Nothing Special   »   [go: up one dir, main page]

WO2016199227A1 - ハイブリッド車両のモード遷移制御装置 - Google Patents

ハイブリッド車両のモード遷移制御装置 Download PDF

Info

Publication number
WO2016199227A1
WO2016199227A1 PCT/JP2015/066634 JP2015066634W WO2016199227A1 WO 2016199227 A1 WO2016199227 A1 WO 2016199227A1 JP 2015066634 W JP2015066634 W JP 2015066634W WO 2016199227 A1 WO2016199227 A1 WO 2016199227A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle speed
power generation
mode transition
mode
temperature
Prior art date
Application number
PCT/JP2015/066634
Other languages
English (en)
French (fr)
Inventor
智宏 宮川
古閑 雅人
月▲崎▼ 敦史
良平 豊田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP15894912.3A priority Critical patent/EP3309031B1/en
Priority to MX2017015643A priority patent/MX366082B/es
Priority to JP2017522794A priority patent/JP6365774B2/ja
Priority to CN201580080794.XA priority patent/CN107683231B/zh
Priority to KR1020177035289A priority patent/KR101834144B1/ko
Priority to RU2017144543A priority patent/RU2653944C1/ru
Priority to US15/580,707 priority patent/US10232698B2/en
Priority to BR112017026163-4A priority patent/BR112017026163B1/pt
Priority to PCT/JP2015/066634 priority patent/WO2016199227A1/ja
Priority to CA2988532A priority patent/CA2988532C/en
Publication of WO2016199227A1 publication Critical patent/WO2016199227A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2702/00Control devices wherein the control is combined with or essentially influenced by the engine or coupling, e.g. in an internal combustion engine, the control device is coupled with a carburettor control device or influenced by carburettor depression
    • B60K2702/02Automatic transmission with toothed gearing
    • B60K2702/04Control dependent on speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/087Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/246Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • B60W2710/022Clutch actuator position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • B60W2710/085Torque change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/086Power
    • B60W2710/087Power change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/088Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/421Dog type clutches or brakes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a mode transition control device for a hybrid vehicle that performs mode transition control from traveling in “series HEV mode” to traveling in “parallel HEV mode”.
  • the present invention has been made paying attention to the above problem, and an object of the present invention is to provide a mode transition control device for a hybrid vehicle that prevents the second power generation system from overheating during traveling in the series HEV mode.
  • a hybrid vehicle of the present invention includes a first electric motor that can be mechanically coupled to drive wheels, a second electric motor that is mechanically coupled to an internal combustion engine, a first electric motor, and a second electric motor.
  • An electrically coupled battery When the charge capacity of the battery is less than or equal to a predetermined value, the vehicle travels in the series HEV mode using the first electric motor supplied with the electric power generated by the second electric motor and the battery electric power.
  • the power generation by the second electric motor is stopped, and the mode transition to the parallel HEV mode using the first electric motor and the internal combustion engine as drive sources is performed.
  • a mode transition controller is provided. The mode transition controller, when traveling in the series HEV mode, predicts a rise in the temperature of the second power generation system including the second motor, and sets the switching vehicle speed to a lower speed than the first switching vehicle speed before the temperature rise determination. Change to 2 switching vehicle speed.
  • the vehicle speed for switching to the parallel HEV mode is lower than the first switching vehicle speed before the temperature increase determination.
  • the power generation by the second motor is stopped at the timing when the vehicle speed becomes the second switching vehicle speed before reaching the first switching vehicle speed. Then, control for mode transition to the parallel HEV mode is performed. For this reason, the power generation stop timing in the second electric motor is advanced. As a result, it is possible to prevent the second power generation system from being overheated during traveling in the series HEV mode.
  • 1 is an overall system diagram showing a drive system and a control system of a hybrid vehicle to which a mode transition control device of Example 1 is applied. It is a control system block diagram which shows the structure of the transmission control system of the multistage gear transmission mounted in the hybrid vehicle to which the mode transition control apparatus of Example 1 was applied. It is a shift map schematic diagram showing the concept of switching the shift speed in a multi-stage gear transmission mounted on a hybrid vehicle to which the mode transition control device of the first embodiment is applied. 3 is a fastening table showing gear speeds according to switching positions of three engagement clutches in a multi-stage gear transmission mounted on a hybrid vehicle to which the mode transition control device of Embodiment 1 is applied.
  • FIG. 6 is a flowchart showing a flow of mode transition control processing executed by the transmission control unit of the first embodiment.
  • 6 is a flowchart showing a flow of MG2 excessive temperature rise prevention control processing in the mode transition control processing of FIG. 5.
  • It is a map figure which shows the shift schedule map selected while the battery SOC is drive
  • FIG. 6 is a characteristic diagram showing a relationship between a road surface gradient and a self-supporting engine speed. It is a characteristic view which shows the relationship between an engine speed and acceleration. It is explanatory drawing which shows the example of a driving
  • FIG. 5 is a torque flow diagram showing the flow of MG1 torque and engine torque in a multi-stage gear transmission when “series HEV mode” is selected by a shift stage of “EV1st ICE-”.
  • FIG. 5 is a torque flow diagram showing the flow of MG1 torque and engine torque in a multi-stage gear transmission when “parallel HEV mode” by a shift stage of “EV1st ICE1st” is selected.
  • the mode transition control device of the first embodiment is a hybrid vehicle including an engine, two motor generators, and a multi-stage gear transmission having three engagement clutches as drive system components (an example of a hybrid vehicle). ).
  • the configuration of the mode transition control device of the hybrid vehicle in the first embodiment is defined as “overall system configuration”, “shift control system configuration”, “shift stage configuration”, “mode transition control processing configuration”, “MG2 overheating prevention” The description will be divided into “control processing configuration”.
  • FIG. 1 shows a drive system and a control system of a hybrid vehicle to which the mode transition control device of the first embodiment is applied.
  • the overall system configuration will be described below with reference to FIG.
  • the drive system of the hybrid vehicle includes an internal combustion engine ICE, a first motor generator MG1, a second motor generator MG2, and a multi-stage gear transmission 1 having three engagement clutches C1, C2, C3.
  • ICE is an abbreviation for “Internal-Combustion Engine”.
  • the internal combustion engine ICE is, for example, a gasoline engine or a diesel engine disposed in the front room of the vehicle with the crankshaft direction as the vehicle width direction.
  • the internal combustion engine ICE is connected to the transmission case 10 of the multi-stage gear transmission 1 and the output shaft of the internal combustion engine is connected to the first shaft 11 of the multi-stage gear transmission 1.
  • the internal combustion engine ICE basically starts MG2 using the second motor generator MG2 as a starter motor. However, the starter motor 2 is left in preparation for the case where the MG2 start using the high-power battery 3 cannot be secured, such as at a very low temperature.
  • Both the first motor generator MG1 and the second motor generator MG2 are three-phase AC permanent magnet synchronous motors using the high-power battery 3 as a common power source.
  • the stator of first motor generator MG1 is fixed to the case of first motor generator MG1, and the case is fixed to transmission case 10 of multi-stage gear transmission 1.
  • a first motor shaft that is integral with the rotor of first motor generator MG1 is connected to second shaft 12 of multi-stage gear transmission 1.
  • the stator of the second motor generator MG2 is fixed to the case of the second motor generator MG2, and the case is fixed to the transmission case 10 of the multi-stage gear transmission 1.
  • a second motor shaft integrated with the rotor of second motor generator MG2 is connected to sixth shaft 16 of multi-stage gear transmission 1.
  • a first inverter 4 that converts direct current to three-phase alternating current during power running and converts three-phase alternating current to direct current during regeneration is connected to the stator coil of first motor generator MG1 via first AC harness 5.
  • a second inverter 6 is connected to the stator coil of the second motor generator MG2 via a second AC harness 7 for converting direct current into three-phase alternating current during power running and converting three-phase alternating current into direct current during regeneration.
  • the high-power battery 3 is connected to the first inverter 4 and the second inverter 6 by a DC harness 8 via a junction box 9.
  • the multi-stage gear transmission 1 is a constantly meshing transmission having a plurality of gear pairs with different gear ratios, and is arranged in parallel with each other in a transmission case 10 and has six gear shafts 11 to 16 provided with gears. And three engagement clutches C1, C2, C3 for selecting a gear pair.
  • As the gear shaft a first shaft 11, a second shaft 12, a third shaft 13, a fourth shaft 14, a fifth shaft 15 and a sixth shaft 16 are provided.
  • As the engagement clutch a first engagement clutch C1, a second engagement clutch C2, and a third engagement clutch C3 are provided.
  • the transmission case 10 is provided with an electric oil pump 20 that supplies lubricating oil to a bearing portion and a gear meshing portion in the case.
  • the first shaft 11 is a shaft to which the internal combustion engine ICE is connected.
  • a first gear 101, a second gear 102, and a third gear 103 are arranged in order from the right side of FIG. .
  • the first gear 101 is provided integrally (including integrated fixing) with respect to the first shaft 11.
  • the second gear 102 and the third gear 103 are idle gears in which bosses protruding in the axial direction are inserted into the outer periphery of the first shaft 11, and are connected to the first shaft 11 via the second engagement clutch C2. It is provided so that drive connection is possible.
  • the second shaft 12 is a cylindrical shaft that is connected to the first motor generator MG1 and is coaxially arranged with the axial center aligned with the outer position of the first shaft 11, and the second shaft 12 has a right side in FIG.
  • a fourth gear 104 and a fifth gear 105 are arranged in this order.
  • the fourth gear 104 and the fifth gear 105 are provided integrally with the second shaft 12 (including integrated fixing).
  • the third shaft 13 is a shaft disposed on the output side of the multi-stage gear transmission 1.
  • the third shaft 13 includes a sixth gear 106, a seventh gear 107, and an eighth gear in order from the right side of FIG. 108, a ninth gear 109, and a tenth gear 110 are arranged.
  • the sixth gear 106, the seventh gear 107, and the eighth gear 108 are provided integrally with the third shaft 13 (including integrated fixing).
  • the ninth gear 109 and the tenth gear 110 are idle gears in which bosses protruding in the axial direction are inserted into the outer periphery of the third shaft 13, and are connected to the third shaft 13 via the third engagement clutch C3. It is provided so that drive connection is possible.
  • the sixth gear 106 meshes with the second gear 102 of the first shaft 11, the seventh gear 107 meshes with the sixteenth gear 116 of the differential gear 17, and the eighth gear 108 meshes with the third gear 103 of the first shaft 11.
  • the ninth gear 109 meshes with the fourth gear 104 of the second shaft 12, and the tenth gear 110 meshes with the fifth gear 105 of the second shaft 12.
  • the fourth shaft 14 is a shaft whose both ends are supported by the transmission case 10, and the eleventh gear 111, the twelfth gear 112, and the thirteenth gear 113 are sequentially arranged on the fourth shaft 14 from the right side in FIG. Be placed.
  • the eleventh gear 111 is provided integrally with the fourth shaft 14 (including integrated fixation).
  • the twelfth gear 112 and the thirteenth gear 113 are idle gears in which bosses protruding in the axial direction are inserted into the outer periphery of the fourth shaft 14, and are connected to the fourth shaft 14 via the first engagement clutch C1. It is provided so that drive connection is possible.
  • the eleventh gear 111 is engaged with the first gear 101 of the first shaft 11
  • the twelfth gear 112 is engaged with the second gear 102 of the first shaft 11
  • the thirteenth gear 113 is engaged with the fourth gear 104 of the second shaft 12. Mesh with.
  • the fifth shaft 15 is a shaft whose both ends are supported by the transmission case 10, and a fourteenth gear 114 that meshes with the eleventh gear 111 of the fourth shaft 14 is provided integrally (including integral fixing).
  • the sixth shaft 16 is a shaft to which the second motor generator MG2 is connected, and a fifteenth gear 115 that meshes with the fourteenth gear 114 of the fifth shaft 15 is provided integrally (including integrated fixing).
  • the second motor generator MG2 and the internal combustion engine ICE are mechanically connected by a gear train including a 15th gear 115, a 14th gear 114, an 11th gear 111, and a first gear 101 that mesh with each other.
  • This gear train is a reduction gear train that decelerates the MG2 rotation speed when the internal combustion engine ICE is started by the second motor generator MG2, and the engine rotation is generated during the MG2 power generation that generates the second motor generator MG2 by driving the internal combustion engine ICE. It becomes a speed increasing gear train that increases the number.
  • the first engagement clutch C1 is interposed between the twelfth gear 112 and the thirteenth gear 113 of the fourth shaft 14, and is not fastened by a meshing stroke in a rotationally synchronized state by having no synchronization mechanism. It is a dog clutch.
  • the first engagement clutch C1 When the first engagement clutch C1 is in the left engagement position (Left), the fourth shaft 14 and the thirteenth gear 113 are drivingly connected.
  • the first engagement clutch C1 is in the neutral position (N), the fourth shaft 14 and the twelfth gear 112 are released, and the fourth shaft 14 and the thirteenth gear 113 are released.
  • the first engagement clutch C1 is in the right engagement position (Right), the fourth shaft 14 and the twelfth gear 112 are drivingly connected.
  • the second engagement clutch C2 is interposed between the second gear 102 and the third gear 103 of the first shaft 11, and is not fastened by a meshing stroke in a rotationally synchronized state by having no synchronization mechanism. It is a dog clutch.
  • the second engagement clutch C2 When the second engagement clutch C2 is in the left engagement position (Left), the first shaft 11 and the third gear 103 are drivingly connected.
  • the second engagement clutch C2 When the second engagement clutch C2 is in the neutral position (N), the first shaft 11 and the second gear 102 are released, and the first shaft 11 and the third gear 103 are released.
  • the second engagement clutch C2 is in the right engagement position (Right), the first shaft 11 and the second gear 102 are drivingly connected.
  • the third engagement clutch C3 is interposed between the ninth gear 109 and the tenth gear 110 of the third shaft 13, and is not fastened by a meshing stroke in a rotationally synchronized state by having no synchronization mechanism. It is a dog clutch.
  • the third engagement clutch C3 When the third engagement clutch C3 is in the left side engagement position (Left), the third shaft 13 and the tenth gear 110 are drivingly connected.
  • the third engagement clutch C3 is in the neutral position (N), the third shaft 13 and the ninth gear 109 are released, and the third shaft 13 and the tenth gear 110 are released.
  • the third engagement clutch C3 is in the right engagement position (Right), the third shaft 13 and the ninth gear 109 are drivingly connected.
  • a sixteenth gear 116 meshed with a seventh gear 107 provided integrally (including integral fixing) with the third shaft 13 of the multi-stage gear transmission 1 is left and right via the differential gear 17 and the left and right drive shafts 18. Are connected to the drive wheel 19.
  • the hybrid vehicle control system includes a hybrid control module 21, a motor control unit 22, a transmission control unit 23, and an engine control unit 24.
  • the hybrid control module 21 (abbreviation: “HCM”) is an integrated control means having a function of appropriately managing the energy consumption of the entire vehicle.
  • the hybrid control module 21 is connected to other control units (such as a motor control unit 22, a transmission control unit 23, and an engine control unit 24) via a CAN communication line 25 so that bidirectional information can be exchanged.
  • CAN of the CAN communication line 25 is an abbreviation of “Controller Area Network”.
  • the motor control unit 22 (abbreviation: “MCU”) performs power running control and regenerative control of the first motor generator MG1 and the second motor generator MG2 in accordance with control commands for the first inverter 4 and the second inverter 6.
  • Control modes for the first motor generator MG1 and the second motor generator MG2 include “torque control” and “rotational speed FB control”. “Torque control” performs control for causing the actual motor torque to follow the target motor torque when the target motor torque to be shared with respect to the target driving force is determined.
  • “Rotational speed FB control” determines the target motor rotational speed to synchronize the clutch input / output rotational speed when there is a shift request for meshing and engaging any of the engagement clutches C1, C2, and C3 during travel. Control is performed to output FB torque so that the rotation speed converges to the target motor rotation speed.
  • the transmission control unit 23 (abbreviation: “TMCU”) outputs a current command to the electric actuators 31, 32, 33 (see FIG. 2) based on predetermined input information, thereby shifting the multi-stage gear transmission 1. Shift control for changing gears is performed.
  • the engagement clutches C1, C2, and C3 are selectively meshed and engaged / released, and a gear pair involved in power transmission is selected from a plurality of pairs of gears.
  • the first motor generator MG1 or the first motor is used to ensure mesh engagement by suppressing the differential rotational speed of the clutch input / output.
  • 2-Rotation speed FB control rotation synchronization control
  • the engine control unit 24 (abbreviation: “ECU”) outputs a control command to the motor control unit 22, the ignition plug, the fuel injection actuator, and the like based on predetermined input information, thereby controlling the start-up of the internal combustion engine ICE and the internal combustion engine. Performs engine ICE stop control and fuel cut control.
  • the multi-stage gear transmission 1 is characterized in that efficiency is improved by reducing drag by employing engagement clutches C1, C2, and C3 (dog clutches) by mesh engagement as transmission elements. . If there is a shift request for engaging and engaging any of the engagement clutches C1, C2, and C3, the differential rotational speed of the clutch input / output is set to the first motor generator MG1 (when the engagement clutch C3 is engaged) or the second motor. This is realized by synchronizing the rotation with the generator MG2 (when the engagement clutches C1 and C2 are engaged) and starting the meshing stroke when it is within the synchronization determination rotation speed range.
