has the
  • the first step (S310) is a process showing an intermediate process of high-temperature heat treatment of the metal oxide precursor / polymer composite nanofibers in which the spherical regenerative layer template and the nanoparticle catalyst in apoferritin are uniformly bound.
  • the spherical regenerative layer template and apoferritin are removed to form pores of various sizes, and at the same time, an intermediate process of forming a metal oxide tube through Ost Wald life phenomenon is shown.
  • Step S320 which is the second process, removes the polymer matrix from all the spherical regenerative layer templates, the apoferritin and the composite fiber after the final silver heat treatment, As crystallization and diffusion occur, finally, a large number of micropores and macropores exist in the inner and outer walls of the nanotubes, and the nanoparticle catalysts all diffuse, resulting in a one-dimensional porosity having a double pore distribution uniformly bound to the nanotubes.
  • Metal oxide nanotubes are synthesized.
  • FIG. 4 illustrates a mechanism of forming a plurality of micropores and macropores formed on a surface of a nanotube during a high temperature heat treatment process.
  • the regenerative layer polystyrene template is decomposed and forms macropores, after which the metal oxide crystallizes and diffuses to fill the micropores, thereby forming micropores.
  • Figure 5 and a polystyrene-protein "system pulrit of 12 nm size, which together between templates distributed on nanofibers are concentrated, while the protein templates dense decomposition at a high temperature heat treatment with respect to the process of the contribution in forming the fine pores Explaining.
  • the protein template with excellent dispersion may be concentrated in a narrow space between the polystyrene templates.
  • a one-dimensional porous metal oxide nano including a plurality of micropores and macropores including a nanoparticle catalyst using a regenerative layer template electrospinning technique and a decomposition time difference between a metal oxide and a polymer template according to embodiments of the present invention.
  • the method of manufacturing a gas sensor member using a tube forms a one-dimensional nanotube structure with a large reaction surface area with gas and simultaneously forms pores to maximize gas flow in the sensing material, thereby improving gas sensing effect.
  • the reaction sensor's reaction velocity, sensitivity, and selectivity can be greatly improved.
  • Apoferritin solution (Sigma Aldrich) is dispersed in 0.15 M NaCl aqueous solution at a concentration of 35 mg / ml.
  • a basic aqueous solution such as NaOH
  • the basic solution used herein is not particularly limited as long as it is an aqueous solution having basicity in addition to NaOH.
  • the precursor of Pt metal ion entering apoferritin is H2PtC16'H20, and 16 mg of H2PtC16 * H20 is dissolved in 1 g of DI water to prepare an aqueous solution.
  • the aqueous metal salt precursor solution prepared here is slowly dropped drop by drop using a dropper to the pH-controlled apoferritin solution.
  • the mixed solution is stirred for 1 hour to allow the Pt metal silvers to diffuse into the hollow apoferritin.
  • the stirring condition means to proceed at room temperature for about 1 hour at 100 rpm. After sufficient stirring,
  • the reducing agent is used to reduce the metal ions present in the apoferritin so that Pt nanoparticle catalysts can be synthesized inside the apoferritin.
  • Reducing agents used herein typically include aqueous NaBH 4 solution. At this time, the reducing agent used NaBH4 in the form of an aqueous solution at 40 mM dong and add 0.5 ml.
  • the aqueous solution in which the Pt nanoparticle catalysts present in the apoferritin hollow structure synthesized as described above contains many reducing agents and ligands of metal salts, only the Pt nanoparticle catalyst synthesized through the centrifuge should be extracted. .
  • the condition of the centrifuge is preferably about 12,000 rpm and preferably centrifuged for at least 10 minutes. If the Pt nanoparticle catalysts in apoferritin extracted by centrifugation are dispersed in DI water, an aqueous solution in which Pt nanoparticles are dispersed in apoferritin can be prepared. .
  • FIG. 7 (a) and 7 (b) are transmission electron microscopy (TEM) photographs of apoferritin containing Pt nanoparticle catalyst synthesized through the above process, and FIG. 7 (c) is a surface charge state and FIG. 7 ( d) shows the size distribution.
  • Transmission electron micrographs confirm that the Pt nanoparticles are well dispersed, which can be explained by the positive effect of the surface of the protein shell on the surface of the protein shell.
  • the nanoparticle catalysts have a diameter distribution of 1 to 3 nm.
  • Example 2 Fabrication of 1-D Porous Tin Oxide (Sn02) Nanotubes 100 with Pt Nanoparticle Catalyst Uniformly Bonded to the Inner and Outer Walls of the Tube and with Micropore and Macropore Distributions
  • 0.25 g of metal chloride precursor tin chloride dehydrate is added to 1.35 g of DMF and 1.35 g of a mixed solvent to dissolve at room temperature.
  • 0.3 g of a spherical polystyrene (diameter 200 nm) colloid serving as a sacrificial layer template as shown in FIG. 6 is added to the solution in which the metal salt precursor is dissolved, and is dispersed.
  • the polystyrene colloid used in Example 2 has an anionic surfactant formed on the surface, has excellent dispersibility, and is insoluble in DMF, which is a solvent, and is subsequently removed during heat treatment to form large pores.
  • DMF which is a solvent
  • a polystyrene polymer bead having a size of 200 nm was used as a colloidal template, but the type of the polymer template is not particularly limited.
  • polymethyl methacrylate PMMA
  • polyvinylpyridone PVP
  • polyvinylacetate PVAc
  • polyvinyl alcohol PVA
  • polystyrene PS
  • PAN polyacrylonitrile
  • PVDF vinylidene fluoride
  • PAA polyacrylic acid
  • PDADMAC polydianyldimethylammonium chloride
  • PSS polystyrenesulfonate
  • the sacrificial layer template has a size in the range of 50 nm-1 ⁇ , and when mixed with an electrospinning solution, has a characteristic of being dispersed without disassembly, even if the regenerative layer colloid is a polymer that is soluble in a solvent, the colloid surface Polymeric colloids that do not dissolve in solvents can form anionic or cationic surfactants that charge on them.
  • Dispersion condition of the polystyrene colloidal template means to stir about 10 hun at 500 rpm rpm,
  • the diameter of the polystyrene used above is not limited to 200 nm, it is possible to use a polystyrene colloidal solution having a variety of diameters.
  • Example 2 200 mg of the Pt nanoparticle catalyst aqueous solution synthesized in Example 1 was added to a mixed solution (polystyrene colloid + metal salt + mixed solvent) and mixed. 0.35 g of polyvinylpyrrolidone (PVP) polymer having a molecular weight of 1,300,000 g / mol was added to increase the viscosity in a homogeneously mixed solution of the spherical polystyrene polymer and the nanoparticle catalysts in the apoferritin thus synthesized. A spinning solution is prepared by stirring at a rotational speed of 500 rpm for 24 hours at room temperature.
  • PVP polyvinylpyrrolidone
  • the prepared electrospinning solution is placed in a syringe (Henke-Sass Wolf, 10 mL) RM— JECT®), connected to a silage pump, pushes out the electrospinning solution at a 0.1-ml / min discharge rate, and is used in the spinning process. Electrospinning is carried out with a voltage of 14 kV between the nozzle (needle, 25 gauge) and the current collector where the nanofibers collect. At this time, a stainless steel plate was used as the current collector plate of the nanofiber, and the distance between the nozzle and the current collector was set to 26 cm.
  • nanofiber 8 is a metal oxide precursor obtained after the electrospinning process, polyvinylpyridone polymer ,.
  • the diameter of the synthesized nanofibers has a value between 200 nm and 300 nm.
  • the composite nanofibers including the metal oxide precursor prepared by the same method, the polyvinylpyridone polymer, the spherical polystyrene regenerative layer template, and the Pt nanoparticle catalyst in the apoferritin hollow structure were used at 600 ° C for 1 hour. It was maintained and cooled down to room temperature at a rate of temperature drop of 40 ° C / min. The heat treatment was performed in an air atmosphere using Ney's Vulcan 3-550 small electric furnace. The heat treatment process decomposes the apoferritin protein and the polymer that surrounds the nanoparticle catalyst.
  • the metal oxide metal salt precursor on the surface of the nanofiber is first oxidized through nucleation and particle growth process through the process of heat treatment in the air atmosphere, the metal salt precursors inside the nanofiber through the Ostwald life phenomenon. As it is oxidized, it diffuses to the surface of the nanofibers to form nanotubes, and at the same time, the polystyrene template is removed by heat treatment, and the metal oxide is partially filled with the macropores through the diffusion process, so that the micropores and macropores on the surface of the nano-leave are large. It will form pores.
  • the Pt nanoparticle catalyst also has a very small size, which ensures that the tin oxide particles with the tin oxide surface are uniformly bound to the inner and outer walls of the tin oxide nanotubes. As a result, a large number of pores are distributed on the surface of the tin oxide nanotube structure and a one-dimensional porous nanotube structure in which the R nanoparticle catalysts are uniformly distributed is formed.
  • FIGS. 9 (a) and 9 (b) show scanning electron micrographs of the one-dimensional porous tin oxide nanotubes including the Pt nanoparticle catalyst synthesized in Example 1 and having a double surface pore distribution.
  • the diameter of the formed nanotube is about 50 nm-5 ⁇
  • the thickness between the outer and inner walls of the tube has a thickness in the range of 10-50 nm.
  • the size of the micropores formed on the surface of the nanotubes has a range of 0.1-50 nm and the macropores have a size of 5 to 300 nm.
  • Figure 10 (a-c) shows a transmission electron micrograph of the one-dimensional porous tin oxide nanotubes containing the R nanoparticle catalyst synthesized in Example 1 and having a double surface pore distribution.
  • High-throughput transmission electron microscopy analysis showed that Pt nanoparticle catalysts exist in one-dimensional porous tin oxide nanotubes, and Pt particles were selected in one-dimensional porosity through the SAED (Selected Area Electron Diffraction) pattern of FIG. It can be seen that the tin oxide nanotubes have crystallinity.
  • various pores having a size of between 5-150 nm are distributed on the surface of the tin oxide nanotubes.
  • Pt nanoparticle catalysts are uniformly distributed in the tin oxide nanotube structure formed through the TEM analysis (EDS) photograph of FIG. 10 (e).
  • thermogravimetric (TGA) and photoelectron spectroscopic (XPS) analyzes of one-dimensional porous tin oxide nanolevers containing synthesized Pt nanoparticle catalysts and having large and microporous distributions. Are shown respectively.
  • TGA thermogravimetric analysis
  • XPS photoelectron spectroscopic
  • Comparative Example 1 Preparation of Pure Tin Oxide Nanotubes Without Nanoparticle Catalyst Comparative Example 1 compared with Example 2 is pure tin that does not contain Pt nanoparticles catalyst and does not contain pores in the form of circle or ellipse. Relates to oxide nanotube synthesis. Specifically, 0.25 g of tin chloride dehydrate, a tin oxide precursor, is dissolved in a mixed solvent (1.35 g of DMF + 1.35 g of ethane) and has a weight average of 1,300,000 g / mol to add the viscosity of the mixed solution. Add 0.35 g of polyvinylpyrrolidone (PVP) and stir thoroughly.
  • PVP polyvinylpyrrolidone
  • the stirring condition mentioned here means stirring at least 5 hours at a rotational speed of 500 rpm.
  • the tin oxide precursor / polymer mixed electrospinning solution thus formed is filled with an electrospinning syringe (Henke-Sass Wolf, 10 mL NORM-JECT®) ⁇ ], connected to a syringe pump, and the spinning solution is discharged at a discharge rate of 0.1 ml / min. It pushes and electrospinning.
  • the needle used for electrospinning is a tin oxide precursor / polymer composite nanofiber by applying a high voltage of about 14 kV while maintaining the distance between the nozzle and the current collector collecting nanofibers at 26 cm while using 25 gauge.
  • the synthesized tin oxide precursor / polymer composite nanofiber is to remove the polymer through high temperature heat treatment and to form tin oxide through the oxidation process of the tin oxide ' precursor.
  • the high temperature heat treatment condition was performed at 600 0 C for 1 hour, and the temperature increase rate was kept constant at 10 0 C / min.
  • the rate of descent was kept constant at 40 0 C / min.
  • the relatively high temperature rising rate of 10 ° C / min is characterized in that it plays an important role in forming the nanotube structure.
  • Example 12 is a pure tin oxide nanotube produced through Comparative Example 1 .
  • the scanning electron micrograph of the structure is shown.
  • the synthesized tin oxide nanotubes had a diameter in the range of 50 nm-5 iim, and the thickness between the inner and outer walls of the nanotubes was between 1 and 50 nm.
  • Comparative Example 2 compared with Example 2 does not add the Pt nanoparticle catalyst embedded in the apoferritin, the pure tin oxide 1-dimensional having the pores in the form of circles and ellipses by adding 3 ⁇ 4 of the spherical polystyrene sacrificial layer It relates to porous nanotube synthesis. Specifically, 0.25 g of tin chloride dehydrate, a tin oxide precursor, is dissolved in a mixed solvent (1.35 g of DMF 1.35 g + ethane). In addition, 0.3 g of polystyrene colloid serving as a spherical regenerative layer template having a size of 200 nm was added and dispersed.
  • Dispersion condition as used herein means to stir at least 1 hour at a rotational speed of 500 rpm.
  • PVP polyvinylpyrrolidone
  • Stirring condition here is 500 rpm It means to stir at least 10 hours under the conditions.
  • the thoroughly stirred metal precursor / polystyrene regenerated layer template / polymer electrospinning solution is placed in an electrospinning syringe (Henke-Sass Wolf, 10 mL N-M-JECT®) and connected to a syringe pump, The spinning solution pushes the spinning solution at the discharge speed.
  • the needle used for electrospinning uses 25 gauge and maintains the distance between the nozzle and the collector for collecting nanofibers at 26 cm while applying a high voltage of about 14 kV. Given tin oxide precursor / polystyrene regenerative layer template / polymer composite nanofibers were prepared.
  • the tin oxide precursor / polymer regenerative layer template / polymer composite nanofibers synthesized in the above form high-temperature heat treatment to remove macromolecules and decompose spherical polystyrene sacrificial layers to form macropores in a circle or ellipse shape, and then tin oxide.
  • the micropores are formed by partially filling the macropores through crystallization and diffusion process to form the one-dimensional porous tin oxide nanotubes.
  • the high temperature heat treatment conditions here were made at 600 ° C for 1 hour.
  • Figure 13 (a) and Figure 13 (b) shows a scanning electron micrograph of a pure tin oxide nanotube structure including pores in the form of circle to ellipse prepared through Comparative Example 2.
  • the fabricated one-dimensional porous tin oxide nanotubes have a diameter of 50 nm-5 ⁇ and the thickness between the inner and outer walls of the nanotubes has a value ranging from 1 to 50 nm.
  • the size of the micropores has a value between 0.1-50 nm
  • the macropores have a size of 5 to 300 nm. Since it has no role in inhibiting the growth of tin oxide particles of a protein template called apoferritin, it is relatively large unlike Example 2. It can be seen that it has a pore size.
  • one-dimensional porous tin oxide including Pt nanoparticle catalysts and a plurality of micropores and macropores.
  • the mixture is pulverized by ultrasonic cleaning for 1 hour.
  • the porous nanotube structure synthesized above may exhibit a shorter porous nanotube structure in the longitudinal direction.
  • a 3 mm x 3 mm alumina substrate on which gold (Au) electrodes were formed was coated using a drop coating method. The coating process was performed by using a micropipette on alumina substrate with sensor electrode for mixing 1-D porous nanotube, 1-D porous tin oxide nanotube, and tin oxide nanotube mixed solution bound with 3 ⁇ Pt nano-pressure catalyst dispersed in ethanol. 60 ° C hotplate after application on After drying the process, the process was repeated 4-6 times so that a sufficient amount of sensing material was applied on the alumina sensor substrate.
  • the gas sensor system designed for evaluating simulation characteristics as an exhalation sensor is acetone, which is an indicator gas for diagnosing diabetes, bad breath, and lung cancer at RH 85-95% relative humidity, similar to the humidity of gas from human breath.
  • CH3COCH3 hydrogen sulfide
  • H2S hydrogen sulfide
  • C6H5CH3 toluene
  • Figure 14 (a) shows the reaction rate when the acetone gas concentration decreases to 5, 4, 3, 2, 1, 0.6, 0.4, 0.2 and 0.1 ppm at 350 ° C (Rair / Rgas, where Rair is The resistance value of the metal oxide material when injected, Rgas is the metal oxide when acetone gas is injected It means the resistance value of the material).
  • Figure 14 (b) also shows a graph showing the detection limit of the one-dimensional porous nanotubes to which the Pt nanoparticle catalyst is bound using a linear approximation equation.
  • the one-dimensional porous tin oxide nanotube sensing material to which the Pt nanoparticle catalyst is bound while the Pt nanoparticle catalyst embedded in the apoferritin hollow structure is thermally treated includes a catalyst for 5 ppm acetone gas. It shows 21.1 times higher detection characteristics than unused one-dimensional porous tin oxide nanotubes and 38 times higher than pure tin oxide nanotubes.
  • one-dimensional porous tin oxide nanotubes bound with Pt nanoparticle catalysts obtained by linear approximation based on sensor results measured at acetone concentrations of 5, 4, 3, 2, 1, 0.6, 0.4, 0.2, and 0.1 ppm. The detection limit of can be seen that the sensitivity (Rair / Rgas) is 2,1 when the acetone concentration is 10 ppb.
  • FIG. 15 is a one-dimensional porous tin oxide nanoleuve including a large number of circular and elliptical pores, including a Pt nanoparticle catalyst bound by heat treatment of a platinum (Pt) nanoparticle catalyst embedded in apoferritin at 350 ° C.
  • the sensor was used to show the reactivity values at concentrations of 1 ppm against the acetone gas known as a biomarker gas for diabetes and body lipolysis, compared to hydrogen sulfide, toluene, nitrogen monoxide, carbon monoxide, ammonia and pentane gas.
  • a sensor made of a one-dimensional porous tin oxide nanotube sensing material having a double pore distribution and having a Pt nanoparticle catalyst bound is used for other diseases.
  • biomarker gases hydrogen sulfide, toluene, pentane, carbon monoxide, ammonia, and nitrogen monoxide gas, it can be seen that it shows excellent selective detection characteristics for acetone, which is a biomarker gas for diabetes and body fat decomposition.
  • FIG. 16 shows the exhalation of 10 healthy subjects in a Tedler bag, the quantitative injection of concentrated acetone gas, and the exhalation of 10 simulated diabetic patients so that acetone concentration is present in the exhalation of humans. It is showing the process of making. Using a diaphragm pump to quantitatively inhale and discharge the gas as shown in Figure 16, it was possible to produce acetone concentration of about 2 ppm in the exhalation.
  • FIG. 17 shows porous tin oxide nanotubes in which micropores and macropores in which platinum nanoinjector catalysts are bound, tin oxide nanotubes in which platinum nanoparticles are bound, and exhalation of 10 healthy humans exhaled and simulated diabetic patients are actually collected.
  • the result of sensing is obtained by injecting into the sensor array composed of tin oxide nanotube sensing material in which micropores and macropores are distributed.
  • FIG. 17 it can be seen that 10 healthy people's exhalation and simulated diabetic patients' gas zones are clearly distinguished from each other, and through this, the possibility of diagnosing diabetic patients through exhalation is confirmed. It was.
  • the biomarker gas was shown as an example, and the sensor characteristics of the gas sensor sensing material were shown.
  • excellent sensor detection characteristics can be expected for hazardous environment gases such as H2, NOx, SOx, HCHO, and C02, and Au, Pd, Rh, Cr, which are widely used as catalysts for Pt nanoparticle catalysts embedded in apoferritin. , Co, Ni etc.
  • the multi-catalyst particles contain a large number of circular to elliptical pores, and use one-dimensional porous multi-metal oxide nanotubes having a dilution pore distribution, thereby providing super high sensitivity. And a nanosensor array having high selectivity can be manufactured.
  • the one-dimensional porous metal oxide nanotube sensing material having a double pore distribution in which the nanoparticle catalyst obtained from the apoferritin template is bound is an excellent hazardous gas sensor and a gas sensor for healthcare for analysis and diagnosis of volatile organic compound gas in the exhalation. Can be used for
  • the present invention provides a nanotube structure in which nanoparticle catalysts are uniformly distributed on the surface and inside of a nanotube shell by controlling the temperature increase rate of a tin oxide precursor / polymer composite nanofiber including a nanoparticle catalyst synthesized with apoferritin during heat treatment. It characterized in that the synthesis.
  • a tin oxide precursor / polymer composite nanofiber including a nanoparticle catalyst synthesized with apoferritin during heat treatment It characterized in that the synthesis.
  • researches have been carried out to improve the detection characteristics by increasing the specific surface area and improving the porosity so that a larger amount of gas reacts with the metal or -metal oxide catalyst. Studies that activate catalytic reaction by binding to a sensing material It has been going on.
  • the present invention by using apoferritin-easily synthesized nanoparticle catalyst of the size of 0.1 nm to 8 nm and mixed with a metal oxide precursor / polymer mixed spinning solution and then carrying out full-spinning, The nanoparticle catalyst was allowed to bind uniformly to the inside and inside of the metal oxide precursor / polymer composite nanofiber.
  • 'metal heat-treatment process removes the protein template surrounding the nanoparticle catalyst and removes the polymer, while forming the metal oxide nanotube structure including the nanoparticle catalyst through the Ostwald ripening phenomenon.
  • nanoparticle catalysts can be easily synthesized in a large-surface specific nanotube structure without the uniform formation of a large number of sensing materials.
  • the metal oxide semiconductor nanotubes in which the nanoparticle catalysts are uniformly distributed inside and outside the nanotubes can maximize the effect of the catalyst when the gases react with the sensing material by uniformly distributing the catalysts.
  • the nanotube structure formed through the membrane facilitates the invasion of the gas inside the tube. It is possible to produce a highly sensitive gas sensor sensing material by inducing surface reaction.
  • it is possible to synthesize a variety of metal or metal oxide nanoparticles in the apoferritin protein has a feature that can be produced gas sensor having a specific gas selectivity.
  • a gas sensor member having the above characteristics it is characterized by implementing the gas sensor member, the gas sensor and a manufacturing method thereof in an efficient and easy process.
  • FIG. 18 shows a schematic diagram of a gas sensor member 1800 using a metal oxide semiconductor nanotube structure 1810 including a nanoparticle catalyst 1821 according to an embodiment of the present invention.
  • the nanoparticle catalyst is electrospun with the apoferritin protein formed inside the vaporization structure together with the metal oxide precursor / polymer mixed spinning solution to increase the temperature of the composite nanofibers. It is characterized in that the nanotubes 1810 of the aggregated and hollow structure can be formed and the nanoparticle catalysts 1821 can be uniformly bound inside and outside the tube structure.
  • the metals that can be synthesized inside the hollow structure of apoferritin here are not restricted if the ionic form S is present. Specifically, copper (II) nitrate, copper (II) chloride, Cobalt (II) nitrate, Cobalt (II) acetate, ' Lanthanum (III) nitrate, Lanthanum (III) acetate, platinum (IV) chloride, platinum (II) acetate, gold (I, III) chloride, gold (III) acetate, silver chloride, silver acetate, Iron (III) chloride, Iron (III) acetate, Nickel (II) chloride, Nickel (II) acetate, Ruthenium (III) chloride, Ruthenium Acetate, Iridium (III) chloride, iridium acetate, Tantalum (V) chloride, Palladium (II) chloride, and these precursors are used to make Pt, Pd, Rh, Ru, Ni, Co, Cr, Ir, Au
  • the nanoparticle catalysts are surrounded by apoferritin protein shells having a hollow structure Because it is stacked, it has a great advantage of being well dispersed in the electrospinning solution. Looking at the role of nanoparticle catalysts in gas sensor sensing materials in detail, it acts as a chemical sensitizing effect that increases the concentration of adsorbed oxygen ions participating in the surface reaction by promoting the decomposition reaction of oxygen molecules between the surface of the metal oxide and the air layer.
  • PdO, Co304, NiO, Cr203, CuO, Fe203, Fe304, Ti02, ZnO, Sn02 which may have nanoparticle catalysts of precious metals such as platinum (Pt), gold (Au)
  • nanoparticle catalyst that exhibits an electronic sensitizing effect that causes a catalyst reaction through oxidation such as V205, V203, and the like.
  • the nanoparticle catalyst 1821 synthesized using the apoferritin described above is bound to the inside and the outside of the nanotube structure, the nanoparticle catalyst surrounded by the protein shell is used. Compared with this, there is no uneven phenomenon and dispersion can be performed well.
  • the nanocatalyst particles may be used to prepare a metal oxide precursor / polymer mixed spinning solution. When added together and spun together, the nanoparticle catalysts can bind evenly to the outside and inside of the metal oxide precursor / polymer nanofibers.
  • a metal oxide nanotube structure including a nanoparticle catalyst may be formed through nucleation, particle growth, and Ostwald ripening through high temperature heat treatment having a temperature rising rate of 10 ° C / min.
  • the diameter of the metal oxide nanotube structure containing the nanoparticle catalyst has a diameter ranging from 50 nm to 5 ⁇ , the thickness between the inner and outer walls ranges from 10 nm to 50 nm, and the length ranges from 1 ⁇ to 100 ⁇ . It is characterized by having a range.
  • the metal oxide semiconductor nanotube constituting the nanostructure is not limited to a special material as long as the values of electrical resistance and conductivity can be changed by adsorption and desorption of gas. Specifically, ZnO, Sn02, W03, Fe203, Fe304, NiO, Ti02, CuO, In203, Zn2Sn04, Co304, PdO, LaCo03, NiCo204, Ca2Mn308, V205, Cr203, Nd203, Sm203, Eu203, Gd203, Tb407, Dy203, Ho203 , Er203, Yb203, Lu203, Ag2V4011, Ag20, Li0.3La0.57TiO3, LiV308, InTa04, CaCu3Ti4012, Ag3P04, BaTi03, NiTi03, SrTi03, Sr2Nb207, Sr2Ta207, BaO.5SrO.5CoO.8FeO. It may be a nanotube composed of two or more composite materials.
  • a specific gas acting as a biomarker in the exhalation of the human body can be detected early.
  • the method for manufacturing a gas sensor member includes synthesizing a nanoparticle catalyst using apoferritin (S1910), and synthesizing the synthesized nanoparticle catalyst with a metal oxide residue / polymer electrospinning solution.
  • Preparing a complex electrospinning solution by adding to the (S1920), preparing a metal oxide precursor / polymer composite nanofiber including a nanoparticle catalyst made of apoferritin using the complex electrospinning solution using an electrospinning apparatus; (S1930) And it can be configured to include a step (S1940) to produce a metal oxide nanotubes in which the nanoparticle catalyst is uniformly bound through a high temperature heat treatment by increasing the temperature increase rate to 10 ° C / min relatively. In the following it will be described in more detail for each of the above steps.
  • Apoferritin used in this step (S1910) includes ferritin extracted from the equine spleen, and apoferritin from which iron ions have been removed from the internal space using ferritin obtained regardless of the extraction site such as human liver or spleen. This can be used.
  • the removal of iron and silver from the ferritin, which has a protein-enclosed structure, can be a chemical method or an electrical method.
  • the solution for maintaining apoferritin in the hollow structure having an empty space therein can be used in various concentrations of sodium chloride (NaCl) solution, including saline solution, and it needs to be stored below 4 0 C. do.
  • NaCl sodium chloride
  • a basic solution in the pH range of 8.0 to 9.5 is preferable, and in a solution where the metal salt is dissolved for about 1 to 24 hours so that the metal salt can diffuse into the apoferritin. Soak apoferritin.
  • concentration of the storage solution such as a saline solution containing apoferritin, should be in the range of 0.1-200 mg / ml.
  • solvents used are ethanol, water, chloroform, ⁇ , ⁇ '-dimethylf ormamide and dimethylsulfoxide. Compatible solvents such as N, N'-dimethylacetamide and N-methylpyrrolidone can be used.
  • metal salt is soluble, it is limited to a specific solvent.
  • type and form of the metal salt generated inside the apopperitan is not particularly limited as long as it is in the form of an ionic precursor.
  • Metal salts are Pt, Pd, Rh, Ru, Ni, Co, Cr, Ir, Au, Ag, Zn, W, Sn, Sr, In, Pb, Fe, Cu, V, Ta, Sb, Sc, Ti, Mn, Ga, Ge and apoferritin Salt precursors that can be included therein are preferred, and proteins are removed after high temperature heat treatment, and nanoparticle catalysts have the property of converting to metal or metal oxide catalyst particles. In this case, the metal particles which are well oxidized are easily converted into metal oxide particles. Such metal oxide particles may have n-type or p-type semiconductor properties. Reducing agents that play a role in reducing the metal salts contained in the hollow structure of apoferritin include sodium borohydride (Sodium borohydride,
  • reducing agents such as formic acid (HCOOH), oxalic acid (C2H204), and lithium aluminum hydride (LiAlH4), including NaBH4), can be used.
  • Any reducing agent capable of forming a particle catalyst can be used without particular limitation.
  • the solution that reduced the metal apoferritin metal using a reducing agent through the centrifugation to filter out the apoferritin protein including the nanoparticle catalyst, the rotation speed of the centrifuge is preferably about 10,000 rpm-13,000 rpm.
  • the step of preparing the metal oxide precursor / polymer mixed spinning solution including the metal nanoparticle catalyst synthesized using the synthesized apoculitine is examined (S1920).
  • this step (S1920) by adding the apoferritin protein containing the nanoparticle catalyst prepared above to the metal oxide precursor / polymer mixed spinning solution to form a mixed spinning solution of nanoparticle catalyst particles uniformly dispersed in the spinning solution Manufacture.
  • the solvent is ⁇ , ⁇ '-dimethylformamide (N, N'-dimethylformamid 6), Compatible solvents such as dimethylsulfoxide, 1 ⁇ -dimethylacetamide, N-methylpyrrodon, pure water (DI water) and ethanol
  • a solvent that can dissolve the metal oxide precursor and the polymer at the same time should be selected.
  • the polymer that can be used here is not limited to a specific polymer as long as it can be dissolved with a solvent and can be removed through high temperature heat treatment.
  • the polymer that can be used in the present step (S1920) is polymethyl methacrylate (PMMA), polyvinylpyridone (PVP), polyvinylacetate (PVAc), polyvinyl alcohol (PVA), polymicrylo Nitrile (PAN), polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene oxide copolymer, polypropylene oxide copolymer, polycarbonate, PC, polyvinylchloride, PVC ), Polycaprolactone, polyvinylidene fluoride and the like.
  • PMMA polymethyl methacrylate
  • PVP polyvinylpyridone
  • PVAc polyvinylacetate
  • PVA polyvinyl alcohol
  • PAN polymicrylo Nitrile
  • PAN polyethylene oxide
  • PPO polypropylene oxide
  • polyethylene oxide copolymer polypropylene oxide copolymer
  • polycarbonate PC
  • PC polyvinylchloride
  • PVC Polycaprolactone
  • the metal oxide precursor used in this step is dissolved in a solvent and subjected to high temperature heat treatment, such as Sn02, W03, CuO, NiO, ZnO, Zn2Sn04, Co304, Cr203, LaCo03, V205, Ir02, Ti02, Er203, Tb203, Lu203, Ag20, SrTi03,
  • a precursor containing a metal salt capable of forming semiconductor metal oxide nanofibers or nanotubes having gas sensor characteristics such as Sr2Ta207, BaTi03, Ba0.5Sr0.5Co0.8Fe0.2O3-7 is not limited to a specific metal salt.
  • the ratio of the polymer and the metal oxide precursor to form the spinning solution is 1: Q.5 ⁇ 2 It is preferable to have a degree, and the ratio of the polymer and the nanoparticle catalyst synthesized using apoferritin is preferably in the range of 1: 0.00001 to 1: 0.1.
  • the type of metal salt contained in the apoqueritin should be selected in consideration of the sensing characteristics and selectivity of the gas to be detected, and it is possible to manufacture a gas sensor member having various characteristics while changing the metal salt.
  • the process of preparing the electrospinning solution in step (S1920) first dissolves the metal oxide precursor in a solvent and adds the apoferritin solution containing the pre-made nanoparticle catalyst to uniformly disperse the apoferritin containing the nanoparticle catalyst Mix the solution so that After thorough mixing, the polymer is added at an appropriate ratio and stirred until all of the polymer is dissolved in the solution. Stirring conditions are preferably stirred at 50 ° C or less at room temperature, and stirred for 5 hours to 48 hours to ensure that the apoferritin containing the nanoparticle catalyst, the metal oxide precursor and the polymer are uniformly mixed in the solution. do. Electrospinning the synthesized electrospun solution, and performs a step (S1930) to produce a metal oxide precursor / polymer composite nanofibers containing the apoferritin protein including a nanoparticle catalyst by electrospinning.
  • the electrospinning system may include a high voltage device, a grounded conductive substrate, a syringe, and a syringe nozzle, and a high voltage is applied between 5 kV and 30 kV between the solution filled in the syringe and the conductive substrate to form an electric field.
  • the spinning solution discharged through the syringe nozzle is elongated in the form of nanofibers.
  • the spinning solution in the form of a long spout is obtained by evaporation and volatilization of the solvent contained in the spinning solution to obtain a solid polymer fiber, and at the same time contains the apoferritin protein including a metal oxide precursor and a nanoparticle catalyst therein.
  • Composite fibers are produced.
  • the discharge rate can be adjusted to about 0.01 ml / min to 0.5 ml / min and can be prepared metal oxide precursor / polymer / nanoparticles catalyst composite nanofibers having a desired diameter by controlling the voltage and the discharge amount.
  • the metal oxide nano is controlled by controlling the temperature increase rate during the heat treatment process. It is possible to form a tube structure.
  • the heat treatment in the silver range of 400-800 ° C, all the proteins surrounding the polymer and the nanoparticle catalyst are decomposed and removed, and the metal oxide precursor and the nano-oxide inside the nanofiber are processed through the Ostwald ripening process. Particle catalysts can diffuse toward the surface of the nanofibers to achieve metal oxide nanotube structures after the final heat treatment.
  • the temperature increase rate is relatively high, such as 10 V, so that the nanoparticle catalysts
  • Metal oxide nanotube structures (1810) can be fabricated that are concentrated on the quaternary structure of metal oxide nanotubes.
  • FIG. 20 schematically illustrates a manufacturing process sequence according to a method for manufacturing a gas sensor member using a metal oxide semiconductor nanotube including a nanoparticle catalyst using an electrospinning method according to an embodiment of the present invention.
  • the first step ( ' S2010) is to perform nanosumming using a complex spinning solution (2010) containing a metal oxide precursor (tin precursor) / polymer and a nanoparticle catalyst embedded in the apoferritin using an electrospinning technique.
  • the example to produce is shown.
  • the nanofibers 2030 shown in FIG. 20 produced through the above process are shown to have an even distribution of the apoferritin 2020 including the nanoparticle catalyst.
  • Step S2020 which is a second process, represents a process of high temperature heat treatment of the composite nanofibers synthesized in step S2010.
  • the temperature increase rate is 10 ° C / min, which heats up to 600 ° C at a relatively high rate to remove all of the proteins surrounding the polymer and the nanoparticle catalyst, and the metal oxide and nanoparticle catalysts are all diffused into the nanofiber hook.
  • the metal oxide semiconductor nanotubes 2040 that contain the metal nanoparticle catalyst uniformly are synthesized.
  • the manufacturing method of the gas sensor member 1800 using the metal oxide semiconductor nanotubes 1810 including the nanoparticle catalyst 1821 using the electrospinning technique and the heat treatment temperature control rate according to the embodiments of the present invention
  • the reaction properties of the gas sensor are formed by forming a one-dimensional nano-hub structure with a large reaction surface area with gas and binding a catalyst having a uniformly dispersed chemical / electronic sensitization effect using protein properties unlike conventional catalysts. The sensitivity, sensitivity, and selectivity can be greatly improved.
  • Example 3 synthesis procedure as described below to the apo-ferritin synthesis of Pt and Au nanoparticle catalyst made increased tool crude platinum (Pt), gold (Au) inside Apo ferritin, which have a nanoparticle catalyst using as a template Go through
  • H2PtC16-H20 was used as a Pt precursor and H2AuC16'H20 was used as an Au precursor to synthesize Pt and Au nanoparticle catalysts. 16 mg of H2PtC16'H20 and 16 mg of H2AuC16-H20 were dissolved in DI water, respectively. Produced in the form.
  • the two aqueous metal salt precursor solutions made as described above are stirred slowly dropping into the pH-controlled apoferritin solution, Pt and Au salts are respectively diffused into the hollow of the apoferritin and embedded therein.
  • the stirring condition here means to proceed at about 100 hrs at 100 rpm.
  • the use of a NaBH4 reducing agent causes the metal silver (Pt4 + / Au4 +) metals (Pt4 + / Au4 +) to be reduced to (Pt4 + / Au4 +) metal to form a nanoparticle catalyst.
  • the reducing agent NaBH4 used at this time is made into an aqueous solution at a concentration of 40 mM and 0.5 ml is added thereto.
  • the two aqueous solutions in which the Pt nanoparticle catalyst and Au nanoparticle catalyst are dispersed using apoferritin as described above contain a large amount of ligands together with a reducing agent and a metal salt. Only apoferritin containing nanoparticle catalysts will be extracted.
  • the condition of the centrifuge is preferably about 10,000 rpm to about 12,000 rpm, and preferably centrifuged for at least 10 minutes. If apoferritin containing the R and Au nanoparticle catalyst extracted through a centrifuge is dispersed in water again, an aqueous solution in which Pt and Au nanoparticle catalysts are dispersed in the apoferritin can be finally prepared.
  • FIG. 24 shows a transmission electron microscope photograph of apoferritin containing Pt nanoparticle catalyst and Au nanoparticle catalyst prepared by the above procedure. It can be seen that the apoferritin including the synthesized Pt and Au nanoparticle catalysts has a diameter of about 2-5 nm and has a spherical shape.
  • Example 4 Fabrication of Tin Oxide (Sn02) Nanotubes 2040 Including Pt and Au Nanoparticle Catalysts
  • tin chloride dihydrate a tin oxide precursor
  • a mixed solvent containing 1.35 g of DMF and 1.35 g of ethanol
  • 200 mg of the apoferritin (2020) aqueous solution containing the Pt nanoparticle catalyst and the Au nanoparticle catalyst prepared in Example 3 were added to the two tin oxide precursor / mixed solvent electrospinning solutions, respectively, and mixed.
  • a polyvinylpyrrolidone (PVP) polymer having a molecular weight of 1,300,000 g / mol was used to increase the viscosity of a homogeneous solution in which apoferritin particles and tin precursors including Pt nanoparticle catalyst and Au nanoparticle catalyst were mixed.
  • PVP polyvinylpyrrolidone
  • Each of g is added and stirred at a rotational speed of 500 rpm for 24 hours at room temperature to prepare a spinning solution.
  • the electrospinning solution thus prepared is placed in a syringe (Henke-Sass Wolf, 10 mL NORM-JECT®) and connected to a syringe pump to push and spin the electrospinning solution at a discharge rate of 0.1 ml / min.
  • Electrospinning is carried out with a voltage of 14 kV between the nozzle (needle, 27 gauge) and the current collector where the nanofibers collect.
  • a stainless steel plate was used as the current collector plate of the nanofibers, and the distance between the nozzle and the current collector was set to 15 cm.
  • FIG. 21 shows a tin oxide precursor / polyvinylpyridone composite nanofiber including Pt nanoparticle catalyst obtained after electrospinning and a tin oxide precursor / polyvinylpyridone composite nanofiber scanning electron microscope including Au nanoparticle catalyst. All. It can be seen that one-dimensional nanofibers are synthesized, and the diameter has a value between 200 nm and 300 nm.
  • the Pt nanoparticle catalyst-bound metal oxide precursor / polymer composite fiber and Au nanoparticle catalyst-bound metal oxide precursor / polymer composite fiber prepared by the method described above were heated at 600 ° C. at a temperature of 10 ° C / min, respectively . Hold at C for one hour, then cooled to room temperature at a rate of 40 ° C./mi drop. Heat treatment was performed in an air atmosphere using Ney's Vulcan 3-550 small electric furnace. Through the high temperature heat treatment process, the apoferritin protein and the polymer surrounding the nanoparticle catalyst are decomposed and removed.
  • tin salt precursor is a tin salt precursor
  • tin salt precursor was within the nanofiber is oxidized while passing through the nucleation and particle growth process by tin oxide particles through Ostwald life turning phenomenon from the surface of the nanofibers because the heat treatment in an air atmosphere
  • the oxides are oxidized, they diffuse to the surface of the nanofibers to form tin oxide nanotubes, and the Pt nanoparticle catalyst and Au nanoparticle catalysts included in the nanofibers also diffuse to the nanotube surface.
  • Tin oxide nanotubes in which nanoparticle catalysts are uniformly bound and tin oxide nanotube structures in which Au nanoparticle catalysts are uniformly bound are formed.
  • FIG. 25 shows scanning electron micrographs of tin oxide nanotubes bound with Pt nanoparticle catalysts obtained after the heat treatment prepared in Example 4 and tin oxide nanotubes bound with Au nanoparticle catalysts.
  • the outer diameter of the formed nanotube structure is about 50 nm-2 ⁇ and the inside diameter is about 40 nm-1.9 ⁇ .
  • Tube The thickness is about 10-100 nm.
  • FIG. 26 shows a transmission electron micrograph of a tin oxide nanolyve including a Pt nanoparticle catalyst prepared in Example 4.
  • FIG. Transmission electron microscopic lattice analysis shows that Pt nanoparticle catalysts are present in tin oxide nanotubes, and the SAEDCSelected Area Electron Diffraction pattern shows that Pt nanoparticle catalysts crystallize in tin oxide nanotubes. .
  • Pt nanoparticle catalysts are uniformly distributed in the tin oxide nanotube structure formed through the TEM analysis (EDS).
  • FIG. 27 shows a transmission electron micrograph of a tin oxide nanotube including an Au nanoparticle catalyst synthesized in Example 4.
  • FIG. Transmission electron microscopic lattice analysis shows that Au nanoparticle catalysts are present in tin oxide nanotubes
  • SAEDCSelected Area Electron Diffraction (SAEDC) pattern shows that Au nanoparticle catalysts are crystallized in tin oxide nanolevers. have.
  • Au nanoparticle catalysts are uniformly distributed in the tin oxide nanotube structure formed through the TEM analysis (EDS).
  • Comparative Example 3 Preparation of Pure Tin Oxide Nanofibers without Nanoparticle Catalyst
  • pure tin oxide nanofibers without addition of the nanoparticle catalyst embedded in apoferritin were formed.
  • PVP polyvinylpyrrolidone
  • 0.35 g of polyvinylpyrrolidone (PVP) having a weight average molecular weight of 1,300,000 g / m and tin oxide precursor ' tin ' 0.25 g of tin chloride dihydrate is dissolved in 1.35 g of DMF and 1.35 g of ethane in a mixed solvent at 500 rpm for 24 hours at normal silver conditions.
  • the tin oxide precursor / polymer mixed spinning solution was added to an electrospinning syringe (Henke-Sass Wolf, 10 mL N0RM-JECT®), connected to a syringe pump, and discharged at a discharge rate of 0.1 ml / min. Push up the liquid.
  • the nozzle used for electrospinning uses 27 gauge. The distance between the needle and the current collector to obtain the non-fiber is about 15 cm and the voltage of 14 kV is applied to the tin oxide precursor / polymer composite nanofiber web. To prepare.
  • the prepared tin oxide precursor / polymer composite nanofibers are removed through the high temperature heat treatment process, the tin oxide precursor is formed through the oxidation process to form a tin oxide.
  • the high temperature heat treatment process was performed at 600 ° C for 1 hour, the temperature rising rate was kept constant at 4 ° C / min and the temperature falling rate was kept constant at 40 ° C / min.
  • FIG. 22 shows a scanning electron micrograph of pure tin oxide nanofibers to which no nanoparticle catalyst prepared through Comparative Example 3 was added.
  • the fabricated tin oxide nanofibers have a diameter of about 50 nm-2 iim and have a cylindrical nanofiber structure.
  • Comparative Example 4 Fabrication of Pure Tin Oxide Nano-Lube without Nanoparticle Catalyst Comparative Example 4 compared with Example 4 relates to the synthesis of pure tin oxide nanotubes without the addition of the R and Au nanoparticle catalyst embedded in the apoferritin.
  • PVP polyvinylpyrrolidone
  • tin chloride dihydrate tin chloride dihydrate
  • Tin oxide precursor / polymer composite nanofibers remove polymer through high temperature heat treatment and form tin oxide through oxidation process of tin oxide precursor.
  • the high temperature heat treatment condition was performed for 1 hour at 600 ° C.
  • the temperature increase rate was kept constant at 10 ° C min and the temperature falling rate was kept constant at 40 ° C / min.
  • the temperature increase rate to 10 0 Cmin is a feature that increases the temperature at a rate faster than the temperature increase rate of 4 ° C / min of Comparative Example 3 has a feature that plays an important role in forming nanotube structure.
  • Example 23 is a pure oxide tin oxide nanotube produced through Comparative Example 4 The scanning electron micrograph of the structure is shown. , The fabricated pure tin oxide nanotubes have an outer diameter of 50 nm-2 ⁇ and an inner diameter of 40 nm-1.9 ⁇ . The thickness of the tube was about 10-100 nm.
  • Experimental Example 2 Preparation of a gas sensor using tin oxide nanotubes bound with platinum (Pt) nanoparticle catalysts, tin oxide nanotubes bound with gold (Au) nanoparticle catalysts, pure tin oxide nanolevers and pure tin oxide nanofibers And characterization
  • tin oxide nanotubes to which Pt nanoparticle catalysts which are partially oxidized through high heat treatment are bound.
  • 5 mg of tin oxide nanotubes, pure tin oxide nanotubes and pure tin oxide nanofibers bound with Au nanoparticle catalyst partially oxidized by high heat treatment were dispersed in 100 ⁇ of ethane, and then for 1 hour. The ultrasonic cleaning is broken and then crushed.
  • the nanotube structure or nanofiber structure synthesized above may exhibit a nanorod structure in which the shorter lengthwise direction is obtained.
  • Tin oxide nanotubes, pure tin oxide nanotubes and pure tin oxide nanofibers The mixed solution was applied onto an alumina substrate with a sensor electrode section, respectively, and then dried on a 60 ° C. hotplate. This process was repeated 4 to 6 times, and the tin oxide nanotubes with Pt nanoparticle catalyst bound, the tin oxide nanolyuves bound with Au nanoparticle catalyst, pure tin oxide nanolevers, and pure tin oxide nanofibers were alumina sensor. 'Coated on top of the substrate.
  • the gas sensor manufactured for evaluating the characteristics of the exhalation sensor is acetone, which is an indicator gas for diagnosing diabetes, bad breath, and lung cancer at a relative humidity of 85 to 95 RH%, which is similar to the humidity of gas from human mip (CH3 ( X ) CH3), hydrogen sulfide (H2S), and toluene (C6H5CH3) gas concentrations are changed to 5, 4, 3, 2, 1 ppm and at the same time the sensor's operating temperature is maintained at 350 ° C. The response of the reaction was evaluated. In addition, in Experimental Example 2, ' .
  • Acetone (CH3COCH3), hydrogen sulfide (H2S) and toluene (C6H5CH3) gases which are representative examples of volatile organic compound gases, as well as nitrogen monoxide (NO) and carbon monoxide (CO), which are biomarkers of asthma, chronic obstructive pulmonary disease, kidney disease and heart disease
  • NO nitrogen monoxide
  • CO carbon monoxide
  • Selective gas detection characteristics were evaluated by evaluating the detection characteristics for the gas, ammonia (NH3) and pentane (C5H12) gas.
  • tin oxide nanotube (1810) sensor including a Pt nanoparticle catalyst bound as the platinum (Pt) nanoparticle catalyst embedded in the apoferritin is heat treated is pure tin oxide nanotubes with respect to acetone gas. It can be seen that the reaction properties are 8.27 times higher than that of the pure tin oxide, and 18.95 times higher than the reaction of pure tin oxide.
