WO2016031404A1 - Composition for electrically conductive film formation use, and method for producing electrically conductive film using same - Google Patents
Composition for electrically conductive film formation use, and method for producing electrically conductive film using same Download PDFInfo
- Publication number
- WO2016031404A1 WO2016031404A1 PCT/JP2015/069928 JP2015069928W WO2016031404A1 WO 2016031404 A1 WO2016031404 A1 WO 2016031404A1 JP 2015069928 W JP2015069928 W JP 2015069928W WO 2016031404 A1 WO2016031404 A1 WO 2016031404A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive film
- composition
- cupric oxide
- oxide nanoparticles
- forming
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D171/00—Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
- C09D171/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D201/00—Coating compositions based on unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/14—Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
- C23C18/143—Radiation by light, e.g. photolysis or pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/12—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
Definitions
- the present invention relates to a composition for forming a conductive film and a method for producing a conductive film using the same.
- a metal film or a circuit board is obtained by applying a dispersion of metal particles or metal oxide particles to the base material by a printing method and then sintering by heat treatment or light irradiation treatment.
- a technique for forming an electrically conductive portion such as a wiring in is known. Since the above method is simpler, energy-saving, and resource-saving than conventional high-heat / vacuum processes (sputtering) and plating processes, it is highly anticipated in the development of next-generation electronics.
- Patent Document 1 discloses a method of manufacturing a metallized ceramic substrate by firing a conductive metal particle component in a vacuum or in an inert atmosphere to form a conductor layer.
- cupric oxide nanoparticles manufactured by CI Kasei Co., Ltd., average particle size 48 nm are specifically used as the conductive metal particles.
- An object of this invention is to provide the composition for electrically conductive film formation which suppresses generation
- Another object of the present invention is to provide a method for producing a conductive film using the composition for forming a conductive film.
- the present inventors contain cupric oxide nanoparticles and a polyol-based organic solvent having a boiling point in a predetermined range, and at a specific wavelength measured by a spectrophotometer. It has been found that the above problem can be solved by using a composition having an absorbance ratio in a predetermined range. That is, it has been found that the above object can be achieved by the following configuration.
- Cupric oxide nanoparticles A composition for forming a conductive film, comprising at least a polyol organic solvent having a boiling point of 190 to 340 ° C.,
- ⁇ 1 represents the absorbance of the composition at a wavelength of 400 nm
- ⁇ 2 represents the absorbance of the composition at a wavelength of 600 nm.
- the ratio of particles having a particle size of 200 nm or more in the cumulative volume particle size distribution of cupric oxide nanoparticles measured by a dynamic light scattering method is 15% or less of the whole cupric oxide nanoparticles.
- an alcohol organic solvent or a ketone organic solvent having a surface tension of 40 mN / m or less and a boiling point of 50 to 180 ° C. is contained,
- the mass ratio between cupric oxide nanoparticles and the polyoxyalkylene compound is 1: 0.01 to 1: 0.5, according to any one of [3] to [7]
- a composition for forming a conductive film [9] The composition for forming a conductive film according to any one of [1] to [8], wherein the polyol organic solvent is a diol or a triol. [10] The organic solvent according to any one of [1] to [9], wherein the polyol organic solvent is at least one selected from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, trimethylolpropane, and glycerin.
- a composition for forming a conductive film is at least one selected from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, trimethylolpropane, and glycerin.
- a metal catalyst is contained, The composition for forming a conductive film according to any one of [1] to [10], wherein the mass ratio of the cupric oxide nanoparticles to the metal catalyst is 1: 0.001 to 1: 0.1. . [12] The composition for forming a conductive film according to any one of [1] to [11], wherein ⁇ 1 / ⁇ 2 is greater than 4 and less than 5. [13] Any of [1] to [12], wherein cupric oxide nanoparticles are produced by a wet method, and the average primary particle diameter of cupric oxide nanoparticles is 2 to 25 nm. The composition for electrically conductive film formation as described in any one.
- a process for producing a conductive film comprising: subjecting a coating film to light irradiation treatment and forming a conductive film containing metal copper by reducing cupric oxide nanoparticles.
- the composition for electrically conductive film formation which can suppress generation
- the manufacturing method of the electrically conductive film using this composition for electrically conductive film formation can also be provided.
- a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
- content of the said component refers to content of the sum total of 2 or more types of compounds.
- composition for forming a conductive film of the present invention comprises: (A) cupric oxide nanoparticles, (B) a conductive film forming composition containing at least a polyol organic solvent having a boiling point of 190 to 340 ° C., It is a composition for electrically conductive film formation in which the ratio of the light absorbency in wavelength 400nm and wavelength 600nm measured with the spectrophotometer satisfy
- ⁇ 1 represents the absorbance of the composition at a wavelength of 400 nm
- ⁇ 2 represents the absorbance of the composition at a wavelength of 600 nm.
- the composition for forming a conductive film of the present invention can form a conductive film exhibiting excellent conductivity by suppressing the occurrence of defects by having ⁇ 1 / ⁇ 2 in a specific range.
- ⁇ 1 / ⁇ 2 is presumed to be related to the dispersibility of (A) cupric oxide nanoparticles in the conductive film forming composition.
- (A) cupric oxide nanoparticles have a small primary particle size and are excellent in dispersibility in the conductive film forming composition.
- the reaction points are exposed on the surface of the (A) cupric oxide nanoparticles, and the reaction probability between the reaction points and the reducing agent increases. Further, it is considered that the conductivity is increased by forming a dense conductor by promoting the fusion of particles.
- gas is generated from the resin substrate, and the gas may cause cracks in the conductive film.
- the reaction between the (A) cupric oxide nanoparticles and the reducing agent can occur in a short time at a low temperature.
- the heat applied to the resin base material can be reduced. Therefore, generation
- the composition for forming a conductive film contains (A) cupric oxide nanoparticles.
- (A) Cupric oxide nanoparticles are reduced by a light irradiation treatment described later and constitute metallic copper in the conductive film.
- the “cupric oxide” in the present invention is a compound that does not substantially contain copper that has not been oxidized. Specifically, in crystal analysis by X-ray diffraction, a peak derived from cupric oxide is detected. And a compound in which no metal-derived peak is detected. Although not containing copper substantially, it means that content of copper is 1 mass% or less with respect to (A) cupric oxide nanoparticles.
- the ratio of particles having a particle diameter of 200 nm or more in the cumulative volume particle size distribution of the cupric oxide nanoparticles (A) in the conductive film forming composition measured by the dynamic light scattering method is the conductivity of the formed conductive film. It is preferably 15% or less of the whole cupric oxide nanoparticles, more preferably 10% or less, and even more preferably 5% or less from the viewpoint that the properties are more excellent and the occurrence of defects can be further suppressed. . Although a minimum in particular is not restrict
- the ratio of the particles having a particle size of more than 0 nm and less than 100 nm in the cumulative volume particle size distribution measured by the dynamic light scattering method of cupric oxide nanoparticles is more conductive in the formed conductive film. From the standpoint of being excellent and capable of suppressing the occurrence of defects, it is preferably 50 to 100%, more preferably 65 to 100%, of the whole (A) cupric oxide nanoparticles.
- the 50% particle size (D50) of the cupric oxide nanoparticles (A) in the composition for forming a conductive film of the present invention is more excellent in the conductivity of the formed conductive film and can further suppress the occurrence of defects. 20 to 150 nm is preferable, and 20 to 100 nm is more preferable.
- the 50% particle diameter is a cumulative volume particle size distribution of cupric oxide nanoparticles measured by a dynamic light scattering method. The cumulative amount when the relative particle amount is integrated from the small particle size side is 50%. The particle size.
- the particle diameter and 50% particle diameter of (A) cupric oxide nanoparticles in the conductive film forming composition of the present invention can be measured by a dynamic light scattering method. More specifically, the measurement is performed using a nanotrack particle size distribution analyzer UPA-EX150 (manufactured by Nikkiso Co., Ltd.).
- the composition for forming a conductive film of the present invention can be used as it is or diluted with water or the like. It is preferable to carry out the measurement in a range where the concentration of cupric oxide nanoparticles in the composition is 0.01 to 0.1% by mass. When the concentration of cupric oxide nanoparticles in the composition is too high, the sample for measurement may be prepared by diluting with water or the like.
- the method for controlling the particle diameter and 50% particle diameter of the (A) cupric oxide nanoparticles in the composition for forming a conductive film of the present invention is not particularly limited.
- Methods for controlling the type of copper nanoparticles and dispersant, methods for controlling the mixing conditions (mixing method, mixing procedure) of the dispersant and (A) cupric oxide nanoparticles, the disperser used, and the dispersion time A known method such as a method of changing (A) or a method of controlling the mixing ratio of cupric oxide nanoparticles and a solvent (water) is selected.
- the average primary particle diameter of the cupric oxide nanoparticles is preferably 2 to 40 nm, more preferably 2 to 25 nm, from the viewpoint that the conductivity of the conductive film to be formed is more excellent and defects can be further suppressed. 2 to 20 nm is more preferable, and 5 to 15 nm is particularly preferable. Note that the average primary particle diameter is at least 400 (A) oxidized by observation with a transmission electron microscope (abbreviation of TEM: Transmission Electron Microscope) or scanning electron microscope (abbreviation of Scanning Electron Microscope). Measure the equivalent circle diameters of the cuprous nanoparticles and calculate them by arithmetic averaging.