  • the transmission control system includes a first engagement clutch C1, a second engagement clutch C2, and a third engagement clutch C3 as engagement clutches.
  • a first electric actuator 31, a second electric actuator 32, and a third electric actuator 33 are provided.
  • a first engagement clutch operation mechanism 41, a second engagement clutch operation mechanism 42, and a third engagement clutch operation mechanism 43 are provided as mechanisms for converting the actuator operation into a clutch engagement / release operation.
  • a transmission control unit 23 is provided as a control means for the first electric actuator 31, the second electric actuator 32, and the third electric actuator 33.
  • the first engagement clutch C1, the second engagement clutch C2, and the third engagement clutch C3 are in a neutral position (N: release position), a left engagement position (Left: left clutch engagement engagement position), and a right engagement position. (Right: right clutch meshing engagement position).
  • Each of the engagement clutches C1, C2, and C3 has the same configuration, and includes coupling sleeves 51, 52, and 53, left dog clutch rings 54, 55, and 56, and right dog clutch rings 57, 58, and 59.
  • the coupling sleeves 51, 52, and 53 are provided so as to be capable of stroke in the axial direction by spline coupling via hubs (not shown) fixed to the fourth shaft 14, the first shaft 11, and the third shaft 13.
  • dog teeth 51a, 51b, 52a, 52b, 53a, 53b with flat top surfaces are provided on both sides. Furthermore, fork grooves 51c, 52c, and 53c are provided at the center portions in the circumferential direction of the coupling sleeves 51, 52, and 53.
  • the left dog clutch rings 54, 55, 56 are fixed to the bosses of the respective gears 113, 103, 110, which are the left idle gears of the respective engagement clutches C1, C2, C3, and are flat top surfaces facing the dog teeth 51a, 52a, 53a. Dog teeth 54a, 55a, and 56a.
  • the right dog clutch rings 57, 58, 59 are fixed to the bosses of the respective gears 112, 102, 109, which are the right idle gears of the engagement clutches C1, C2, C3, and are flat top surfaces facing the dog teeth 51b, 52b, 53b. Dog teeth 57b, 58b, 59b.
  • the first engagement clutch operating mechanism 41, the second engagement clutch operating mechanism 42, and the third engagement clutch operating mechanism 43 are used to rotate the electric actuators 31, 32, 33, and to couple the coupling sleeves 51, 52, 53. This is a mechanism for converting to an axial stroke motion.
  • Each of the engagement clutch operating mechanisms 41, 42, 43 has the same configuration, and includes rotation links 61, 62, 63, shift rods 64, 65, 66, and shift forks 67, 68, 69.
  • One end of each of the rotation links 61, 62, 63 is provided on the actuator shaft of the electric actuator 31, 32, 33, and the other end is connected to the shift rods 64, 65, 66 so as to be relatively displaceable.
  • the shift rods 64, 65, 66 are provided with springs 64 a, 65 a, 66 a at rod division positions, and can be expanded and contracted according to the magnitude and direction of the rod transmission force.
  • One end of the shift forks 67, 68, 69 is fixed to the shift rods 64, 65, 66, and the other end is disposed in the fork grooves 51c, 52c, 53c of the coupling sleeves 51, 52, 53.
  • the transmission control unit 23 includes a vehicle speed sensor 71, an accelerator opening sensor 72, a transmission output shaft rotational speed sensor 73, an engine rotational speed sensor 74, an MG1 rotational speed sensor 75, an MG2 rotational speed sensor 76, an inhibitor switch 77, a battery.
  • a sensor signal or a switch signal from the SOC sensor 78 or the like is input.
  • the transmission output shaft rotation speed sensor 73 is provided at the shaft end of the third shaft 13 and detects the shaft rotation speed of the third shaft 13.
  • a position servo control unit (for example, a position servo system based on PID control) that controls engagement and disengagement of engagement clutches C1, C2, and C3 determined by the positions of the coupling sleeves 51, 52, and 53 is provided.
  • This position servo control unit inputs sensor signals from the first sleeve position sensor 81, the second sleeve position sensor 82, and the third sleeve position sensor 83. Then, the sensor values of the sleeve position sensors 81, 82, 83 are read, and electric currents are supplied to the electric actuators 31, 32, 33 so that the positions of the coupling sleeves 51, 52, 53 become the fastening position or the releasing position by the meshing stroke. give. In other words, the idle gear is set in the engagement state where the dog teeth welded to the coupling sleeves 51, 52, 53 and the dog teeth welded to the idle gear are engaged with each other, so that the idle gear is in the fourth axis.
  • the multi-stage gear transmission 1 of the first embodiment reduces power transmission loss by not having a rotation difference absorbing element such as a fluid coupling, and reduces the ICE gear stage by assisting the internal combustion engine ICE by motors, thereby reducing the size ( EV shift stage: 1-2 speed, ICE shift stage: 1-4 speed).
  • a rotation difference absorbing element such as a fluid coupling
  • the gear configuration of the multi-stage gear transmission 1 will be described with reference to FIGS. 3 and 4.
  • the concept of the gear position is that, in the starting region where the vehicle speed VSP is equal to or lower than the predetermined vehicle speed VSP0, the multi-stage gear transmission 1 does not have a starting element (sliding element).
  • the motor starts with force alone.
  • the concept of the shift stage is adopted in which the engine driving force is supported by the “parallel HEV mode” that assists with the motor driving force. That is, as the vehicle speed VSP increases, the ICE shift speed shifts from (ICE1st ⁇ ) ICE2nd ⁇ ICE3rd ⁇ ICE4th, and the EV shift speed shifts from EV1st ⁇ EV2nd.
  • FIG. 3 shows all gear speeds that can be theoretically realized by the multi-stage gear transmission 1 having the engagement clutches C1, C2, and C3.
  • “Lock” in FIG. 3 represents an interlock shift speed that is not established as a shift speed
  • “EV-” represents a state in which the first motor generator MG1 is not drivingly connected to the drive wheels 19.
  • “-” Represents a state in which the internal combustion engine ICE is not drivingly connected to the drive wheels 19.
  • the shift stage of “EV-ICEgen” is selected at the time of MG1 idle power generation by the first motor generator MG1 by the internal combustion engine ICE or double idle power generation by adding MG2 power generation to MG1 power generation while the vehicle is stopped.
  • the “Neutral” gear stage is a gear stage that is selected during MG2 idle power generation by the second motor generator MG2 by the internal combustion engine ICE while the vehicle is stopped.
  • the shift stage of “EV1st ICE-” is set in the “EV mode” in which the internal combustion engine ICE is stopped and the first motor generator MG1 travels, or while the second motor generator MG2 generates power by the internal combustion engine ICE. This is the gear stage selected in the “series HEV mode” in which the first motor generator MG1 performs the first-speed EV traveling.
  • the shift stage of “EV2nd ICE-” is set in the “EV mode” in which the internal combustion engine ICE is stopped and the first motor generator MG1 travels, or while the second motor generator MG2 generates power with the internal combustion engine ICE. This is the gear stage selected in the “series HEV mode” in which the first motor generator MG1 performs the second-speed EV traveling.
  • the multi-stage gear transmission 1 uses the multi-stage gear transmission 1 to remove all the gear stages from which the "interlock gear stage (cross hatching in FIG. 4)" and "the gear stage that cannot be selected by the shift mechanism (upward hatching in FIG. A plurality of shift stages that can be realized.
  • the gears that cannot be selected by the shift mechanism include “EV1.5 ICE2nd” in which the first engagement clutch C1 is “Left” and the second engagement clutch C2 is “Left”, and the first engagement “EV2.5 ICE4th” in which the clutch C1 is “Left” and the second engagement clutch C2 is “Right”.
  • the reason why it cannot be selected by the shift mechanism is that one first electric actuator 31 is a shift actuator that is also used for the two engagement clutches C1 and C2, and one engagement clutch by the C1 / C2 selection operation mechanism 40. Is due to being neutral locked.
  • the “normally used shift speeds” include EV shift speed (EV1st1ICE-, EV2nd ICE-), ICE shift speed (EV- ICE2nd, EV- ICE3rd, EV- ICE4th), and combination shift speed (EV1st ICE2nd, EV1st ICE3rd, EV2nd ICE2nd, EV2nd ICE3rd, EV2nd ICE4th) is added by adding “Neutral”.
  • FIG. 5 shows a flow of mode transition control processing executed by the transmission control unit 23 (mode transition controller) of the first embodiment.
  • mode transition controller transmission control unit 23
  • This mode transition control process is performed in a low vehicle speed travel range from when the EV starts to the mode transition to the “parallel HEV mode”.
  • step S1 it is determined whether or not there is a start operation. If YES (with start operation), the process proceeds to step S2, and if NO (no start operation), the determination in step S1 is repeated.
  • the “start operation” is determined by, for example, a travel range selection operation, a brake release operation, and an accelerator stepping operation after the brake is released.
  • step S2 following the determination that there is a start operation in step S1 or the determination that there is no mode transition in step S5, it is determined whether or not the battery SOC is greater than or equal to the power generation request threshold A. If YES (battery SOC ⁇ A, no power generation request), the process proceeds to step S3. If NO (battery SOC ⁇ A, power generation is requested), the process proceeds to step S6.
  • the information of “battery SOC” is acquired from the battery SOC sensor 78.
  • step S3 following the determination of battery SOC ⁇ A in step S2, that is, no power generation request, the third engagement clutch C3 of the multi-stage gear transmission 1 is switched from “N” to “left” and “EV1st ICE ⁇ ”Is selected. Then, the first motor generator MG1 is driven in accordance with the accelerator depression operation, and the process proceeds to step S4.
  • step S4 following the MG1 drive in step S3, MG1 travel is performed in “EV mode” by the shift stage of “EV1st ICE-”, and the process proceeds to step S5.
  • the first motor generator MG1 performs torque control for outputting torque according to the target driving force determined by the accelerator opening APO and the vehicle speed VSP.
  • step S5 it is determined that the MG1 travel in the “EV mode” in step S4, or the mode transition at the first switching vehicle speed VSP1 in step S11 is possible, or the MG2 excessive temperature rise in step S12.
  • whether there is a mode transition to the “parallel HEV mode” may be determined when there is a shift request to the gear position of the “parallel HEV mode”, or the second motor generator MG2 is stopped based on the shift request. It may be determined at the time, or may be determined when the shift is completed.
  • step S6 following the determination that battery SOC ⁇ A in step S2, that is, that there is a power generation request, an operation (power generation) request for second motor generator MG2 that suppresses the decrease in battery SOC is issued, and the process proceeds to step S7.
  • step S7 following the MG2 operation request in step S6, it is determined whether or not the internal combustion engine ICE is in operation (engine operation). If YES (engine is running), the process proceeds to step S9. If NO (engine is stopped), the process proceeds to step S8.
  • “when the engine is operating” is determined, for example, when starting from a situation where idle power generation is performed by engine operation in response to a power generation request while the vehicle is stopped.
  • step S8 following the determination in step S7 that the engine is stopped, the internal combustion engine ICE is started (engine start) using the second motor generator MG2 as a starter motor, and the process proceeds to step S9.
  • step S9 following the determination that the engine is operating in step S7 or starting the engine in step S8, the third engagement clutch C3 of the multi-stage gear transmission 1 is switched from “N” to “left”. To select the gear position of “EV1st ICE-”. Then, the first motor generator MG1 is driven and the second motor generator MG2 generates electric power according to the accelerator depression operation, and the process proceeds to step S10.
  • step S10 following the MG1 drive + MG2 power generation in step S9, MG2 power generation + MG1 travel in the “series HEV mode” with the shift stage “EV1st ICE-” is performed, and the process proceeds to step S11.
  • step S11 it is determined whether or not mode transition at the first switching vehicle speed VSP1 is possible following the MG2 power generation + MG1 travel in the “series HEV mode” in step S10. If YES (mode transition at VSP1 is possible), the process proceeds to step S5. If NO (mode transition at VSP1 is not possible), the process proceeds to step S12.
  • first switching vehicle speed VSP1 refers to “Series EV1st (series HEV mode)” to “EV1st ICE1st (series HEV mode)” in the shift schedule map shown in FIG. 7 selected when the battery SOC is traveling in the low SOC region.
  • “Parallel HEV mode)” refers to the switching vehicle speed for issuing a mode transition request (for example, about 10km / h).
  • the determination of whether or not mode transition is possible at the first switching vehicle speed VSP1 is performed as follows. First, a continuous power generation permission time is set in advance as a time during which the increase in the MG2 temperature is suppressed when the second motor generator MG2 is continuously generated. If the vehicle speed VSP is expected to rise to the first switching vehicle speed VSP1 within the continuous power generation permission time, such as when starting with a large accelerator operation amount, etc. Therefore, it is determined that mode transition at the first switching vehicle speed VSP1 is possible.
  • the vehicle speed VSP will not increase to the first switching vehicle speed VSP1 even when the elapsed time from the start of traveling in the “series HEV mode” becomes the continuous power generation permission time, such as when starting with a small accelerator operation amount. In this case, it is determined that mode transition at the first switching vehicle speed VSP1 is impossible.
  • step S12 following the determination that the mode transition at the first switching vehicle speed VSP1 in step S11 is impossible, the MG2 excessive temperature rise prevention control is executed based on the flowchart shown in FIG. 6, and the process proceeds to step S5. .
  • FIG. 6 shows the flow of the MG2 excessive temperature rise prevention control process executed in step S12 of the mode transition control process of FIG. Hereinafter, each step of FIG. 6 will be described.
  • step S120 following the determination that the mode change at the first switching vehicle speed VSP1 in step S11 of FIG. 5 is impossible, “EV1st” from “SeriesEV1st (series HEV mode)” of the shift schedule map (FIG. 7).
  • the first switching vehicle speed VSP1 solid line
  • ICE1st parallel HEV mode
  • VSP2 broken line
  • the “second switching vehicle speed VSP2” is set to a lower vehicle speed value as the road surface gradient is gentle (for example, about 5 km / h for a flat road with a road surface gradient of 0%).
  • the “shift schedule map” is selected in the low SOC region, and as shown in FIG. 7, the required driving force (Driving force) and the vehicle speed VSP are used as coordinate axes, and “EV1st ICE1st” is used as the normal-use shift stage on the coordinate plane.
  • the “Series EV1st” selection region is assigned to the low vehicle speed range from the start as the drive drive region by depressing the accelerator.
  • the EV1st ICE1st, EV1st ICE2nd, and EV1st ICE3rd selection areas are assigned to the medium vehicle speed range, and the EV2nd ICE2nd, EV2nd ICE3rd, and EV2nd ICE4th selection areas are assigned to the high vehicle speed range. It is done.
  • a selection area of “EV1st (EV2nd)” is assigned to the low to medium vehicle speed range, and a selection area of “EV2nd” is assigned to the high vehicle speed range.
  • step S121 following the change of the switching vehicle speed in step S120 or the determination that the estimated MG2 temperature ⁇ T1 in step S123, it is determined whether or not the vehicle speed VSP at that time is less than the second switching vehicle speed VSP2. . If YES (VSP ⁇ VSP2), the process proceeds to step S122. If NO (VSP ⁇ VSP2), the process proceeds to step S131.
  • the information of “vehicle speed VSP” is acquired from the vehicle speed sensor 71.
  • step S122 following the determination in step S121 that VSP ⁇ VSP2, the second motor generator MG2 generates power by running in the “series HEV mode”, and the process proceeds to step S123.
  • the power is set to high power (for example, 15 kW) that is normal MG2 generated power.
  • the power generated by the second motor generator MG2 can be switched between high power (for example, 15 KW) and low power (for example, 5 KW).
  • step S123 following the MG2 power generation (high power) in step S122, it is determined whether or not the estimated MG2 temperature is equal to or higher than the first temperature threshold T1. If YES (estimated MG2 temperature ⁇ T1), the process proceeds to step S124, and if NO (estimated MG2 temperature ⁇ T1), the process returns to step S121.
  • the “estimated MG2 temperature” is an estimated temperature of the second motor generator MG2 used for power generation, and is estimated by an arithmetic expression using the MG2 generated power and the MG2 power generation duration.
  • step S124 following the determination that the estimated MG2 temperature ⁇ T1 in step S123 or the estimated MG2 temperature ⁇ T2 in step S126, the vehicle speed VSP at that time is the same as in step S121. It is determined whether the vehicle speed is less than the second switching vehicle speed VSP2. If YES (VSP ⁇ VSP2), the process proceeds to step S125. If NO (VSP ⁇ VSP2), the process proceeds to step S131.
  • step S125 following the determination in step S124 that VSP ⁇ VSP2, low power generation is performed by the second motor generator MG2 by running in the “series HEV mode”, and the process proceeds to step S126.
  • the power generated by the second motor generator MG2 is reduced from a high power (for example, 15 KW) to a low power (for example, 5 KW).
  • step S126 following MG2 power generation (low power) in step S125, it is determined whether or not the estimated MG2 temperature is equal to or higher than the second temperature threshold T2. If YES (estimated MG2 temperature ⁇ T2), the process proceeds to step S127. If NO (estimated MG2 temperature ⁇ T2), the process returns to step S124.
  • step S127 following the determination that the estimated MG2 temperature ⁇ T2 in step S126, or the MG1 acceleration in step S130, mode transition at the first switching vehicle speed VSP1 is possible as in step S11 of FIG. It is determined whether or not. If YES (mode transition at VSP1 is possible), the process proceeds to step S128. If NO (mode transition at VSP1 is not possible), the process proceeds to step S129.
  • step S128 following the determination that the mode transition at VSP1 is possible in step S127, the second switching vehicle speed VSP2 changed in step S120 is returned to the first switching vehicle speed VSP1 before the change, The process proceeds to step S5.
  • step S129 following the determination that the mode transition at VSP1 is impossible in step S127, it is determined whether or not the vehicle speed VSP at that time is less than the second switching vehicle speed VSP2, as in steps S121 and S124. To do. If YES (VSP ⁇ VSP2), the process proceeds to step S130. If NO (VSP ⁇ VSP2), the process proceeds to step S131.