  • 29 is a sensor test result showing the reactivity value with time when the concentration of hydrogen sulfide gas is reduced to 5, 4, 3, 2, 1 ppm at 350 0 C.
  • a sensor made of tin oxide nano-levers 1810 containing Pt nanoparticle catalysts bound by heat treatment of a platinum (Pt) nanoparticle catalyst embedded in apoferritin was pure tin with respect to hydrogen sulfide gas. It can be seen that the reaction characteristics are 4.23 times higher than that of the oxide nanotubes, and 11.03 times higher than those of the pure tin oxide nanofibers.
  • FIG. 30 is a sensor test result showing a time response of the semi-arithmetic value when the concentration of toluene gas is reduced to 5, 4, 3, 2, and 1 ppm at -350 0 C.
  • the tin oxide nanotube 1810 sensor including the Pt nanoparticle catalyst bound by the heat treatment of the platinum (Pt) nanoparticle catalyst embedded in the apoferritin is pure tin oxide nanotubes with respect to hydrogen sulfide gas. It can be seen that the reaction properties are 1.12 times higher than that, and that they are 1.76 times higher than pure tin oxide nanofibers.
  • FIG. 31 shows a platinum (Pt) nanoparticle catalyst embedded inside apoferritin at 350 0 C.
  • Hydrogen sulfide, toluene, nitrogen monoxide, carbon monoxide, which are biomarker gases of other diseases, compared to acetone gas, which is known as a biomarker gas for diabetes and body fat decomposition, using a tin oxide nanotube sensor containing Pt nanoparticle catalysts bound by heat treatment Shows the reactivity values appearing at a concentration of 1 ppm with respect to ammonia pentane gas.
  • the sensor made of tin oxide nanotubes 1810 to which Pt nanoparticle catalysts are bound is prepared in comparison with other biomarker gases such as nitrogen monoxide, hydrogen sulfide, carbon monoxide, ammonia, toluene, and pentane gas. Characteristically, it was confirmed that the selective detection characteristics were excellent for acetone, which is a biomarker gas for diabetes and body fat decomposition.
  • FIG. 32 shows hydrogen sulfide gas concentration changes (1-5 ppm) of a tin oxide nanotube sensor including Au nanoparticle catalysts bound by the heat treatment of the gold (Au) nanoparticles embedded in apoferritin obtained from Example 3. It is a graph showing a change in sensor sensitivity.
  • FIG. 33 is a hydrogen sulfide gas known as a biomarker gas of bad breath using a tin oxide nanotube sensor including Au nanoparticle catalysts bound by heat treatment of gold (Au) nanoparticle catalysts embedded in apoferritin at 300 ° C.
  • Au gold
  • the hemispheric values at 1 ppm of the abundance of biomarker gases such as toluene, acetone, ammonia and ethanol are shown.
  • the sensor characteristics of the gas sensor sensing material were shown by using the volatile organic compound gas as an example.
  • harmful gases such as H2, NOx, CO, SOx
  • sensor detection characteristics such as tin oxide nano-lube including Pt nanoparticle catalyst or Au nanoparticle catalyst is bound by the heat treatment of the platinum (Pt) or gold (Au) nanoparticle catalyst embedded in the apoferritin
  • the gas sensor having excellent selectivity for acetone and hydrogen sulfide was manufactured by changing the 'type of catalyst' in the sensor manufactured using the sensing material.
  • the metal oxide nanotube sensing material to which the nanoparticle catalyst obtained from the apoferritin template is bound may be used in an excellent hazardous gas sensor and a gas sensor for healthcare for analyzing and diagnosing volatile organic compound gas in an exhalation.
  • 100 member for the one-dimensional porous metal oxide nanotube gas sensor having a nanoporous catalyst and having a double pore distribution including a plurality of circular to elliptic pores
  • the spherical polystyrene regenerated layer template is decomposed, and the microporous circular to elliptic shape is formed by partially filling the macropores by crystallization and diffusion of the metal oxide.
  • 131 macropore generated by spherical polystyrene regenerative layer template after solid silver heat treatment
  • Gas sensor member 1810 Metal oxide nanotube containing a nanoparticle catalyst.
  • Tin oxide nanoleubes comprising partially oxidized Pt nanoparticle catalysts or Au nanoparticle catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a member for a gas sensor, a gas sensor using the same, and a method for manufacturing the same and, specifically, to a member for a gas sensor, using a one-dimensional porous metal oxide nanotube composite material having a double average pore distribution, in which micropores (0.1 nm-50 nm) and macropores (50 nm-300 nm) are simultaneously formed in a surface of nanotubes by decomposition of a spherical polymer sacrifice layer template and continuous crystallization and diffusion of a metal oxide, and a nanoparticle catalyst embedded in apoferritin is uniformly bound to an inside, an outer wall, and an inner wall of one-dimensional metal oxide nanotubes through high-temperature thermal treatment, to a gas sensor, and to a method for manufacturing the same.

Description

【명세세  [Specifications
【발명의 명칭】  [Name of invention]
미세기공과 거대기공이 금속산화물 반도체 튜브 벽에 형성된 가스센서용 부재, 가스센서 및 그 제조방법  Member for gas sensor, gas sensor and method for manufacturing microporous and macropore formed on metal oxide semiconductor tube wall
【기술분야】  Technical Field
본 발명은 가스의 확산과 반응이 빠르게 일어나는 최적의 감지소재 구조 및 그 제조방법에 관한 것으로서, 전기방사로 제조된 금속염전구체 /고분자 복합 나노섬유 내부에 포함된 단백질에 둘러 쌓인 금속입자와 구형 고분자 회생층 템플릿이 동시에 고온 열분해되는 과정에서 형성된 미세기공과 거대기공을 동시에 포함하는 촉매입자가 기능화된 이증의 평균 기공 분포를 갖는 금속산화물 반도체 나노튜브 및 이를 이용한 가스센서용 ~부재, 가스센서 및 그 제조방법에 관한 것이다. 【배경기술】  The present invention relates to an optimal sensing material structure in which gas is rapidly diffused and reacted, and a method for manufacturing the same. The present invention relates to metal particles and spherical polymer regeneration surrounded by a protein contained in a metal salt precursor / polymer composite nanofiber prepared by electrospinning. Metal oxide semiconductor nanotubes having a dual mean pore distribution functionalized by catalyst particles containing micropores and macropores simultaneously formed at the same time as the layer template is subjected to high temperature pyrolysis, and for the gas sensor using the same, a member, a gas sensor, and a manufacturing method thereof It is about. Background Art
최근 사회적으로 건강관리에 대한 관심이 증가함에 따라 질병진단을 위한 날숨 속 휘발성 유기화합물 가스 검출 및 실내 공기질 측정을 위한 유해 환경 가스들을 검출하는 금속산화물 반도체 기반의 가스센서 개발이 활발히 이루어지고 있다. 이러한 금속산화물 반도체 기반의 가스센서는 금속산화물 표면에 흡착되어 있는 산소 이온들과 감지하고자 하는 특정 가스의 상호작용에 의한 흡착 및 탈착 과정에서 변화하는 전기저항을 측정하여 가스를 감지한다. 특히, 금속산화물 가스센서는 소형화가 쉽다는 장점을 가지고 있기 때문에, 최근에 상용화 관점에서 모바일 기기나 웨어러블 기기에 상기 가스센서를 실장하려는 연구가 시도되고 있다. 또한, 가격이 저렴하다는 장점 또한 가지고 있어 유해환경가스 경보기, 알코을 음주 측정기, 대기오염도 측정기, 테러방지용 가스센서 등 사회전반에 걸쳐 활발하게 웅용되고 있다. 특히, 최근에는 금속산화물 센서의 뛰어난 감지능력을 이용하여 인체의 날숨에서 배출되는 극미량의 생체 대사와 관련있는 아세톤, 암모니아, 일산화질소, 황화수소, 를루엔 등 휘발성 유기화합물 기체를 감지함으로써 당뇨병, 신장질환, 천식, 구취, 폐암 등 다양한 질병을 진단할 수 있는 가능성이 제기되고 있다. 하지만 실제로 이러한 생체지표 (biomarker) 기체들을 이용하여 조기에 질병을 진단하기 위해서는 10 ppb(part per billion) 내지 10 ppmCpart per million)의 범위로 매우 낮은 농도의 생체지표 기체를 수 초 이내의 빠른 속도와 고감도로 감지해낼 수 있어야 한다. 특히, 날슴 속에 포함되어 있는 수천 종류와 흔합기체들 속에서 특정 타겟 (target) 생체지표기체와 고감도로 반웅을 해야 하기 때문에 측정하고자 하는 가스와의 선택성이 높은 감지소재를 개발하는 것이 무엇보다 증요하다. Recently, as the interest in health care has increased, the development of metal oxide semiconductor-based gas sensors for detecting volatile organic compound gas in the exhalation for detecting diseases and harmful environmental gases for measuring indoor air quality has been actively conducted. The metal oxide semiconductor-based gas sensor detects a gas by measuring a change in electrical resistance during the adsorption and desorption process caused by the interaction of oxygen ions adsorbed on the metal oxide surface with a specific gas to be detected. In particular, since the metal oxide gas sensor has an advantage of easy miniaturization, a recent research has been attempted to mount the gas sensor in a mobile device or a wearable device from the viewpoint of commercialization. In addition, it has the advantage of low price, and has been actively used throughout the society, such as hazardous environmental gas alarm, alcohol breathalyzer, air pollution meter, anti-terror gas sensor. In particular, the detection of volatile organic compounds such as acetone, ammonia, nitrogen monoxide, hydrogen sulfide and toluene, which are related to trace amounts of metabolism released from the body's exhalation, has been used to detect diabetes and kidney disease. The possibility of diagnosing a variety of diseases, including asthma, bad breath, and lung cancer, is being raised. However, in order to diagnose diseases early on using these biomarker gases, very low concentrations of biomarker gases in the range of 10 parts per billion to 10 ppmCpart per million are required to be used within a few seconds. It should be able to detect with high sensitivity. In particular, it is important to develop a highly selective sensing material with a specific target biomarker and a gas to be measured because thousands of species and mixed gases contained in the fly must be reacted with high sensitivity. .
금속산화물 반도체 기반의 가스센서가 초고감도 /고선택성을 갖추기 위해서 취근에 나노입자, 나노섬유, 나노튜브 구조를 포함하는 다양한 나노구조체를 기반으로 하는 가스센서의 개발이 연구되고 있다. 상기에 언급했듯이, 금속산화물 기반와 가스센서는 감지물질 표면과 감지기체와의 표면반웅에 의한 것이므로 감지기체 분자들이 반웅할 수 있는 감지물질의 표면적이 넓을수록 더욱 높은 감도 특성을 기대할 수 있다. 이러한 관점에서 나노구조체 감지소재는 후막 필름 (thick film)이나 박막 (thin film) 형태의 소재에 비해서 가스들과 반웅하는 면적이 상대적으로 넓기 때문에 우수한 가스 감지 특성을 가질 수 있으며, 가스 분자들이 충분히 감지소재 내부로 빠르게 확산하여 들어갈 수 있는 다공성 구조를 갖기 때문에 초고속 반웅특성을 유도할 수 있다. 특히, 미세기공 및 거대기공을 가지는The development of gas sensors based on various nanostructures including nanoparticles, nanofibers, and nanotube structures at work is being studied for metal oxide semiconductor based gas sensors to have high sensitivity and high selectivity. As mentioned above, since the metal oxide base and the gas sensor are caused by the surface reflection between the sensing material surface and the sensor body, the higher the surface area of the sensing material that the sensor molecules can react with, the higher the sensitivity characteristic can be expected. In view of this, nanostructure sensing materials have a larger area of reaction with gases than thick film or thin film materials. Since it is relatively wide, it can have excellent gas sensing characteristics, and because it has a porous structure that can sufficiently diffuse gas molecules into the sensing material, it can induce ultrafast reaction properties. In particular, having micropores and macropores
1차원 다공성 금속산화물 나노튜브의 경우 박막구조의 나노섬유 보다 2-10 배 이상의 표면적 증대를 기대할 수 있어 높은 감지특성을 예측할 수 있고 류브 표면에 다양한 크기의 기공이 분포하므로, 치밀한 나노섬유 및 나노튜브 구조와 비교하여 가스분자들의 이동이 자유로워 센서특성을 극대화할 수 있다. 추가적으로, 촉매 나노입자가 서로간의 웅집 없이 1차원 다공성 나노튜브에 균일하게 결착된다면, 소량의 촉매량으로도 촉매효과를 극대화시킬 수 있다. 또한 촉매의 효과를 극대화 시키기 위해서는 촉매가 치밀한 감지소재 내부에 내장되어 있어서 가스와의 반응이 잘 이루어 지지 못하는 구조보다, 감지소재의 표면에 촉매들이 노출이 된 형태로 기능화 되어 '가스와의 촉매반웅을 극대화 할 수 있는 것이 가장 이상적이다. 이러한 촉매들은 크게 두 가지로 분류할 수 있는데, 백금 (Pt), 금 (Au) 등과 같은 금속촉매를 이용하여 표면반웅에 참여하는 가스들의 농도를 증가시켜 가스센서 특성을 높이는 -화학적 증감 (chemical sensitization) 방법, 또는 팔라듐 (Pd), 니켈 (Ni), 코발트 (Co), 은 (Ag) 등과 같이 PdO, NiO, Co203, Ag20 와 같은 금속산화물을 형성하여 나타나는 산화수 변화를 이용하여 감도를 향상시키는 전자적 증감 (electronic sensitization) 방법이 있다. In the case of 1-dimensional porous metal oxide nanotubes, the surface area can be expected to be increased by 2-10 times or more than the nanofibers of the thin film structure, and thus, high sensing characteristics can be predicted, and pores of various sizes are distributed on the surface of the ribs. Compared with the structure, gas molecules can move freely, maximizing sensor characteristics. In addition, if the catalytic nanoparticles are uniformly bound to the one-dimensional porous nanotubes without any mutual concavity, the catalytic effect can be maximized even with a small amount of catalyst. In addition, a catalyst is a catalyst are functionalized by the exposure forms on the surface of the built-in inside the dense sensing material than the structure in which the reaction of the gas does not easily done, the sensing material in order to maximize the effectiveness of the catalyst, of the gas catalytic banung It is ideal to be able to maximize. These catalysts can be broadly classified into two types:-Chemical sensitization, which enhances the gas sensor characteristics by increasing the concentration of gases participating in the surface reaction using metal catalysts such as platinum (Pt) and gold (Au). ), Or electronically, to improve sensitivity using the oxidation number change resulting from the formation of metal oxides such as PdO, NiO, Co203, Ag20, such as palladium (Pd), nickel (Ni), cobalt (Co), silver (Ag), etc. There is an electronic sensitization method.
상기에 설명한 바와 같이, 다양한 나노구조체의 개발과 더불어 다양한 나노입자 촉매들이 결착된 감지소재를 활용하는 연구가 지속되고 있음에도 불구하고; 수백 ppb 마만의 극 미량의 가스를 고속으로 정밀하게 측정할 수 있는 금속산화물 반도체 기반 감지소재는 아직 상용화 되지 않은 실정이며, 조기에 질병을 진단하는 날숨센서의 실현을 위해서는 무엇보다 극미량의 가스를 감지할 수 있는 감지소재 개발과, 다종 가스들에 대한 선택성을 부여하여 감지된 결과의 패턴을 명확하게 인식하는 것이 중요하다. As described above, despite the development of various nanostructures and researches utilizing the sensing material in which various nanoparticle catalysts are bound, Despite; Metal oxide semiconductor-based sensing materials that can measure extremely small amounts of gas at hundreds of ppb at high speed have not been commercialized, and to detect an extremely small amount of gas, the detection of an extremely small amount of gas is needed. It is important to develop a sensing material that can be used and to clearly recognize the pattern of the detected result by giving selectivity to various gases.
나노구조를 가지는 감지소재의 합성관점에서 살펴보았을 때, 화학적 증착 방법, 물리적 증착 방법 그리고 화학적 성장 방법을 통하여 나노구조체를 제조하는 방법들이 다수 연구되어 왔다. 그렇지만 이러한 방법들은 나노구조체를 합성함에 있어 복잡하고 번거로운 공정과정들을 포함하고 있어 대량생산이 어려운 점, 공정비용이 비싸다는 점, 공정시간이 오래 걸린다는 점 등, 많은 문제점들을 가지고 있어 상용화에 큰 걸림돌이 되고 있다.  In view of the synthetic viewpoint of the sensing material having a nanostructure, a number of methods for preparing nanostructures through chemical vapor deposition, physical vapor deposition, and chemical growth have been studied. However, these methods include complex and cumbersome processes in synthesizing nanostructures, which makes it difficult to mass produce, expensive process cost, and long process time. It is becoming.
또한, 감지소재에 결착되는 나노입자 촉매의 관점에서 살펴보았을 때, 촉매들은 감지소재의 모든 영역에 균일하게 웅집없이 잘 분산되어 있어야 가장 효과적인 촉매작용을 유도할 수 있다. 이러한 측면에세 기존의 센서분야에서 널리 쓰이던 폴리올 (polyol) 공정법을 이용한 나노입자 합성 및 감지소재와 촉매 입자간의 흔합에 의한 결착과정 중에 촉매 나노입자들 간의 응집을 피하기 어려워 센서특성의 최적화가 어려운 상황이다.  In addition, when viewed from the viewpoint of the nanoparticle catalyst that is bound to the sensing material, the catalysts should be well dispersed in all regions of the sensing material uniformly and well to induce the most effective catalysis. In this respect, it is difficult to optimize the sensor characteristics because it is difficult to avoid agglomeration between the catalyst nanoparticles during the nanoparticle synthesis and the binding process between the sensing material and the catalyst particle using the polyol process method widely used in the conventional sensor field. Situation.
이러한 기존 감지체 합성의 단점들을 극복하기 위하여, 간단하고 효과적인 제조방법으로 표적이 넓으면서 가스의 빠른 확산과 반옹을 유도할 수 있는 미세기공과 거대가공이 공존하는 이상적인 나노구조체와, 수 나노크기의 나노입자 촉매들이 서로 웅집되지 않도록 고분산성을 갖고 감지체에 기능화시킬 수 있는 공정기술이 필요하다. 또한, 상기에 설명한 두 가지 측면을 동시에 만족시킴으로써 실제 인체의 날숨 속에 포함된 극소량의 생체지표 기체들을 선택적으로 감지하고 패턴을 인식하여 , 궁극적으로 질병이 있는 환자를 구분할 수 있는 센서개발을 위한 공정기술이 필요하다. In order to overcome the shortcomings of the existing sensor synthesis, an ideal nanostructure with a wide range of targets and micropores that can induce rapid diffusion and reversal of gas with simple and effective manufacturing method, and nanoscale of nanoscale particle There is a need for a process technology capable of functionalizing the sensor with high dispersion so that the catalysts are not packed together. In addition, by simultaneously satisfying the two aspects described above, the process technology for the development of a sensor that can selectively detect a small amount of biomarker gases contained in the exhalation of the human body and recognize the pattern, ultimately distinguish patients with disease This is necessary.
【발명의 상세한 설명]  [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
본 발명의 실시예들은, 회생층 템플릿 역할을 하여 거대기공을 형성시키는 구형의 고분자 콜로아드 (colloid)를 전기방사용액에 분산시키고, 전기방사 이후 고온 열처리를 통해, 구형의 고분자 템플릿 (〉200 nm) 열분해를 거쳐 나노튜브 표면에 거대기공 (50 nm-300 nm)을 형성시키며, 순차적으로 류브 형성과정에서 발생하는 금속산화물의 확산현상을 통한 거대기공 가리움 효과 (covering) 및 단백질 템플릿 (12 nm)의 열분해를 통한 나노튜브 표면에 미세기공 (0.1 nm-50 nm)을 동시에 형성시키는 1차원 다공성 금속산화물 나노류브 전기방사 합성법을 제공한다. 또한, 고분산성의 단백질 기반 나노입자 촉매를 전기방사 용액에 분산시켜, 나노입자 촉매가 균일하게 결착된 거대기공 (50 nm-300 nm)과 미세기공 (0.1 nm-50 nm)을 가지는 이중의 평균 기공 분포를 갖는 1차원 다공성 금속산화물 나노튜브 전기방사 제조방법을 제공한다.  Embodiments of the present invention, the spherical polymer colloids that serve as a regenerative layer template to form the macropores are dispersed in the electrospinning solution, and the high temperature heat treatment after the electrospinning, spherical polymer template (> 200 nm ) Macropores (50 nm-300 nm) are formed on the surface of the nanotubes through pyrolysis, and macropore covering and protein templates (12 nm) are sequentially generated through the diffusion of metal oxides generated during the formation of the ribs. Provided is a one-dimensional porous metal oxide nano-leave electrospinning synthesis method to simultaneously form micropores (0.1 nm-50 nm) on the surface of the nanotube through pyrolysis of. In addition, by dispersing a highly dispersed protein-based nanoparticle catalyst in an electrospinning solution, a double average having a macropore (50 nm-300 nm) and micropores (0.1 nm-50 nm) in which the nanoparticle catalyst is uniformly bound Provided is a one-dimensional porous metal oxide nanotube electrospinning method having a pore distribution.
특히, 200 nm 이상의 크기를 가지는 고분자 회생층 템플릿을 사용하여 고온 열처리를 거쳐 희생층 템플릿 고분자의 분해를 통해 거대기공을 (50 nm-300 nm) 섬유 표면에 형성하며 , 순차적으로 금속산화물 나노류브를 형성하기 위해 금속산화물의 확산이 표면에 형성된 거대기공 방향으로 일어나면서 거대기공의 일부를 채워주게 되어 0.1 nm-50 nm 크기 분포를 가지는 미세기공을 나노튜브 표면에 추가적으로 형성하며, 단백질 기반의 고분산성 나노입자 촉매를 이용해서 균일한 촉매분포 및 미세기공 형성의 도움을 줌으로써 고감도와 고선택성을 가지는 1차원 다공성 금속산화물 나노튜브에 촉매가 균일하게 분포하는 감지소재 합성기술 짖 이를 이용한 가스센서 웅용 기술을 제시한다. 본 발명에서 사용한 아포페리틴 (apo-ferritin)이라는 단백질 템프릿 (protein template)은 8 nm 정도의 빈 공간을 가지고 있는 구형의 증공 단백질 물질로, 아포페리틴 단백질 속의 비어있는 내부에 나노입자 촉매를 포함시키고, 나노입자 촉매를 포함하는 아포페리틴 입자들로부터 기능화된 나노입자 촉매를 포함하는 금속산화물 나노튜브의 전기방사 합성 방법을 제공할 수 있다. Particularly, macropores are formed (50 nm-300 nm) through decomposition of the sacrificial layer template polymer through high temperature heat treatment using a polymer regenerative layer template having a size of 200 nm or more. It forms on the surface of the fiber, and in order to form the metal oxide nano-lube sequentially, diffusion of the metal oxide occurs in the direction of the macropores formed on the surface to fill a part of the macropores, thereby forming micropores having a size distribution of 0.1 nm-50 nm. It is additionally formed on the surface of the nanotubes, and the catalyst is uniformly distributed on the one-dimensional porous metal oxide nanotubes having high sensitivity and high selectivity by using a protein-based highly dispersible nanoparticle catalyst to help uniform catalyst distribution and micropore formation. We present the gas sensor grand technology using sensing material synthesis technology. The protein template, apo-ferritin, used in the present invention, is a spherical thickened protein material having an empty space of about 8 nm, and includes a nanoparticle catalyst in the empty inside of the apoferritin protein. It is possible to provide a method for electrospinning a metal oxide nanotube comprising a functionalized nanoparticle catalyst from apoferritin particles including a nanoparticle catalyst.
특히, 고온 열처리 이후에 금속 나노입자 촉매를 포함하고 있음에도 불구하고 오스트왈드 라이프닝 (Ostwald ripening) 현상을 통해 넓은 표면적을 .가지는 금속산화물 나노튜브 구조를 합성하며, 나노입자 촉매 또한 나노튜브를 구성하는 껍질 (shell)에 균일하게 분산되어 가스센서 특성의 중요한 지표가 되는 비표면적 증대 부분과 촉매 효과를 동시에 만족시킬 수 있는 초 고감도 나노튜브 감지소재 합성 기술 및 이를 이용한 가스센서 옹용기술을 제시한다. .  In particular, despite the inclusion of a metal nanoparticle catalyst after high temperature heat treatment, the Ostwald ripening phenomenon synthesizes a metal oxide nanotube structure having a large surface area, and the nanoparticle catalyst also forms a nanotube. We present the ultra-sensitive nanotube sensing material synthesis technology and gas sensor application technology that can satisfy both the specific surface area increase and the catalytic effect, which are uniformly dispersed in the shell, which are important indicators of gas sensor characteristics. .
이는 종래 기술의 문제점을 해결하기 위한 방법으로 매우 작은 (1 nm-3 nm) 크기의 나노입자 촉매가 서로 웅집 없이 금속산화물 내부와 외부에 고르게 분산되어 결착됨과 동시에 다수의 미세기공 (0.1 nm-50 nm) 및 거대기공 (50 nm- 300 nm)을 포함하는 금속산화물 나노튜브 구조를 단일 전기방사 및 후열처리 공정으로 손쉽게 합성하여 극 미량의 가스를 검출해 낼 수 있는 가스센서용 부재, 이를 이용한 가스 센서 및 그 제조 방법을 제공하는 것을 목적으로 한다. This is a solution to the problems of the prior art, in which nanoparticle catalysts of very small (1 nm-3 nm) size are evenly distributed inside and outside the metal oxide without intermingling each other. Metal oxide nanotube structures containing a large number of micropores (0.1 nm-50 nm) and macropores (50 nm-300 nm) can be easily synthesized in a single electrospinning and post-heating process, while being dispersed and bound. It is an object of the present invention to provide a gas sensor member, a gas sensor using the same, and a method of manufacturing the same.
【기술적 해결방법】  Technical Solution
상기 과제를 해결하기 위한 본 발명의 한 측면에 있어서, 표면 전하특성으로 분산성이 매우 뛰어난 나노입자 촉매를 합성하고, 분산성이 뛰어난 구 형태의 고분자 회생층 템플릿 콜로이드를 전기방사 용액에 동시에 적용하여 단일공정으로 손쉽게 나노입자 촉매가 균일하게 결착되어 있으며, 미세기공 및 거대기공이 동시에 형성된 다공성 1차원 금속산화물 나노튜브를 포함하는 :감지소재 및 이를 이용한 가스센서용 부재 제조 방법을 제공한다. 본 실시예들에 따른 감지소재 및 이를 이용한 가스센서용 부재 제조 방법은 (a) 아포페리틴의 내 중공 구조 속에 포함된 단백질에 의해 둘러 쌓인 금속 나노입자 촉매가 균일하게 분산된 분산용액을 합성하는 단계; (b) 상기 아포페리틴의 내부 중공 구조 속에 포함된 단백질에 의해 둘터 쌓인 금속 나노입자 촉매가 균일하게 분산된 분산용액을 구형 고분자 희생층 템플릿 분산용액과 흔합하고, 이들을 금속산화물 전구체 (금속염 전구체)와 고분자가 녹아 있는 용액과 함께 흔합하여, 전기방사 용액을. 제조하는 단계; (c) 상가 전기방사 용액을 전기방사법을 이용하여 금속산화물 전구체 /고분자 복합 나노섬유의 내부 및 표면에 적어도 나 이상의 구형 고분자 희생층 템플릿과 아포페리틴 단백질의 내부 중공 구조 속에 포함된 금속 나노입자 촉매가 복수 개로 균일하게 분포된 복합 나노섬유를 형성하는 단계; (d) 고은열처리를 통한 회생층 템플릿 고분자의 분해를 통해 거대기공을 (50 nm-300 nm) 섬유 표면에 형성하며, 순차적으로 금속산화물 나노튜브를 형성하기 위해 금속산화물의 확산이 표면에 형성된 거대기공 방향으로 일어나면서 거대기공의 일부를 채워주게 되어 0.1 nm-50 nm 크기 분포를 가지는 미세기공을 나노류브 표면에 형성하며, 복합 나노섬유 안에 있던 단백질 기반의 나노입자 촉매 또한 바깥방향으로 확산하여 다공성 나노튜브에 균일하게 결착되는 단계; (e) 상기 이증 표면 기공 분포를 갖는 나노입자 촉매가 나노류브를 구성하는 핍질의 내부 및 안쪽 면과 바깥쪽 면에 균일하게 결착되어 있고, 미세기공과 거대가공을 가지는 다공성 금속산화물 나노튜브를 분산시키거나 분쇄하여, 반도체식 가스센서 측정용 센서 전극위에 드랍 코팅, 스핀 코팅, 잉크젯 프린팅, 디스펜성 증 적어도 하나의 코팅공정을 이용하여 저항변화식 반도체 가스센서를 제작하는 하는 단계; 를 포함하는 환경유해가스 및 질병진단을 위한 생체지표 가스의 검출이 가능한 가스센서용 이증 표면 기공 분포를 갖는 촉매- 금속산화물 나노튜브 복합 감지소재 제조방법을 포함한다. In one aspect of the present invention for solving the above problem, applying a surface charge characteristic in dispersibility is excellent i synthesizing nanoparticle catalyst, and the dispersibility is excellent sphericity of polymeric regenerative layer template colloid at the same time, the electrospinning solution The nanoparticle catalyst is easily uniformly bound in a single process, and includes a porous 1-dimensional metal oxide nanotube formed with micropores and macropores at the same time : a sensing material and a method for manufacturing a gas sensor member using the same. Sensing material according to the present embodiment and a method for manufacturing a gas sensor member using the same step (a) synthesizing a dispersion solution in which the metal nanoparticle catalyst surrounded by a protein contained in the hollow structure of the apoferritin uniformly dispersed ; (b) mixing a dispersion solution in which metal nanoparticle catalysts piled up uniformly by proteins contained in the internal hollow structure of the apoferritin with a spherical polymer sacrificial layer template dispersion solution, and combining these with a metal oxide precursor (metal salt precursor) The solution is mixed with a solution in which the polymer is dissolved. Manufacturing step; (c) The additive electrospinning solution is subjected to electrospinning and has at least one spherical polymer sacrificial layer template and a metal nanoparticle catalyst contained in the inner hollow structure of the apoferritin protein on the inside and the surface of the metal oxide precursor / polymer composite nanofiber. Evenly in plural Forming a distributed composite nanofiber; (d) formation of macropores on the surface of the fiber (50 nm-300 nm) through decomposition of the regenerative layer template polymer through high heat treatment, and the diffusion of the metal oxide on the surface to sequentially form metal oxide nanotubes. It forms in the pore direction and fills a part of the macropores to form micropores having a size distribution of 0.1 nm-50 nm on the surface of the nano-lube, and protein-based nanoparticle catalysts in the composite nanofibers also diffuse outwardly Uniformly binding to the nanotubes; (e) The nanoparticle catalyst having a dividing surface pore distribution is uniformly bound to the inner and inner and outer surfaces of the plepids constituting the nano-leuve, and to disperse the porous metal oxide nanotubes having micropores and macropores. Or by pulverizing, manufacturing a resistance-type semiconductor gas sensor using at least one coating process on the sensor electrode for measuring a semiconductor gas sensor by using drop coating, spin coating, inkjet printing, and dispensing; It includes a method for producing a catalyst-metal oxide nanotube composite sensing material having a binary surface pore distribution for the gas sensor capable of detecting the environmentally harmful gas and biomarker gas for disease diagnosis comprising a.
여기서, 상기 (a) 단계에서, 아포페리틴은 소장의 점막세포에 존재하는 철 성분을 포함하고 있는 페리틴 (ferritin)이라는 단백질에서 찰 성분을 제거한 8 nm 정도의 속이 빈 구조 (중공 구조)를 갖는 단백질로, 전체 크기는 12 nm 를 가진다. 아포페리틴 증공구조 내부에는 다양한 금속이온들이 확산되어 내부로 들어갈 수 았으며, 이를 환원 시킴으로써 여러 종류의 나노입자 촉매들을 손쉽게 합성할 수 있다. 아포페리틴 내부에 치환될 '수 있는 금속 염의 종류와 형태는 매우 다양할 수- 았으며, 대표적인 염 (salt) 형태의 촉매는, copper(II) nitrate, copper(II) chloride, cobalt(II) nitrate, cobalt(II) acetate, lanthanum(III) nitrate, lanthanum(III) acetate, platinum(IV) chloride, platinum(II) acetate, gold(I, III) chloride, gold(III) acetate, silver chloride, silver acetate, Iron(III) chloride, Iron(III) acetate, nickel(II) chloride, nickel(II) acetate, ruthenium(III) chloride, ruthenium acetate, iridium(III) chloride, iridium acetate, tantalum(V) chloride, palladium (II) chloride 등이 .있으며, 금속이은을 포함하는 염의 형태라면 특별한 금속염의 종류에 제한을 두지 않으며, 단일 금속염을 이용하는 경우, 단일 금속입자가 아포페리틴의 중공부에 형성이 되며, 두개의 금속염을 동시에 이용하여 합성을 하는 경우, 동종간의 결합력이 강하여 상이 서로 분리 (segregation)된 형태를 갖을 수 있고, 이종간와 결합이 용이하여 강한 결합력을 갖는 금속 얼로이 (metal alloy) 형태로 아포페리틴의 증공부에 형성된 나노입자 촉매를 합성할 수 있다. 여기서 합성된 아포페리틴 중공구조 속에 내장되어 있는 나노입자 촉매의 경우 걸 표면이 표면 전하를 갖는 단백질로 둘러싸여 있기 때문에 서로의 웅집 없이 효과적으로 분산된 상태를 유지할 수 있다는 특징이 있다. Here, in the step (a), apoferritin is a protein having a hollow structure (hollow structure) of about 8 nm from the protein called ferritin (ferritin) containing iron components present in the small intestine mucosa cells The total size is 12 nm. Various metal ions were diffused into the apoferritin structure, and various kinds of nanoparticle catalysts could be easily synthesized by reducing them. The types and forms of metal salts that can be substituted inside apoferritin can vary widely. Representative salt type catalysts include copper (II) nitrate, copper (II) chloride, cobalt (II) nitrate, cobalt (II) acetate, lanthanum (III) nitrate, lanthanum (III) acetate, platinum ( IV) chloride, platinum (II) acetate, gold (I, III) chloride, gold (III) acetate, silver chloride, silver acetate, Iron (III) chloride, Iron (III) acetate, nickel (II) chloride, nickel ( II) acetate, ruthenium (III) chloride, ruthenium acetate, iridium (III) chloride, iridium acetate, tantalum (V) chloride, palladium (II) chloride . And, if the form of a salt containing a metal silver is not limited to the type of special metal salt, when using a single metal salt, a single metal particles are formed in the hollow portion of the apoferritin, the synthesis using two metal salts at the same time In this case, the nanoparticle catalyst formed in the vaporization portion of the apoferritin in the form of a metal alloy (metal alloy) having a strong binding force because it is easy to bond with the heterogeneous type, and the phases can be separated from each other due to the strong homogeneous binding force. can do. In the case of the nanoparticle catalyst embedded in the synthesized apoferritin hollow structure, the surface of the hook is surrounded by a protein having a surface charge, and thus, it is possible to effectively maintain a dispersed state without mutual congestion.
또한, 상기 (b) 단계는 전기방사를 진행하기 위한 전기방사 용액을 제조하는 단계로, 전기방사 과정시 나노섬유를 효과적으로 합성하기 위한 템플릿으로 작용하는 고분자와 금속산화물 전구체를 용매에 녹여 、방사용액을 제조할 수 있다. 여기서 사용되는 대표적인 고분자로는, 폴리메틸메타아크릴레이트 (PMMA), 폴리비닐피를리돈 (PVP), 폴리비닐아세테이트 (PVAc), . 폴리비닐알콜 (PVA), 폴리아크릴로니트릴 (PAN), 폴리에틸렌 옥사이드 (polypropylene oxide, PEO), 폴리프로필렌옥사이드 (polypropylene oxide, PPO), 폴리에틸렌 옥사이드 공증합체, 폴리프로필렌옥사이드 공중합체, 폴리카보네이트 (polycarbonate, PC), 폴리염화비닐 (polyvinylchloride, PVC), 폴리카프로락톤 (polycaprolactone), 폴리비닐풀루오라이드 (polyvinylidene fluoride) 등이 있으며, 대표적인 금속염으로는 금속염들이 포함된 아세테이트, 클로라이드, 아세틸아세토네이트, 나이트레이트, 메록시드, 에톡시드, 부특시드, 이소프로폭시드, 설파이드 등의 형태를 포함한다. 추가적으로, 상기 (a) 단계에서 합성된 아포페리틴 단백질에 들러 쌓인 나노입자 촉매 용액과 분산성이 뛰어난 구 형태의 고분자 희생층 템플릿 콜로이드를 전기방사용액에 균일하게 분산시켜 콜로이드 형태의 전기방사 용액을 제조할 수 있다. 상기 거대 기공의 형성을 위해 사용되는 구 형태의 희생층 템플릿의 경우 고온 열처리시 제거될 수 있는 템플릿을 뜻하며, 템플릿의 종류에는 특별한 제약을 두지 않는다. 구체적으로, 폴리메틸메타아크릴레이트 (ΡΜΜΑ), 폴리비닐피를리돈 (PVP), 폴리비닐아세테이트 (PVAc), 폴리비닐알콜 (PVA), 폴리스티렌 (PS) 및 폴리아크릴로니트릴 (PAN), 폴리비닐리덴 플루오라이드 (PVDF), 폴리아크릴에시드 (PAA), 폴리다이아닐다이메틸암모늄 클로라이드 (PDADMAC), 폴리스티렌설포네이트 (PSS) 중에서 선택된 1종 또는 2종 이상의 흔합물이 될 수 있다. 또한, 희생층 템플릿은 50 nm-1 Um 의 범위에서 크기를 가지며, 바람직하게는 전기방사 용액과 함께 흔합 되었을 때, 분해되지 않고 분산되는 특징을 가지며, 회생층 콜로이드가 용매에 녹는 고분자라 할 지라도, 콜로이드 표면에 전하를 띄는 이은 흑은 전하를 띄는 이은 계면활성제 (anionic or cationic surfactants)를 형성시켜 용매에 녹지 않는고분자 콜로이드가사용될 수 있다. In addition, the step (b) is to prepare an electrospinning solution for the electrospinning process, dissolving the polymer and metal oxide precursor serving as a template for effectively synthesizing the nanofibers during the electrospinning process in a solvent, spinning solution Can be prepared. Representative polymers used here include polymethylmethacrylate (PMMA), polyvinylpyridone (PVP), polyvinylacetate (PVAc),. Polyvinyl alcohol (PVA), Polyacrylonitrile (PAN), polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene oxide co-polymer, polypropylene oxide copolymer, polycarbonate (PC), polyvinyl chloride ( polyvinylchloride (PVC), polycaprolactone, polyvinylidene fluoride and the like. Representative metal salts include acetate, chloride, acetylacetonate, nitrate, methoxide, ethoxide, Subtypes, isopropoxide, sulfide and the like. In addition, the colloidal electrospinning solution was prepared by uniformly dispersing the nanoparticle catalyst solution accumulated in the apoferritin protein synthesized in step (a) and the spherical polymer sacrificial layer template colloid having excellent dispersibility in the electrospinning solution. can do. In the case of the sacrificial layer template of the spherical shape used for the formation of the large pore means a template that can be removed during high temperature heat treatment, there is no particular restriction on the type of template. Specifically, polymethyl methacrylate (ΡΜΜΑ), polyvinylpyridone (PVP), polyvinylacetate (PVAc), polyvinyl alcohol (PVA), polystyrene (PS) and polyacrylonitrile (PAN), polyvinyl It may be one or two or more mixtures selected from among the following: fluoride fluoride (PVDF), polyacrylic acid (PAA), polydiaryldimethylammonium chloride (PDADMAC), polystyrenesulfonate (PSS). In addition, the sacrificial layer template has a size in the range of 50 nm -1 U m, and preferably, when mixed with an electrospinning solution, is characterized by being dispersed without decomposition, and the regenerative layer colloid is a polymer that is dissolved in a solvent. Even though, colloid Charged silver on the surface Black colloidal polymers that do not dissolve in solvents form anionic or cationic surfactants.
또한, 상기 (c) 단계는 전기방사 기법을 이용하여 아포페리틴 속 금속 나노입자 (금속 나노입자 촉매)와 구 형태의 고분자 회생층 템플릿 (polymeric beads)이 균일하게 결착된 금속염 /고분자 복합 나노삼유를 합성하는 단계이다. 상기 복합 나노섬유의 형상은 내장된 고분자 회생층 템플릿에 의해 울통불퉁한 (rugged) 형상을 가지는 것이 특징이다.  In addition, the step (c) is a metal salt / polymer composite nanosam oil in which metal nanoparticles (a metal nanoparticle catalyst) and a spherical polymer regenerative layer template (polymeric beads) in apoferritin are uniformly bound using an electrospinning technique. Synthesis step. The shape of the composite nanofibers is characterized by having a rugged shape by the built-in polymer regenerative layer template.
상기 (d) 단계에서는 고온 열처리를 통하여 고분자 /금속산화물 전구체 복합 나노섬유를 구성하는 고분자가 분해되어 제거되고, 동시에 나노입자 촉매를. 둘러싸고 있는 아포페리틴 단백질 껍질과 구 형태의 고분자 회생층 템플릿이 제거된다. 구체적으로 나노섬유 표면에 생성된 거대기공은 200 nm 이상 크기를 가지는 고분자가 고온열처리를 통해 분해되면서 생성된 것이며, 순차적으로 금속산화물 나노튜브가 형성되는 과정에서 금속산화물이 결정화되고 바깥방향으로 확산하면서 거대기공을 부분적으로 덮게 되어 다수의 미세기공이 형성된다. 이 외에도 복수개의 고분자 희생층 템플릿 사이사이에 뭉쳐있는 아포페리틴 입자들이 분해되면서 미세기공을 형성하는데 기여를 하기도 한다. 특히, 열처리 과정에서 승은속도는 나노튜브 구조를 형성함에 있어 매우 중요한 역할을 한다. 승온속도를 10 °C/min으로 빠르게 열처리를 진행하는 경우, 나노입자 촉매가 증공 구조의 내부에 형성된 아포페리틴 단백질이 분해되면서 얻어진 금속 나노입자 촉매를 금속산화물 나노류브 구조에 포함하는 이중 기공분포 (미세기공과 거대가공이 동시에 공존하는 분포)를 가지는 1차원 다공성 금속산화물 나노튜브를 더욱 효과적으로 합성할 수 다. 반면 상대적으로 느린 4 0C /min으로 열처리를 거치는 경우, 나노튜브 구조가 잘 형성되지 않을 수 있다. In the step (d), the polymer constituting the polymer / metal oxide precursor composite nanofibers is decomposed and removed by high temperature heat treatment, and at the same time, a nanoparticle catalyst. The surrounding apoferritin protein shell and spherical polymeric regenerative layer template are removed. Specifically, the macropores formed on the surface of the nanofibers are produced by decomposing a polymer having a size of 200 nm or more through high temperature heat treatment, while metal oxide crystallizes and diffuses outward in the process of forming metal oxide nanotubes sequentially. The micropores partially cover the plurality of micropores. In addition, apopertin particles, which are aggregated between the plurality of polymer sacrificial layer templates, are decomposed to contribute to the formation of micropores. In particular, the gain rate during the heat treatment process plays a very important role in forming the nanotube structure. When the heat treatment is rapidly performed at a temperature increase rate of 10 ° C / min, the double pore distribution including the metal nanoparticle catalyst obtained in the decomposition of the apoferritin protein formed inside the vaporization structure of the nanoparticle catalyst in the metal oxide nanoflube structure ( Micropore and Giant Machining Simultaneously Co-existing distribution) can be more effectively synthesized one-dimensional porous metal oxide nanotubes. On the other hand, if the heat treatment at a relatively slow 4 0 C / min, nanotube structure may not be formed well.
상기 (e) 단계에서는, 상기 (d) 단계에서 얻어진 이증기공 분포를 갖는 1차원 다공성 금속산화물 나노류브를 용매에 분산시킨 분산용액을 미리 준비된 센서 전극 (전기전도도 및 전기저항변화를 측정할 수 있는 평행한 전극이 형성된 알루미나 절연체 기핀:) 위에, 드람 코팅, 스핀 코팅, 잉크곗 프린팅, 디스펜싱 등과 같은 코팅 공정법을 이용하여, 코팅하는 단계일 수 있다. 여기서, 나노입자 촉매를 포함하고 이중기공 분포를 가지는 1차원 다공성 금속산화물 나노튜브를 균일하게 코팅할 수 있는 방법이라면, 특별히 코팅방법에 제약을 두지는 않는다.  In the step (e), a sensor electrode prepared in advance for dispersing the dispersion solution obtained by dispersing the one-dimensional porous metal oxide nano-lever obtained in the step (d) in a solvent (electric conductivity and electrical resistance change can be measured. The coating may be performed on alumina insulator giffin :) in which a parallel electrode is formed, using a coating process such as dram coating, spin coating, inkjet printing, dispensing, and the like. Here, if the method can uniformly coat the one-dimensional porous metal oxide nanotubes including the nanoparticle catalyst and have a double pore distribution, there is no particular limitation on the coating method.
상기 제작된 이증 기공분포를 갖는 1차원 다공성 금속산화물 나노튜브 구조는 내벽과 외벽 사이의 두께가 10 nm 내지 50 nm 의 길이 범위에서 정해 질 수 있으며, 나노튜브의 직경은 50 nm 내지 5 μηα 길이 범위를 가질 수 있다. 나노튜브의 길이는 1 μπι 내지 100 nm의 길이 범위를 가질 수 있다. 또한, 튜브 겉면에 0.1 nm-50 nm 범위를 가지고 있는 복수개의 미세기공 및 5으 300 nm 크기범위를 가지는 거대기공들을 포함하고 있다. The fabricated one-dimensional porous metal oxide nanotube structure having a dilution pore distribution may be determined in the thickness range of 10 nm to 50 nm between the inner wall and the outer wall, and the diameter of the nanotube is in the range of 50 nm to 5 μηα length. It can have The length of the nanotubes may have a length ranging from 1 μπι to 100 nm. It also contains a plurality of micropores having a range of 0.1 nm-50 nm on the outside of the tube and macropores having a size range of 5 to 300 nm.
