WO2016140961A1 - Perspiration sensor - Google Patents
Perspiration sensor Download PDFInfo
- Publication number
- WO2016140961A1 WO2016140961A1 PCT/US2016/020247 US2016020247W WO2016140961A1 WO 2016140961 A1 WO2016140961 A1 WO 2016140961A1 US 2016020247 W US2016020247 W US 2016020247W WO 2016140961 A1 WO2016140961 A1 WO 2016140961A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- perspiration sensor
- substrate layer
- perspiration
- sensor according
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
- A61B5/0537—Measuring body composition by impedance, e.g. tissue hydration or fat content
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14507—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
- A61B5/14517—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for sweat
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/42—Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
- A61B5/4261—Evaluating exocrine secretion production
- A61B5/4266—Evaluating exocrine secretion production sweat secretion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
- A61B5/443—Evaluating skin constituents, e.g. elastin, melanin, water
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
- A61B5/6803—Head-worn items, e.g. helmets, masks, headphones or goggles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/683—Means for maintaining contact with the body
- A61B5/6832—Means for maintaining contact with the body using adhesives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2503/00—Evaluating a particular growth phase or type of persons or animals
- A61B2503/10—Athletes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0209—Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
- A61B2562/0214—Capacitive electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/18—Shielding or protection of sensors from environmental influences, e.g. protection from mechanical damage
- A61B2562/182—Electrical shielding, e.g. using a Faraday cage
Definitions
- the present invention is directed to a moisture sensor and more specifically, to a perspiration sensor for quantitatively measuring levels of perspiration.
- the perspiration sensor includes a capacitive sensor that can be coupled to the skin and utilize capacitance to measure perspiration.
- the perspiration sensor can be shielded and stabilized to reduce noise by electrically coupling the capacitor dielectric material to the skin.
- the prior art perspiration sensors are generally related to devices for determining galvanic skin response. These devices involve the measurement of the electrical resistance of the skin, but do not provide a quantitative indication of the volume or level of perspiration over time.
- the present invention is directed to a method and system for obtaining a quantitative measurement of moisture, and more specifically, perspiration.
- embodiments of the invention utilize the dielectric properties of perspiration in a capacitive sensor that includes a pair of ground shielded parallel electrodes sandwiching a moisture absorbent dielectric material (e.g., a microfiber cloth).
- the dielectric material can be electrically coupled (e.g., capacitively coupled) to the skin of the user to provide a more stable signal because the skin is capacitively coupled to earth ground which is weakly capacitively coupled to the ground of signal measurement circuit (e.g., the capacitance to digital signal converter integrated circuit).
- the method includes a providing a capacitor that includes a dielectric material that absorbs moisture (e.g., perspiration) in contact with the skin, wherein the capacitor includes one or more inlets that enable perspiration released from the skin to become absorbed by the absorbent dielectric material and electrically (e.g., capacitively) coupling the dielectric material to the body.
- moisture e.g., perspiration
- the perspiration sensor can be constructed having three layers, a first or top layer, a second or middle layer and a third or bottom layer.
- the bottom layer can include an adhesive or other skin contacting material that maintains contact with and capacitively couples the sensor to the skin.
- the bottom layer and the top layer include the first and second electrode plates that form the capacitor with dielectric material surrounded by the middle layer sandwiched in between.
- the bottom layer, middle layer and top layer form a central chamber that encloses the dielectric material and positions it in a dielectric space between the first and second electrodes.
- the bottom layer can also include one or more pores, inlets or vents that enable perspiration released from the skin to enter central chamber and be absorbed by the dielectric material in the dielectric space.
- the bottom layer can also include a skin coupling electrode that becomes electrically coupled to the skin when the bottom surface of the bottom layer is adhered to or placed in contact with the skin.
- the skin coupling electrode can be electrically connected to the central chamber and the dielectric material.
- the skin coupling electrode capacitively couples the dielectric material in the central chamber to the skin to provide ground shielding adjacent to the electrodes to minimize environmental noise.
- the dielectric material can be weakly but consistently (capacitively) coupled to earth ground through the skin.
- Each of the layers can be formed from a rigid printed circuit board (PCB) or a flexible PCB, and each of the layers can be laminated together as is well known in the art.
- the dielectric material can be an absorbent material that rapidly replaces air with perspiration, such as a tufted microfiber cloth.
- the thickness of the middle layer can be selected to define and control the distance between the sensing electrode plates of the capacitor.
- the middle layer includes a rigid material having a predefined thickness to tightly control the electrode plate spacing and slightly thinner than the thickness of the microfiber cloth causing portions of the cloth to extrude through the pores or inlets of the bottom layer facilitate moisture absorption.
- the device can further include a capacitance measurement integrated circuit (e.g., IC chip) mounted to the top layer that enables close proximity measurement of the change in capacitance of the sensor to minimize the introduction of noise.
- a capacitance measurement integrated circuit e.g., IC chip
- the measured capacitance can be transmitted (e.g., by wire or wirelessly) to a remote system for storing and/or analyzing the capacitance data and determining perspiration rates (e.g., volume and volume over time).
- the device can be fully or partially enclosed or encapsulated in polymer or elastomeric material (e.g. PDMS, or silicone) that protects the sensor from the environment.
- polymer or elastomeric material e.g. PDMS, or silicone
- One or more of the layers can include one or more partially or fully enclosed anchor rings projecting from the perimeter of the device such that the polymer material passes through the opening in the anchor rings to more securely anchor the encapsulating material to the outside of the device.
- the bottom of the device is coupled to the skin by an adhesive material and perspiration released by the skin passes through the inlets and become absorbed by the microfiber dielectric material.
- the capacitance of the first and second electrodes changes as the dielectric material absorbs perspiration.
- the bottom of the device includes a skin electrode that is electrically connected to the dielectric material and the central chamber.
- the skin electrode can be electrically connected to the middle layer by plated through holes or vias in the bottom layer.
- the vias in the middle layer can include electrodes that directly contact the dielectric material, enabling the dielectric material to be coupled (e.g., capacitively coupled) to the skin through the adhesive.
- the integrated circuit on the top layer includes a circuit that determines a measure of the capacitance between the first and second electrodes while the skin electrode serves to stabilize the capacitance measurement against noise.
- the patent or application file contains at least one drawing executed in color.
- FIG. 1 is a photograph of a perspiration sensor according to an embodiment of the invention.
- FIGS. 2A and 2B show diagrammatic views of a silicon encapsulated perspiration sensor according to an embodiment of the invention.
- FIGS. 3 A and 3B show diagrammatic views of a perspiration sensor according to some embodiments of the invention.
- FIG. 4 shows an exploded isometric top view of a perspiration sensor according to an embodiment of the invention.
- FIG. 5 shows an exploded isometric bottom view of a perspiration sensor according to an embodiment of the invention.
- FIG. 6A shows an exploded cross-section view of a perspiration sensor according to an embodiment of the invention.
- FIG. 6B shows a cross-section view of an assembled perspiration sensor according to an embodiment of the invention shown in FIG. 6A.
- FIG. 7A shows a diagram of a perspiration sensor according to some
- FIG. 7B shows a diagrammatic view of the middle layer according to an embodiment of the invention
- FIG. 7C shows a cutaway view of a perspiration sensor according to some embodiments of the invention with a portion of the encapsulation material removed.
- FIGS. 8A and 8B show diagrams of dielectric material according to some embodiments of the invention.
- FIGS 9A and 9B show diagrams of electronic circuits for measuring the change in capacitance between the electrodes of a perspiration sensor according to some embodiments of the invention.
- FIGS. 10A, 10B, IOC and 10D show graphs of performance data for 5 a perspiration sensor according to some embodiments of the invention.
- the present invention is directed to methods and systems for obtaining a quantitative measurement of moisture.
- One specific application for the invention includes the detection and measurement of perspiration.
- the invention is described herein in the context of measuring perspiration, however, embodiments of the invention can be used to measure other sources of moisture.
- the perspiration sensor includes a pair of ground shielded parallel electrodes sandwiching a moisture absorbent dielectric material (e.g., a microfiber cloth) that forms a capacitor.
- a moisture absorbent dielectric material e.g., a microfiber cloth
- the sensor allows perspiration to become absorbed by moisture absorbent dielectric material which changes the dielectric constant the dielectric material and is reflected in the measured capacitance of the electrode plates of the perspiration sensor.
- the dielectric material can be electrically coupled (e.g., capacitively coupled) to the skin of the user to provide for more stable signal measurement.
- the absorbent dielectric material can be weakly (e.g., 10 pF or less) but consistently (e.g., up to 10% variation) coupled through the skin to earth ground which is weakly coupled to signal ground of capacitance measuring circuit.
- the method includes providing a capacitor that includes an exposed dielectric material that can absorb moisture (e.g., perspiration) produced by the skin. As perspiration is released from the skin and becomes absorbed by the absorbent dielectric material, the dielectric properties of the material between the electrode plates change resulting in a change in the capacitance of the perspiration sensor.
- An internal or external measurement component can be connected to the electrodes of the capacitor to measure the changes in capacitance of the perspiration sensor.
- the dielectric properties of perspiration closely resemble that of saline which in turn closely resemble that of water.
- the dielectric constant of water is about 80 times that of air.
- An air capacitor formed by two parallel plates will increase capacitance significantly when air is replaced with water, saline, or perspiration.
- the approximate capacitance C of the parallel plates can be determined by where A is the area of the electrode plate, d is the distance between the plates; 8o is the dielectric constant of free space and 8 r is the relative dielectric constant of the material between the plates.
- the dielectric material can be selected to rapidly absorb the perspiration.
- the dielectric material can have predefined wicking or absorbency properties that provide a desired level of perspiration absorption.
- the dielectric material is initially in a dry state and has dielectric properties similar to air and produces an initial capacitance level. As the dielectric material is exposed to moisture (e.g., perspiration) the moisture rapidly replaces the air, changing the dielectric properties of the dielectric material and the measured capacitance level of the sensor.
- the absorbent dielectric material can include a tufted microfiber cloth. This material has been found to have improved capillary suction and to diffuse perspiration faster and more uniformly than other materials as well as provides higher absorption densities. Other absorbent materials, such as cellulose paper, foamy elastomers, cotton, wool, air, and moisture wicking materials, can be used.
- the absorbent dielectric material can be configured to have a large surface area to volume ratio of the material that results in capillary suction causing the air filled space to become filled with environmental moisture or perspiration.
- a capacitance measuring circuit can be provided onboard or in close proximity to the capacitor sensor to minimize noise and convert the capacitance to a digital signal for transmission to a connected device.
- FIGS 1A and 2B show a moisture or perspiration sensor 100 according to various embodiments of the invention with the encapsulating polymer removed to provide a better view of the structure of the device.
- FIGS 2A and 2B show diagrammatic views of a perspiration sensor 200 according to embodiments of the invention encapsulated in an encapsulating material, such as polymer material (e.g., silicone, PDMS, polyimide, TPE, PET, PVC, and MMA).
- the perspiration sensor 200 can include channels 210 that serve to guide moisture, such as perspiration, toward inlets in the perspiration sensor 200.
- the perspiration sensor 100 can be constructed from two or more layers of insulating or dielectric material (e.g., a first layer 110, a second layer 120 and the third layer 130).
- each layer can include a non-conductive substrate (e.g. FR4 epoxy fiberglass, PDMS, or polyimide) having a conductive layer (e.g., copper and/or tin) on one or both surfaces of the substrate, such as a printed circuit board (PCB) or flexible PCB.
- a non-conductive substrate e.g. FR4 epoxy fiberglass, PDMS, or polyimide
- a conductive layer e.g., copper and/or tin
- each layer can include a protective and/or insulating coating (e.g., solder mask coating) covering a portion or all of each surface of each layer.
- a protective and/or insulating coating e.g., solder mask coating
- Each of the layers that make up the perspiration sensor 100 can be bonded together using well known adhesives (e.g., epoxy, polyimide, and/or silicone based adhesives).
- the surfaces of at least some of the layers can include exposed pads enabling electronic components such as integrated circuits, discrete components (e.g., resistors, capacitors, diodes and other passive devices) to soldered in place.
- the layers can also include vias or plated through holes that allow circuit traces to extend through the layer can make contact with circuit traces of the other layers.
- some or all of the layers can include castellated vias on or extending from the external edges that provide for mechanical alignment and enable low temperature fabrication - the castellated vias are positioned away from central chamber and can be soldered without fear of melting or otherwise damaging the absorbent dielectric material.
- FIG. 4 shows an exploded view of a perspiration sensor 100 according to some embodiments of the invention.