- the equivalent circle diameter means the diameter of a circle corresponding to the same area as the observed two-dimensional shape of the cupric oxide nanoparticles (A).
- the average primary particle diameter and 50% particle diameter of cupric oxide nanoparticles are 50% particle diameter / average 1 in that the conductivity of the formed conductive film is more excellent and the generation of defects can be further suppressed.
- the ratio of the next particle diameter is preferably 2 to 75, more preferably 2 to 50, and most preferably 2 to 20.
- Cupric oxide nanoparticles may use a commercial item, or may be manufactured with a well-known manufacturing method.
- a manufacturing method of cupric oxide nanoparticles for example, there are a method of performing granulation in a gas phase (gas phase method) and a method of performing granulation in a wet state (wet method).
- gas phase method gas phase method
- wet method wet method
- the cupric oxide nanoparticles are preferably produced by a wet method. It is because it becomes possible to control to a desired particle shape by granulating by a wet method.
- A) For the synthesis of cupric oxide nanoparticles for example, as described in JP-A No.
- a divalent salt such as copper nitrate is reacted with a base to produce hydroxylation.
- a method of producing copper and granulating copper oxide by heat dehydration is preferred. According to this method, it is possible to synthesize cupric oxide nanoparticles (A) at a lower temperature and in a shorter time, and the desired particle shape / distribution can be controlled.
- cupric oxide nanoparticles (A) When granulating by a wet method, it is preferable to use water or a polyhydric alcohol having a boiling point of 150 to 300 ° C. as a solvent. It is preferable because it does not volatilize during heating and dehydration and is excellent in dispersion stability of the prepared cupric oxide nanoparticles.
- the content of cupric oxide nanoparticles in the composition for forming a conductive film of the present invention is not particularly limited, but it is easy to prepare a predetermined composition, and the characteristics (defect suppression, conductivity) of the formed conductive film are From the standpoint of superiority, it is preferably 3 to 80% by mass, more preferably 10 to 60% by mass, based on the total mass of the composition.
- the composition for forming a conductive film of the present invention contains a polyol organic solvent and has a boiling point of 190 to 340 ° C. In addition, the said boiling point is a thing under 1 atmosphere.
- the polyol organic solvent is not particularly limited as long as it is a compound having two or more hydroxy groups in one molecule.
- the polyol organic solvent can function as a so-called reducing agent.
- polyol organic solvents examples include diols; trifunctional or higher functional polyols such as 1,2,3-butanetriol, erythritol, pentaerythritol, trimethylolpropane, and glycerin (alcohols having three or more hydroxy groups). ).
- the polyol-based organic solvent is preferably diol or triol. Examples of the diol include alcohols having two hydroxy groups such as ethylene glycol and 2,3-butanediol; dialkylene glycols such as diethylene glycol; trialkylene glycols such as triethylene glycol.
- the diol When polyalkylene glycol such as dialkylene glycol and trialkylene glycol is used as the diol, it is mentioned as one of preferred embodiments that its weight average molecular weight is less than 1,000.
- the diol is preferably at least one selected from the group consisting of ethylene glycol, diethylene glycol and triethylene glycol.
- the triol is preferably trimethylolpropane or glycerin.
- the boiling point of the (B) polyol-based organic solvent is 190 to 340 ° C., and is preferably 200 to 300 ° C. from the viewpoint that the conductive film to be formed is more excellent in conductivity and the generation of defects can be further suppressed. .
- the conductivity of the conductive film formed is inferior and many defects are generated.
- the conductivity of the formed conductive film is inferior.
- the mass ratio of cupric oxide nanoparticles and (B) polyol-based organic solvent is sufficient in reducing power, more excellent in conductivity of the conductive film formed, and more capable of suppressing the occurrence of defects. It is preferably 1: 0.005 to 1: 2, more preferably 1: 0.005 to 1: 1, and still more preferably 1: 0.005 to 1: 0.5.
- composition for forming a conductive film of the present invention may further contain (C) a polyoxyalkylene compound having a weight average molecular weight of 1,000 or more.
- a polyoxyalkylene compound having a weight average molecular weight of 1,000 or more it is preferable from the viewpoint that the conductivity of the conductive film to be formed is more excellent and the occurrence of defects can be further suppressed.
- the (C) polyoxyalkylene compound include polyethylene glycol and polypropylene glycol, and polyethylene glycol is preferable.
- the weight average molecular weight of the polyoxyalkylene compound is preferably 4,000 or more, more preferably from 8,000 to 500, from the viewpoint that the conductivity of the formed conductive film is more excellent and the occurrence of defects can be further suppressed. More preferably, it is 1,000.
- the weight average molecular weight of the polyoxyalkylene compound is a polystyrene equivalent value obtained by GPC (gel permeation chromatography, abbreviation for Gel Permeation Chromatography) method (solvent: N-methylpyrrolidone).
- the mass ratio of (A) cupric oxide nanoparticles and (C) polyoxyalkylene compound is 1: 0.01 to 1 from the viewpoint that the conductivity of the conductive film to be formed is better and the generation of defects can be further suppressed. : 0.5 is preferable, and 1: 0.02 to 1: 0.4 is more preferable.
- composition for forming a conductive film of the present invention can further contain an alcohol organic solvent or a ketone organic solvent (D) having a surface tension of 40 mN / m or less and a boiling point of 50 to 180 ° C. In this case, excellent printability can be obtained.
- the surface tension is measured by a measurement method using a dropping method under the condition of 20 ° C.
- Examples of the alcohol organic solvent or ketone organic solvent (D) include ethanol (boiling point 78.37 ° C., surface tension 22.55 mN / m), 1-butanol (boiling point 117 ° C., surface tension 26 mN / m), and the like.
- Alcohol-based organic solvents ketone-based organic solvents such as methyl ethyl ketone (boiling point 79.5 ° C., surface tension 24.6 mN / m), acetone (boiling point 56.5 ° C., surface tension 23.3 mN / m), and the like.
- the surface tension of the alcohol-based organic solvent or the ketone-based organic solvent (D) is preferably 20 to 40 mN / m from the viewpoint that the conductivity of the conductive film to be formed is more excellent and defects can be further suppressed. More preferably, it is ⁇ 30 mN / m.
- the boiling point of the alcohol-based organic solvent or the ketone-based organic solvent (D) is preferably 50 to 180 ° C. from the viewpoint that the conductivity of the conductive film to be formed is better and the generation of defects can be further suppressed, and 70 to 150 ° C. More preferably, the temperature is 70 ° C., and more preferably 70 to 120 ° C.
- the amount of the alcohol-based organic solvent or the ketone-based organic solvent (D) is preferably 1 to 50% by mass, more preferably 1 to 45% by mass in the composition for forming a conductive film. More preferably, it is mass%.
- the composition for forming a conductive film of the present invention can further contain (E) a metal catalyst.
- the metal catalyst (E) preferably contains at least one metal element (metal) selected from the group consisting of groups 8 to 11 of the periodic table.
- the metal element is at least one metal element selected from the group consisting of gold, silver, copper, platinum, palladium, rhodium, iridium, ruthenium, osmium, and nickel in that the conductivity of the conductive film is more excellent.
- it is at least one metal element selected from the group consisting of silver, platinum, palladium, and nickel, more preferably palladium or platinum, and most preferably palladium. That is, the metal catalyst (E) is preferably a metal catalyst containing palladium because the conductivity of the obtained conductive film is more excellent.
- a palladium salt is preferable.
- the kind of palladium salt is not particularly limited, and specific examples thereof include palladium hydrochloride, nitrate, sulfate, carboxylate, sulfonate, phosphate, phosphonate and the like.
- carboxylate is preferable.
- the number of carbon atoms of the carboxylic acid forming the carboxylate is not particularly limited, but is preferably 1 to 10, and more preferably 1 to 5.
- the carboxylic acid forming the carboxylate may have a halogen atom (preferably a fluorine atom).
- the metal catalyst (E) is preferably at least one compound selected from the group consisting of palladium acetate, palladium trifluoroacetate and tetrakis (triphenylphosphine) palladium, and more preferably palladium acetate.
- the mass ratio of cupric oxide nanoparticles and (E) metal catalyst is such that ⁇ 1 / ⁇ 2 is in a more appropriate range.
- the composition for electrically conductive film formation can contain water further.
- Water functions as a dispersion medium for (A) cupric oxide nanoparticles.
- Use of water as a solvent is preferable because of its excellent safety.
- As water what has the purity of the level of ion-exchange water is preferable.
- the water content can be 1 to 90% by mass with respect to the total mass of the conductive film-forming composition.
- the composition for forming a conductive film can further contain components other than (A) to (E) and water.
- components other than the above include additives such as water-soluble polymers, surfactants, and thixotropic agents.
- the kind and amount of the additive can be appropriately selected within a range that does not hinder the object and effect of the present invention.
- the manufacturing method in particular of the composition for electrically conductive film formation is not restrict
- the mixing method is not particularly limited.
- a homogenizer for example, an ultrasonic homogenizer, a high-pressure homogenizer
- a mill for example, a bead mill, a ball mill, a tower mill, a three roll mill
- a mixer for example, a planetary mixer, a disper mixer, a hen
- a sill mixer for example, a sill mixer, a kneader, a Clare mix, a self-revolving mixer (stirring deaerator), and the like.