  • step S130 following the determination that VSP ⁇ VSP2 in step S129, the acceleration based on the engine speed Ne at that time so as to be at least the second switching vehicle speed VSP2 or more based on the characteristics shown in FIG.
  • the vehicle is accelerated by increasing the required driving force for the first motor generator MG1, and the process returns to step S127.
  • the information of “engine speed Ne” is acquired by the engine speed sensor 74.
  • step S131 following the determination that VSP ⁇ VSP2 in steps S121, S124, and S129, based on the mode transition request when VSP ⁇ VSP2 (FIG. 7), the second motor generator MG2 The power generation is stopped and the process proceeds to step S132.
  • step S132 following the MG2 power generation stop in step S131, the mode is changed from “Series HEV mode” to “Parallel HEV mode” by shifting from “SeriesEV1st” to “EV1st ICE1st”. Go to the end.
  • mode transition control processing operation the operations in the mode transition control device of the hybrid vehicle of the first embodiment are referred to as “mode transition control processing operation”, “MG2 excessive temperature rise prevention control processing operation”, “mode transition control operation”, and “mode transition control characteristic operation”. It is divided and explained.
  • step S5 the third engagement clutch C3 is switched from “N” to “left”, and driving of the first motor generator MG1 is started in response to the accelerator depression operation.
  • step S4 MG1 travel is performed in the “EV mode” at the gear position “EV1st ICE-”.
  • step S7 following the MG2 operation request in step S6, it is determined whether or not the engine is operating. If the engine is operating, the process proceeds directly to step S9. If the engine is stopped, the process proceeds from step S7 to step S8. In step S8, the engine is started using the second motor generator MG2 as a starter motor, and the process proceeds to step S9. From step S9, the process proceeds from step S10 to step S11. In step S11, it is predicted whether or not the mode transition to the “parallel HEV mode” is possible at the first switching vehicle speed VSP1.
  • step S11 While it is determined in step S11 that the mode can be changed at the first switching vehicle speed VSP1 depending on the acceleration start scene or the like, and in step S5, it is determined that there is no mode change to the “parallel HEV mode”, step S2 is performed.
  • Step S6 ⁇ Step S7 ⁇ Step S9 ⁇ Step S10 ⁇ Step S11 ⁇ Step S5 is repeated. Therefore, in step S9, the third engagement clutch C3 is switched from “N” to “left”, and the first motor generator MG1 is driven in accordance with the accelerator depression operation.
  • step S10 MG2 power generation + MG1 traveling is performed in the “series HEV mode” at the shift stage “EV1st ICE ⁇ ”.
  • step S11 determines that the mode change to the “parallel HEV mode” is impossible at the first switching vehicle speed VSP1.
  • step S2, step S6, step S7, step S9, step S10, step S11, step S12, and step S5 is repeated. Therefore, in step S12, MG2 excessive temperature rise prevention control is executed based on the flowchart shown in FIG.
  • step S11 of FIG. 5 If it is determined in step S11 of FIG. 5 that the mode change at the first switching vehicle speed VSP1 is impossible, the process proceeds to step S120 of the flowchart of FIG. In step S120, the first switching vehicle speed VSP1 for switching from “SeriesEV1st (series HEV mode)” to “EV1st ICE1st (parallel HEV mode)” in the shift schedule map (FIG. 7) is lower than the first switching vehicle speed VSP1. It is changed to 2 switching vehicle speed VSP2.
  • step S121 If it is determined in step S121 that the vehicle speed VSP is less than the second switching vehicle speed VSP2, the process proceeds from step S121 to step S122 to step S123 in the flowchart of FIG. As long as it is determined in step S123 that the estimated MG2 temperature ⁇ T1, the flow of steps S121, S122, and S123 is repeated in the flowchart of FIG. Therefore, until the estimated MG2 temperature reaches the first temperature threshold value T1, in step S122, power generation (high power) by the second motor generator MG2 is maintained by traveling in the “series HEV mode”.
  • step S123 the process proceeds from step S123 to step S124. If it is determined in step S124 that the vehicle speed VSP is less than the second switching vehicle speed VSP2, the process proceeds from step S124 to step S125 to step S126. As long as it is determined in step S126 that the estimated MG2 temperature ⁇ T2, the flow of steps S124 ⁇ step S125 ⁇ step S126 is repeated in the flowchart of FIG. Therefore, until the estimated MG2 temperature reaches from the first temperature threshold value T1 to the second temperature threshold value T2, the generated power is switched to low power, and the power generation by the second motor generator MG2 by running in the “series HEV mode” ( Low power).
  • step S126 If it is determined in step S126 that the estimated MG2 temperature ⁇ T2, the process proceeds from step S126 to step S127 ⁇ step S129. If it is determined in step S127 that mode transition at the first switching vehicle speed VSP1 is not possible and it is determined in step S129 that the vehicle speed VSP is less than the second switching vehicle speed VSP2, the process proceeds to step S130. The vehicle is accelerated by increasing the required driving force for the first motor generator MG1.
  • step S130 If it is determined in step S130 that mode transition at the first switching vehicle speed VSP1 is possible due to MG1 acceleration in step S130, the process proceeds to step S128.
  • step S1208 the switching vehicle speed changed in step S120 is changed. The previous first switching vehicle speed VSP1 is restored, and the process proceeds to step S5 in FIG.
  • step S130 mode transition at the first switching vehicle speed VSP1 is impossible in step S127, but if it is determined in step S129 that the vehicle speed VSP is equal to or higher than the second switching vehicle speed VSP2, The process proceeds from step S129 to step S131 ⁇ step S132 ⁇ end.
  • step S131 the power generation by the second motor generator MG2 is stopped, and in the next step S132, a gear stage of “EV1st ICE1st” is selected, and travel is performed after changing the mode to “parallel HEV mode”.
  • step S121 or step S124 If it is determined in step S121 or step S124 that is an intermediate stage of MG2 power generation that the vehicle speed VSP has become equal to or higher than the second switching vehicle speed VSP2, the process proceeds from step S121 or step S124 to step S131 ⁇ step S132 ⁇ end.
  • step S131 the power generation by the second motor generator MG2 is stopped, and in the next step S132, a gear stage of “EV1st ICE1st” is selected, and travel is performed after changing the mode to “parallel HEV mode”.
  • the vehicle to be subjected to this control is a hybrid vehicle that can travel by selecting “series HEV mode”, that is, capable of traveling by the first motor generator MG1 while generating power by the second motor generator MG2.
  • “series HEV mode” that is, capable of traveling by the first motor generator MG1 while generating power by the second motor generator MG2.
  • the temperature of the second motor generator MG2 excessively increases, so that the hybrid vehicle may reach an overheat state.
  • the third engagement clutch C3 of the multi-stage gear transmission 1 is switched from “N” to “left”, and according to the shift stage “EV1st ICE ⁇ ” MG1 running in "EV mode” is performed.
  • MG1 traveling in the “EV mode” a flow of MG1 torque flowing from the first motor generator MG1 to the drive wheels 19 via the third engagement clutch C3 is formed (only the left arrow in FIG. 11).
  • the battery SOC of the high-power battery 3 decreases due to the consumption of the battery SOC in the first motor generator MG2, and the battery SOC ⁇ A (with power generation request) shifts.
  • the second motor generator MG2 is driven to generate power by the internal combustion engine ICE based on the MG2 operation request, and the first motor generator MG1 is used as the drive source to drive at the first EV stage in “series HEV mode”.
  • MG2 power generation + MG1 driving is performed.
  • the MG2 excessive temperature rise prevention control is started.
  • the vehicle speed for switching from “series HEV mode” to “parallel HEV mode” in the shift schedule map (FIG. 7) is changed from the first switching vehicle speed VSP1 to the second switching vehicle speed VSP2 ( ⁇ VSP1). Changed to By changing the switching vehicle speed, the timing of mode transition to the “parallel HEV mode” in which power generation by the second motor generator MG2 is stopped can be accelerated.
  • the vehicle speed VSP and the estimated MG2 temperature are monitored, and if the vehicle speed VSP is less than the second switching vehicle speed VSP2 due to running in the low vehicle speed range, the MG2 power generation by the “series HEV mode” Is executed automatically. That is, while it is determined that the estimated MG2 temperature ⁇ T1, the MG2 generated power is generated by high power. When it is determined that the estimated MG2 temperature is greater than or equal to T1 due to MG2 power generation (high power), the MG2 generated power is generated with low power while the estimated MG2 temperature is less than T2.
  • the shift stage “EV1st ICE1st” is selected, and the mode transition from “series HEV mode” to “parallel HEV mode” Is done. That is, when the vehicle speed VSP increases and the engine speed Ne becomes equal to or higher than the second switching vehicle speed VSP2, the power generation by the second motor generator MG2 is stopped, the gear stage “EV1st ICE1st” is selected, and the “parallel HEV mode” The mode is changed and the vehicle travels.
  • VSP ⁇ VSP2 is not only due to the driver's acceleration operation or the transition to the downhill road (S121, S124), but also the MG1 acceleration when the estimated MG2 temperature ⁇ T2 This includes forcibly increasing the vehicle speed during system operation in (S130).
  • the second motor generator MG2 In the travel in the “parallel HEV mode” at the shift stage “EV1st ICE1st”, as shown in FIG. 12, the second motor generator MG2 is in a stopped state. Then, the flow of MG1 torque flowing from the first motor generator MG1 to the drive wheel 19 via the third engagement clutch C3, and from the internal combustion engine ICE to the drive wheel 19 via the first clutch C1 and the third clutch C3. The flow of the ICE torque that flows is formed. Accordingly, there is no temperature rise due to the power generation of the second motor generator MG2, and the hybrid travel is performed with the driving force that is a combination of the driving force of the first motor generator MG1 and the driving force of the internal combustion engine ICE.
  • the switching vehicle speed at which the mode is changed to the “parallel HEV mode” is changed from the first switching vehicle speed VSP1 to the second switching vehicle speed VSP2 ( ⁇ VSP1). Until the vehicle speed VSP reaches the second switching vehicle speed VSP2, effective MG2 power generation is performed while suppressing an increase in the MG2 temperature. Further, when the vehicle speed VSP reaches the second switching vehicle speed VSP2, the power generation by the second motor generator MG2 is stopped, and the mode transition from the “series HEV mode” to the “parallel HEV mode” is performed.
  • the switching vehicle speed is determined from the first switching vehicle speed VSP1 before the temperature increase determination. Is changed to the second switching vehicle speed VSP2 on the low speed side. That is, when the second power generation system temperature is predicted to increase during traveling in the “series HEV mode”, the second motor generator is generated at the timing when the vehicle speed VSP becomes the second switching vehicle speed VSP2 before reaching the first switching vehicle speed VSP1. The power generation in MG2 is stopped, and control for mode transition to the “parallel HEV mode” is performed. For this reason, the power generation stop timing in the second motor generator MG2 is advanced. As a result, the second power generation system including the second motor generator MG2 is prevented from being overheated (overheated) during traveling in the “series HEV mode”.
  • the vehicle speed when the switching vehicle speed is changed from the first switching vehicle speed VSP1 to the second switching vehicle speed VSP2, the vehicle speed is set to a lower vehicle speed value as the road surface gradient is gentler. That is, the gentler the road gradient, the lower the engine speed that can be operated independently, and the steeper the engine speed that can be operated independently shifts to a higher speed. In order to match this characteristic, the value of the switching vehicle speed is set. Therefore, as the road surface gradient is gentler, the travel region in the “parallel HEV mode” is expanded, and the travel region in which the second power generation system including the second motor generator MG2 can be prevented from being overheated (overheat) is expanded. .
  • the first embodiment includes a shift schedule map (FIG. 7) having “required driving force” (Driving Force) and “vehicle speed (VSP)” as coordinate axes.
  • driving Force Driving Force
  • VSP vehicle speed
  • the amount of increase is reduced as the road surface gradient is gentler. That is, when the MG1 acceleration is performed by increasing the required driving force by the system operation, not by the driver operation or the change in the driving environment, the driver will feel uncomfortable because the driver does not intend the acceleration behavior.
  • the increase amount that is, the MG1 acceleration amount is reduced, so that the uncomfortable feeling given to the driver is reduced.
  • the series power generation by the second motor generator MG2 is performed at the normal output. While the estimated MG2 temperature is equal to or higher than the first temperature threshold T1 and lower than the second temperature threshold T2, series power generation is performed by the second motor generator MG2) with an output lower than the normal output.
  • the series power generation by the second motor generator MG2 is stopped. In other words, by providing the temperature threshold stepwise, the temperature increase of the second motor generator MG2 is suppressed, and traveling in the “series HEV mode” is possible for many times. Therefore, when traveling at a low vehicle speed is continued, the second power generation system is prevented from being overheated, and the MG2 power generation amount is secured, thereby contributing to improvement in fuel efficiency.
  • a first electric motor (first motor generator MG1) that can be mechanically coupled to the drive wheels 19, a second electric motor (second motor generator MG2) mechanically coupled to the internal combustion engine ICE, and a first electric motor And a battery (high power battery 3) electrically coupled to the second electric motor,
  • the first electric motor to which the electric power generated by the second electric motor (second motor generator MG2) and the battery electric power are supplied when the charging capacity (battery SOC) of the battery (high electric battery 3) is equal to or less than a predetermined value (power generation request threshold A).
  • a mode transition controller (transmission control unit 23) that performs control of mode transition to “parallel HEV mode” as a drive source is provided,
  • the mode transition controller (transmission control unit 23), when traveling in the “series HEV mode”, predicts that the temperature of the second power generation system including the second electric motor (second motor generator MG2) will rise, Then, it is changed to the second switching vehicle speed VSP2 on the lower speed side than the first switching vehicle speed VSP1 before the temperature rise determination (S120 in FIG. 6). For this reason, it is possible to prevent the second power generation system including the second electric motor (second motor generator MG2) from being overheated during traveling in the “series HEV mode”.
  • the mode transition controller (transmission control unit 23) sets a lower vehicle speed value as the road surface gradient becomes gentle (see FIG. 8). For this reason, in addition to the effect of (1), the traveling region in which the second power generation system including the second motor generator MG2 can be prevented from being overheated as the road surface gradient is gentler.
  • the mode transition controller (transmission control unit 23) has a mode transition map (shift schedule map in FIG. 7) with the required driving force (Driving Force) and vehicle speed (VSP) as coordinate axes,
  • driving Force Driving Force
  • VSP vehicle speed
  • the mode transition controller decreases the increase amount as the road surface gradient becomes gentler (FIG. 9). For this reason, in addition to the effect of (3), when the required driving force is increased, the uncomfortable feeling given to the driver can be reduced by reducing the increase amount (MG1 acceleration amount) as the road surface gradient is gentler.
  • the mode transition controller (transmission control unit 23) has a first temperature threshold T1 and a temperature higher than the first temperature threshold T1 as temperature thresholds for determining the second power generation system temperature (estimated MG2 temperature). 2 Set the temperature threshold T2, While the second power generation system temperature (estimated MG2 temperature) is less than the first temperature threshold value T1, series power generation is performed by the second electric motor (second motor generator MG2) at the normal output, and the second power generation system temperature (estimated MG2).
  • Example 1 As mentioned above, although the mode transition control apparatus of the hybrid vehicle of this invention has been demonstrated based on Example 1, it is not restricted to this Example 1 about a concrete structure, It concerns on each claim of a claim Design changes and additions are allowed without departing from the spirit of the invention.
  • step S11 of FIG. 5 an example is shown in which, in step S11 of FIG. 5, a change in the vehicle speed VSP is monitored, and it is predicted whether or not the mode transition to the “parallel HEV mode” at the first switching vehicle speed VSP1 is possible. It was. However, in step S11 of FIG. 5, “engine speed Ne” is used instead of “vehicle speed VSP” to monitor changes in engine speed Ne, and engine speed Ne1 corresponds to the first switching vehicle speed VSP1.
  • An example of predicting whether or not mode transition to the “parallel HEV mode” at an engine speed threshold (for example, 1000 rpm) is possible may be used.
  • the mode transition controller during the travel in the “series HEV mode”, the mode transition at the first switching vehicle speed VSP1 is performed by using the continuous power generation permission time to increase the temperature of the second power generation system including the second motor.
  • An example of predicting whether or not is possible is shown.
  • the mode transition controller during the travel in “series HEV mode”, the state of change of the detected or estimated second motor temperature over time is monitored, and the rise of the second power generation system temperature including the second motor is predicted. An example of this is also possible.
  • Example 1 shows an example in which the estimated MG2 temperature obtained by calculation is used as information on the second power generation system temperature.
  • the second power generation system temperature information may be an example in which the detected temperature of the second power generation system is used, such as the MG2 temperature detected by the sensor, the second inverter temperature, the junction box temperature, or the high-power battery temperature.
  • the mode transition control device of the present invention is applied to a hybrid vehicle including, as drive system components, one engine, two motor generators, and a multi-stage gear transmission having three engagement clutches. An example to apply is shown. However, the mode transition control device of the present invention can also be applied to a hybrid vehicle that can select “series HEV mode” and “parallel HEV mode” regardless of the presence or absence of a transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