- the perspiration sensor 100 includes a first or top layer 110, a second or middle layer 120 and the third or bottom layer 130.
- the first layer 110 includes a first electrode 112 on the underside of the first layer (hidden from view in FIG. 4, but shown in FIG. 5).
- the first layer 110 can also include circuit traces that enable a sensing integrated circuit 140 to soldered in place and electrically connected to the first electrode 112 and second electrode 134 and wires (not shown) that connect the perspiration sensor 100 to other devices.
- the third layer 130 includes one or more inlets 132 and the second electrode 134.
- the third layer 130 can also include a skin electrode 136 (hidden from view in FIG. 4, but shown in FIG. 5) and an adhesive material covering the skin electrode 136 to adhere the perspiration sensor 100 to a surface such as a skin surface.
- the second layer 120 forms a ring 122 that at least partially surrounds or encloses the dielectric material 124 in the dielectric space defined by the central chamber 26. When the three layers are bonded together, they form a central chamber 126 which encloses the dielectric material 124 (e.g., the moisture absorbent material).
- the thickness of each layer can be selected to minimize the overall thickness of the sensor to improve user comfort.
- the first layer 110 and the third layer 130 can be thicker or thinner than the middle layer 120.
- each of the layers can have the same or different thicknesses.
- the sensor detection area, defined by the inlets 132 can cover an area of 1 cubic centimeter and provide an average pore density of 50 pores (e.g., in the arm pit).
- FIG. 5 shows an exploded bottom view of the perspiration sensor 100 (e.g, showing the third layer 130 on top).
- the third layer 130 can include a skin electrode 136 on the outer surface thereof.
- the skin electrode 136 can be provided in the form of a ring, as shown, or as a set of interconnected contact points over the outer surface of the third layer 130.
- the skin electrode 136 can be electrically connected to the dielectric material 124 in the central chamber 126 of the perspiration sensor 100 by extending circuit traces around or vias through the third layer 130 to the middle layer 120 and in contact with the dielectric material 124.
- the skin electrode 136 can be electrically connected to the dielectric material 124 by circuit traces or wires that extend from the inner surface of the third layer 130 into the central chamber 126.
- the skin electrode 136 can be covered with a solder mask or other insulating material (e.g., skin adhesive tape). When the perspiration sensor 100 is adhered or placed in contact with the skin, the skin electrode 136 capacitively couples the dielectric material 124 to the skin.
- FIG. 6A shows an exploded cross-section view and FIG. 6B shows an assembled cross-section view of a perspiration sensor 100 according to some embodiments of the invention.
- an adhesive layer 150 adheres the third layer 130 of the perspiration sensor 100 to the surface of the skin 160 enabling the device to measure perspiration.
- the perspiration sensor 100 includes a first layer 110, second layer 120 and a third layer 130.
- the first electrode 112 is formed on the inner surface of the first layer 110 and the second electrode 134 is formed on the inner surface of the third layer 130.
- a mask 114 on the first layer and a mask 138 on third layer can be included to electrically insulate the first electrode 112 and the second electrode 134 from the dielectric material 124 while enabling the dielectric material 124 to be in intimate contact with the first electrode 112 and the second electrode 134 while preventing the moistened dielectric material from shorting the first electrode to the second electrode.
- the insulating masks 114 and 138 can be formed from any solder mask insulating material (e.g., a layer or film of epoxy or UV cured polymer or resin).
- the second layer 120 is bonded between the first layer 110 and the third layer 130 supporting the first electrode 112 at predefined distance with respect to the second electrode 134 and forming the central chamber 126 that encloses the moisture absorbent dielectric material 124.
- the third layer 130 includes one or more inlets 132 that allow the moisture (e.g., perspiration) to enter the central chamber 126 and become absorbed by the moisture absorbent dielectric material 124 as well as to allow air initially contained within the moisture absorbent dielectric material 124 to escape. As shown in FIG. 6B, when the layers are bonded together, the moisture absorbent dielectric material 124 can become partially or fully extruded through the inlets 132 to facilitate moisture absorption.
- an outlet can be provided through the middle layer 120 or the first layer 110 to enable air initially contained within the moisture absorbent dielectric material 124 to escape.
- the perspiration from skin 160 enters the inlets 132 and is absorbed by the moisture absorbent dielectric material 124.
- the third layer 130 includes one or more vias or plated through holes that electrically connect the skin electrode 136 to the inner surface of the third layer 130 and after assembly, make electrical contact with an inner trace or electrode 122 on the middle layer 120.
- the inner electrode 122 can extend into the central chamber 126 and make contact with the moisture absorbent dielectric material 124.
- all or a portion of the inner surface 128 of the middle layer 120 can include a conductive material (e.g., copper or tin) that makes contact with the moisture absorbent dielectric material 124.
- FIG. 7 A shows a perspective view of a perspiration sensor 100 according to some embodiments of the invention and FIG. 7B shows a diagrammatic view of the middle layer 120.
- the first layer 110, the middle layer 120 and the third layer 130 each include pads 122, 236 and plated through holes or partial holes or vias 228 that enable circuit traces to extend between layers.
- Solder can be applied to the plated through holes or vias 228 to create a physical connection between the layers and an electrical connection between the pads 122, 236 on the outside surfaces of the sensor 100 and the dielectric space defined by the central chamber 126.
- the third layer 130 can include pads (not shown) that serve as the skin electrode 136 and can be electrically connected to circuit traces on the middle layer 120 and the first layer 110 soldering together the vias 228. Similar vias 226 can be provided on the inner surface of the middle layer 120 and connected by circuit traces 222 to one or more of the vias 228 to provide an electrical connection between the skin electrode 136 and the moisture absorbent dielectric material 124.
- the perspiration sensor [0038] In accordance with some embodiments of the invention, the perspiration sensor
- FIG. 7C shows a partially cut away view of a perspiration sensor 100 according to some embodiments of the invention.
- the vias 228 are shown along the outer surface of the sensor 100 and the anchor rings 220 are shown extending from the outer peripheral surface of the sensor 100.
- the encapsulating material 205 can at least partially extend into the openings of the anchor rings 220.
- FIGS. 8A and 8B show photos and diagrams of microfibers.
- Microfiber based materials provide for improved absorption of moisture.
- the microfibers can be split microfibers which have an X or asterisk shaped cross-section as shown in FIG. 8A. This structure results in the formation of microchannels in the fibers that help absorb moisture (e.g., by capillary action) better than regular solid fibers.
- these microfibers can be loosely woven into a tufted cloth that provides good absorption of moisture.
- the perspiration sensor can include a capacitive sensor signal measuring integrated circuit that accurately measures the capacitance or capacitive signal and converts it to a digital signal for transmission to a remote device.
- the capacitive sensor signal measuring integrated circuit can include a ZSSC3123 integrated circuit (ZMDI, Dresden, Germany and Milpitas, CA).
- FIG. 9A shows a block diagram of the integrated circuit.
- FIG. 9B shows a diagram of a charge balancing circuit for converting the analog capacitance signal to a digital signal.
- the circuit includes a 1st order charge-balancing capacitance-to-digital converter.
- Capacitor CB can be a fixed reference capacitor internal to the IC itself. The measurement determines the amount of time it takes each cycle to charge and discharge the reference capacitor.
- the capacitor CA is driven by a square wave voltage with excitation frequency in the 100 kHz range to prevent aging effects that occur when driven by a DC signal.
- the output signal generated by this circuit is a ratio of sensor capacitance to reference capacitance.
- FIG. 10A shows a sensitivity graph for a capacitive perspiration sensor according to the invention. As shown in FIG. 10A, the sensitivity is higher (e.g., 2.5 pF ⁇ L) at lower moisture levels and decreases (e.g., to 1.2 pF ⁇ L) as the level of moisture increases.
- the sensitivity is higher (e.g., 2.5 pF ⁇ L) at lower moisture levels and decreases (e.g., to 1.2 pF ⁇ L) as the level of moisture increases.
- FIG. 10B shows a responsivity graph for a capacitive perspiration sensor according to the invention.
- the graph in FIG. 10B shows the response of the capacitive perspiration sensor according to the invention over time at 5 different moisture levels (e.g., 0.1 ⁇ ., 0.2 ⁇ ,, 0.5 ⁇ , 1.0 ⁇ ., and 2.0 ⁇ ,).
- FIG. IOC shows the effect of shielding (e.g., capacitive coupling the dielectric to the skin) on a capacitive perspiration sensor according to the invention.
- shielding e.g., capacitive coupling the dielectric to the skin
- FIG. IOC shows the effect of shielding (e.g., capacitive coupling the dielectric to the skin) on a capacitive perspiration sensor according to the invention.
- an unshielded capacitive perspiration sensor exhibits signal spikes upon contact whereas the shielded capacitive perspiration sensor according to the invention does not.
- FIG. 10D shows a comparison of the range and sensitivity of shielded and unshielded capacitive perspiration sensors according to the invention. As shown in FIG. 10D, the shielded sensor has approximately the same range and sensitivity as an unshielded sensor.
- the perspiration sensor can be part of system that quantitatively measures perspiration of a user in real time.
- the sensor can be connected to a data-logging hub (e.g. BioStamp TM by MCIO Inc., a smartphone or data recorder).
- the perspiration sensor can measure a change in capacitance over time and calculate perspiration moisture volume using a predetermined calibrated curve.
- the data logging hub can include a computer processor and associated memory that can communicate with the perspiration sensor to receive sensor data.
- the data logging hub can include additional wired or wireless communication components to enable the sensor data to be stored in a remote database or processed by a remote data processing system.
- the moisture sensor can be used to measure perspiration to test the efficacy of anti-perspirant products.
- the moisture sensor can be installed in a helmet worn by an athlete, a soldier or a fighter pilot as well as other areas of the body to provide continuous physiological monitoring, for example, for health, wellness, hydration and/or stress monitoring.
- the central chamber or an adjacent collection chamber can include analyte sensors and/or assays to detecting the presence and/or quantity of components of the absorbed perspiration.
- a sodium sensor can be included for diagnosis of cystic fibrosis.
- implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Endocrinology (AREA)
- Gastroenterology & Hepatology (AREA)
- Physiology (AREA)
- Dermatology (AREA)
- Optics & Photonics (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
A moisture sensor includes a pair of electrode plates separated by a moisture absorbent material that forms the dielectric of a capacitive sensor. As the absorbent dielectric material absorbs moisture, such as perspiration, the capacitance of the sensor changes reflecting a quantitative measure of perspiration absorbed. The sensor can be stabilized by capacitively coupling the dielectric material to the skin of the user to improve sensor stability and noise rejection. The sensor can include a capacitive sensing integrated circuit that measures the capacitance of the sensor in close proximity to the electrodes to limit the introduction of noise.
Description
PERSPIRATION SENSOR
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims any and all benefits as provided by law including benefit under 35 U.S.C. § 119(e) of the U.S. Provisional Application No. 62/127124, filed March 2, 1015, the contents of which are incorporated herein by reference in its entirety.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
[0002] Not Applicable
REFERENCE TO MICROFICHE APPENDIX
[0003] Not Applicable
BACKGROUND
Technical Field of the Invention
[0004] The present invention is directed to a moisture sensor and more specifically, to a perspiration sensor for quantitatively measuring levels of perspiration. In accordance with some embodiments, the perspiration sensor includes a capacitive sensor that can be coupled to the skin and utilize capacitance to measure perspiration. The perspiration sensor can be shielded and stabilized to reduce noise by electrically coupling the capacitor dielectric material to the skin.
Description of the Prior Art
[0005] The prior art perspiration sensors are generally related to devices for determining galvanic skin response. These devices involve the measurement of the electrical resistance of the skin, but do not provide a quantitative indication of the volume or level of perspiration over time.
SUMMARY
[0006] The present invention is directed to a method and system for obtaining a quantitative measurement of moisture, and more specifically, perspiration. Various
embodiments of the invention utilize the dielectric properties of perspiration in a capacitive sensor that includes a pair of ground shielded parallel electrodes sandwiching a moisture absorbent dielectric material (e.g., a microfiber cloth). In accordance with some embodiments, the dielectric material can be electrically coupled (e.g., capacitively coupled) to the skin of the user to provide a more stable signal because the skin is capacitively coupled to earth ground which is weakly capacitively coupled to the ground of signal measurement circuit (e.g., the capacitance to digital signal converter integrated circuit). The method includes a providing a capacitor that includes a dielectric material that absorbs moisture (e.g., perspiration) in contact with the skin, wherein the capacitor includes one or more inlets that enable perspiration released from the skin to become absorbed by the absorbent dielectric material and electrically (e.g., capacitively) coupling the dielectric material to the body.