- ⁇ Characteristics of conductive film forming composition About the composition for electrically conductive film formation, ratio of the light absorbency in wavelength 400nm and wavelength 600nm measured with the spectrophotometer satisfy
- ⁇ 1 represents absorbance at a wavelength of 400 nm
- ⁇ 2 represents absorbance at a wavelength of 600 nm.
- ⁇ > ⁇ 2 is preferably 5> ⁇ 1 / ⁇ 2> 4 from the viewpoint that the conductivity of the conductive film to be formed is more excellent and defects can be further suppressed.
- Measurement with a spectrophotometer is performed using an ultraviolet-visible spectrophotometer (UV-2450, manufactured by Shimadzu Corporation). At that time, the measurement is performed in the range where the concentration of cupric oxide nanoparticles in the composition is 0.0005 to 0.1 mass%. When the concentration of cupric oxide nanoparticles in the composition is too high, the sample for measurement may be prepared by diluting with water. From the ultraviolet-visible absorption spectrum obtained by the above measurement, the absorbance at a wavelength of 400 nm and the absorbance at a wavelength of 600 nm are measured, and applied to the above equation 1 to calculate the ratio ( ⁇ 1 / ⁇ 2).
- control method in particular of (alpha) 1 / (alpha) 2 of the composition for electrically conductive film formation of this invention is not restrict
- the method for producing the conductive film of the present invention comprises: A step of applying the composition for forming a conductive film of the present invention on a resin base material to form a coating film (hereinafter also referred to as a coating film forming step as appropriate); Performing a light irradiation treatment on the coating film, and reducing the cupric oxide nanoparticles to form a conductive film containing metallic copper (hereinafter also referred to as a conductive film forming process). It is a manufacturing method. Below, each process is explained in full detail.
- This step is a step of applying the above-described composition for forming a conductive film on a resin substrate to form a coating film.
- the precursor film before the reduction treatment is obtained in this step.
- the composition for forming a conductive film used is as described above.
- the resin base material examples include polyolefin resins such as low density polyethylene resin, high density polyethylene resin, polypropylene, and polybutylene; methacrylic resins such as polymethyl methacrylate; polystyrene, acrylonitrile butadiene styrene copolymer (ABS), Polystyrene resin such as acrylonitrile styrene copolymer (AS); acrylic resin; polyester resin (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, poly 1,4-cyclohexyldimethylene terephthalate, etc.); nylon resin and nylon copolymer Polyamide resin selected from: Polyvinyl chloride resin; Polyoxymethylene resin; Polycarbonate resin; Polyphenylene sulfide resin; Modified polypheny Polyether resin; Polysulfone resin; Polyethersulfone resin; Polyketone resin; Polyethernitrile resin; Polyetheretherketone resin; Polyether
- coating the composition for electrically conductive film formation on a resin base material is not restrict
- a well-known method is employable.
- coating methods such as a screen printing method, a dip coating method, a spray coating method, a spin coating method, and an ink jet method can be used.
- the shape of application is not particularly limited, and may be a planar shape covering the entire surface of the resin base material or a pattern shape (for example, a wiring shape or a dot shape). What is necessary is just to adjust suitably as an application quantity of the composition for electrically conductive film formation on the resin base material according to the film thickness of the electrically conductive film desired.
- the thickness of the coating film is preferably 0.01 to 5000 ⁇ m, more preferably 0.1 to 1000 ⁇ m, and further preferably 1 to 100 ⁇ m.
- the conductive film-forming composition may be applied to the resin substrate and then dried to remove the solvent. By removing the remaining solvent, it is possible to suppress the generation of minute cracks and voids due to the vaporization and expansion of the solvent in the conductive film forming step described later. It is preferable in terms of adhesion.
- a warm air dryer or the like can be used as a method for the drying treatment.
- the temperature for the drying treatment is preferably 40 ° C. to 200 ° C., more preferably 50 ° C. or more and less than 150 ° C., and further preferably 50 ° C. to 120 ° C.
- the drying time is not particularly limited, but it is preferably 10 seconds to 60 minutes because the adhesion between the resin substrate and the conductive film becomes better.
- This step is a step of performing a light irradiation treatment on the coating film formed in the coating film forming step to form a conductive film containing metallic copper.
- a light irradiation treatment By performing the light irradiation treatment, (A) cupric oxide nanoparticles are reduced and further fused to obtain metallic copper. More specifically, (A) cupric oxide nanoparticles are reduced to form metallic copper particles, the produced metallic copper particles are fused together to form grains, and the grains are bonded and fused together. Thus, a conductive thin film containing copper is formed.
- Light irradiation treatment enables reduction and sintering to metallic copper by irradiating light at a room temperature to a portion to which a coating film has been applied for a short time, and causes deterioration of the resin base material due to prolonged heating. Therefore, the adhesion of the conductive film to the resin base material becomes better.
- the light source used in the light irradiation treatment is not particularly limited, and examples thereof include a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a carbon arc lamp.
- Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays.
- g-line wavelength 436 nm
- i-line wavelength 365 nm
- deep ultraviolet light Deep-UV light
- high-density energy beam laser beam
- Specific examples of preferred embodiments include scanning exposure with an infrared laser, high-illuminance flash exposure such as a xenon discharge lamp, and infrared lamp exposure.
- the light irradiation is preferably light irradiation with a flash lamp, and more preferably pulsed light irradiation (eg, pulsed light irradiation with a xenon (Xe) flash lamp).
- Irradiation with high-energy pulsed light can concentrate and heat the surface of the portion to which the coating film has been applied in a very short time, so that the influence of heat on the resin substrate can be extremely reduced.
- the irradiation energy of the pulsed light is preferably 1 to 100 J / cm 2 and more preferably 1 to 30 J / cm 2 .
- the pulse width is preferably 1 ⁇ sec to 100 msec, and more preferably 10 ⁇ sec to 10 msec.
- the irradiation interval of the pulsed light is preferably 1 msec to 10 seconds, more preferably 1 second to 10 seconds, and further preferably 1 to 5 seconds.
- the atmosphere for performing the light irradiation treatment is not particularly limited, and examples thereof include an air atmosphere, an inert atmosphere, and a reducing atmosphere.
- the inert atmosphere refers to an atmosphere filled with an inert gas such as argon, helium, neon, or nitrogen.
- the reducing atmosphere refers to an atmosphere in which a reducing gas such as hydrogen or carbon monoxide exists.
- a conductive film (metal copper film) containing metal copper is obtained.
- the film thickness of the conductive film is not particularly limited, and an optimum film thickness is appropriately adjusted according to the intended use. Of these, 0.01 to 1000 ⁇ m is preferable and 0.1 to 100 ⁇ m is more preferable from the viewpoint of printed wiring board use.
- the film thickness is a value (average value) obtained by measuring three or more thicknesses at arbitrary points on the conductive film and arithmetically averaging the values.
- the volume resistivity of the conductive film is preferably less than 1000 ⁇ ⁇ cm, more preferably less than 300 ⁇ ⁇ cm, and even more preferably less than 100 ⁇ ⁇ cm from the viewpoint of conductive characteristics. The volume resistivity can be calculated by measuring the surface resistance value of the conductive film by the four-probe method and then multiplying the obtained surface resistance value by the film thickness.
- the conductive film may be provided, for example, on the entire surface of the resin base material or in a pattern.
- the patterned conductive film is useful as a conductor wiring (wiring) such as a printed wiring board.
- a method for obtaining a patterned conductive film for example, a method of applying the above-mentioned composition for forming a conductive film to a resin base material in a pattern and performing the light irradiation treatment, or a conductive material provided on the entire surface of the resin base material.
- a method of etching the film into a pattern may be used.
- the etching method is not particularly limited, and for example, a known subtractive method or semi-additive method can be employed.
- an insulating layer (insulating resin layer, interlayer insulating film, solder resist) is further laminated on the surface of the patterned conductive film, and further wiring (metal) is formed on the surface. Pattern) may be formed.
- the material of the insulating film is not particularly limited.
- epoxy resin glass epoxy resin, aramid resin, crystalline polyolefin resin, amorphous polyolefin resin, fluorine-containing resin (polytetrafluoroethylene, perfluorinated polyimide, perfluorinated) Amorphous resin), polyimide resin, polyether sulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, liquid crystal resin, and the like.
- an epoxy resin, a polyimide resin, or a liquid crystal resin and more preferably an epoxy resin. Specific examples include ABF GX-13 manufactured by Ajinomoto Fine Techno Co., Ltd.
- solder resist which is a kind of insulating layer material used for wiring protection, is described in detail in, for example, Japanese Patent Application Laid-Open No. 10-204150 and Japanese Patent Application Laid-Open No. 2003-222993. These materials can also be applied to the present invention if desired.
- solder resist commercially available products may be used. Specific examples include PFR800 manufactured by Taiyo Ink Manufacturing Co., Ltd., PSR4000 (trade name), SR7200G manufactured by Hitachi Chemical Co., Ltd., and the like.
- the resin base material (resin base material with a conductive film) having the conductive film obtained above can be used for various applications. Examples include printed wiring boards, TFTs (thin film transistors, Thin Film Transistors), FPCs (Flexible Printed Circuits, Flexible Printed Circuits), RFIDs (radio frequency identifiers), and the like.