또한, 상기 과제를 해결하기' 위한 본 발명의 다른 측면에 있어서, 분산성이 매우 뛰어난 나노입자 촉매를 합성하고, 이를 손쉬운 단일 공정 방법으로 합성된 1 차원 금속산화물 나노튜브의 내부와 외부에 균일하게 결착시켜, 넓은 표면적을 가짐과 동시에 균일하게 분포된 나노입자 촉매를 포함하는 감지소재 '및 이를 이용한 가스센서용 부재 제조 방법을 제공한다. 이 방법은 앞서 설명한 고분자 템플레이트와 촉매입자를 흔합함이 없이, 고분산성을 갖는 촉매입자를 단독으로 나노튜브에 결착시킨 가스센서용 부재 제조 방법에 관한 것이다. 본 실시예들에 따른 감지소재 및 이를 이용한 가스센서용 부재 제조 방법은 (a) 아포페리틴을 이용하여 나노입자촉매를 합성하는 단계; (b) 아포페리틴의 중공 구조 안에.포함된 나노입자 촉매를 포함하는 금속산화물 전구체 /고분자 흔합 전기방사 용액을 제조하는 단계; (c) 전기방사기술을 이용하여 금속산화물 전구체 /고분자 복합섬유 표면 또는 내부에 아포페리틴의 중공 구조 안에 포함된 나노입자 촉매를 포함하는 금속산화물 전구체 /고분자 복합 나노섬유를 형성하는 단계; ) 빠른 승은속도로 고온 열처리를 통하여 나노입자 촉매를 감싸고 있는 단백질 성분의 아포페리틴과 고분자 물질을 열분해를 통해 제거시키고, 오스트왈드 라이프닝 (Ostwald ripening) 과정을 통하여 나노입자 촉매를 껍질에 포함하는 1 차원 금속산화물 나노튜브 구조를 형성하는 단계; (e) 상기의 금속 나노입자 촉매가 결착된 금속산화물 나노튜브 물질을 에탄올에 분산시켜, 가스센서,측정용 전극 위에 드롭 코팅 (drop- coating) 하여 가스센서를 제조하는 단계; 를 포함하며 (f) 상기 나노입자 촉매가 결착된 ^속산화물 나노튜브 센서를 서로 다른 나노입자 촉매 또는 서로 다른 금속산화물 감지소재의 조합으로 적어도 2종 이상 제조하여 센서 어레이를 구성하는 단계; 를 더 포함할 수 있다. 상기 공정과정을 통하여 1차원 나노튜브의 표면 및 내부에 균일하게 분산된 나노입자 촉매를 포함하는 구조를 한 번의 전기방사를통해 제조하는 방법을포함한다. 여기서, 상기 (a) 단계는 상기 미세기공 및 거대기공올 포함하는 나노튜브 를 제작하는 과정 중 나노입자 촉매를 합성하는 과정과 동일하다. According to another aspect of the present invention for solving the aforementioned problems, dispersibility is excellent composite nanoparticles catalyst, uniformly them in and out of the ease of single-step method of the one-dimensional metal oxide nanotubes with Binding material having a large surface area and at the same time uniformly distributed nanoparticle catalyst ' and Provided are a method for manufacturing a gas sensor member. This method relates to a method for manufacturing a member for a gas sensor, in which a catalyst particle having a high dispersion property is bound to a nanotube alone without mixing the polymer template and catalyst particles described above. Sensing material according to the present embodiment and a method for manufacturing a gas sensor member using the same comprises the steps of: (a) synthesizing a nanoparticle catalyst using apoferritin; (b) preparing a metal oxide precursor / polymer mixed electrospinning solution comprising the nanoparticle catalyst included in the hollow structure of apoferritin; (c) forming a metal oxide precursor / polymer composite nanofiber comprising a nanoparticle catalyst contained in a hollow structure of apoferritin on or inside the metal oxide precursor / polymer composite fiber using an electrospinning technique; 1) Apoptotin and the polymeric material surrounding the nanoparticle catalyst are removed by pyrolysis through a high temperature heat treatment at a high temperature and speed. 1 Forming a dimensional metal oxide nanotube structure; (e) dispersing the metal oxide nanotube material to which the metal nanoparticle catalyst is bound in ethanol, and manufacturing a gas sensor by drop-coating a gas sensor and a measuring electrode; (F) preparing at least two or more kinds of ^ -oxide oxide nanotube sensors to which the nanoparticle catalyst is bound by a combination of different nanoparticle catalysts or different metal oxide sensing materials to construct a sensor array; It may further include. It includes a method for producing a structure comprising a nanoparticle catalyst uniformly dispersed on the surface and inside of the one-dimensional nanotubes through the one-time electrospinning process. Here, the step (a) is the same as the process of synthesizing the nanoparticle catalyst of the process of manufacturing the nanotubes containing the micropores and macropores.
또한, 상기 (b) 단계는 전기방사를 진행하기 위한 방사용액을 제조하는 단계로, 나노섬유를 용이하게 형성하기 위한 '템폴릿 (template)으로 작용하는 고분자와 전구체로 작용하는 금속염을 용매에 녹여 방사용액을 제조할 수 있다. 구체적으로, 상기 고분자는 폴리메틸메타아크릴레이트 (PMMA), 폴리비닐피를리돈 (PVP), , 폴리비닐아세테이트 (PVAc), 폴리비닐알콜 (PVA), 폴미아크릴로니트릴 (PAN), 폴리에틸렌 옥사이드 (polypropylene oxide, PEO), 폴리프로필렌옥사이드 (polypropylene oxide, PPO), 폴리에틸렌 옥사이드 공증합체, 폴리프로필렌옥사이드 공중합체, 폴리카보네이트 (polycarbonate, PC), 폴리염화비닐 (polyvinylchloride, PVC), 폴리카프로락톤 (polycaprolactone), 폴리비닐풀루오라이드 (polyvinylidene fluoride) 등이 있으며, 대표적인 금속염으로는 금속염들이 포함된 아세테이트, 클로라이드, 아세틸아세토네이트, 나이트레이트, 메특시드, 에특시드, 부특시드, 이소프로폭시드, 설파이드 등의 형태를 포함한다. 또한, 상기 (a) 단계에서 제조된 나노입자 촉매가 중공 구조의 내부에 형성된 아포페리틴 단백질을 전기방사 용액에 첨가하여 전기방사 용액을 제조할 수 있다. 전기방사 용액을 제조 할 경우, 나노입자 촉매가 중공 구조의 내부에 형성된 아포페리틴 단백질의 농도는 0.001 wt% - 50 wt% 의 범위에서 다양하게 조절 될 수 있다. 아포페리틴 단백질의 농도에 따라 금속산화물 나노튜브의 껍질에 포함된 나노입자 촉매의 함량이 조절된다. 또한, 상기 (C) 단계는 전기방사 기법을 이용하여 금속염 /고분자 복합 나노섬유를 합성하는 단계이며, 상기 (a) 단계에서 합성된 나노입자 촉매가 중공 구조의 내부에 형성된 아포페리틴 단백질의 우수한 분산성 때문에, 금속산화물 전구체 /고분자 복합 나노섬유의 내부에 골고루 나노입자 촉매를 포함하는 아포페리틴 단백질이 분포되는 특징을 가질 수 있다. In addition, the step (b) is to prepare a spinning solution for the electrospinning, to dissolve a metal salt acting as a precursor and a metal salt acting as a precursor (template) to easily form nanofibers in a solvent A spinning solution can be prepared. Specifically, the polymer is polymethyl methacrylate (PMMA), polyvinylpyridone (PVP), polyvinylacetate (PVAc), polyvinyl alcohol (PVA), polymirylonitrile (PAN), polyethylene oxide ( polypropylene oxide (PEO), polypropylene oxide (PPO), polyethylene oxide co-polymer, polypropylene oxide copolymer, polycarbonate (PC), polyvinylchloride (PVC), polycaprolactone , Polyvinylidene fluoride, and the like, and representative metal salts include acetates, chlorides, acetylacetonates, nitrates, methoxides, eigensides, side-effects, isopropoxide, and sulfides including metal salts. Include form. In addition, the nanoparticle catalyst prepared in step (a) may be added to the electrospinning solution of the apoferritin protein formed in the hollow structure of the electrospinning solution. When the electrospinning solution is prepared, the concentration of apoferritin protein in which the nanoparticle catalyst is formed inside the hollow structure may be controlled in a range of 0.001 wt%-50 wt%. The content of the nanoparticle catalyst contained in the shell of the metal oxide nanotubes is controlled according to the concentration of apoferritin protein. In addition, the step (C) is a step of synthesizing the metal salt / polymer composite nanofibers using an electrospinning technique, the nanoparticle catalyst synthesized in the step (a) is an excellent powder of the apoferritin protein formed inside the hollow structure Because of the acidity, the apoferritin protein including the nanoparticle catalyst may be distributed evenly inside the metal oxide precursor / polymer composite nanofibers.
또한, 상기 (d) 단계에서는 고온 열처리를 통하여 고분자 /금속산화물 전구체 복합 나노섬유를 구성하는 고분자가 분해되어 제거되고, 금속산화물 전구체는 산화과정과 오스트왈드 라이프닝 (Ostwald ripening) 과정을 거침으로써, 1차원 구조의 나노입자 촉매를 포함하는 금속산화물 나노류브 구조를 형성할 수 있다, 특히, 열처리 과정에서 승온 속도는 나노류브 구조를 형성함에 있어 매우 중요한 역할을 한다. 승온속도를 10°C/분으로 빠르게 열처리를 진행하는 경우, 나노입자 촉매가 중공 구조의 내부에 형성된 아포페리틴 단백질이. 분해되면서 얻어진 금속 나노입자 촉매를 ¾질 구조에 포함하는 금속산화물 나노튜브를 더 효과적으로 합성할 수 있다. 반면 상대적으로 느린 4 °C/분으로 열처리를 거치는 경우, 나노튜브 구조가 잘 형성되지 않을 수 있다. Further, in the step (d), the polymer constituting the polymer / metal oxide precursor composite nanofiber is decomposed and removed through high temperature heat treatment, and the metal oxide precursor undergoes an oxidation process and an Ostwald ripening process, The metal oxide nano-lube structure including the nanoparticle catalyst of the one-dimensional structure can be formed, in particular, the temperature increase rate during the heat treatment process plays a very important role in forming the nano-lube structure. When the heat treatment proceeds rapidly at a temperature increase rate of 10 ° C / min, nanoparticle catalyst is formed inside the hollow structure of apoferritin protein. Metal oxide nanotubes containing the metal nanoparticle catalyst obtained by decomposition in a quaternary structure can be more effectively synthesized. On the other hand, if the heat treatment at a relatively slow 4 ° C / min, nanotube structure may not be formed well.
또한 여기서, 상기 (e) 단계에서는, 상기 (d) 단계에서 얻어진 나노입자 촉매가 결착된 다결정 금속산화물 나노튜브들을 용매에 분산시킨 분산용액을 미리 준비된 센서 전극 (전기전도도 및 전기저항변화를 측정할 수 있는 평행한 전극이 형성된 알루미나 절연체 기판) 위에, 드람 코팅, 스핀 코팅, 잉크젯 프린팅, 디스펜싱 등과 같은 코팅 공정법을 이용하여, 코팅하는 단계일 수 있다. 센서기판 위에 나노입자 촉매가ᅳ증공 구조의 내부에 형성된 아포페리틴 단백질이 분해되면서 얻어진 금속 나노입자 촉매를 껍질 구조에 포함하는 다결정 금속산화물 나노튜브를 균일하게 코팅할수 있는 방법이라면, 특별히 코팅방법에 제약을 두지는 않는다. 또한 여기서, 상기 (f) 단계는, 상기 (e) 단계에서 합성된 나노입자 촉매가 포함된 금속산화물 나노류브 구조를 가지는 센서에서 서로 다른 나노입자 촉매와 서로 다른 1차원 구조를 가지는 금속산화물 나노튜브의 조합으로 다종의 나노입자 촉매-금속산화물 나노튜브 복합 감지소재를 포함하는 2종류 이상의 복합 감지소재 어레이 센서를 구성할 수 있다. In addition, in the step (e), the dispersion solution in which the polycrystalline metal oxide nanotubes to which the nanoparticle catalyst obtained in the step (d) is bound in a solvent is prepared in advance to measure a change in electrical conductivity and electrical resistance. Alumina insulator substrate having a parallel electrode formed thereon, by using a coating process such as dram coating, spin coating, inkjet printing, dispensing, or the like. Sensor board If the nanoparticle catalyst is able to uniformly coat the polycrystalline metal oxide nanotubes including the metal nanoparticle catalyst obtained by decomposing the apoferritin protein formed inside the vapor deposition structure in the shell structure, the coating method is not particularly limited. Does not. In addition, the step (f), the metal oxide nanotubes having a different one-dimensional structure and different nanoparticle catalyst in the sensor having a metal oxide nano-lube structure containing the nanoparticle catalyst synthesized in the step (e) Combination of two or more composite sensing material array sensor including a plurality of nanoparticle catalyst-metal oxide nanotube composite sensing material can be configured.
상기 제작된 1차원 금속산화물 나노튜브 구조는 내벽과 외벽 사이의 두께가 10 nm 내지 50 nm 의 길이 범위에서 정해 씰 수 있으며 나노류브의 길이는 1 μπι 내지 500 μπι의 길이 범위를 가질 수 있다. - 여기서 상기 제작된 감지소재의 경우 나노입자 촉매가 금속산화물 나노튜브를 구성하는 ¾질 부분에 집중적으로 균일하게 포함되어 있어 촉매의 톡성을 극대화 시킴과 동시에 감지소재의 감도를 극대화할수 있다.  The fabricated one-dimensional metal oxide nanotube structure may be sealed in a thickness range of 10 nm to 50 nm between the inner wall and the outer wall, the length of the nano-lube may have a length range of 1 μπι to 500 μπι. In the case of the sensing material, the nanoparticle catalyst is intensively and uniformly included in the ¾ quality constituting the metal oxide nanotubes, thereby maximizing the catalyst's talk and maximizing the sensitivity of the sensing material.
상기의 제조법으로 만들어진 나노입자 촉매 -금속산화물 나노튜브 복합 감지소재에서 나노입자 촉매의 중량 비율은 금속산화물 나노류브 중량 대비 0.001 wt% - 50 wt 의 범위에서 선택될 수 있으며 사람의 날숨 속에 포함하는 특정 가스들을 감지하여 질병의 유무를 관단할 수 있을 뿐만 아니라, 실내 및 실외의 유해한 환경가스를 감지할 수 있다.  The weight ratio of the nanoparticle catalyst in the nanoparticle catalyst-metal oxide nanotube composite sensing material produced by the above method may be selected in the range of 0.001 wt%-50 wt to the weight of the metal oxide nanoleuubric, and included in a human exhalation. Gas can be detected to monitor the presence of diseases, as well as to detect harmful environmental gases indoors and outdoors.
【발명의 효과] 본 발명의 실시예들은 표면에 양의 전하를 띄고 밌어 서로간의 반발력으로 인해 분산성이 띄어난 단백질 템플릿을 이용하여 1 nm 3 nm 크기의 나노입자 촉매들을 형성하며, 형성된 나노입자 촉매들을 전기방사 용액에 흔합시키며, 구 형태의 템플릿 콜로이드 또한 전기방사 용액에 흔합시켜 전기방사 함으로써 복합 나노섬유에 구 형태의 템플릿과 촉매를 균일하게 분포시키는 것을 특징으로 한다. 또한, 고은 열처리 공정에서 빠른 승온 속도를 이용하여 오스트왈드 라이프닝 현샅과 고분자 분해 현상을 이용하여 나노입자 촉매가 균일 ^게 결착되어 있고 금속산화물 표면에 이중기공 분포를 가지는 1차원 다공성 금속산화물 구조를 형성하는 것을 특징으로 한다. 가스센서 특성에 중요한 요소인 촉매효과 및 반웅 표면적을 넓히는 형상제어를 통해 10 ppb 정도의 극미량의 가스를 검출해 낼 수 있는 높은 감도 특성과 함께, 다양한 물질 조성 변화를 통해 다양한 가스에 대한 검출이 가능하도록 우수한 선택성을 가지며, 전기방사 및 열처리 공정을 조절함으로써 간단한 공정법으로 촉매결착과 기공을 다수 포함하는 나노튜브 형상제어 과정을 동시에 진행함으로써 대량 생산이 가능한 가스센서용 부재, 가스 센서 및 그 제조방법을 개시할수 있는 효과를 갖는다. 【Effects of the Invention] Embodiments of the present invention form a nanoparticle catalysts having a size of 1 nm 3 nm using a protein template that has a positive charge on the surface and is dispersible due to the repulsive force between each other, and the formed nanoparticle catalysts are electrospinning solutions. It is characterized in that the spherical template colloid is also mixed with the electrospinning solution and electrospun to distribute the spherical template and the catalyst uniformly on the composite nanofibers. In addition, the nanoparticle catalyst is uniformly bound by using the Ostwald-lifeening phenomenon and the polymer decomposition phenomenon in the high heat treatment process, and the one-dimensional porous metal oxide structure having a double pore distribution on the metal oxide surface is used. It is characterized by forming. It is possible to detect various gases through various material composition change with high sensitivity characteristic that can detect trace amount of gas of about 10 ppb through catalytic effect and shape control to increase reaction surface, which are important factors for gas sensor characteristics. Gas sensor member, gas sensor and its manufacturing method that can be mass-produced by simultaneously performing nanotube shape control process including many catalyst binding and pores by simple process by controlling electrospinning and heat treatment process Has the effect to initiate.
본 발명의 실시예들에 따르면, 복수개의 원형 내지 타원 형태의 미세기공 및 거대기공을 다수 포함하는 1차원 다공성 금속산화물 나노튜브를 합성함에 있어, 구 형태의 고분자 회생층 템플릿을 이용하고, 고분자 분해시기와 금속산화물의 결정화 및 확산과정의 시간차이를 이용하여 단일 공정으로 나노튜브 표면에 미세기공들과 거대기공들을 포함하는 1차원 다공성 나노튜브 구조를 형성하고, 복수개의 고분자들 사이에 뭉쳐져 있는 단백잘 템플릿을 이용하여 일반적인 박막구조보다 수십 배 이상의 넓은 비표면적을 갖고, 빽빽한 구조의 튜브구조보다도 수배 이상의 넓은 비표면적을 갖는 다공성 튜브 구조를 형성한다. 튜브 표면에 존재하는 기공들을 통해 가스분자들의 유동을 원할하게 하여, 가스분자들과 금속산화물 나노튜브 표면 사이의 흡착과 탈착을 용이하게 하여 센서특성을 향상시키는 효과를 갖는다. 또한, 아포페리틴 내부에 포함된 나노입자 촉매를 전기방사 용액에 포함시켜, 전기방사 후 고은 열처리를 거쳐 나노입자 촉매를 둘러싸고 있던 단백질은 모두 제거되고, 1 nm 내지 3 nm 범위의 크기를 갖는 나노입자들은 오스트왈드 라이프닝 과정 중 확산과정을 통하여, 다공성 나노튜브 내벽과 외벽 그리고 기공을 통해 새롭거 1 · 형성된 표면으로 노출되어 촉매반웅 효과를 극대화 시킬 수 있다. 8 nm 크기의 내부 증공 크기를 갖는 단백질은 제거되는 과정에서 초미세 기공을 추가적으로 나노류브의 표면에 형성 시킬 수 있다. 상기에서 언급한대로 가스센서 부재의 형상제어와 촉매반웅 효과를 통해 센서특성을 극대화 시킴으로써 극미량의 가스를 검출해 낼 수 있는 높은 감도 특성과 함께, 특정 가스를 검출해 낼 수 있는 우수한 선택성을 가지며, 대량 생산이 가능한 가스 센서용 부재, 가스 센서 및 그 제조 방법을 개시할 수 있는 효과를 갖는다. According to embodiments of the present invention, in synthesizing one-dimensional porous metal oxide nanotubes including a plurality of circular to elliptic micropores and macropores, using a spherical polymer regenerative layer template, polymer decomposition Using the time difference between the crystallization and diffusion process of the metal oxide and the metal oxide, one-dimensional porous nanotube structure including micropores and macropores is formed on the surface of the nanotube in a single process, and a plurality of polymers are formed. The protein well template, which is agglomerated in between, forms a porous tube structure having a specific surface area that is several tens of times larger than a general thin film structure and a several times larger specific surface area than a dense tube structure. By smoothing the flow of gas molecules through the pores present on the tube surface, the adsorption and desorption between the gas molecules and the metal oxide nanotube surface are facilitated, thereby improving sensor characteristics. In addition, by including the nanoparticle catalyst contained in the apoferritin in the electrospinning solution, all the proteins surrounding the nanoparticle catalyst by electrothermal heat treatment after electrospinning is removed, nanoparticles having a size in the range of 1 nm to 3 nm It is going to be exposed to the surface 1 and the newly formed through the porous nanotube inner and outer walls and pore diffusion through the process of Ostwald life turning process is to maximize the catalyst banung effect. Proteins with an internal vaporization size of 8 nm can additionally form ultra-pores on the surface of the nanoleuve during removal. As mentioned above, by maximizing the sensor characteristics through the shape control and catalytic reaction effect of the gas sensor member, it has a high sensitivity characteristic that can detect a trace amount of gas, and has excellent selectivity to detect a specific gas. A gas sensor member capable of producing, a gas sensor, and a manufacturing method thereof can be disclosed.
본 발명의 실시예들에 따르면, 1차원 금속산화물 나노튜브 구조를 갖는 중공 섬유를 제작하는데 있어, 열처리 조건을 조절하여, 단일공정으로 나노튜브 구조를 형성함으로써, 일반적인 박막구조보다 6배 이상 큰 비표면적을 갖고, 튜브 안쪽으로 가스의 이동을 용이하게 하여 미량의 가스에 대한 감도를 향상시키는 효과를 갖는다. 또한 아포페리틴 내부에 포함된 나노입자 촉매를 전기방사 용액에 포함시켜, 전기방사 후 고온 열.처리를 거쳐 나노입자 촉매가 금속산화물 나노튜브 내벽과 외벽에 고르게 옹집 없이 결착된 감지소재를 이용한 가스센서를 제조하여 촉매반웅을 극대화 시킬. 수 있다. 상기에서 언급한대로 가스센서 부재의 표면적과 촉매반웅 효과를 극대화 시킴으로써 극미량의 가스를 검출해 낼 수 있는 높은 감도 특성과 함께, 특정 가스를 검출해 낼 수 있는 우수한 선택성을 가지며, 대량 생산이 가능한 가스 센서용 부재, 가스 센서 및 그 제조 방법을 개시할 수 있는 효과를 갖는다. According to the embodiments of the present invention, in manufacturing a hollow fiber having a one-dimensional metal oxide nanotube structure, by controlling the heat treatment conditions, by forming a nanotube structure in a single process, the ratio is more than six times larger than the general thin film structure It has a surface area and facilitates the movement of gas into the tube, improving the sensitivity to traces of gas. Have In addition, a gas sensor using a sensing material in which the nanoparticle catalyst contained in the apoferritin is included in the electrospinning solution and the nanoparticle catalyst is bound to the inner and outer walls of the metal oxide nanotubes evenly through the high temperature heat and treatment after electrospinning. To maximize the catalyst reaction. Can be. As mentioned above, by maximizing the surface area and catalytic reaction effect of the gas sensor member, it has a high sensitivity characteristic to detect a trace amount of gas, and has a good selectivity to detect a specific gas, and a mass sensor capable of mass production. It has the effect which can start a metal member, a gas sensor, and its manufacturing method.
【도면의 간단한 설명】  [Brief Description of Drawings]
본 발명에 관한 이해를 돕기' 위해 상세한 설명의 일부로 포함되는, 첨부도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다. , The accompanying drawings are included as part of a better understanding of the present invention, a detailed description is provided for an embodiment of the present invention, it will be described from the invention and together with the description.
도 1 은 본 발명의 일 실시예에 따른 나노입자 촉매가 균일하게 결착되어 있고, 복수개의 원형 내지 타원 형태의 미세기공 및 거대기공들을 포함하고 있는 1차원 다공성 금속산화물 나노튜브 가스센서용 부재의 모식도  1 is a schematic diagram of a member for a one-dimensional porous metal oxide nanotube gas sensor in which the nanoparticle catalyst according to an embodiment of the present invention is uniformly bound and includes a plurality of circular to elliptic micropores and macropores.
도 2 는 본 발명의 일 실시예에 따른 아포페리틴을 이용하여 합성된 나노입자 촉매를 포함하고 복수개의 원형 내지 타원 형태의 미세기공 및 거대기공들을 포함하고 있는 1차원 다공성 금속산화물 나노튜브 구조를 이용한 가스 센서 제조 방법의 순서도이다.  2 is a one-dimensional porous metal oxide nanotube structure including a nanoparticle catalyst synthesized using apoferritin according to an embodiment of the present invention and including a plurality of circular to elliptic micropores and macropores. It is a flowchart of the gas sensor manufacturing method.
도 3 은 본 발명의 일 실시예에 따른 전기방사법을 이용하여 나노입자 촉매를 포함하고 복수개의 원형 내지 타원 형태의 기공들을 포함하고 있는 이중 기공분포를 가지는 1차원 다공성 금속산화물 나노튜브 구조의 제조 공정을 보여주는 그림이다. 3 is a nanoparticle using an electrospinning method according to an embodiment of the present invention Figure 1 shows the manufacturing process of a one-dimensional porous metal oxide nanotube structure having a double pore distribution including a catalyst and a plurality of circular to elliptic pores.
도 4 는 본 발명의 일 실시예에 따른 나노튜브 표면에 구형태의 회생층 템플릿과 금속산화물 결정화 및 확산에 의해서 미세기공이 생기는 원리를 보여주는 그림이다.  4 is a view showing the principle that the micro-pores are generated by the crystal structure and diffusion of the metal oxide crystal sphere template and the sphere on the surface of the nanotube according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 중공구조의 단백질을 통해 미세기공이 생기는 원리를 보여주는 그림이다.  Figure 5 is a diagram showing the principle of generating micropores through the protein of the hollow structure according to an embodiment of the present invention.
도 6 은 본 발명의 일 실시예에 따른 회생층 템플릿 역할을 하는 구 형태의 고분자 회생층 템플릿의 주사전자 현미경 (SEM) 사진이다.  6 is a scanning electron microscope (SEM) photograph of a spherical polymer regenerative layer template serving as a regenerative layer template according to an embodiment of the present invention.
도 7(a)와 도 7(b)는 본 발명의 실시예 1에 따른 Pt 나노입자 촉매를 포함하는 아포페리틴 입자들의 투과전자현미경 (TEM) 사진을, 도 7(c)는 입자의 표면 전하를 분석하는 제타포텐셜 (zeta potential) 데이터를, 그리고 도 7(d)는 Pt 나노입자 촉매들의 크기 분포도를 각각 나타내고 있다.  7 (a) and 7 (b) are transmission electron microscopy (TEM) images of apoferritin particles containing Pt nanoparticle catalyst according to Example 1 of the present invention, Figure 7 (c) is the surface charge of the particles Zeta potential data is analyzed, and FIG. 7 (d) shows the size distribution of Pt nanoparticle catalysts, respectively.
도 8은 본 발명의 일 실시예에 따른 Pt 나노입자 촉매를 포함하는 중공 구조의 아포쩨리틴 단백질을 포함하고 구형태의 고분자 희생층 템플릿을 포함하는 금속산화물 전구체 /폴리비닐피를리돈 (PVP) 복합 방사 용액을 전기방사하여 얻어진 나노섬유의 주사전자현미경 (SEM) 사진이다.  FIG. 8 is a metal oxide precursor / polyvinylpyridone (PVP) comprising a hollow structure of apoqueritin protein comprising a Pt nanoparticle catalyst and including a spherical polymer sacrificial layer template according to an embodiment of the present invention. A scanning electron microscope (SEM) photograph of nanofibers obtained by electrospinning a composite spinning solution.
도 9(a)와 도 9(b)는 본 발명의 실시예 2에 따른 주석 산화물 전구체 /폴리비닐피를리던 (PVP) 와 아포페리틴을 이용하여 합성한 'Pt 나노입자와 구 형태의 고분자 회생층 템플릿 콜로이드를 각각 첨가하여 만든 방사 용액을 전기방사하고, 고은 열처리를. 통하여 얻은 Pt 나노입자 촉매가 포함되어 있고 미세기공 및 거대기공들을 포함하고 있는 1차원 다공성 금속산화물 나노튜브의 주사전자 현미경 (SEM) 사진이다. 9 (a) and 9 (b) illustrate ' Pt nanoparticles and spheres synthesized using tin oxide precursor / polyvinylpyridinone (PVP) and apoferritin according to Example 2 of the present invention. Electrospinning the spinning solution made by adding the colloidal template of the polymer regenerative layer in the form, and heat-treating the silver. Scanning electron microscopy (SEM) photographs of one-dimensional porous metal oxide nanotubes containing Pt nanoparticle catalysts, which contain micropores and macropores.
도 10(a-c)는 본 발명의 실시예 2에 따른 Pt 나노입자 촉매가 포함되어 있고 복수개의 미세기공 및 거대기공들을 포함하고 있는 1차원 다공성 금속산화물 나노튜브의 투과전자현미경 (TEM) 사진, 도 10(d)는 SAED(Selected Area Electron Diffraction) 패턴 및 도 10(e)는 EDS (Energy Dispersive X-ray Spectrometer) 사진을 나타내고 있다.  10 (ac) is a transmission electron microscope (TEM) photograph of a one-dimensional porous metal oxide nanotube including a plurality of micropores and macropores, including a Pt nanoparticle catalyst according to Example 2 of the present invention. 10 (d) shows a SAED (Selected Area Electron Diffraction) pattern and FIG. 10 (e) shows an EDS (Energy Dispersive X-ray Spectrometer) photograph.
도 11 (a)와 도 11(b)는 본 발명의 실시예 2에 따른 Pt 나노입자 촉매가 포함되어 있고 복수개의 미세기공 및 거대기공들을 포함하고 있는 1차원 다공성 금속산화물 나노튜브의 열중량 분석 (TGA) 그래프 및 광전자분광기 (XPS) 분석그래프를 각 나타내고 있다.  11 (a) and 11 (b) are thermogravimetric analysis of one-dimensional porous metal oxide nanotubes containing a Pt nanoparticle catalyst according to Example 2 of the present invention and including a plurality of micropores and macropores. The (TGA) graph and the photoelectron spectrometer (XPS) analysis graph are shown, respectively.
도 12 는 본 발명의 일 비교예 1에 따른 금속산화물 전구체 /폴리비닐피를리던 (PVP) 복합 방사 용액을 전기방사하고 빠른 승은속도 조건에서 고은 열처리를 통하여 얻은 금속산화물 나노튜브의 주사전자현미경 (SEM)사진이다. . 12 is a scanning electron microscope of a metal oxide nanotube obtained by electrospinning a metal oxide precursor / polyvinylpyrrolidone (PVP) composite spinning solution according to Comparative Example 1 of the present invention and subjected to a high silver heat treatment under a fast win speed condition ( SEM) picture. .
도 13(a)와도 13(b)는 본 발명의 비교예 2에 따른 구 형태의 고분자 회생층 템플릿을 포함하고 있는 금속산화물 전구체 /풀리비닐피를리돈 (PVP) 복합 나노섬유를 빠른 승은속도 조건에서 고은 열처리를 거쳐 얻어진 이중기공 분포를 가지는 1차원 다공성 금속산화물 나노튜브의 주사전자 현미경 사진이다. 도 14 (a) 는 본 발명의 일 실시예 2에 따른 Pt 나노입자 촉매가 포함되어 있고 복수개의 미세기공 및 거대기공들을 포함하고 있는 1차원 다공성 금속산화물 나노튜브와 비교예 1 에 따른 순수한 주석 산화물 나노튜브 구조, 비교예 2 에 따른 복수개의 원형 및 타원 형태의 기공을 가지는 이^기공 분포를 갖는 1차원 다공성 주석 산화물 나노튜브 구조의 350 °C에서 아세톤 가스 (100 ppb-5 ppm)에 대한 반웅성 그래프이다. 도 14 (b) 는 본 발명의 일 실시예 2에 따른 R 나노입자 촉매가 포함되어 있고 복수개의 미세기공 및 거대기공들을 포함하고 있는 1차원 다공성 금속산화물 나노튜브 감지소재의 아세톤 감지한계특성을 보여주는 그래프이다. Figure 13 (a) and Figure 13 (b) is a fast win speed condition for the metal oxide precursor / pulley vinylpyridone (PVP) composite nanofibers containing the spherical polymer regenerative layer template according to Comparative Example 2 of the present invention Distribution of the porosity Eggplants are scanning electron micrographs of one-dimensional porous metal oxide nanotubes. Figure 14 (a) is a one-dimensional porous metal oxide nanotubes containing a Pt nanoparticle catalyst according to Example 2 of the present invention, including a plurality of micropores and macropores and pure tin oxide according to Comparative Example 1 Nanotube structure, anti-acetone gas (100 ppb-5 ppm) at 350 ° C of a one-dimensional porous tin oxide nanotube structure with a bi-porous distribution with a plurality of circular and elliptic pores according to Comparative Example 2 Male graph. Figure 14 (b) shows the acetone detection limit characteristics of the one-dimensional porous metal oxide nanotubes sensing material containing the R nanoparticle catalyst according to an embodiment 2 of the present invention and includes a plurality of micropores and macropores It is a graph.
도 15는 본 발명의 실시예 2에 따른 Pt 나노입자 촉매가 포함되어 있고 복수개의 미세기공 및 거대기공들을 포함하고 있는 1차원 다공성 금속산화물 나노튜브 구조를 갖는 가스센서의 350 °C에서 아세톤 (CH3COCH3), 를루엔 (C6H5CH3), 황화수소 (H2S), 일산화질소 (NO), 일산화탄소 (CO), 펜탄 (C5H12) 및 암모니아 (NH3)와 같은 생체지표 가스에 대한 1 ppm 에서의 반웅성 그래프이다. 도 16은 본 발명의 실시예에 따른 10명의 건강한 사람의 날숨을 포집하는 과정과, 조절하여 실제 당뇨병 환자의 날숨과 유사하게 모의 당뇨환자의 날숨을 제작하는 과정을 보여주는 그림이다.  FIG. 15 illustrates acetone (CH3COCH3) at 350 ° C of a gas sensor having a Pt nanoparticle catalyst according to Example 2 of the present invention and having a one-dimensional porous metal oxide nanotube structure including a plurality of micropores and macropores. ), A semi-linear graph at 1 ppm for biomarker gases such as toluene (C6H5CH3), hydrogen sulfide (H2S), nitrogen monoxide (NO), carbon monoxide (CO), pentane (C5H12) and ammonia (NH3). 16 is a view showing a process of capturing the exhalation of 10 healthy people according to an embodiment of the present invention, and the process of producing a simulated diabetic exhalation similar to the exhalation of a real diabetic patient.
도 17은 본 발명의 실시예에 따른 —상기에서 제작한 센서물질들의 어레이 (array)를 이용하여 날숨들을 분석하고, 주성분분석 (PCA)를 통해서 건강인의 날숨과모의당뇨환자의 날숨이 구분되는 것을 보여주.는그림이다. FIG. 17 shows exhalations using an array of sensor materials prepared above according to an embodiment of the present invention, and analyzes the exhalations through Principal Component Analysis (PCA). The picture shows the exhalation and the exhalation of simulated diabetics.
도 18은 본 발명의 일 실시예 4에 따른 나노입자 촉매가 1차원 금속산화물 나노류브 내부와외부에 균일하게 결착된 가스 센서용 부재의 모식도.  18 is a schematic view of a gas sensor member in which the nanoparticle catalyst according to the fourth embodiment of the present invention is uniformly bound inside and outside the one-dimensional metal oxide nano-lube.
도 19는 본 발명의 일 실시예 4에 따른 아포페리틴을 이용하여 합성된 나노입자 촉매를 포함하는 금속산화물 나노튜브 구조를 이용한 가스 센서 제조 방법의 순서도이다.  19 is a flowchart illustrating a method of manufacturing a gas sensor using a metal oxide nanotube structure including a nanoparticle catalyst synthesized using apoferritin according to Example 4 of the present invention.
도 20은 본 발명의 일 실시예 4에 따른 전기방사법을 이용하여 나노입자 촉매를 포함하는 1차원 금속산화물 나노류브 구조의 제조 공정을 보여주는 그림이다.  20 is a view showing a process for producing a one-dimensional metal oxide nano-lube structure including a nanoparticle catalyst using an electrospinning method according to an embodiment 4 of the present invention.
' 도 21은 본 발명의 일 실시예에 따른 Pt 나노입자 촉매와 Au 나노입자 촉매가 각각 중공 구조의 내부에 포함된 아포페리틴 단백질을 포함하는 주석산화물 전구체 /폴리비닐피를리돈 (PVP) 복합 방사 용액을 전기방사하여 얻어진 나노섬유의 주사전자현미경 사진이다.  21 is a tin oxide precursor / polyvinylpyridone (PVP) composite spinning comprising apopertin protein containing a Pt nanoparticle catalyst and an Au nanoparticle catalyst respectively in a hollow structure according to an embodiment of the present invention. Scanning electron micrograph of the nanofibers obtained by electrospinning the solution.
도 22는 본 발명의 비교예 3에 따른 주석산화물 전구체 /폴리비닐피를리돈 (PVP) 복합 방사 용액을 전기방사하고 고온 열처리를 통하여 얻은 주석산화물 나노섬유의 주사전자현미경 사진이다.  22 is a scanning electron micrograph of tin oxide nanofibers obtained by electrospinning a high temperature heat treatment of a tin oxide precursor / polyvinylpyridone (PVP) composite spinning solution according to Comparative Example 3 of the present invention.
도 23은 본 발명의 일 비교예 4에 따른 주석산화물 전구체 /폴리비닐피롤리던 (PVP) 복합 방사 용액을 전기방사하고 빠른 승온속도 조건에서 고온 열처리를 통하여 얻은 주석산화물 나노튜브의 주사전자현미경 사진이다. 도 24는 본 발명의 실시예 3에 따른 Pt 나노입자 촉매를 포함하는 아포페리틴 입자들과 Au 나노입자 촉매를 포함하는 아포페리틴 입자들의 투과전자현미경 사진이다. FIG. 23 is a scanning electron microscope photograph of tin oxide nanotubes obtained by electrospinning a tin oxide precursor / polyvinylpyrrolidone (PVP) composite spinning solution according to Comparative Example 4 of the present invention and subjected to a high temperature heat treatment at a fast temperature increase rate condition to be. FIG. 24 is a transmission electron microscope photograph of apoferritin particles including Pt nanoparticle catalyst and apoferritin particles including Au nanoparticle catalyst according to Example 3 of the present invention.
도 25는 본 발명의 실시예 4에 따른 주석 산화물 전구체 /폴리비닐피를리던 (PVP) 와 아포페리틴을 이용해 합성한 Pt 나노입자와 Au 나노입자를 각각 첨가하여 만든 방사 용액을 전기방사하고, 빠른 승온속도 조건에서 고온 열처리를 통하여 얻은 Pt 나노입자 촉매가 포함된 주석산화물 나노류브와 Au 나노입자촉매가포함된 주석산화물 나노튜브의 주사전자현미경 사진이다.  FIG. 25 shows the electrospinning of a spinning solution prepared by adding Pt nanoparticles and Au nanoparticles, respectively, synthesized using tin oxide precursor / polyvinylpyridin (PVP) and apoferritin according to Example 4 of the present invention. Scanning electron micrographs of tin oxide nano-levers containing Pt nanoparticle catalysts and tin oxide nanotubes containing Au nanoparticle catalysts obtained by high temperature heat treatment at elevated temperature conditions.
도 26은 본 발명의 실시예 4에 따른 Pt 나노입자 촉매를 포함하는 주석 산화물 나노튜브 구조의 투과전자현미경 사진 및 EDS(Energy Dispersive X-ray Spectrometer)사진이다.  FIG. 26 is a transmission electron microscope photograph and an energy dispersive x-ray spectrometer (EDS) photograph of a tin oxide nanotube structure including a Pt nanoparticle catalyst according to Example 4 of the present invention.
' 도 27은 본 발명의 실시예 4에 따른 Au 나노입자 촉매를 포함하는 주석산화물 나노튜브 구조의 투과전자현미경 사진 및 EDS(Energy Dispersive X- ray Spectrometer)사진이다.  27 is a transmission electron micrograph and an EDS (Energy Dispersive X-ray Spectrometer) photograph of a tin oxide nanotube structure including an Au nanoparticle catalyst according to Example 4 of the present invention.
도 28은 본 발명의 일 실시예 4에 따른 Pt 나노입자 촉매를 포함하는 주석 산화물 나노튜브와 비교예 4 에 따른 순수한주석 산화물 나노튜브 구조 비교예 3 에 따른 주석 산화물 나노섬유 구조의 350 0C에서 아세톤 가스 (1-5 ppm)에 대한 반웅성 그래프이다. 28 is a tin oxide nanotube structure including a Pt nanoparticle catalyst according to Example 4 of the present invention and a pure tin oxide nanotube structure according to Comparative Example 4 at 350 0 C of the tin oxide nanofiber structure according to Comparative Example 3 It is a semi-linear graph for acetone gas (1-5 ppm).
도 29는 본 발명의 실시예 4에 따른 Pt 나노입자 촉매를 포함하는 주적 산화물 나노류브와 비교예 4 에 따른 순수한 주석 산화물 나노튜브 구조, 비교예 3 에 따른주석 산화물 나노섬유 구조의 350 °C에서 황화수소 가스 (1-5 ppm)에 대한 반웅성 그래프이다. 29 is a pure oxide oxide nanotube structure according to Comparative Example 4 and the main oxide nano-lube containing a Pt nanoparticle catalyst according to Example 4 of the present invention, Comparative Example 3 The semi-ungular graph for hydrogen sulfide gas (1-5 ppm) at 350 ° C of tin oxide nanofiber structure according to.
도 30은 본 발명의 실시예 4에 따른 Pt 나노입자 촉매를 포함하는 주석 산화물 나노튜브와 비교예 4 에 따른 순수한 주석 산화물 나노튜브 구조, 비교예 3 에 따른 주석 산화물 나노섬유 구조의 350 °C에서 를루엔 가스 (1-5 ppm)에 대한 반웅성 그래프이다.  30 is a tin oxide nanotube comprising a Pt nanoparticle catalyst according to Example 4 of the present invention and a pure tin oxide nanotube structure according to Comparative Example 4, at 350 ° C of the tin oxide nanofiber structure according to Comparative Example 3 Semi-finished graph for toluene gas (1-5 ppm).
도 31은 본 발명의 실시예 4에 따른 Pt나노입자 촉매가 결착된 1 차원 나노튜브 구조의 주석 산화물을 이용한 가스센서의 350 °C 에서 아세톤 (CH3COCH3), 를루엔 (C6H5CH3), 황화수소 (H2S), 일산화질소 (NO), 일산화탄소 (CO), 펜탄 (C5H12) 및 암모니아 (NH3)와 같은 생체지표 가스에 대한 1 ppm 에서의 반응성 그래프이다.  31 shows acetone (CH 3 COCH 3), toluene (C 6 H 5 CH 3), hydrogen sulfide (H 2 S) at 350 ° C. of a gas sensor using tin oxide having a one-dimensional nanotube structure to which a Pt nanoparticle catalyst is bound according to Example 4 of the present invention. Graph of reactivity at 1 ppm for biomarker gases such as nitrogen monoxide (NO), carbon monoxide (CO), pentane (C5H12) and ammonia (NH3).
도 32는 본 발명의 실시예 4에 따른 Au 나노입자 촉매를 포함하는 주석산화물 나노튜브와 비교예 4 에 따른 순수한 주석 산화물 나노튜브 구조, 비교예 3 에 따른 주석 산화물 나노섬유 구조의 300 °C 에서 황화수소 가스 (1-5 ppm)에 대한 반웅성 그래프이다.  32 is a tin oxide nanotube comprising an Au nanoparticle catalyst according to Example 4 of the present invention and a pure tin oxide nanotube structure according to Comparative Example 4, at 300 ° C of the tin oxide nanofiber structure according to Comparative Example 3 A semi-ungular graph for hydrogen sulfide gas (1-5 ppm).
도 33은 본 발명의 실시예 4에 Au나노입자 촉매가 결착된 1 차원 나노튜브 구조의 주석 산화물을 이용한 가스센서의 300 °C 에서 아세톤 (CH3COCH3), 를루엔 (C6H5CH3), 황화수소 (H2S), 에탄을 (C2H50H)및 암모니아 (NH3)와 같은 생체지표 가스에 대한 1 ppm 에서의 반웅성 그래프이다.  33 shows acetone (CH 3 COCH 3), toluene (C 6 H 5 CH 3), hydrogen sulfide (H 2 S) at 300 ° C. of a gas sensor using tin oxide of 1-dimensional nanotube structure to which Au nanoparticle catalyst is bound in Example 4 of the present invention. Ethanol is a semi-finished graph at 1 ppm against biomarker gases such as (C2H50H) and ammonia (NH3).
【발명의 실시를 위한 최선의 형태】 본 발명은 다양한 솬환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 이하에서는특정 실시예들을 첨부된 도면을 기초로상세히 설명하고자 한다. [Best form for implementation of the invention] The present invention can be applied to various changes and may have a number of embodiments, hereinafter, specific embodiments will be described in detail with reference to the accompanying drawings.
본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.  In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되는 것은 아니며, 상기' 용어들은 하나의 구성요소를다른 구성요소로부터 구별하는 목적으로만사용된다. First and may be used for the term of the second, etc., in describing various elements, the elements are not limited to the above terms, the "terms are only to distinguish one element from the other Used.
이하, 회생층 폴리머의 분해과정 시간과 금속산화물의 확산과정 시간차이를 이용하여 미세기공과 거대기공이 동시에 존재하는 1차원 다공성 금속산화물 나노튜브에 단백질 기반 고분산성 나노입자 촉매가 기능화된 감지재료를 이용한 가스센서용 부재, 가스 센서 및 그 제조방법에 대해서 첨부된 도면을 참조하여 자세히 설명한다.  Hereinafter, by using the time difference between the decomposition process of the regenerative layer polymer and the diffusion process time of the metal oxide, a sensing material in which a protein-based highly dispersible nanoparticle catalyst is functionalized on a one-dimensional porous metal oxide nanotube having both micropores and macropores is present. A gas sensor member, a gas sensor, and a method of manufacturing the same will be described in detail with reference to the accompanying drawings.