[0007] In accordance with the invention, the perspiration sensor can be constructed having three layers, a first or top layer, a second or middle layer and a third or bottom layer. The bottom layer can include an adhesive or other skin contacting material that maintains contact with and capacitively couples the sensor to the skin. The bottom layer and the top layer include the first and second electrode plates that form the capacitor with dielectric material surrounded by the middle layer sandwiched in between. The bottom layer, middle layer and top layer form a central chamber that encloses the dielectric material and positions it in a dielectric space between the first and second electrodes. The bottom layer can also include one or more pores, inlets or vents that enable perspiration released from the skin to enter central chamber and be absorbed by the dielectric material in the dielectric space. The bottom layer can also include a skin coupling electrode that becomes electrically coupled to the skin when the bottom surface of the bottom layer is adhered to or placed in contact with the skin. The skin coupling electrode can be electrically connected to the central chamber and the dielectric material. When the bottom surface includes an adhesive material, the skin coupling electrode capacitively couples the dielectric material in the central chamber to the skin to provide ground shielding adjacent to the
electrodes to minimize environmental noise. In accordance with some embodiments of the invention, the dielectric material can be weakly but consistently (capacitively) coupled to earth ground through the skin.
[0008] Each of the layers can be formed from a rigid printed circuit board (PCB) or a flexible PCB, and each of the layers can be laminated together as is well known in the art. The dielectric material can be an absorbent material that rapidly replaces air with perspiration, such as a tufted microfiber cloth. The thickness of the middle layer can be selected to define and control the distance between the sensing electrode plates of the capacitor. In accordance with some embodiments, the middle layer includes a rigid material having a predefined thickness to tightly control the electrode plate spacing and slightly thinner than the thickness of the microfiber cloth causing portions of the cloth to extrude through the pores or inlets of the bottom layer facilitate moisture absorption.
[0009] In accordance with some embodiments of the invention, the device can further include a capacitance measurement integrated circuit (e.g., IC chip) mounted to the top layer that enables close proximity measurement of the change in capacitance of the sensor to minimize the introduction of noise. In this configuration, the measured capacitance can be transmitted (e.g., by wire or wirelessly) to a remote system for storing and/or analyzing the capacitance data and determining perspiration rates (e.g., volume and volume over time).
[0010] In accordance with some embodiments of the invention, the device can be fully or partially enclosed or encapsulated in polymer or elastomeric material (e.g. PDMS, or silicone) that protects the sensor from the environment. One or more of the layers can include one or more partially or fully enclosed anchor rings projecting from the perimeter of the device such that the polymer material passes through the opening in the anchor rings to more securely anchor the encapsulating material to the outside of the device.
[0011] In operation, the bottom of the device is coupled to the skin by an adhesive material and perspiration released by the skin passes through the inlets and become absorbed by the microfiber dielectric material. The capacitance of the first and second electrodes changes as the dielectric material absorbs perspiration. In addition, the bottom of the device includes a skin electrode that is electrically connected to the dielectric material and the central chamber. The skin electrode can be electrically connected to the middle layer by plated through holes or vias in
the bottom layer. The vias in the middle layer can include electrodes that directly contact the dielectric material, enabling the dielectric material to be coupled (e.g., capacitively coupled) to the skin through the adhesive. The integrated circuit on the top layer includes a circuit that determines a measure of the capacitance between the first and second electrodes while the skin electrode serves to stabilize the capacitance measurement against noise.
[0012] These and other capabilities of the invention, along with the invention itself, will be more fully understood after a review of the following figures, detailed description, and claims.
BRIEF DESCRIPTION OF THE FIGURES
[0013] The patent or application file contains at least one drawing executed in color.
Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
[0014] The accompanying drawings, which are incorporated into this specification, illustrate one or more exemplary embodiments of the inventions and, together with the detailed description, serve to explain the principles and applications of these inventions. The drawings and detailed description are illustrative, and are intended to facilitate an understanding of the inventions and their application without limiting the scope of the invention. The illustrative embodiments can be modified and adapted without departing from the spirit and scope of the inventions.
[0015] FIG. 1 is a photograph of a perspiration sensor according to an embodiment of the invention.
[0016] FIGS. 2A and 2B show diagrammatic views of a silicon encapsulated perspiration sensor according to an embodiment of the invention.
[0017] FIGS. 3 A and 3B show diagrammatic views of a perspiration sensor according to some embodiments of the invention.
[0018] FIG. 4 shows an exploded isometric top view of a perspiration sensor according to an embodiment of the invention.
[0019] FIG. 5 shows an exploded isometric bottom view of a perspiration sensor according to an embodiment of the invention.
[0020] FIG. 6A shows an exploded cross-section view of a perspiration sensor according to an embodiment of the invention.
[0021] FIG. 6B shows a cross-section view of an assembled perspiration sensor according to an embodiment of the invention shown in FIG. 6A.
[0022] FIG. 7A shows a diagram of a perspiration sensor according to some
embodiments of the invention, FIG. 7B shows a diagrammatic view of the middle layer according to an embodiment of the invention, and FIG. 7C shows a cutaway view of a perspiration sensor according to some embodiments of the invention with a portion of the encapsulation material removed.
[0023] FIGS. 8A and 8B show diagrams of dielectric material according to some embodiments of the invention.
[0024] FIGS 9A and 9B show diagrams of electronic circuits for measuring the change in capacitance between the electrodes of a perspiration sensor according to some embodiments of the invention.
[0025] FIGS. 10A, 10B, IOC and 10D show graphs of performance data for 5 a perspiration sensor according to some embodiments of the invention.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
[0026] The present invention is directed to methods and systems for obtaining a quantitative measurement of moisture. One specific application for the invention includes the detection and measurement of perspiration. For purposes of illustration, the invention is described herein in the context of measuring perspiration, however, embodiments of the invention can be used to measure other sources of moisture.
[0027] In accordance with some embodiments of the invention, the perspiration sensor includes a pair of ground shielded parallel electrodes sandwiching a moisture absorbent dielectric material (e.g., a microfiber cloth) that forms a capacitor. The sensor allows perspiration to become absorbed by moisture absorbent dielectric material which changes the dielectric constant the dielectric material and is reflected in the measured capacitance of the electrode plates of the perspiration sensor. In accordance with some embodiments of the invention, the dielectric material can be electrically coupled (e.g., capacitively coupled) to the skin of the user to provide for more stable signal measurement. In accordance with some embodiments of the invention, the absorbent dielectric material can be weakly (e.g., 10 pF or less) but consistently (e.g., up to 10% variation) coupled through the skin to earth ground which is weakly coupled to signal ground of capacitance measuring circuit. The method includes providing a capacitor that includes an exposed dielectric material that can absorb moisture (e.g., perspiration) produced by the skin. As perspiration is released from the skin and becomes absorbed by the absorbent dielectric material, the dielectric properties of the material between the electrode plates change resulting in a change in the capacitance of the perspiration sensor. An internal or external measurement component can be connected to the electrodes of the capacitor to measure the changes in capacitance of the perspiration sensor.
[0028] The dielectric properties of perspiration closely resemble that of saline which in turn closely resemble that of water. The dielectric constant of water is about 80 times that of air. An air capacitor formed by two parallel plates will increase capacitance significantly when air is replaced with water, saline, or perspiration. The approximate capacitance C of the parallel plates can be determined by
where A is the area of the electrode plate, d is the distance between the plates; 8o is the dielectric constant of free space and 8r is the relative dielectric constant of the material between the plates.
[0029] In accordance with the invention, the dielectric material can be selected to rapidly absorb the perspiration. In accordance with some embodiments of the invention, the dielectric material can have predefined wicking or absorbency properties that provide a desired level of perspiration absorption. In operation, the dielectric material is initially in a dry state and has dielectric properties similar to air and produces an initial capacitance level. As the dielectric material is exposed to moisture (e.g., perspiration) the moisture rapidly replaces the air, changing the dielectric properties of the dielectric material and the measured capacitance level of the sensor.
[0030] In accordance with some embodiments of the invention, the absorbent dielectric material can include a tufted microfiber cloth. This material has been found to have improved capillary suction and to diffuse perspiration faster and more uniformly than other materials as well as provides higher absorption densities. Other absorbent materials, such as cellulose paper, foamy elastomers, cotton, wool, air, and moisture wicking materials, can be used. The absorbent dielectric material can be configured to have a large surface area to volume ratio of the material that results in capillary suction causing the air filled space to become filled with environmental moisture or perspiration. A capacitance measuring circuit can be provided onboard or in close proximity to the capacitor sensor to minimize noise and convert the capacitance to a digital signal for transmission to a connected device.
[0031] Figures 1, 3 A and 3B shows a moisture or perspiration sensor 100 according to various embodiments of the invention with the encapsulating polymer removed to provide a better view of the structure of the device. FIGS 2A and 2B show diagrammatic views of a perspiration sensor 200 according to embodiments of the invention encapsulated in an encapsulating material, such as polymer material (e.g., silicone, PDMS, polyimide, TPE, PET, PVC, and MMA). The perspiration sensor 200 can include channels 210 that serve to guide moisture, such as perspiration, toward inlets in the perspiration sensor 200.
[0032] As shown in FIGS 3 A and 3B, the perspiration sensor 100 can be constructed from two or more layers of insulating or dielectric material (e.g., a first layer 110, a second layer 120 and the third layer 130). In accordance with some embodiments of the invention, each layer
can include a non-conductive substrate (e.g. FR4 epoxy fiberglass, PDMS, or polyimide) having a conductive layer (e.g., copper and/or tin) on one or both surfaces of the substrate, such as a printed circuit board (PCB) or flexible PCB. In accordance with some embodiments of the invention, each layer can include a protective and/or insulating coating (e.g., solder mask coating) covering a portion or all of each surface of each layer. Each of the layers that make up the perspiration sensor 100 can be bonded together using well known adhesives (e.g., epoxy, polyimide, and/or silicone based adhesives). The surfaces of at least some of the layers can include exposed pads enabling electronic components such as integrated circuits, discrete components (e.g., resistors, capacitors, diodes and other passive devices) to soldered in place. The layers can also include vias or plated through holes that allow circuit traces to extend through the layer can make contact with circuit traces of the other layers. In accordance with some embodiments of the invention, some or all of the layers can include castellated vias on or extending from the external edges that provide for mechanical alignment and enable low temperature fabrication - the castellated vias are positioned away from central chamber and can be soldered without fear of melting or otherwise damaging the absorbent dielectric material.
[0033] FIG. 4 shows an exploded view of a perspiration sensor 100 according to some embodiments of the invention. In this embodiment, the perspiration sensor 100 includes a first or top layer 110, a second or middle layer 120 and the third or bottom layer 130. The first layer 110 includes a first electrode 112 on the underside of the first layer (hidden from view in FIG. 4, but shown in FIG. 5). The first layer 110 can also include circuit traces that enable a sensing integrated circuit 140 to soldered in place and electrically connected to the first electrode 112 and second electrode 134 and wires (not shown) that connect the perspiration sensor 100 to other devices. The third layer 130 includes one or more inlets 132 and the second electrode 134. The third layer 130 can also include a skin electrode 136 (hidden from view in FIG. 4, but shown in FIG. 5) and an adhesive material covering the skin electrode 136 to adhere the perspiration sensor 100 to a surface such as a skin surface. The second layer 120 forms a ring 122 that at least partially surrounds or encloses the dielectric material 124 in the dielectric space defined by the central chamber 26. When the three layers are bonded together, they form a central chamber 126 which encloses the dielectric material 124 (e.g., the moisture absorbent material). In accordance with some embodiments of the invention, the thickness of each layer can be selected
to minimize the overall thickness of the sensor to improve user comfort. Thus, the first layer 110 and the third layer 130 can be thicker or thinner than the middle layer 120. Alternatively, each of the layers can have the same or different thicknesses. In accordance with some embodiments, the sensor detection area, defined by the inlets 132 can cover an area of 1 cubic centimeter and provide an average pore density of 50 pores (e.g., in the arm pit).
[0034] FIG. 5 shows an exploded bottom view of the perspiration sensor 100 (e.g, showing the third layer 130 on top). As shown in FIG. 5, the third layer 130 can include a skin electrode 136 on the outer surface thereof. The skin electrode 136 can be provided in the form of a ring, as shown, or as a set of interconnected contact points over the outer surface of the third layer 130. In accordance with some embodiments, the skin electrode 136 can be electrically connected to the dielectric material 124 in the central chamber 126 of the perspiration sensor 100 by extending circuit traces around or vias through the third layer 130 to the middle layer 120 and in contact with the dielectric material 124. In accordance with other embodiments, the skin electrode 136 can be electrically connected to the dielectric material 124 by circuit traces or wires that extend from the inner surface of the third layer 130 into the central chamber 126. The skin electrode 136 can be covered with a solder mask or other insulating material (e.g., skin adhesive tape). When the perspiration sensor 100 is adhered or placed in contact with the skin, the skin electrode 136 capacitively couples the dielectric material 124 to the skin.