- Example 1 Synthesis of cupric oxide nanoparticles 1
- a predetermined amount of copper nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in purified water to prepare a 0.1 mol / l aqueous copper nitrate solution in advance.
- 100 ml of ion exchange water was placed in a glass 200 ml flask and heated to 90 ° C. in an oil bath.
- the conductive film-forming composition 1 was diluted with ion-exchanged water so that the (A) cupric oxide nanoparticles were 0.01% by mass, and an ultraviolet-visible spectrophotometer (UV-2450, manufactured by Shimadzu Corporation)
- UV-2450 ultraviolet-visible spectrophotometer
- the absorbance ⁇ 1 at a wavelength of 400 nm and the absorbance ⁇ 2 at a wavelength of 600 nm of the composition obtained in the above were measured, and the ratio of ⁇ 1 / ⁇ 2 was determined to be 4.3.
- the particle size distribution of cupric oxide nanoparticles was measured using a diluted solution with a trade name Nanotrac particle size distribution analyzer UPA-EX150 (manufactured by Nikkiso Co., Ltd.).
- the ratio of particles having a particle size of 200 nm or more in the cumulative volume particle size distribution measured by the dynamic light scattering method of the cupric oxide nanoparticles in the composition for forming a conductive film is based on the whole cupric oxide nanoparticles.
- the ratio of particles having a particle diameter of more than 0 nm and less than 100 nm and the ratio of particles having a particle diameter of 100 nm to less than 200 nm were also measured in the same manner. The results are shown in Table 1.
- a conductive film forming composition 1 is coated with a bar so as to have a wet film thickness of 12 ⁇ m, and dried at 50 ° C. for 1 minute. A coating film was obtained. Thereafter, the obtained coating film was subjected to pulsed light irradiation treatment (Xenon's photosintering apparatus Sinteron 2000, irradiation energy: 5.5 J / cm 2 , light irradiation twice at intervals of 3 seconds) to obtain a conductive film. . Table 1 shows the thickness of the obtained conductive film.
- ⁇ Defect evaluation> The obtained conductive film was observed at a magnification of 450 times using an optical microscope, and the presence or absence of defects and the state of defects were evaluated based on the following criteria. Practically, it is preferably A to B. The results are shown in Table 1. "A”: The conductive film is formed on the entire surface, and there are almost no defects. “B”: There is a cracked and / or ablated portion in the conductive film. “C”: The entire surface of the conductive film is ablated and the conductive film cannot be formed.
- volume resistivity is less than 100 ⁇ ⁇ cm
- B Volume resistivity is 100 ⁇ ⁇ cm or more and less than 300 ⁇ ⁇ cm •
- C Volume resistivity is 300 ⁇ ⁇ cm or more and less than 1000 ⁇ ⁇ cm •
- D Volume resistivity is 1000 ⁇ ⁇ cm or more
- Example 1 A conductive film-forming composition and a conductive film were prepared and evaluated in the same manner as in Example 1 except that 2,3-butanediol was used in place of diethylene glycol.
- Example 2 ⁇ Example 2> Implemented except that 14.1 parts by mass of ethylene glycol is used in place of diethylene glycol, the total amount of the composition for forming a conductive film is 100 parts by mass, and the irradiation energy is changed to 5 J / cm 2.
- a composition for forming a conductive film and a conductive film were prepared and evaluated.
- Example 3 The amount of ethylene glycol was changed to 9.4 parts by mass, and 6 parts by mass of liquid A prepared by dissolving palladium acetate (0.12 parts by mass) in acetone (5.88 parts by mass) as a catalyst was added to form a conductive film.
- Conductive film forming composition in the same manner as in Example 2, except that the amount of ion-exchanged water was adjusted so that the total amount of the composition for use was 100 parts by mass, and the irradiation energy was changed to 4.5 J / cm 2 .
- a conductive film was prepared and evaluated.
- the metal catalyst (E) a mixture similar to the above liquid A was used.
- Examples 4 to 7, Comparative Example 2> (B) For the formation of a conductive film in the same manner as in Example 3, except that the polyol-based organic solvent was used so that the components listed in the following Table 1 were used in the proportions shown in the same table, and the irradiation energy was changed to the values in the following Table 1. A composition and a conductive film were prepared and evaluated. In addition, the value of the irradiation energy of Example 5 is the same as that of Example 3.
- Example 3 A conductive film-forming composition and a conductive film were obtained in the same manner as in Example 1 except that cupric oxide nanoparticles 2 (cupric oxide nanoparticles, manufactured by CI Kasei Co., Ltd.) having an average primary particle diameter of 48 nm were used. Was made.
- the particles are recovered by centrifugation (10000 G, 30 minutes), then redispersed in ion-exchanged water, and then subjected to ultrafiltration using ion-exchanged water to remove impurities, and concentrated to cupric oxide.
- a copper oxide paste having a particle concentration of 30% by mass was obtained.
- XRD analysis strong diffraction peaks derived from the (002) and (111) planes were observed near 35.5 ° and 38 °, respectively, and it was confirmed that the obtained particles were cupric oxide.
- the average primary particle diameter of the obtained cupric oxide nanoparticles 3 was 4 nm.
- composition for forming conductive film, preparation of conductive film The cupric oxide dispersion containing cupric oxide nanoparticles 3 (40 parts by mass) obtained as described above, (B) diethylene glycol (7.8 parts by mass), and 17.2 parts by mass of ion-exchanged water. (D) 1-butanol (3 parts by mass) and ethanol (32 parts by mass) were mixed and subjected to ultrasonic dispersion treatment to obtain a composition for forming a conductive film. A conductive film was prepared and evaluated in the same manner as in Example 1 using the conductive film-forming composition obtained as described above.
- cupric oxide nanoparticles 4 were obtained in the same manner as in Example 1 except that the amount of the copper nitrate aqueous solution and the sodium hydroxide aqueous solution added was quadrupled. The average primary particle diameter of cupric oxide nanoparticles 4 was 10 nm.
- composition for forming conductive film, preparation of conductive film A conductive film-forming composition and a conductive film were prepared and evaluated in the same manner as in Example 4 except that the cupric oxide dispersion containing cupric oxide nanoparticles 4 obtained as described above was used.
- Example 9 Example 8 except that ethylene glycol was used instead of diethylene glycol, the amount of ethylene glycol was set to the amount shown in Table 1, and the amount of ion-exchanged water was adjusted so that the total amount of the composition for forming a conductive film was 100 parts by mass. Similarly, a composition for forming a conductive film and a conductive film were prepared and evaluated.
- Examples 10 and 11> For the (B) polyol-based organic solvent and (C) polyoxyalkylene-based compound, the components shown in Table 1 below are used in the amounts shown in the same table, the thickness of the Wet film is 40 ⁇ m, the irradiation energy and the number of irradiations are shown in Table 1.
- Example 12 For the (B) polyol organic solvent and (C) polyoxyalkylene compound, the components shown in Table 1 below were used in the amounts shown in the same table, and the irradiation energy was changed to the values shown in Table 1. The composition for electrically conductive film formation and the electrically conductive film were produced similarly, and evaluated. In Example 12, the metal catalyst (E) was not used. The irradiation energy of Example 12 was the same as that of Example 8. The amount of diethylene glycol in Example 15 was the same as in Example 8.
- Example 16> A conductive film-forming composition and a conductive film were prepared and evaluated in the same manner as in Example 4 except that cupric oxide nanoparticles 5 having an average primary particle diameter of 28 nm prepared by a vapor phase method were used.
- Example 17> A conductive film-forming composition and a conductive film were prepared and evaluated in the same manner as in Example 12 except that ion-exchanged water was added instead of 1-butanol and ethanol.
- “Wt%” in Table 1 intends “mass%”.
- polyethylene glycol Mw 20000 intends polyethylene glycol having a weight average molecular weight of 20,000 (manufactured by Wako Pure Chemical Industries, Ltd.).
- (A) cupric oxide nanoparticles (net amount), (B) polyol organic solvent, (C) polyoxyalkylene compound, (E) metal The amount of the catalyst was shown as a concentration in the entire composition for forming a conductive film.
- Comparative Example 1 it was confirmed that when the boiling point of the polyol-based organic solvent was smaller than the predetermined range, the conductivity and the generation of defects were inferior. Moreover, as shown in Comparative Example 2, when the boiling point of the polyol organic solvent was larger than the predetermined range, it was confirmed that the conductivity was inferior. Moreover, when the boiling point of the polyol organic solvent was larger than the predetermined range, ⁇ 1 / ⁇ 2 was smaller than the predetermined range. From this, it is presumed that the dispersibility of cupric oxide nanoparticles is lowered when the boiling point of the polyol-based organic solvent is too high. Further, as shown in Comparative Examples 3 and 4, when ⁇ 1 / ⁇ 2 was outside the predetermined range, it was confirmed that the conductivity and the generation of defects were inferior.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Metallurgy (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Conductive Materials (AREA)
- Paints Or Removers (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
The purpose of the present invention is to provide: a composition for electrically conductive film formation use, from which an electrically conductive film that does not undergo the occurrence of defects and has excellent electrical conductivity can be formed; and a method for producing an electrically conductive film using the composition for electrically conductive film formation use. The present invention relates to: a composition for electrically conductive film formation use, which contains at least copper (II) oxide nanoparticles and a polyol-type organic solvent having a boiling point of 190 to 340ºC, wherein the ratio of an absorbance of the composition as measured at a wavelength of 400 nm with a spectrophotometer to an absorbance of the composition as measured at a wavelength of 600 nm with the spectrophotometer meets the requirement expressed by formula 1 shown below; and a method for producing an electrically conductive film using the composition for electrically conductive film formation use.