본 발명의 실시예들은 아포페리틴으로 합성한 나노입자 촉매를 포함하며, 희생층 템플릿으로 사용되는 구 형태의 폴리스티렌 콜로이드가 포함된 금속산화물 전구체 /고분자 복합 나노섬유를 고온 열처리 공정 중에 폴리스티렌 고분자가 분해되는 과정과 금속산화물의 결정화 및 확산 과정이 순차적으로 발생하는 현상을 이용하여 미세기공 (0.1 nm-50 nm) 및 거대기공 (50 nm-300 nm)이 금속산화물 나노튜브에 생성됨과. 동시에 나노입자 촉매가 균일하게 분포하는 1차원 다공성 나노튜브 가스센서 부재에 대한 내용이다. 기존에 금속산화물을 이용한 가스센서 연구에 경우 금속산화물 감지소재의 센서특성을 향상시키기 위해서 비표면적을 넓힘으로써 많은 양의 가스와 반웅할 수 있는 구조를 만들어 감지특성을 향상시키는 연구들이 진행되었으며, 이와 더불어 금속 또는 금속 산화물 촉매를 감지물질에 결착시켜 촉매반응을 활성화 하는 연구들이 진행되어 왔다. 즉, 센서특성을 향상시키기 위한 두 가지 중요한 요소는 감지물질의 형상 및 촉매활성화 역할이라는 것을 알 수 있다. 하지만 지금까지의 연구들은 비표면적을 넓히기 위한 공정과 촉매를 감지물질에 결착시키는 공정이 별도로 필요할뿐더러 각 공정들이 모두 상당히 복잡하다는 단점이 있다. 구체적으로, 수 nm 크기의 나노입자 촉매들을 균일하게 합성하는 공정은 여러 전처리 과정들이 필요하며, 금속산화물 나노튜브 또는 기공이 존재하는 금속산화물 나노류브 합성의 경우 비교적 복잡하고 시간과 비용이 많이 소모될 수 있다는 단점을 가지고 있다. 이러한 단점을 극복하여 최적의 감지물질을 설계하기 위하여, 본 발명에서는 아포페리틴이라는 단백질 템플릿을 이용하여 1 nm-3 nm 크기 정도의 균일한 크기분포를 갖는 나노입자 촉매들을 손 쉽게 합성하고, 200 nm-1000 nm 사이의 다양한 크기 분포를 가지는 구 형태의 폴리스티렌 콜로이드와 함께 금속산화물 전구체 /고분자 흔합 전기방사 용액과 흔합한 후 전기방사기법을 이용하여, 나노입자 촉매와 구 형태의 폴리스티렌 회생층 템플릿이 금속산화물 전구체 /고분자 복합 나노섬유 표면 및 내부에 균일하게 결착되게 하였다. 그리고, 상기 합성된 복합 나노섬유를 고온열처리 과정에서, 회생층 폴리머의 분해과정과'금속산화물의 결정화 및 확산과정이 순차적으로 일어나는 것을 이용하여 미세기공 (0.1 nm-50 nm)과 거대기공 (50 nm-300 nm)을 생기게 하고 나노입자 촉매가 균일하게 결착된 1차원 다공성 금속산화물 나노튜브 구조를 형성함으로써 단일 공정으로, 손쉽게 비표면적이 넓고 나노입자 촉매가 웅집 없이 균일하게 결착되어 촉매활성이 극대화된 이중 기공분포를 가지는 1차원 다공성 나노튜브 감지소재를 대량으로 합성할 수 있는 특징훌 가진다. 여기서, 나노튜브 내벽과 외벽에 생기는 0,1 nm-50 nm 크기 범위를 갖는 미세기공들과 50 nm-300 nm 의 범위를 갖는 거대기공들은 나노튜브의 비표면적을 넓척줄 뿐만 아니라 감지소재로의 기체 유동을 극대화시켜 줌으로써 감지특성을 향상시킨다. 특히, VOCs 기체들을 효과적으로 감지하기 위해서는 0.1 nm-50 nm 크기와 범위를 갖는 미세기공이 중요한 역할을 하는'데, 상기 개발된 감지물질은 미세기공 (0.1 nm-50 nm)의 개수가 거대기공 (50 nm-300 nm)과 비교하여 수 배 이상의 분포수를 가지고 있어 감지물질로서 탁월한 조건을 보유하고 있다. 이와 더불어, 나노류브의 내 /외부 표면과 기공으로 노출된 표면에 서로의 웅집 없이 균일하게 분포하는 나노입자 촉매는 가스들이 감지소재와 반웅할 때 나타나는 촉매의 효과를 최소한의 촉매의 양으로 극대화할 수 있다. 기공을 다수 포함하는 나노튜브 구조의 형상학적 개념과 응집 없이 균일하게 분포하는 촉매활성 개념으로 상호간 협력 관계 (synergistic effect)를 기대할 수 있어, 기존의 감지물질과 비교하여 최상위 수준의 고감도 가스센서 감지소재를 제작할 수 있는 것을 특징으로 한다. 특히, 수백 나노미터 (nm) 크기의 회생층 폴리머 템플릿을 사용함에도 불구하고 물질의 자연적 현상을 이용하여 0.1 nm-50 nm 크기범위의 미세기공 및 50 nm-300 nm 크기의 거대기공을 나노튜브표면에 형성시킬 수 있다. 상기와 같은 특징을 갖는 가스센서용 부재를 제작하기 위하여 효율적이고 손 쉬운 공정으로 가스 센서용 부재, 가스 센서 및 그 제조 방법을 구현하는 것을 특징으로 한다. Embodiments of the present invention include a nanoparticle catalyst synthesized with apoferritin, and the polystyrene polymer is decomposed during the high temperature heat treatment process of the metal oxide precursor / polymer composite nanofiber containing the spherical polystyrene colloid used as a sacrificial layer template Micropores (0.1 nm-50 nm) and macropores (50 nm-300 nm) are generated in the metal oxide nanotubes by using the sequential processes of crystallization and diffusion of metal oxides. At the same time, the contents of the one-dimensional porous nanotube gas sensor member in which the nanoparticle catalyst is uniformly distributed. In case of gas sensor research using metal oxide, specific surface area is used to improve sensor characteristics of metal oxide sensing material. Research has been conducted to improve the detection characteristics by making a structure capable of reacting with a large amount of gas by widening, and in addition, studies to activate a catalytic reaction by binding a metal or metal oxide catalyst to a sensing material. In other words, it can be seen that two important factors for improving the sensor characteristics are the shape of the sensing material and the role of catalyst activation. However, studies to date require a process to increase the specific surface area and a process to bind the catalyst to the sensing material, and each process is quite complicated. Specifically, the process of uniformly synthesizing nanoparticle catalysts of several nm size requires several pretreatment processes, and it is relatively complicated and time-consuming and expensive to synthesize metal oxide nanotubes or pore-containing metal oxide nanolyuves. It has the disadvantage of being able to. In order to design an optimal sensing material to overcome these disadvantages, the present invention easily synthesizes nanoparticle catalysts having a uniform size distribution of about 1 nm-3 nm size using a protein template called apoferritin, and 200 nm. The nanoparticle catalyst and the spherical polystyrene regenerative layer template were mixed with a metal oxide precursor / polymer mixed electrospinning solution together with a spherical polystyrene colloid with various size distributions between -1000 nm and then electrospinning. The oxide precursor / polymer composite nanofibers were allowed to bind uniformly on and inside. In addition, micropore (0.1 nm-50 nm) and macropore (50) of the synthesized composite nanofibers are formed by sequentially decomposing the regenerative layer polymer and 'crystallizing and diffusing the metal oxide in the high temperature heat treatment process. nm-300 nm) and uniformly bound nanoparticle catalyst By forming a porous metal oxide nanotube structure, it is possible to synthesize a large amount of one-dimensional porous nanotube sensing material having a double pore distribution in which a specific surface area is large and nanoparticle catalysts are uniformly bound without a hole and maximize catalyst activity in a single process. It has features. Here, micropores with a size range of 0,1 nm-50 nm and macropores with a range of 50 nm-300 nm in the inner and outer walls of the nanotubes not only widen the specific surface area of the nanotubes but also serve as sensing materials. Maximize gas flow to improve detection. In particular, the number of "having, sensing material the developed micropores (0.1 nm-50 nm) that plays an important role the fine pores having a 0.1 nm-50 nm in size and range to detect VOCs gas effectively macropores ( Compared to 50 nm-300 nm), it has more than several times the distribution number, and it has excellent condition as a sensing material. In addition, the uniformly distributed nanoparticle catalysts on the inner and outer surfaces of the nano-lube and the surface exposed to the pores can maximize the effect of the catalyst when the gases react with the sensing material with a minimum amount of catalyst. Can be. A synergistic effect can be expected with the morphological concept of the nanotube structure including a large number of pores and the catalytic activity distributed evenly without aggregation, and it is the highest sensitivity gas sensor sensing material compared to the existing sensing materials. Characterized in that can be produced. In particular, despite the use of a regenerative layer polymer template of several hundred nanometers (nm) in size, the natural phenomena of the material can be used to produce micropores in the 0.1 nm-50 nm range and macropores in the 50 nm-300 nm size. Can be formed on. Efficient and easy to manufacture a gas sensor member having the above characteristics A process for implementing a gas sensor member, a gas sensor, and a manufacturing method thereof.
도 1은 본 발명의 일 실시예 2에 따른 나노입자 촉매 (110) 및 복수개의 미세기공 (121) 및 거대기공 (131)을 포함.하는 1차원 다공성 나노튜브 (100)를 이용한 가스센서용 부재의 모식도를 도시하고 있다. 아포페리틴 중공구조 내부에 포함되어 있는 나노입자 촉매 및 구 형태의 회생층 템플릿 콜로이드를 금속산화물 전구체 /고분자 흔합 방사용액에 첨가하여 제작된 전기방사용액을 전기방사하여 구 형태의 희생층 템플릿과 아포페리틴 속 나노입자 촉매가 균일하게 결착된 금속산화물 전구체 /고분자 복합 나노섬유를 합성한다. 상기와 같은 방법으로 형성된 복합 나노섬유를 고은 Ϊ처리를 통해서, 회생층 템플릿 및 아포페리틴 단백질 껍질이 제거뒤면서 0.1 nm-50 nm크기범위의 미세기공 및 50 nm-300 nm 크기의 거대기공을 형성시키고, 금속산화물 입자들이 섬유표면으로 모여들게 됨으로써 금속산화물 입자들이 거대기공을 채움으로써 미세기공을 형성시키고, 나노입자 촉매들 또한 표면으로 모여들어 튜브구조 내부와 외부에 균일하게 나노입자 촉매가 1착된 형태인 미세기공과 거대기공을 포함하는 1차원 다공성 나노튜브를 형성시킬 수 있는 것을 특징으로 한다.  1 is a nanoparticle catalyst 110 and a plurality of micropores 121 and a macropores 131 according to an embodiment 2 of the present invention. Gas sensor member using a one-dimensional porous nanotube 100 The schematic diagram of this is shown. Spherical sacrificial layer template and apoferritin by electrospinning the electrospinning solution prepared by adding nanoparticle catalyst and spherical regenerative layer template colloid to a metal oxide precursor / polymer mixed spinning solution A metal oxide precursor / polymer composite nanofiber in which the core nanoparticle catalyst is uniformly bound is synthesized. The composite nanofiber formed by the above method is subjected to a solid heat treatment to remove the regenerative layer template and the apoferritin protein shell and form micropores in the range of 0.1 nm-50 nm and macropores having a size of 50 nm-300 nm. As the metal oxide particles gather on the fiber surface, the metal oxide particles fill the micropores to form micropores, and the nanoparticle catalysts also gather on the surface to uniformly attach the nanoparticle catalyst inside and outside the tube structure. Characterized in that it can form a one-dimensional porous nanotubes including phosphorus micropores and macropores.
여기서 아포페리틴의 중공 구조 내부에 합성될 수 있는 금속들은 이온형태로 존재하는 형태이면 특별한 제약을 두지 않는다. 구체적으로, copper(II) nitrate, copper(II) chloride, cobalt(II) nitrate, cobalt(II) acetate, lanthanum(III) nitrate, lanthanum(III) acetate, platinum(IV) chloride, platinum(II) acetate, gold(I, III) chloride, gold(III) acetate, silver chloride, silver acetate, iron(III) chloride, iron(III) acetate, nickel(II) chloride, nickel(II) acetate, ruthenium(III) chloride, ruthenium acetate, iridium(III) chloride, iridium acetate, tantalum(V) chloride, palladium(II) chloride 등이 있으며 이러한 전구체를 이용하여 Pt, Pd, Rh, Ru, Ni, Co, Cr, Ir, Au, Ag, Zn, W, Sn, Sr, In, Pb, Fe, Cu, V, Ta, Sb, Sc, Ti, Mn, Ga, Ge 등의 입자 중에서 하나 내지는 둘 이상으로 구성되는 나노입자 촉매를 얼로이 (alloy) 형태로 합성할 수 있다. 얼로이 나노입자 촉매의 경우 금속-금속, 금속-금속산화물, 또는 금속산화물 -금속산화물 형태군에서 선정된 하나의 이종 나노입자촉매가사용 될 수 있다. 대표적인 금속 -금속산화물 나노촉매로는 Pt/Ir02, Pt/Ru02, Pt/Rh203, Pt/NiO, Pt/Co304, Pt/CuO, Pt/Ag20, Pt/Fe203, Au/Ir02, Au/Ru02, Au/Rh203, Au/NiO, Au/Co304, Au/CuO, Au/Ag20,등이 있으며, 금속- 금속 나노촉매로는 Pt-Au를 들 수 있으며, 금속산화물 -금속산화물 촉매의 경우는 n-type 금속산화물인 Ti02, ZnO, W03, Sn02, Ir02, In203, V203, Mo03및 p- type 금속산화물인 Ag20, PdO, Ru02, Rh203, NiO, Co304, CuO, Fe203, Fe304, V205, Cr203, ^에서 선택된 2가지 종으로 구성된 금속^화물 촉매일 수 있다. 이렇게 증공구조의 아포페리틴 템플릿을 이용하여 나노입자 촉매를 합성할 경우, 나노입자를 일정한 크기의 분포를 갖도록 합성할 수 '있을 뿐만 아니라, 금속 전구체의 양을 조절하여 나노입자 촉매의 크기를 조절할 수 있다. 또한, 나노입자 촉매들은 아포페리틴이라는 단백질 껍질에 둘러싸여 있는데, 아포페리틴 표면은 pH 7-8.5 부근에서 양전하를 띄므로 전기방사용액 내에서 서로 뭉치지 않고 잘 분산된다는 장점을 가지고 있다. 가스센서 감지소재 내에서 작용하는 나노입자 촉매들의 역할을 자세히 살펴보면, 금속산화물의 표면과 공기층 사이에서 산소분자의 분해반응을 촉진함으로써 표면 반웅에 참여하는 흡착산소이온의 농도를 증가시키는 화학적 증감효과 역할을 하는 백금 (Pt), 금 (Au) 같은 귀금속 종류의 나노입자 촉매가 있을 수 있고, 감지특성 향상에 영향을 주는 PdO, Co304, NiO, Cr203, CuO, Fe203, Fe304, Ti02, ZnO, Sn02, V205, V203 등과 같은 산화과정을 통해 촉매반응을 일으키는 전자적 증감 효과를 나타내는 나노입자 촉매가 있을 수 있다. Herein, metals that can be synthesized inside the hollow structure of apoferritin are not particularly limited as long as they exist in ionic form. Specifically, copper (II) nitrate, copper (II) chloride, cobalt (II) nitrate, cobalt (II) acetate, lanthanum (III) nitrate, lanthanum (III) acetate, platinum (IV) chloride, platinum (II) acetate , gold (I, III) chloride, gold (III) acetate, silver chloride, silver acetate, iron (III) chloride, iron (III) acetate, nickel (II) chloride, nickel (II) acetate, ruthenium (III) chloride, ruthenium acetate, iridium (III ) chloride, iridium acetate, tantalum (V) chloride, palladium (II) chloride, and Pt, Pd, Rh, Ru, Ni, Co, Cr, Ir, Au, Ag, Zn, W, Sn Nanoparticle catalyst composed of one or two or more of particles such as Sr, In, Pb, Fe, Cu, V, Ta, Sb, Sc, Ti, Mn, Ga, and Ge may be synthesized in an alloy form. Can be. In the case of the alloy nanoparticle catalyst, one heterogeneous nanoparticle catalyst selected from the metal-metal, metal-metal oxide, or metal oxide-metal oxide type group may be used. Representative metal-metal oxide nanocatalysts include Pt / Ir02, Pt / Ru02, Pt / Rh203, Pt / NiO, Pt / Co304, Pt / CuO, Pt / Ag20, Pt / Fe203, Au / Ir02, Au / Ru02, Au / Rh203, Au / NiO, Au / Co304, Au / CuO, Au / Ag20, etc., and metal-metal nanocatalysts include Pt-Au, and n-type for metal oxide-metal oxide catalysts. Metal oxides Ti02, ZnO, W03, Sn02, Ir02, In203, V203, Mo03 and p-type metal oxides Ag20, PdO, Ru02, Rh203, NiO, Co304, CuO, Fe203, Fe304, V205, Cr203, ^ It can be a metal-carbide catalyst consisting of two species. In the case of synthesizing the nanoparticle catalyst using the apoferritin template of the vaporization structure, the nanoparticles can be synthesized to have a uniform size distribution, and the size of the nanoparticle catalyst can be controlled by controlling the amount of the metal precursor. have. In addition, nanoparticle catalysts are surrounded by a protein shell called apoferritin. The surface of apoferritin is positively charged around pH 7-8.5, so it does not clump together in the electrospinning solution. It has the advantage of being distributed. Looking at the role of nanoparticle catalysts in gas sensor sensing materials in detail, the chemical sensitization effect increases the concentration of oxygen ions participating in the surface reaction by promoting the decomposition reaction of oxygen molecules between the surface of the metal oxide and the air layer. Nanoparticle catalysts such as noble metals such as platinum (Pt) and gold (Au) may be used, and PdO, Co304, NiO, Cr203, CuO, Fe203, Fe304, Ti02, ZnO, Sn02, There may be a nanoparticle catalyst that exhibits an electronic sensitizing effect that causes a catalytic reaction through oxidation such as V205, V203, and the like.
상기에서 설명한, 이중기공분포를 가지는 1차원 다공성 금속산화물을 합성하기 위해서 사용되는 구 형태의 회생층 템플릿의 경우 고은 열처리시 제거될 수 있는 템플릿을 뜻하며, 템플릿의 종류에는 특별한 제약을 두지 않는다. 구체적으로, 폴리메틸메타아크릴레이트 (PMMA), 폴리비닐피를리돈 (PVP), 폴리비닐아세테이트 (PVAc), 폴리비닐알콜 (PVA), 폴리스티렌 (PS) 및 폴리아크릴로니트릴 (PAN), 폴리비닐리덴 플투오라이드 (PVDF), 폴리아크릴에시드 (PAA), 폴리다이아닐다이메틸암모늄 클로라이드 (PDADMAC), 폴리스티렌설포네이트 (PSS) 중에서 선택된 1종 또는 2종 이상의 흔합볼이 될 수 있다. 또한, 회생층 템플릿은 50 nm-1 μιη 의 범위에서 크기를 가지며, 전기방사 용액과 함께 혼합 되었을 때, 분해되지 않고 분산되는 특징을 가지며, 회생층 콜로이드가 용매에 녹는 고분자라 할 지라도, 콜로이드 표면에 전하를 띄는 이은 혹은 전하를 띄는 이온 계면활성제 (anionic or cationic surfactants)를 형성시켜 용매에 녹지 않는고분자콜로이드가사용될 수 있다. As described above, in the case of a spherical regenerative layer template used for synthesizing a one-dimensional porous metal oxide having a double pore distribution, it means a template that can be removed during heat treatment, and the type of template is not particularly limited. Specifically, polymethyl methacrylate (PMMA), polyvinylpyridone (PVP), polyvinylacetate (PVAc), polyvinyl alcohol (PVA), polystyrene (PS) and polyacrylonitrile (PAN), polyvinyl It may be one, or two or more mixed balls selected from lithium denfluoride (PVDF), polyacrylic acid (PAA), polydianyldimethylammonium chloride (PDADMAC), polystyrenesulfonate (PSS). In addition, the regenerative layer template has a size in the range of 50 nm-1 μιη, and when mixed with the electrospinning solution, is characterized in that it does not decompose and is dispersed, even if the regenerative layer colloid is a polymer that is dissolved in a solvent, the colloid surface To form chargeable or charged ionic surfactants (anionic or cationic surfactants) Polymeric colloids that do not dissolve in solvents may be used.
상기에서 설명한 아포페리틴을 이용하여 합성한 나노입자 촉매와 구 형태의 회생층 템플릿을 전기방사 용액에 분산시켜 전기방사 기법을 이용하면 회생층 템플릿과 아포페리틴 증공구조 속 나노입자 촉매가 균일하게 분포하고 울통불통한 (rugged) 구조를 가지는 금속산화물 전구체 /고분자 복합 나노섬유를 제조할 수 있다. 이렇게 만들어진 복합 나노섬유는 고온 열처리를 통하여 회생층 고분자의 분해과정과 금속산화물의 결정화 및 확산과정이 순차적으로 일어나는 현상을 이용하여 미세기공 및 거대기공을 형성하고, 튜브생성시 나노입자 촉매의 확산현상을 통해 나노입자 촉매가 균일하게 결착된 1차원 다공성 나노튜브를 합성할 수 있다. 미세기공 및 거대기공을 갖고, 나노입자 촉매를 포함하는 1차원 다공성 나노튜브의 경우, 나노튜브 구조의 직경은 50 nm 에서 5 μηι 의 직경범위를 가지고 (외경이 50 nm 내지 2 nm 의 크기 범위에 포함되고, 내경이 40 nm 내지 1.95 iim의 크기 범위에 포함될 수 있음), 내벽과 외벽 사이의 두께 (껍질의 두께)는 10 nm 내지 50 nm 의 범위를 가지고, 길이는 1 nm 에서 100 urn 의 범위를 가지는 것을 특징으로 한다.  When the nanoparticle catalyst synthesized using the apoferritin described above and the spherical regenerative layer template are dispersed in the electrospinning solution and the electrospinning technique is used, the nanoparticle catalyst in the regenerative layer template and the apoferritin vapor deposition structure are uniformly distributed. And a metal oxide precursor / polymer composite nanofiber having a rugged structure can be prepared. The composite nanofibers thus formed form micropores and macropores by sequentially decomposing the regenerative layer polymer, crystallizing and diffusing the metal oxide through high temperature heat treatment, and diffusing phenomenon of the nanoparticle catalyst during tube formation. Through the nanoparticle catalyst it is possible to synthesize a uniform one-dimensional porous nanotubes. In the case of 1-dimensional porous nanotubes having micropores and macropores, and including nanoparticle catalysts, the diameters of the nanotube structures range from 50 nm to 5 μηι (with an outer diameter of 50 nm to 2 nm). Included, the inner diameter may be in the size range of 40 nm to 1.95 iim), the thickness between the inner wall and the outer wall (shell thickness) ranges from 10 nm to 50 nm, the length ranges from 1 nm to 100 urn Characterized in having a.
상기 나노 구조체를 구성하는 금속산화물 반도체 이중기공 분포를 가지는 1차원 다공성 나노튜브는 가스의 흡착 및 탈착에 의하여 전기저항 및 전기전도도의 값이 변화할 수 있다면 특별한 물질에 제약을 두지 않는다. 구체적으로는 ZnO, Sn02, W03, Fe203, Fe304, NiO, Ti02, CuO, In203, Zn2Sn04, Co304, PdO, LaCo03, NiCo204, Ca2Mn308, V205, Cr203, Nd203, Sm203, Eu203, Gd203, Tb407, Dy203, Ho203, Er203, Yb203, Lu203, Ag2V4011, Ag20, Li0.3La0.57TiO3, LiV308, InTa04, CaCu3Ti4012, Ag3P04, BaTi03, NiTi03, SrTi03, Sr2Nb207, Sr2Ta207, Ba0.5Sr0.5Co0.8Fe0.2O3-7 등에서 선택된 하나 또는 둘 이상의 복합 소재로 구성된 이중기공 분포를 가지는 1차원 다공성 나노튜브 일 수 있다. The one-dimensional porous nanotube having the metal oxide semiconductor double pore distribution constituting the nanostructure is not limited to a special material as long as the values of electrical resistance and conductivity can be changed by adsorption and desorption of gas. Specifically, ZnO, Sn02, W03, Fe203, Fe304, NiO, Ti02, CuO, In203, Zn2Sn04, Co304, PdO, LaCo03, NiCo204, Ca2Mn308, V205, Cr203, Nd203, Sm203, Eu203, Gd203, Tb407, Dy203, Ho203, Er203, Yb203, Lu203, Ag2V4011, Ag20, Li0.3La0.57TiO3, LiV308, InTa04, CaCu3Ti4012, Ag3P04, BaTi03, NiTi03, SrTi03, Sr2Nb207, Sr2Ta207, Ba0.5Sr0.5Co0.8Fe0.2 It may be a one-dimensional porous nanotube having a double pore distribution consisting of one or more composite materials selected from 7 and the like.
상기 제작된 나노입자 촉매 (110), 미세기공 (121)과 거대기공 (131)을 포함하는 이중기공분포를 가지는 1차원 다공성 금속산화물 나노튜브 (100)를 이용한 가스센서용 부재를 이용하여 인체 날숨 속에 생체지표로 작용하는 특정 샌체지표 가스를 선택적으로 감지함으로써 인체의 질병을 조기에 진단할 수 있으며, 유해 환경 가스들을 실시간 모니터링할 수 있는 환경센서로도 응용이 가능한 초고감도 /고선택성 센서를 구성할 수 있다. 특히, 나노튜브 표면에 기공을 형성함으로써 감지소재로의 기체유동을 극대화시킴으로써, 모든 구역의 감지소재가 효과적으로 가스에 반웅할 수 있는 최적의 구조를 형성하였다. 또한, 표면이 얇고 표면적이 증대된 다공성 튜브구조를 제작함으로써 소량의 촉매로도 감지소재의 센서특성을 최대화 시킬 수 있는 큰 장점을 가지고 있어, 다종의 가스 센서용 부재를 쉽고 빠르게 만들 수 있을 뿐만 아니라 저렴한 가격으로 대량생산할 수 있는 장점을 가지고 있다.  Human exhalation using a gas sensor member using the one-dimensional porous metal oxide nanotubes 100 having a double pore distribution including the prepared nanoparticle catalyst 110, micropores 121 and macropores 131 By selectively detecting specific sanche indicator gas that acts as a biomarker in the body, it is possible to diagnose human diseases early and make an ultra-sensitivity / high selectivity sensor that can be applied as an environmental sensor that can monitor harmful environmental gases in real time. can do. In particular, by maximizing the gas flow to the sensing material by forming pores on the surface of the nanotube, the sensing material of all zones formed an optimal structure that can effectively react to the gas. In addition, by making a porous tube structure with a thin surface and increasing surface area, it has a great advantage of maximizing sensor characteristics of a sensing material even with a small amount of catalyst, and it is possible to easily and quickly make various gas sensor members. It has the advantage of mass production at low price.
도 2 는 본 발명의 일 실시예에 따른 전기방사법을 통한 나노입자 촉매를 포함하고 다수의 기공을 포함하는 이중기공 분포를 가지는 1차원 다공성 금속산화물 반도체 나노튜브를 이용한 가스센서용 부재의 제조 방법의 순서도를 보여주고 있다. 도 2의 순서도에 따르면, 가스센서용 부재 제조방법은, 중공구조를 가지는 아포페리틴 템플릿을 이용하여 나노압자 촉매를 합성하는 단계 (S210 상기 합성된 나노입자 촉매와 구 형태의 희생층 템플릿을 금속산화물 전구체 /고분자 전기방사 용액에 교반시켜 흔합 전기방사 용액을 제조하는 단계 (S220), 전기방사를 통해 구 형태의 희생층 템플릿과 나노입자 촉매가 균일하게 분포하는 금속산화물 전구체 /고분자 복합 나노섬유를 합성하는 단계 (S230), 고온 열처리를 통하여 구형태의 고분자 회생층 템플릿을 분해시켜 거대기공 (50 nm-300 nm) 을 형성하고, 고분자 분해시기와 금속산화물 확산과정이 순차적으로 발생하는 것을 이용하여 미세기공 (0.1 nm-50 nm)을 형성시키는 단계 (S240)와지속적인 고온 열처리를 통해, 나노입자 촉매가 균일하게 기능화 되어있는, 미세기공 및 거대기공을 가지는 금속산화물 나노튜브를 합성하는 단계 (S250)로 구성되어 있다. 하기에서는 상기 각 단계에 대하여 보다상세히 설명한다. Figure 2 is a method of manufacturing a member for a gas sensor using a one-dimensional porous metal oxide semiconductor nanotubes having a double pore distribution comprising a nanoparticle catalyst and a plurality of pores through an electrospinning method according to an embodiment of the present invention Flowchart Is showing. According to the flow chart of Figure 2, the gas sensor member manufacturing method, using the apoferritin template having a hollow structure synthesizing a nano-indentation catalyst (S210 the synthesized nanoparticle catalyst and the spherical sacrificial layer template metal oxide Step (S220) to prepare a mixed electrospinning solution by stirring in the precursor / polymer electrospinning solution, the metal oxide precursor / polymer composite nanofibers in which the spherical sacrificial layer template and the nanoparticle catalyst is uniformly distributed through electrospinning Step (S230), by decomposing the spherical polymer regenerative layer template through the high temperature heat treatment to form a macropores (50 nm-300 nm), the polymer decomposition time and the metal oxide diffusion process is generated by using a fine Through the formation of pores (0.1 nm-50 nm) (S240) and continuous high temperature heat treatment, the nanoparticle catalyst is uniformly functionalized It is composed of the step (S250) of synthesizing the metal oxide nanotubes having micropores and macropores, each of the above steps will be described in more detail.
첫 번째로, 아포페리틴을 이용하여 나노입자 촉매를 합성하는 단계 (S210)를 살펴본다. 본 ᅵ단계 (S210)에서 사용되는 아포페리틴은 말 비장 (equine spleen)에서 추출된 페리틴을 포함하며, 사람 또는 돼지의 간이나 비장 등 추출 부위와 상관없이 얻어진 페리틴을 이용하여 내부에 존재하는 철 이은을 제거한 아포페리틴이 사용될 수 있다. 중공 구조를 가지고 있는 아포페리틴의 보관방법의 경우 염분 (saline) 용액을 포함하여, 여러 농도의 염화나트륨 (NaCl) 용액이 아포페리틴을 보관하는 용액으로 쓰일 수 있으며, 4 °C 이하의 넁장보관을 필요로 한다. 또한, 아포페리틴 내부에 금속염을 내장시키기 위해서는 pH 2-3 의 산성인 상태 또는 pH 7.5-8.5 범위 (또는 pH 7.5-9의 범위)의 염기성 용액상태가바람직하며 금속염이 아포페리틴 내부로 층분히 확산할 수 있도특 1시간에서, 24시간 정도 금속염이 녹아있는 용액 속에 아포페리틴을 담가둔다. 아포페리틴이 함유된 염분 용액 등보관용액의 농도는 0.1-200 mg/ml의 범위를 갖도록 한다. 금속 염 용액을 제조시, 사용되는 용매는 에탄을 (ethanol), 물 (water), 클로로포름 (chloroform), Ν,Ν'—디메틸포름아미드 (Ν,Ν'- dimethyiformamide), 디메틸술폭사이드 (dimethylsulfoxide), Ν,Ν'- 디메틸아세트아미드 (N,N'-dimethylacetamide), N-메틸피를리돈 (N- methylpyrrolidone) 등과 같은 상용성 용매를 사용할 수 있으며, 금속염이 용해가 되는 용액이라면 특정 용매에 제한을 두지 않는다. 아포페리틴 속 내장되는 나노입자촉매의 종류는 Pt, Pd, Rh, Ru, Ni, Co, Cr, Ir, Au, Ag, Zn, W, Sn, Sr, In, Pb, Fe, Cu, V, Ta, Sb, Sc, Ti, Mn, Ga, Ge등이 있으며, 이 중에서 하나내지는둘 이상으로 구성되는 나노입자 촉매를 얼로이 (alloy) 형태로 합성할 수 있다. 얼로이 나노입자 촉매의 경우 금속-금속, 금속-금속산화물, 또는 금속산화물 -금속산화물 형태군에서 선정된 하나의 이종 나노입자 촉매가사용 될 수 있다. 대표적인 금속- 금속산화물 나노촉매로는 Pt/Ir02, Pt/Ru02, Pt/Rh203, Pt/NiO, Pt/Co304, Pt/CuO, Pt/Ag20, Pt/Fe203, Au/Ir02, Au/Ru02, Au/Rh203, Au/NiO, Au/Co304, Au/CuO, Au/Ag20, 둥이 있으며, 금속 -금속 나노촉매로는 Pt-Au를 들 수 있으며, 금속산화물ᅳ금속산화물 촉매의 경우는 n-type 금속산화물인 Ti02, ZnO, W03, Sn02, Ir02, In203, V203, Mo03및 p-type 금속산화물인 Ag20, PdO, Ru02, Rh203, NiO, Co304, CuO, Fe203, Fe304, V205, Cr203, 중에서 선택된 2가지 종으로 구성된 금속산화물 촉매일 수 있다. 아포페리틴의 증공 구조 내부에 포함된 금속염을 환원시켜주는 역할을 하는 환원제로는 소듐 보로하이드라이드 (Sodium borohydride, NaBH4)를 포함하여 포름산 (formic acid, HCOOH), 옥살산 (oxalic acid: C2H204), 리튬 알루미늄 하이드라이드 (lithium aluminum hydride, LiAlH4) 등의 일반적으로사용하는 환원제가사용될 수 있으며, 금속염을환원시켜 금속 나노입자 촉매를 형성할 수 있는 환원제라면 특별한 제약 없이 사용될 수 있다. 환원제를 이용하여 아포페리틴 속의 금속염을 환원시킨 용액은 원심분리를 통하여 나노입자 촉매를 포함하는 아포페리틴 단백질을 걸러내게 되며 이때 사용되는 원심분리기의 희전속도는 10,000 rpm-13,000 rpm 정도가바람직하다. First, looks at the step (S210) of synthesizing the nanoparticle catalyst using apoferritin. The apoferritin used in the step (S210) includes ferritin extracted from the equine spleen, and iron contained in the interior using ferritin obtained regardless of the extraction site such as liver or spleen of human or pig. Apoferritin having been removed may be used. In the case of the storage method of apoferritin having a hollow structure, sodium chloride (NaCl) solution of various concentrations, including saline solution, can be used as a solution for storing apoferritin, and storage at 4 ° C or less is required. Shall be. In addition, in order to embed the metal salt inside the apoferritin acidic state of pH 2-3 or pH 7.5-8.5 A basic solution in the range (or pH 7.5-9) is preferred and the apoferritin is immersed in a solution in which the metal salt is dissolved for 1 hour to 24 hours, allowing the metal salt to diffuse deeply into the apoferritin. The concentration of the saline solution containing apoferritin should be in the range of 0.1-200 mg / ml. In preparing the metal salt solution, the solvent used is ethanol, water, chloroform, Ν, Ν'—dimethylformamide, dimethylsulfoxide Compatible solvents such as N, N'-dimethylacetamide, N-methylpyrrolidone, etc. Do not put The types of nanoparticle catalysts embedded in apoferritin are Pt, Pd, Rh, Ru, Ni, Co, Cr, Ir, Au, Ag, Zn, W, Sn, Sr, In, Pb, Fe, Cu, V, Ta , Sb, Sc, Ti, Mn, Ga, Ge and the like, one or more of these nanoparticle catalysts composed of two or more can be synthesized in the alloy (alloy) form. In the case of the alloy nanoparticle catalyst, one heterogeneous nanoparticle catalyst selected from the metal-metal, metal-metal oxide, or metal oxide-metal oxide type group may be used. Representative metal-metal oxide nanocatalysts include Pt / Ir02, Pt / Ru02, Pt / Rh203, Pt / NiO, Pt / Co304, Pt / CuO, Pt / Ag20, Pt / Fe203, Au / Ir02, Au / Ru02, Au / Rh203, Au / NiO, Au / Co304, Au / CuO, Au / Ag20, with rounds. Metal-metal nanocatalysts include Pt-Au, and metal oxide-metal oxide catalysts are n-type metals. Two selected from oxides Ti02, ZnO, W03, Sn02, Ir02, In203, V203, Mo03 and p-type metal oxides Ag20, PdO, Ru02, Rh203, NiO, Co304, CuO, Fe203, Fe304, V205, Cr203 It may be a metal oxide catalyst composed of species. Examples of the reducing agent which serves that by the reduction of the metal salt contained in the interior of the Apo ferritin Zeng Gong structures sodium borohydride (Sodium borohydride, NaBH4) and formic acid (formic acid, HCOOH), oxalic acid include (oxalic acid: C2H204), lithium A commonly used reducing agent such as aluminum aluminum hydride (LiAlH4) may be used, and any reducing agent capable of reducing a metal salt to form a metal nanoparticle catalyst may be used without particular limitation. The solution which reduced the metal salt in apoferritin using a reducing agent filters out the apoferritin protein including the nanoparticle catalyst through centrifugation, and the electrolysis rate of the centrifuge used here is preferably about 10,000 rpm-13,000 rpm.
다음으로, 상기 합성된 아포페리틴 중공 구조 속 내장되어 있는 나노입자 촉매와 구 형태의 회생층 템플릿을 포함하는 금속산화물 전구체 /고분자 흔합 방사용액을 제조하는 단계 (S220)에 대하여 살펴본다. 본 단계 (S220)에서는 상기에서 제작된 아포페리틴 증공구조 속 나노입자 촉매와 희생층 템플릿 콜로이드를 금속산화물 전구체 /고분자 흔합 방사용액에 첨가하여 나노입자 촉매 및 희생층 템플릿 콜로이드가 방사용액 속에 균일하게 분산되도록 교반시켜 주어 흔합 방사용액을 제조한다. 여기서, 방사용액 제조시에 사용되는 용매의 종류로는 Ν,Ν'- 디메틸포름아미드 (N,N'-dimethyIformamide), 디메틸술폭사이드 (dimethylsulf oxide), Ν,Ν'-디메틸아세트아미드 (N,N'-dimethylacetamide), N-메틸피를리돈 (N- methylpyrrolidone), 비이온수 (DI water), 에탄을 (Ethanol) 등과 같은 상용성 용매를 사용할 수 있지만 금속산화물 전구체와 고분자를 동시에 용해시킬 수 있는 용매를 선택하여야 한다. 또한 여기서 사용되는 고분자 및 회생층 템플릿은 고은 열처리시 제거가 되는 물질이라면 특정 물질쎄 제한을 두지 않으며, 대표적으로 폴리메틸메타아크릴레이트 (PMMA), 폴라비닐피를리돈 (PVP), 폴리비닐아세테이트 (PVAc), 폴리비닐알콜 (PVA), 폴리아크릴로니트릴 (PAN), 플리에틸렌 옥사이드 (polypropylene oxide, PEO), 풀리프로필렌옥사이드 (polypropylene oxide, PPO), 폴리에틸렌 옥사이드 공중합체, 폴리프로필렌옥사이드 공중합체, 폴리카보네이트 (polycarbonate, PC), 폴리염화비닐 (polyvinylchloride, PVC), 폴리카프로락톤 (polycaprolactone), 폴리비닐풀루오라이드 (polyvinylidene fluoride) 등과 같은고분자들이 있다. Next, the step (S220) of preparing a metal oxide precursor / polymer mixed spinning solution including the nanoparticle catalyst embedded in the synthesized apoferritin hollow structure and a spherical regenerative layer template will be described. In the step (S220), the nanoparticle catalyst and the sacrificial layer template colloid are added to the metal oxide precursor / polymer mixed spinning solution, and the nanoparticle catalyst and the sacrificial layer template colloid are uniformly dispersed in the spinning solution. Stir to disperse to prepare a mixed spinning solution. Herein, the solvents used in the preparation of the spinning solution include Ν, Ν'-dimethylformamide (N, N'-dimethyIformamide), dimethylsulfoxide, Ν, Ν'-dimethylacetamide (N, Compatible solvents such as N'-dimethylacetamide), N-methylpyrrolidone, DI water and Ethanol can be used, but they can dissolve metal oxide precursors and polymers at the same time. Solvent You must choose. In addition, the polymer and regenerative layer templates used herein do not have any particular limitations as long as they are removed during high heat treatment, and typically, polymethylmethacrylate (PMMA), polyvinylpyridone (PVP), and polyvinylacetate ( PVAc), polyvinyl alcohol (PVA), polyacrylonitrile (PAN), polypropylene oxide (PEO), polypropylene oxide (PPO), polyethylene oxide copolymer, polypropylene oxide copolymer, poly Polymers such as carbonate (PC), polyvinylchloride (PVC), polycaprolactone, polyvinylidene fluoride and the like.
추가적으로, 본 단계에서 사용되는 금속산화물 전구체는 용매에 용해되어야 하며 고온 열처리시, Sn02, W03, CuO, NiO, ZnO, Zn2Sn04, Co304, Cr203, LaCo03, V205, Ir02, Ti02, Er203, Tb203, Lu203, Ag20, SrTi03, Sr2Ta207, BaTi03, Ba0.5Sr0.5Co0.8Fe0.2O3-7 등과 같은 가스의 흡착 및 탈착시 저항변화가 생기는 반도체 금속산화물 나노섬유 내지는 나노튜브를 형성할 수 있는 금속염을 포함하는 전구체라면 특정한 금속염에 제한을두지 않는다. 一 방사용액을 형성하기 위한 금속산화물 전구체와 고분자의 중량 비율은 1:1ᅳ2 정도를 갖는 것이 바람직하며 고분자와 아포페리틴을 이용하여 합성된 나노입자 촉매와의 비율은 1:0.00001-0.1 정도가 바람직하고 1:0.000001-1 의 범위에 포함될 수 있다. 또한, 단계 (S220) 에서 사용되는 구 형태의 희생층 템플릿은 고분자 대비 중량비율 1: 1-2 정도가 바람직하고, 0.wt%-50 wt%의 범위에 포함될 수 있다. 또한, 단백질에 의해 둘러 쌓인 금속 나노입자 촉매의 중량비율은 금속산화물 전구체 /고분자 복합 나노섬유를 이루는 금속산화물 전구체 대비 0.001 wt 내지 50 ^%의 농도 범위에 포함될 수 있다. 50 nm-1 μπι 범위의 크기를 가지는 구 형태의 회생층 템플릿의 크기는 만들고자 하는 기공의 크기를 염두 하여 선정하는 것이 바람직하며, 아포페리틴 속 금속염의 종류는 감지하고자 하는 가스의 선택성을 고려하여 선정해주어 다양한 특성을가지는 가스센서용 부재를 제조할 수 있다. In addition, the metal oxide precursor used in this step must be dissolved in a solvent and upon high temperature heat treatment, Sn02, W03, CuO, NiO, ZnO, Zn2Sn04, Co304, Cr203, LaCo03, V205, Ir02, Ti02, Er203, Tb203, Lu203, If the precursor contains a metal salt capable of forming a semiconductor metal oxide nanofibers or nanotubes that may change resistance when adsorption and desorption of gases such as Ag20, SrTi03, Sr2Ta207, BaTi03, Ba0.5Sr0.5Co0.8Fe0.2O3-7, etc. There is no restriction on specific metal salts. The weight ratio of the metal oxide precursor to the polymer for forming the spinning solution is preferably 1: 1 ᅳ 2, and the ratio of the polymer and the nanoparticle catalyst synthesized using apoferritin is about 1: 0.00001-0.1. Preferred and may be included in the range of 1: 0.000001-1. In addition, the sacrificial layer template of the spherical form used in step (S220) is preferably a weight ratio of 1: 1 to about 1-2, and included in the range of 0.wt% -50 wt%. Can be. In addition, the weight ratio of the metal nanoparticle catalyst surrounded by the protein may be included in the concentration range of 0.001 wt to 50 ^% of the metal oxide precursor constituting the metal oxide precursor / polymer composite nanofibers. The size of the spherical regenerative layer template having a size in the range of 50 nm-1 μπι is preferably selected in consideration of the size of the pore to be made. By doing so, it is possible to manufacture a gas sensor member having various characteristics.
단계 (S220)에서 흔합 전기방사 용액을 제조하는 과정은 먼저, 금속산화물 전구체를 용매에 용해시켜 주고 미리 만들어진 나노입자 촉매를 포함하는 아포페리틴과 구 형태의 회생층 템플릿을 차례로 용액에 분산시켜 준다. 여기서 분산시키는 방법으로는 회전속도 500 rpm에서 1시간 이상 교반시키는 방법이 있다. 이렇게 제조된 용액에 전기방사가 용이하도록 일정점도를 부여해주기 위하여, 고분자를 알맞은 비율로 첨가하여 고분자가 용액에 모두 용해될 때까지 층분히 교반시켜 준다. 교반조건은 상온에서 50 °C 이하에서 교반시켜 주는 것이 바람직하고, 5시간에서 48 시간 내외로 하여 층분히 교반시켜 나노입자 촉매를 포함하는 아포페리틴과 회생층 템플릿 콜로이드가 금속산화물 전구체 및 고분자 용액 속에 균일하게 흔합되도록 한다.  In the step (S220), the process of preparing the mixed electrospinning solution first dissolves the metal oxide precursor in a solvent, and then disperses the apoferritin and the spherical regenerative layer template including the pre-made nanoparticle catalyst in the solution. As a method of dispersing here, there is a method of stirring for 1 hour or more at a rotational speed of 500 rpm. In order to give a constant viscosity to facilitate the electrospinning of the solution thus prepared, the polymer is added at an appropriate ratio and stirred until the polymer is completely dissolved in the solution. Stirring conditions are preferably stirred at 50 ° C or less at room temperature, agitated in 5 hours to 48 hours and then apoptotin and the regenerative layer template colloid containing a nanoparticle catalyst in the metal oxide precursor and polymer solution Ensure uniform mixing.
상기 준비된 전기방사용 흔합용액을 전기방사하여 구 형태의 회생층 템플릿과 아포페리틴 속 나노입자 촉매가 균일하게 분포하고 울퉁불퉁한 (rugged) 형태의 금속산화물 전구체 /고분자 복합 나노섬유를 제작하는 단계 (S230)를 수행한다. . Electrospinning the prepared electrospinning mixed solution to uniformly distribute the spherical regenerative layer template and the nanoparticle catalyst in the apoferritin and produce a rugged type metal oxide precursor / polymer composite nanofiber (S230) ) Perform. .
단계 (S230)을 수행하기 위하여 전기방사를 실시함에 있어, 상기 준비된 나노입자 촉매 및 구 형태의 회생층 템플릿을 포함하는 금속산화물 전구체 /고분자 흔합방사용액을 시린지 (syringe).에 채운 후, 시린지 펌프를 이용하여 일정한 속도로 시린지를 밀어줌으로써 일정한 양의 방사용액이 토출되도록 한다. 전기방사 시스템은 고전압기, 접지된 전도성 기판, 시린지, 시린지 노즐을 포함하여 구성될 수 있으며, 시린지에 채워진 용액과 전도성 기판 사이에 5 kV내지는 30 kV 내외로 고전압을 걸어주어 전기장이 형성뢰게 하며, 형성된 전기장으로 인해 시린지 노즐을 통해 토출되는 방사용액이 나노섬유 형태로 길게 뽑아져 나오도록 전기방사를 실행하여 준다. 길게 뿜어져 나오는 형태의 방사용액은 방사용액 속에 포함되어 있는 용매가 증발 및 휘발되면서 고체 형태의 고분자 섬유가 얻어짐과 동시에 그 안쪽에 금속산화물 전구체, 아포페리틴 속 나노입자 촉매 및 구 형태의 회생층 템플릿을 포함하는 복합 섬유가 제작되게 된다. 토출되는 속도는 0.01 ml/min 내지는 0.5 ml/min 내외로 조절 될 수 있으며 전압과 토출량의 조절을 통해서 원하는 직경을 갖고 을통불통한 구조를 가지는 금속산화물 전구체 /고분자 /나노입자 촉매 복합 나노섬유를 제작할 수 있다. In performing the electrospinning to perform the step (S230), the syringe (syringe) to the metal oxide precursor / polymer mixed spinning solution containing the prepared nanoparticle catalyst and the spherical regenerative layer template . After filling in, it pushes the syringe at a constant speed using a syringe pump to discharge a certain amount of spinning solution. The electrospinning system may include a high voltage device, a grounded conductive substrate, a syringe, and a syringe nozzle, and a high voltage is applied between 5 kV and 30 kV between the solution filled in the syringe and the conductive substrate to form an electric field. Due to the electric field formed, the spinning solution discharged through the syringe nozzle is elongated in the form of nanofibers. The spinning solution in the form of a long spout is obtained by evaporating and volatilizing the solvent contained in the spinning solution to obtain a solid polymer fiber, and at the same time, a metal oxide precursor, a nanoparticle catalyst in apoferritin, and a spherical regenerative layer. A composite fiber comprising a template is produced. The discharge rate can be adjusted to within 0.01 ml / min or 0.5 ml / min, and the metal oxide precursor / polymer / nanoparticle catalyst composite nanofibers having a desired diameter and an unstructured structure can be manufactured by controlling voltage and discharge amount. Can be.
단계 (S240)을 통해 상기 제작된 복합 나노섬유를 고온 열처리를 통해서 금속산화물 나노튜브 구조를 형성함과 동시에 금속산화물 나노튜브 표면에 미세기공과 거대기공들이 분포하고 이러한 나노튜브 구조쎄 나노입자 촉매들이 균일하게 분포하는 1차원 다공성 금속산화물 나노튜브를 제조할 수 '있다. 500- 800 °C 범위에서의 고온열처리를 통해서 회생층 템플릿으로 쓰였던 구 형태의 고분자 물질과 아포페리틴이 모두 제거되면서 거대기공 (50 nm-300 nm) 및 미세기공 (0.1 nm— 50 nm)을 형성하며, 고분자 분해 후 일어나는 금속산화물의 결정화 및 확산과정을 통해서 거대기공들의 일부를 채워줌으로써 나노튜브 표면에 복수개의 미세기공 (0.1 nmᅳ 50 nm)을 형성한다. Through the step (S240) to form a metal oxide nanotube structure through the high-temperature heat treatment of the produced composite nanofibers, at the same time micropores and macropores are distributed on the surface of the metal oxide nanotubes and these nanotube structure nanoparticle catalysts are uniform One-dimensional porous metal oxide nanotubes can be prepared ' . 500- The high-temperature heat treatment in the range of 800 ° C removes both spherical polymer and apoferritin used as a regenerative layer template, forming macropores (50 nm-300 nm) and micropores (0.1 nm-50 nm). Through the process of crystallization and diffusion of metal oxide that occurs after polymer decomposition, some micropores are filled to form a plurality of micropores (0.1 nm ᅳ 50 nm) on the surface of the nanotube.