シリーズHEVモードでの走行中、第2発電システムが過昇温になるのを防止するハイブリッド車両のモード遷移制御装置を提供すること。 バッテリ(SOC)が発電要求閾値A以下のとき、第2モータジェネレータ(MG2)で発電した電力とバッテリ電力が供給される第1モータジェネレータ(MG1)を駆動源とする「シリーズHEVモード」で走行する。このハイブリッド車両において、「シリーズHEVモード」での走行中、車速(VSP)が切替車速になると、「パラレルHEVモード」へモード遷移する制御を行う変速機コントロールユニット(23)を設ける。変速機コントロールユニット(23)は、「シリーズHEVモード」での走行中、第2モータジェネレータ(MG2)を含む第2発電システム温度の上昇が予測されると、切替車速を、温度上昇判断前の第1切替車速(VSP1)よりも低速側の第2切替車速(VSP2)に変更する。

Description

ハイブリッド車両のモード遷移制御装置
 本発明は、「シリーズHEVモード」での走行から「パラレルHEVモード」への走行へとモード遷移する制御を行うハイブリッド車両のモード遷移制御装置に関する。
 従来、バッテリの充電状態に応じてエンジンを始動し、発電機よりバッテリに充電するシリーズハイブリッド車両が知られている(例えば、特許文献1参照)。
特開昭55-157901号公報
 しかしながら、従来のシリーズハイブリッド車両にあっては、発進時は発進用モータの駆動力のみを用い、発進用モータへはバッテリ電力とシリーズ発電電力によって必要な電力を供給する構成になっていた。このため、発電しながらのシリーズHEVモードでの発進後、発電機を過剰に使用すると発電システム温度の上昇により過昇温に至ってしまう、という問題がある。
 本発明は、上記問題に着目してなされたもので、シリーズHEVモードでの走行中、第2発電システムが過昇温になるのを防止するハイブリッド車両のモード遷移制御装置を提供することを目的とする。
 上記目的を実現するため、本発明のハイブリッド車両は、駆動輪に機械的に結合可能な第1電動機と、内燃機関に機械的に結合される第2電動機と、第1電動機と第2電動機に電気的に結合されるバッテリと、を備える。バッテリの充電容量が所定値以下のとき、第2電動機で発電した電力とバッテリ電力が供給される第1電動機を駆動源とするシリーズHEVモードで走行する。
このハイブリッド車両において、シリーズHEVモードでの走行中、車速が切替車速になると、第2電動機での発電を停止し、第1電動機と内燃機関を駆動源とするパラレルHEVモードへモード遷移する制御を行うモード遷移コントローラを設ける。
モード遷移コントローラは、シリーズHEVモードでの走行中、第2電動機を含む第2発電システム温度の上昇が予測されると、切替車速を、温度上昇判断前の第1切替車速よりも低速側の第2切替車速に変更する。
 よって、シリーズHEVモードでの走行中、第2電動機を含む第2発電システム温度の上昇が予測されると、パラレルHEVモードへの切替車速が、温度上昇判断前の第1切替車速よりも低速側の第2切替車速に変更される。
即ち、シリーズHEVモードでの走行中、第2発電システム温度の上昇が予測されると、車速が第1切替車速に達する前の第2切替車速になるタイミングで第2電動機での発電を停止し、パラレルHEVモードへモード遷移する制御が行われる。このため、第2電動機での発電停止タイミングが早期化される。
この結果、シリーズHEVモードでの走行中、第2発電システムが過昇温になるのを防止することができる。
実施例1のモード遷移制御装置が適用されたハイブリッド車両の駆動系及び制御系を示す全体システム図である。 実施例1のモード遷移制御装置が適用されたハイブリッド車両に搭載された多段歯車変速機の変速制御系の構成を示す制御系構成図である。 実施例1のモード遷移制御装置が適用されたハイブリッド車両に搭載された多段歯車変速機において変速段を切り替える考え方を示す変速マップ概要図である。 実施例1のモード遷移制御装置が適用されたハイブリッド車両に搭載された多段歯車変速機において3つの係合クラッチの切り替え位置による変速段を示す締結表である。 実施例1の変速機コントロールユニットで実行されるモード遷移制御処理の流れを示すフローチャートである。 図5のモード遷移制御処理においてMG2過昇温防止制御処理の流れを示すフローチャートである。 バッテリSOCが低SOC領域での走行中に選択されるシフトスケジュールマップを示すマップ図である。 路面の勾配と自立可能エンジン回転数の関係を示す特性図である。 エンジン回転数と加速度の関係を示す特性図である。 緩勾配登り坂での低車速(駆動要求が低い)による「シリーズHEVモード」での走行例を示す説明図である。 「EV1st ICE-」の変速段による「シリーズHEVモード」が選択されたときの多段歯車変速機におけるMG1トルク及びエンジントルクの流れを示すトルクフロー図である。 「EV1st ICE1st」の変速段による「パラレルHEVモード」が選択されたときの多段歯車変速機におけるMG1トルク及びエンジントルクの流れを示すトルクフロー図である。
 以下、本発明のハイブリッド車両のモード遷移制御装置を実現する最良の形態を、図面に示す実施例1に基づいて説明する。
 まず、構成を説明する。
実施例1のモード遷移制御装置は、駆動系構成要素として、1つのエンジンと、2つのモータジェネレータと、3つの係合クラッチを有する多段歯車変速機と、を備えたハイブリッド車両(ハイブリッド車両の一例)に適用したものである。以下、実施例1におけるハイブリッド車両のモード遷移制御装置の構成を、「全体システム構成」、「変速制御系構成」、「変速段構成」、「モード遷移制御処理構成」、「MG2過昇温防止制御処理構成」に分けて説明する。
 [全体システム構成]
 図1は、実施例1のモード遷移制御装置が適用されたハイブリッド車両の駆動系及び制御系を示す。以下、図1に基づき、全体システム構成を説明する。
 ハイブリッド車両の駆動系は、図1に示すように、内燃機関ICEと、第1モータジェネレータMG1と、第2モータジェネレータMG2と、3つの係合クラッチC1,C2,C3を有する多段歯車変速機1と、を備えている。なお、「ICE」は「Internal-Combustion Engine」の略称である。
 前記内燃機関ICEは、例えば、クランク軸方向を車幅方向として車両のフロントルームに配置したガソリンエンジンやディーゼルエンジン等である。この内燃機関ICEは、多段歯車変速機1の変速機ケース10に連結されると共に、内燃機関出力軸が、多段歯車変速機1の第1軸11に接続される。なお、内燃機関ICEは、基本的に、第2モータジェネレータMG2をスタータモータとしてMG2始動する。但し、極低温時などのように強電バッテリ3を用いたMG2始動が確保できない場合に備えてスタータモータ2を残している。
 前記第1モータジェネレータMG1及び第2モータジェネレータMG2は、いずれも強電バッテリ3を共通の電源とする三相交流の永久磁石型同期モータである。第1モータジェネレータMG1のステータは、第1モータジェネレータMG1のケースに固定され、そのケースが多段歯車変速機1の変速機ケース10に固定される。そして、第1モータジェネレータMG1のロータに一体の第1モータ軸が、多段歯車変速機1の第2軸12に接続される。第2モータジェネレータMG2のステータは、第2モータジェネレータMG2のケースに固定され、そのケースが多段歯車変速機1の変速機ケース10に固定される。そして、第2モータジェネレータMG2のロータに一体の第2モータ軸が、多段歯車変速機1の第6軸16に接続される。第1モータジェネレータMG1のステータコイルには、力行時に直流を三相交流に変換し、回生時に三相交流を直流に変換する第1インバータ4が、第1ACハーネス5を介して接続される。第2モータジェネレータMG2のステータコイルには、力行時に直流を三相交流に変換し、回生時に三相交流を直流に変換する第2インバータ6が、第2ACハーネス7を介して接続される。強電バッテリ3と第1インバータ4及び第2インバータ6は、ジャンクションボックス9を介してDCハーネス8により接続される。
 前記多段歯車変速機1は、変速比が異なる複数の歯車対を有する常時噛み合い式変速機であり、変速機ケース10内に互いに平行に配置され、歯車が設けられる6つの歯車軸11~16と、歯車対を選択する3つの係合クラッチC1,C2,C3と、を備える。歯車軸としては、第1軸11と、第2軸12と、第3軸13と、第4軸14と、第5軸15と、第6軸16が設けられる。係合クラッチとしては、第1係合クラッチC1と、第2係合クラッチC2と、第3係合クラッチC3が設けられる。なお、変速機ケース10には、ケース内の軸受け部分や歯車の噛み合い部分に潤滑オイルを供給する電動オイルポンプ20が付設される。
 前記第1軸11は、内燃機関ICEが連結される軸であり、第1軸11には、図1の右側から順に、第1歯車101、第2歯車102、第3歯車103が配置される。第1歯車101は、第1軸11に対して一体(一体化固定を含む)に設けられる。第2歯車102と第3歯車103は、軸方向に突出するボス部が第1軸11の外周に挿入される遊転歯車であり、第2係合クラッチC2を介し第1軸11に対して駆動連結可能に設けられる。
 前記第2軸12は、第1モータジェネレータMG1が連結され、第1軸11の外側位置に軸心を一致させて同軸配置された円筒軸であり、第2軸12には、図1の右側から順に、第4歯車104、第5歯車105が配置される。第4歯車104と第5歯車105は、第2軸12に対して一体(一体化固定を含む)に設けられる。
 前記第3軸13は、多段歯車変速機1の出力側に配置された軸であり、第3軸13には、図1の右側から順に、第6歯車106、第7歯車107、第8歯車108、第9歯車109、第10歯車110が配置される。第6歯車106と第7歯車107と第8歯車108は、第3軸13に対して一体(一体化固定を含む)に設けられる。第9歯車109と第10歯車110は、軸方向に突出するボス部が第3軸13の外周に挿入される遊転歯車であり、第3係合クラッチC3を介し第3軸13に対して駆動連結可能に設けられる。そして、第6歯車106は第1軸11の第2歯車102に噛み合い、第7歯車107はデファレンシャル歯車17の第16歯車116と噛み合い、第8歯車108は第1軸11の第3歯車103に噛み合う。第9歯車109は第2軸12の第4歯車104に噛み合い、第10歯車110は第2軸12の第5歯車105に噛み合う。
 前記第4軸14は、変速機ケース10に両端が支持された軸であり、第4軸14には、図1の右側から順に、第11歯車111、第12歯車112、第13歯車113が配置される。第11歯車111は、第4軸14に対して一体(一体化固定を含む)に設けられる。第12歯車112と第13歯車113は、軸方向に突出するボス部が第4軸14の外周に挿入される遊転歯車であり、第1係合クラッチC1を介し第4軸14に対して駆動連結可能に設けられる。そして、第11歯車111は第1軸11の第1歯車101に噛み合い、第12歯車112は第1軸11の第2歯車102と噛み合い、第13歯車113は第2軸12の第4歯車104と噛み合う。
 前記第5軸15は、変速機ケース10に両端が支持された軸であり、第4軸14の第11歯車111と噛み合う第14歯車114が一体(一体化固定を含む)に設けられる。
 前記第6軸16は、第2モータジェネレータMG2が連結される軸であり、第5軸15の第14歯車114と噛み合う第15歯車115が一体(一体化固定を含む)に設けられる。
 そして、第2モータジェネレータMG2と内燃機関ICEは、互いに噛み合う第15歯車115、第14歯車114、第11歯車111、第1歯車101により構成されるギヤ列により機械的に連結されている。このギヤ列は、第2モータジェネレータMG2による内燃機関ICEのMG2始動時、MG2回転数を減速する減速ギヤ列となり、内燃機関ICEの駆動で第2モータジェネレータMG2を発電するMG2発電時、機関回転数を増速する増速ギヤ列となる。
 前記第1係合クラッチC1は、第4軸14のうち、第12歯車112と第13歯車113の間に介装され、同期機構を持たないことで、回転同期状態での噛み合いストロークにより締結されるドグクラッチである。第1係合クラッチC1が左側締結位置(Left)のとき、第4軸14と第13歯車113を駆動連結する。第1係合クラッチC1が中立位置(N)のとき、第4軸14と第12歯車112を解放すると共に、第4軸14と第13歯車113を解放する。第1係合クラッチC1が右側締結位置(Right)のとき、第4軸14と第12歯車112を駆動連結する。
 前記第2係合クラッチC2は、第1軸11のうち、第2歯車102と第3歯車103の間に介装され、同期機構を持たないことで、回転同期状態での噛み合いストロークにより締結されるドグクラッチである。第2係合クラッチC2が左側締結位置(Left)のとき、第1軸11と第3歯車103を駆動連結する。第2係合クラッチC2が中立位置(N)のとき、第1軸11と第2歯車102を解放すると共に、第1軸11と第3歯車103を解放する。第2係合クラッチC2が右側締結位置(Right)のとき、第1軸11と第2歯車102を駆動連結する。
 前記第3係合クラッチC3は、第3軸13のうち、第9歯車109と第10歯車110の間に介装され、同期機構を持たないことで、回転同期状態での噛み合いストロークにより締結されるドグクラッチである。第3係合クラッチC3が左側締結位置(Left)のとき、第3軸13と第10歯車110を駆動連結する。第3係合クラッチC3が中立位置(N)のとき、第3軸13と第9歯車109を解放すると共に、第3軸13と第10歯車110を解放する。第3係合クラッチC3が右側締結位置(Right)のとき、第3軸13と第9歯車109を駆動連結する。そして、多段歯車変速機1の第3軸13に一体(一体化固定を含む)に設けられた第7歯車107に噛み合う第16歯車116は、デファレンシャル歯車17及び左右のドライブ軸18を介して左右の駆動輪19に接続されている。
 ハイブリッド車両の制御系は、図1に示すように、ハイブリッドコントロールモジュール21と、モータコントロールユニット22と、変速機コントロールユニット23と、エンジンコントロールユニット24と、を備えている。
 前記ハイブリッドコントロールモジュール21(略称:「HCM」)は、車両全体の消費エネルギーを適切に管理する機能を担う統合制御手段である。このハイブリッドコントロールモジュール21は、他のコントロールユニット(モータコントロールユニット22、変速機コントロールユニット23、エンジンコントロールユニット24など)とCAN通信線25により双方向情報交換可能に接続されている。なお、CAN通信線25の「CAN」とは、「Controller Area Network」の略称である。
 前記モータコントロールユニット22(略称:「MCU」)は、第1インバータ4と第2インバータ6に対する制御指令により第1モータジェネレータMG1と第2モータジェネレータMG2の力行制御や回生制御などを行う。第1モータジェネレータMG1及び第2モータジェネレータMG2に対する制御モードとしては、「トルク制御」と「回転数FB制御」がある。「トルク制御」は、目標駆動力に対して分担する目標モータトルクが決まると、実モータトルクを目標モータトルクに追従させる制御を行う。「回転数FB制御」は、走行中に係合クラッチC1,C2,C3の何れかを噛み合い締結する変速要求があると、クラッチ入出力回転数を回転同期させる目標モータ回転数を決め、実モータ回転数を目標モータ回転数に収束させるようにFBトルクを出力する制御を行う。
 前記変速機コントロールユニット23(略称:「TMCU」)は、所定の入力情報に基づいて電動アクチュエータ31,32,33(図2参照)へ電流指令を出力することにより、多段歯車変速機1の変速段を切り替える変速制御を行う。この変速制御では、係合クラッチC1,C2,C3を選択的に噛み合い締結/解放させ、複数対の歯車対から動力伝達に関与する歯車対を選択する。ここで、解放されている係合クラッチC1,C2,C3の何れかを締結する変速要求時には、クラッチ入出力の差回転数を抑えて噛み合い締結を確保するために、第1モータジェネレータMG1又は第2モータジェネレータMG2の回転数FB制御(回転同期制御)を併用する。