Formula 1: 5 > α1/α2 > 3
In formula 1, α1 represents an absorbance of the composition as measured at a wavelength of 400 nm and α2 represents an absorbance of the composition as measured at a wavelength of 600 nm.
Description
本発明は、導電膜形成用組成物およびこれを用いる導電膜の製造方法に関する。
The present invention relates to a composition for forming a conductive film and a method for producing a conductive film using the same.
基材上に金属膜を形成する方法として、金属粒子または金属酸化物粒子の分散体を印刷法により基材に塗布し、加熱処理または光照射処理して焼結させることによって金属膜や回路基板における配線等の電気的導通部位を形成する技術が知られている。
上記方法は、従来の高熱・真空プロセス(スパッタ)やめっき処理による配線作製法に比べて、簡便・省エネ・省資源であることから次世代エレクトロニクス開発において大きな期待を集めている。 As a method of forming a metal film on a base material, a metal film or a circuit board is obtained by applying a dispersion of metal particles or metal oxide particles to the base material by a printing method and then sintering by heat treatment or light irradiation treatment. A technique for forming an electrically conductive portion such as a wiring in is known.
Since the above method is simpler, energy-saving, and resource-saving than conventional high-heat / vacuum processes (sputtering) and plating processes, it is highly anticipated in the development of next-generation electronics.
上記方法は、従来の高熱・真空プロセス(スパッタ)やめっき処理による配線作製法に比べて、簡便・省エネ・省資源であることから次世代エレクトロニクス開発において大きな期待を集めている。 As a method of forming a metal film on a base material, a metal film or a circuit board is obtained by applying a dispersion of metal particles or metal oxide particles to the base material by a printing method and then sintering by heat treatment or light irradiation treatment. A technique for forming an electrically conductive portion such as a wiring in is known.
Since the above method is simpler, energy-saving, and resource-saving than conventional high-heat / vacuum processes (sputtering) and plating processes, it is highly anticipated in the development of next-generation electronics.
例えば、特許文献1では、導電性金属粒子成分を真空下または不活性雰囲気下で焼成して導体層を形成し、メタライズされたセラミックス基板を製造する方法が開示されている。なお、特許文献1においては、導電性金属粒子として、酸化第二銅ナノ粒子(シーアイ化成株式会社製、平均粒径48nm)が具体的に使用されている。
For example, Patent Document 1 discloses a method of manufacturing a metallized ceramic substrate by firing a conductive metal particle component in a vacuum or in an inert atmosphere to form a conductor layer. In Patent Document 1, cupric oxide nanoparticles (manufactured by CI Kasei Co., Ltd., average particle size 48 nm) are specifically used as the conductive metal particles.
一方、近年、電子機器の小型化、高機能化の要求に対応するため、プリント配線板などにおいては配線のより一層の微細化および高集積化が進んでいる。それに伴って、金属配線の導電特性のより一層の向上が要求されている。
また、生産性の観点からは、光照射により導電膜を製造する方法が望まれている。
本発明者らが、特許文献1に記載される金属酸化物(酸化第二銅ナノ粒子(シーアイ化成株式会社製、平均粒径48nm))を含む組成物を用いて光照射により導電膜の作製を試みたところ、得られた導電膜の導電性は昨今求められるレベルまで達しておらず、更なる改良が必要であった。
また、このような組成物を樹脂基材上に塗布して塗膜を形成し、塗膜に対して光照射処理を行うと、樹脂基材から発生するガスや、組成物のアブレーション等が原因で導電膜にクラックなどの欠陥が生じやすいという問題もあった。 On the other hand, in recent years, in order to meet the demand for miniaturization and high functionality of electronic devices, wirings are further miniaturized and highly integrated. Along with this, there is a demand for further improvement in the conductive characteristics of metal wiring.
From the viewpoint of productivity, a method for producing a conductive film by light irradiation is desired.
The present inventors prepared a conductive film by light irradiation using a composition containing a metal oxide (cupric oxide nanoparticles (manufactured by C-I Kasei Co., Ltd., average particle size 48 nm)) described in Patent Document 1. As a result, the conductivity of the obtained conductive film did not reach the level required recently, and further improvement was required.
In addition, when such a composition is applied onto a resin substrate to form a coating film, and light irradiation treatment is performed on the coating film, gas generated from the resin substrate, ablation of the composition, etc. There was also a problem that defects such as cracks were likely to occur in the conductive film.
また、生産性の観点からは、光照射により導電膜を製造する方法が望まれている。
本発明者らが、特許文献1に記載される金属酸化物(酸化第二銅ナノ粒子(シーアイ化成株式会社製、平均粒径48nm))を含む組成物を用いて光照射により導電膜の作製を試みたところ、得られた導電膜の導電性は昨今求められるレベルまで達しておらず、更なる改良が必要であった。
また、このような組成物を樹脂基材上に塗布して塗膜を形成し、塗膜に対して光照射処理を行うと、樹脂基材から発生するガスや、組成物のアブレーション等が原因で導電膜にクラックなどの欠陥が生じやすいという問題もあった。 On the other hand, in recent years, in order to meet the demand for miniaturization and high functionality of electronic devices, wirings are further miniaturized and highly integrated. Along with this, there is a demand for further improvement in the conductive characteristics of metal wiring.
From the viewpoint of productivity, a method for producing a conductive film by light irradiation is desired.
The present inventors prepared a conductive film by light irradiation using a composition containing a metal oxide (cupric oxide nanoparticles (manufactured by C-I Kasei Co., Ltd., average particle size 48 nm)) described in Patent Document 1. As a result, the conductivity of the obtained conductive film did not reach the level required recently, and further improvement was required.
In addition, when such a composition is applied onto a resin substrate to form a coating film, and light irradiation treatment is performed on the coating film, gas generated from the resin substrate, ablation of the composition, etc. There was also a problem that defects such as cracks were likely to occur in the conductive film.
本発明は、上記実情に鑑みて、欠陥の発生を抑制し、優れた導電性を示す導電膜を形成することができる導電膜形成用組成物を提供することを目的とする。
また、本発明は、この導電膜形成用組成物を用いた導電膜の製造方法を提供することも目的とする。 An object of this invention is to provide the composition for electrically conductive film formation which suppresses generation | occurrence | production of a defect and can form the electrically conductive film which shows the outstanding electroconductivity in view of the said situation.
Another object of the present invention is to provide a method for producing a conductive film using the composition for forming a conductive film.
また、本発明は、この導電膜形成用組成物を用いた導電膜の製造方法を提供することも目的とする。 An object of this invention is to provide the composition for electrically conductive film formation which suppresses generation | occurrence | production of a defect and can form the electrically conductive film which shows the outstanding electroconductivity in view of the said situation.
Another object of the present invention is to provide a method for producing a conductive film using the composition for forming a conductive film.
本発明者らは、上記課題を解決すべく鋭意研究した結果、酸化第二銅ナノ粒子と所定の範囲の沸点を有するポリオール系有機溶媒とを含有し、分光光度計によって測定された特定波長における吸光度の比が所定の範囲である組成物を使用することにより、上記課題を解決できることを見出した。
すなわち、以下の構成により上記目的を達成することができることを見出した。 As a result of earnest research to solve the above problems, the present inventors contain cupric oxide nanoparticles and a polyol-based organic solvent having a boiling point in a predetermined range, and at a specific wavelength measured by a spectrophotometer. It has been found that the above problem can be solved by using a composition having an absorbance ratio in a predetermined range.
That is, it has been found that the above object can be achieved by the following configuration.
すなわち、以下の構成により上記目的を達成することができることを見出した。 As a result of earnest research to solve the above problems, the present inventors contain cupric oxide nanoparticles and a polyol-based organic solvent having a boiling point in a predetermined range, and at a specific wavelength measured by a spectrophotometer. It has been found that the above problem can be solved by using a composition having an absorbance ratio in a predetermined range.
That is, it has been found that the above object can be achieved by the following configuration.