추가적으로, 단계 (S250)을 통해 아포페리틴 속 나노입자 촉매는 아 i페리틴이 제거되면서 열처리 공정 증에 다공성 나노튜브 내벽과 외벽 그리고 내부에 균일하게 결착된다. 단계 (S250)을 통해서 최종적으로 형성된 구조는 나노입자 촉매가 튜브의 내벽과 외벽 및 내부에 균일하게 결착되어 있고, 복수개의 미세기공 및 거대기공을 가진 1차원 다공성 금속산화물 나노튜브구조이다.  In addition, in step S250, the nanoparticle catalyst in the apoferritin is uniformly bound to the inner and outer walls of the porous nanotubes and the inner wall during the heat treatment process while the aperitin is removed. The structure finally formed through the step (S250) is a nanoparticle catalyst is uniformly bound to the inner wall and outer wall and the inside of the tube, a one-dimensional porous metal oxide nanotube structure having a plurality of micropores and macropores.
도 3 은 본 발명의 일 실시예에 따른 전기방사법을 이용한 나노입자 촉매를 포함하고 이중기공 분포를 "가지는 1차원 다공성 금속산화물 나노튜브를 이용한 가스센서용 부재의 제조방법에 따른 제조 공정 순서를 개략적으로 도시하고 있다. 제 1과정인 단계 (S310)는 상기 제작된 구형의 회생층 템플릿과 아포페리틴 속 나노입자 촉매가 균일하게 결착된 금속산화물 전구체 /고분자 복합 나노섬유를 고온 열처리 중간과정을 나타낸 공정으로써, 구 형의 회생층 템플릿과 아포페리틴이 제거되면서 다양한 크기의 기공을 형성함과 동시에 오스트 왈드 라이프닝 현상을 통해서 금속산화물 튜브가 만들어지는 중간과정을 보여주는 단계이다. 3 schematically a manufacturing process flow according to the production method of the present invention an exemplary member for a gas sensor for example comprises a nanoparticle catalyst using the electrospinning process in accordance with and using the one-dimensional porous metal oxide nanotubes, a double pore distribution "has the The first step (S310) is a process showing an intermediate process of high-temperature heat treatment of the metal oxide precursor / polymer composite nanofibers in which the spherical regenerative layer template and the nanoparticle catalyst in apoferritin are uniformly bound. As a result, the spherical regenerative layer template and apoferritin are removed to form pores of various sizes, and at the same time, an intermediate process of forming a metal oxide tube through Ost Wald life phenomenon is shown.
제 2 과정인 단계 (S320)는 최종 고은 열처리 이후에 모든 구 형태의 회생층 템플릿, 아포페리틴 및 복합섬유 내에 고분자 매트릭스가 제거되고 금속산화물의 결정화 및 확산이 일어나면서 최종적으로 미세기공 및 거대기공들이 나노튜브 내벽과 외벽에 다수 존재하며, 나노입자 촉매들이 모두 확산이 일어나 나노튜브 걸면과 내부에 균일하게 결착된 이중 기공분포를 가지는 1차원 다공성 금속산화물 나노튜브가 합성되게 된다. Step S320, which is the second process, removes the polymer matrix from all the spherical regenerative layer templates, the apoferritin and the composite fiber after the final silver heat treatment, As crystallization and diffusion occur, finally, a large number of micropores and macropores exist in the inner and outer walls of the nanotubes, and the nanoparticle catalysts all diffuse, resulting in a one-dimensional porosity having a double pore distribution uniformly bound to the nanotubes. Metal oxide nanotubes are synthesized.
도 4 는 고온 열처리 과정 중에 나노튜브 표면에 형성되는 복수개의 미세기공 및 ,거대기공의 형성 메커니즘을 설명하고 있다. 구체적으로, 고온 열처리 과정 중에 회생층 폴리스티렌 템플릿이 분해되고 거대기공을 형성하며, 이후에 금속산화물이 결정화 및 확산이 일어나 거대기공을 채움으로써 미세기공들이 생성된다. , 4 illustrates a mechanism of forming a plurality of micropores and macropores formed on a surface of a nanotube during a high temperature heat treatment process. Specifically, during the high temperature heat treatment process, the regenerative layer polystyrene template is decomposed and forms macropores, after which the metal oxide crystallizes and diffuses to fill the micropores, thereby forming micropores. ,
도 5 는 나노섬유에 분포된 폴리스티렌 템플릿 사이에 모여있는 12 nm 크기의 단백질 '템풀릿이 밀집되어 있고, 밀집되어있는 단백질 템플릿이 고온열처리 과정에서 분해되면서 미세기공을 형성하는데 기여를 하는 과정에 대해서 설명하고 있다. 여기서 분산이 뛰어난 단백질 템플릿은 폴리스티렌 템플릿 사이의 좁은 공간에 밀집될 수 있다. Figure 5 and a polystyrene-protein "system pulrit of 12 nm size, which together between templates distributed on nanofibers are concentrated, while the protein templates dense decomposition at a high temperature heat treatment with respect to the process of the contribution in forming the fine pores Explaining. Here, the protein template with excellent dispersion may be concentrated in a narrow space between the polystyrene templates.
상가와 같이, 본 발명의 실시예들에 따른 회생층 템플릿 전기방사기법과 금속산화물 및 고분자 템플릿의 분해시간 차이를 이용한 나노입자 촉매를 포함하고 미세기공 및 거대기공을 다수 포함하는 1차원 다공성 금속산화물 나노튜브를 이용한 가스센서 부재의 제작방법은 가스와의 반웅 표면적이 넓은 1차원 나노튜브 구조를 형성함과 동시에 기공을 형성함으로써 감지소재 내에서의 기체의 유등을 극대화시켜 가스감지 효과를 향상시키고, 기존의 촉매와는 달리 단백질의 특성을 이용하여 균일하게 분산된 화학적 /전자적 증감 효과를 가지는 촉매를 결착시킴으로써 가스센서의 반웅속도 특성, 감도특성, 그리고 선택성을 크게 개선할 수 있다. Like a mall, a one-dimensional porous metal oxide nano including a plurality of micropores and macropores including a nanoparticle catalyst using a regenerative layer template electrospinning technique and a decomposition time difference between a metal oxide and a polymer template according to embodiments of the present invention. The method of manufacturing a gas sensor member using a tube forms a one-dimensional nanotube structure with a large reaction surface area with gas and simultaneously forms pores to maximize gas flow in the sensing material, thereby improving gas sensing effect. Unlike the catalyst of the protein properties By binding a catalyst having a uniformly dispersed chemical / electronic sensitization effect, the reaction sensor's reaction velocity, sensitivity, and selectivity can be greatly improved.
하기에서는 실시예 및 비교예를 통하여 본 발명을 상세히 설명한다. 실시예 및 비교예는 단지 본 발명을 설명하기 위한 것이며, 본 발명이 하기 예에 제한되어있는 것은 아니다.  Hereinafter, the present invention will be described in detail through Examples and Comparative Examples. The examples and comparative examples are only for illustrating the present invention, and the present invention is not limited to the following examples.
실시예 1: 아포페리틴을 템풀릿으로 이용한 Pt 나노입자촉매 제조  Example 1 Preparation of Pt Nanoparticle Catalyst Using Apoferritin as Template
중공구조를 가지고 있는 아포페리틴 내부에 3 nm 이하의 Pt 나노입자 촉매를 합성하기 위하여 하기와 같은 합성 과정을 거친다.  In order to synthesize Pt nanoparticle catalyst of 3 nm or less inside apoferritin having a hollow structure, the following synthesis process is carried out.
아포페리틴 용액 (Sigma Aldrich)은 35 mg/ml 의 농도로 0.15 M NaCl 수용액에 분산되어 있다. 상기와 같은 아포페리틴 용액에 NaOH 같은 염기성 수용액을 첨가하여 pH를 8.5 정도로 맞추어 Pt 금속이온들이 아포페리틴 내부로 확산할 수 있는 최적의 조건을 만들어 준다. 여기서 사용되는 염기성 용액은 NaOH 이외에도 염기성을 띄는 수용액이라면 큰 제한을 두지 않는다. 아포페리틴 내부로 들어가는 Pt 금속이온의 전구체는 H2PtC16'H20 이며, H2PtC16*H20 16 mg을 1 g의 DI water에 용해시켜 수용액 형태로 제작한다. 여기서 제작된 금속염 전구체 수용액을 pH가 조절된 아포페리틴 용액에 스포이드를 이용하여 한 방울씩 천천히 떨어뜨려 흔합한다. 흔합 용액은 Pt 금속이은들이 중공구조의 아포페리틴 내부로 확산되어 들어가도록 1시간 동안 교반시켜 준다. 상기에서 언급된 교반조건은 100 rpm 회전수로 약 1 시간, 상온에서 진행하는 것을 뜻한다. 충분히 교반을 거친 뒤,  Apoferritin solution (Sigma Aldrich) is dispersed in 0.15 M NaCl aqueous solution at a concentration of 35 mg / ml. By adding a basic aqueous solution such as NaOH to the apoferritin solution as described above, the pH is adjusted to about 8.5 to make optimum conditions for Pt metal ions to diffuse into the apoferritin. The basic solution used herein is not particularly limited as long as it is an aqueous solution having basicity in addition to NaOH. The precursor of Pt metal ion entering apoferritin is H2PtC16'H20, and 16 mg of H2PtC16 * H20 is dissolved in 1 g of DI water to prepare an aqueous solution. The aqueous metal salt precursor solution prepared here is slowly dropped drop by drop using a dropper to the pH-controlled apoferritin solution. The mixed solution is stirred for 1 hour to allow the Pt metal silvers to diffuse into the hollow apoferritin. As mentioned above, the stirring condition means to proceed at room temperature for about 1 hour at 100 rpm. After sufficient stirring,
r 환원제를 아용하여 아포페리틴 내부에 존재하는 금속이온들을 환원시켜 Pt 나노입자 촉매들이 아포페리틴 내부에서 합성될 수 있도록 한다. 여기서 사용되는 환원제로는 대표적으로, NaBH4 수용액이 있다. 이때, 사용되는 환원제 NaBH4는 40 mM 동도로 수용액 형태로 만든 뒤 0.5 ml를 첨가하여 준다. r The reducing agent is used to reduce the metal ions present in the apoferritin so that Pt nanoparticle catalysts can be synthesized inside the apoferritin. Reducing agents used herein typically include aqueous NaBH 4 solution. At this time, the reducing agent used NaBH4 in the form of an aqueous solution at 40 mM dong and add 0.5 ml.
상기와 같은 방법으로 합성된 아포페리틴 중공구조 내부에 존재하는 Pt 나노입자 촉매들이 분산된 수용액은 환원제 및 금속염의 리간드들이 많이 함유되어 있기 때문에, 원심분리기를 통하여 합성된 Pt 나노입자 촉매만을 추출해야 한다. 이때, 원심분리기의 조건은 12,000 rpm 정도가 바람직하며 10분 이상 원심분리를 해주는 것아 바람직하다. 원심분리를 이용하여 추출된 아포페리틴 속 Pt 나노입자 촉매들은 DI water에 분산시켜 주면, 최종적으로 아포페리틴 내부에 Pt 나노입자가 분산된 형태로 있는 수용액을 제조할 수 있다. . Since the aqueous solution in which the Pt nanoparticle catalysts present in the apoferritin hollow structure synthesized as described above contains many reducing agents and ligands of metal salts, only the Pt nanoparticle catalyst synthesized through the centrifuge should be extracted. . At this time, the condition of the centrifuge is preferably about 12,000 rpm and preferably centrifuged for at least 10 minutes. If the Pt nanoparticle catalysts in apoferritin extracted by centrifugation are dispersed in DI water, an aqueous solution in which Pt nanoparticles are dispersed in apoferritin can be prepared. .
도 7(a)와 도 7(b)는 상기의 과정을 통해서 합성된 Pt 나노입자 촉매를 포함하는 아포페리틴의 투과전자 현미경 (TEM) 사진, 도 7(c)은 표면전하 상태 및 도 7(d)는 크기 분포를 나타내고 있다. 투과전자 현미경 사진을 통해서 Pt 나노입자들이 잘 분산되어 있음을 확인할 수 있고, 이는 단백질 껍질의 표면이 양의전하 (+ )를 띄어 서로간의 반발력에 의한 분산효과라고 설명할 수 있다. 또한, 나노입자 촉매들이 1— 3 nm의 직경분포를 가지고 있음을 확인할 수 있다.  7 (a) and 7 (b) are transmission electron microscopy (TEM) photographs of apoferritin containing Pt nanoparticle catalyst synthesized through the above process, and FIG. 7 (c) is a surface charge state and FIG. 7 ( d) shows the size distribution. Transmission electron micrographs confirm that the Pt nanoparticles are well dispersed, which can be explained by the positive effect of the surface of the protein shell on the surface of the protein shell. In addition, it can be seen that the nanoparticle catalysts have a diameter distribution of 1 to 3 nm.
실시예 2: Pt 나노입자 촉매가 튜브의 내벽과 외벽에 균일하게 결착되어있고 미세기공 및 거대기공 분포를 가지는 1차원 다공성 주석 산화물 (Sn02) 나노튜브 (100) 구조 제작 우선적 ^로, 금속산화물 전구체인 틴 클로라이드 다이하이드레이트 (tin chloride dehydrate) 0.25 g을 DMF 1.35 g, 에탄을 1.35 g 흔합 용매에 첨가하여 상온에서 용해시킨다.' 다음으로, 도 6에 나타낸 것과 같은 희생층 템플릿 역할을 하는 구 형태의 폴리스티렌 (직경 200 nm) 콜로이드 0.3 g을 금속염 전구체가 녹아있는 용액에 첨가하여 층분히 분산시켜 준다. 본 실시예 2에서 사용된 폴리스티렌 콜로이드는 음이온 계면활성제가 표면에 형성되어 있어, 분산성이 뛰어나며, 용매인 DMF에 녹지 않^ 것이 특징이며, 후에 열처리 과정에서 제거되어 거대 기공을 형성 할 수 있게 된다. 본 실시예 2에서는 200 nm 크기의 폴리스티렌 고분자 비드를 콜로이드 템플릿으로 사용하였지만, 고분자 템플릿의 종류에는 특별한 제약을 두지 않는다. 구체적으로,、 폴리메틸메타아크릴레이트 (PMMA), 폴리비닐피를리돈 (PVP), 폴리비닐아세테이트 (PVAc), 폴리비닐알콜 (PVA), 폴리스티렌 (PS) 및 폴리아크릴로니트릴 (PAN), 폴리비닐리덴 플루오라이드 (PVDF), 폴리아크릴에시드 (PAA), 폴리다이아닐다이메틸암모늄 클로라이드 (PDADMAC), 폴리스티렌설포네이트 (PSS) 중에서 선택된 1종 또는 2종 이상의 흔합물이 될 수 있다. 또한, 희생층 템플릿은 50 nm-1 μπι 의 범위에서 크기를 가지며, 전기방사 용액과 함께 흔합 되었을 때, 분해되지 않고 분산되는 특징을 가지며, 회생층 콜로이드가 용매에 녹는 고분자라 할 지라도, 콜로이드 표면에 전하를 띄는 이온- 혹은 전하를 띄는 이은 계면활성제 (anionic or cationic surfactants)를 형성시켜 용매에 녹지 않는 고분자 콜로이드가 사용할 수 있다. 폴리스티렌 콜로이드 템플릿의 분산조건은 회전수 500ᅳ rpm 에서 10 훈정도 교반시키는 것을 의미하며, 상기에서 사용된 폴리스티렌의 직경은 200 nm 로 제한되지 않으며, 다양한 직경을 가지는 폴리스티렌 콜로이드 용액을 사용할 수 있다. 추가적으로, 상기 실시예 1에서 합성된 Pt 나노입자 촉매 수용액 200 mg을 흔합용액 (폴리스티렌 콜로이드 + 금속염 + 흔합용매) 에 첨가하여 주어 흔합시킨다. 이렇게 합성된 구 형태의 폴리스티렌 고분자와 아포페리틴 속 나노입자 촉매들이 균일하게 흔합된 용액에 점도를 높여주기 위하여 분자량 1,300,000 g/mol을 가지는 폴리비닐피를리돈 (Polyvinylpyrrolidone, PVP) 고분자를 0.35 g 첨가하여 상온에서 24시간 동안 500 rpm의 회전수로 교반하여 방사용액을 제조한다. 제조된 전기방사 용액은 시린지 (Henke-Sass Wolf, 10 mL )RM— JECT®)에 담아주고 실리지 펌프에 연결하여, 0.1- ml/min 토출 속도로 전기방사 용액을 밀어내어 주고, 방사과정에서 사용되는 노즐 (needle, 25 gauge)과 나노섬유가 모이는 집전체 사이의 전압을 14 kV로 하여 전기방사를 진행한다. 이때, 나노섬유의 집전판으로는 스테인렌스 스틸판을 사용하였고, 노즐과 집전체 사이의ᅳ 거리는 26 cm 로 설정하였다. Example 2 Fabrication of 1-D Porous Tin Oxide (Sn02) Nanotubes 100 with Pt Nanoparticle Catalyst Uniformly Bonded to the Inner and Outer Walls of the Tube and with Micropore and Macropore Distributions First of all, 0.25 g of metal chloride precursor tin chloride dehydrate is added to 1.35 g of DMF and 1.35 g of a mixed solvent to dissolve at room temperature. ' Next, 0.3 g of a spherical polystyrene (diameter 200 nm) colloid serving as a sacrificial layer template as shown in FIG. 6 is added to the solution in which the metal salt precursor is dissolved, and is dispersed. The polystyrene colloid used in Example 2 has an anionic surfactant formed on the surface, has excellent dispersibility, and is insoluble in DMF, which is a solvent, and is subsequently removed during heat treatment to form large pores. . In Example 2, a polystyrene polymer bead having a size of 200 nm was used as a colloidal template, but the type of the polymer template is not particularly limited. Specifically, polymethyl methacrylate (PMMA), polyvinylpyridone (PVP), polyvinylacetate (PVAc), polyvinyl alcohol (PVA), polystyrene (PS) and polyacrylonitrile (PAN), poly One or two or more mixtures selected from vinylidene fluoride (PVDF), polyacrylic acid (PAA), polydianyldimethylammonium chloride (PDADMAC), polystyrenesulfonate (PSS). In addition, the sacrificial layer template has a size in the range of 50 nm-1 μπι, and when mixed with an electrospinning solution, has a characteristic of being dispersed without disassembly, even if the regenerative layer colloid is a polymer that is soluble in a solvent, the colloid surface Polymeric colloids that do not dissolve in solvents can form anionic or cationic surfactants that charge on them. Dispersion condition of the polystyrene colloidal template means to stir about 10 hun at 500 rpm rpm, The diameter of the polystyrene used above is not limited to 200 nm, it is possible to use a polystyrene colloidal solution having a variety of diameters. In addition, 200 mg of the Pt nanoparticle catalyst aqueous solution synthesized in Example 1 was added to a mixed solution (polystyrene colloid + metal salt + mixed solvent) and mixed. 0.35 g of polyvinylpyrrolidone (PVP) polymer having a molecular weight of 1,300,000 g / mol was added to increase the viscosity in a homogeneously mixed solution of the spherical polystyrene polymer and the nanoparticle catalysts in the apoferritin thus synthesized. A spinning solution is prepared by stirring at a rotational speed of 500 rpm for 24 hours at room temperature. The prepared electrospinning solution is placed in a syringe (Henke-Sass Wolf, 10 mL) RM— JECT®), connected to a silage pump, pushes out the electrospinning solution at a 0.1-ml / min discharge rate, and is used in the spinning process. Electrospinning is carried out with a voltage of 14 kV between the nozzle (needle, 25 gauge) and the current collector where the nanofibers collect. At this time, a stainless steel plate was used as the current collector plate of the nanofiber, and the distance between the nozzle and the current collector was set to 26 cm.
도 8은 전기방사 과정 이후 얻어진 금속산화물 전구체, 폴리비닐피를리돈 고분자,. 구 형태의 폴리스티렌 회생층 템플릿 및 아포페리틴 중공 구조 속 Pt 나노입자 촉매를 포함하는 복할 나노섬유의 주사전자현미경 사진이다. 1차원의 나노섬유가 형성됨을 확인할 수 있으며, 구 형태의 폴리스티렌이 포함되어 나노섬유의 구조가 울퉁불통한 구조를 가짐을 확인하였다. 합성된 나노섬유의 직경은 200 nm-300 nm사이의 값을 가지고 있다. 상기와 -같은 방법으로 제조된 금속산화물 전구체, 폴리비닐피를리돈 고분자, 구 형태의 폴리스티렌 회생층 템플릿 및 아포페리틴 중공 구조 속 Pt 나노입자 촉매를 포함하는 복합 나노섬유는 600 °C 에서 1 시간 동안 유지 시켜주었고, 40 °C/min 의 온도 하강 속도로 상온까지 넁각 시켰다. 열처리는 Ney사의 Vulcan 3-550 소형 전기로를 이용하여 공기 분위기에서 열처리를 진행하였다. 열처리 과정을 통하여 나노입자 촉매를 감싸고 있던 아포페리틴 단백질과 고분자들은 모두 분해된다. 또한, 공기분위기에서 열처리를 하였기 때문에 나노섬유 표면의 금속산화물 금속염 전구체가 우선적으로 금속산화물 입자로 핵 생성과 입자성장 과정을 거치면서 산화되고 오스트왈드 라이프닝 현상을 통하여 나노섬유 내부에 있던 금속염 전구체들도 산화가 되면서 나노섬유 표면으로 확산하게 되어 나노튜브를 .형성하며, 동시에 폴리스티렌 템플릿이 열처리를 통해 제거되고, 금속산화물이 확산과정을 통해 거대기공을 부분적으로 채워짐으로써 나노류브 표면에 미세기공 및 거대기공을 형성하게 된다. 또한 Pt 나노입자 촉매 또한 매우 작은 크기를 가지고 있기 때문에 나노류브 표면으로 주석산화물 입자들과 함께 확신:해 나감으로써 주석산화물 나노튜브 내벽과 외벽에 균일하게 결착된다. 결과적으로 주석산화물 나노튜브 구조 표면에 다수의 기공이 분포하고 R 나노입자 촉매들이 균일하게 분포하는 1차원 다공성 나노튜브 구조를 형성하게 된다. 8 is a metal oxide precursor obtained after the electrospinning process, polyvinylpyridone polymer ,. Scanning electron micrographs of complex nanofibers comprising a spherical polystyrene regenerative layer template and a Pt nanoparticle catalyst in apoferritin hollow structure. It can be confirmed that one-dimensional nanofibers are formed, and the structure of the nanofibers has a rugged structure by including polystyrene in the form of a sphere. The diameter of the synthesized nanofibers has a value between 200 nm and 300 nm. The composite nanofibers including the metal oxide precursor prepared by the same method, the polyvinylpyridone polymer, the spherical polystyrene regenerative layer template, and the Pt nanoparticle catalyst in the apoferritin hollow structure were used at 600 ° C for 1 hour. It was maintained and cooled down to room temperature at a rate of temperature drop of 40 ° C / min. The heat treatment was performed in an air atmosphere using Ney's Vulcan 3-550 small electric furnace. The heat treatment process decomposes the apoferritin protein and the polymer that surrounds the nanoparticle catalyst. In addition, because the metal oxide metal salt precursor on the surface of the nanofiber is first oxidized through nucleation and particle growth process through the process of heat treatment in the air atmosphere, the metal salt precursors inside the nanofiber through the Ostwald life phenomenon. As it is oxidized, it diffuses to the surface of the nanofibers to form nanotubes, and at the same time, the polystyrene template is removed by heat treatment, and the metal oxide is partially filled with the macropores through the diffusion process, so that the micropores and macropores on the surface of the nano-leave are large. It will form pores. The Pt nanoparticle catalyst also has a very small size, which ensures that the tin oxide particles with the tin oxide surface are uniformly bound to the inner and outer walls of the tin oxide nanotubes. As a result, a large number of pores are distributed on the surface of the tin oxide nanotube structure and a one-dimensional porous nanotube structure in which the R nanoparticle catalysts are uniformly distributed is formed.
도 9(a)와 도 9(b)는 실시예 1에서 합성된 Pt 나노입자 촉매를 포함하고 이중 표면 기공분포를 가지는 1차원 다공성 주석산화물 나노튜브의 주사전자현미경 사진을 보여주고 있다. 형성된 나노튜브의 직경은 50 nm-5 μπι 정도의 크기를 가지며 튜브의 외벽과 내벽 사이의 두께는 10-50 nm 범위의 두께를 가진다. 또한, 나노튜브 표면에 형성된 미세기공의 크기는 0.1-50 nm 범위를 가지며 거대기공은 5으 300 nm크기를 가지고 있다. 9 (a) and 9 (b) show scanning electron micrographs of the one-dimensional porous tin oxide nanotubes including the Pt nanoparticle catalyst synthesized in Example 1 and having a double surface pore distribution. The diameter of the formed nanotube is about 50 nm-5 μπι And the thickness between the outer and inner walls of the tube has a thickness in the range of 10-50 nm. In addition, the size of the micropores formed on the surface of the nanotubes has a range of 0.1-50 nm and the macropores have a size of 5 to 300 nm.
도 10(a-c) 는.실시예 1에서 합성된 R 나노입자 촉매를 포함하고 이중 표면 기공분포를 가지는 1차원 다공성 주석산화물 나노튜브의 투과전자 현미경 사진을 보여주고 있다. 고배율의 투과전자현미경 분석을 통해서 Pt 나노입자 촉매들이 1차원 다공성 주석산화물 나노튜브 내에 존재함을 보여주고 있으며, 도 10(d)의 SAED(Selected Area Electron Diffraction) 패턴을 통해 Pt 입자들이 1차원 다공성 주석산화물 나노튜브 내에서 결정성을 가지고 있음을 확인할 수 있다. 또한, 투과전자 현미경 사진을 통해서 주석산화물 나노튜브 표면에 5-150 nm 사이의 크기를 가지는 다양한 기공들이 분포함을 확인할 수 있다. 추가적으로, 도 10(e)의 TEM 분석을 통한 성분분석 (EDS) 사진을 통해 형성된 주석산화물 나노튜브 구조 안에 Pt 나노입자 촉매들이 균일하게 분포되어 있음을 확인할 수 있다.  Figure 10 (a-c) shows a transmission electron micrograph of the one-dimensional porous tin oxide nanotubes containing the R nanoparticle catalyst synthesized in Example 1 and having a double surface pore distribution. High-throughput transmission electron microscopy analysis showed that Pt nanoparticle catalysts exist in one-dimensional porous tin oxide nanotubes, and Pt particles were selected in one-dimensional porosity through the SAED (Selected Area Electron Diffraction) pattern of FIG. It can be seen that the tin oxide nanotubes have crystallinity. In addition, it can be seen from the transmission electron micrograph that various pores having a size of between 5-150 nm are distributed on the surface of the tin oxide nanotubes. In addition, it can be seen that Pt nanoparticle catalysts are uniformly distributed in the tin oxide nanotube structure formed through the TEM analysis (EDS) photograph of FIG. 10 (e).
도 11(a) 와 도 11(b)는 합성된 Pt 나노입자 촉매를 포함하고 거대 및 미세기공 분포를 가지는 1차원 다공성 주석산화물 나노류브의 열중량분석 (TGA)과 광전자분광기 분석 (XPS)분석을 각각 나타내고 있다. 열중량 분석 (TGA)을 통해서는 300 °C 부근에서 희생층 템플릿 고분자가 제거되면서 거대기공 (5으 300 nm) 을 형상함을 확인할 수 있었고, 400 °C 이상 부근에서 순차적으로 금속산화물의 결정화 및 확산이 일어나면서, 거대기공을 막아줌으로써 미세기공 (0.1-50 nm) 을 형성함을 알 수 있다. 광전자분광기 분석 (XPS)을 통해서 R 나노입자들이 산화된 상태인 PtO 와 Pt 금속형태가공존함을 확인할 수 있었다. 11 (a) and 11 (b) are thermogravimetric (TGA) and photoelectron spectroscopic (XPS) analyzes of one-dimensional porous tin oxide nanolevers containing synthesized Pt nanoparticle catalysts and having large and microporous distributions. Are shown respectively. Through thermogravimetric analysis (TGA), it was confirmed that the sacrificial layer template polymer was removed at around 300 ° C, forming the macropores (5 to 300 nm). As diffusion occurs, it can be seen that the micropores (0.1-50 nm) are formed by blocking the macropores. Photon spectroscopy (XPS) showed that R nanoparticles were oxidized It was confirmed that PtO and Pt metal form coexist.
비교예 1. 나노입자촉매를 포함하지 않은 순수한주석산화물 나노튜브 제작 상기 실시예 2와 비교꾀는 비교예 1은 Pt 나노입자ᅳ촉매를 포함하지 않으며 원 내지 타원 형태의 기공을 포함하지 않는 순수한 주석산화물 나노튜브 합성에 관한 것이다. 구체적으로, 주석산화물 전구체인 틴 클로라이드 디하이드레이트 (tin chloride dehydrate) 0.25 g을 흔합용매 (DMF 1.35 g + 에탄을 1.35 g)에 용해시키고 흔합용액의 점도를 부가하기 위하여 중량평균 1,300,000 g/mol을 가지는 폴리비닐피를리돈 (Polyvinylpyrrolidone, PVP) 0.35 g을 첨가하여 층분히 교반시켜준다. 여기서 언급한 교반조건은 회전속도 500 rpm에서 적어도 5시간 이상 교반시켜주는 것을 의미한다. 이렇게 형성된 주석산화물 전구체 /고분자 흔합 전기방사 용액은 전기방사용 시린지 (Henke-Sass Wolf, 10 mL NORM-JECT®)^] 담아주고 시린지 펌프에 연결하여, 0.1 ml/min의 토출 속도로 방사용액을 밀어주며 전기방사가 이루어 진다.  Comparative Example 1 Preparation of Pure Tin Oxide Nanotubes Without Nanoparticle Catalyst Comparative Example 1 compared with Example 2 is pure tin that does not contain Pt nanoparticles catalyst and does not contain pores in the form of circle or ellipse. Relates to oxide nanotube synthesis. Specifically, 0.25 g of tin chloride dehydrate, a tin oxide precursor, is dissolved in a mixed solvent (1.35 g of DMF + 1.35 g of ethane) and has a weight average of 1,300,000 g / mol to add the viscosity of the mixed solution. Add 0.35 g of polyvinylpyrrolidone (PVP) and stir thoroughly. The stirring condition mentioned here means stirring at least 5 hours at a rotational speed of 500 rpm. The tin oxide precursor / polymer mixed electrospinning solution thus formed is filled with an electrospinning syringe (Henke-Sass Wolf, 10 mL NORM-JECT®) ^], connected to a syringe pump, and the spinning solution is discharged at a discharge rate of 0.1 ml / min. It pushes and electrospinning.
전기방사 시에 이용되는 니들 (needle)은 25 gauge를 사용함과 동시에 노즐과 나노섬유를 수집하는 집전체와의 거리는 26 cm로 유지시키면서 14 kV 정도의 고전압을 걸어주어 주석산화물 전구체 /고분자 복합 나노섬유를 제작하였다. 상기의 합성된 주석산화물 전구체 /고분자 복합 나노섬유는 고온 열처리를 통하여 고분자를 제거하여 주고 주석산화물' 전구체의 산화과정을 통해서 주석산화물 형성하게 된다. 고온 열처리 조건은 600 0C에서 1시간 동안 이루어졌으며, 승온속도는 10 0C/min으로 일정하게 유지시켜 주었고, 온도의 하강속도는 40 0C/min으로 일정하게 유지시켰다. 여기서 승온속도를 10 °C/min으로 상대적으로 빠르게 해준 점은 나노튜브 구조를 형성하는데 중요한 역할을 한다는 특징이 있다. The needle used for electrospinning is a tin oxide precursor / polymer composite nanofiber by applying a high voltage of about 14 kV while maintaining the distance between the nozzle and the current collector collecting nanofibers at 26 cm while using 25 gauge. Was produced. The synthesized tin oxide precursor / polymer composite nanofiber is to remove the polymer through high temperature heat treatment and to form tin oxide through the oxidation process of the tin oxide ' precursor. The high temperature heat treatment condition was performed at 600 0 C for 1 hour, and the temperature increase rate was kept constant at 10 0 C / min. The rate of descent was kept constant at 40 0 C / min. Here, the relatively high temperature rising rate of 10 ° C / min is characterized in that it plays an important role in forming the nanotube structure.
도 12는 비교예 1을 통하여 제작된 순수한 주석산화물 나노튜브. 구조의 주사전자현미경 사진을 나타낸 것이다. 합성된 주석산화물 나노튜브의 직경은 50 nm-5 iim의 범위를 가지고 있으며 나노튜브의 내벽과 외벽 사이의 두께는 1으50 nm사이와값을 가지고 있음을 확인하였다. 12 is a pure tin oxide nanotube produced through Comparative Example 1 . The scanning electron micrograph of the structure is shown. The synthesized tin oxide nanotubes had a diameter in the range of 50 nm-5 iim, and the thickness between the inner and outer walls of the nanotubes was between 1 and 50 nm.
비교예 ·2. 나노입자 촉매를 포함하지 않은 순수한 주석산화물 1차원 다공성 나노튜브 제작 Comparative Example · 2. Fabrication of pure tin oxide one-dimensional porous nanotubes without nanoparticle catalyst
상기 실시예 2와 비교되는 비교예 2는 아포페리틴 내부에 내장되어 있는 Pt 나노입자 촉매를 첨가하지 않으며, 구형의 폴리스티렌 희생층 템플 ¾을 첨가하여 원 및 타원 형태의 기공을 가지는 순수한 주석산화물 1차원 다공성 나노튜브 합성에 관한 것이다. 구체적으로, 주석산화물 전구체인 틴 클로라이드 디하이드레이트 (tin chloride dehydrate) 0.25 g을 흔합용매 (DMF 1.35 g+에탄을 1.35 g)에 용해시킨다. 추가적으로 200 nm의 크기를 가지는 구 모양의 회생층 템플릿 역할을 하는 폴리스티렌 콜로이드 0.3 g을 첨가하여 분산시킨다. 여기서 말하는 분산조건은 회전속도 500 rpm에서 적어도 1시간 이상 교반시켜주는 것을 의미한다. 상기 제조된 주석산화물 전구체 /폴리스티렌 복합용액에 점도를 부여하기 위.하여 평균증량 1,300,000 g/mol을 가지는 폴리비닐피를리돈 (polyvinylpyrrolidone, PVP) 0.35 g을 첨가하여 충분히 교반시켜준다. 여기서 말하는 교반조건은 회전속도 500 rpm 조건에서 적어도 10 시간 이상 교반시켜줌을 의미한다. 층분히 교반시킨 금속전구체 /폴리스티렌 회생층 템플릿 /고분자 전기방사용액은 전기방사용 시린지 (Henke-Sass Wolf, 10 mL N이M-JECT®)에 담아주고 시린지 펌프에 연결하여, 0.1 ml/min의 토출 속도로 방사용액을 밀어주며, 전기방사 시에 이용되는 니들 (needle)은 25 gauge를 사용함과 동시에 노즐과 나노섬유를 수집하는 집전체와의 거리는 26 cm로 유지시키면서 14 kV 정도의 고전압을 걸어주어 주석산화물 전구체 /폴리스티렌 회생층 템훌릿 /고분자 복합 나노섬유를 제작하였다. 상기에 합성된 주석산화물 전구체 /고분자 회생층 템플릿 /고분자 복합 나노섬유는 고온열처리를 통해서 고분자가 제거되고 구 형태의 폴리스티렌 희생층이 분해되면서 원 내지 타원 형태의 거대기공을 형성하게 되고, 이후 주석산화물의 결정화 및 확산과정을 통해 거대기공을 부분적으로 채워줌으로써 미세기공을 형성하여 1차원 다공성 주석산화물 나노튜브를 형성하게 된다. 여기서 말하는 고온열처리 조건은 600 °C 에서 1시간 등안 이루어졌다. Comparative Example 2 compared with Example 2 does not add the Pt nanoparticle catalyst embedded in the apoferritin, the pure tin oxide 1-dimensional having the pores in the form of circles and ellipses by adding ¾ of the spherical polystyrene sacrificial layer It relates to porous nanotube synthesis. Specifically, 0.25 g of tin chloride dehydrate, a tin oxide precursor, is dissolved in a mixed solvent (1.35 g of DMF 1.35 g + ethane). In addition, 0.3 g of polystyrene colloid serving as a spherical regenerative layer template having a size of 200 nm was added and dispersed. Dispersion condition as used herein means to stir at least 1 hour at a rotational speed of 500 rpm. In order to impart viscosity to the prepared tin oxide precursor / polystyrene composite solution, 0.35 g of polyvinylpyrrolidone (PVP) having an average increase of 1,300,000 g / mol is added thereto, and the mixture is sufficiently stirred. Stirring condition here is 500 rpm It means to stir at least 10 hours under the conditions. The thoroughly stirred metal precursor / polystyrene regenerated layer template / polymer electrospinning solution is placed in an electrospinning syringe (Henke-Sass Wolf, 10 mL N-M-JECT®) and connected to a syringe pump, The spinning solution pushes the spinning solution at the discharge speed. The needle used for electrospinning uses 25 gauge and maintains the distance between the nozzle and the collector for collecting nanofibers at 26 cm while applying a high voltage of about 14 kV. Given tin oxide precursor / polystyrene regenerative layer template / polymer composite nanofibers were prepared. The tin oxide precursor / polymer regenerative layer template / polymer composite nanofibers synthesized in the above form high-temperature heat treatment to remove macromolecules and decompose spherical polystyrene sacrificial layers to form macropores in a circle or ellipse shape, and then tin oxide. The micropores are formed by partially filling the macropores through crystallization and diffusion process to form the one-dimensional porous tin oxide nanotubes. The high temperature heat treatment conditions here were made at 600 ° C for 1 hour.
도 13(a)와 도 13(b)는 비교예 2를 통하여 제작된 원 내지 타원 형태의 기공을 포함하는 순수한 주석산화물 나노튜브 구조의 주사전자 현미경 사진을 나타낸 것이다. 제작된 1차원 다공성 주석산화물 나노튜브는 50 nm-5 μιη의 직경을 가지고 있으며 나노튜브의 내벽과 외벽 사이에 두께는 1으 50 nm 범위 값을 가지는 것을 확인하였다. 여기서, 미세기공의 크기는 0.1-50 nm 사이의 값을 가지며, 거대기공은 5으 300 nm 의 크기를 갖는다. 아포페리틴이라는 단백질 템플릿의 주석산화물 입자성장 방해 역할이 없으므로 실시예 2와 다르게 상대적으로 큰 기공의 크기를 가짐을 확인할수 있다. Figure 13 (a) and Figure 13 (b) shows a scanning electron micrograph of a pure tin oxide nanotube structure including pores in the form of circle to ellipse prepared through Comparative Example 2. The fabricated one-dimensional porous tin oxide nanotubes have a diameter of 50 nm-5 μιη and the thickness between the inner and outer walls of the nanotubes has a value ranging from 1 to 50 nm. Here, the size of the micropores has a value between 0.1-50 nm, the macropores have a size of 5 to 300 nm. Since it has no role in inhibiting the growth of tin oxide particles of a protein template called apoferritin, it is relatively large unlike Example 2. It can be seen that it has a pore size.
실험예 1. Pt 나노입자 촉매가 튜브 내벽과 외벽에 균일하게 결착되고 원 및 타원 형태의 기공올 다수 포함하고 있는 1차원 다공성 주석산화물 나노튜브, 기공을 가지고 있는 주석산화물 1차원 다공성 나노튜브 그리고 순수한 주석산화물 나노튜브를 이용한가스 센서 제조 및 특성 평가  Experimental Example 1. One-dimensional porous tin oxide nanotubes in which Pt nanoparticle catalyst was uniformly bound to the inner and outer walls of the tube and contained a large number of circular and elliptic pores, tin oxide one-dimensional porous nanotubes with pores, and pure Fabrication and Characterization of Gas Sensors Using Tin Oxide Nanotubes
상기의 실시예 1, 2 와 비교예 1, 2 로 제작된 가스센서용 감지소재를 날숨센서로 제조하기 위하여, Pt 나노입자 촉매들을 포함하며 미세기공 및 거대기공을 다수 포함하는 1차원 다공성 주석산화물 나노류브, 1차원 다공성 주석산화물 나노튜브 및 주석산화물 나노튜브를 각각 6 mg을 에탄을 100 μΐ에 분산시킨 뒤, 1시간동안 초음파 세척을 통하여 분쇄 과정을 거친다. 분쇄 과정 중에서 상기에 합성된 다공성 나노튜브 구조가 길이 방향으로 더욱 짧아진 다공성 나노튜브 구조를 나타내기도 한다.  In order to prepare a sensing material for a gas sensor manufactured in Examples 1 and 2 and Comparative Examples 1 and 2 as an exhalation sensor, one-dimensional porous tin oxide including Pt nanoparticle catalysts and a plurality of micropores and macropores. After dispersing 6 mg of nano-lube, one-dimensional porous tin oxide nanotube, and tin oxide nanotube in 100 μl of ethane, respectively, the mixture is pulverized by ultrasonic cleaning for 1 hour. During the grinding process, the porous nanotube structure synthesized above may exhibit a shorter porous nanotube structure in the longitudinal direction.
Pt 나노입자 촉매가 결착되어있고 원 내지 타원 형태의 기공을 다수 포함하고 있는 1차원 다공성 주석산화물 나노튜브, 1차원 다공성 주석산화물 나노튜브 그리고 주석산화물 나노튜브를 150 μπι의 간격으로 떨어져 있는 두 평행한 금 (Au) 전극이 형성된 3 mm X 3 mm 크기의 알루미나 기판 상부에 드랍 코팅 (drop coating) 방법을 이용하여 코팅하였다. 코팅과정은 마이크로 피펫을 이용하여 에탄올에 분산되어 있는 3 μΐ 의 Pt나노압자촉매가 결착된 1차원 다공성 나노튜브, 1차원 다공성 주석산화물 나노튜브 그리고 주석산화물 나노튜브 흔합용액을 센서전극이 있는 알루미나 기판위에 도포한 후, 60 °C 핫플레이트 상에서 건조시키는 과정을 거쳤으며, 이러한 과정을 4-6회 반복하여 알루미나 센서기판 상부에 층분한 양의 감지물질이 도포되도록 하였다. Two parallel one-dimensional porous tin oxide nanotubes, one-dimensional porous tin oxide nanotubes, and tin oxide nanotubes spaced at intervals of 150 μπι, bound by a Pt nanoparticle catalyst and containing a large number of circular to elliptic pores. A 3 mm x 3 mm alumina substrate on which gold (Au) electrodes were formed was coated using a drop coating method. The coating process was performed by using a micropipette on alumina substrate with sensor electrode for mixing 1-D porous nanotube, 1-D porous tin oxide nanotube, and tin oxide nanotube mixed solution bound with 3 μΐ Pt nano-pressure catalyst dispersed in ethanol. 60 ° C hotplate after application on After drying the process, the process was repeated 4-6 times so that a sufficient amount of sensing material was applied on the alumina sensor substrate.
또한, 날숨센서로서의 시물레이션 특성평가를 위하여 제작된 가스센서 축정은 사람의 호기에서 나오는 기체의 습도와 유사한 RH 85-95%의 상대 습도에서 각각 당뇨 진단, 구취 진단 및 폐암 진단을 위한 지표가스인 아세톤 (CH3COCH3), 황화수소 (H2S), 를루엔 (C6H5CH3) 가스의 농도를 5ᅳ 4, 3, 2, 1, 0.6, 0.4, 0.2, 0.1 ppm으로 변화시킴과 동시에 센서의 구동 온도는 350 °C에서 유지시키며 각 가스에 대한 반웅도 특성을 평가하였다. 또한, 본 실험예 1에서는 휘발성 유기 화합물 가스의 대표적인 예인 아세론 (CH3COCH3), 황화수소 (H2S), 를루엔 (C6H5CH3) 가스뿐만 아니라 천식, 만성폐쇄성폐질환, 신장병. 및 심장질환의 생체지표일 일산화질소 (NO), 일산화탄소 (CO), 암모니아 (NH3) 및 펜탄 (C5H12) 가스 등에 대해서도 감지특성을 평가하여 선택적 가스감지 특성을 규명하였다.  In addition, the gas sensor system designed for evaluating simulation characteristics as an exhalation sensor is acetone, which is an indicator gas for diagnosing diabetes, bad breath, and lung cancer at RH 85-95% relative humidity, similar to the humidity of gas from human breath. (CH3COCH3), hydrogen sulfide (H2S), and toluene (C6H5CH3) gas concentrations were changed to 5 ᅳ 4, 3, 2, 1, 0.6, 0.4, 0.2, 0.1 ppm and the operating temperature of the sensor was 350 ° C. Maintaining and evaluating the reaction properties for each gas. In Experimental Example 1, as well as acetone (CH3COCH3), hydrogen sulfide (H2S), toluene (C6H5CH3) gas which is a representative example of volatile organic compound gas, asthma, chronic obstructive pulmonary disease, kidney disease. In addition, the selective gas detection characteristics were identified by evaluating the detection characteristics of nitric oxide (NO), carbon monoxide (CO), ammonia (NH 3), and pentane (C 5 H 12) gases.
추가적으로, 실제 날숨환자와 당뇨환자를 감지할 수 있는 능력을 평가하기 위해, 10명의 건강인 날숨과 당뇨병 환자와 비슷한 날숨을 갖도록 모의 당뇨환자의 날숨을 제작하였다. 제작한 날숨을ᅳ직접 센서 어레이를 통해 감지하였으며, 측정된 센서결과를 주성분 분석 (PCA) 기법을 이용하여 당뇨환자와 건강인의 날숨을 비교 분석하였다.  In addition, to evaluate the ability to detect actual exhalation and diabetic patients, we simulated exhalation of simulated diabetic patients with 10 healthy exhalations and similar expirations with diabetics. The fabricated exhalation was directly detected by the sensor array, and the measured sensor results were compared and analyzed by exhalation of diabetic patients and healthy persons using PCA.
도 14(a)는 350 °C 에서 아세톤 가스의 농도가 5, 4, 3, 2, 1, 0.6, 0.4, 0.2, 0.1 ppm으로 감소할 때의 반웅정도 (Rair/Rgas, 여기서 Rair는 공기가 주입될 때의 금속산화물 소재의 저항값을 뜻하고, Rgas는 아세톤 가스가 주입될 때의 금속산화물 소재의 저항값을 뜻한다)를 시간에 따라 나타낸 것아다. 또한, 도 14(b)는 선형근사식을 이용하여 Pt 나노입자 촉매가 결착된 1차원 다공성 나노튜브의 감지한계를 나타낸 그래프또한나타나있다. 14 (a) shows the reaction rate when the acetone gas concentration decreases to 5, 4, 3, 2, 1, 0.6, 0.4, 0.2 and 0.1 ppm at 350 ° C (Rair / Rgas, where Rair is The resistance value of the metal oxide material when injected, Rgas is the metal oxide when acetone gas is injected It means the resistance value of the material). In addition, Figure 14 (b) also shows a graph showing the detection limit of the one-dimensional porous nanotubes to which the Pt nanoparticle catalyst is bound using a linear approximation equation.