 前記エンジンコントロールユニット24(略称:「ECU」)は、所定の入力情報に基づいてモータコントロールユニット22や点火プラグや燃料噴射アクチュエータなどへ制御指令を出力することにより、内燃機関ICEの始動制御や内燃機関ICEの停止制御や燃料カット制御などを行う。
 [変速制御系構成]
 実施例1の多段歯車変速機1は、変速要素として、噛み合い締結による係合クラッチC1,C2,C3(ドグクラッチ)を採用することにより引き摺りを低減することで効率化を図った点を特徴とする。そして、係合クラッチC1,C2,C3のいずれかを噛み合い締結させる変速要求があると、クラッチ入出力の差回転数を、第1モータジェネレータMG1(係合クラッチC3の締結時)又は第2モータジェネレータMG2(係合クラッチC1,C2の締結時)により回転同期させ、同期判定回転数範囲内になると噛み合いストロークを開始することで実現している。又、締結されている係合クラッチC1,C2,C3のいずれかを解放させる変速要求があると、解放クラッチのクラッチ伝達トルクを低下させ、解放トルク判定値以下になると解放ストロークを開始することで実現している。以下、図2に基づき、多段歯車変速機1の変速制御系構成を説明する。
 変速制御系は、図2に示すように、係合クラッチとして、第1係合クラッチC1と第2係合クラッチC2と第3係合クラッチC3を備えている。アクチュエータとして、第1電動アクチュエータ31と第2電動アクチュエータ32と第3電動アクチュエータ33を備えている。そして、アクチュエータ動作をクラッチ係合/解放動作に変換する機構として、第1係合クラッチ動作機構41と第2係合クラッチ動作機構42と第3係合クラッチ動作機構43を備えている。さらに、第1電動アクチュエータ31と第2電動アクチュエータ32と第3電動アクチュエータ33の制御手段として、変速機コントロールユニット23を備えている。
 前記第1係合クラッチC1と第2係合クラッチC2と第3係合クラッチC3は、ニュートラル位置(N:解放位置)と、左側締結位置(Left:左側クラッチ噛み合い締結位置)と、右側締結位置(Right:右側クラッチ噛み合い締結位置)と、を切り替えるドグクラッチである。各係合クラッチC1,C2,C3は何れも同じ構成であり、カップリングスリーブ51,52,53と、左側ドグクラッチリング54,55,56と、右側ドグクラッチリング57,58,59と、を備える。カップリングスリーブ51,52,53は、第4軸14,第1軸11,第3軸13に固定された図外のハブを介してスプライン結合により軸方向にストローク可能に設けられたもので、両側に平らな頂面によるドグ歯51a,51b,52a,52b,53a,53bを有する。さらに、カップリングスリーブ51,52,53の周方向中央部にフォーク溝51c,52c,53cを有する。左側ドグクラッチリング54,55,56は、各係合クラッチC1,C2,C3の左側遊転歯車である各歯車113,103,110のボス部に固定され、ドグ歯51a,52a,53aに対向する平らな頂面によるドグ歯54a,55a,56aを有する。右側ドグクラッチリング57,58,59は、各係合クラッチC1,C2,C3の右側遊転歯車である各歯車112,102,109のボス部に固定され、ドグ歯51b,52b,53bに対向する平らな頂面によるドグ歯57b,58b,59bを有する。
 前記第1係合クラッチ動作機構41と第2係合クラッチ動作機構42と第3係合クラッチ動作機構43は、電動アクチュエータ31,32,33の回動動作を、カップリングスリーブ51,52,53の軸方向ストローク動作に変換する機構である。各係合クラッチ動作機構41,42,43は何れも同じ構成であり、回動リンク61,62,63と、シフトロッド64,65,66と、シフトフォーク67,68,69と、を備える。回動リンク61,62,63は、一端が電動アクチュエータ31,32,33のアクチュエータ軸に設けられ、他端がシフトロッド64,65,66に相対変位可能に連結される。シフトロッド64,65,66は、ロッド分割位置にスプリング64a,65a,66aが介装され、ロッド伝達力の大きさと方向に応じて伸縮可能とされている。シフトフォーク67,68,69は、一端がシフトロッド64,65,66に固定され、他端がカップリングスリーブ51,52,53のフォーク溝51c,52c,53cに配置される。
 前記変速機コントロールユニット23は、車速センサ71、アクセル開度センサ72、変速機出力軸回転数センサ73、エンジン回転数センサ74、MG1回転数センサ75、MG2回転数センサ76、インヒビタースイッチ77、バッテリSOCセンサ78などからのセンサ信号やスイッチ信号を入力する。なお、変速機出力軸回転数センサ73は、第3軸13の軸端部に設けられ、第3軸13の軸回転数を検出する。そして、カップリングスリーブ51,52,53の位置によって決まる係合クラッチC1,C2,C3の噛み合い締結と解放を制御する位置サーボ制御部(例えば、PID制御による位置サーボ系)を備えている。この位置サーボ制御部は、第1スリーブ位置センサ81、第2スリーブ位置センサ82、第3スリーブ位置センサ83からのセンサ信号を入力する。そして、各スリーブ位置センサ81,82,83のセンサ値を読み込み、カップリングスリーブ51,52,53の位置が噛み合いストロークによる締結位置又は解放位置になるように、電動アクチュエータ31,32,33に電流を与える。即ち、カップリングスリーブ51,52,53に溶接されたドグ歯と遊転歯車に溶接されたドグ歯との双方が噛合した噛み合い位置にある締結状態にすることで、遊転歯車を第4軸14,第1軸11,第3軸13に駆動連結する。一方、カップリングスリーブ51,52,53が、軸線方向へ変位することでカップリングスリーブ51,52,53に溶接されたドグ歯と遊転歯車に溶接されたドグ歯が非噛み合い位置にある解放状態にすることで、遊転歯車を第4軸14,第1軸11,第3軸13から切り離す。
 [変速段構成]
 実施例1の多段歯車変速機1は、流体継手などの回転差吸収要素を持たないことで動力伝達損失を低減すると共に、内燃機関ICEをモータアシストすることでICE変速段を減らし、コンパクト化(EV変速段:1-2速、ICE変速段:1-4速)を図った点を特徴とする。以下、図3及び図4に基づき、多段歯車変速機1の変速段構成を説明する。
 変速段の考え方は、図3に示すように、車速VSPが所定車速VSP0以下の発進領域においては、多段歯車変速機1が発進要素(滑り要素)を持たないため、「EVモード」でモータ駆動力のみによるモータ発進とする。そして、走行領域においては、図3に示すように、駆動力の要求が大きいとき、エンジン駆動力をモータ駆動力によりアシストする「パラレルHEVモード」により対応するという変速段の考え方を採る。つまり、車速VSPの上昇に従って、ICE変速段は、(ICE1st→)ICE2nd→ICE3rd→ICE4thへと変速段が移行し、EV変速段は、EV1st→EV2ndへと変速段が移行する。
 係合クラッチC1,C2,C3を有する多段歯車変速機1により理論的に実現可能な全変速段は図3に示す通りである。なお、図3中の「Lock」は、変速段として成立しないインターロック変速段を表し、「EV-」は、第1モータジェネレータMG1が駆動輪19に駆動連結されていない状態を表し、「ICE-」は、内燃機関ICEが駆動輪19に駆動連結されていない状態を表す。以下、各変速段について説明する。
 第2係合クラッチC2が「N」で、第3係合クラッチC3が「N」のとき、第1係合クラッチC1の位置により次の変速段となる。第1係合クラッチC1が「Left」であれば「EV- ICEgen」、第1係合クラッチC1が「N」であれば「Neutral」、第1係合クラッチC1が「Right」であれば「EV- ICE3rd」である。
ここで、「EV- ICEgen」の変速段は、停車中、内燃機関ICEにより第1モータジェネレータMG1で発電するMG1アイドル発電時、又は、MG1発電にMG2発電を加えたダブルアイドル発電時に選択される変速段である。「Neutral」の変速段は、停車中、内燃機関ICEにより第2モータジェネレータMG2で発電するMG2アイドル発電時に選択される変速段である。
 第2係合クラッチC2が「N」で、第3係合クラッチC3が「Left」のとき、第1係合クラッチC1の位置により次の変速段となる。第1係合クラッチC1が「Left」であれば「EV1st ICE1st」、第1係合クラッチC1が「N」であれば「EV1st ICE-」、第1係合クラッチC1が「Right」であれば「EV1st ICE3rd」である。
ここで、「EV1st ICE-」の変速段は、内燃機関ICEを停止して第1モータジェネレータMG1で走行する「EVモード」のとき、又は、内燃機関ICEにより第2モータジェネレータMG2で発電しながら、第1モータジェネレータMG1で1速EV走行を行う「シリーズHEVモード」のときに選択される変速段である。
 第2係合クラッチC2が「Left」で、第3係合クラッチC3が「Left」のとき、第1係合クラッチC1の位置が「N」であれば「EV1st ICE2nd」である。第2係合クラッチC2が「Left」で、第3係合クラッチC3が「N」のとき、第1係合クラッチC1の位置により次の変速段となる。第1係合クラッチC1が「Left」であれば「EV1.5 ICE2nd」、第1係合クラッチC1が「N」であれば「EV- ICE2nd」である。第2係合クラッチC2が「Left」で、第3係合クラッチC3が「Right」のとき、第1係合クラッチC1の位置が「N」であれば「EV2nd ICE2nd」である。
 第2係合クラッチC2が「N」で、第3係合クラッチC3が「Right」のとき、第1係合クラッチC1の位置により次の変速段となる。第1係合クラッチC1が「Left」であれば「EV2nd ICE3rd’」、第1係合クラッチC1が「N」であれば「EV2nd ICE-」、第1係合クラッチC1が「Right」であれば「EV2nd ICE3rd」である。
ここで、「EV2nd ICE-」の変速段は、内燃機関ICEを停止して第1モータジェネレータMG1で走行する「EVモード」のとき、又は、内燃機関ICEにより第2モータジェネレータMG2で発電しながら、第1モータジェネレータMG1で2速EV走行を行う「シリーズHEVモード」のときに選択される変速段である。
 第2係合クラッチC2が「Right」で、第3係合クラッチC3が「Right」のとき、第1係合クラッチC1の位置が「N」であれば「EV2nd ICE4th」である。第2係合クラッチC2が「Right」で、第3係合クラッチC3が「N」のとき、第1係合クラッチC1の位置により次の変速段となる。第1係合クラッチC1が「Left」であれば「EV2.5 ICE4th」、第1係合クラッチC1が「N」であれば「EV- ICE4th」である。第2係合クラッチC2が「Right」で、第3係合クラッチC3が「Left」のとき、第1係合クラッチC1の位置が「N」であれば「EV1st ICE4th」である。
 次に、係合クラッチC1,C2,C3の締結組み合わせによる上記全変速段から「通常時使用変速段」を分ける手法について説明する。
まず、全変速段から「インターロック変速段(図4のクロスハッチング)」と「シフト機構により選択できない変速段(図4の右上がりハッチング)」を除いた変速段を、多段歯車変速機1により実現可能な複数の変速段とする。ここで、シフト機構により選択できない変速段とは、第1係合クラッチC1が「Left」で、かつ、第2係合クラッチC2が「Left」である「EV1.5 ICE2nd」と、第1係合クラッチC1が「Left」で、かつ、第2係合クラッチC2が「Right」である「EV2.5 ICE4th」と、をいう。シフト機構により選択できない理由は、1つの第1電動アクチュエータ31が、2つの係合クラッチC1,C2に対して兼用するシフトアクチュエータであり、かつ、C1/C2セレクト動作機構40により片方の係合クラッチはニュートラルロックされることによる。
 そして、多段歯車変速機1により実現可能な複数の変速段の中から「通常使わない変速段(図3の右下がりハッチング)」と「低SOC等で使う変速段(図3の破線枠)」を除いた変速段を、「通常時使用変速段(図3の太線枠)」とする。ここで、「通常使わない変速段」とは、「EV2nd ICE3rd’」と「EV1st ICE4th」であり、「低SOC等で使う変速段」とは、「EV- ICEgen」と「EV1st ICE1st」である。
 よって、「通常時使用変速段」は、EV変速段(EV1st ICE-、EV2nd ICE-)と、ICE変速段(EV- ICE2nd、EV- ICE3rd、EV- ICE4th)と、組み合わせ変速段(EV1st ICE2nd、EV1st ICE3rd、EV2nd ICE2nd、EV2nd ICE3rd、EV2nd ICE4th)に、「Neutral」を加えることによって構成される。
 [モード遷移制御処理構成]
 図5は、実施例1の変速機コントロールユニット23(モード遷移コントローラ)で実行されるモード遷移制御処理の流れを示す。以下、モード遷移制御処理構成の一例をあらわす図5の各ステップについて説明する。なお、このモード遷移制御処理は、EV発進してから「パラレルHEVモード」へモード遷移するまでの低車速走行域にて行われる。
 ステップS1では、発進操作有りか否かを判断する。YES(発進操作有り)の場合はステップS2へ進み、NO(発進操作無し)の場合はステップS1の判断を繰り返す。
ここで、「発進操作」は、例えば、走行レンジ選択操作、ブレーキ解除操作、ブレーキ解除後のアクセル踏み込み操作、などにより判断する。
 ステップS2では、ステップS1での発進操作有りとの判断、或いは、ステップS5でのモード遷移無しとの判断に続き、バッテリSOCが発電要求閾値A以上であるか否かを判断する。YES(バッテリSOC≧A、発電要求無し)の場合はステップS3へ進み、NO(バッテリSOC<A、発電要求有り)の場合はステップS6へ進む。
ここで、「バッテリSOC」の情報は、バッテリSOCセンサ78から取得する。「発電要求閾値A」は、発電要求有りのSOC領域と発電要求無しのSOC領域を切り分ける境界値として設定される(例えば、A=バッテリSOCが40%程度)。
 ステップS3では、ステップS2でのバッテリSOC≧A、つまり発電要求無しとの判断に続き、多段歯車変速機1の第3係合クラッチC3を「N」から「left」に切り替えて「EV1st ICE-」の変速段を選択する。そして、アクセル踏み込み操作に応じて第1モータジェネレータMG1の駆動を行い、ステップS4へ進む。
 ステップS4では、ステップS3でのMG1駆動に続き、「EV1st ICE-」の変速段による「EVモード」でのMG1走行を行い、ステップS5へ進む。
ここで、「EVモード」でのMG1走行中、第1モータジェネレータMG1は、アクセル開度APOと車速VSPにより決まる目標駆動力に応じたトルクを出力するトルク制御を行う。
 ステップS5では、ステップS4での「EVモード」でのMG1走行、或いは、ステップS11での第1切替車速VSP1でのモード遷移が可能であるとの判断、或いは、ステップS12でのMG2過昇温防止制御に続き、「パラレルHEVモード」へのモード遷移有りか否かを判断する。NO(モード遷移無し)の場合はステップS2へ戻る。YES(モード遷移有り)の場合はエンドへ進み、本制御を終了する。
ここで、「パラレルHEVモード」へのモード遷移有りは、「パラレルHEVモード」の変速段への変速要求があっときに判断しても良いし、変速要求に基づき第2モータジェネレータMG2を停止したとき判断しても良いし、変速が完了したときに判断しても良い。
 ステップS6では、ステップS2でのバッテリSOC<A、つまり発電要求有りとの判断に続き、バッテリSOCの低下を抑える第2モータジェネレータMG2の稼働(発電)要求を出し、ステップS7へ進む。
 ステップS7では、ステップS6でのMG2稼働要求に続き、内燃機関ICEが運転中(エンジン運転中)であるか否かを判断する。YES(エンジン運転中)の場合はステップS9へ進み、NO(エンジン停止中)の場合はステップS8へ進む。