[1] 酸化第二銅ナノ粒子と、
沸点190~340℃であるポリオール系有機溶媒とを少なくとも含有する、導電膜形成用組成物であって、
分光光度計により測定された波長400nmおよび波長600nmにおける吸光度の比が以下の式1を満たす、導電膜形成用組成物。
式1 5>α1/α2>3
式1中、α1は波長400nmにおける組成物の吸光度を表し、α2は波長600nmにおける組成物の吸光度を表す。
[2] 酸化第二銅ナノ粒子の平均1次粒子径が2~25nmである、[1]に記載の導電膜形成用組成物。
[3] さらに、重量平均分子量1,000以上のポリオキシアルキレン系化合物を含有する、[1]または[2]に記載の導電膜形成用組成物。
[4] ポリオキシアルキレン系化合物がポリエチレングリコールである、[3]に記載の導電膜形成用組成物。
[5] 酸化第二銅ナノ粒子の、動的光散乱法により測定される累積体積粒度分布における粒子径200nm以上の粒子の割合が、酸化第二銅ナノ粒子全体の15%以下である、[1]~[4]のいずれか1つに記載の導電膜形成用組成物。
[6] さらに、表面張力が40mN/m以下で沸点50~180℃である、アルコール系有機溶媒またはケトン系有機溶媒を含有し、
アルコール系有機溶媒またはケトン系有機溶媒の含有量が、組成物全質量に対して、1~50質量%である、[1]~[5]のいずれか1つに記載の導電膜形成用組成物。
[7] 酸化第二銅ナノ粒子とポリオール系有機溶媒との質量比が、1:0.005~1:2である、[1]~[6]のいずれか1つに記載の導電膜形成用組成物。
[8] 酸化第二銅ナノ粒子とポリオキシアルキレン系化合物との質量比が、1:0.01~1:0.5である、[3]~[7]のいずれか1つに記載の導電膜形成用組成物。
[9] ポリオール系有機溶媒がジオールまたはトリオールである、[1]~[8]のいずれか1つに記載の導電膜形成用組成物。
[10] ポリオール系有機溶媒が、エチレングリコール、ジエチレングリコール、トリエチレングリコール、トリメチロールプロパン及びグリセリンからなる群から選ばれる少なくとも1種である、[1]~[9]のいずれか1つに記載の導電膜形成用組成物。
[11] さらに、金属触媒を含有し、
酸化第二銅ナノ粒子と金属触媒との質量比が、1:0.001~1:0.1である、[1]~[10]のいずれか1つに記載の導電膜形成用組成物。
[12] α1/α2が、4より大きく5未満である、[1]~[11]のいずれか1つに記載の導電膜形成用組成物。
[13] 酸化第二銅ナノ粒子が湿式法で製造されたものであり、かつ、酸化第二銅ナノ粒子の平均1次粒子径が2~25nmである、[1]~[12]のいずれか1つに記載の導電膜形成用組成物。
[14] [1]~[13]のいずれか1つに記載の導電膜形成用組成物を樹脂基材上に塗布し、塗膜を形成する工程と、
塗膜に対して光照射処理を行い、酸化第二銅ナノ粒子を還元して金属銅を含有する導電膜を形成する工程とを備える、導電膜の製造方法。 [1] Cupric oxide nanoparticles,
A composition for forming a conductive film, comprising at least a polyol organic solvent having a boiling point of 190 to 340 ° C.,
The composition for electrically conductive film formation in which the ratio of the light absorbency in wavelength 400nm and wavelength 600nm measured with the spectrophotometer satisfy | fills the following formula | equation 1.
Formula 1 5> α1 / α2> 3
In Formula 1, α1 represents the absorbance of the composition at a wavelength of 400 nm, and α2 represents the absorbance of the composition at a wavelength of 600 nm.
[2] The composition for forming a conductive film according to [1], wherein the average primary particle diameter of the cupric oxide nanoparticles is 2 to 25 nm.
[3] The composition for forming a conductive film according to [1] or [2], further comprising a polyoxyalkylene compound having a weight average molecular weight of 1,000 or more.
[4] The composition for forming a conductive film according to [3], wherein the polyoxyalkylene compound is polyethylene glycol.
[5] The ratio of particles having a particle size of 200 nm or more in the cumulative volume particle size distribution of cupric oxide nanoparticles measured by a dynamic light scattering method is 15% or less of the whole cupric oxide nanoparticles. The composition for forming a conductive film according to any one of [1] to [4].
[6] Further, an alcohol organic solvent or a ketone organic solvent having a surface tension of 40 mN / m or less and a boiling point of 50 to 180 ° C. is contained,
The composition for forming a conductive film according to any one of [1] to [5], wherein the content of the alcohol organic solvent or the ketone organic solvent is 1 to 50% by mass relative to the total mass of the composition object.
[7] The conductive film formation according to any one of [1] to [6], wherein the mass ratio of the cupric oxide nanoparticles to the polyol-based organic solvent is 1: 0.005 to 1: 2. Composition.
[8] The mass ratio between cupric oxide nanoparticles and the polyoxyalkylene compound is 1: 0.01 to 1: 0.5, according to any one of [3] to [7] A composition for forming a conductive film.
[9] The composition for forming a conductive film according to any one of [1] to [8], wherein the polyol organic solvent is a diol or a triol.
[10] The organic solvent according to any one of [1] to [9], wherein the polyol organic solvent is at least one selected from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, trimethylolpropane, and glycerin. A composition for forming a conductive film.
[11] Further, a metal catalyst is contained,
The composition for forming a conductive film according to any one of [1] to [10], wherein the mass ratio of the cupric oxide nanoparticles to the metal catalyst is 1: 0.001 to 1: 0.1. .
[12] The composition for forming a conductive film according to any one of [1] to [11], wherein α1 / α2 is greater than 4 and less than 5.
[13] Any of [1] to [12], wherein cupric oxide nanoparticles are produced by a wet method, and the average primary particle diameter of cupric oxide nanoparticles is 2 to 25 nm. The composition for electrically conductive film formation as described in any one.
[14] A step of applying the composition for forming a conductive film according to any one of [1] to [13] onto a resin substrate to form a coating film;
A process for producing a conductive film, comprising: subjecting a coating film to light irradiation treatment and forming a conductive film containing metal copper by reducing cupric oxide nanoparticles.
沸点190~340℃であるポリオール系有機溶媒とを少なくとも含有する、導電膜形成用組成物であって、
分光光度計により測定された波長400nmおよび波長600nmにおける吸光度の比が以下の式1を満たす、導電膜形成用組成物。
式1 5>α1/α2>3
式1中、α1は波長400nmにおける組成物の吸光度を表し、α2は波長600nmにおける組成物の吸光度を表す。
[2] 酸化第二銅ナノ粒子の平均1次粒子径が2~25nmである、[1]に記載の導電膜形成用組成物。
[3] さらに、重量平均分子量1,000以上のポリオキシアルキレン系化合物を含有する、[1]または[2]に記載の導電膜形成用組成物。
[4] ポリオキシアルキレン系化合物がポリエチレングリコールである、[3]に記載の導電膜形成用組成物。
[5] 酸化第二銅ナノ粒子の、動的光散乱法により測定される累積体積粒度分布における粒子径200nm以上の粒子の割合が、酸化第二銅ナノ粒子全体の15%以下である、[1]~[4]のいずれか1つに記載の導電膜形成用組成物。
[6] さらに、表面張力が40mN/m以下で沸点50~180℃である、アルコール系有機溶媒またはケトン系有機溶媒を含有し、
アルコール系有機溶媒またはケトン系有機溶媒の含有量が、組成物全質量に対して、1~50質量%である、[1]~[5]のいずれか1つに記載の導電膜形成用組成物。
[7] 酸化第二銅ナノ粒子とポリオール系有機溶媒との質量比が、1:0.005~1:2である、[1]~[6]のいずれか1つに記載の導電膜形成用組成物。
[8] 酸化第二銅ナノ粒子とポリオキシアルキレン系化合物との質量比が、1:0.01~1:0.5である、[3]~[7]のいずれか1つに記載の導電膜形成用組成物。
[9] ポリオール系有機溶媒がジオールまたはトリオールである、[1]~[8]のいずれか1つに記載の導電膜形成用組成物。
[10] ポリオール系有機溶媒が、エチレングリコール、ジエチレングリコール、トリエチレングリコール、トリメチロールプロパン及びグリセリンからなる群から選ばれる少なくとも1種である、[1]~[9]のいずれか1つに記載の導電膜形成用組成物。
[11] さらに、金属触媒を含有し、
酸化第二銅ナノ粒子と金属触媒との質量比が、1:0.001~1:0.1である、[1]~[10]のいずれか1つに記載の導電膜形成用組成物。
[12] α1/α2が、4より大きく5未満である、[1]~[11]のいずれか1つに記載の導電膜形成用組成物。
[13] 酸化第二銅ナノ粒子が湿式法で製造されたものであり、かつ、酸化第二銅ナノ粒子の平均1次粒子径が2~25nmである、[1]~[12]のいずれか1つに記載の導電膜形成用組成物。
[14] [1]~[13]のいずれか1つに記載の導電膜形成用組成物を樹脂基材上に塗布し、塗膜を形成する工程と、
塗膜に対して光照射処理を行い、酸化第二銅ナノ粒子を還元して金属銅を含有する導電膜を形成する工程とを備える、導電膜の製造方法。 [1] Cupric oxide nanoparticles,
A composition for forming a conductive film, comprising at least a polyol organic solvent having a boiling point of 190 to 340 ° C.,
The composition for electrically conductive film formation in which the ratio of the light absorbency in wavelength 400nm and wavelength 600nm measured with the spectrophotometer satisfy | fills the following formula | equation 1.
Formula 1 5> α1 / α2> 3
In Formula 1, α1 represents the absorbance of the composition at a wavelength of 400 nm, and α2 represents the absorbance of the composition at a wavelength of 600 nm.
[2] The composition for forming a conductive film according to [1], wherein the average primary particle diameter of the cupric oxide nanoparticles is 2 to 25 nm.