도 14에 나타난 바와 같이, 아포페리틴 중공구조 내부에 내장된 Pt 나노입자 촉매가 열처리되면서 결착된 Pt나노입자 촉매가 결착된 1차원 다공성 주석산화물 나노튜브 감지소재는 5 ppm아세톤 가스에 대하여 촉매를 포함하지 않는 1차원 다공성 주석산화물 나노튜브보다 21.1배 높은 감지특성을보여주고 있으며, 순수한 주석산화물 나노튜브에 비해서는 38 배 높은 감지특성을 보여주고 있다. 또한, 아세톤농도 5, 4, 3, 2, 1, 0.6, 0.4, 0.2, 0.1 ppm에서 측정된 센서 결과를토대로 선형 근사식을 이용하여 얻어진 Pt 나노입자 촉매가 결착된 1차원 다공성 주석산화물 나노튜브의 감지한계는 아세톤 농도 10 ppb 일 때 감도 (Rair/Rgas)가 2,1을 나타내는 것을 알수 있다.  As shown in FIG. 14, the one-dimensional porous tin oxide nanotube sensing material to which the Pt nanoparticle catalyst is bound while the Pt nanoparticle catalyst embedded in the apoferritin hollow structure is thermally treated includes a catalyst for 5 ppm acetone gas. It shows 21.1 times higher detection characteristics than unused one-dimensional porous tin oxide nanotubes and 38 times higher than pure tin oxide nanotubes. In addition, one-dimensional porous tin oxide nanotubes bound with Pt nanoparticle catalysts obtained by linear approximation based on sensor results measured at acetone concentrations of 5, 4, 3, 2, 1, 0.6, 0.4, 0.2, and 0.1 ppm. The detection limit of can be seen that the sensitivity (Rair / Rgas) is 2,1 when the acetone concentration is 10 ppb.
도 15는 350 °C에서 아포페리틴 내부에 내장된 백금 (Pt) 나노입자 촉매가 열처리 되면서 결착된 Pt 나노입자 촉매를 포함하고 다수의 원형 및 타원형의 기공을 다수 포함하는 1차원 다공성 주석산화물 나노류브 센서를 이용하여 당뇨병과 체지방분해의 생체지표 가스로 알려진 아세톤 가스 대비 다른 질병의 생체직표 가스인 황화수소, 를루엔, 일산화질소, 일산화탄소, 암모니아, 펜탄 가스에 대하여 농도 1 ppm에서 반응도 값을 나타낸 것이다.  FIG. 15 is a one-dimensional porous tin oxide nanoleuve including a large number of circular and elliptical pores, including a Pt nanoparticle catalyst bound by heat treatment of a platinum (Pt) nanoparticle catalyst embedded in apoferritin at 350 ° C. The sensor was used to show the reactivity values at concentrations of 1 ppm against the acetone gas known as a biomarker gas for diabetes and body lipolysis, compared to hydrogen sulfide, toluene, nitrogen monoxide, carbon monoxide, ammonia and pentane gas.
도 15에 나타난 바와 같이, 이중기공 분포를 갖고 Pt 나노입자 촉매가 결착된 1차원 다공성 주석산화물 나노튜브 감지소재로 제작된 센서는 다른 질병의 생체지표 가스인 황화수소, 를루엔, 펜탄, 일산화탄소, 암모니아, 일산화질소 가스에 비하여 특징적으로 당뇨병과 체자방 분해의 생체지표 가스인 아세톤에 대해 우수한 선택적 감지특성을 나타내는 것을 확인할 수 있다. As shown in FIG. 15, a sensor made of a one-dimensional porous tin oxide nanotube sensing material having a double pore distribution and having a Pt nanoparticle catalyst bound is used for other diseases. Compared to the biomarker gases hydrogen sulfide, toluene, pentane, carbon monoxide, ammonia, and nitrogen monoxide gas, it can be seen that it shows excellent selective detection characteristics for acetone, which is a biomarker gas for diabetes and body fat decomposition.
도 16은 10명의 건강인의 날숨을 테들러백 (Tedler bag)에 포집하고, 농축된 아세톤 가스를 정량적으로 주입하여, 사람의 날숨 속에 아세톤 농도가 약 2 ppm 존재하도록 10명의 모의 당뇨환자의 날숨을 제작하는 과정을 보여주고 있다. 도 16에서와 같이 정량적으로 기체를 흡입하고 배출하는 펌프 (diaphragm pump) 를 이용하여, 날숨 속에 아세톤의 농도가 약 2 ppm존재하도록 제작할 수 있었다. 도 17은 실제로 포집된 10명의 건강한 사람 날숨과 모의 당뇨환자의 날숨을 백금 나노압자 촉매가 결착된 미세기공 및 거대기공이 분포하는 다공성 주석산화물 나노튜브, 백금 나노입자가 결착된 주석산화물 나노튜브 및 미세기공 및 거대기공이 분포하는 주석산화물 나노튜브 감지소재로 이루어진 센서 어레이에 주입하고, 얻은 센싱 결과 값을 주성분분석 (PCA)법을 통해서 분석한 결과이다. 도 17에서와 같이 10명의 건강인 날숨과 모의 당뇨환자의 가스의 구역이 서로 확연하게 구분되는 것을 알수 있으며, 이를 통해 본 발명에서 개발한 소재를 이용하여, 날숨을 통한 당뇨환자 진단의 가능성을 확인하였다.  FIG. 16 shows the exhalation of 10 healthy subjects in a Tedler bag, the quantitative injection of concentrated acetone gas, and the exhalation of 10 simulated diabetic patients so that acetone concentration is present in the exhalation of humans. It is showing the process of making. Using a diaphragm pump to quantitatively inhale and discharge the gas as shown in Figure 16, it was possible to produce acetone concentration of about 2 ppm in the exhalation. FIG. 17 shows porous tin oxide nanotubes in which micropores and macropores in which platinum nanoinjector catalysts are bound, tin oxide nanotubes in which platinum nanoparticles are bound, and exhalation of 10 healthy humans exhaled and simulated diabetic patients are actually collected. The result of sensing is obtained by injecting into the sensor array composed of tin oxide nanotube sensing material in which micropores and macropores are distributed. As shown in FIG. 17, it can be seen that 10 healthy people's exhalation and simulated diabetic patients' gas zones are clearly distinguished from each other, and through this, the possibility of diagnosing diabetic patients through exhalation is confirmed. It was.
상기 실험예에서는 '생체지표 가스를 예시로 하여 가스센서 감지소재의 센서 특성을 보여주었다. 하지만, 유해환경 가스들인 H2, NOx, SOx, HCHO, C02 등에 대해서도 우수한 센서 감지특성을 기대할 수 있으며, 아포페리틴 내부에 내장된 Pt 나노입자촉매 이의에도 촉매물질로 널리 쓰이는 Au, Pd, Rh, Cr, Co, Ni 등 다양한 형태의 촉매입자를 합성하여 촉매의 종류를 다르게 함에 따라, 아세톤 이외에도 다른 유해기체에 대해서도 탁월한 선택성을 갖는 가스센서를 제조할 수 있을 것이라고 기대한다. 또한, 감지소재 매트릭스 역할을 하는 금속산화물의 종류를 다양하게 하여 다종 촉매 입자들이 원형 내지 타원형태의 기공을 다수 포함하는, 이증 기공분포를 가지는 1차원 다공성 다종 금속산화물 나노튜브를 아용하여, 초고감도와 고선택성을 갖는 나노센서 어레이를 제조할 수 있다. 상기 아포페리틴 템플릿으로부타 얻어진 나노입자 촉매가 결착된 이중 기공 분포를 가지는 1차원 다공성 금속산화물 나노튜브 감지소재는 탁월한 유해환경 가스 센서 및 날숨 속 휘발성 유기화합물 가스 분석 및 진단을 위한 헬스케어용 가스 센서에 사용될 수 있다. In the above experimental example, the biomarker gas was shown as an example, and the sensor characteristics of the gas sensor sensing material were shown. However, excellent sensor detection characteristics can be expected for hazardous environment gases such as H2, NOx, SOx, HCHO, and C02, and Au, Pd, Rh, Cr, which are widely used as catalysts for Pt nanoparticle catalysts embedded in apoferritin. , Co, Ni etc. By synthesizing different types of catalysts by synthesizing the catalyst particles in the form, it is expected that a gas sensor having excellent selectivity for other harmful gases besides acetone may be manufactured. In addition, by varying the type of metal oxide serving as a sensing material matrix, the multi-catalyst particles contain a large number of circular to elliptical pores, and use one-dimensional porous multi-metal oxide nanotubes having a dilution pore distribution, thereby providing super high sensitivity. And a nanosensor array having high selectivity can be manufactured. The one-dimensional porous metal oxide nanotube sensing material having a double pore distribution in which the nanoparticle catalyst obtained from the apoferritin template is bound is an excellent hazardous gas sensor and a gas sensor for healthcare for analysis and diagnosis of volatile organic compound gas in the exhalation. Can be used for
이하에서는, 아포페리틴을 이용해 합성한 나노입자 촉매를 포함하는 금속산화물 반도체 나노튜브 구조를 이용한가스센서용 부재, 가스 센서 및 그 제조 방법에 대해서 첨부된 도면을 참조하여 자세히 설명한다.  Hereinafter, a member for a gas sensor using a metal oxide semiconductor nanotube structure including a nanoparticle catalyst synthesized using apoferritin, a gas sensor, and a method of manufacturing the same will be described in detail with reference to the accompanying drawings.
본 발명은 아포페리틴으로 합성한 나노입자 촉매를 포함하는 주석산화물 전구체 /고분자복합 나노섬유를 열처리 과정에서 승온속도를조절함으로써 나노튜브 껍질의 표면과 내부에 균일하게 나노입자 촉매들이 분포된 나노튜브 구조를 합성하는 것을 특징으로 한다. 기존에 금속산화물을 이용한 가스센서의 감지특성을 향상시키기 위해서 비표면적을 넓히고 기공도를 향상시켜 더 많은 양의 가스가 반웅하여 감지특성을 향상시키는 연구들이 진행되었으며, 이와 더불어 금속 또는 -금속 산화물 촉매를 감지물질에 결착시켜 촉매반웅을 활성화 하는 연구들이 진행되어 왔다. 하지만 이러한 연구들은 기공을 형성하거나 비표적을 넓히기 위한 공정과 촉매를 나노섬유에 결착시키는 공정이 별도로 필요하다는 단점을 가지고 있다. 특히 금속 또는 금속산화물 나노입자 촉매를 합성하여 나노섬유에 균일하게 결착시키는 공정과 수 nm 크기의 나노입자 촉매들을 합성하는 공정은 상당히 복잡하다는 단점이 있으며, 비표면적을 넓히기 위해 류브구조를 합성하거나 기공을 형성하는 공정 또한 비교적 복잡하고 시간과 비용이 많이 소모 될 수 있다는 단점을 가지고 있다. 이러한 단점을 극복하기 위하여, 본 발명에서는 아포페리틴을 -이용하여 손쉽게 0.1 nm 내지 8 nm의 사이즈의 나노입자 촉매를 합성하고 이를 금속산화물 전구체 /고분자 흔합 방사용액과 흔합한 후 전가방사를 수행하여, 나노입자촉매가금속산화물 전구체 /고분자복합 나노섬유 표면 및 내부에 균일하게 결착되게 하였다. 그리고 승은속도를 조절하여 '고은 열처리 과정을 통해 나노입자 촉매를 감싸는 단백질 템플레이트를 제거함과 동시에 고분자 또한 제거시키면서 오스트왈드 라이프닝 (Ostwald ripening) 현상을 통한 나노입자 촉매를 포함한 금속산화물 나노튜브 구조를 형성함으로써 단일 공정으로, 손쉽게 비표면적이 넓은 나노튜브 구조에 나노입자 촉매들이 균일하게 웅집 없이 결착된 감지소재를 대량으로 합성할 수 있는 특징을 가진다. 여기서 나노입자 촉매들이 나노튜브 내부와 외부에 균일하게 분포된 금속산화물 반도체 나노튜브는 촉매가 균일하게 분포함으로써 가스들이 감지소재와 반응할 때 나타나는 촉매의 효과를 극대화할 수 있으며, 더불어 열처리 승온속도 조절을 통해 형성된 나노튜브 구조는 가스들의 튜브 내부 참투가 용이할 뿐 아나라, 향상된 비표면적에 의하여 가스의 효과적인 표면반웅을 유도하여 고감도 가스센서 감지소재를 제작할 수 있는 것 : 특징으로 한다. 특히, 아포페리틴 단백질 내부에 다양한 금속 또는 금속산화물 나노입자들을 합성할 수 있어 특정 가스에 선택성을 가지는 가스센서를 제작할 수 있다는 특징이 있다. 상기와 같은 특징을 갖는 가스센서용 부재를 제작하기 위하여 효율적이고 손 쉬운 공정으로 가스 센서용 부재, 가스ᅳ센서 및 그 제조 방법을 구현하는 것을 특징으로 한다. The present invention provides a nanotube structure in which nanoparticle catalysts are uniformly distributed on the surface and inside of a nanotube shell by controlling the temperature increase rate of a tin oxide precursor / polymer composite nanofiber including a nanoparticle catalyst synthesized with apoferritin during heat treatment. It characterized in that the synthesis. In order to improve the detection characteristics of gas sensors using metal oxides, researches have been carried out to improve the detection characteristics by increasing the specific surface area and improving the porosity so that a larger amount of gas reacts with the metal or -metal oxide catalyst. Studies that activate catalytic reaction by binding to a sensing material It has been going on. However, these studies have disadvantages in that a process for forming pores or widening specific targets and a process for binding a catalyst to nanofibers are required separately. In particular, the process of synthesizing metal or metal oxide nanoparticle catalysts uniformly to nanofibers and synthesizing nanoparticle catalysts of several nm size are quite complicated. Forming process also has the disadvantage that it can be relatively complicated and time-consuming and expensive. In order to overcome this disadvantage, in the present invention, by using apoferritin-easily synthesized nanoparticle catalyst of the size of 0.1 nm to 8 nm and mixed with a metal oxide precursor / polymer mixed spinning solution and then carrying out full-spinning, The nanoparticle catalyst was allowed to bind uniformly to the inside and inside of the metal oxide precursor / polymer composite nanofiber. In addition, by controlling the speed of Seung-eun, 'metal heat-treatment process removes the protein template surrounding the nanoparticle catalyst and removes the polymer, while forming the metal oxide nanotube structure including the nanoparticle catalyst through the Ostwald ripening phenomenon. As a result, in a single process, nanoparticle catalysts can be easily synthesized in a large-surface specific nanotube structure without the uniform formation of a large number of sensing materials. Here, the metal oxide semiconductor nanotubes in which the nanoparticle catalysts are uniformly distributed inside and outside the nanotubes can maximize the effect of the catalyst when the gases react with the sensing material by uniformly distributing the catalysts. The nanotube structure formed through the membrane facilitates the invasion of the gas inside the tube. It is possible to produce a highly sensitive gas sensor sensing material by inducing surface reaction. In particular, it is possible to synthesize a variety of metal or metal oxide nanoparticles in the apoferritin protein has a feature that can be produced gas sensor having a specific gas selectivity. In order to manufacture a gas sensor member having the above characteristics, it is characterized by implementing the gas sensor member, the gas sensor and a manufacturing method thereof in an efficient and easy process.
도 18은 본 발명의 일 실시예에 따른 나노입자 촉매 (1821)를 포함하는 금속산화물 반도체 나노튜브 구조 (1810)를 이용한 가스센서용 부재 (1800)의 모식도를 도시하고 있다. 나노입자 촉매가 증공 구조의 내부에 형성된 아포페리틴 단백질을 금속산화물 전구체 /고분자 흔합 방사용액과 함께 전기방사하여 제작된 복합 나노섬유를 승온 속도를 빠르게 하여 고은 열처리 과정을 거치면, 주석산화물 입자들이 효면으로 모여들게 되고 속이 빈 구조의 나노튜브 (1810)를 형성시키며ᅳ 튜브구조 내부와 외부에 균일하게 나노입자 촉매 (1821)들이 결착되어 있는 구조를 형성시킬 수 있는 것을특징으로 한다.  FIG. 18 shows a schematic diagram of a gas sensor member 1800 using a metal oxide semiconductor nanotube structure 1810 including a nanoparticle catalyst 1821 according to an embodiment of the present invention. The nanoparticle catalyst is electrospun with the apoferritin protein formed inside the vaporization structure together with the metal oxide precursor / polymer mixed spinning solution to increase the temperature of the composite nanofibers. It is characterized in that the nanotubes 1810 of the aggregated and hollow structure can be formed and the nanoparticle catalysts 1821 can be uniformly bound inside and outside the tube structure.
여기서 아포페리틴의 중공 구조 내부에 합성될 수 있는 금속들은.이온형태 S 존재하는 형태이면 특별한 제약을 두지 않는다. 구체적으로, Copper(II) nitrate, Copper(II) chloride, Cobalt(II) nitrate, Cobalt(II) acetate, 'Lanthanum(III) nitrate, Lanthanum(III) acetate, platinum(IV) chloride, platinum(II) acetate, gold(I, III) chloride, gold(III) acetate, silver chloride, silver acetate, Iron(III) chloride, Iron(III) acetate, Nickel(II) chloride, Nickel(II) acetate, Ruthenium(III) chloride, Ruthenium Acetate, Iridium(III) chloride, iridium acetate, Tantalum(V) chloride, Palladium(II) chloride 등이 있으며 이러한 전구체를 이용하여 Pt, Pd, Rh, Ru, Ni, Co, Cr, Ir, Au, Ag, Zn, W, Sn, Sr, In, Pb, Fe, Cu, V, Ta, Sb, Sc, Ti, Mn, Ga, Ge 등의 나노입자 촉매를 합성할 수 있다. 이렇게 아포페리틴을 템플릿으로 이용하여 0.1 nm 내지 8 nm의 크기 범위에서 전구체의 양을 조절하여 나노입자 촉매의 크기를 조¾할 수 있으며, 나노입자 촉매들이 중공 구조를 갖는 아포페리틴 단백질 껍질들로 둘러 쌓여 있기 때문에 전기방사 용액 속에서도 뭉치지 않고 잘 분산된다는 매우 큰 장점을 가지고 있다. 가스센서 감지소재 내에서 작용하는 나노입자 촉매들의 역할을 자세히 살펴보면, 금속산화물의 표면과 공기층 사이에서 산소분자의 분해반웅을 촉진함으로써 표면 반웅에 참여하는 흡착산소이온의 농도를 증가시키는 화학적 증감효과 역할을 하는 백금 (Pt), 금 (Au) 같은 귀금속 종류의 나노입자 촉매가 있을 수 있고, 감지특성 향상에 영향을 주는, PdO, Co304, NiO, Cr203, CuO, Fe203, Fe304, Ti02, ZnO, Sn02, V205, V203 등과 같은 산화과정을 통해 촉매반웅을 일으키는 전자적 증감 효과를 나타내는 나노입자 촉매가 있을 수 있다. The metals that can be synthesized inside the hollow structure of apoferritin here are not restricted if the ionic form S is present. Specifically, copper (II) nitrate, copper (II) chloride, Cobalt (II) nitrate, Cobalt (II) acetate, ' Lanthanum (III) nitrate, Lanthanum (III) acetate, platinum (IV) chloride, platinum (II) acetate, gold (I, III) chloride, gold (III) acetate, silver chloride, silver acetate, Iron (III) chloride, Iron (III) acetate, Nickel (II) chloride, Nickel (II) acetate, Ruthenium (III) chloride, Ruthenium Acetate, Iridium (III) chloride, iridium acetate, Tantalum (V) chloride, Palladium (II) chloride, and these precursors are used to make Pt, Pd, Rh, Ru, Ni, Co, Cr, Ir, Au, Ag Nanoparticle catalysts such as, Zn, W, Sn, Sr, In, Pb, Fe, Cu, V, Ta, Sb, Sc, Ti, Mn, Ga, Ge can be synthesized. Thus, using the apoferritin as a template to control the size of the nanoparticle catalyst by controlling the amount of precursor in the size range of 0.1 nm to 8 nm, the nanoparticle catalysts are surrounded by apoferritin protein shells having a hollow structure Because it is stacked, it has a great advantage of being well dispersed in the electrospinning solution. Looking at the role of nanoparticle catalysts in gas sensor sensing materials in detail, it acts as a chemical sensitizing effect that increases the concentration of adsorbed oxygen ions participating in the surface reaction by promoting the decomposition reaction of oxygen molecules between the surface of the metal oxide and the air layer. PdO, Co304, NiO, Cr203, CuO, Fe203, Fe304, Ti02, ZnO, Sn02, which may have nanoparticle catalysts of precious metals such as platinum (Pt), gold (Au) There may be a nanoparticle catalyst that exhibits an electronic sensitizing effect that causes a catalyst reaction through oxidation such as V205, V203, and the like.
상기에서 설명한 아포페리틴을 이용하여 합성한 나노입자 촉매 (1821)를 나노튜브 구조의 내부와 외부에 결착시키면 단백질 껍질로 둘러싸인 나노입자 촉매를 이용하기 때문에 일반적으로 폴리올 공정 방법으로 합성된 나노입자 촉매들과 비교하여 웅집 현상이 없고 분산을 잘 시킬 수 있게 된다. 이런 특징으로 금속산화물 전구체 /고분자 흔합 방사용액을 제조할 시 상기 나노 촉매입자를 첨가하여 함께 방사하게 되면 나노입자 촉매들은 금속산화물 전구체 /고분자 나노섬유의 외부와 내부에 고르게 결착 시킬 수 있다. 여기서 10 °C/min 승온 속도를 가지는 고온 열처리를 통하여 핵생성과 입자성장 및 오스트왈드 라이프닝 (Ostwald ripening) 과정을 통해 나노입자 촉매를 포함하는 금속산화물 나노튜브 구조 * 형성할 수 있다. 나노입자 촉매를 포함하는 금속산화물 나노튜브 구조의 직경은 50 nm 에서 5 μπι 의 직경범위를 가지고, 내벽과 외벽 사이의 두께는 10 nm 내지 50 nm 의 범위를 가지고, 길이는 1 μπι 에서 100 μπι 의 범위를 가지는 것을 특징으로 한다. When the nanoparticle catalyst 1821 synthesized using the apoferritin described above is bound to the inside and the outside of the nanotube structure, the nanoparticle catalyst surrounded by the protein shell is used. Compared with this, there is no uneven phenomenon and dispersion can be performed well. With this feature, the nanocatalyst particles may be used to prepare a metal oxide precursor / polymer mixed spinning solution. When added together and spun together, the nanoparticle catalysts can bind evenly to the outside and inside of the metal oxide precursor / polymer nanofibers. Here, a metal oxide nanotube structure including a nanoparticle catalyst may be formed through nucleation, particle growth, and Ostwald ripening through high temperature heat treatment having a temperature rising rate of 10 ° C / min. The diameter of the metal oxide nanotube structure containing the nanoparticle catalyst has a diameter ranging from 50 nm to 5 μπι, the thickness between the inner and outer walls ranges from 10 nm to 50 nm, and the length ranges from 1 μπι to 100 μπι. It is characterized by having a range.
상기 나노 구조체를 구성하는 금속산화물 반도체 나노튜브는 가스의 흡착 및 탈착에 의하여 전기저항 및 전기전도도의 값이 변화할 수 있다면 특별한 물질에 제약을 두지 않는다. 구체적으로는 ZnO, Sn02, W03, Fe203, Fe304, NiO, Ti02, CuO, In203, Zn2Sn04, Co304, PdO, LaCo03, NiCo204, Ca2Mn308, V205, Cr203, Nd203, Sm203, Eu203, Gd203, Tb407, Dy203, Ho203, Er203, Yb203, Lu203, Ag2V4011, Ag20, Li0.3La0.57TiO3, LiV308, InTa04, CaCu3Ti4012, Ag3P04, BaTi03, NiTi03, SrTi03, Sr2Nb207, Sr2Ta207, BaO.5SrO.5CoO.8FeO.203— 7 등에서 선택된 하나 또는 둘 이상의 복합 소재로 구성된 나노튜브 일 수 있다.  The metal oxide semiconductor nanotube constituting the nanostructure is not limited to a special material as long as the values of electrical resistance and conductivity can be changed by adsorption and desorption of gas. Specifically, ZnO, Sn02, W03, Fe203, Fe304, NiO, Ti02, CuO, In203, Zn2Sn04, Co304, PdO, LaCo03, NiCo204, Ca2Mn308, V205, Cr203, Nd203, Sm203, Eu203, Gd203, Tb407, Dy203, Ho203 , Er203, Yb203, Lu203, Ag2V4011, Ag20, Li0.3La0.57TiO3, LiV308, InTa04, CaCu3Ti4012, Ag3P04, BaTi03, NiTi03, SrTi03, Sr2Nb207, Sr2Ta207, BaO.5SrO.5CoO.8FeO. It may be a nanotube composed of two or more composite materials.
상기의 나노입자 촉매 (1821)를 포함하는 금속산화물 반도체 나노튜브 (1810)를 이용한 가스센서용 부재 (1800)를 이용하여 인체의 날숨 속에 생체지표로 작용하는 특정가스를 감지함으로써 인체의 질병을 조기에 진단할 수 있으며, 유해 환경 가스,들을 모니터링할 수 있는 환경센서로도 옹용이 가능한 초 고감도 센서를 구성할 수 있다. 또한, 나노입자 촉매의 양을 정량적으로 조절하면서 나노튜브에 결착되는 나노입자 촉매의 결착량을 정량적으로 조절할 수 있어, 효과적으로 촉매특성을 조절할 수 있을 뿐만 아니라, 열처리 과정 중에서 승온 속도를 조절함으로써 나노섬유 안이 모두 차 있는 구조부터 나노튜브 구조까지 효과적으로 섬유의 표면적을 조절할 수 있어, 다종의 가스 센서용 부재를 쉽고 빠르게 제작할수 있다는 장점도가질 수 .있다. Using a gas sensor member 1800 using the metal oxide semiconductor nanotube 1810 including the nanoparticle catalyst 1821, a specific gas acting as a biomarker in the exhalation of the human body can be detected early. To diagnose And it may also be capable of ongyong second configuration the sensor sensitivity to the environmental sensor capable of monitoring hazardous gas environments. In addition, it is possible to quantitatively control the amount of binding of the nanoparticle catalyst bound to the nanotubes while controlling the amount of the nanoparticle catalyst quantitatively, thereby effectively controlling the catalyst properties and controlling the temperature increase rate during the heat treatment. From the full structure to the nanotube structure, the surface area of the fiber can be effectively controlled, which makes it possible to quickly and easily manufacture various gas sensor members.
도 19는 본 발명의 일 실시예에 따른 전기방사법을 통한 나노입자 촉매를 포함하는 금속산화물 반도체 나노튜브를 이용한 가스센서용 부재의 제조 방법의 순서도를 보여주고 있다. 도 19의 순서도에서 보여지다시피, 가스센서용 부재의 제조 방법은, 아포페리틴을 이용하여 나노입자 촉매를 합성하는 단계 (S1910), 상기 합성된 나노입자 촉매를 금속산화물 잔구체 /고분자 전기방사 용액에 첨가하여 복합 전기방사용액을 제작하는 단계 (S1920), 상기 복합 전기방사용액을 전기방사 장비를 이용하여 아포페리틴을 이용해 만들어진 나노입자 촉매를 포함하는 금속산화물 전구체 /고분자 복합 나노섬유를 제작하는 단계 (S1930) 그리고 승온속도를 10 °C/min으로 비교적 빠르게 하여 고온 열처리를 통해 나노입자 촉매가 균일하게 결착된 금속산화물 나노튜브를 제작하는 단계 (S1940)를 포함하여 구성될 수 있다. 하기에서는상기의 각단계에 대한보다상세히 설명한다.  19 is a flowchart illustrating a method of manufacturing a gas sensor member using a metal oxide semiconductor nanotube including a nanoparticle catalyst through an electrospinning method according to an embodiment of the present invention. As shown in the flowchart of FIG. 19, the method for manufacturing a gas sensor member includes synthesizing a nanoparticle catalyst using apoferritin (S1910), and synthesizing the synthesized nanoparticle catalyst with a metal oxide residue / polymer electrospinning solution. Preparing a complex electrospinning solution by adding to the (S1920), preparing a metal oxide precursor / polymer composite nanofiber including a nanoparticle catalyst made of apoferritin using the complex electrospinning solution using an electrospinning apparatus; (S1930) And it can be configured to include a step (S1940) to produce a metal oxide nanotubes in which the nanoparticle catalyst is uniformly bound through a high temperature heat treatment by increasing the temperature increase rate to 10 ° C / min relatively. In the following it will be described in more detail for each of the above steps.
우선적으로, 아포페리틴을 이용하여 나노입자 촉매를 합성하는 단계 (S1910)를살펴본다. 본 단계 (S1910)에서 사용되는 아포페리틴은 말 비장 (equine spleen)에서 추출된 페리틴을 포함하며, 사람의 간이나 비장 등 추출 부위와 상관 없이 .얻어진 페리틴을 이용해 내부 공간에 철 이온을 제거한 아포페리틴이 사용될 수 있다. 단백질로 둘러싸인 구조를 가지는 페리틴 안에서 철이은을 제거하는 방법으로는 화학적 방법 또는 전기적 방법 모두 가능하다. 내부에 빈공간을 가지고 있는 중공구조 형태의 아포페리틴을 유지하기 위한 용액은 염분 (saline) 용액을 포함, 여러 농도의 염화나트륨 (NaCl) 용액이 사용될 수 있으며, 4 0C이하의 넁장보관을 필요로 한다. 또한, 아포페리틴 내부에 금속염을 내장시키기 위해서는 pH 범위가 8.0-9.5 범위의 염기성 용액상태가 바람직하며 금속염이 아포페리틴 내부로 층분히 확산할 수 있도록 1시간에서 24시간 정도 금속염이 녹아있는 용액^에 아포페리틴을 담가둔다. 아포페리틴이 함유된 염분 용액 등 보관 용액의 농도는 0.1 - 200 mg/ml의 범위를 갖도록 한다. 금속 염 용액을 제조시, 사용되는 용매는 에탄올 (ethanol), 물 (water), 클로로포름 (chloroform), Ν,Ν'-디메틸포름아미드 (Ν,Ν'- dimethylf ormamide) , 디메틸술폭사이드 (dimethylsulfoxide), Ν,Ν'- 디메틸아세트아미드 (N,N'-dimethylacetamide), N-메틸피를리돈 (N- methylpyrrolidone)과 같은 상용성 용매를 사용할 수 있으며, 금속염이 용해가 가능한 용매이면 특정 용매에 제한을 두지 않는다. 상기에서와 설명한 바와 같이 아포페리탄 속 내부에 생성되는 금속염의 종류와 형태는 이온상태의 전구체 형태이면 특별한 제,한을 두지는 않는다. 금속염은 Pt, Pd, Rh, Ru, Ni, Co, Cr, Ir, Au, Ag, Zn, W, Sn, Sr, In, Pb, Fe, Cu, V, Ta, Sb, Sc, Ti, Mn, Ga, Ge 등을 아포페리틴 내부에 포함시킬 수 있는 염형태의 전구체가 바람직하며 고온 열처리 이후에는 단백질은 제거되며 나노입자 촉매들은 금속 또는 금속산화물 촉매 입자로 바뀌는 특성을 가진다. 이때 산화가 잘 이루어지는 금속 입자의 경우 쉽게 금속산화물 입자로 바뀌게 된다. 이러한 금속산화물 입자는 n-type 또는 p-type의 반도체 특성을 지닐 수도 있다. 아포페리틴의 중공 구조 내부에 포함된 금속 염을 환원시켜주는 역할을 하는환원제로는 소듐 보로하이드라이드 (Sodium borohydride,First, look at the step (S1910) of synthesizing the nanoparticle catalyst using apoferritin. Apoferritin used in this step (S1910) includes ferritin extracted from the equine spleen, and apoferritin from which iron ions have been removed from the internal space using ferritin obtained regardless of the extraction site such as human liver or spleen. This can be used. The removal of iron and silver from the ferritin, which has a protein-enclosed structure, can be a chemical method or an electrical method. The solution for maintaining apoferritin in the hollow structure having an empty space therein can be used in various concentrations of sodium chloride (NaCl) solution, including saline solution, and it needs to be stored below 4 0 C. do. In addition, in order to embed the metal salt in the apoferritin, a basic solution in the pH range of 8.0 to 9.5 is preferable, and in a solution where the metal salt is dissolved for about 1 to 24 hours so that the metal salt can diffuse into the apoferritin. Soak apoferritin. The concentration of the storage solution, such as a saline solution containing apoferritin, should be in the range of 0.1-200 mg / ml. In preparing the metal salt solution, solvents used are ethanol, water, chloroform, Ν, Ν'-dimethylf ormamide and dimethylsulfoxide. Compatible solvents such as N, N'-dimethylacetamide and N-methylpyrrolidone can be used. If the metal salt is soluble, it is limited to a specific solvent. Do not put As described above, the type and form of the metal salt generated inside the apopperitan is not particularly limited as long as it is in the form of an ionic precursor. Metal salts are Pt, Pd, Rh, Ru, Ni, Co, Cr, Ir, Au, Ag, Zn, W, Sn, Sr, In, Pb, Fe, Cu, V, Ta, Sb, Sc, Ti, Mn, Ga, Ge and apoferritin Salt precursors that can be included therein are preferred, and proteins are removed after high temperature heat treatment, and nanoparticle catalysts have the property of converting to metal or metal oxide catalyst particles. In this case, the metal particles which are well oxidized are easily converted into metal oxide particles. Such metal oxide particles may have n-type or p-type semiconductor properties. Reducing agents that play a role in reducing the metal salts contained in the hollow structure of apoferritin include sodium borohydride (Sodium borohydride,
NaBH4)를 포함하여 포름산 (formic acid, HCOOH), 옥살산 (oxalic acid, C2H204), 리튬 알루미늄 하이드라이드 (lithium aluminum hydride, LiAlH4) 등의 일반적으로 사용하는 환원제가 사용될 수 있으며, 금속염을 환원시켜 금속 나노입자 촉매를 형성할 수 있는 환원제라면 특별한 제약 없이 사용될 수 있다. 환원제를 이용하여 아포페리틴속 금속혁을 환원시킨 용액은 원심분리를 통하여 나노입자 촉매를 포함하는 아포페리틴 단백질을 걸러내게 되며 이때 사용되는 원심분리기의 회전속도는 10,000 rpm - 13,000 rpm정도가바람직하다. Commonly used reducing agents such as formic acid (HCOOH), oxalic acid (C2H204), and lithium aluminum hydride (LiAlH4), including NaBH4), can be used. Any reducing agent capable of forming a particle catalyst can be used without particular limitation. The solution that reduced the metal apoferritin metal using a reducing agent through the centrifugation to filter out the apoferritin protein including the nanoparticle catalyst, the rotation speed of the centrifuge is preferably about 10,000 rpm-13,000 rpm.
이어서, 상기 합성된 아포쩨리틴을 이용하여 합성된 금속 나노입자 촉매를 포함하는 금속산화물 전구체 /고분자 흔합 방사용액을 제작하는 단계 (S1920)에 대하여 살핀다. 본 단계 (S1920)에서는 상기에서 제작된 나노입자 촉매를 포함하는 아포페리틴 단백질을 금속산화물 전구체 /고분자흔합 방사용액에 첨가하여 나노입자 촉매 입자들아 균일하게 방사용액 속에 분산되어 있는 형태의 흔합 방사용액을 제조한다. 여기서, 용매는 Ν,Ν'-디메틸포름아미드 (N,N'-dimethylformamid6), 디메틸술폭사이드 (dimethylsulfoxide), 1^ -디메틸아세트아미드(1^^'- dimethylacetamide), N-메틸피를리돈 (N-methylpyrroUdone), 순수 (DI water), 에탄을 (Ethanol) 등과 같은 상용성 용매를 사용할 수 있지만 금속산화물 전구체와 고분자를 동시에.용해시킬 수 있는 용매를 선택하여야 한다. 또한, 여기서 사용될 수 있는 고분자는 용매와 같이 녹을 수 있으며 고온 열처리를 통해 제거 될 수 있는 고분자라면 특정 고분자에 제한을 두지 않는다. 구체적으로, 본 단계 (S1920)에서 사용될 수 있는 고분자로는 폴리메틸메타아크릴레이트 (PMMA), 폴리비닐피를리돈 (PVP), 폴리비닐아세테이트 (PVAc), 폴리비닐알콜 (PVA), 폴미아크릴로니트릴 (PAN), 폴리에틸렌 옥사이드 (polypropylene oxide, PEO), 폴리프로필렌옥사이드 (polypropylene oxide, PPO), 폴리에틸렌 옥사이드 공중합체, 폴리프로필렌옥사이드 공중합체, 폴리카보네이트 (polycarbonate, PC), 폴리염화비닐 (polyvinylchloride, PVC), 폴리카프로락톤 (polycaprolactone), 폴리비닐풀루오라이드 (polyvinylidene fluoride) 등과 같은고분자들이 있다. Subsequently, the step of preparing the metal oxide precursor / polymer mixed spinning solution including the metal nanoparticle catalyst synthesized using the synthesized apoculitine is examined (S1920). In this step (S1920) by adding the apoferritin protein containing the nanoparticle catalyst prepared above to the metal oxide precursor / polymer mixed spinning solution to form a mixed spinning solution of nanoparticle catalyst particles uniformly dispersed in the spinning solution Manufacture. Here, the solvent is Ν, Ν'-dimethylformamide (N, N'-dimethylformamid 6), Compatible solvents such as dimethylsulfoxide, 1 ^ -dimethylacetamide, N-methylpyrrodon, pure water (DI water) and ethanol However, a solvent that can dissolve the metal oxide precursor and the polymer at the same time should be selected. In addition, the polymer that can be used here is not limited to a specific polymer as long as it can be dissolved with a solvent and can be removed through high temperature heat treatment. Specifically, the polymer that can be used in the present step (S1920) is polymethyl methacrylate (PMMA), polyvinylpyridone (PVP), polyvinylacetate (PVAc), polyvinyl alcohol (PVA), polymicrylo Nitrile (PAN), polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene oxide copolymer, polypropylene oxide copolymer, polycarbonate, PC, polyvinylchloride, PVC ), Polycaprolactone, polyvinylidene fluoride and the like.
본 단계에서 사용되는 금속산화물 전구체는 용매에 녹고 고온 열처리를 통하여 Sn02, W03, CuO, NiO, ZnO, Zn2Sn04, Co304, Cr203, LaCo03, V205, Ir02, Ti02, Er203, Tb203, Lu203, Ag20, SrTi03, Sr2Ta207, BaTi03, Ba0.5Sr0.5Co0.8Fe0.2O3-7등과 같은 가스센서 특성이 있는 반도체 금속산화물 나노섬유 내지는 나노튜브를 형성할 수 있는 금속염을 포함하는 전구체라면 특정한 금속염에 제약을두지 않는다.  The metal oxide precursor used in this step is dissolved in a solvent and subjected to high temperature heat treatment, such as Sn02, W03, CuO, NiO, ZnO, Zn2Sn04, Co304, Cr203, LaCo03, V205, Ir02, Ti02, Er203, Tb203, Lu203, Ag20, SrTi03, A precursor containing a metal salt capable of forming semiconductor metal oxide nanofibers or nanotubes having gas sensor characteristics such as Sr2Ta207, BaTi03, Ba0.5Sr0.5Co0.8Fe0.2O3-7 is not limited to a specific metal salt.
방사용액을 형성하기 위한 고분자와 금속산화물 전구체의 비율은 1 :Q.5~2 정도를 갖는 것이 바람직하며 고분자와 아포페리틴을 이용해 합성된 나노입자 촉매와의 비율은 1:0.00001 내지 1:0.1의 범위를 갖는 것이 바람직하다. 아포쩨리틴 속에 들어가는 금속 염의 종류는 감지하고자 하는 가스의 감지특성 및 선택성을 고려하여 선택되어야 바람직하며, 금속 염을 바꾸어 가면서 다양한특성을 가지는 가스센서용부재를 제조할수 있다. The ratio of the polymer and the metal oxide precursor to form the spinning solution is 1: Q.5 ~ 2 It is preferable to have a degree, and the ratio of the polymer and the nanoparticle catalyst synthesized using apoferritin is preferably in the range of 1: 0.00001 to 1: 0.1. The type of metal salt contained in the apoqueritin should be selected in consideration of the sensing characteristics and selectivity of the gas to be detected, and it is possible to manufacture a gas sensor member having various characteristics while changing the metal salt.
단계 (S1920)에서 전기방사 용액을 제조하는 과정은 먼저 금속산화물 전구체를 용매에 용해시켜주고 미리 만들어진 나노입자 촉매를 포함하는 아포페리틴 용액을 첨가하여 나노입자 촉매를 포함하는 아포페리틴이 균일하게 잘 분산하도록 용액을흔합하여준다. 층분히 흔합시켜 준 뒤에 고분자를 알맞은 비율로 첨가하여 고분자가 용액에 모두 용해될 때까지 교반시켜 준다. 교반 조건은 상온에서 50 °C 이하에서 교반시켜 주는 것이 바람직하고, 5시간에서 48 시간 내외로 하여 층분히 교반시켜 나노입자 촉매를 포함하는 아포페리틴과 금속산화물 전구체 및 고분자가 용액 속에 균일하게 흔합되도록 한다. 상기 합성된 전기방사용액올 전기방사하며, 전기방사를 통해 나노입자 촉매를 포함하는 아포페리틴 단백질이 포함된 금속산화물 전구체 /고분자 복합 나노섬유를 제작하는 단계 (S1930)를수행한다.  The process of preparing the electrospinning solution in step (S1920) first dissolves the metal oxide precursor in a solvent and adds the apoferritin solution containing the pre-made nanoparticle catalyst to uniformly disperse the apoferritin containing the nanoparticle catalyst Mix the solution so that After thorough mixing, the polymer is added at an appropriate ratio and stirred until all of the polymer is dissolved in the solution. Stirring conditions are preferably stirred at 50 ° C or less at room temperature, and stirred for 5 hours to 48 hours to ensure that the apoferritin containing the nanoparticle catalyst, the metal oxide precursor and the polymer are uniformly mixed in the solution. do. Electrospinning the synthesized electrospun solution, and performs a step (S1930) to produce a metal oxide precursor / polymer composite nanofibers containing the apoferritin protein including a nanoparticle catalyst by electrospinning.
단계 (S1930)를 수행하기 위하여 전기방사 기법을 실시함에 있어, 상기에 준비된 나노입자 촉매를 포함하는 아포페리틴 단백질이 포함된 금속산화물 전구체 /고분자를 포함하는 방사용액을 채울 수 있는 시린지 (syringe)에 채운 후, 시린지 펌프를 이용하여 일정한 속도로 시린지를 밀어줌으로써 일정한 양의 방사용액이 토출되도록 한다. 전기방사 시스템은 고전압기, 접지된 전도성 기판, 시린지, 시린지 노즐을 포함하여 구성될 수 있으며, 시린지에 채워진 용액과 전도성 기판사이에 5 kV내지는 30 kV 내외로 고전압을 걸어주어 전기장이 형성되게 하며, 형성된 전기장으로 인해 시린지 노즐을 통해 토출되는 방사용액이 나노섬유 형태로 길게 뽑아져 나오도록 전기방사를 실행하여 준다. 길게 뿜어져 나오는 형태의 방사용액은 방사용액 속에 포함되어 있는 용매가 증발 및 휘발되면서 고체 형태의 고분자 섬유가 얻어짐과 '동시에 그 안쪽에 금속산화물 전구체 및 나노입자 촉매를 포함하는 아포페리틴 단백질이 함유된 복합 섬유가 제작되게 된다. 토출되는 속도는 0.01 ml/분 내지는 0.5 ml/분 내외로 조절 될 수 있으며 전압과 토출량의 조절을 통해서 원하는 직경을 갖는 금속산화물 전구체 /고분자 /나노입자 촉매 복합 나노섬유를 제작할 수 있다. In performing the electrospinning technique to perform the step (S1930), to a syringe (syringe) that can fill the spinning solution containing a metal oxide precursor / polymer containing the apoferritin protein containing the nanoparticle catalyst prepared above After filling, press the syringe at a constant speed using a syringe pump Allow the spinning solution to be discharged. The electrospinning system may include a high voltage device, a grounded conductive substrate, a syringe, and a syringe nozzle, and a high voltage is applied between 5 kV and 30 kV between the solution filled in the syringe and the conductive substrate to form an electric field. Due to the electric field formed, the spinning solution discharged through the syringe nozzle is elongated in the form of nanofibers. The spinning solution in the form of a long spout is obtained by evaporation and volatilization of the solvent contained in the spinning solution to obtain a solid polymer fiber, and at the same time contains the apoferritin protein including a metal oxide precursor and a nanoparticle catalyst therein. Composite fibers are produced. The discharge rate can be adjusted to about 0.01 ml / min to 0.5 ml / min and can be prepared metal oxide precursor / polymer / nanoparticles catalyst composite nanofibers having a desired diameter by controlling the voltage and the discharge amount.
마지막으로 상기 제작된 복합 나노섬유의 고온 열처리를 통하여 나노입자 촉매들이 균일하게 웅집 없이 포함된 금속산화물 나노튜브 구조를 제작하는ᅵ 단계 (S1940)에서는 열처리 과정 중에 승온속도를 조절해 춤으로써 금속산화물 나노튜브 구조를 형성할 수 있다. 400-800 °C의 은도 범위에서의 열처리를 통하여 고분자와 나노입자 촉매를 둘러싸고 았는 단백질은 모두 분해되어 제거되며, 오스트왈드 라이프닝 (Ostwald ripening) 과정을 통해 나노섬유 내부에 있던 금속산화물 전구체와 나노입자 촉매들이 나노섬유 표면 쪽으로 확산하여 최종적인 열처리 후에 금속산화물 나노튜브 구조를 이를 수 있다. 이 과정 중에서 승온 속도를 10 V분 정도로 상대적으로 빠르게 함으로써 나노입자 촉매들이 금속산화물 나노튜브의 ¾질 구조 부분에 집증적으로 분산된 금속산화물 나노튜브 구조 (1810)를 제작할수 있다. Finally, in the step (S1940) of fabricating a metal oxide nanotube structure in which nanoparticle catalysts are uniformly contained without high temperature through high temperature heat treatment of the manufactured composite nanofibers, the metal oxide nano is controlled by controlling the temperature increase rate during the heat treatment process. It is possible to form a tube structure. Through the heat treatment in the silver range of 400-800 ° C, all the proteins surrounding the polymer and the nanoparticle catalyst are decomposed and removed, and the metal oxide precursor and the nano-oxide inside the nanofiber are processed through the Ostwald ripening process. Particle catalysts can diffuse toward the surface of the nanofibers to achieve metal oxide nanotube structures after the final heat treatment. In this process, the temperature increase rate is relatively high, such as 10 V, so that the nanoparticle catalysts Metal oxide nanotube structures (1810) can be fabricated that are concentrated on the quaternary structure of metal oxide nanotubes.
도 20은 본 발명의 일 실시예에 따른 전기방사법을 이용한 나노입자 촉매를 포함하는 금속산화물 반도체 나노튜브를 이용한 가스센서용 부재의 제조방법에 따른 제조공정 순서를 개략적으로도시하고 있다.  FIG. 20 schematically illustrates a manufacturing process sequence according to a method for manufacturing a gas sensor member using a metal oxide semiconductor nanotube including a nanoparticle catalyst using an electrospinning method according to an embodiment of the present invention.
제 1 과정인 단계 ('S2010)는 금속산화물 전구체 (주석 전구체 )/고분자, 그리고 아포페리틴의 내부에 내장된 나노입자 촉매를 포함하는 복합방사용액 (2010)을 전기방사기법을 이용하여 나노섬휴를 제작하는 예를 나타내고 있다. 상기와 같은 과정을 통해 제작된 도 20에 나타난 나노섬유 (2030)는 나노입자 촉매를 포함하는 아포페리틴 (2020)이 고르게 분산되어 있는모습이 나타나 있다. The first step ( ' S2010) is to perform nanosumming using a complex spinning solution (2010) containing a metal oxide precursor (tin precursor) / polymer and a nanoparticle catalyst embedded in the apoferritin using an electrospinning technique. The example to produce is shown. The nanofibers 2030 shown in FIG. 20 produced through the above process are shown to have an even distribution of the apoferritin 2020 including the nanoparticle catalyst.