[0035] FIG. 6A shows an exploded cross-section view and FIG. 6B shows an assembled cross-section view of a perspiration sensor 100 according to some embodiments of the invention. In this embodiment, an adhesive layer 150 adheres the third layer 130 of the perspiration sensor 100 to the surface of the skin 160 enabling the device to measure perspiration. The perspiration sensor 100 includes a first layer 110, second layer 120 and a third layer 130. The first electrode 112 is formed on the inner surface of the first layer 110 and the second electrode 134 is formed on the inner surface of the third layer 130. A mask 114 on the first layer and a mask 138 on third layer can be included to electrically insulate the first electrode 112 and the second electrode 134 from the dielectric material 124 while enabling the dielectric material 124 to be in intimate contact with the first electrode 112 and the second electrode 134 while preventing the moistened dielectric material from shorting the first electrode to the second electrode. The insulating masks 114 and 138 can be formed from any solder mask insulating material (e.g., a layer or film of
epoxy or UV cured polymer or resin). The second layer 120 is bonded between the first layer 110 and the third layer 130 supporting the first electrode 112 at predefined distance with respect to the second electrode 134 and forming the central chamber 126 that encloses the moisture absorbent dielectric material 124. The third layer 130 includes one or more inlets 132 that allow the moisture (e.g., perspiration) to enter the central chamber 126 and become absorbed by the moisture absorbent dielectric material 124 as well as to allow air initially contained within the moisture absorbent dielectric material 124 to escape. As shown in FIG. 6B, when the layers are bonded together, the moisture absorbent dielectric material 124 can become partially or fully extruded through the inlets 132 to facilitate moisture absorption. In accordance with some embodiments, an outlet can be provided through the middle layer 120 or the first layer 110 to enable air initially contained within the moisture absorbent dielectric material 124 to escape. The perspiration from skin 160 enters the inlets 132 and is absorbed by the moisture absorbent dielectric material 124.
[0036] As shown in FIGS. 6 A and 6B, the third layer 130 includes one or more vias or plated through holes that electrically connect the skin electrode 136 to the inner surface of the third layer 130 and after assembly, make electrical contact with an inner trace or electrode 122 on the middle layer 120. The inner electrode 122 can extend into the central chamber 126 and make contact with the moisture absorbent dielectric material 124. In some embodiments of the invention, all or a portion of the inner surface 128 of the middle layer 120 can include a conductive material (e.g., copper or tin) that makes contact with the moisture absorbent dielectric material 124.
[0037] FIG. 7 A shows a perspective view of a perspiration sensor 100 according to some embodiments of the invention and FIG. 7B shows a diagrammatic view of the middle layer 120. In these embodiments, the first layer 110, the middle layer 120 and the third layer 130 each include pads 122, 236 and plated through holes or partial holes or vias 228 that enable circuit traces to extend between layers. Solder can be applied to the plated through holes or vias 228 to create a physical connection between the layers and an electrical connection between the pads 122, 236 on the outside surfaces of the sensor 100 and the dielectric space defined by the central chamber 126. In some embodiments, the third layer 130 can include pads (not shown) that serve as the skin electrode 136 and can be electrically connected to circuit traces on the middle layer
120 and the first layer 110 soldering together the vias 228. Similar vias 226 can be provided on the inner surface of the middle layer 120 and connected by circuit traces 222 to one or more of the vias 228 to provide an electrical connection between the skin electrode 136 and the moisture absorbent dielectric material 124.
[0038] In accordance with some embodiments of the invention, the perspiration sensor
100 can also include one or more anchor rings 220 that project from the peripheral edge of the device as shown in FIGS. 7 A and 7B. The anchor rings 220 serve to provide features in the peripheral structure of the sensor device to aid in anchoring the device in the encapsulating material such as silicone, PDMS, polyimide during assembly. FIG. 7C shows a partially cut away view of a perspiration sensor 100 according to some embodiments of the invention. In this embodiment, the vias 228 are shown along the outer surface of the sensor 100 and the anchor rings 220 are shown extending from the outer peripheral surface of the sensor 100. In some embodiments, the encapsulating material 205 can at least partially extend into the openings of the anchor rings 220.
[0039] FIGS. 8A and 8B show photos and diagrams of microfibers. Microfiber based materials provide for improved absorption of moisture. In some embodiments, the microfibers can be split microfibers which have an X or asterisk shaped cross-section as shown in FIG. 8A. This structure results in the formation of microchannels in the fibers that help absorb moisture (e.g., by capillary action) better than regular solid fibers. As shown in FIG. 8B, these microfibers can be loosely woven into a tufted cloth that provides good absorption of moisture.
[0040] In accordance with some embodiments, the perspiration sensor can include a capacitive sensor signal measuring integrated circuit that accurately measures the capacitance or capacitive signal and converts it to a digital signal for transmission to a remote device. In accordance with some embodiments of the invention, the capacitive sensor signal measuring integrated circuit can include a ZSSC3123 integrated circuit (ZMDI, Dresden, Germany and Milpitas, CA). FIG. 9A shows a block diagram of the integrated circuit. FIG. 9B shows a diagram of a charge balancing circuit for converting the analog capacitance signal to a digital signal. The circuit includes a 1st order charge-balancing capacitance-to-digital converter.
Capacitor CB can be a fixed reference capacitor internal to the IC itself. The measurement determines the amount of time it takes each cycle to charge and discharge the reference
capacitor. The capacitor CA is driven by a square wave voltage with excitation frequency in the 100 kHz range to prevent aging effects that occur when driven by a DC signal. The output signal generated by this circuit is a ratio of sensor capacitance to reference capacitance.
[0041] FIG. 10A shows a sensitivity graph for a capacitive perspiration sensor according to the invention. As shown in FIG. 10A, the sensitivity is higher (e.g., 2.5 pF^L) at lower moisture levels and decreases (e.g., to 1.2 pF^L) as the level of moisture increases.
[0042] FIG. 10B shows a responsivity graph for a capacitive perspiration sensor according to the invention. The graph in FIG. 10B shows the response of the capacitive perspiration sensor according to the invention over time at 5 different moisture levels (e.g., 0.1 μΐ., 0.2 μΐ,, 0.5 μί, 1.0 μΐ., and 2.0 μΐ,).
[0043] FIG. IOC shows the effect of shielding (e.g., capacitive coupling the dielectric to the skin) on a capacitive perspiration sensor according to the invention. As shown in FIG. IOC, an unshielded capacitive perspiration sensor exhibits signal spikes upon contact whereas the shielded capacitive perspiration sensor according to the invention does not.
[0044] FIG. 10D shows a comparison of the range and sensitivity of shielded and unshielded capacitive perspiration sensors according to the invention. As shown in FIG. 10D, the shielded sensor has approximately the same range and sensitivity as an unshielded sensor.
[0045] In accordance with some embodiments of the invention, the perspiration sensor can be part of system that quantitatively measures perspiration of a user in real time. The sensor can be connected to a data-logging hub (e.g. BioStamp TM by MCIO Inc., a smartphone or data recorder). The perspiration sensor can measure a change in capacitance over time and calculate perspiration moisture volume using a predetermined calibrated curve. The data logging hub can include a computer processor and associated memory that can communicate with the perspiration sensor to receive sensor data. The data logging hub can include additional wired or wireless communication components to enable the sensor data to be stored in a remote database or processed by a remote data processing system.
[0046] While some embodiments of the present invention are described in the context of a perspiration sensor, the invention can be used for measuring moisture in other applications. In some embodiments, the moisture sensor can be used to measure perspiration to test the efficacy of anti-perspirant products. In other applications, the moisture sensor can be installed in a
helmet worn by an athlete, a soldier or a fighter pilot as well as other areas of the body to provide continuous physiological monitoring, for example, for health, wellness, hydration and/or stress monitoring. In accordance with some embodiments, the central chamber or an adjacent collection chamber can include analyte sensors and/or assays to detecting the presence and/or quantity of components of the absorbed perspiration. For example, a sodium sensor can be included for diagnosis of cystic fibrosis.
[0047] Other embodiments are within the scope and spirit of the invention. For example, due to the nature of hardware and software, functions described above can be implemented using software, hardware, firmware, hardwiring, or combinations of any of these. Features
implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
[0048] Further, while the description above refers to the invention, the description may include more than one invention.
[0049] What is claimed is:
Claims
1. A perspiration sensor comprising:
a first electrode positioned a predefined distance from a second electrode defining a dielectric space between the first electrode and the second electrode;
a moisture absorbent material positioned in the dielectric space between the first electrode and the second electrode;
at least one inlet enabling moisture from outside the dielectric space to enter the dielectric space can become absorbed by the moisture absorbent material; and
a skin electrode including a surface dielectric layer for capacitively coupled to the skin electrode to a skin portion of a user, wherein the skin electrode is electrically connected to the moisture absorbent material.
2. The perspiration sensor according to claim 1 wherein the moisture absorbent material includes a tufted microfiber cloth.
3. The perspiration sensor according to claim 1 wherein the surface dielectric layer includes an adhesive material for adhering the perspiration sensor to skin.
4. The perspiration sensor according to claim 1 wherein the moisture absorbent material includes perspiration.
5. The perspiration sensor according to claim 1 further comprising a polymer material encapsulating at least a portion of the perspiration sensor
6. The perspiration sensor according to claim 5 wherein the perspiration sensor includes one or more loops extending from a peripheral edge of the perspiration sensor and the polymer material at least partially extends into an opening in at least one loop.
7. The perspiration sensor according to claim 5 wherein the polymer material forms channels in at least one surface of the perspiration sensor to direct moisture to the at least one inlet of the perspiration sensor.
8. The perspiration sensor according to claim 5 wherein the polymer material includes silicone.
9. The perspiration sensor according to claim 1 wherein
the first electrode is mounted to a non-conducting first substrate layer;
the second electrode is mount to a non-conducting third substrate layer;
and the first substrate layer is separated from the third substrate layer by a nonconducting second substrate layer.
10. The perspiration sensor according to claim 9 wherein the second substrate layer has a predefined thickness that defines a distance between the first electrode and the second electrode.
11. The perspiration sensor according to claim 9 wherein the non-conducting first substrate layer includes an epoxy fiberglass material, the non-conducting second substrate layer includes an epoxy fiberglass material, and the non-conducting third substrate layer includes an epoxy fiberglass material.
12. The perspiration sensor according to claim 9 wherein the non-conducting first substrate layer includes a polyimide material, the non-conducting second substrate layer includes a polyimide material, and the non-conducting third substrate layer includes a polyimide material.
13. The perspiration sensor according to claim 9 wherein the second substrate layer includes a third electrode and the third electrode connects the skin electrode to the moisture absorbent material in the dielectric space.
14. The perspiration sensor according to claim 9 wherein the second substrate layer forms a ring that defines the dielectric space.
15. The perspiration sensor according to claim 9 wherein the first substrate layer includes an insulating mask that enables the first electrode to be in intimate contact with the moisture absorbent material and the second substrate layer includes an insulating mask that enables the second electrode to be in intimate contact with the moisture absorbent material.
16. The perspiration sensor according to claim 9 wherein at least one of the first substrate layer and the second substrate layer include an outlet to enable air contained in the dielectric space to escape as moisture enters the dielectric space.