ここで、「エンジン運転中」は、例えば、停車中の発電要求により、エンジン運転によるアイドル発電が行われている状況から発進する場合に判断される。
 ステップS8では、ステップS7でのエンジン停止中であるとの判断に続き、第2モータジェネレータMG2をスタータモータとして内燃機関ICEを始動(エンジン始動)し、ステップS9へ進む。
 ステップS9では、ステップS7でのエンジン運転中であるとの判断、或いは、ステップS8でのエンジン始動に続き、多段歯車変速機1の第3係合クラッチC3を「N」から「left」に切り替えて「EV1st ICE-」の変速段を選択する。そして、アクセル踏み込み操作に応じて第1モータジェネレータMG1の駆動と、第2モータジェネレータMG2による発電を行い、ステップS10へ進む。
 ステップS10では、ステップS9でのMG1駆動+MG2発電に続き、「EV1st ICE-」の変速段による「シリーズHEVモード」でのMG2発電+MG1走行を行い、ステップS11へ進む。
 ステップS11では、ステップS10での「シリーズHEVモード」でのMG2発電+MG1走行に続き、第1切替車速VSP1でのモード遷移が可能であるか否かを判断する。YES(VSP1でのモード遷移が可能)の場合はステップS5へ進み、NO(VSP1でのモード遷移が不可能)の場合はステップS12へ進む。
ここで、「第1切替車速VSP1」とは、バッテリSOCが低SOC領域での走行中に選択される図7に示すシフトスケジュールマップにおいて、「Series EV1st(シリーズHEVモード)」から「EV1st ICE1st(パラレルHEVモード)」へ切り替えるモード遷移要求を出す切替車速をいう(例えば、10km/h程度)。
第1切替車速VSP1でのモード遷移可能/モード遷移不可能の判断は、下記のように行う。
まず、第2モータジェネレータMG2を連続発電したときにMG2温度の上昇が抑えられる時間として連続発電許可時間を予め設定しておく。そして、アクセル操作量大による発進時などで、「シリーズHEVモード」での走行開始からの経過時間が連続発電許可時間内で車速VSPが第1切替車速VSP1まで上昇することが予測される場合は、第1切替車速VSP1でのモード遷移が可能と判断される。一方、アクセル操作量小による発進時などで、「シリーズHEVモード」での走行開始からの経過時間が連続発電許可時間となっても車速VSPが第1切替車速VSP1まで上昇しないことが予測される場合は、第1切替車速VSP1でのモード遷移が不可能と判断される。
 ステップS12では、ステップS11での第1切替車速VSP1でのモード遷移が不可能であるとの判断に続き、図6に示すフローチャートに基づいてMG2過昇温防止制御を実行し、ステップS5へ進む。
 [MG2過昇温防止制御処理構成]
 図6は、図5のモード遷移制御処理のステップS12にて実行されるMG2過昇温防止制御処理の流れを示す。以下、図6の各ステップについて説明する。
 ステップS120では、図5のステップS11での第1切替車速VSP1でのモード遷移が不可能であるとの判断に続き、シフトスケジュールマップ(図7)の「SeriesEV1st(シリーズHEVモード)」から「EV1st ICE1st(パラレルHEVモード)」へ切り替える第1切替車速VSP1(実線)を、第1切替車速VSP1より低車速側の第2切替車速VSP2(破線)に変更し、ステップS121へ進む。
ここで、「第2切替車速VSP2」は、路面勾配が緩やかであるほどより低車速の値に設定する(例えば、路面勾配0%の平坦路の場合、5km/h程度)。即ち、走行可能(自立運転可能)なエンジン回転数は、図8に示すように、例えば、勾配0%=650rpmとされ、勾配が大きくなるほど回転数を上昇させる特性により設定される。よって、勾配による走行可能回転数(エンジン回転数)の特性に合わせ、「第2切替車速VSP2」は、路面勾配が緩やかであるほどより低車速の値に設定される。
また、「シフトスケジュールマップ」は、低SOC領域で選択され、図7に示すように、要求駆動力(Driving force)と車速VSPを座標軸とし、座標面に通常時使用変速段に「EV1st ICE1st」を加えた変速段を選択する選択領域が割り当てられたマップである。つまり、アクセル踏み込みによるドライブ駆動領域として、発進からの低車速域に「Series EV1st」の選択領域が割り当てられる。そして、中車速域に「EV1st ICE1st」、「EV1st ICE2nd」、「EV1st ICE3rd」の選択領域が割り当てられ、高車速域に「EV2nd ICE2nd」、「EV2nd ICE3rd」、「EV2nd ICE4th」の選択領域が割り当てられる。アクセル足離しのコースト回生制動領域として、低~中車速域に「EV1st(EV2nd)」の選択領域が割り当てられ、高車速域に「EV2nd」の選択領域が割り当てられる。
 ステップS121では、ステップS120での切替車速の変更、或いは、ステップS123での推定MG2温度<T1であるとの判断に続き、そのときの車速VSPが第2切替車速VSP2未満か否かを判断する。YES(VSP<VSP2)の場合はステップS122へ進み、NO(VSP≧VSP2)の場合はステップS131へ進む。
ここで、「車速VSP」の情報は、車速センサ71から取得する。
 ステップS122では、ステップS121でのVSP<VSP2であるとの判断に続き、「シリーズHEVモード」での走行により第2モータジェネレータMG2による発電をし、ステップS123へ進む。
ここで、ステップS122で第2モータジェネレータMG2により発電する際は、通常のMG2発電電力である高電力(例えば、15KW)とする。なお、第2モータジェネレータMG2による発電電力は、高電力(例えば、15KW)と低電力(例えば、5KW)を切り替え可能としている。
 ステップS123では、ステップS122でのMG2発電(高電力)に続き、推定MG2温度が第1温度閾値T1以上であるか否かを判断する。YES(推定MG2温度≧T1)の場合はステップS124へ進み、NO(推定MG2温度<T1)の場合はステップS121へ戻る。
ここで、「推定MG2温度」は、発電に用いられる第2モータジェネレータMG2の推定温度であり、MG2発電電力とMG2発電継続時間を用いた演算式により推定する。「第1温度閾値T1」は、高電力によるMG2発電をそのまま継続すると、第2モータジェネレータMG2が過昇温(オーバーヒート)に至るおそれがある温度閾値に設定する(例えば、T1=150℃)。
 ステップS124では、ステップS123での推定MG2温度≧T1であるとの判断、或いは、ステップS126での推定MG2温度<T2であるとの判断に続き、ステップS121と同様に、そのときの車速VSPが第2切替車速VSP2未満か否かを判断する。YES(VSP<VSP2)の場合はステップS125へ進み、NO(VSP≧VSP2)の場合はステップS131へ進む。
 ステップS125では、ステップS124でのVSP<VSP2であるとの判断に続き、「シリーズHEVモード」での走行により第2モータジェネレータMG2による低電力発電を行い、ステップS126へ進む。
このステップS125では、第2モータジェネレータMG2による発電電力を、高電力(例えば、15KW)から低電力(例えば、5KW)に下げる。
 ステップS126では、ステップS125でのMG2発電(低電力)に続き、推定MG2温度が第2温度閾値T2以上であるか否かを判断する。YES(推定MG2温度≧T2)の場合はステップS127へ進み、NO(推定MG2温度<T2)の場合はステップS124へ戻る。
ここで、「第2温度閾値T2」は、低電力によるMG2発電をそのまま継続すると、第2モータジェネレータMG2が過昇温(オーバーヒート)に至るおそれがある温度閾値に設定する(例えば、T1=180℃)。
 ステップS127では、ステップS126での推定MG2温度≧T2であるとの判断、或いは、ステップS130でのMG1加速に続き、図5のステップS11と同様に、第1切替車速VSP1でのモード遷移が可能であるか否かを判断する。YES(VSP1でのモード遷移が可能)の場合はステップS128へ進み、NO(VSP1でのモード遷移が不可能)の場合はステップS129へ進む。
 ステップS128では、ステップS127でのVSP1でのモード遷移が可能であるとの判断に続き、ステップS120にて変更された第2切替車速VSP2を、変更前の第1切替車速VSP1に復帰し、図5のステップS5へ進む。
 ステップS129では、ステップS127でのVSP1でのモード遷移が不可能であるとの判断に続き、ステップS121やステップS124と同様に、そのときの車速VSPが第2切替車速VSP2未満か否かを判断する。YES(VSP<VSP2)の場合はステップS130へ進み、NO(VSP≧VSP2)の場合はステップS131へ進む。
 ステップS130では、ステップS129でのVSP<VSP2であるとの判断に続き、図9に示す特性に基づき、少なくとも第2切替車速VSP2以上になるように、そのときのエンジン回転数Neに基づいて加速度を決め、第1モータジェネレータMG1に対する要求駆動力を増加することにより車両を加速し、ステップS127へ戻る。
ここで、「エンジン回転数Ne」の情報は、エンジン回転数センサ74により取得する。
 ステップS131では、ステップS121、ステップS124、ステップS129でのVSP≧VSP2であるとの判断に続き、VSP≧VSP2になったことでのモード遷移要求に基づき(図7)、第2モータジェネレータMG2による発電を停止し、ステップS132へ進む。
 ステップS132では、ステップS131でのMG2発電停止に続き、「SeriesEV1st」の変速段から「EV1st ICE1st」の変速段へ変速することで、「シリーズHEVモード」から「パラレルHEVモード」にモード遷移し、エンドへ進む。
 次に、作用を説明する。
以下、実施例1のハイブリッド車両のモード遷移制御装置における作用を、「モード遷移制御処理作用」、「MG2過昇温防止制御処理作用」、「モード遷移制御作用」、「モード遷移制御の特徴作用」に分けて説明する。
 [モード遷移制御処理作用(図5)]
 発進操作有りで、かつ、バッテリSOC≧Aで発電要求無しのときは、図5のフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS4→ステップS5へと進む。そして、ステップS5にて「パラレルHEVモード」へのモード遷移が無いと判断されている間、ステップS2→ステップS3→ステップS4→ステップS5へと進む流れが繰り返される。よって、ステップS3では、第3係合クラッチC3が「N」から「left」に切り替えられ、アクセル踏み込み操作に応じて第1モータジェネレータMG1の駆動が開始される。ステップS4では、「EV1st ICE-」の変速段による「EVモード」でのMG1走行が行われる。
 発進操作有りで、かつ、バッテリSOC<Aで発電要求有りのときは、図5のフローチャートにおいて、ステップS1→ステップS2→ステップS6→ステップS7へと進む。そして、ステップS7では、ステップS6でのMG2稼働要求に続き、エンジン運転中であるか否かが判断され、エンジン運転中の場合はそのままステップS9へ進む。エンジン停止中の場合はステップS7からステップS8へ進み、ステップS8にて第2モータジェネレータMG2をスタータモータとしてエンジン始動され、ステップS9へ進む。ステップS9からは、ステップS10→ステップS11へと進む。ステップS11では、第1切替車速VSP1で「パラレルHEVモード」へのモード遷移が可能であるか否かが予測判断される。そして、加速発進シーンなどによりステップS11にて第1切替車速VSP1でのモード遷移が可能であり、ステップS5にて「パラレルHEVモード」へのモード遷移が無いと判断されている間は、ステップS2→ステップS6→ステップS7→ステップS9→ステップS10→ステップS11→ステップS5へと進む流れが繰り返される。よって、ステップS9では、第3係合クラッチC3が「N」から「left」に切り替えられ、アクセル踏み込み操作に応じて第1モータジェネレータMG1が駆動される。ステップS10では、「EV1st ICE-」の変速段による「シリーズHEVモード」でのMG2発電+MG1走行が行われる。
 一方、発進後に低車速を維持したままでの走行シーンなどにおいては、ステップS11にて第1切替車速VSP1で「パラレルHEVモード」へのモード遷移が不可能であると判断される。このときは、ステップS2→ステップS6→ステップS7→ステップS9→ステップS10→ステップS11→ステップS12→ステップS5へと進む流れが繰り返される。よって、ステップS12では、図6に示すフローチャートに基づいてMG2過昇温防止制御が実行される。
 [MG2過昇温防止制御処理作用(図6)]
 図5のステップS11で第1切替車速VSP1でのモード遷移が不可能であると予測判断されると、図6のフローチャートのステップS120に進む。ステップS120では、シフトスケジュールマップ(図7)の「SeriesEV1st(シリーズHEVモード)」から「EV1st ICE1st(パラレルHEVモード)」へ切り替える第1切替車速VSP1が、第1切替車速VSP1より低車速側の第2切替車速VSP2に変更される。
 ステップS121にて車速VSPが第2切替車速VSP2未満と判断されると、図6のフローチャートにおいて、ステップS121→ステップS122→ステップS123へと進む。そして、ステップS123にて推定MG2温度<T1と判断されている限り、図6のフローチャートにおいて、ステップS121→ステップS122→ステップS123へと進む流れが繰り返される。よって、推定MG2温度が第1温度閾値T1に到達するまでの間は、ステップS122において、「シリーズHEVモード」での走行により第2モータジェネレータMG2による発電(高電力)が維持される。
 その後、MG2発電(高電力)によりステップS123にて推定MG2温度≧T1と判断されると、ステップS123からステップS124へと進む。ステップS124にて車速VSPが第2切替車速VSP2未満と判断されると、ステップS124からステップS125→ステップS126へと進む。ステップS126にて推定MG2温度<T2と判断されている限り、図6のフローチャートにおいて、ステップS124→ステップS125→ステップS126へと進む流れが繰り返される。よって、推定MG2温度が第1温度閾値T1から第2温度閾値T2に到達するまでの間は、発電電力を低電力に切り替え、「シリーズHEVモード」での走行により第2モータジェネレータMG2による発電(低電力)が行われる。
 そして、ステップS126にて推定MG2温度≧T2と判断されると、ステップS126からステップS127→ステップS129へと進む。ステップS127で第1切替車速VSP1でのモード遷移が不可能であると判断され、かつ、ステップS129にて車速VSPが第2切替車速VSP2未満と判断されると、ステップS130へ進み、ステップS130では、第1モータジェネレータMG1に対する要求駆動力を増加することにより車両が加速される。
 ステップS130でのMG1加速により、ステップS127で第1切替車速VSP1でのモード遷移が可能であると判断されるとステップS128へ進み、ステップS128では、ステップS120にて変更された切替車速が、変更前の第1切替車速VSP1に復帰され、図5のステップS5へ進む。
 一方、ステップS130でのMG1加速により、ステップS127で第1切替車速VSP1でのモード遷移は不可能であるが、ステップS129にて車速VSPが第2切替車速VSP2以上になったと判断されると、ステップS129からステップS131→ステップS132→エンドへと進む。ステップS131では、第2モータジェネレータMG2による発電が停止され、次のステップS132では、「EV1st ICE1st」の変速段が選択され、「パラレルHEVモード」にモード遷移しての走行が行われる。
 なお、MG2発電の途中段階であるステップS121やステップS124にて車速VSPが第2切替車速VSP2以上になったと判断されると、ステップS121やステップS124からステップS131→ステップS132→エンドへと進む。ステップS131では、第2モータジェネレータMG2による発電が停止され、次のステップS132では、「EV1st ICE1st」の変速段が選択され、「パラレルHEVモード」にモード遷移しての走行が行われる。