[3] The composition for forming a conductive film according to [1] or [2], further comprising a polyoxyalkylene compound having a weight average molecular weight of 1,000 or more.
[4] The composition for forming a conductive film according to [3], wherein the polyoxyalkylene compound is polyethylene glycol.
[5] The ratio of particles having a particle size of 200 nm or more in the cumulative volume particle size distribution of cupric oxide nanoparticles measured by a dynamic light scattering method is 15% or less of the whole cupric oxide nanoparticles. The composition for forming a conductive film according to any one of [1] to [4].
[6] Further, an alcohol organic solvent or a ketone organic solvent having a surface tension of 40 mN / m or less and a boiling point of 50 to 180 ° C. is contained,
The composition for forming a conductive film according to any one of [1] to [5], wherein the content of the alcohol organic solvent or the ketone organic solvent is 1 to 50% by mass relative to the total mass of the composition object.
[7] The conductive film formation according to any one of [1] to [6], wherein the mass ratio of the cupric oxide nanoparticles to the polyol-based organic solvent is 1: 0.005 to 1: 2. Composition.
[8] The mass ratio between cupric oxide nanoparticles and the polyoxyalkylene compound is 1: 0.01 to 1: 0.5, according to any one of [3] to [7] A composition for forming a conductive film.
[9] The composition for forming a conductive film according to any one of [1] to [8], wherein the polyol organic solvent is a diol or a triol.
[10] The organic solvent according to any one of [1] to [9], wherein the polyol organic solvent is at least one selected from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, trimethylolpropane, and glycerin. A composition for forming a conductive film.
[11] Further, a metal catalyst is contained,
The composition for forming a conductive film according to any one of [1] to [10], wherein the mass ratio of the cupric oxide nanoparticles to the metal catalyst is 1: 0.001 to 1: 0.1. .
[12] The composition for forming a conductive film according to any one of [1] to [11], wherein α1 / α2 is greater than 4 and less than 5.
[13] Any of [1] to [12], wherein cupric oxide nanoparticles are produced by a wet method, and the average primary particle diameter of cupric oxide nanoparticles is 2 to 25 nm. The composition for electrically conductive film formation as described in any one.
[14] A step of applying the composition for forming a conductive film according to any one of [1] to [13] onto a resin substrate to form a coating film;
A process for producing a conductive film, comprising: subjecting a coating film to light irradiation treatment and forming a conductive film containing metal copper by reducing cupric oxide nanoparticles.
本発明によれば、欠陥の発生を抑制し、優れた導電性を示す導電膜を形成することができる導電膜形成用組成物を提供することができる。
また、本発明によれば、この導電膜形成用組成物を用いた導電膜の製造方法を提供することもできる。 ADVANTAGE OF THE INVENTION According to this invention, the composition for electrically conductive film formation which can suppress generation | occurrence | production of a defect and can form the electrically conductive film which shows the outstanding electroconductivity can be provided.
Moreover, according to this invention, the manufacturing method of the electrically conductive film using this composition for electrically conductive film formation can also be provided.
また、本発明によれば、この導電膜形成用組成物を用いた導電膜の製造方法を提供することもできる。 ADVANTAGE OF THE INVENTION According to this invention, the composition for electrically conductive film formation which can suppress generation | occurrence | production of a defect and can form the electrically conductive film which shows the outstanding electroconductivity can be provided.
Moreover, according to this invention, the manufacturing method of the electrically conductive film using this composition for electrically conductive film formation can also be provided.
以下に、本発明の導電膜形成用組成物および導電膜の製造方法の好適態様について詳述する。
なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
また、本明細書において、成分が2種以上の化合物を含む場合、上記成分の含有量とは、2種以上の化合物の合計の含有量を指す。 Below, the suitable aspect of the manufacturing method of the composition for electrically conductive film formation of this invention and an electrically conductive film is explained in full detail.
In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
Moreover, in this specification, when a component contains 2 or more types of compounds, content of the said component refers to content of the sum total of 2 or more types of compounds.
なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
また、本明細書において、成分が2種以上の化合物を含む場合、上記成分の含有量とは、2種以上の化合物の合計の含有量を指す。 Below, the suitable aspect of the manufacturing method of the composition for electrically conductive film formation of this invention and an electrically conductive film is explained in full detail.
In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
Moreover, in this specification, when a component contains 2 or more types of compounds, content of the said component refers to content of the sum total of 2 or more types of compounds.
[導電膜形成用組成物]
まず、本発明の導電膜形成用組成物について説明する。
本発明の導電膜形成用組成物は、
(A)酸化第二銅ナノ粒子と、
(B)沸点190~340℃であるポリオール系有機溶媒とを少なくとも含有する、導電膜形成用組成物であって、
分光光度計により測定された波長400nmおよび波長600nmにおける吸光度の比が以下の式1を満たす、導電膜形成用組成物である。
式1 5>α1/α2>3
式1中、α1は波長400nmにおける組成物の吸光度を表し、α2は波長600nmにおける組成物の吸光度を表す。 [Composition for forming conductive film]
First, the composition for forming a conductive film of the present invention will be described.
The composition for forming a conductive film of the present invention comprises:
(A) cupric oxide nanoparticles,
(B) a conductive film forming composition containing at least a polyol organic solvent having a boiling point of 190 to 340 ° C.,
It is a composition for electrically conductive film formation in which the ratio of the light absorbency in wavelength 400nm and wavelength 600nm measured with the spectrophotometer satisfy | fills the following formula | equation 1.
Formula 1 5> α1 / α2> 3
In Formula 1, α1 represents the absorbance of the composition at a wavelength of 400 nm, and α2 represents the absorbance of the composition at a wavelength of 600 nm.
まず、本発明の導電膜形成用組成物について説明する。
本発明の導電膜形成用組成物は、
(A)酸化第二銅ナノ粒子と、
(B)沸点190~340℃であるポリオール系有機溶媒とを少なくとも含有する、導電膜形成用組成物であって、
分光光度計により測定された波長400nmおよび波長600nmにおける吸光度の比が以下の式1を満たす、導電膜形成用組成物である。
式1 5>α1/α2>3
式1中、α1は波長400nmにおける組成物の吸光度を表し、α2は波長600nmにおける組成物の吸光度を表す。 [Composition for forming conductive film]
First, the composition for forming a conductive film of the present invention will be described.
The composition for forming a conductive film of the present invention comprises:
(A) cupric oxide nanoparticles,
(B) a conductive film forming composition containing at least a polyol organic solvent having a boiling point of 190 to 340 ° C.,
It is a composition for electrically conductive film formation in which the ratio of the light absorbency in wavelength 400nm and wavelength 600nm measured with the spectrophotometer satisfy | fills the following formula | equation 1.
Formula 1 5> α1 / α2> 3
In Formula 1, α1 represents the absorbance of the composition at a wavelength of 400 nm, and α2 represents the absorbance of the composition at a wavelength of 600 nm.
本発明の導電膜形成用組成物は、特定の範囲のα1/α2を有することによって、欠陥の発生を抑制し、優れた導電性を示す導電膜を形成することができると考えられる。
本発明において、α1/α2は、導電膜形成用組成物中における(A)酸化第二銅ナノ粒子の分散性に関連していると推測される。α1/α2が上記の範囲である場合、(A)酸化第二銅ナノ粒子の1次粒径が小さく、かつ導電膜形成用組成物中における分散性に優れるので、(A)酸化第二銅ナノ粒子の表面積が大きくなるとともに(A)酸化第二銅ナノ粒子の表面に反応点が露出し、反応点と還元剤との反応確率が高くなると推測される。また、粒子同士の融着が促進されることによって緻密な導電体となることによって、導電性が高くなると考えられる。
また、一般的に、導電膜を形成する際に樹脂基材にかかる温度が高いと樹脂基材からガスが発生し、そのガスによって導電膜にクラックが発生する場合がある。本発明において、(A)酸化第二銅ナノ粒子の表面積が大きくなると、(A)酸化第二銅ナノ粒子と還元剤との反応が低温短時間に起こることができ、導電膜を形成する際に樹脂基材にかかる熱を少なくすることができる。よって、樹脂基材からのガスの発生や樹脂基材の融解、変形が抑えられ、導電膜のクラックの発生を抑制することができ、その結果導電性に優れると考えられる。 It is thought that the composition for forming a conductive film of the present invention can form a conductive film exhibiting excellent conductivity by suppressing the occurrence of defects by having α1 / α2 in a specific range.
In the present invention, α1 / α2 is presumed to be related to the dispersibility of (A) cupric oxide nanoparticles in the conductive film forming composition. When α1 / α2 is within the above range, (A) cupric oxide nanoparticles have a small primary particle size and are excellent in dispersibility in the conductive film forming composition. It is presumed that, as the surface area of the nanoparticles increases, the reaction points are exposed on the surface of the (A) cupric oxide nanoparticles, and the reaction probability between the reaction points and the reducing agent increases. Further, it is considered that the conductivity is increased by forming a dense conductor by promoting the fusion of particles.