17. The perspiration sensor according to claim 9 further comprising an integrated circuit coupled to the first substrate layer and electrically connected to the first electrode and the second electrode; and
wherein the integrated circuit receives a signal from at least one of the first electrode and the second electrode and outputs a digital signal as a function of the received signal.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562127124P | 2015-03-02 | 2015-03-02 | |
US62/127,124 | 2015-03-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016140961A1 true WO2016140961A1 (en) | 2016-09-09 |
Family
ID=56848985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2016/020247 WO2016140961A1 (en) | 2015-03-02 | 2016-03-01 | Perspiration sensor |
Country Status (2)
Country | Link |
---|---|
US (1) | US10398343B2 (en) |
WO (1) | WO2016140961A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9894757B2 (en) | 2008-10-07 | 2018-02-13 | Mc10, Inc. | Extremely stretchable electronics |
US10032709B2 (en) | 2012-10-09 | 2018-07-24 | Mc10, Inc. | Embedding thin chips in polymer |
USD825537S1 (en) | 2014-10-15 | 2018-08-14 | Mc10, Inc. | Electronic device having antenna |
US10186546B2 (en) | 2008-10-07 | 2019-01-22 | Mc10, Inc. | Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy |
US10258282B2 (en) | 2013-11-22 | 2019-04-16 | Mc10, Inc. | Conformal sensor systems for sensing and analysis of cardiac activity |
US10277386B2 (en) | 2016-02-22 | 2019-04-30 | Mc10, Inc. | System, devices, and method for on-body data and power transmission |
US10296819B2 (en) | 2012-10-09 | 2019-05-21 | Mc10, Inc. | Conformal electronics integrated with apparel |
US10300371B2 (en) | 2015-10-01 | 2019-05-28 | Mc10, Inc. | Method and system for interacting with a virtual environment |
US10325951B2 (en) | 2008-10-07 | 2019-06-18 | Mc10, Inc. | Methods and applications of non-planar imaging arrays |
US10334724B2 (en) | 2013-05-14 | 2019-06-25 | Mc10, Inc. | Conformal electronics including nested serpentine interconnects |
US10447347B2 (en) | 2016-08-12 | 2019-10-15 | Mc10, Inc. | Wireless charger and high speed data off-loader |
US10485118B2 (en) | 2014-03-04 | 2019-11-19 | Mc10, Inc. | Multi-part flexible encapsulation housing for electronic devices and methods of making the same |
US10532211B2 (en) | 2015-10-05 | 2020-01-14 | Mc10, Inc. | Method and system for neuromodulation and stimulation |
US10673280B2 (en) | 2016-02-22 | 2020-06-02 | Mc10, Inc. | System, device, and method for coupled hub and sensor node on-body acquisition of sensor information |
US10709384B2 (en) | 2015-08-19 | 2020-07-14 | Mc10, Inc. | Wearable heat flux devices and methods of use |
US10986465B2 (en) | 2015-02-20 | 2021-04-20 | Medidata Solutions, Inc. | Automated detection and configuration of wearable devices based on on-body status, location, and/or orientation |
US11123011B1 (en) | 2020-03-23 | 2021-09-21 | Nix, Inc. | Wearable systems, devices, and methods for measurement and analysis of body fluids |
US11154235B2 (en) | 2016-04-19 | 2021-10-26 | Medidata Solutions, Inc. | Method and system for measuring perspiration |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9226402B2 (en) | 2012-06-11 | 2015-12-29 | Mc10, Inc. | Strain isolation structures for stretchable electronics |
WO2015103580A2 (en) | 2014-01-06 | 2015-07-09 | Mc10, Inc. | Encapsulated conformal electronic systems and devices, and methods of making and using the same |
US10653332B2 (en) | 2015-07-17 | 2020-05-19 | Mc10, Inc. | Conductive stiffener, method of making a conductive stiffener, and conductive adhesive and encapsulation layers |
US10354114B2 (en) * | 2016-06-13 | 2019-07-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fingerprint sensor in InFO structure and formation method |
JP6614169B2 (en) * | 2017-01-25 | 2019-12-04 | 株式会社Soken | Physiological calorimeter |
CN110741248B (en) | 2017-06-11 | 2023-05-30 | 亿皮米特瑞克斯公司 | Chip-based multichannel electrochemical converter and method of use thereof |
US11860048B2 (en) | 2017-07-10 | 2024-01-02 | The Board Of Trustees Of The Leland Stanford Junior University | Capacitive and tactile sensors and related sensing methods |
US11723583B2 (en) * | 2017-10-25 | 2023-08-15 | Skindicator Ab | Device and a method for detection of changes in tissue |
US10660201B2 (en) | 2018-02-22 | 2020-05-19 | Dexcom, Inc. | Sensor interposer employing castellated through-vias |
CN112673338A (en) * | 2018-07-10 | 2021-04-16 | 小利兰·斯坦福大学托管委员会 | Capacitive and tactile sensor and related sensing method |
US11484265B2 (en) * | 2019-06-06 | 2022-11-01 | Biointellisense, Inc. | Adhesive device |
EP3753485A1 (en) | 2019-06-20 | 2020-12-23 | Nokia Technologies Oy | Electrode apparatuses and methods of forming electrode apparatuses |
USD940131S1 (en) * | 2019-07-29 | 2022-01-04 | Samsung Display Co., Ltd. | Display panel |
USD966276S1 (en) | 2019-07-29 | 2022-10-11 | Samsung Display Co., Ltd. | Display module for wearable device |
USD958094S1 (en) | 2019-07-29 | 2022-07-19 | Samsung Display Co., Ltd. | Display panel |
US11974856B2 (en) | 2019-11-25 | 2024-05-07 | Analog Devices International Unlimited Company | Wearable sensor and method of forming thereof |
CN113558598A (en) * | 2020-04-23 | 2021-10-29 | 华为技术有限公司 | Human body composition detection method and apparatus |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020000813A1 (en) * | 2000-07-03 | 2002-01-03 | Matsushita Electric Works, Ltd | Capacitance type moisture sensor and method of producing the same |
US6450026B1 (en) * | 1997-12-31 | 2002-09-17 | Jean Desarnaud | Capacitive sensors for measuring humidity and method of making same |
US20070190880A1 (en) * | 2004-02-02 | 2007-08-16 | Nanosys, Inc. | Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production |
US20070270674A1 (en) * | 2006-05-17 | 2007-11-22 | Michael John Kane | Implantable Medical Device with Chemical Sensor and Related Methods |
DE102007046886A1 (en) * | 2007-09-28 | 2009-04-09 | Dieter Miehlich | Electric muscle stimulation-electrode i.e. laminar pad, for use in e.g. jacket, has conducting layer, and storage layer connected with conducting layer, where pad is designed such that pad dispenses stored fluid under pressure |
US20100030167A1 (en) * | 2006-02-28 | 2010-02-04 | Carsten Thirstrup | Leak Sensor |
US20120150072A1 (en) * | 2010-12-14 | 2012-06-14 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Device and method for determining an excretion flow rate of a body fluid of a person or an animal |
US20130123587A1 (en) * | 2010-05-08 | 2013-05-16 | Bruin Biometrics, Llc | Sem scanner sensing apparatus, system and methodology for early detection of ulcers |
US20130197319A1 (en) * | 2012-01-26 | 2013-08-01 | The University Of Akron | Flexible Electrode for Detecting Changes in Temperature, Humidity, and Sodium Ion Concentration in Sweat |
Family Cites Families (242)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3716861A (en) | 1971-03-22 | 1973-02-13 | J Root | Serpentine antenna mounted on a rotatable capacitive coupler |
US3805427A (en) | 1972-12-18 | 1974-04-23 | H Epstein | Medical alarm bracelet |
CA1105565A (en) | 1978-09-12 | 1981-07-21 | Kaufman (John G.) Hospital Products Ltd. | Electrosurgical electrode |
US4416288A (en) | 1980-08-14 | 1983-11-22 | The Regents Of The University Of California | Apparatus and method for reconstructing subsurface electrophysiological patterns |
US4658153A (en) | 1984-06-18 | 1987-04-14 | Amnon Brosh | Planar coil apparatus for providing a frequency output vs. position |
US6387052B1 (en) | 1991-01-29 | 2002-05-14 | Edwards Lifesciences Corporation | Thermodilution catheter having a safe, flexible heating element |
CA2106378A1 (en) | 1991-04-05 | 1992-10-06 | Tom D. Bennett | Subcutaneous multi-electrode sensing system |
JPH0587511A (en) | 1991-07-24 | 1993-04-06 | Yamaha Corp | Bending detection device |
US5272375A (en) | 1991-12-26 | 1993-12-21 | E. I. Du Pont De Nemours And Company | Electronic assembly with optimum heat dissipation |
US5491651A (en) | 1992-05-15 | 1996-02-13 | Key, Idea Development | Flexible wearable computer |
US5306917A (en) | 1992-08-12 | 1994-04-26 | Reliant Laser Corporation | Electro-optical system for measuring and analyzing accumulated short-wave and long-wave ultraviolet radiation exposure |
US5471982A (en) | 1992-09-29 | 1995-12-05 | Ep Technologies, Inc. | Cardiac mapping and ablation systems |
US6233491B1 (en) | 1993-03-16 | 2001-05-15 | Ep Technologies, Inc. | Cardiac mapping and ablation systems |
US5617870A (en) | 1993-04-29 | 1997-04-08 | Scimed Life Systems, Inc. | Intravascular flow measurement system |
US5326521A (en) | 1993-05-26 | 1994-07-05 | East Douglas A | Method for preparing silicone mold tooling |
CA2170402C (en) | 1993-08-24 | 2000-07-18 | Michael P. Allen | Novel disposable electronic assay device |
US5360987A (en) | 1993-11-17 | 1994-11-01 | At&T Bell Laboratories | Semiconductor photodiode device with isolation region |
US5454270A (en) | 1994-06-06 | 1995-10-03 | Motorola, Inc. | Hermetically sealed pressure sensor and method thereof |
US5567975A (en) | 1994-06-30 | 1996-10-22 | Santa Barbara Research Center | Group II-VI radiation detector for simultaneous visible and IR detection |
US6023638A (en) | 1995-07-28 | 2000-02-08 | Scimed Life Systems, Inc. | System and method for conducting electrophysiological testing using high-voltage energy pulses to stun tissue |
US5612513A (en) | 1995-09-19 | 1997-03-18 | Micron Communications, Inc. | Article and method of manufacturing an enclosed electrical circuit using an encapsulant |
NL1001890C2 (en) | 1995-12-13 | 1997-06-17 | Cordis Europ | Catheter with plate-shaped electrode array. |
SE9600334D0 (en) | 1996-01-30 | 1996-01-30 | Radi Medical Systems | Combined flow, pressure and temperature sensor |
JP3957803B2 (en) | 1996-02-22 | 2007-08-15 | キヤノン株式会社 | Photoelectric conversion device |
US5880369A (en) | 1996-03-15 | 1999-03-09 | Analog Devices, Inc. | Micromachined device with enhanced dimensional control |
US5817008A (en) | 1996-10-31 | 1998-10-06 | Spacelabs Medical, Inc. | Conformal pulse oximetry sensor and monitor |
US6042543A (en) * | 1997-03-11 | 2000-03-28 | Regents Of The University Of Minnesota | Test device and method for quantitative measurement of an analyte in a liquid |
US6063046A (en) | 1997-04-11 | 2000-05-16 | Allum; John H. | Method and apparatus for the diagnosis and rehabilitation of balance disorders |
US20050096513A1 (en) | 1997-11-11 | 2005-05-05 | Irvine Sensors Corporation | Wearable biomonitor with flexible thinned integrated circuit |
DE59803887D1 (en) | 1998-01-22 | 2002-05-23 | Fraunhofer Ges Forschung | MICROSYSTEM AND METHOD FOR PRODUCING A MICROSYSTEM |
JP3511895B2 (en) | 1998-06-05 | 2004-03-29 | 株式会社村田製作所 | Manufacturing method of ceramic multilayer substrate |
US7209787B2 (en) | 1998-08-05 | 2007-04-24 | Bioneuronics Corporation | Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease |
IT1310000B1 (en) | 1999-01-26 | 2002-02-05 | Consiglio Nazionale Ricerche | OPTICAL FIBER SENSOR AND PHOTOCROMIC TRANSDUCER FOR PHOTOMETRY ERADIOMETRY AND RELATED METHOD |
US20020082515A1 (en) | 1999-07-01 | 2002-06-27 | Campbell Thomas H. | Thermography catheter |