 [モード遷移制御作用]
 本制御の対象となる車両は、「シリーズHEVモード」を選択しての走行、つまり、第2モータジェネレータMG2で発電しながら第1モータジェネレータMG1で走行が可能なハイブッリド車両である。このハイブッリド車両は、発電用の第2モータジェネレータMG2を過剰に使用した場合において、第2モータジェネレータMG2が過剰に温度上昇することにより、オーバーヒート状態に至ることがある。
 結果として、MG2発電を継続することができなくなると、強電バッテリ3のバッテリSOCが低下し、第1モータジェネレータMG1でのEV発進、第2モータジェネレータMG2でのエンジン始動や変速時の回転同期制御、などができなくなる。このような事態に陥ることを確実に回避する必要があるため、駆動力要求を予測し、MG2温度状態に基づき、内燃機関ICE、第1モータジェネレータMG1、第2モータジェネレータMG2への配分を最適化する制御を行う。これにより、第2モータジェネレータMG2のオーバーヒート(過昇温)を防止することを狙いとする。以下、図10に示すような緩勾配登り路で低車速(駆動要求が低い)を維持したままでの走行シーンを一例として、図11及び図12に基づき、モード遷移制御作用を説明する。
 まず、発進時、バッテリSOC≧Aで発電要求無しのときは、多段歯車変速機1の第3係合クラッチC3が「N」から「left」に切り替えられ、「EV1st ICE-」の変速段による「EVモード」でのMG1走行が行われる。この「EVモード」でのMG1走行では、第1モータジェネレータMG1から第3係合クラッチC3を介して駆動輪19へと流れるMG1トルクの流れが形成される(図11の左側矢印のみ)。
 例えば、「EVモード」でのMG1走行が継続すると、第1モータジェネレータMG2でのバッテリSOCの消費により、強電バッテリ3のバッテリSOCが減少し、バッテリSOC<A(発電要求有り)に移行する。バッテリSOC<Aに移行すると、MG2稼働要求に基づき、内燃機関ICEにより第2モータジェネレータMG2を発電駆動し、第1モータジェネレータMG1を駆動源としてEV1速段により走行する「シリーズHEVモード」でのMG2発電+MG1走行が行われる。
 この「シリーズHEVモード」でのMG2発電+MG1走行では、図11に示すように、第1モータジェネレータMG1から第3係合クラッチC3を介して駆動輪19へと流れるMG1トルクの流れと、内燃機関ICEから第2モータジェネレータMG2へと流れるICEトルクの流れと、が形成される。従って、図11の破線矢印に示すように、MG2発電電力分を第1モータジェネレータMG2に供給でき、「EVモード」に比べ、強電バッテリ3のバッテリSOCの減少が抑制される。例えば、低車速維持状態での走行シーンであり、「シリーズHEVモード」でのMG2発電+MG1走行が継続すると、第2モータジェネレータMG2の連続発電許可時間内で第1切替車速VSP1でのモード遷移が不可能になる。
 このように、第1切替車速VSP1でのモード遷移が不可能であることが予測されると、MG2過昇温防止制御が開始される。MG2過昇温防止制御では、まず、シフトスケジュールマップ(図7)の「シリーズHEVモード」から「パラレルHEVモード」への切替車速が、第1切替車速VSP1から第2切替車速VSP2(<VSP1)に変更される。この切替車速の変更により、第2モータジェネレータMG2での発電を停止する「パラレルHEVモード」へモード遷移するタイミングの早期化が図られる。
 そして、MG2過昇温防止制御では、車速VSPと推定MG2温度を監視し、低車速域での走行により車速VSPが第2切替車速VSP2未満であると、「シリーズHEVモード」によるMG2発電が段階的に実行される。即ち、推定MG2温度<T1と判断されている間は、MG2発電電力が高電力による発電とされる。そして、MG2発電(高電力)により推定MG2温度≧T1と判断されると、推定MG2温度<T2と判断されている間は、MG2発電電力が低電力による発電とされる。これにより、エンジン回転数Neが第2切替車速VSP2未満での「シリーズHEVモード」の間は、第2モータジェネレータMG2の過昇温を防止しつつ、最大限の発電量を確保するMG2発電が行われる。
 一方、MG2過昇温防止制御中にエンジン回転数Neが第2切替車速VSP2以上になると、「EV1st ICE1st」の変速段が選択され、「シリーズHEVモード」から「パラレルHEVモード」へのモード遷移が行われる。即ち、車速VSPが上昇することでエンジン回転数Neが第2切替車速VSP2以上になると、第2モータジェネレータMG2による発電が停止され、「EV1st ICE1st」の変速段が選択され、「パラレルHEVモード」にモード遷移して走行が行われる。ここで、VSP≧VSP2になる車速VSPの上昇には、ドライバの加速操作や下り勾配路への移行などによる場合(S121,S124)だけでなく、推定MG2温度≧T2になったときのMG1加速(S130)によるシステム操作での強制的な車速上昇が含まれる。
 この「EV1st ICE1st」の変速段による「パラレルHEVモード」による走行では、図12に示すように、第2モータジェネレータMG2は停止した状態である。そして、第1モータジェネレータMG1から第3係合クラッチC3を介して駆動輪19へと流れるMG1トルクの流れと、内燃機関ICEから第1クラッチC1及び第3クラッチC3を介して駆動輪19へと流れるICEトルクの流れと、が形成される。従って、第2モータジェネレータMG2の発電による温度上昇は無く、第1モータジェネレータMG1の駆動力と内燃機関ICEの駆動力を合わせた駆動力により走行するハイブリッド走行になる。
 このように、MG2過昇温防止制御では、「パラレルHEVモード」へモード遷移する切替車速が第1切替車速VSP1から第2切替車速VSP2(<VSP1)に変更される。そして、車速VSPが第2切替車速VSP2に到達するまでの間は、MG2温度上昇を抑えながらの効果的なMG2発電を行う。さらに、車速VSPが第2切替車速VSP2に到達すると、第2モータジェネレータMG2による発電を停止し、「シリーズHEVモード」から「パラレルHEVモード」へモード遷移する制御が行われる。
 [モード遷移制御の特徴作用]
 実施例1では、「シリーズHEVモード」での走行中、第2モータジェネレータMG2を含む第2発電システム温度の上昇が予測されると、切替車速を、温度上昇判断前の第1切替車速VSP1よりも低速側の第2切替車速VSP2に変更する構成とした。
即ち、「シリーズHEVモード」での走行中、第2発電システム温度の上昇が予測されると、車速VSPが第1切替車速VSP1に達する前の第2切替車速VSP2になるタイミングで第2モータジェネレータMG2での発電を停止し、「パラレルHEVモード」へモード遷移する制御が行われる。このため、第2モータジェネレータMG2での発電停止タイミングが早期化される。
この結果、「シリーズHEVモード」での走行中、第2モータジェネレータMG2を含む第2発電システムが過昇温(オーバーヒート)になるのが防止される。
 実施例1では、切替車速を第1切替車速VSP1から第2切替車速VSP2に変更する際、路面勾配が緩やかであるほどより低車速の値にする構成とした。
即ち、路面勾配が緩やかであるほど自立運転可能なエンジン回転数が低回転数であり、路面勾配が急勾配になるほど自立運転可能なエンジン回転数が高回転数側に移行する。この特性に合わせてため、切替車速の値を設定する。
従って、路面勾配が緩やかなときほど「パラレルHEVモード」の走行領域が拡大し、第2モータジェネレータMG2を含む第2発電システムが過昇温(オーバーヒート)になるのを回避できる走行領域が拡大する。
 実施例1では、「要求駆動力(Driving Force)」と「車速(VSP)」を座標軸とするシフトスケジュールマップ(図7)を有する。そして、「シリーズHEVモード」での走行中、第2モータジェネレータMG2の温度上昇が判断されると、要求駆動力を増加(MG1加速)する構成とした。
即ち、低車速走行が長く継続し、「パラレルHEVモード」へのモード遷移が遅れると、第2発電システムが過昇温(オーバーヒート)になる可能性が高くなる。
これに対し、ドライバ操作や走行環境の変化ではなく、システム操作により要求駆動力を増加してMG1加速することで、「パラレルHEVモード」へのモード遷移が促される。
従って、低車速走行が長く継続するとき、システム操作により「パラレルHEVモード」へのモード遷移を促すことで、確実に第2発電システムが過昇温(オーバーヒート)になるのが回避される。
 実施例1では、要求駆動力を増加してMG1加速する際、路面勾配が緩やかであるほど増加量を小さくする構成とした。
即ち、ドライバ操作や走行環境の変化ではなく、システム操作により要求駆動力を増加してMG1加速する場合、ドライバが意図しない車両の加速挙動になるため、ドライバに違和感を与える。
これに対し、要求駆動力を増加する際、路面勾配が緩やかであるほど増加量、つまり、MG1加速量を小さくすることで、ドライバに与える違和感が低減される。
 実施例1では、推定MG2温度が第1温度閾値T1未満の間は、通常出力にて第2モータジェネレータMG2によるシリーズ発電を実施する。推定MG2温度が第1温度閾値T1以上で第2温度閾値T2未満の間は、通常出力より低下させた出力にて第2モータジェネレータMG2)によるシリーズ発電を実施する。そして、推定MG2温度が第2温度閾値T2以上になると、第2モータジェネレータMG2によるシリーズ発電を停止する構成とした。
即ち、温度閾値を段階的に設けることにより、第2モータジェネレータMG2の温度上昇が抑えられ、多くの時間において「シリーズHEVモード」での走行が可能なる。
従って、低車速での走行が継続するとき、第2発電システムが過昇温になるのを防止しつつ、MG2発電量の確保により燃費性能の向上に寄与する。
 次に、効果を説明する。
実施例1のハイブリッド車両のモード遷移制御装置にあっては、下記に列挙する効果が得られる。
 (1) 駆動輪19に機械的に結合可能な第1電動機(第1モータジェネレータMG1)と、内燃機関ICEに機械的に結合される第2電動機(第2モータジェネレータMG2)と、第1電動機と第2電動機に電気的に結合されるバッテリ(強電バッテリ3)と、を備え、
 バッテリ(強電バッテリ3)の充電容量(バッテリSOC)が所定値(発電要求閾値A)以下のとき、第2電動機(第2モータジェネレータMG2)で発電した電力とバッテリ電力が供給される第1電動機(第1モータジェネレータMG1)を駆動源とする「シリーズHEVモード」で走行するハイブリッド車両において、
 「シリーズHEVモード」での走行中、車速VSPが切替車速になると、第2電動機(第2モータジェネレータMG2)での発電を停止し、第1電動機(第1モータジェネレータMG1)と内燃機関ICEを駆動源とする「パラレルHEVモード」へモード遷移する制御を行うモード遷移コントローラ(変速機コントロールユニット23)を設け、
 モード遷移コントローラ(変速機コントロールユニット23)は、「シリーズHEVモード」での走行中、第2電動機(第2モータジェネレータMG2)を含む第2発電システム温度の上昇が予測されると、切替車速を、温度上昇判断前の第1切替車速VSP1よりも低速側の第2切替車速VSP2に変更する(図6のS120)。
  このため、「シリーズHEVモード」での走行中、第2電動機(第2モータジェネレータMG2)を含む第2発電システムが過昇温になるのを防止することができる。
 (2) モード遷移コントローラ(変速機コントロールユニット23)は、切替車速を第1切替車速VSP1から第2切替車速VSP2に変更する際、路面勾配が緩やかであるほどより低車速の値にする(図8)。
  このため、(1)の効果に加え、路面勾配が緩やかなときほど、第2モータジェネレータMG2を含む第2発電システムが過昇温になるのを回避する走行領域を拡大することができる。
 (3) モード遷移コントローラ(変速機コントロールユニット23)は、要求駆動力(Driving Force)と車速(VSP)を座標軸とするモード遷移マップ(図7のシフトスケジュールマップ)を有し、「シリーズHEVモード」での走行中、第2電動機(第2モータジェネレータMG2)の温度上昇が判断されると、要求駆動力を増加する(図6のS130)。
  このため、(1)又は(2)の効果に加え、低車速走行が長く継続するとき、システム操作により「パラレルHEVモード」へのモード遷移を促すことで、確実に第2発電システムが過昇温になるのを回避することができる。
 (4) モード遷移コントローラ(変速機コントロールユニット23)は、要求駆動力(Driving Force)を増加する際(図6のS130)、路面勾配が緩やかであるほど増加量を小さくする(図9)。
  このため、(3)の効果に加え、要求駆動力を増加する際、路面勾配が緩やかであるほど増加量(MG1加速量)を小さくすることで、ドライバに与える違和感を低減することができる。
 (5) モード遷移コントローラ(変速機コントロールユニット23)は、第2発電システム温度(推定MG2温度)を判断する温度閾値として、第1温度閾値T1と、第1温度閾値T1よりも高温側の第2温度閾値T2を設定し、
 第2発電システム温度(推定MG2温度)が第1温度閾値T1未満の間は、通常出力にて第2電動機(第2モータジェネレータMG2)によるシリーズ発電を実施し、第2発電システム温度(推定MG2温度)が第1温度閾値T1以上で第2温度閾値T2未満の間は、通常出力より低下させた出力にて第2電動機(第2モータジェネレータMG2)によるシリーズ発電を実施し、第2発電システム温度(推定MG2温度)が第2温度閾値T2以上になると、第2電動機(第2モータジェネレータMG2)によるシリーズ発電を停止する(図6のS121~S131)。
  このため、(1)~(4)の効果に加え、低車速での走行が継続するとき、第2発電システムが過昇温になるのを防止しつつ、MG2発電量の確保により燃費性能の向上に寄与することができる。
 以上、本発明のハイブリッド車両のモード遷移制御装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加などは許容される。
 実施例1では、図5のステップS11において、車速VSPの変化を監視し、第1切替車速VSP1での「パラレルHEVモード」へのモード遷移が可能であるか否かを予測判断する例を示した。しかし、図5のステップS11においては、「車速VSP」に代えて「エンジン回転数Ne」を用い、エンジン回転数Neの変化を監視し、エンジン回転数Ne1が、第1切替車速VSP1に相当するエンジン回転数閾値(例えば、1000rpm)での「パラレルHEVモード」へのモード遷移が可能であるか否かを予測判断する例にしても良い。
 実施例1では、モード遷移コントローラとして、「シリーズHEVモード」での走行中、第2電動機を含む第2発電システム温度の上昇を、連続発電許可時間を用い、第1切替車速VSP1でのモード遷移が可能であるか否かにより予測する例を示した。しかし、モード遷移コントローラとしては、「シリーズHEVモード」での走行中、検出又は推定した第2電動機温度の時間軸による変化状態を監視し、第2電動機を含む第2発電システム温度の上昇を予測するような例としても良い。
 実施例1では、第2発電システム温度の情報として、演算により求めた推定MG2温度を用いる例を示した。しかし、第2発電システム温度の情報としては、センサにより検出したMG2温度や第2インバータ温度やジャンクションボックス温度や強電バッテリ温度などのように、第2発電システムの検出温度を用いる例としても良い。
 実施例1では、本発明のモード遷移制御装置を、駆動系構成要素として、1つのエンジンと、2つのモータジェネレータと、3つの係合クラッチを有する多段歯車変速機と、を備えたハイブリッド車両に適用する例を示した。しかし、本発明のモード遷移制御装置は、変速機の有無を問わず、「シリーズHEVモード」と「パラレルHEVモード」を選択可能なハイブリッド車両に対しても適用することができる。