제 2 과정인 단계 (S2020)는 단계 (S2010)에서 합성된 복합 나노섬유를 고온 열처리하는 과정을 나타내고 있다. 열처리를 하는 과정에서 승온속도는 10 °C /min으로 비교적 빠른 속도로 600 °C까지 열처리하여 고분자와 나노입자 촉매를 둘러싸고 있는 단백질을 모두 제거하고 금속산화물과 나노입자 촉매들이 나노섬유 걸으로 모두 확산이 되어 금속나노입자 촉매를 균일하게 포함하고 았는 금속산화물 반도체 나노튜브 (2040)가합성되게 된다.  Step S2020, which is a second process, represents a process of high temperature heat treatment of the composite nanofibers synthesized in step S2010. In the process of heat treatment, the temperature increase rate is 10 ° C / min, which heats up to 600 ° C at a relatively high rate to remove all of the proteins surrounding the polymer and the nanoparticle catalyst, and the metal oxide and nanoparticle catalysts are all diffused into the nanofiber hook. As a result, the metal oxide semiconductor nanotubes 2040 that contain the metal nanoparticle catalyst uniformly are synthesized.
이러한 도 20의 실시예에서는 주석 산화물 전구체를 이용하여 주석 산화물 나노튜브 구조를 제조하는 예를 설명하였으나, 금속산화물 전구체 같은 경우에는 상기에 설명한 바와 같이 금속염 중 하나를 포함하는 형태이면 큰 제약을 두지 않는다. 상기와 같이, 본 발명의 실시예들에 따른 전기방사기법과 열처리 승온속도 조절을 이용한 나노입자 촉매 (1821)를 포함하는 금속산화물 반도체 나노튜브 (1810)를 이용한 가스센서 부재 (1800)의 제작방법은 가스와의 반웅 표면적이 넓은 1차원 나노휴브 구조를 형성함과 동시에 기존의 촉매와는 달리 단백질의 특성을 이용하여 균일하게 분산된 화학적 /전자적 증감 효과를 가지는 촉매를 결착시킴으로써 가스센서의 반웅속도 특성, 감도특성, 그리고 선택성을 크게 개선할수 있다. In the embodiment of FIG. 20, an example of manufacturing a tin oxide nanotube structure using a tin oxide precursor has been described, but in the case of a metal oxide precursor, as long as it includes one of the metal salts as described above, no significant restriction is imposed. . As described above, the manufacturing method of the gas sensor member 1800 using the metal oxide semiconductor nanotubes 1810 including the nanoparticle catalyst 1821 using the electrospinning technique and the heat treatment temperature control rate according to the embodiments of the present invention The reaction properties of the gas sensor are formed by forming a one-dimensional nano-hub structure with a large reaction surface area with gas and binding a catalyst having a uniformly dispersed chemical / electronic sensitization effect using protein properties unlike conventional catalysts. The sensitivity, sensitivity, and selectivity can be greatly improved.
하기에서는 실시예 및 비교예를 통하여 본 발명을 상세히 설명한다. 실시예 및 비교예는 단지 본 발명을 설명하기 위한 것이며, 본 발명이 하기 예에 제한되어있는 것은 아니다. ^ : 실시예 3: 아포페리틴을 템플레이트로 이용한 Pt및 Au나노입자 촉매 제조 증공구조를 가지고 있는 아포페리틴 내부에 백금 (Pt), 금 (Au) 나노입자 촉매를 합성하기 위하여 하기와 같은 합성 과정을 거친다. Hereinafter, the present invention will be described in detail through Examples and Comparative Examples. The examples and comparative examples are only for illustrating the present invention, and the present invention is not limited to the following examples. ^: Example 3: synthesis procedure as described below to the apo-ferritin synthesis of Pt and Au nanoparticle catalyst made increased tool crude platinum (Pt), gold (Au) inside Apo ferritin, which have a nanoparticle catalyst using as a template Go through
35 mg/ml의 농도로 0.15M NaCl 수용액에 분산되어 있는 1 ml의 아포페리틴 용액에 (Sigma Aldrich) NaOH - 이용하여 pH를 8.6으로 맞추어 아포페리틴 내부에 금속염이 -확산되어 들어갈 수 있도톡 조건을 만들어준다. 여기서 pH를 조절하기 위하여 사용되는 물질은 염기성을 띄는 용액이라면 큰 제한을 두지 않는다. 다음으로, Pt 및 Au나노입자 촉매를 합성하기 위하여 필요한 Pt 전구체로는 H2PtC16-H20 를 사용하며 Au 전구체로는 H2AuC16'H20 를 사용하였다. H2PtC16'H20 16 mg과 H2AuC16-H20 16mg을 DI water에 각각 용해시켜 수용액 형태로 제작한다. 상기와 같이 만들어진 두 가지의 금속염 전구체 수용액을 p.H가 조절된 아포페리틴 용액 속으로각각 천천히 떨어뜨려 주면서 교반하여 주면, Pt 및 Au 염들이 각각 아포페리틴의 중공 안쪽으로 확산되어 내장된다. 여기서 말하는 교반조건은 100 rpm 회전수로 약 한 시간, 상은에서 진행하는 것을 뜻한다. 충분히 금속염이 아포페리틴 내부로 내장된 후에는 NaBH4 환원제를 이용하면 아포페리틴 증공 내부에 있던 금속이은들이 (Pt4+ /Au4+ ) 금속으로 (Pt/Au) 환원되어 나노입자 촉매를 형성하게 된다. 이때 사용되는 환원제 NaBH4는 40 mM 농도로 수용액 형태로 만든 뒤 0.5 ml를 첨가하여 준다. In a solution of apoferritin (Sigma Aldrich) NaOH-dispersed in 0.15M aqueous solution of NaCl at a concentration of 35 mg / ml, NaOH-was used to adjust the pH to 8.6 to allow diffusion of metal salts into the aperitin. Make it. The material used to adjust the pH here is not a big limitation as long as the solution is basic. Next, H2PtC16-H20 was used as a Pt precursor and H2AuC16'H20 was used as an Au precursor to synthesize Pt and Au nanoparticle catalysts. 16 mg of H2PtC16'H20 and 16 mg of H2AuC16-H20 were dissolved in DI water, respectively. Produced in the form. When the two aqueous metal salt precursor solutions made as described above are stirred slowly dropping into the pH-controlled apoferritin solution, Pt and Au salts are respectively diffused into the hollow of the apoferritin and embedded therein. The stirring condition here means to proceed at about 100 hrs at 100 rpm. After the metal salt is sufficiently embedded in the apoferritin, the use of a NaBH4 reducing agent causes the metal silver (Pt4 + / Au4 +) metals (Pt4 + / Au4 +) to be reduced to (Pt4 + / Au4 +) metal to form a nanoparticle catalyst. The reducing agent NaBH4 used at this time is made into an aqueous solution at a concentration of 40 mM and 0.5 ml is added thereto.
상기와 같은 방법으로 아포페리틴을 이용하여 합성된 Pt 나노입자 촉매와 Au 나노입자 촉매가 분산된 두 개의 수용액은 환원제 및 금속염에 함께 있는 리간드들이 많이 함유되어 있기 때문에, 원심분리기를 이용하여 합성된 금속 나노입자 촉매를 포함하는 아포페리틴만 추출해주게 된다. 원심분리기의 조건은 10,000 rpm에서 12,000 rpm 정도가 바람직하며 10분 이상 원심분리를 해주는 것이 바람직하다. 원심분리기를 통해서 추출된 R 및 Au나노입자 촉매를 포함하는 아포페리틴은 다시 물에 분산시켜 주면, 최종적으로 아포페리틴 내부에 Pt 및 Au 나노입자 촉매가 분산된 형태로 있는 수용액을 제조할 수 있다.  The two aqueous solutions in which the Pt nanoparticle catalyst and Au nanoparticle catalyst are dispersed using apoferritin as described above contain a large amount of ligands together with a reducing agent and a metal salt. Only apoferritin containing nanoparticle catalysts will be extracted. The condition of the centrifuge is preferably about 10,000 rpm to about 12,000 rpm, and preferably centrifuged for at least 10 minutes. If apoferritin containing the R and Au nanoparticle catalyst extracted through a centrifuge is dispersed in water again, an aqueous solution in which Pt and Au nanoparticle catalysts are dispersed in the apoferritin can be finally prepared.
도 24는 상기의 과정으로 제조된 Pt 나노입자 촉매와 Au 나노입자 촉매를 포함하는 아포페리틴의 투과전자현미경 사진을 나타낸다. 합성된 Pt 및 Au나노입자 촉매를 포함하는 아포페리틴은 2-5 nm 정도의 직경을 가지고 있으며 구형의 모양을 가지고 있음을 확인할 수 있다. 실시예 4: Pt 및 Au나노입자 촉매를 포함하는 주석 산화물 (Sn02) 나노튜브 (2040) 구조 제작 FIG. 24 shows a transmission electron microscope photograph of apoferritin containing Pt nanoparticle catalyst and Au nanoparticle catalyst prepared by the above procedure. It can be seen that the apoferritin including the synthesized Pt and Au nanoparticle catalysts has a diameter of about 2-5 nm and has a spherical shape. Example 4 Fabrication of Tin Oxide (Sn02) Nanotubes 2040 Including Pt and Au Nanoparticle Catalysts
먼저 주석산화물 전구체인 틴 클로라이드 다이하이드레이트 (tin chloride dihydrate) 0.25 g을 DMF 1.35 g, 에탄올 1.35 g을포함하는흔합용매에 첨가하여 상온에서 녹여준다. 다음으로 실시예 3에서 제조된 Pt 나노입자 촉매와 Au 나노입자 촉매를 포함하는 아포페리틴 (2020) 수용액 200 mg 을 두 개의 주석산화물 전구체 /흔합용매 전기방사 용액에 각각 첨가하여 흔합하여 준다. Pt 나노입자 촉매 및 Au 나노입자 촉매를 포함하는 아포페리틴 입자와 주석 전구체가 균일하게 흔합된 용액들의 점도를 높여주기 위하여 분자량 1,300,000 g/mol을 가지는 폴리비닐피를리돈 (Polyvinylpyrrolidone, PVP) 고분자를 0.35 g을 각각 첨가하여 상온에서 24시간 동안 500 rpm의 회전수로 교반하여 방사용액을 제조한다. 이렇게 제조된 전기방사 용액을 시린지 (Henke-Sass Wolf, 10 mL NORM-JECT®)에 담아주고 시린지 펌프 에 연결하여, 0.1 ml/분의 토출속도로 전기방사 용액을 밀어내고, 방사할 때 사용되는 노즐 (needle, 27 gauge)과 나노섬유가 모이는 집전체 사이의 전압을 14 kV로 하여 전기방사를 진행한다. 나노섬유의 집전판으로는 스테인레스 스틸판을 사용하였고, 노즐과 집전체 사이의 거리는 15 cm로 설정하였다.  First, 0.25 g of tin chloride dihydrate, a tin oxide precursor, is added to a mixed solvent containing 1.35 g of DMF and 1.35 g of ethanol, and dissolved at room temperature. Next, 200 mg of the apoferritin (2020) aqueous solution containing the Pt nanoparticle catalyst and the Au nanoparticle catalyst prepared in Example 3 were added to the two tin oxide precursor / mixed solvent electrospinning solutions, respectively, and mixed. A polyvinylpyrrolidone (PVP) polymer having a molecular weight of 1,300,000 g / mol was used to increase the viscosity of a homogeneous solution in which apoferritin particles and tin precursors including Pt nanoparticle catalyst and Au nanoparticle catalyst were mixed. Each of g is added and stirred at a rotational speed of 500 rpm for 24 hours at room temperature to prepare a spinning solution. The electrospinning solution thus prepared is placed in a syringe (Henke-Sass Wolf, 10 mL NORM-JECT®) and connected to a syringe pump to push and spin the electrospinning solution at a discharge rate of 0.1 ml / min. Electrospinning is carried out with a voltage of 14 kV between the nozzle (needle, 27 gauge) and the current collector where the nanofibers collect. A stainless steel plate was used as the current collector plate of the nanofibers, and the distance between the nozzle and the current collector was set to 15 cm.
도 21은 전기방사 후 얻어진 Pt나노입자 촉매를 포함하는 주석산화물 전구체 /폴리비닐피를리돈 복합 나노섬유 및 Au 나노입자 촉매를 포함하는 주석산화물 전구체 /폴리비닐피를리돈 복합 나노섬유 주사전자현미경 사진 다. 1차원의 나노섬유가 합성 된 것을 확인할 수 있고, 직경은 200 nm - 300 nm 사이의 값을 가지고 있다. FIG. 21 shows a tin oxide precursor / polyvinylpyridone composite nanofiber including Pt nanoparticle catalyst obtained after electrospinning and a tin oxide precursor / polyvinylpyridone composite nanofiber scanning electron microscope including Au nanoparticle catalyst. All. It can be seen that one-dimensional nanofibers are synthesized, and the diameter has a value between 200 nm and 300 nm.
상기와 같은 방법으로 제조된 Pt 나노입자 촉매가 결착된 금속산화물 전구체 /고분자 복합섬유 및 Au 나노입자 촉매가 결착된 금속산화물 전구체 /고분자 복합섬유를 각각 승온속도를 10 °C/min으로 하여 600 0C에서 한 시간 동안 유지를 시켜주었고, 이어서 40 °C/mi의 하강 속도로 상온까지 넁각시찼다. 열처리는 Ney사의 Vulcan 3 - 550 소형 전기로를 이용하여 공기 분위기에서 열처리를 진행하였다. 고온 열처리 과정을 통하여 나노입자 촉매를 둘러싸고 있던 아포페리틴 단백질과 고분자는 모두 분해 되어 제거된다. 또한 공기분위기에서 열처리를 하였기 때문에 나노섬유의 표면에서 우선적으로' 주석염 전구체가 주석산화물 입자로 핵생성과 입자성장 과정을 거치면서 산화되고 오스트왈드 라이프닝 현상을 통해 나노섬유 내부에 있던 주석염 전구체들도 산화가 되면서 나노섬유 표면으로 확산을 해나가게 되어 주석산화물 나노튜브를 형성하게 되며, 나노섬유에 포함되어 있던 Pt 나노입자 촉매와 Au 나노입자 촉매들 또한 함께 나노튜브 표면으로 확산을 하게 되어 Pt 나노입자 촉매가 균일하게 결착된 주석산화물 나노튜브 및 Au 나노입자 촉매가 균일하게 결착된 주석산화물 나노튜브 구조를 형성하게 된다. The Pt nanoparticle catalyst-bound metal oxide precursor / polymer composite fiber and Au nanoparticle catalyst-bound metal oxide precursor / polymer composite fiber prepared by the method described above were heated at 600 ° C. at a temperature of 10 ° C / min, respectively . Hold at C for one hour, then cooled to room temperature at a rate of 40 ° C./mi drop. Heat treatment was performed in an air atmosphere using Ney's Vulcan 3-550 small electric furnace. Through the high temperature heat treatment process, the apoferritin protein and the polymer surrounding the nanoparticle catalyst are decomposed and removed. Also preferentially, tin salt precursor is a tin salt precursor was within the nanofiber is oxidized while passing through the nucleation and particle growth process by tin oxide particles through Ostwald life turning phenomenon from the surface of the nanofibers because the heat treatment in an air atmosphere As the oxides are oxidized, they diffuse to the surface of the nanofibers to form tin oxide nanotubes, and the Pt nanoparticle catalyst and Au nanoparticle catalysts included in the nanofibers also diffuse to the nanotube surface. Tin oxide nanotubes in which nanoparticle catalysts are uniformly bound and tin oxide nanotube structures in which Au nanoparticle catalysts are uniformly bound are formed.
도 25는 실시예 4에서 제조된 열처리 후에 얻어진 Pt 나노입자 촉매가 결착된 주석산화물 나노튜브 및 Au 나노입자 촉매가 결착된 주석산화물 나노튜브의 주사전자현미경 사진을 보여주고 있다. 형성된 나노튜브 구조의 외경은 50 nm - 2 μπι 정도의 크기를 가지며 내경은 40 nm- 1.9 μπι 정도의 크기를 가진다. 튜브의 두께는 10 - 100 nm정도의 두께를 가지고 있다. FIG. 25 shows scanning electron micrographs of tin oxide nanotubes bound with Pt nanoparticle catalysts obtained after the heat treatment prepared in Example 4 and tin oxide nanotubes bound with Au nanoparticle catalysts. The outer diameter of the formed nanotube structure is about 50 nm-2 μπι and the inside diameter is about 40 nm-1.9 μπι. Tube The thickness is about 10-100 nm.
도 26은 실시예 4에서 제조된 Pt 나노입자 촉매를 포함하는 주석산화물 나노류브의 투과전자 현미경 사진을 보여주고 있다. 투과전자 현미경 격자분석은 Pt 나노입자 촉매들이 주석산화물 나노튜브 내에 존재함을 보여주고 있으며, SAEDCSelected Area Electron Diffraction) 패턴을 통해 Pt나노입자 촉매들이 주석산화물 나노튜브 내에서 결정화를 이루고 있다는 것을 보여주고 있다. 또한 TEM 분석을 통한 성분분석 (EDS) 사진을 통해 형성된 주석산화물 나노튜브 구조 안에 Pt나노입자촉매들이 균일하게 분포되어 있음을 확인할수 있다.  FIG. 26 shows a transmission electron micrograph of a tin oxide nanolyve including a Pt nanoparticle catalyst prepared in Example 4. FIG. Transmission electron microscopic lattice analysis shows that Pt nanoparticle catalysts are present in tin oxide nanotubes, and the SAEDCSelected Area Electron Diffraction pattern shows that Pt nanoparticle catalysts crystallize in tin oxide nanotubes. . In addition, Pt nanoparticle catalysts are uniformly distributed in the tin oxide nanotube structure formed through the TEM analysis (EDS).
도 27은 실시예 4 에서 합성된 Au 나노입자 촉매를 포함하는 주석산화물 나노튜브의 투과전자 현미경 사진을 보여주고 있다. 투과전자 현미경 격자분석을 통해 Au 나노입자 촉매들이 주석산화물 나노튜브 내에 존재함을 보여주고 있으며, SAEDCSelected Area Electron Diffraction) 패턴을 통해 Au나노입자 촉매들이 주석산화물 나노류브 내에서 결정화를 이루고 있다는 것을 보여주고 있다. 또한 TEM 분석을 통한 성분분석 (EDS) 사진을 통해 형성된 주석산화물 나노튜브 구조 안에 Au나노입자촉매들이 균일하게 분포되어 있음을 확인할수 있다.  FIG. 27 shows a transmission electron micrograph of a tin oxide nanotube including an Au nanoparticle catalyst synthesized in Example 4. FIG. Transmission electron microscopic lattice analysis shows that Au nanoparticle catalysts are present in tin oxide nanotubes, and SAEDCSelected Area Electron Diffraction (SAEDC) pattern shows that Au nanoparticle catalysts are crystallized in tin oxide nanolevers. have. In addition, it can be seen that Au nanoparticle catalysts are uniformly distributed in the tin oxide nanotube structure formed through the TEM analysis (EDS).
비교예 3. 나노입자촉매를포함하지 않은 순수한주석산화물 나노섬유 제작 상기 실시예 2와 비교되는 비교예로는 아포페리틴 내부에 내장되어 있는 나노입자 촉매를 첨가하지 않은 순수한 주석산화물 나노섬유를 형성한 것이다. 구체적으로, 중량 평균 분자량 1,300,000 g/m이을 가지는 폴리비닐피롤리돈 (Polyvinylpyrrolidone, PVP) 0.35 g과 주석산화물 전구체인 '틴 클로라이드 디하이드레이트 (tin chloride dihydrate) 0.25 g을 DMF 1.35 g, 에탄을 1.35 g 의 흔합 용매에 상은조건에서 24시간 정도 500 rpm 조건에서 녹여준다. 모두 교반시킨 후에 상기의 주석산화물 전구체 /고분자 흔합 방사용액을 전기방사용 시린지 (Henke-Sass Wolf, 10 mL N0RM-JECT®)에 담아주고 시린지 펌프에 연결하여, 0.1 ml/min의 토출속도로 방사용액을 밀어준다. 전기방사 시에 사용되는 노즐 (needle)은 27 gauge를 사용하며, 주사바늘과 난노섬유를 수득하는 집전체 사이에 거리는 15 cm 정도이며 14 kV의 전압을 인가하여 주석산화물 전구체 /고분자 복합 나노섬유 웹을 제조한다. 상기 제작된 주석산화물 전구체 /고분자 복합 나노섬유를 고온열처리 과정을 통해서 고분자는 제거시켜주며, 주석산화물 전구체는 산화과정을 거쳐 주석산화물을 형성한다. 고온 열처리 과정은 600 °C 에서 1시간 동안 이루어졌으며, 승온 속도는 4 °C/min으로 일정하게 유지시켜 주었고온도의 하강속도는 40 °C /min으로 일정하게 유지시켰다. Comparative Example 3 Preparation of Pure Tin Oxide Nanofibers without Nanoparticle Catalyst In Comparative Example 2, pure tin oxide nanofibers without addition of the nanoparticle catalyst embedded in apoferritin were formed. will be. Specifically, 0.35 g of polyvinylpyrrolidone (PVP) having a weight average molecular weight of 1,300,000 g / m and tin oxide precursor ' tin ' 0.25 g of tin chloride dihydrate is dissolved in 1.35 g of DMF and 1.35 g of ethane in a mixed solvent at 500 rpm for 24 hours at normal silver conditions. After all the agitation, the tin oxide precursor / polymer mixed spinning solution was added to an electrospinning syringe (Henke-Sass Wolf, 10 mL N0RM-JECT®), connected to a syringe pump, and discharged at a discharge rate of 0.1 ml / min. Push up the liquid. The nozzle used for electrospinning uses 27 gauge. The distance between the needle and the current collector to obtain the non-fiber is about 15 cm and the voltage of 14 kV is applied to the tin oxide precursor / polymer composite nanofiber web. To prepare. The prepared tin oxide precursor / polymer composite nanofibers are removed through the high temperature heat treatment process, the tin oxide precursor is formed through the oxidation process to form a tin oxide. The high temperature heat treatment process was performed at 600 ° C for 1 hour, the temperature rising rate was kept constant at 4 ° C / min and the temperature falling rate was kept constant at 40 ° C / min.
도 22는 비교예 3을 통하여 제작된 나노입자 촉매가 첨가되지 않은 순수한 주석산화물 나노섬유의 주사전자 현미경 사진을 나타낸다. 제작된 주석산화물 나노섬유는 50 nm-2 iim정도의 직경을 가지고 있으며 원통구조의 나노섬유구조를 가지고 있음을 확인할수 있었다.  FIG. 22 shows a scanning electron micrograph of pure tin oxide nanofibers to which no nanoparticle catalyst prepared through Comparative Example 3 was added. The fabricated tin oxide nanofibers have a diameter of about 50 nm-2 iim and have a cylindrical nanofiber structure.
상기 제작된 순수한 주석산화물 나노섬유는 상기 실시예 4에서 제작된 Pt 나노입자 촉매가 결착된 주석산화물 나노튜브 및 Au 나노입자 촉매가 결착된 주석산화물 나노튜브와함께 다종 가스에 대한 감지특성을 비교하는데 사용하였다. 비교예 4 나노입자촉매를포함하지 않은 순수한주석산화물 나노류브 제작 상기 실시예 4와 비교돠는 비교예 4는 아포페리틴 내부에 내장되어있는 R 및 Au나노입자 촉매를 첨가하지 않고 순수한 주석산화물 나노튜브의 합성에 관한 것이다. 구체적으로, 중량 평균 분자량 1,300,000 g/mol을 가지는 폴리비닐피를리돈 (Polyvinylpyrrolidone, PVP) 0.35 g과 주석산화물 전구체인 틴 클로라이드 디하이드레이트 (tin chloride dihydrate) 0,25 g을 DMF 1.35g, 에탄을 1.35g 의 흔합 용매에 상온조건에서 24시간 정도 500 rpm 조건에서 녹여준다. 모두 교반시킨 후에는 상기의 주석산화물— 전구체 /고분자 흔합 방사용액을 전기방사용 시린지 (Henke-Sass Wolf, 10 mL NORM-JECT®)^ 담아주고 시린지 펌프에 연결하여, 0.1 ml/min의 토출속도로 방사용액을 밀어주며 전기방사 시에 이용되는 니들 (needle)은 27 gauge를 사용함과 동시에 노즐과 나노섬유를 수집하는 집전체와의 거리는 15 cm로 유지시키면서 14 kV 정도의 고전압을 걸어주어 주석산화물 전구체 /고분자 복합 나노섬유를 제작하였다. The prepared pure tin oxide nanofibers were compared with the tin oxide nanotubes bound with the Pt nanoparticle catalyst prepared in Example 4 and the tin oxide nanotubes bound with the Au nanoparticle catalyst. Used. Comparative Example 4 Fabrication of Pure Tin Oxide Nano-Lube without Nanoparticle Catalyst Comparative Example 4 compared with Example 4 relates to the synthesis of pure tin oxide nanotubes without the addition of the R and Au nanoparticle catalyst embedded in the apoferritin. Specifically, 0.35 g of polyvinylpyrrolidone (PVP) having a weight average molecular weight of 1,300,000 g / mol and 0,25 g of tin chloride dihydrate (tin chloride dihydrate) were prepared using DMF 1.35 g and ethane 1.35 g. It is dissolved in g of a mixed solvent at 500 rpm for 24 hours at room temperature. After the agitation is complete, the tin oxide—precursor / polymer mixed spinning solution is filled with an electrospinning syringe (Henke-Sass Wolf, 10 mL NORM-JECT®) ^ and connected to a syringe pump, discharging rate of 0.1 ml / min. The needle used for electrospinning the spinning solution with a high pressure of about 14 kV while keeping the distance between the nozzle and the current collector collecting nanofibers is 15 cm. A precursor / polymer composite nanofiber was produced.
상기의 합성된. 주석산화물 전구체 /고분자 복합 나노섬유는 고온 열처리를 통하여 고분자를 제거하여 주고 주석산화물 전구체의 산화과정을 통해서 주석산화물을 형성하게 된다. 고온 열처리 조건은 600 °C에서 1시간 동안 이루어졌으며 승온속도는 10 °Cmin으로 일정하게 유지시켜 주었고 온도의 하강속도는 40 °C/min으로 일정하게 유지시켰다. 여기서 승온속도를 10 0Cmin으로 해준 점은 비교예 3의 승온속도 4 °C/min 보다 빠른 속도로 온도를 높여준 특징이 있으며 나노튜브 구조를 형성하는데 중요한 역할을 한다는 특징이 있다. Synthesized above. Tin oxide precursor / polymer composite nanofibers remove polymer through high temperature heat treatment and form tin oxide through oxidation process of tin oxide precursor. The high temperature heat treatment condition was performed for 1 hour at 600 ° C. The temperature increase rate was kept constant at 10 ° C min and the temperature falling rate was kept constant at 40 ° C / min. Here, the temperature increase rate to 10 0 Cmin is a feature that increases the temperature at a rate faster than the temperature increase rate of 4 ° C / min of Comparative Example 3 has a feature that plays an important role in forming nanotube structure.
' 도 23은 비교예 4를 통하여 제작된 순수한 형태의 주석산화물 나노튜브 구조의 주사전자현미경 사진을 나타낸 것이다. ,제작된 순수한 주석산화물 나노튜브는 외경이 50 nm - 2 μπι 정도의 크기를 가지며 내경은 40 nm- 1.9 μπι 정도의 크기를 가진다. 튜브의 두께는 10― 100 nm정도의 두께를 가지고 았다. 실험예 2. 백금 (Pt) 나노입자 촉매가 결착된 주석산화물 나노튜브, 금 (Au) 나노입자 촉매가 결착된 주석산화물 나노튜브, 순수한 주석산화물 나노류브 그리고 순수한주석산화물 나노섬유를 이용한가스 센서 제조 및 특성 평가 23 is a pure oxide tin oxide nanotube produced through Comparative Example 4 The scanning electron micrograph of the structure is shown. , The fabricated pure tin oxide nanotubes have an outer diameter of 50 nm-2 μπι and an inner diameter of 40 nm-1.9 μπι. The thickness of the tube was about 10-100 nm. Experimental Example 2. Preparation of a gas sensor using tin oxide nanotubes bound with platinum (Pt) nanoparticle catalysts, tin oxide nanotubes bound with gold (Au) nanoparticle catalysts, pure tin oxide nanolevers and pure tin oxide nanofibers And characterization
상기의 실시예 3, 4와 비교예 3, 4로 제작된 가스센서용 감지소재를 날숨 센서로 제조하기 위하여, 고은열처리를 통해 부분적으로 산화가 이루어잔 Pt 나노입자 촉매가 결착된 주석산화물 나노튜브, 고은열처리를 통해 부분적으로 산화가 이루어진 Au 나노입자 촉매가 결착된 주석산화물 나노튜브, 순수한 주석산하물 나노튜브 및 순수한 주석산화물 나노섬유를 각각 5 mg을 에탄을 100 μΐ에 분산시킨 뒤, 1시간동안 초음파 세척을틈하여 분쇄 과정을 거친다. 분쇄 과정 중에서 상기에 합성된 나노튜브 구조나 나노섬유 구조가 길이 방향으로 더욱 짧아진 나노튜브 구조나나노로드 (nano rod) 구조를 나타내기도 한다.  In order to manufacture the sensing material for the gas sensor manufactured in Examples 3 and 4 and Comparative Examples 3 and 4 as an exhalation sensor, tin oxide nanotubes to which Pt nanoparticle catalysts which are partially oxidized through high heat treatment are bound. , 5 mg of tin oxide nanotubes, pure tin oxide nanotubes and pure tin oxide nanofibers bound with Au nanoparticle catalyst partially oxidized by high heat treatment were dispersed in 100 μΐ of ethane, and then for 1 hour. The ultrasonic cleaning is broken and then crushed. During the grinding process, the nanotube structure or nanofiber structure synthesized above may exhibit a nanorod structure in which the shorter lengthwise direction is obtained.
Pt 나노입자 촉매 또는 Au 나노입자 촉매가 결착된 주석산화물 나노튜브 (1810), 순수한주석산화물 나노섬유그리고 순수한주석산화물 나노섬유를 300 μπι의 간격으로 떨어져 있는 두 평행한 금 (Au) 전극이 형성된 3 mm X 3 mm 크기와알루미나기판상부에 드탑코팅 (Drop coating) 방법을 이용하여 코팅하였다. 코팅 과정은 마이크로 피펫을 이용하여 상기에 제작된 에탄올에 분산되어있는 2 μΐ의 Pt 나노입자 촉매가 결착된 주석산화물 나노튜브, Au '나노입자 촉매가 결착된 주석산화물 나노튜브, 순수한 주석산화물 나노튜브 및 순수한 주석산화물 나노섬유 : 흔합용액을 각각 센서전극 부분이 있는 알루미나 기판 위에 도포한 후, 60 °C 핫플레이트 상에서 건조시키는 과정을 거쳤다. 이러한 과정을 4~6회 반복하여 층분한 양와 Pt 나노입자촉매가 결착된 주석산화물 나노튜브, Au 나노입자촉매가 결착된 주석산화물 나노류브, 순수한 주석산화물 나노류브 및 순수한 주석산화물 나노섬유가 알루미나 센서기판상부에 '코팅되도록 하였다. 2 parallel gold (Au) electrodes separated by 300 μπι of tin oxide nanotubes (1810), pure tin oxide nanofibers, and pure tin oxide nanofibers bound with a Pt nanoparticle catalyst or Au nanoparticle catalyst. The size of mm x 3 mm and the alumina substrate were coated using a drop coating method. The coating process was performed by using a micropipette, tin oxide nanotubes bound with 2 μΐ Pt nanoparticle catalyst dispersed in ethanol prepared above, and Au ' nanoparticle catalyst bound. Tin oxide nanotubes, pure tin oxide nanotubes and pure tin oxide nanofibers : The mixed solution was applied onto an alumina substrate with a sensor electrode section, respectively, and then dried on a 60 ° C. hotplate. This process was repeated 4 to 6 times, and the tin oxide nanotubes with Pt nanoparticle catalyst bound, the tin oxide nanolyuves bound with Au nanoparticle catalyst, pure tin oxide nanolevers, and pure tin oxide nanofibers were alumina sensor. 'Coated on top of the substrate.
또한, 날숨센서의 특성평가를 위해서 제작된 가스센서는 사람의 밉에서 나오는 기체의 습도와유사한상태인 85~95 RH%의 상대 습도에서 각각 당뇨 진단, 구취 진단 및 폐암 진단을 위한 지표가스인 아세톤 (CH3(X)CH3), 황화수소 (H2S), 를루엔 (C6H5CH3) 가스의 농도를 5, 4, 3, 2, 1 ppm으로 변화시킴과동시에 센서의 구동 온도는 350 °C에서 유지시키며 각 가스에 대한 반웅도 특성을 평가하였다. 또한, 본 실험예 2에서는' . 휘발성 유기 화합물 가스의 대표적인 예인 아세톤 (CH3COCH3), 황화수소 (H2S), 를루엔 (C6H5CH3) 가스뿐만 아니라 천식, 만성폐쇄성폐질환, 신장병 및 심장질환의 생체지표인 일산화질소 (NO), 일산화탄소 (CO), 암모니아 (NH3) 및 펜탄 (C5H12) 가스 등에 대해서도 감지특성을 평가하여 선택적 가스감지 특성을 평가하였다. In addition, the gas sensor manufactured for evaluating the characteristics of the exhalation sensor is acetone, which is an indicator gas for diagnosing diabetes, bad breath, and lung cancer at a relative humidity of 85 to 95 RH%, which is similar to the humidity of gas from human mip (CH3 ( X ) CH3), hydrogen sulfide (H2S), and toluene (C6H5CH3) gas concentrations are changed to 5, 4, 3, 2, 1 ppm and at the same time the sensor's operating temperature is maintained at 350 ° C. The response of the reaction was evaluated. In addition, in Experimental Example 2, ' . Acetone (CH3COCH3), hydrogen sulfide (H2S) and toluene (C6H5CH3) gases, which are representative examples of volatile organic compound gases, as well as nitrogen monoxide (NO) and carbon monoxide (CO), which are biomarkers of asthma, chronic obstructive pulmonary disease, kidney disease and heart disease Selective gas detection characteristics were evaluated by evaluating the detection characteristics for the gas, ammonia (NH3) and pentane (C5H12) gas.
도 28은 350 °C에서 아세론 가스의 농도가 5, 4, 3, 2, 1 ppm으로 감소할 때의 반응정도 (Rair/Rgas, 여기서 Rair는 공기가 주입될 때의 금속산화물 소재의 저항값을 뜻하: , Rgas는 아세톤 가스가 주입될 때의 금속산화물 소재의 저항값을 뜻한다)를 시간에 따라나타낸 것이다. 도 28에 나타난 바와 같이, 아포페리틴 내부에 내장된 백금 (Pt) 나노입자 촉매가 열처리 되면서 결착된 Pt 나노입자 촉매를 포함하는 주석산화물 나노튜브 (1810) 센서는 아세톤 가스에 대하여 순수한 주석산화물 나노튜브 보다 8.27배 더 높은 반웅특성을 나타냄을 알 수 있고, 순수한 주석산화물 니:노섬유 보다는 18.95배 더 높은 반웅특성을 나타냄을 알수 있다. 28 is a reaction degree when the concentration of aceron gas decreases to 5, 4, 3, 2, and 1 ppm at 350 ° C. (Rair / Rgas, where Rair is a resistance value of a metal oxide material when air is injected. Rgas is the resistance value of metal oxide material when acetone gas is injected). As shown in FIG. 28, a tin oxide nanotube (1810) sensor including a Pt nanoparticle catalyst bound as the platinum (Pt) nanoparticle catalyst embedded in the apoferritin is heat treated is pure tin oxide nanotubes with respect to acetone gas. It can be seen that the reaction properties are 8.27 times higher than that of the pure tin oxide, and 18.95 times higher than the reaction of pure tin oxide.
도 29는 350 0C에서 황화수소 가스의 농도가 5, 4, 3, 2, 1 ppm으로 감소할 때의 반응도 값을시간에 따라나타낸 센서 테스트 결과이다. 29 is a sensor test result showing the reactivity value with time when the concentration of hydrogen sulfide gas is reduced to 5, 4, 3, 2, 1 ppm at 350 0 C.
도 29에 나타난 바와 같이, 아포페리틴 내부에 내장된 백금 (Pt) 나노입자 촉매가 열처리 되면서 결착된 Pt 나노입자 촉매를 포함하는 주석산화물 나노류브 (1810)로 제작한 센서가 황화수소 가스에 대하여 순수한 주석산화물 나노튜브보다 4.23배 더 높은 반웅특성을 나타냄을 알수 있고,순수한주석산화물 나노섬유보다는 11.03배 더 높은 반응특성을 나타냄을 알수 있다.  As shown in FIG. 29, a sensor made of tin oxide nano-levers 1810 containing Pt nanoparticle catalysts bound by heat treatment of a platinum (Pt) nanoparticle catalyst embedded in apoferritin was pure tin with respect to hydrogen sulfide gas. It can be seen that the reaction characteristics are 4.23 times higher than that of the oxide nanotubes, and 11.03 times higher than those of the pure tin oxide nanofibers.
도 30은- 350 0C에서 를루엔 가스의 농도가 5, 4, 3, 2, 1 ppm으로 감소할 때의 반웅도 값을시간에 따라나타낸 센서 테스트 결과이다. FIG. 30 is a sensor test result showing a time response of the semi-arithmetic value when the concentration of toluene gas is reduced to 5, 4, 3, 2, and 1 ppm at -350 0 C. FIG.
도 30에 나타난 바와 같이, 아포페리틴 내부에 내장된 백금 (Pt) 나노입자 촉매가 열처리 되면서 결착된 Pt 나노입자 촉매를 포함하는 주석산화물 나노튜브 (1810) 센서는 황화수소 가스에 대하여 순수한 주석산화물 나노튜브 보다 1.12배 더 높은 반웅특성을 나타냄을 알 수 있고, 순수한 주석산화물 나노섬유 보다는 1.76배 더 높은 반응특성을 나타냄을 알수 있다.  As shown in FIG. 30, the tin oxide nanotube 1810 sensor including the Pt nanoparticle catalyst bound by the heat treatment of the platinum (Pt) nanoparticle catalyst embedded in the apoferritin is pure tin oxide nanotubes with respect to hydrogen sulfide gas. It can be seen that the reaction properties are 1.12 times higher than that, and that they are 1.76 times higher than pure tin oxide nanofibers.
도 31은 350 0C 에서 아포페리틴 내부에 내장된 백금 (Pt) 나노입자 촉매가 열처리 되면서 결착된 Pt 나노입자 촉매를 포함하는 주석산화물 나노튜브 센서를 이용하여 당뇨병과 체지방분해의 생체지표 가스로 알려진 아세톤 가스대비 다른 질병의 생체지표 가스인 황화수소, 를루엔, 일산화질소, 알산화탄소, 암모니아 펜탄 가스에 대하여 농도 1 ppm에서 나타나는 반응도 값을 나타낸 것이다. 31 shows a platinum (Pt) nanoparticle catalyst embedded inside apoferritin at 350 0 C. Hydrogen sulfide, toluene, nitrogen monoxide, carbon monoxide, which are biomarker gases of other diseases, compared to acetone gas, which is known as a biomarker gas for diabetes and body fat decomposition, using a tin oxide nanotube sensor containing Pt nanoparticle catalysts bound by heat treatment , Shows the reactivity values appearing at a concentration of 1 ppm with respect to ammonia pentane gas.
도 31에 나타난 바와 같이, Pt 나노입자 촉매가 결착된 주석산화물 나노튜브 (1810)로 제작된 센서는 다른 질병의 생체지표 가스인 일산화질소, 황화수소, 일산화탄소, 암모니아, 를루엔, 및 펜탄 가스에 대비하여 특징적으로 당뇨병과 체지방 분해의 생체지표 가스인 아세톤에 대하여 매우 우수한 선택적 감지특성을 나타내는 것을 확인할 수 있었다.  As shown in FIG. 31, the sensor made of tin oxide nanotubes 1810 to which Pt nanoparticle catalysts are bound is prepared in comparison with other biomarker gases such as nitrogen monoxide, hydrogen sulfide, carbon monoxide, ammonia, toluene, and pentane gas. Characteristically, it was confirmed that the selective detection characteristics were excellent for acetone, which is a biomarker gas for diabetes and body fat decomposition.
도 32는 실시예 3로부터 얻어진 아포페리틴 내부에 내장된 금 (Au) 나노입자 매가 열처리 되면서 결착된 Au 나노입자 촉매를 포함하는 주석산화물 나노튜브 센서의 황화수소 가스 농도변화 (1-5 ppm)에 따른 센서 감도 변화를 나타내는 그래프이다.  FIG. 32 shows hydrogen sulfide gas concentration changes (1-5 ppm) of a tin oxide nanotube sensor including Au nanoparticle catalysts bound by the heat treatment of the gold (Au) nanoparticles embedded in apoferritin obtained from Example 3. It is a graph showing a change in sensor sensitivity.
도 33은 300 °C 에서 아포페리틴 내부에 내장된 금 (Au) 나노입자 촉매가 열처리 되면서 결착된 Au 나노입자 촉매를 포함하는 주석산화물 나노튜브 센서를 이용하여 구취의 생체지표 가스로 알려진 황화수소 가스대비 다른 질병의 생체지표 가스인 를루엔, 아세톤, 암모니아, 에탄올 가스에 대하여 능도 1 ppm에서 나타나는 반웅도 값을 나타낸 것이다.  FIG. 33 is a hydrogen sulfide gas known as a biomarker gas of bad breath using a tin oxide nanotube sensor including Au nanoparticle catalysts bound by heat treatment of gold (Au) nanoparticle catalysts embedded in apoferritin at 300 ° C. The hemispheric values at 1 ppm of the abundance of biomarker gases such as toluene, acetone, ammonia and ethanol are shown.
상기의 실험예에서는 휘발성 유기 화합물 가스를 예시로 하여 가스센서 감지소재의 센서특성을 보여주었다. 또한 유해환경 가스를인 H2, NOx, CO, SOx 등에 대해서도 우수한 센서 감지특성을 기대할 수 있으며, 아포페리틴 내부에 내장된 백금 (Pt) 또는 금 (Au) 나노입자 촉매가 열처리 되면서 결착된 Pt 나노입자 촉매 내지는 Au 나노입자 촉매를 포함하는 주석산화물 나노류브를 감지소재로 이용하여 제작한 센서에서 촉매의 '종류를 다르게 하여 줌에 따라, 아세톤과 황화수소에 대한 탁월한 선택성을 갖는 가스센서를 제조함을 확인할 수 있었다. 또한 금속산화물 소재의 종류를 달리하여 줌으로써, 추가적인 선택성 변화 특성을 기대할 수 있어, 다종 촉매입자들이 결착된 다종 금속산화물 나노튜브들을 이용하여, 고감도와 고선택성을 갖는 나노센서 에레이를 제조할 수 있다. 상기 아포페리틴 템플레이트로부터 얻어진 나노입자 촉매가 결착된 금속산화물 나노튜브 감지소재는 탁월한 유해환경 가스 센서 및 날숨 속 휘발성 유기화합물 가스 분석 및 진단을 위한 헬스케어용 가스 센서에 사용될 수 있다. In the above experimental example, the sensor characteristics of the gas sensor sensing material were shown by using the volatile organic compound gas as an example. In addition, harmful gases such as H2, NOx, CO, SOx It can be expected to excellent sensor detection characteristics, such as tin oxide nano-lube including Pt nanoparticle catalyst or Au nanoparticle catalyst is bound by the heat treatment of the platinum (Pt) or gold (Au) nanoparticle catalyst embedded in the apoferritin It was confirmed that the gas sensor having excellent selectivity for acetone and hydrogen sulfide was manufactured by changing the 'type of catalyst' in the sensor manufactured using the sensing material. In addition, by changing the type of metal oxide material, it is possible to expect additional selectivity change characteristics, it is possible to manufacture a nanosensor array having a high sensitivity and high selectivity using the multi-metal oxide nanotubes in which the multi-catalyst particles are bound. The metal oxide nanotube sensing material to which the nanoparticle catalyst obtained from the apoferritin template is bound may be used in an excellent hazardous gas sensor and a gas sensor for healthcare for analyzing and diagnosing volatile organic compound gas in an exhalation.
[부호의 설명]  [Description of the code]
100: 나노입자 촉매를 포함하고 원형 내지 타원 형태의 기공을 다수 포함하는 이중기공 분포를 갖는 1차원 다공성 금속산화물 나노튜브 가스센서용 부재  100: member for the one-dimensional porous metal oxide nanotube gas sensor having a nanoporous catalyst and having a double pore distribution including a plurality of circular to elliptic pores
110: 고온 열처리 이후 아포페리틴 껍질이 제거되고 부분적으로 산화된 상태의 나노입자 촉매  110: nanoparticle catalyst in which apoferritin shell is removed and partially oxidized after high temperature heat treatment
121: 고온 열처리 이후, 구 형태의 폴리스티렌 회생층 템플릿이 분해되고, 금속산화물의 결정화 및 확산에 의해 부분적으로 거대기공이 채워지면서 생성된 원형 내지 타원 형태의 메세기공 131: 고은 열처리 이후, 구 형태의 폴리스티렌 회생층 템플릿이 분홰되어 생성된 거대기공 121: After the high temperature heat treatment, the spherical polystyrene regenerated layer template is decomposed, and the microporous circular to elliptic shape is formed by partially filling the macropores by crystallization and diffusion of the metal oxide. 131: macropore generated by spherical polystyrene regenerative layer template after solid silver heat treatment
1800: 나노입자 촉매를 포함하는 금속산화물 나노튜브 가스센서용부재 1810: 나노입자 촉매를 포함하는 금속산화물 나노튜브  1800: Metal oxide nanotube containing a nanoparticle catalyst. Gas sensor member 1810: Metal oxide nanotube containing a nanoparticle catalyst.
1821: 고온 열처리 이후 아포페리틴 껍질이 제거되고 부분적으로 산화된 상태의 나노입자촉매  1821: Nanoparticle catalyst with apoferritin shell removed and partially oxidized after high temperature heat treatment
2010: Pt 나노입자 촉매 또는 Au 나노입자 촉매를 포함하는 아포페리틴이 내장된 주석산화물 전구체 /고분자 전기방사 용'액 -2010: Pt nanoparticle catalysts or Au nanoparticles Apo ferritin built tin containing catalyst oxide precursor / polymer electrospinning for 'liquid-
2020: 아포페리틴을 이용해 합성된 Pt 나노입자 촉매 2020: Pt nanoparticle catalyst synthesized using apoferritin
2030: Pt 나노입자 촉매 또는 Au 나노입자 촉매를 포함하는 아포페리틴 입자를 포함하는 주석전구체 /고분자 나노섬유  2030: Tin precursor / polymer nanofibers containing apopritein particles containing Pt nanoparticle catalyst or Au nanoparticle catalyst
2040: 부분적으로 산화된 Pt 나노입자 촉매 또는 Au 나노입자 촉매를 포함하는 주석산화물 나노류브  2040: Tin oxide nanoleubes comprising partially oxidized Pt nanoparticle catalysts or Au nanoparticle catalysts
2050: 고온 열처리 이후 아포페리틴 껍질이 제거되고 부분적으로 산화된 Pt 나노입자 촉매 또는 Au 나노입자 촉매  2050: Partially oxidized Pt nanoparticle catalyst or Au nanoparticle catalyst after the apoferritin shell was removed after high temperature heat treatment
【발명의 실시를 위한 형태】 一  [Form for implementation of the invention] 一
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 블과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명에 기재된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의해서 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다. The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may various modifications and changes without departing from the essential characteristics of the present invention. . Therefore, the embodiments described in the present invention are intended to limit the technical idea of the present invention. It is for illustrative purposes only and is not intended to be limiting. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
구형 고분자 회생층 템플릿 및 아포페리틴의 내부 증공 구조 속에 포함푀고 단백질쎄 의해 둘러 쌓인 금속 나노입자 촉매가 복수 개로 내부와 걸면에 분산된 금속산화물 전구체 /고분자 복합 나노섬유의 열처리 과정 중에, 상기 금속 나노입자 촉매가 금속산화물 나노튜브에 균일하게 분포됨과 동시에 거대기공과 미세기공이 금속산화물 나노튜브 표면에 형성되어 이중 평균 표면 기공 분포를 갖는 것을 특징으로 하는 1차원 다공성 금속산화물 나노튜브 복합 센서소재.  During the heat treatment process of the metal oxide precursor / polymer composite nanofibers in which a plurality of metal nanoparticle catalysts contained in the spherical polymer regenerative layer template and the internal vaporization structure of the apoferritin and surrounded by protein are dispersed inside and on the surface thereof, the metal nanoparticles A one-dimensional porous metal oxide nanotube composite sensor material, characterized in that the catalyst is uniformly distributed in the metal oxide nanotubes and at the same time, macropores and micropores are formed on the surface of the metal oxide nanotubes to have a double average surface pore distribution.