GB2355116B (en) | 1999-10-08 | 2003-10-08 | Nokia Mobile Phones Ltd | An antenna assembly and method of construction |
US6641860B1 (en) | 2000-01-03 | 2003-11-04 | T-Ink, L.L.C. | Method of manufacturing printed circuit boards |
US6489178B2 (en) | 2000-01-26 | 2002-12-03 | Texas Instruments Incorporated | Method of fabricating a molded package for micromechanical devices |
US6869430B2 (en) | 2000-03-31 | 2005-03-22 | Rita Medical Systems, Inc. | Tissue biopsy and treatment apparatus and method |
US6381934B2 (en) | 2000-04-14 | 2002-05-07 | Martin Perry Heard | Topper and shredder |
EP1310992A1 (en) | 2000-06-14 | 2003-05-14 | Sekisui Chemical Co., Ltd. | Microparticle arrangement film, electrical connection film, electrical connection structure, and microparticle arrangement method |
US6511478B1 (en) | 2000-06-30 | 2003-01-28 | Scimed Life Systems, Inc. | Medical probe with reduced number of temperature sensor wires |
US6640120B1 (en) | 2000-10-05 | 2003-10-28 | Scimed Life Systems, Inc. | Probe assembly for mapping and ablating pulmonary vein tissue and method of using same |
US6775906B1 (en) | 2000-10-20 | 2004-08-17 | Silverbrook Research Pty Ltd | Method of manufacturing an integrated circuit carrier |
US6421016B1 (en) | 2000-10-23 | 2002-07-16 | Motorola, Inc. | Antenna system with channeled RF currents |
US6743982B2 (en) | 2000-11-29 | 2004-06-01 | Xerox Corporation | Stretchable interconnects using stress gradient films |
US6603440B2 (en) | 2000-12-14 | 2003-08-05 | Protura Wireless, Inc. | Arrayed-segment loop antenna |
US20030017848A1 (en) | 2001-07-17 | 2003-01-23 | Engstrom G. Eric | Personalizing electronic devices and smart covering |
US6944482B2 (en) | 2001-01-22 | 2005-09-13 | Wildseed Ltd. | Visualization supplemented wireless mobile telephony |
DE60207216T2 (en) | 2001-03-08 | 2006-07-06 | Medtronic, Inc., Minneapolis | CABLE WITH ANGLE AND SPACE POSITION ADJUSTABLE BETWEEN ELECTRODES |
US6600363B2 (en) | 2001-04-05 | 2003-07-29 | Cornell Research Foundation, Inc. | Folded floating-gate differential pair amplifier |
US6477417B1 (en) | 2001-04-12 | 2002-11-05 | Pacesetter, Inc. | System and method for automatically selecting electrode polarity during sensing and stimulation |
KR100380107B1 (en) | 2001-04-30 | 2003-04-11 | 삼성전자주식회사 | Circuit board having a heating means and multichip package having hermetic sealing part |
US6455931B1 (en) | 2001-05-15 | 2002-09-24 | Raytheon Company | Monolithic microelectronic array structure having substrate islands and its fabrication |
US6410971B1 (en) | 2001-07-12 | 2002-06-25 | Ferrotec (Usa) Corporation | Thermoelectric module with thin film substrates |
US6770966B2 (en) | 2001-07-31 | 2004-08-03 | Intel Corporation | Electronic assembly including a die having an integrated circuit and a layer of diamond to transfer heat |
JP4638626B2 (en) | 2001-08-01 | 2011-02-23 | 北川工業株式会社 | Magnetic body molding method, magnetic body, and printed circuit board |
AU2002330718A1 (en) | 2001-09-03 | 2003-03-18 | National Microelectronic Research Centre University College Cork - National University Of Ireland Co | Integrated circuit structure and a method of making an integrated circuit structure |
US7146221B2 (en) | 2001-11-16 | 2006-12-05 | The Regents Of The University Of California | Flexible electrode array for artifical vision |
WO2003061517A2 (en) | 2001-11-20 | 2003-07-31 | California Institute Of Technology | Neural prosthetic micro system |
US20040092806A1 (en) | 2001-12-11 | 2004-05-13 | Sagon Stephen W | Microelectrode catheter for mapping and ablation |
DE10202123A1 (en) | 2002-01-21 | 2003-07-31 | Infineon Technologies Ag | Method and device for integrating electronics in textiles |
US20030162507A1 (en) | 2002-02-20 | 2003-08-28 | Vatt Gregory B. | Semiconductor structure for high speed digital and radio frequency processing |
US20060134713A1 (en) | 2002-03-21 | 2006-06-22 | Lifescan, Inc. | Biosensor apparatus and methods of use |
US6930608B2 (en) | 2002-05-14 | 2005-08-16 | Motorola, Inc | Apparel having multiple alternative sensors and corresponding method |
US6980777B2 (en) | 2002-07-31 | 2005-12-27 | Nokia Corporation | Smart pouch cover for mobile device |
US6965160B2 (en) | 2002-08-15 | 2005-11-15 | Micron Technology, Inc. | Semiconductor dice packages employing at least one redistribution layer |
US7698909B2 (en) | 2002-10-01 | 2010-04-20 | Nellcor Puritan Bennett Llc | Headband with tension indicator |
US20040085469A1 (en) | 2002-10-30 | 2004-05-06 | Eastman Kodak Company | Method to eliminate bus voltage drop effects for pixel source follower amplifiers |
EP1565107A4 (en) | 2002-11-14 | 2008-03-05 | Ethicon Endo Surgery Inc | Methods and devices for detecting tissue cells |
JP2004179258A (en) | 2002-11-25 | 2004-06-24 | Hamamatsu Photonics Kk | Ultraviolet sensor |
EP1592342A4 (en) | 2003-01-16 | 2009-05-27 | Galil Medical Ltd | Device, system, and method for detecting, localizing, and characterizing plaque-induced stenosis of a blood vessel |
US6894265B2 (en) | 2003-01-31 | 2005-05-17 | Foveon, Inc. | Vertical color filter sensor group and semiconductor integrated circuit fabrication method for fabricating same |
US20040149921A1 (en) | 2003-02-05 | 2004-08-05 | Alexander Smyk | Personal solar adviser |
US7491892B2 (en) | 2003-03-28 | 2009-02-17 | Princeton University | Stretchable and elastic interconnects |
US7337012B2 (en) | 2003-04-30 | 2008-02-26 | Lawrence Livermore National Security, Llc | Stretchable polymer-based electronic device |
US7265298B2 (en) | 2003-05-30 | 2007-09-04 | The Regents Of The University Of California | Serpentine and corduroy circuits to enhance the stretchability of a stretchable electronic device |
CN1788481B (en) | 2003-06-12 | 2010-04-21 | 诺基亚有限公司 | Mobile communication device cover and method for its operation |
US7413919B2 (en) | 2003-06-20 | 2008-08-19 | Acellent Technologies, Inc. | Method of manufacturing a structural health monitoring layer |
CA2539547A1 (en) | 2003-08-20 | 2005-03-03 | Philometron, Inc. | Hydration monitoring |
JP4050682B2 (en) | 2003-09-29 | 2008-02-20 | 日東電工株式会社 | Method for manufacturing flexible printed circuit board |
US20050113744A1 (en) | 2003-11-21 | 2005-05-26 | Cyberkinetics, Inc. | Agent delivery systems and related methods under control of biological electrical signals |
KR20050066128A (en) | 2003-12-26 | 2005-06-30 | 주식회사 팬택앤큐리텔 | Change structure and method of memory card using change cover |
US7150745B2 (en) | 2004-01-09 | 2006-12-19 | Barrx Medical, Inc. | Devices and methods for treatment of luminal tissue |
US20060003709A1 (en) | 2004-06-30 | 2006-01-05 | Nokia Corporation | Protective enclosure for a mobile terminal |
US7618260B2 (en) | 2004-02-27 | 2009-11-17 | Daniel Simon R | Wearable modular interface strap |
US20050203366A1 (en) | 2004-03-12 | 2005-09-15 | Donoghue John P. | Neurological event monitoring and therapy systems and related methods |
US7727228B2 (en) | 2004-03-23 | 2010-06-01 | Medtronic Cryocath Lp | Method and apparatus for inflating and deflating balloon catheters |
US7259030B2 (en) | 2004-03-29 | 2007-08-21 | Articulated Technologies, Llc | Roll-to-roll fabricated light sheet and encapsulated semiconductor circuit devices |
US7302751B2 (en) | 2004-04-30 | 2007-12-04 | Hewlett-Packard Development Company, L.P. | Method of fabricating a rat's nest RFID antenna |
US8217381B2 (en) | 2004-06-04 | 2012-07-10 | The Board Of Trustees Of The University Of Illinois | Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics |
US7521292B2 (en) | 2004-06-04 | 2009-04-21 | The Board Of Trustees Of The University Of Illinois | Stretchable form of single crystal silicon for high performance electronics on rubber substrates |
CN102097458B (en) | 2004-06-04 | 2013-10-30 | 伊利诺伊大学评议会 | Methods and devices for fabricating and assembling printable semiconductor elements |
EP1605502A1 (en) | 2004-06-08 | 2005-12-14 | Interuniversitair Microelektronica Centrum Vzw | Transfer method for the manufacturing of electronic devices |
US6987314B1 (en) | 2004-06-08 | 2006-01-17 | Amkor Technology, Inc. | Stackable semiconductor package with solder on pads on which second semiconductor package is stacked |
US20080204021A1 (en) | 2004-06-17 | 2008-08-28 | Koninklijke Philips Electronics N.V. | Flexible and Wearable Radio Frequency Coil Garments for Magnetic Resonance Imaging |
US20070270672A1 (en) | 2004-08-31 | 2007-11-22 | Hayter Paul G | Wearable Sensor Device and System |
KR100643756B1 (en) | 2004-09-10 | 2006-11-10 | 삼성전자주식회사 | Flexible device, flexible pressure sensor, and fabrication method thereof |
JP2006108431A (en) | 2004-10-06 | 2006-04-20 | Sharp Corp | Semiconductor device |
JP4517845B2 (en) | 2004-12-13 | 2010-08-04 | 日本電気株式会社 | Flexible cable and method for manufacturing electronic device |
US8118740B2 (en) | 2004-12-20 | 2012-02-21 | Ipventure, Inc. | Moisture sensor for skin |
US20090291508A1 (en) | 2008-05-20 | 2009-11-26 | Rapid Pathogen Screening Inc. | Nanoparticles in diagnostic tests |
JP5507811B2 (en) | 2005-02-15 | 2014-05-28 | ヴォウダフォン・グループ・ピーエルシー | Improved security for wireless communication |
GB0505826D0 (en) | 2005-03-22 | 2005-04-27 | Uni Microelektronica Ct Vsw | Methods for embedding of conducting material and devices resulting from said methods |
US7300631B2 (en) | 2005-05-02 | 2007-11-27 | Bioscale, Inc. | Method and apparatus for detection of analyte using a flexural plate wave device and magnetic particles |
JP2008541246A (en) | 2005-05-13 | 2008-11-20 | インビボ・インコーポレイテッド | Method for customizing the cover of an electronic device |
US8688189B2 (en) | 2005-05-17 | 2014-04-01 | Adnan Shennib | Programmable ECG sensor patch |
US20060266475A1 (en) | 2005-05-24 | 2006-11-30 | American Standard Circuits, Inc. | Thermally conductive interface |
US20070031283A1 (en) | 2005-06-23 | 2007-02-08 | Davis Charles Q | Assay cartridges and methods for point of care instruments |
WO2007003019A2 (en) | 2005-07-01 | 2007-01-11 | K.U. Leuven Research & Development | Means for functional restoration of a damaged nervous system |
JP2007028326A (en) | 2005-07-19 | 2007-02-01 | Alps Electric Co Ltd | Camera module and mobile phone terminal |
US20070027485A1 (en) | 2005-07-29 | 2007-02-01 | Kallmyer Todd A | Implantable medical device bus system and method |
US7769472B2 (en) | 2005-07-29 | 2010-08-03 | Medtronic, Inc. | Electrical stimulation lead with conformable array of electrodes |
US8657814B2 (en) | 2005-08-22 | 2014-02-25 | Medtronic Ablation Frontiers Llc | User interface for tissue ablation system |
WO2007040064A1 (en) | 2005-09-30 | 2007-04-12 | Matsushita Electric Industrial Co., Ltd. | Sheet-like composite electronic component and method for manufacturing same |
US20080259576A1 (en) | 2005-10-13 | 2008-10-23 | Nxp B.V. | Electronic Device or Circuit and Method for Fabricating the Same |
JP2007105316A (en) | 2005-10-14 | 2007-04-26 | Konica Minolta Sensing Inc | Bioinformation measuring instrument |
US7271393B2 (en) | 2005-11-15 | 2007-09-18 | Nokia Corporation | UV radiation meter using visible light sensors |
US7759167B2 (en) | 2005-11-23 | 2010-07-20 | Imec | Method for embedding dies |
US9629567B2 (en) | 2006-01-12 | 2017-04-25 | Biosense Webster, Inc. | Mapping of complex fractionated atrial electrogram |