Claims (5)

  1.  駆動輪に機械的に結合可能な第1電動機と、内燃機関に機械的に結合される第2電動機と、前記第1電動機と前記第2電動機に電気的に結合されるバッテリと、を備え、
     前記バッテリの充電容量が所定値以下のとき、前記第2電動機で発電した電力とバッテリ電力が供給される前記第1電動機を駆動源とするシリーズHEVモードで走行するハイブリッド車両において、
     前記シリーズHEVモードでの走行中、車速が切替車速になると、前記第2電動機での発電を停止し、前記第1電動機と前記内燃機関を駆動源とするパラレルHEVモードへモード遷移する制御を行うモード遷移コントローラを設け、
     前記モード遷移コントローラは、前記シリーズHEVモードでの走行中、前記第2電動機を含む第2発電システム温度の上昇が予測されると、前記切替車速を、温度上昇判断前の第1切替車速よりも低速側の第2切替車速に変更する
     ことを特徴とするハイブリッド車両のモード遷移制御装置。
  2.  請求項1に記載されたハイブリッド車両のモード遷移制御装置において、
     前記モード遷移コントローラは、前記切替車速を第1切替車速から第2切替車速に変更する際、路面勾配が緩やかであるほどより低車速の値にする
     ことを特徴とするハイブリッド車両のモード遷移制御装置。
  3.  請求項1又は請求項2に記載されたハイブリッド車両のモード遷移制御装置において、
     前記モード遷移コントローラは、要求駆動力と車速を座標軸とするモード遷移マップを有し、前記シリーズHEVモードでの走行中、前記第2電動機の温度上昇が判断されると、前記要求駆動力を増加する
     ことを特徴とするハイブリッド車両のモード遷移制御装置。
  4.  請求項3に記載されたハイブリッド車両のモード遷移制御装置において、
     前記モード遷移コントローラは、前記要求駆動力を増加する際、路面勾配が緩やかであるほど増加量を小さくする
     ことを特徴とするハイブリッド車両のモード遷移制御装置。
  5.  請求項1から請求項4までの何れか一項に記載されたハイブリッド車両のモード遷移制御装置において、
     前記モード遷移コントローラは、前記第2発電システム温度を判断する温度閾値として、第1温度閾値と、前記第1温度閾値よりも高温側の第2温度閾値を設定し、
     前記第2発電システム温度が前記第1温度閾値未満の間は、通常出力にて前記第2電動機によるシリーズ発電を実施し、前記第2発電システム温度が前記第1温度閾値以上で前記第2温度閾値未満の間は、通常出力より低下させた出力にて前記第2電動機によるシリーズ発電を実施し、前記第2発電システム温度が前記第2温度閾値以上になると、前記第2電動機によるシリーズ発電を停止する
     ことを特徴とするハイブリッド車両のモード遷移制御装置。
PCT/JP2015/066634 2015-06-09 2015-06-09 ハイブリッド車両のモード遷移制御装置 WO2016199227A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP15894912.3A EP3309031B1 (en) 2015-06-09 2015-06-09 Mode transition control device for hybrid vehicle
MX2017015643A MX366082B (es) 2015-06-09 2015-06-09 Dispositivo de control de transicion de modo para vehiculo hibrido.
JP2017522794A JP6365774B2 (ja) 2015-06-09 2015-06-09 ハイブリッド車両のモード遷移制御装置
CN201580080794.XA CN107683231B (zh) 2015-06-09 2015-06-09 混合动力车辆的模式转变控制装置
KR1020177035289A KR101834144B1 (ko) 2015-06-09 2015-06-09 하이브리드 차량의 모드 천이 제어 장치
RU2017144543A RU2653944C1 (ru) 2015-06-09 2015-06-09 Устройство управления изменением режима для гибридного транспортного средства
US15/580,707 US10232698B2 (en) 2015-06-09 2015-06-09 Mode transition control device for hybrid vehicle
BR112017026163-4A BR112017026163B1 (pt) 2015-06-09 2015-06-09 Dispositivo de controle de transição de modo para veículo híbrido
PCT/JP2015/066634 WO2016199227A1 (ja) 2015-06-09 2015-06-09 ハイブリッド車両のモード遷移制御装置
CA2988532A CA2988532C (en) 2015-06-09 2015-06-09 Mode transition control device for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/066634 WO2016199227A1 (ja) 2015-06-09 2015-06-09 ハイブリッド車両のモード遷移制御装置

Publications (1)

Publication Number Publication Date
WO2016199227A1 true WO2016199227A1 (ja) 2016-12-15

Family

ID=57503524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066634 WO2016199227A1 (ja) 2015-06-09 2015-06-09 ハイブリッド車両のモード遷移制御装置

Country Status (10)

Country Link
US (1) US10232698B2 (ja)
EP (1) EP3309031B1 (ja)
JP (1) JP6365774B2 (ja)
KR (1) KR101834144B1 (ja)
CN (1) CN107683231B (ja)
BR (1) BR112017026163B1 (ja)
CA (1) CA2988532C (ja)
MX (1) MX366082B (ja)
RU (1) RU2653944C1 (ja)
WO (1) WO2016199227A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019120797A1 (de) * 2017-12-19 2019-06-27 Zf Friedrichshafen Ag Verfahren bei einem seriellen fahrbetrieb eines kraftfahrzeugs
CN111356601A (zh) * 2017-10-09 2020-06-30 雷诺股份公司 用于控制电动混合动力单元的方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5943127B1 (ja) * 2015-07-10 2016-06-29 トヨタ自動車株式会社 車両用駆動装置
JP6361634B2 (ja) * 2015-11-12 2018-07-25 トヨタ自動車株式会社 ハイブリッド自動車
DE102017221495A1 (de) * 2017-11-30 2019-06-06 Volkswagen Aktiengesellschaft Verfahren zum Betreiben eines hybriden Antriebsstrangs eines Kraftfahrzeugs und Kraftfahrzeug
JP7003606B2 (ja) * 2017-12-05 2022-01-20 トヨタ自動車株式会社 ハイブリッド自動車およびこれに搭載される制御装置
FR3081127B1 (fr) * 2018-05-15 2021-11-19 Renault Sas Transmission hybride a machine electrique deportee
CN112752689B (zh) * 2018-09-26 2023-12-22 日产自动车株式会社 电动车辆的控制方法以及电动车辆的驱动系统
KR102628398B1 (ko) * 2018-09-28 2024-01-23 고쿠사이 게이소쿠키 가부시키가이샤 시험 장치, 시험 프로세스의 설정 방법 및 스티어링 장치의 시험 방법
CN109353330B (zh) * 2018-10-31 2021-02-02 重庆长安汽车股份有限公司 一种混合动力车辆、工作模式控制系统及其方法
CN109263632B (zh) * 2018-11-14 2020-04-21 江铃汽车股份有限公司 一种混合动力车辆的混动工作模式切换控制方法
US10960875B2 (en) * 2018-11-27 2021-03-30 Ford Global Technologies, Llc Methods and system for switching driveline operating modes
CN111301182B (zh) * 2018-12-12 2022-08-19 上海汽车集团股份有限公司 一种充电控制方法、装置及电子设备
US11186267B2 (en) * 2019-02-01 2021-11-30 Ford Global Technologies, Llc Methods and system for operating a driveline in a speed control mode
DE102019202965A1 (de) * 2019-03-05 2020-09-10 Zf Friedrichshafen Ag Hybridgetriebe für einen Kraftfahrzeug-Antriebsstrang
JP7501250B2 (ja) * 2019-11-12 2024-06-18 トヨタ自動車株式会社 走行制御装置、方法およびプログラム
CN113442712B (zh) * 2020-03-27 2022-04-01 广州汽车集团股份有限公司 混合动力驱动系统及车辆
CN112744211B (zh) 2020-04-17 2022-06-24 长城汽车股份有限公司 车辆驱动控制方法、系统
FR3109563B1 (fr) * 2020-04-28 2022-03-18 Renault Procede et dispositif d’immobilisation a l’arret d’un vehicule routier
JP7384134B2 (ja) * 2020-09-14 2023-11-21 トヨタ自動車株式会社 ハイブリッド車両
US12109895B1 (en) * 2020-09-24 2024-10-08 Apple Inc. Motion system
US11981320B2 (en) * 2020-10-28 2024-05-14 Nissan Motor Co., Ltd. Method for controlling hybrid vehicle and hybrid vehicle
CN112590528B (zh) * 2021-03-02 2021-06-18 比亚迪股份有限公司 混合动力系统、混合动力车辆及其控制方法、整车控制器
EP4353555A4 (en) * 2021-06-08 2024-09-11 Mitsubishi Motors Corp VEHICLE CONTROL DEVICE
CN113386730B (zh) * 2021-07-19 2023-01-06 中国第一汽车股份有限公司 混合动力汽车串并联驱动模式切换的控制方法
JP7247285B2 (ja) * 2021-08-26 2023-03-28 本田技研工業株式会社 車両制御装置
CN114030457B (zh) * 2022-01-07 2022-03-15 北京航空航天大学 一种串并联混合动力系统双阈值工作模式切换控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000027672A (ja) * 1998-07-13 2000-01-25 Nissan Motor Co Ltd パラレル・ハイブリッド車両の駆動制御装置
JP2005291012A (ja) * 2004-03-31 2005-10-20 Fuji Heavy Ind Ltd ハイブリッド車両の制御装置
JP2006094626A (ja) * 2004-09-24 2006-04-06 Toyota Motor Corp ハイブリッド車およびその制御方法
JP2009005499A (ja) * 2007-06-21 2009-01-08 Toyota Motor Corp 車両の駆動装置
JP2010106561A (ja) * 2008-10-30 2010-05-13 Sumitomo Heavy Ind Ltd ハイブリッド型建設機械
WO2012059998A1 (ja) * 2010-11-04 2012-05-10 トヨタ自動車株式会社 車両用ハイブリッド駆動装置
WO2012059996A1 (ja) * 2010-11-04 2012-05-10 トヨタ自動車株式会社 車両用ハイブリッド駆動装置
JP2013241129A (ja) * 2012-05-22 2013-12-05 Honda Motor Co Ltd ハイブリッド自動車の発電制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157901A (en) 1979-05-24 1980-12-09 Enshu Ltd Self-charging electric motor automobile
JPH11270668A (ja) 1998-03-20 1999-10-05 Nissan Motor Co Ltd ハイブリッド車両の駆動制御装置
JP3496654B2 (ja) * 2001-04-24 2004-02-16 日産自動車株式会社 ハイブリッド車両
JP5080525B2 (ja) * 2009-03-30 2012-11-21 ジヤトコ株式会社 ハイブリッド車両の制御装置
WO2010119597A1 (ja) * 2009-04-13 2010-10-21 シャープ株式会社 表示装置、液晶表示装置、表示装置の駆動方法、テレビジョン受像機
RU2563293C2 (ru) * 2009-12-16 2015-09-20 Хонда Мотор Ко., Лтд. Гибридное транспортное средство и способ управления им
DE102010030573A1 (de) * 2010-06-28 2011-12-29 Zf Friedrichshafen Ag Hybridantrieb mit einem automatisierten Schaltgetriebe
FR2966786A3 (fr) * 2010-11-03 2012-05-04 Renault Sa Systeme de motorisation hybride pour vehicule automobile
JP5720893B2 (ja) * 2011-09-01 2015-05-20 三菱自動車工業株式会社 ハイブリット車両の制御装置
DE112012006654B8 (de) * 2012-07-05 2024-10-17 Toyota Jidosha Kabushiki Kaisha Steuerungssystem für Hybridfahrzeug
GB2508669A (en) * 2012-12-10 2014-06-11 Jaguar Land Rover Ltd A speed control system for a hybrid electric vehicle
JP6070934B2 (ja) * 2012-12-21 2017-02-01 三菱自動車工業株式会社 ハイブリッド車の走行モード切換制御装置
CN103978880B (zh) 2013-02-08 2019-07-19 高效动力传动系统公司 用于双电机双离合混合动力车的动力系统配置
KR101601431B1 (ko) * 2014-06-16 2016-03-09 현대자동차주식회사 차량의 하이브리드 파워트레인
JP6183409B2 (ja) * 2015-05-26 2017-08-23 トヨタ自動車株式会社 ハイブリッド車両

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000027672A (ja) * 1998-07-13 2000-01-25 Nissan Motor Co Ltd パラレル・ハイブリッド車両の駆動制御装置
JP2005291012A (ja) * 2004-03-31 2005-10-20 Fuji Heavy Ind Ltd ハイブリッド車両の制御装置
JP2006094626A (ja) * 2004-09-24 2006-04-06 Toyota Motor Corp ハイブリッド車およびその制御方法
JP2009005499A (ja) * 2007-06-21 2009-01-08 Toyota Motor Corp 車両の駆動装置
JP2010106561A (ja) * 2008-10-30 2010-05-13 Sumitomo Heavy Ind Ltd ハイブリッド型建設機械
WO2012059998A1 (ja) * 2010-11-04 2012-05-10 トヨタ自動車株式会社 車両用ハイブリッド駆動装置
WO2012059996A1 (ja) * 2010-11-04 2012-05-10 トヨタ自動車株式会社 車両用ハイブリッド駆動装置
JP2013241129A (ja) * 2012-05-22 2013-12-05 Honda Motor Co Ltd ハイブリッド自動車の発電制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3309031A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356601A (zh) * 2017-10-09 2020-06-30 雷诺股份公司 用于控制电动混合动力单元的方法
WO2019120797A1 (de) * 2017-12-19 2019-06-27 Zf Friedrichshafen Ag Verfahren bei einem seriellen fahrbetrieb eines kraftfahrzeugs
US11590960B2 (en) 2017-12-19 2023-02-28 Zf Friedrichshafen Ag Method for a serial driving mode of a motor vehicle

Also Published As

Publication number Publication date
CA2988532C (en) 2018-04-24
CN107683231B (zh) 2019-03-26
EP3309031A1 (en) 2018-04-18
RU2653944C1 (ru) 2018-05-15
KR20170140416A (ko) 2017-12-20
BR112017026163A2 (ja) 2018-08-14
JPWO2016199227A1 (ja) 2018-02-01
KR101834144B1 (ko) 2018-04-13
MX2017015643A (es) 2018-04-18
BR112017026163B1 (pt) 2022-10-04
MX366082B (es) 2019-06-27
US20180201116A1 (en) 2018-07-19
CN107683231A (zh) 2018-02-09
EP3309031A4 (en) 2018-05-30
CA2988532A1 (en) 2016-12-15
JP6365774B2 (ja) 2018-08-08
US10232698B2 (en) 2019-03-19
EP3309031B1 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
JP6365774B2 (ja) ハイブリッド車両のモード遷移制御装置
JP6327402B2 (ja) ハイブリッド車両の駆動力制御装置
JP6493517B2 (ja) 電動車両の発進制御装置
JP6399222B2 (ja) ハイブリッド車両の発電制御装置
JP6354903B2 (ja) ハイブリッド車両のエネルギ管理制御装置
JP6477874B2 (ja) ハイブリッド車両のモード遷移制御装置
JP6384606B2 (ja) ハイブリッド車両の発電制御装置
JP6421698B2 (ja) ハイブリッド車両の変速制御装置
JP6372616B2 (ja) ハイブリッド車両の発進制御装置
JP6657614B2 (ja) 電動車両の制動力制御装置
JP6477272B2 (ja) 車両の停車時制御装置
JP6421699B2 (ja) ハイブリッド車両の回生/変速協調制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894912

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017522794

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/015643

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2988532

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20177035289

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15580707

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017144543

Country of ref document: RU

Ref document number: 2015894912

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017026163

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017026163

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171205