【청구항 2】  [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 금속 나노입자 촉매차 금속산화물 나노튜브를 구성하는 ¾질의 내부 및 안쪽 면과 바깥쪽 면에 균일하게 결착되는 것을 특징으로 하는 1차원 다공성 금속산화물 나노튜브 복합 센서소재.  The one-dimensional porous metal oxide nanotube composite sensor material, characterized in that uniform binding to the inner and inner and outer surfaces of ¾ quality constituting the metal nanoparticle catalyst difference metal oxide nanotubes.
【청구항 3】  [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 거대기공의 직경은 50 nm 내지 300 nm의 범위에 포함되고,  The diameter of the macropores is included in the range of 50 nm to 300 nm,
상기 미세기공의 직경은 0.1 nm 내지 50 nm의 범위에 포함되는 것을 특징으로 하는 1차원 다공성 금속산화물 나노튜브 복합 센서소재.  The diameter of the micropores is a one-dimensional porous metal oxide nanotube composite sensor material, characterized in that included in the range of 0.1 nm to 50 nm.
【청구항 4】  [Claim 4]
제 1항에 있어서, 상기 거대기공을 형성할 때 사용되는 구형 고분자 회생층 템플릿은 폴리메틸메타아크릴레이트 (PMMA), 폴리비닐피를리돈 (PVP), 폴리비닐아세테이트 (PVAc), 폴리비닐알콜 (PVA), 폴리스티렌 (PS) 및 폴리아크릴로니트릴 (PAN), 폴리비닐리덴 플루오라이드 (PVDF), 폴리아크릴에시드 (PAA), 폴리다이아닐다이메틸암모늄 클로라이드 (PDADMAC), 폴리스티렌설포네이트 (PSS) 중에서 선택된 1종 또는 2종 이상의 흔합물이 포함 되고, 전기방사 용액과 함께 흔합 되었을 때, 분해되지 않고 분산되는 것을 특징으로 하는 1차원 다공성 금속산화물 나노튜브 복합 센서소재. The method of claim 1, The spherical polymer regenerative layer template used to form the macropores may be polymethyl methacrylate (PMMA), polyvinylpyridone (PVP), polyvinylacetate (PVAc), polyvinyl alcohol (PVA), polystyrene (PS ) And one or two selected from polyacrylonitrile (PAN), polyvinylidene fluoride (PVDF), polyacrylic acid (PAA), polydianyldimethylammonium chloride (PDADMAC), polystyrenesulfonate (PSS) A one-dimensional porous metal oxide nanotube composite sensor material, characterized in that the above-mentioned mixture is contained and dispersed without being decomposed when mixed with an electrospinning solution.
【청구항 5】  [Claim 5]
제 1항에 있어서,  The method of claim 1,
상기 거대기공을 형성할 때 사용되는 구형 고분자 회생충 템플릿은 희생층 콜로이드가 용매에 녹는 고분자라 할 지라도, 촐로이드 표면에 전하를 뛰는 이온 혹은 전하를 띄는 이온 계면활성제 (anionic or cationic surfactants)를 형성시켜 용매에 녹지 않는 고분자 콜로이드를 포함하며, 고분자 희생층 템플릿의 크기는 50 nm-1 μπι 의 범위에서 선택되는 것을 특징으로 하는 1차원 다공성 금속산화물 나노튜브 복합 센서소재.  The spherical polymer regenerative template used to form the macropores forms an ionic or chargeable ionic surfactant (anionic or cationic surfactants) on the surface of the colloid, even though the sacrificial layer colloid is a polymer soluble in a solvent. It comprises a polymer colloid insoluble in the solvent, the size of the polymer sacrificial layer template is a one-dimensional porous metal oxide nanotube composite sensor material, characterized in that selected in the range of 50 nm-1 μπι.
.  .
【청구항 6】 [Claim 6]
제 1항에 있어서,  The method of claim 1,
상기 열처리 과정 중에 상기 구형 고분자 회생층 템플릿의 분해과정과 상기 금속산화물의 결정화 및 확산과정 사이에 시간차이가 존재하여, 상기 구형 고분자 회생층 템플릿의 분해과정에 의해 금속산화물 나노튜브 표면에 생성된 거대기공들이 상기 금속산화물의 결정화 및 확산과정을 통해 부분적으로 채워지는 것을 특징으로 하는 1차원 다공성 금속산화물 나노튜브 복합 센서소재. During the heat treatment process, there is a time difference between the decomposition process of the spherical polymer regenerative layer template and the crystallization and diffusion process of the metal oxide. 1D porous metal oxide nanotube composite sensor material, characterized in that the macropores generated on the surface of the metal oxide nanotubes by the decomposition process of the regenerative layer template is partially filled through the crystallization and diffusion of the metal oxide.
【청구항 7】  [Claim 7]
제 1항에 있어서,  The method of claim 1,
상기 구형 고분자 희생층 템플릿과 아포페리틴의 내부 중공 구조 속에 포함되고 단백질에 의해 둘러 쌓인 상기 금속 나노 자 촉매 사이의 중량비.율 (wt%)은, 1:0.000001-1 의 범위에 포함되는 것을 특징으로 하는 1차원 다공성 금속산화물 나노튜브복합 센서소재 Weight ratio between the spherical polymer sacrificial layer template and the metal nano-catalyst contained within the inner hollow structure of apoferritin and surrounded by a protein . Rate (wt%) is in the range of 1: 0.000001-1, the one-dimensional porous metal oxide nanotube composite sensor material
【청구항 8】  [Claim 8]
제 1항에 있어서,  The method of claim 1,
다공성 금속산화물 나노튜브는 Sn02, W03, Co304, ZnO, Fe203, NiO, In203, Mn203, V203, Mo03, Fe304, V205, Zn2Sn04, LaCo03, Ce02, Eu203, Gd203, Ho03, Er203, Yb203, Lu203, LiV308, SrTi03, Zr02, CuO, InTa04, Nd203 및 Sm203 중에서 선택된 1종의 단일 소재 내지는 또는 2종 이상의 복합체를 이루는 금속산화물을 포함하는 것을 특징으로 1차원 다공성 금속산화물 나노튜브 복합 센서소재.  Porous metal oxide nanotubes are Sn02, W03, Co304, ZnO, Fe203, NiO, In203, Mn203, V203, Mo03, Fe304, V205, Zn2Sn04, LaCo03, Ce02, Eu203, Gd203, Ho03, Er203, Yb203, Lu203, LiV308, A one-dimensional porous metal oxide nanotube composite sensor material comprising a metal oxide constituting a single material or two or more kinds of a single material selected from SrTi03, Zr02, CuO, InTa04, Nd203, and Sm203.
【청구항 9]  [Claim 9]
제 1항에 있어서,  The method of claim 1,
상기 구형 고분자 회생층 템플릿의 증량비율은 나노섬유를 구성하는 고분자 매트릭스 대비 0.1 wt% 내지 50 wt% 의 농도 범위에 포함되는 것을 특징으로 하는 1차원 다공성 금속산화물 나노튜브 복합 센서소재. The increase ratio of the spherical polymer regenerative layer template is a polymer constituting the nanofibers A one-dimensional porous metal oxide nanotube composite sensor material, characterized in that contained in the concentration range of 0.1 wt% to 50 wt% relative to the matrix.
【청구항 10]  [Claim 10]
제 1항에 있어서,  The method of claim 1,
상기 아포페리틴의 내부 중공 구조 속에 포함되고 단백질에 의해 둘러 쌓인 금속 나노입자 촉매의 중량비율은 상기 금속산화물 전구체 /고분자 복합 나노섬유를 이루는 금속산화물 전구체 대비 αοοι wt 내지 50 \ %의 농도 범위에 포함되는 것을 특징으로 하는 1차원 다공성 금속산화물 나노튜브 복합 센서소재.  The weight ratio of the metal nanoparticle catalyst contained in the internal hollow structure of the apoferritin and surrounded by the protein is in the concentration range of αοοι wt to 50 \% of the metal oxide precursor constituting the metal oxide precursor / polymer composite nanofiber. 1D porous metal oxide nanotube composite sensor material, characterized in that.
【청구항 11】  [Claim 11]
제 1항에 있어서,  The method of claim 1,
상기 단백질은, 외경 12 nm와 내경 8 nm로 이루어진 중공구조의 아포페리틴을 포함하고, 상기 구형 고분자 회생층 템플릿을 포함하는 금속산화물 전구체 /고분자 복합 나노섬유에서 상기 구형 고분자 희생층 템플릿들 사이에 밀집되고,  The protein comprises apoferritin having a hollow structure having an outer diameter of 12 nm and an inner diameter of 8 nm, and dense between the spherical polymer sacrificial layer templates in a metal oxide precursor / polymer composite nanofiber including the spherical polymer regenerative layer template. Become,
상기 열처리 과정을 통해 밀집된 구역에 중공구조를 구성하는 상기 단백질의 껍질이 열분해 되어 제거됨에 따라 미세기공들을 형성함으로써 상기 구형 고분자 회생층 템플릿에 의해 형성된 상기 거대기공과 상기 미세기공의 이중 평균 표면 기공 분포를 갖는 것을 특징으로 하는 1차원 다공성 금속산화물 나노튜브 복합 센서소재.  Double average surface pore distribution of the macropores and the micropores formed by the spherical polymer regenerative layer template by forming micropores as the shell of the protein constituting the hollow structure is thermally decomposed and removed through the heat treatment process. A one-dimensional porous metal oxide nanotube composite sensor material having a.
【청구항 12】 제 1항에 있어서, [Claim 12] The method of claim 1,
상기 금속 나노입자 촉매 및 상기 구형 고분자 회생층 템플릿은, 걸면이 전하를 띄고 있어, 상기 금속 나노입자 촉매들간의 웅집과 상기 구형 고분자 회생층 템플릿간의 웅집 없이 상기 금속산화물 전구체 /고분자 복합 나노섬유의 내부와 표면에 균일하게 분산되는 것을 특징으로 하는 1차원 다공성 금속산화물 나노류브 복합 센서소재.. The metal nanoparticle catalyst and the spherical polymer regenerative layer template have a charge surface, and thus, the inside of the metal oxide precursor / polymer composite nanofiber without the spacing between the metal nanoparticle catalysts and the spherical polymer regenerative layer template. And a one-dimensional porous metal oxide nano-leucom composite sensor material, characterized in that uniformly dispersed on the surface. .
【청구항 13】  [Claim 13]
제 1항에 있어서,  The method of claim 1,
상기 1차원 다공성 금속산화물 나노튜브 복합 센서소재가 포함하는 나노튜브는, 외경이 50 nm 내지 2 μπι 의 크기 범위에 포함되고, 내경이 40 nm 내지 1.95 iim의 크기 범위에 포함되며, ¾질의 두께가 10 nm 내지 50 nm의 크기 범위에 포함되고, 5 nm 내지 1 iim의 평균 간격으로 모든 방향의 겉면에 상기 미세기공 (직경이 0.1 nm 내지 50 nm의 범위에 포함됨) 및 상기 거대기공 (직경이 50 nm 내지 300 nm의 범위에 포함됨)을 포함하는 것을 특징으로 하는 1차원 다공성 금속산화물 나노튜브 복합 센서소재.  Nanotubes included in the one-dimensional porous metal oxide nanotube composite sensor material, the outer diameter is included in the size range of 50 nm to 2 μπι, the inner diameter is included in the size range of 40 nm to 1.95 iim, the thickness of ¾ quality It is included in the size range of 10 nm to 50 nm, the micropores (diameter in the range of 0.1 nm to 50 nm) and the macropores (diameter 50) on the outer surface in all directions at an average interval of 5 nm to 1 iim It is included in the range of nm to 300 nm) one-dimensional porous metal oxide nanotubes composite sensor material comprising a.
[청구항 14】  [Claim 14]
제 1항에 있어서,  The method of claim 1,
상기 금속 나노입자촉매는, Pt, Pd, Rh, Ru, Ni, Co, Cr, Ir, Au, Ag, Zn, W, Sn, Sr, In, Pb, Fe, Cu, V, Ta, Sb, Sc, Ti, Mn, Ga 및 Ge 중에서 선택된 1종또는 2 종 이상의 나노입자 촉매를 포함하는 것을 특징으로 하는 1차원 다공성 금속산화물 나노튜브 복합 센서소재. The metal nanoparticle catalyst is Pt, Pd, Rh, Ru, Ni, Co, Cr, Ir, Au, Ag, Zn, W, Sn, Sr, In, Pb, Fe, Cu, V, Ta, Sb, Sc 1-D porous metal oxide comprising one or two or more nanoparticle catalysts selected from among Ti, Mn, Ga and Ge Nanotube composite sensor material.
【청구항 15】  [Claim 15]
아포페리틴의 내부 중공 구조 속에 포함된 단백질에 의해 둘러 쌓인 하나의 단일상 나노입자 내지는 이종 나노입자 촉매가 복수개로 균일하게 분산된 금속산화물 전구체 /고분자 복합 나노섬유를 열분해함으로써 단백질 ¾질 및 고분자가 제거되어 얻어진 나노입자 촉매가 나노튜브 구조의 표면 및 내부에 균일하게 결착되는 것을 특징으로 하는, 나노입자 촉매를 포함하는 다결정 금속산화물 나노튜브복합 센서소재.  Proteins and polymers are removed by pyrolyzing metal oxide precursor / polymer composite nanofibers in which a single phase nanoparticle or heterogeneous nanoparticle catalyst surrounded by a protein contained in the internal hollow structure of apoferritin is plurally uniformly dispersed. And the nanoparticle catalyst thus obtained is uniformly bound to the surface and the inside of the nanotube structure, wherein the polycrystalline metal oxide nanotube composite sensor material comprising the nanoparticle catalyst.
【청구항 16】  [Claim 16]
제 15항에 있어서,  The method of claim 15,
상기 나노튜브 구조는 상기 열분해의 과정에서 금속산화물 전구체가 오스트왈드 라이프닝 (Oswald Ripening) 과정을 통해 결정화되면서 형성되는 것을 특징으로 하는, 나노입자 촉매를 포함하는 다결정 금속산화물 나노튜브 복합 센서소재.  The nanotube structure is characterized in that the metal oxide precursor is formed by crystallization through the Oswald Ripening process in the process of pyrolysis, polycrystalline metal oxide nanotube composite sensor material comprising a nanoparticle catalyst.
【청구항 17】  [Claim 17]
제 15 항에 있어서,  The method of claim 15,
상기 아포페리틴 내부에 치환할 수 있는 금속염의 종류는 Pt, Pd, Rh, Ru, Ni, Co, Cr, Ir, Au, Ag, Zn, W, Sn, Sr, In, Pb, Fe, Cu, V, Ta, Sb, Sc, Ti, Mn, Ga, Ge 등과 같은 급속 또는 금속산화물의 형태로 제작 가능한 하나 또는 둘 이상으로 구성되는 금속염을 특징으로 하며, 대표적으로 copper(II) nitrate, copper(II) chloride, cobalt(II) nitrate, cobalt(II) acetate, lanthanum(III) nitrate, lanthanum(III) acetate, platinum(IV) chloride, platinum(II) acetate, goldQ, III) chloride, gold(III) acetate, silver chloride, silver acetate, iron(III) chloride, iron(III) acetate, nickeldl) chloride, nickel(II) acetate, ruthenium(III) chloride, ruthenium acetate, iridium(III) chloride, iridium acetate, tantalum(V) chloride, palladium(II) chloride 등을포함하여 합성된, 나노입자촉매를 포함하는 다결정 금속산화물 나노튜브 복합 센서소재. Types of metal salts that can be substituted in the apoferritin include Pt, Pd, Rh, Ru, Ni, Co, Cr, Ir, Au, Ag, Zn, W, Sn, Sr, In, Pb, Fe, Cu, V , Characterized by one or more metal salts that can be produced in the form of rapid or metal oxides such as Ta, Sb, Sc, Ti, Mn, Ga, Ge, etc., typically copper (II) nitrate, copper (II) chloride, cobalt (II) nitrate, cobalt (II) acetate, lanthanum (III) nitrate, lanthanum (III) acetate, platinum (IV) chloride, platinum (II) acetate, goldQ, III) chloride, gold (III) acetate, silver chloride, silver acetate, iron (III) chloride, iron (III) acetate, nickeldl) chloride, nickel (II) acetate, ruthenium (III) chloride, ruthenium acetate, iridium (III) chloride, iridium acetate, tantalum (V) A polycrystalline metal oxide nanotube composite sensor material comprising a nanoparticle catalyst synthesized including chloride, palladium (II) chloride and the like.
[청구항 18】  [Claim 18]
제 15 항에 있어서,  The method of claim 15,
아포페리틴의 증공 구조 내에 포함된 이종 나노입자 촉매는 열처리 후에 Pt/Ir02, Pt/Ru02, Pt/Rh203, Pt/NiO, Pt/Co304, Pt/CuO, Pt/Ag20, Pt/Fe203, Au/Ir02, Au/Ru02, Au/Rh203, Au/NiO, Au/Co304, Au/CuO, Au/Ag20, 등이 포함되는 금속 -금속산화물 형태, 또는 pt, Au, Ag, Fe, Ni, Ti, Sn, Si, Al,.Cu, Mg, Sc, V, Cr, Mn, Co, Zn, Sr, W, Ru, Rh, Ir, Ta, Sb, In, Pb, Pd등중에서 선택된 금속- 금속 이종의 조합으로 구성되는 나노입자 촉매, 또는 n-type 금속산화물인 Ti02, ZnO, W03, Sn02, Ir02, In203, V203, Mo03및 p一 type 금속산화물인 Ag20, PdO, Ru02, Rh203, NiO, Co304, CuO, Fe203, Fe304, V205, Cr203, 중에서 선택된 2가지 종으로 구성된 금속산화물 -금속산화물 형태군에서 선정된 하나의 이종 나노입자촉매를포함하는 다결정 금속산화물 나노튜브복합 센서소재. Heterogeneous nanoparticle catalysts contained in the vaporization structure of apoferritin are Pt / Ir02, Pt / Ru02, Pt / Rh203, Pt / NiO, Pt / Co304, Pt / CuO, Pt / Ag20, Pt / Fe203, Au / Ir02 , Metal-metal oxide forms including Au / Ru02, Au / Rh203, Au / NiO, Au / Co304, Au / CuO, Au / Ag20, etc., or p t , Au, Ag, Fe, Ni, Ti, Sn Combination of metal-metal heterogeneous selected from among Si, Al, Cu, Mg, Sc, V, Cr, Mn, Co, Zn, Sr, W, Ru, Rh, Ir, Ta, Sb, In, Pb, Pd Nanoparticle catalyst consisting of Ti02, ZnO, W03, Sn02, Ir02, In203, V203, Mo03 and p20 type metal oxides Ag20, PdO, Ru02, Rh203, NiO, Co304, CuO, A polycrystalline metal oxide nanotube composite sensor material comprising one heterogeneous nanoparticle catalyst selected from the group consisting of two kinds selected from Fe203, Fe304, V205 and Cr203.
【 구항 19】 제 15항에 있어서, 【Old Port 19】 The method of claim 15,
상기 나노입자 촉매가 복수개로 균일하게 분산된 금속산화물 전구체 /고분자 복합 나노섬유에서 고분자와 상기 나노입자 촉매를 포함하는 아포페리틴 사이의 비율은 1 :0.000001 내지 1 :0.1의 범위를 갖는 것을 특징으로 하는, 나노입자 촉매를 포함하는 다결정 금속산화물 나노튜브 복합 센서소재.  In the metal oxide precursor / polymer composite nanofibers in which the nanoparticle catalyst is uniformly dispersed in a plurality, the ratio between the polymer and the apoferritin containing the nanoparticle catalyst is in the range of 1: 0.000001 to 1: 0.1. , Polycrystalline metal oxide nanotube composite sensor material comprising a nanoparticle catalyst.
【청구항 20】  [Claim 20]
제 15항에 있어서,  The method of claim 15,
상기 아포페리틴은, 중공 구조 형태의 단백질로 이루어진 물질로, 하나 또는 둘 이상의 금속이온을 치환 가능하고, 환원 과정을 거쳐 0.1 nm 내지 8 nm의 직경 크기를 갖는 나노입자 촉매를 포함하는 것을 특징으로 하는, 나노입자 촉매를 포함하는 다결정 금속산화물 나노튜브 복합 센서소재.  The apoferritin is a material consisting of a protein having a hollow structure, and is capable of substituting one or more metal ions, and comprises a nanoparticle catalyst having a diameter size of 0.1 nm to 8 nm through a reduction process. , Polycrystalline metal oxide nanotube composite sensor material comprising a nanoparticle catalyst.
【청구항 21】  [Claim 21]
제 15항에 있어서'  The method of claim 15
상기 아포페리틴의 중공 구조 내부에 포함된 나노입자 촉매는, 상기 아포페리틴의 걸면이 전하를 띄는 단백질 껍질로 이루어져, 상기 나노입자 촉매들간의 웅집 없이 금속산화물 전구체 /고분자 복합 나노섬유 내부와 표면에 균일하게 분산되는 것을 특장으로 하는, 나노입자 촉매를 포함하는 다결정 금속산화물 나노튜브 복합 센서소재.  The nanoparticle catalyst contained in the hollow structure of the apoferritin is composed of a protein shell having a charge on the surface of the apoferritin, and is uniform on the inside and the surface of the metal oxide precursor / polymer composite nanofiber without interspersing between the nanoparticle catalysts. A polycrystalline metal oxide nanotube composite sensor material comprising a nanoparticle catalyst, which is characterized in that it is dispersed.
【청구항 22】  [Claim 22]
제 15항에 있어서, 상기 나노튜브 구조는 외경의 크기가 50 nm 내지 2 iim 의 길이 범위를 갖고 내경의 크기가 40 nm 내지 1.9 μπι의 길이 범위를 갖고, The method of claim 15, The nanotube structure has an outer diameter ranging from 50 nm to 2 iim in length and an inner diameter ranging from 40 nm to 1.9 μπι,
상기 나노튜브 구조를 구성하는 껍질의 두께는 10 nm ~ 100 nm의 범위를 가지며, 1 μηι 내지 300 um의 길이 범위를 갖는 것을 특징으로 하는 나노입자 촉매를 포함하는다결정 금속산화물 나노튜브 복합 센서소재.  The thickness of the shell constituting the nanotube structure has a range of 10 nm ~ 100 nm, comprising a nanoparticle catalyst having a length range of 1 μηι to 300 um polycrystalline metal oxide nanotube composite sensor material.
【청구항 23]  [Claim 23]
제 15항에 있어서,  The method of claim 15,
상가 다결정 금속산화물 나노튜브 복합 센서소재가 포함하는 다결정 금속산화물 나노튜브를 구성하는 결정립 밉자의 크기가 0.2 nm 내지 100 nm의 범위를 갖는 것을 특징으로 하는, 나노입자 촉매를 포함하는 다결정 금속산화물 나노튜브 복합 센서소재.  The polycrystalline metal oxide nanotubes comprising a nanoparticle catalyst, characterized in that the size of the crystal grain mips constituting the polycrystalline metal oxide nanotubes included in the composite polycrystalline metal oxide nanotube composite sensor material has a range of 0.2 nm to 100 nm. Composite sensor material.
【청구항 24】  [Claim 24]
제 15항에 있어서,  The method of claim 15,
분산 및 분쇄과정을 통하여 길이방향으로 더 짧아진 튜브 형상 및 나노튜브가 파쇄되어 형성된 나노입자 촉매를 포함하는 2차원의 금속산화물 파쇄면을 더 포함하여 구성되는 것을 특징으로 하는, 나노입자 촉매를 포함하는 다결정 금속산화물 나노튜브 복합 센서소재.  Nanoparticle catalyst, characterized in that it further comprises a two-dimensional metal oxide crushing surface comprising a nanoparticle catalyst formed by crushing the tube and the tube shorter in the longitudinal direction through the dispersion and grinding process Polycrystalline metal oxide nanotube composite sensor material.
【청구항 25】 .  [Claim 25].
제 15항의 나노입자 촉매를 포함하는 다결정 금속산화물 나노튜브 복합 센서소재를 1종 내지는 2종 이상의 어레이 가스센서용 감지소재로 포함하는 가스센서. A polycrystalline metal oxide nanotube composite sensor material comprising the nanoparticle catalyst of claim 15 comprising one or two or more kinds of sensing materials for an array gas sensor. Gas sensor.
【청구항 26】  [Claim 26]
(a) 아포페리틴의 내부 중공 구조 속에 포함된 단백질에 의해 둘러 쌓인 금속 나노입자촉매가균일하게 분산된 제 1 분산용액을 합성하는 단계; .  (a) synthesizing the first dispersion solution in which the metal nanoparticle catalyst surrounded by the protein contained in the internal hollow structure of the apoferritin is uniformly dispersed; .
(b) 상기 제 1 분산용액을 구형 고분자 회생층 템플릿이 분산된 제 2 분산용액과 흔합하고, 흔합된 분산용액을 금속산화물 전구체와 고분자가 녹아 있는 용매와함께 흔합하여, 전기방사용액을 제조하는 단계;  (b) mixing the first dispersion solution with the second dispersion solution in which the spherical polymer regenerative layer template is dispersed, and mixing the mixed dispersion solution with a metal oxide precursor and a solvent in which the polymer is dissolved to prepare an electrospinning solution. step;
(c) 상기 전기방사 용액을 전기방사법을 이용하여 금속산화물 전구체 /고분자 복합 나노섬유의 내부 및 표면에 상기 구형 고분자 회생층 템플릿과 상기 아포페리틴의 내부 중공 구조 속에 포함된 단백질에 의해 둘러 쌓인 금속 나노입자 촉매가복수 개로 분포된 복합나노섬유를 형성하는 단계; 및  (c) The metal nanoparticles of the electrospinning solution surrounded by the protein contained in the spherical polymer regenerative layer template and the internal hollow structure of the apoferritin on the inside and the surface of the metal oxide precursor / polymer composite nanofiber using the electrospinning method. Forming a composite nanofiber having a plurality of particle catalysts distributed therein; And
(d) 상기 복합 나노섬유의 열처리 과정 중에 나노섬유를 구성하는 고분자 매트릭스와 상기 구형 고분자 회생층 템플릿 및 상기 금속 나노입자 촉매를 둘러싸고 있는 단백질 포함하는 유기물들이 동시에 제거되어 원형 내지는 타원형 모양의 이중 표면 기공 분포를 갖고, 상기 금속 나노입자 촉매가 나노튜브를 구성하는 껍질의 내부 및 안쪽 면과 바깥쪽 면에 균일하게 결착된 1차원 다공성 금속산화물 나노튜브를 형성하는 단계를 포함하는 것을 특징으로 하는 이증 평균 표면 기공 분포를 갖는 촉매가 결착된 금속산화물 나노튜브 복합 감지소재의 제조방법.  (d) During the heat treatment process of the composite nanofibers, the polymer matrix constituting the nanofibers and the organic material including the protein surrounding the spherical polymer regenerative layer template and the metal nanoparticle catalyst are simultaneously removed, thereby forming double-surface pores of round or oval shape. A binary mean, wherein the metal nanoparticle catalyst comprises forming one-dimensional porous metal oxide nanotubes uniformly bound to the inner and inner and outer surfaces of the shell constituting the nanotubes; A method for producing a metal oxide nanotube composite sensing material to which a catalyst having a surface pore distribution is bound.
【청구항 27】 제 26항에 있어서, [Claim 27] The method of claim 26,
(e) 상기 1차원 다공성 금속산화물 나노튜브를 분산시키거나 분쇄하여 드랍 코팅, 스핀 코팅, 잉크젯 프린팅 디스펜싱 중 적어도 하나의 코팅공정을 이용하여 반도체식 가스센서 측정용 센서 전극 위에 코팅함으로써 저항변화식 반도체 가스센서를 제작하는 단계를 더 포함하고,  (e) Resistance change type by coating on the sensor electrode for semiconductor gas sensor measurement by dispersing or pulverizing the one-dimensional porous metal oxide nanotube using at least one coating process among drop coating, spin coating, and inkjet printing dispensing. Further comprising the step of manufacturing a semiconductor gas sensor,
상기 저항변화식 반도체 가스센서를 통해 환경유해가스 및 질병진단을 위한 생체지표 가스의 검출이 가능한 것을 특징으로 하는 이중 평균 표면 기공 분포를 갖는 촉매가 결착된 금속산화물 나노튜브 복합 감지소재의 제조방법.  A method of manufacturing a metal oxide nanotube composite sensing material with a catalyst having a double average surface pore distribution, characterized in that detection of environmentally harmful gases and biomarker gases for disease diagnosis is possible through the resistance-change semiconductor gas sensor.
【청구항 28】  [Claim 28]
제 26항에 있어서,  The method of claim 26,
상기 (a) 단계는,  In step (a),
아포페리틴 내부에 금속염을 치환시키고 치환된 금속염을 환원제를 이용하여 환원시킴으로써 상기 금속 나노입자 촉매가 아포페리틴 내부에 생성되는 과정으로서,  As a process in which the metal nanoparticle catalyst is produced inside the apoferritin by substituting a metal salt inside the apoferritin and reducing the substituted metal salt using a reducing agent.
상기 아포페리틴을 포함하는 용액은, pH 2 내지 3의 범위 내지 pH 7.5 내지 9의 범위에 포함되며, 0.1 mg/ml 내지 150 mg/ml 범위의 염분 비율을 갖는 것을 특징으로 하는 이중 평균 표면 기공 분포를 갖는 촉매가 결착된 금속산화물 나노튜브 복합감지소재의 제조방법.  The solution containing apoferritin is included in the range of pH 2-3 and pH 7.5-9, and has a salinity ratio in the range of 0.1 mg / ml to 150 mg / ml. Method for producing a metal oxide nanotube composite sensing material to which a catalyst having a binder.
-  -
【청구항 29】 [Claim 29]
제 26항에 있어서, 상기 (d) 단계는, The method of claim 26, In step (d),
고분자가 열처리를 통해 분해될 때 이산화탄소와 수증기 가스가 발생하는 현상을 이용하여, 10 °C/min 내지 50 °C/min 범위 사이의 승은 속도를 가지는 열처리 과정을 통해 고분자를 급속 분해를 시킴으로써, 단위 시간당 방출되는 이산화탄소와 수증기의 양을 증가시켜, 상기 금속 나노입자 촉매들이 나노튜브 외부와 내부에 균일하게 결착되는 것을 특징으로 하는 이중 평균 표면 기공 분포를 갖는촉매가결착된 금속산화물 나노튜브 복합 감지소재의 제조방법. Using the phenomenon that carbon dioxide and steam gas are generated when the polymer is decomposed through the heat treatment, the polymer is rapidly decomposed through a heat treatment process having a rate of 10 ° C / min to 50 ° C / min. By increasing the amount of carbon dioxide and water vapor released per hour, the metal nanoparticle catalysts are uniformly bound to the inside and outside of the nanotube, and the catalyst-bound metal oxide nanotube composite sensing material having a double average surface pore distribution is detected. Manufacturing method.
[청구항 30】  [Claim 30]
나노입자 촉매를 포함하는 다결정 금속산화물 나노튜브를 이용한 가스센서용 촉매 -금속산화물 나노튜브복합 감지소재 제조방법에 있어서,  In the gas sensor catalyst-metal oxide nanotube composite sensing material manufacturing method using a polycrystalline metal oxide nanotube containing a nanoparticle catalyst,
(a) 아포페리틴의 중공 구조 내부에 나노입자촉매를 합성하는 단계;  (a) synthesizing a nanoparticle catalyst inside the hollow structure of apoferritin;
(b) 나노입자 촉매를 증공 구조의 내부에 포함하고 있는 아포페리틴, 금속산화물 전구체, 고분자가 용매에 흔합되어 분산된 전기방사 용액을 제조하는 단계;  (b) preparing an electrospinning solution in which an aperitine, a metal oxide precursor, and a polymer containing a nanoparticle catalyst inside the vaporization structure are mixed in a solvent;
(c) 상기 전기방사 용액을 전기방사법을 이용하여 금속산화물 전구체 /고분자 나노섬유뫼 표면 및 내부에 아포페리틴에 내장된 나노입자 촉매가 균일하게 분포된 복합나노섬유를 형성하는단계; 및  (c) forming the composite nanofibers in which the nanoparticle catalyst embedded in the apoferritin is uniformly distributed on the surface and inside of the metal oxide precursor / polymer nanofiber using the electrospinning method; And
(d) 열처리 과정을 통해 금속산화물 나노튜브의 껍질 (shell) 안쪽면과 걸면 그리고 껍질 내부에 나노입자 촉매가 균일하게 결착된 다결정 금속산화물 나노튜브를 형성하는 단계를 포함하는 것을 특징으로 하는, 가스센서용 촉매- 금속산화물 나노튜브 복합 감지소재 제조방법. (d) forming a polycrystalline metal oxide nanotube in which the nanoparticle catalyst is uniformly bound on the inner surface of the metal oxide nanotube and on the inner surface of the metal oxide nanotube through the heat treatment process. Catalysts for Sensors Metal oxide nanotube composite sensing material manufacturing method.
【청구항 31】  [Claim 31]
제 30항에 있어서  The method of claim 30
(e) 상기 다결정 금속산화물 나노튜브를 분삳시키거나 분쇄하여, 반도체식 가스센서 측정용 센서 전극위에 드랍 코팅, 스핀 코팅, 잉크젯 프린팅, 디스펜싱 중 적어도 하나의 코팅공정을 이용하여 코팅하는 단계를 더 포함하고,  (e) dividing or pulverizing the polycrystalline metal oxide nanotubes, and coating the at least one coating process among drop coating, spin coating, inkjet printing, and dispensing on the sensor electrode for measuring a semiconductor gas sensor. Including,
환경유해가스 및 질병진단을 위한 생체지표 가스를 검출하는 것을 특징으로 하는, 가스센서용 촉매 -금속산화물 나노튜브 복합 감지소재 제조방법.  Method for producing a catalyst-metal oxide nanotube composite sensing material for a gas sensor, characterized in that for detecting environmentally harmful gas and biomarker gas for disease diagnosis.
[청구항 32】  [Claim 32]
제 30항에 있어서  The method of claim 30
상기 (a) 단계는,  In step (a),
상기 아포페리틴 내부에 금속염을 치환시켜 상기 나노입자 촉매를 상기 아포페리틴 내부에 내장시키고'  Substituting the metal salt in the apoferritin to embed the nanoparticle catalyst in the apoferritin '
상기 아포페리틴을 포함하는 용액은, pH 8.0-9.0 범위의 염기성을 나타내며, 0.1 mg/ml - 150 mg/ml 범위의 염분 비율을 갖는 것을 특징으로 하는, 가스센서용 촉매 -금속산화물 나노튜브 복합 감지소재 제조방법.  The solution containing apoferritin has a basic range of pH 8.0-9.0, and has a salinity range of 0.1 mg / ml-150 mg / ml, catalyst-metal oxide nanotube complex sensing for a gas sensor. Material manufacturing method.
【청구항 33】  [Claim 33]
제 30항에 있어서,  The method of claim 30,
상기 (d) 단계는,  In step (d),
상기 열처리 과정을 통해 상기 고분자 및 상기 아포페리틴의 걸면을 둘러싸고 있는 단백질이 제거되고, 상기 금속산화물 전구체를 산화시킴과 동시에 상기 열처리 과정 증 승은속도를 조절함으로써, 오스트왈드 라이프닝 (Ostwald ripening) 현상을 통해 상기 나노입자 촉매가 결착된 1 차원의 상기 금속산화물 나노류브를 형성하는 것을 특징으로 하는, 가스센서용 촉매 -금속산화물 나노류브 복합 감지소재 제조방법. The surface of the polymer and the apoferritin through the heat treatment process The surrounding protein is removed, the metal oxide precursor is oxidized, and the increase in the heat treatment process is controlled by controlling the speed, so that the nanoparticle catalyst is bound by the nanoparticle catalyst through the Ostwald ripening phenomenon. A method for producing a catalyst-metal oxide nano-lube composite sensing material for a gas sensor, characterized in that to form a nano-lube.
【청구항 34】  [Claim 34]
제 30항쎄 있어서,  Article 30
상기 (d) 단계는,  In step (d),
상기 나노압자 촉매가 균일하게 결착된 나노튜브를 제작하기 위해 상기 승은속도를 분당 10 °C 내지 분당 50 °C 범위 사이에서 조절하는 것을 특징으로 하는, 가스센서용촉매 -금속산화물 나노류브 복합 감지소재 제조방법. In order to fabricate the nanotubes in which the nano-indenter catalyst is uniformly bound, the rising speed is adjusted between 10 ° C. per minute and 50 ° C. per minute. Manufacturing method.
【청구항 35】  [Claim 35]
제 30항에 있어서,  The method of claim 30,
상기 (a) 단계는,  In step (a),
상기 아포페리틴의 내부에 특정 금속이온을 치환하는 경우, 상기 특정 금속이온이 상기 아포페리틴의 내부에 확산되도록 1시간 이상 24시간 이하의 시간범위 동안 대기하는 것을 특징으로 하는, 가스센서용촉매 -금속산화물 나노튜브 복합감지소재 제조방법. ,  When a specific metal ion is substituted in the interior of the apoferritin, the specific metal ion is waited for a time range of 1 hour or more and 24 hours or less so that the specific metal ion diffuses inside the apoferritin, a catalyst for a gas sensor Oxide nanotube composite sensing material manufacturing method. ,
PCT/KR2015/013707 2014-12-23 2015-12-15 Member for gas sensor, having a metal oxide semiconductor tube wall with micropores and macropores, gas sensor, and method for manufacturing same WO2016105012A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/111,173 US10274446B2 (en) 2014-12-23 2015-12-15 Member for gas sensor, having a metal oxide semiconductor tube wall with micropores and macropores, gas sensor, and method for manufacturing same
US16/352,620 US11099147B2 (en) 2014-12-23 2019-03-13 Member for gas sensor, having a metal oxide semiconductor tube wall with micropores and macropores, gas sensor, and method for manufacturing same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20140186846 2014-12-23
KR10-2014-0186846 2014-12-23
KR1020150034024A KR101753953B1 (en) 2014-12-23 2015-03-11 Gas sensor and member using metal oxide semiconductor nanotubes including nanoparticle catalyst functionalized by nano-catalyst included within apoferritin, and manufacturing method thereof
KR10-2015-0034024 2015-03-11
KR10-2015-0148273 2015-10-23
KR1020150148273A KR101716966B1 (en) 2014-12-23 2015-10-23 Gas sensor and member using metal oxide semiconductor nanotubes composed of thin-wall including mesopores and macropores, and manufacturing method thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/111,173 A-371-Of-International US10274446B2 (en) 2014-12-23 2015-12-15 Member for gas sensor, having a metal oxide semiconductor tube wall with micropores and macropores, gas sensor, and method for manufacturing same
US16/352,620 Division US11099147B2 (en) 2014-12-23 2019-03-13 Member for gas sensor, having a metal oxide semiconductor tube wall with micropores and macropores, gas sensor, and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2016105012A1 true WO2016105012A1 (en) 2016-06-30

Family

ID=56150974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013707 WO2016105012A1 (en) 2014-12-23 2015-12-15 Member for gas sensor, having a metal oxide semiconductor tube wall with micropores and macropores, gas sensor, and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2016105012A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109959682A (en) * 2017-12-26 2019-07-02 意法半导体有限公司 Adaptive testing method and design for low-power MOX sensor
CN112067666A (en) * 2020-08-13 2020-12-11 东北电力大学 Preparation method of silver phosphate doped tin dioxide gas sensor gas sensitive material
CN113155913A (en) * 2021-04-21 2021-07-23 浙江大学 Gas sensor for detecting sulfur hexafluoride decomposition product and preparation method thereof
CN114755280A (en) * 2021-01-08 2022-07-15 长城汽车股份有限公司 Ammonia gas sensor, method for measuring ammonia gas content in exhaust gas aftertreatment system and automobile exhaust gas aftertreatment system
CN117904673A (en) * 2024-03-19 2024-04-19 四川大学 Electrocatalyst and preparation and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140015897A (en) * 2012-07-26 2014-02-07 한국과학기술원 Composite materials of graphene and one dimensional metal oxide, method for fabricating the same and sensors comprising the same
KR101400605B1 (en) * 2013-04-29 2014-05-27 한국과학기술원 Intense pulsed light sintering induced metal or metal oxide catalyst-metal oxide nano-structure composite materials and method of fabricating the composite materials and exhaled breath and environmental monitoring sensors using the composite materials
KR20140136070A (en) * 2013-05-16 2014-11-28 한국과학기술원 Gas sensor member using metal oxide semiconductor nanofiber and dual catalysts, and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140015897A (en) * 2012-07-26 2014-02-07 한국과학기술원 Composite materials of graphene and one dimensional metal oxide, method for fabricating the same and sensors comprising the same
KR101400605B1 (en) * 2013-04-29 2014-05-27 한국과학기술원 Intense pulsed light sintering induced metal or metal oxide catalyst-metal oxide nano-structure composite materials and method of fabricating the composite materials and exhaled breath and environmental monitoring sensors using the composite materials
KR20140136070A (en) * 2013-05-16 2014-11-28 한국과학기술원 Gas sensor member using metal oxide semiconductor nanofiber and dual catalysts, and manufacturing method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM, SANG JUN ET AL.: "Highly Sensitive and Fast Responding Exhaled Breath Sensor using WO 3 Nanofibers Functionalized by Apoferritin-Encapsulated Pt Nanoparticles", EUROPEN HEALTH PSYCHOLOGY SOCIETY 2014, 29 April 2014 (2014-04-29) *
QIU, H ET AL.: "Ferritin-Templated Synthesis and Self-Assembly of Pt Nanoparticles on a Monolithic Porous Graphene Network for Electrocatalysis in Fuel Cells", ACS APPL. MATER. INTERFACES, vol. 5, no. 3, 18 January 2013 (2013-01-18), pages 787 - 787 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109959682A (en) * 2017-12-26 2019-07-02 意法半导体有限公司 Adaptive testing method and design for low-power MOX sensor
US11009474B2 (en) 2017-12-26 2021-05-18 Stmicroelectronics Pte Ltd Adaptive test method and designs for low power mox sensor
CN109959682B (en) * 2017-12-26 2022-12-09 意法半导体有限公司 Adaptive test method and design for low power MOX sensor
US11808723B2 (en) 2017-12-26 2023-11-07 Stmicroelectronics Pte Ltd Adaptive test method and designs for low power mox sensor
CN112067666A (en) * 2020-08-13 2020-12-11 东北电力大学 Preparation method of silver phosphate doped tin dioxide gas sensor gas sensitive material
CN112067666B (en) * 2020-08-13 2024-03-29 东北电力大学 Preparation method of silver phosphate doped tin dioxide gas sensor gas-sensitive material
CN114755280A (en) * 2021-01-08 2022-07-15 长城汽车股份有限公司 Ammonia gas sensor, method for measuring ammonia gas content in exhaust gas aftertreatment system and automobile exhaust gas aftertreatment system
CN113155913A (en) * 2021-04-21 2021-07-23 浙江大学 Gas sensor for detecting sulfur hexafluoride decomposition product and preparation method thereof
CN113155913B (en) * 2021-04-21 2022-07-08 浙江大学 Gas sensor for detecting sulfur hexafluoride decomposition product and preparation method thereof
CN117904673A (en) * 2024-03-19 2024-04-19 四川大学 Electrocatalyst and preparation and application thereof
CN117904673B (en) * 2024-03-19 2024-05-24 四川大学 Electrocatalyst and preparation and application thereof

Similar Documents

Publication Publication Date Title
US11099147B2 (en) Member for gas sensor, having a metal oxide semiconductor tube wall with micropores and macropores, gas sensor, and method for manufacturing same
KR101633554B1 (en) Gas sensor and member using metal oxide semiconductor nanofibers including nanoparticle catalyst functionalized by bifunctional nano-catalyst included within apoferritin, and manufacturing method thereof
KR101787190B1 (en) Gas sensor and member using porous metal oxide semiconductor composite nanofibers including nanoparticle catalyst functionalized by nano-catalyst included within metal-organic framework, and manufacturing method thereof
KR101980442B1 (en) Gas sensor and membrane using metal oxide semiconductor combination of cellulose and apoferritin bio-templates derived nanotube functionalized by nanoparticle catalyst, and manufacturing mehtod thereof
KR20180065493A (en) Gas sensor and member using metal oxide nanotubes including nanoscale heterogeneous catalysts by using metal-organic framework, and manufacturing method thereof
KR101837287B1 (en) Gas sensor and member using ultrasmall catalyst loaded porous hollow metal oxide semiconductor composite nanospheres, and manufacturing method thereof
KR101552323B1 (en) Gas sensor and member using porous metal oxide semiconductor nano structure including nano-catalyst from ferritin, and manufacturing method thereof
WO2016105012A1 (en) Member for gas sensor, having a metal oxide semiconductor tube wall with micropores and macropores, gas sensor, and method for manufacturing same
KR101973901B1 (en) Gas sensor and member using metal oxide nanofibers including nanocatalysts by using chitosan-metal complexes, and manufacturing method thereof
KR101893267B1 (en) Gas sensor using interconnected multi-dimensional porosity loaded METAL OXIDE nanofiberS functionalized by nanoparticle catalyst, and manufacturing method thereof
KR101719422B1 (en) Porous Metal Oxide Composite Nanofibers including Nanoparticle Catalysts Functionalized by using Nanoparticle Dispersed Emulsion Solution, Gas Sensors using the same and Manufacturing Method thereof
KR101932349B1 (en) Gas sensor member using nanoscale catalysts loaded hollow metal oxide nanocages using metal-organic framework templates, and manufacturing method thereof
KR101893326B1 (en) Gas sensor using interconnected multi-dimensional porosity loaded METAL OXIDE nanofiberS functionalized by nanoparticle catalyst, and manufacturing method thereof
KR101714961B1 (en) Gas Sensor Fabrication method of catalyst-loaded porous metal oxide nanofiber metal oxide nanofiber networks prepared by transferring of catalyst-coated polymeric sacrificial colloid template, and gas sensors using the same
KR101684738B1 (en) Gas Sensor Fabrication method of catalyst-loaded porous metal oxide nanofiber metal oxide nanofiber networks prepared by transferring of catalyst-coated polymeric sacrificial colloid template, and gas sensors using the same
KR102014603B1 (en) Porous Metal Oxide Nanotube, Gas Sensing Layers Using the Same, and Their Fabrication Method
KR101746301B1 (en) Composite oxide semiconductors with hierarchical hollow structures and manufacturing method thereof
KR102092452B1 (en) Gas sensor and mebber using metal oxide nanofibers including nanoscale catalysts and multichannel, and manufacturing method thereof
KR102046704B1 (en) Gas sensor using metal oxide hollow spheres functionalized by catalysts and manufacturing method thereof
KR102162021B1 (en) Gas sensor using POROUS ONE DIMENSIONAL NANOFIBER CONSISTs OF TWO DIMENSIONAL metal oxide NANOSHEET and manufacturing method thereof
CN113984840A (en) Member for gas sensor and method for producing metal oxide nanofiber
KR101832110B1 (en) Gas sensor and member using catalyst functionalized macroporous tungsten oxide nanofibers synthesized by catalyst decorated polymeric colloid templates, and manufacturing method thereof
KR101817015B1 (en) Gas sensor and member using catalyst functionalized macroporous tungsten oxide nanofibers synthesized by catalyst decorated polymeric colloid templates, and manufacturing method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15111173

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873539

Country of ref document: EP

Kind code of ref document: A1