AT503191B1 (en) | 2006-02-02 | 2008-07-15 | Austria Tech & System Tech | PCB LAYER ELEMENT WITH AT LEAST ONE EMBEDDED COMPONENT AND METHOD FOR BEDDING AT LEAST ONE COMPONENT IN A LADDER PLATE ELEMENT |
IL174211A0 (en) | 2006-03-09 | 2007-07-04 | Rotschild Carmel | Method and system for using a cellular phone in water activities |
CN101416302A (en) | 2006-04-07 | 2009-04-22 | 皇家飞利浦电子股份有限公司 | Elastically deformable integrated-circuit device |
JP2009537226A (en) | 2006-05-18 | 2009-10-29 | エヌディーアイ メディカル, エルエルシー | Portable assembly, system, and method for providing functional or therapeutic neural stimulation |
US20080046080A1 (en) | 2006-07-07 | 2008-02-21 | Interuniversitair Microelektronica Centrum (Imec) | Method for forming packaged microelectronic devices and devices thus obtained |
US20080036097A1 (en) | 2006-08-10 | 2008-02-14 | Teppei Ito | Semiconductor package, method of production thereof and encapsulation resin |
KR101814683B1 (en) | 2006-09-06 | 2018-01-05 | 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 | A two-dimensional stretchable and bendable device |
US20080074383A1 (en) | 2006-09-27 | 2008-03-27 | Dean Kenneth A | Portable electronic device having appearance customizable housing |
WO2008049087A2 (en) | 2006-10-18 | 2008-04-24 | Minnow Medical, Inc. | System for inducing desirable temperature effects on body tissue |
US8046039B2 (en) | 2006-10-20 | 2011-10-25 | Lg Electronics Inc. | Mobile terminal and case for mobile terminal |
US8979755B2 (en) | 2006-12-08 | 2015-03-17 | The Boeing Company | Devices and systems for remote physiological monitoring |
DE102006060411B3 (en) | 2006-12-20 | 2008-07-10 | Infineon Technologies Ag | Chip module and method for producing a chip module |
EP2127082A1 (en) | 2007-01-19 | 2009-12-02 | 3M Innovative Properties Company | Cable for a capacitive proximity sensor |
US9944031B2 (en) | 2007-02-13 | 2018-04-17 | 3M Innovative Properties Company | Molded optical articles and methods of making same |
US7851906B2 (en) | 2007-03-26 | 2010-12-14 | Endicott Interconnect Technologies, Inc. | Flexible circuit electronic package with standoffs |
US8761846B2 (en) | 2007-04-04 | 2014-06-24 | Motorola Mobility Llc | Method and apparatus for controlling a skin texture surface on a device |
US7693167B2 (en) | 2007-05-22 | 2010-04-06 | Rockwell Collins, Inc. | Mobile nodal based communication system, method and apparatus |
US8877565B2 (en) | 2007-06-28 | 2014-11-04 | Intel Corporation | Method of forming a multilayer substrate core structure using sequential microvia laser drilling and substrate core structure formed according to the method |
US20090000377A1 (en) | 2007-06-29 | 2009-01-01 | Shipps J Clay | Brain impact measurement system |
US20090015560A1 (en) | 2007-07-13 | 2009-01-15 | Motorola, Inc. | Method and apparatus for controlling a display of a device |
EP2178598A4 (en) | 2007-08-17 | 2012-08-15 | Isis Biopolymer Llc | Iontophoretic drug delivery system |
US20090088750A1 (en) | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Insulating Boot with Silicone Overmold for Electrosurgical Forceps |
US7739791B2 (en) | 2007-10-26 | 2010-06-22 | Delphi Technologies, Inc. | Method of producing an overmolded electronic module with a flexible circuit pigtail |
KR100919642B1 (en) | 2007-12-17 | 2009-09-30 | 한국전자통신연구원 | Directive Speaker and mobile station thereof |
JP2009170173A (en) | 2008-01-11 | 2009-07-30 | Denso Corp | El element, and manufacturing method thereof |
JP4530180B2 (en) | 2008-01-22 | 2010-08-25 | Okiセミコンダクタ株式会社 | Ultraviolet sensor and manufacturing method thereof |
EP2255378B1 (en) | 2008-03-05 | 2015-08-05 | The Board of Trustees of the University of Illinois | Stretchable and foldable electronic devices |
US9107592B2 (en) | 2008-03-12 | 2015-08-18 | The Trustees Of The University Of Pennsylvania | Flexible and scalable sensor arrays for recording and modulating physiologic activity |
US7619416B2 (en) | 2008-04-17 | 2009-11-17 | Universität Zürich Prorektorat Forschung Eidgenössische Technische Hochschule | Coil assembly and multiple coil arrangement for magnetic resonance imaging |
US8207473B2 (en) | 2008-06-24 | 2012-06-26 | Imec | Method for manufacturing a stretchable electronic device |
US20090322480A1 (en) | 2008-06-30 | 2009-12-31 | Robert Leon Benedict | Rfid tag and method of vehicle attachment thereof |
EP2337495A4 (en) | 2008-09-19 | 2013-10-16 | Sensors For Med & Science Inc | Optical sensor assembly |
US8679888B2 (en) | 2008-09-24 | 2014-03-25 | The Board Of Trustees Of The University Of Illinois | Arrays of ultrathin silicon solar microcells |
US8886334B2 (en) | 2008-10-07 | 2014-11-11 | Mc10, Inc. | Systems, methods, and devices using stretchable or flexible electronics for medical applications |
US8097926B2 (en) | 2008-10-07 | 2012-01-17 | Mc10, Inc. | Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy |
US20100271191A1 (en) | 2008-10-07 | 2010-10-28 | De Graff Bassel | Systems, devices, and methods utilizing stretchable electronics to measure tire or road surface conditions |
US8389862B2 (en) | 2008-10-07 | 2013-03-05 | Mc10, Inc. | Extremely stretchable electronics |
EP2349440B1 (en) | 2008-10-07 | 2019-08-21 | Mc10, Inc. | Catheter balloon having stretchable integrated circuitry and sensor array |
US9119533B2 (en) | 2008-10-07 | 2015-09-01 | Mc10, Inc. | Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy |
US8372726B2 (en) | 2008-10-07 | 2013-02-12 | Mc10, Inc. | Methods and applications of non-planar imaging arrays |
US9123614B2 (en) | 2008-10-07 | 2015-09-01 | Mc10, Inc. | Methods and applications of non-planar imaging arrays |
WO2010042957A2 (en) | 2008-10-07 | 2010-04-15 | Mc10, Inc. | Systems, devices, and methods utilizing stretchable electronics to measure tire or road surface conditions |
US8056819B2 (en) | 2008-10-14 | 2011-11-15 | Hong Kong Applied Science And Technology Research Institute Co., Ltd. | Miniature and multi-band RF coil design |
FR2937511B1 (en) | 2008-10-23 | 2014-05-16 | Oreal | DEVICE FOR DISTRIBUTING A PRODUCT WITH AUTOMATIC OR SEMI-AUTOMATIC ADJUSTMENT OF PRODUCT PROPERTIES THROUGH INTEGRATED ROOM SENSOR |
JP5689066B2 (en) | 2008-11-12 | 2015-03-25 | エムシー10 インコーポレイテッドMc10,Inc. | Highly extendable electronic components |
US20110101789A1 (en) | 2008-12-01 | 2011-05-05 | Salter Jr Thomas Steven | Rf power harvesting circuit |
JP5694947B2 (en) | 2008-12-11 | 2015-04-01 | エムシー10 インコーポレイテッドMc10,Inc. | Device using extensible electronic components for medical applications |
EP2386117A4 (en) | 2009-01-12 | 2017-12-27 | Mc10, Inc. | Methods and applications of non-planar imaging arrays |
GR1006723B (en) | 2009-01-16 | 2010-03-09 | ������������ ������������-������� ����������� ����������� ��������� ������� (���� ������� 5%) | Integral or printed daisy-like coil |
WO2010086033A1 (en) | 2009-01-30 | 2010-08-05 | Interuniversitair Microelektronica Centrum Vzw | Stretchable electronic device |
PL2392196T3 (en) | 2009-01-30 | 2019-05-31 | Imec Vzw | Stretchable electronic device |
WO2010102310A2 (en) | 2009-03-03 | 2010-09-10 | Mc10, Inc. | Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy |
NO2403482T3 (en) | 2009-03-04 | 2018-05-26 | ||
TWI592996B (en) | 2009-05-12 | 2017-07-21 | 美國伊利諾大學理事會 | Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays |
US8593256B2 (en) | 2009-06-23 | 2013-11-26 | Avery Dennison Corporation | Washable RFID device for apparel tracking |
US20100327387A1 (en) | 2009-06-26 | 2010-12-30 | Ichiro Kasai | Avalanche Photodiode |
CN102474009B (en) | 2009-07-03 | 2015-01-07 | 株式会社村田制作所 | Antenna and antenna module |
WO2011003181A1 (en) | 2009-07-06 | 2011-01-13 | Autonomous Identity Management Systems Inc. - Aims | Gait-based authentication system |
JP2011018805A (en) | 2009-07-09 | 2011-01-27 | Sumitomo Bakelite Co Ltd | Film for semiconductor, and method of manufacturing semiconductor device |
EP2275805A1 (en) | 2009-07-16 | 2011-01-19 | Acreo AB | Moister sensor |
US8272923B2 (en) | 2009-08-13 | 2012-09-25 | The Procter & Gamble Company | Methods and apparatuses for anvil reconditioning |
US20120065937A1 (en) | 2009-10-01 | 2012-03-15 | Mc10, Inc. | Methods and apparatus for measuring technical parameters of equipment, tools and components via conformal electronics |
US9723122B2 (en) | 2009-10-01 | 2017-08-01 | Mc10, Inc. | Protective cases with integrated electronics |
US20130192356A1 (en) | 2009-10-01 | 2013-08-01 | Mc10, Inc. | Methods and apparatus for measuring technical parameters of equipment, tools, and components via conformal electronics |
US20110218756A1 (en) | 2009-10-01 | 2011-09-08 | Mc10, Inc. | Methods and apparatus for conformal sensing of force and/or acceleration at a person's head |
US8390516B2 (en) | 2009-11-23 | 2013-03-05 | Harris Corporation | Planar communications antenna having an epicyclic structure and isotropic radiation, and associated methods |
US10918298B2 (en) | 2009-12-16 | 2021-02-16 | The Board Of Trustees Of The University Of Illinois | High-speed, high-resolution electrophysiology in-vivo using conformal electronics |
US10441185B2 (en) | 2009-12-16 | 2019-10-15 | The Board Of Trustees Of The University Of Illinois | Flexible and stretchable electronic systems for epidermal electronics |
WO2011084709A2 (en) | 2009-12-17 | 2011-07-14 | Mc10, Inc. | Methods and apparatus for conformal sensing of force and/or change in motion |
US8872663B2 (en) | 2010-01-19 | 2014-10-28 | Avery Dennison Corporation | Medication regimen compliance monitoring systems and methods |
WO2011094307A1 (en) | 2010-01-26 | 2011-08-04 | Meggitt ( San Juan Capistrano) , Inc. | Measurement system using body mounted physically decoupled sensor |
EP2556392A4 (en) | 2010-04-07 | 2014-03-19 | Mc10 Inc | Methods and apparatus for measuring technical parameters of equipment, tools and components via conformal electronics |
CN102907184B (en) | 2010-05-20 | 2016-08-24 | 3M创新有限公司 | The attachment of flexible circuit cover layer strengthens |
US8715204B2 (en) | 2010-07-14 | 2014-05-06 | Prima Temp, Inc. | Wireless vaginal sensor probe |
US8198109B2 (en) | 2010-08-27 | 2012-06-12 | Quarkstar Llc | Manufacturing methods for solid state light sheet or strip with LEDs connected in series for general illumination |
US8836101B2 (en) | 2010-09-24 | 2014-09-16 | Infineon Technologies Ag | Multi-chip semiconductor packages and assembly thereof |
US8506158B2 (en) | 2010-10-12 | 2013-08-13 | P.S.L. Limited | Watch |
DE102010042567B3 (en) | 2010-10-18 | 2012-03-29 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for manufacturing a chip package and chip package |
ES2751156T3 (en) | 2010-10-20 | 2020-03-30 | Medtronic Ardian Luxembourg | Catheter devices having expandable mesh structures for renal neuromodulation |
WO2012061153A1 (en) | 2010-10-25 | 2012-05-10 | Medtronic Ardian Luxembourg S.A.R.L. | Devices, systems and methods for evaluation and feedback of neuromodulation treatment |
US8456021B2 (en) | 2010-11-24 | 2013-06-04 | Texas Instruments Incorporated | Integrated circuit device having die bonded to the polymer side of a polymer substrate |
US8391947B2 (en) | 2010-12-30 | 2013-03-05 | Biosense Webster (Israel), Ltd. | Catheter with sheet array of electrodes |
EP2484750A1 (en) | 2011-02-07 | 2012-08-08 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Monitoring system for cell culture |
US8581731B2 (en) | 2011-02-16 | 2013-11-12 | Connor Kent Purks | Circuits, systems, and methods for monitoring and reporting foot impact, foot placement, shoe life, and other running/walking characteristics |
EP2681538B1 (en) | 2011-03-11 | 2019-03-06 | Mc10, Inc. | Integrated devices to facilitate quantitative assays and diagnostics |
JP2012218147A (en) | 2011-04-11 | 2012-11-12 | Imec | Method for sealing microcavity |
EP2712491B1 (en) | 2011-05-27 | 2019-12-04 | Mc10, Inc. | Flexible electronic structure |
US20120316455A1 (en) | 2011-06-10 | 2012-12-13 | Aliphcom | Wearable device and platform for sensory input |
US8926477B2 (en) | 2011-07-05 | 2015-01-06 | Mug Muscles, Llc | Combined beverage holder and exercise apparatus |
EP2729067A4 (en) | 2011-07-14 | 2014-10-29 | Mc10 Inc | Detection of a force on a foot or footwear |
DE112012003250T5 (en) | 2011-08-05 | 2014-04-30 | Mc10, Inc. | Catheter Balloon method and apparatus using sensing elements |
US9757050B2 (en) | 2011-08-05 | 2017-09-12 | Mc10, Inc. | Catheter balloon employing force sensing elements |
US8702619B2 (en) | 2011-08-26 | 2014-04-22 | Symap Holding Limited | Mapping sympathetic nerve distribution for renal ablation and catheters for same |
EP2786131B1 (en) | 2011-09-01 | 2018-11-07 | Mc10, Inc. | Electronics for detection of a condition of tissue |
WO2013034987A2 (en) | 2011-09-08 | 2013-03-14 | Offshore Incorporations (Cayman) Limited, | Sensor device and system for fitness equipment |
BR112014007634A2 (en) | 2011-09-28 | 2017-04-11 | Mc10 Inc | electronic circuit for detecting the property of a surface |
DE112012004146T5 (en) | 2011-10-05 | 2014-11-06 | Mc10, Inc. | Cardiac catheter using surface-true electronics for imaging |
EP2626755B1 (en) | 2012-02-10 | 2019-04-10 | Nxp B.V. | Calibration method, calibration device and measurement device |
EP2817708B1 (en) | 2012-02-21 | 2020-08-26 | Zebra Technologies Corporation | Method and apparatus for implementing near field communications with a printer |
US9184798B2 (en) | 2012-03-12 | 2015-11-10 | Broadcom Corporation | Near field communications (NFC) device having adjustable gain |
US20140121540A1 (en) | 2012-05-09 | 2014-05-01 | Aliphcom | System and method for monitoring the health of a user |
US20130321373A1 (en) | 2012-05-31 | 2013-12-05 | Semiconductor Energy Laboratory Co., Ltd. | Electronic device, program, and recording medium |
US9226402B2 (en) | 2012-06-11 | 2015-12-29 | Mc10, Inc. | Strain isolation structures for stretchable electronics |
US9247637B2 (en) | 2012-06-11 | 2016-01-26 | Mc10, Inc. | Strain relief structures for stretchable interconnects |
EP2866657B1 (en) * | 2012-06-29 | 2021-02-24 | Roche Diabetes Care GmbH | Sensor element for detecting an analyte in a body fluid |
US9295842B2 (en) | 2012-07-05 | 2016-03-29 | Mc10, Inc. | Catheter or guidewire device including flow sensing and use thereof |
KR20150031324A (en) | 2012-07-05 | 2015-03-23 | 엠씨10, 인크 | Catheter device including flow sensing |
US9082025B2 (en) | 2012-10-09 | 2015-07-14 | Mc10, Inc. | Conformal electronics integrated with apparel |
US9171794B2 (en) | 2012-10-09 | 2015-10-27 | Mc10, Inc. | Embedding thin chips in polymer |
US20140188426A1 (en) | 2012-12-27 | 2014-07-03 | Steven FASTERT | Monitoring hit count for impact events |
KR20150110570A (en) | 2013-01-08 | 2015-10-02 | 엠씨10, 인크 | Application for monitoring a property of a surface |
US9706647B2 (en) | 2013-05-14 | 2017-07-11 | Mc10, Inc. | Conformal electronics including nested serpentine interconnects |
US20150019135A1 (en) | 2013-06-03 | 2015-01-15 | Mc10, Inc. | Motion sensor and analysis |
EP3010360A4 (en) | 2013-06-21 | 2017-02-22 | Mc10, Inc. | Band with conformable electronics |
EP3030873A4 (en) | 2013-08-05 | 2017-07-05 | Mc10, Inc. | Flexible temperature sensor including conformable electronics |
CN105849788A (en) | 2013-10-09 | 2016-08-10 | Mc10股份有限公司 | Utility gear including conformal sensors |
CN105813545A (en) | 2013-11-22 | 2016-07-27 | Mc10股份有限公司 | Conformal sensor systems for sensing and analysis of cardiac activity |
CN105848570B (en) | 2014-01-03 | 2019-09-03 | Mc10股份有限公司 | Integrating device for low-power quantitative measurment |
CA2934245A1 (en) | 2014-01-03 | 2015-07-09 | Mc10, Inc. | Catheter or guidewire device including flow sensing and use thereof |
WO2015103580A2 (en) | 2014-01-06 | 2015-07-09 | Mc10, Inc. | Encapsulated conformal electronic systems and devices, and methods of making and using the same |
US20150241288A1 (en) | 2014-02-24 | 2015-08-27 | Mc10. Inc. | Conformal electronics with deformation indicators |
WO2015134588A1 (en) | 2014-03-04 | 2015-09-11 | Mc10, Inc. | Multi-part flexible encapsulation housing for electronic devices |
JP6661242B2 (en) | 2014-03-12 | 2020-03-11 | エムシー10 インコーポレイテッドMc10,Inc. | Measuring device and method for quantifying assay changes |
-
2016
- 2016-03-01 WO PCT/US2016/020247 patent/WO2016140961A1/en active Application Filing
- 2016-03-01 US US15/057,762 patent/US10398343B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6450026B1 (en) * | 1997-12-31 | 2002-09-17 | Jean Desarnaud | Capacitive sensors for measuring humidity and method of making same |
US20020000813A1 (en) * | 2000-07-03 | 2002-01-03 | Matsushita Electric Works, Ltd | Capacitance type moisture sensor and method of producing the same |
US20070190880A1 (en) * | 2004-02-02 | 2007-08-16 | Nanosys, Inc. | Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production |
US20100030167A1 (en) * | 2006-02-28 | 2010-02-04 | Carsten Thirstrup | Leak Sensor |
US20070270674A1 (en) * | 2006-05-17 | 2007-11-22 | Michael John Kane | Implantable Medical Device with Chemical Sensor and Related Methods |
DE102007046886A1 (en) * | 2007-09-28 | 2009-04-09 | Dieter Miehlich | Electric muscle stimulation-electrode i.e. laminar pad, for use in e.g. jacket, has conducting layer, and storage layer connected with conducting layer, where pad is designed such that pad dispenses stored fluid under pressure |
US20130123587A1 (en) * | 2010-05-08 | 2013-05-16 | Bruin Biometrics, Llc | Sem scanner sensing apparatus, system and methodology for early detection of ulcers |
US20120150072A1 (en) * | 2010-12-14 | 2012-06-14 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Device and method for determining an excretion flow rate of a body fluid of a person or an animal |
US20130197319A1 (en) * | 2012-01-26 | 2013-08-01 | The University Of Akron | Flexible Electrode for Detecting Changes in Temperature, Humidity, and Sodium Ion Concentration in Sweat |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9894757B2 (en) | 2008-10-07 | 2018-02-13 | Mc10, Inc. | Extremely stretchable electronics |
US10383219B2 (en) | 2008-10-07 | 2019-08-13 | Mc10, Inc. | Extremely stretchable electronics |
US10325951B2 (en) | 2008-10-07 | 2019-06-18 | Mc10, Inc. | Methods and applications of non-planar imaging arrays |
US10186546B2 (en) | 2008-10-07 | 2019-01-22 | Mc10, Inc. | Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy |
US10296819B2 (en) | 2012-10-09 | 2019-05-21 | Mc10, Inc. | Conformal electronics integrated with apparel |
US10032709B2 (en) | 2012-10-09 | 2018-07-24 | Mc10, Inc. | Embedding thin chips in polymer |
US10334724B2 (en) | 2013-05-14 | 2019-06-25 | Mc10, Inc. | Conformal electronics including nested serpentine interconnects |
US10258282B2 (en) | 2013-11-22 | 2019-04-16 | Mc10, Inc. | Conformal sensor systems for sensing and analysis of cardiac activity |
US10485118B2 (en) | 2014-03-04 | 2019-11-19 | Mc10, Inc. | Multi-part flexible encapsulation housing for electronic devices and methods of making the same |
USD825537S1 (en) | 2014-10-15 | 2018-08-14 | Mc10, Inc. | Electronic device having antenna |
US10986465B2 (en) | 2015-02-20 | 2021-04-20 | Medidata Solutions, Inc. | Automated detection and configuration of wearable devices based on on-body status, location, and/or orientation |
US10709384B2 (en) | 2015-08-19 | 2020-07-14 | Mc10, Inc. | Wearable heat flux devices and methods of use |
US10300371B2 (en) | 2015-10-01 | 2019-05-28 | Mc10, Inc. | Method and system for interacting with a virtual environment |
US10532211B2 (en) | 2015-10-05 | 2020-01-14 | Mc10, Inc. | Method and system for neuromodulation and stimulation |
US10277386B2 (en) | 2016-02-22 | 2019-04-30 | Mc10, Inc. | System, devices, and method for on-body data and power transmission |
US10673280B2 (en) | 2016-02-22 | 2020-06-02 | Mc10, Inc. | System, device, and method for coupled hub and sensor node on-body acquisition of sensor information |
US10567152B2 (en) | 2016-02-22 | 2020-02-18 | Mc10, Inc. | System, devices, and method for on-body data and power transmission |
US11154235B2 (en) | 2016-04-19 | 2021-10-26 | Medidata Solutions, Inc. | Method and system for measuring perspiration |
US11992326B2 (en) | 2016-04-19 | 2024-05-28 | Medidata Solutions, Inc. | Method and system for measuring perspiration |
US10447347B2 (en) | 2016-08-12 | 2019-10-15 | Mc10, Inc. | Wireless charger and high speed data off-loader |
US11123011B1 (en) | 2020-03-23 | 2021-09-21 | Nix, Inc. | Wearable systems, devices, and methods for measurement and analysis of body fluids |
Also Published As
Publication number | Publication date |
---|---|
US10398343B2 (en) | 2019-09-03 |
US20160256070A1 (en) | 2016-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10398343B2 (en) | Perspiration sensor | |
JP7107940B2 (en) | Sensor units and integration of sensor units for portable computer systems | |
US11768122B2 (en) | Liquid detection in a sensor environment and remedial action thereof | |
US8852513B1 (en) | Systems and methods for packaging integrated circuit gas sensor systems | |
FI115109B (en) | An authentication arrangement and a mobile station comprising an authentication arrangement | |
US10466229B2 (en) | Sensor assembly | |
CN104379055B (en) | Equipment for the physiological parameter for measuring user | |
US12029553B1 (en) | Electrically-isolated and moisture-resistant designs for wearable devices | |
RU2612508C2 (en) | Wearable device and method of making thereof | |
CN107708532B (en) | Touch sensor | |
CN105136873B (en) | A kind of integrated sensor and preparation method thereof | |
US20130305822A1 (en) | Sensing device | |
US11422104B2 (en) | Exposed wire-bonding for sensing liquid and water in electronic devices | |
KR102152704B1 (en) | Package for gas sensor | |
JP2016206024A (en) | Wearable terminal | |
US20140069170A1 (en) | Sensor for humidity and management system therefor | |
US20190079038A1 (en) | Moisture sensitive sheet and moisture sensitive system | |
KR20190057804A (en) | Band type febric sensor and manufacturing method thereof | |
KR20170085395A (en) | Sensor and a manufacturing method thereof | |
JP2011185704A (en) | Humidity sensor module | |
US8303897B2 (en) | Capacitive sensor for organic chemicals comprising an elastomer and high dielectric materials with titanate | |
CN213022950U (en) | Toxic gas sensor and canister life detector | |
KR102199311B1 (en) | Gas sensor package | |
KR20170043767A (en) | Sensor and a manufacturing method thereof | |
US20240197251A1 (en) | Patch for attaching a sensor to human skin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16759351 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16759351 Country of ref document: EP Kind code of ref document: A1 |