In general, when the temperature applied to the resin substrate is high when forming the conductive film, gas is generated from the resin substrate, and the gas may cause cracks in the conductive film. In the present invention, when the surface area of the (A) cupric oxide nanoparticles is increased, the reaction between the (A) cupric oxide nanoparticles and the reducing agent can occur in a short time at a low temperature. In addition, the heat applied to the resin base material can be reduced. Therefore, generation | occurrence | production of the gas from a resin base material, melting | fusing and a deformation | transformation of a resin base material can be suppressed, and generation | occurrence | production of the crack of an electrically conductive film can be suppressed, As a result, it is thought that it is excellent in electroconductivity.
本発明において、α1/α2は、導電膜形成用組成物中における(A)酸化第二銅ナノ粒子の分散性に関連していると推測される。α1/α2が上記の範囲である場合、(A)酸化第二銅ナノ粒子の1次粒径が小さく、かつ導電膜形成用組成物中における分散性に優れるので、(A)酸化第二銅ナノ粒子の表面積が大きくなるとともに(A)酸化第二銅ナノ粒子の表面に反応点が露出し、反応点と還元剤との反応確率が高くなると推測される。また、粒子同士の融着が促進されることによって緻密な導電体となることによって、導電性が高くなると考えられる。
また、一般的に、導電膜を形成する際に樹脂基材にかかる温度が高いと樹脂基材からガスが発生し、そのガスによって導電膜にクラックが発生する場合がある。本発明において、(A)酸化第二銅ナノ粒子の表面積が大きくなると、(A)酸化第二銅ナノ粒子と還元剤との反応が低温短時間に起こることができ、導電膜を形成する際に樹脂基材にかかる熱を少なくすることができる。よって、樹脂基材からのガスの発生や樹脂基材の融解、変形が抑えられ、導電膜のクラックの発生を抑制することができ、その結果導電性に優れると考えられる。 It is thought that the composition for forming a conductive film of the present invention can form a conductive film exhibiting excellent conductivity by suppressing the occurrence of defects by having α1 / α2 in a specific range.
In the present invention, α1 / α2 is presumed to be related to the dispersibility of (A) cupric oxide nanoparticles in the conductive film forming composition. When α1 / α2 is within the above range, (A) cupric oxide nanoparticles have a small primary particle size and are excellent in dispersibility in the conductive film forming composition. It is presumed that, as the surface area of the nanoparticles increases, the reaction points are exposed on the surface of the (A) cupric oxide nanoparticles, and the reaction probability between the reaction points and the reducing agent increases. Further, it is considered that the conductivity is increased by forming a dense conductor by promoting the fusion of particles.
In general, when the temperature applied to the resin substrate is high when forming the conductive film, gas is generated from the resin substrate, and the gas may cause cracks in the conductive film. In the present invention, when the surface area of the (A) cupric oxide nanoparticles is increased, the reaction between the (A) cupric oxide nanoparticles and the reducing agent can occur in a short time at a low temperature. In addition, the heat applied to the resin base material can be reduced. Therefore, generation | occurrence | production of the gas from a resin base material, melting | fusing and a deformation | transformation of a resin base material can be suppressed, and generation | occurrence | production of the crack of an electrically conductive film can be suppressed, As a result, it is thought that it is excellent in electroconductivity.
<(A)酸化第二銅ナノ粒子>
導電膜形成用組成物には、(A)酸化第二銅ナノ粒子が含有される。(A)酸化第二銅ナノ粒子は、後述する光照射処理によって還元され、導電膜中の金属銅を構成する。
本発明における「酸化第二銅」とは、酸化されていない銅を実質的に含まない化合物であり、具体的には、X線回折による結晶解析において、酸化第二銅由来のピークが検出され、かつ金属由来のピークが検出されない化合物のことを指す。銅を実質的に含まないとは、限定的ではないが、銅の含有量が(A)酸化第二銅ナノ粒子に対して1質量%以下であることをいう。 <(A) Cupric oxide nanoparticles>
The composition for forming a conductive film contains (A) cupric oxide nanoparticles. (A) Cupric oxide nanoparticles are reduced by a light irradiation treatment described later and constitute metallic copper in the conductive film.
The “cupric oxide” in the present invention is a compound that does not substantially contain copper that has not been oxidized. Specifically, in crystal analysis by X-ray diffraction, a peak derived from cupric oxide is detected. And a compound in which no metal-derived peak is detected. Although not containing copper substantially, it means that content of copper is 1 mass% or less with respect to (A) cupric oxide nanoparticles.
導電膜形成用組成物には、(A)酸化第二銅ナノ粒子が含有される。(A)酸化第二銅ナノ粒子は、後述する光照射処理によって還元され、導電膜中の金属銅を構成する。
本発明における「酸化第二銅」とは、酸化されていない銅を実質的に含まない化合物であり、具体的には、X線回折による結晶解析において、酸化第二銅由来のピークが検出され、かつ金属由来のピークが検出されない化合物のことを指す。銅を実質的に含まないとは、限定的ではないが、銅の含有量が(A)酸化第二銅ナノ粒子に対して1質量%以下であることをいう。 <(A) Cupric oxide nanoparticles>
The composition for forming a conductive film contains (A) cupric oxide nanoparticles. (A) Cupric oxide nanoparticles are reduced by a light irradiation treatment described later and constitute metallic copper in the conductive film.
The “cupric oxide” in the present invention is a compound that does not substantially contain copper that has not been oxidized. Specifically, in crystal analysis by X-ray diffraction, a peak derived from cupric oxide is detected. And a compound in which no metal-derived peak is detected. Although not containing copper substantially, it means that content of copper is 1 mass% or less with respect to (A) cupric oxide nanoparticles.
導電膜形成用組成物中における(A)酸化第二銅ナノ粒子の、動的光散乱法により測定される累積体積粒度分布における粒子径200nm以上の粒子の割合は、形成される導電膜の導電性がより優れ、欠陥発生をより抑制できる点で、酸化第二銅ナノ粒子全体の15%以下であるのが好ましく、10%以下であるのがより好ましく、5%以下であるのが更に好ましい。下限は特に制限されないが、0%が挙げられる。
The ratio of particles having a particle diameter of 200 nm or more in the cumulative volume particle size distribution of the cupric oxide nanoparticles (A) in the conductive film forming composition measured by the dynamic light scattering method is the conductivity of the formed conductive film. It is preferably 15% or less of the whole cupric oxide nanoparticles, more preferably 10% or less, and even more preferably 5% or less from the viewpoint that the properties are more excellent and the occurrence of defects can be further suppressed. . Although a minimum in particular is not restrict | limited, 0% is mentioned.
さらに、(A)酸化第二銅ナノ粒子の、動的光散乱法により測定される累積体積粒度分布における粒子径0nmを超え100nm未満の粒子の割合は、形成される導電膜の導電性がより優れ、欠陥発生をより抑制できる点で、(A)酸化第二銅ナノ粒子全体の、50~100%であるのが好ましく、65~100%であるのがより好ましい。
Furthermore, (A) The ratio of the particles having a particle size of more than 0 nm and less than 100 nm in the cumulative volume particle size distribution measured by the dynamic light scattering method of cupric oxide nanoparticles is more conductive in the formed conductive film. From the standpoint of being excellent and capable of suppressing the occurrence of defects, it is preferably 50 to 100%, more preferably 65 to 100%, of the whole (A) cupric oxide nanoparticles.
本発明の導電膜形成用組成物中の(A)酸化第二銅ナノ粒子の50%粒子径(D50)は、形成される導電膜の導電性がより優れ、欠陥発生をより抑制できる点で、20~150nmであるのが好ましく、20~100nmであるのがより好ましい。50%粒子径は、動的光散乱法により測定される、酸化第二銅ナノ粒子の累積体積粒度分布において、小粒径側から相対粒子量を積算したときの積算量が50%となる点の粒径である。
The 50% particle size (D50) of the cupric oxide nanoparticles (A) in the composition for forming a conductive film of the present invention is more excellent in the conductivity of the formed conductive film and can further suppress the occurrence of defects. 20 to 150 nm is preferable, and 20 to 100 nm is more preferable. The 50% particle diameter is a cumulative volume particle size distribution of cupric oxide nanoparticles measured by a dynamic light scattering method. The cumulative amount when the relative particle amount is integrated from the small particle size side is 50%. The particle size.
本発明の導電膜形成用組成物中における(A)酸化第二銅ナノ粒子の粒子径、50%粒子径は、動的光散乱法により測定することができる。より具体的には、ナノトラック粒度分布測定装置UPA-EX150(日機装(株)製)を用いて測定する。
動的光散乱法の測定には、本発明の導電膜形成用組成物をそのまま又は水などで希釈して使用することができる。組成物中の酸化第二銅ナノ粒子の濃度が0.01~0.1質量%となる範囲で測定を実施することが好ましい。組成物中の酸化第二銅ナノ粒子の濃度が高すぎる場合は、水などによって希釈して、測定用のサンプルを作製してもよい。 The particle diameter and 50% particle diameter of (A) cupric oxide nanoparticles in the conductive film forming composition of the present invention can be measured by a dynamic light scattering method. More specifically, the measurement is performed using a nanotrack particle size distribution analyzer UPA-EX150 (manufactured by Nikkiso Co., Ltd.).
For the measurement of the dynamic light scattering method, the composition for forming a conductive film of the present invention can be used as it is or diluted with water or the like. It is preferable to carry out the measurement in a range where the concentration of cupric oxide nanoparticles in the composition is 0.01 to 0.1% by mass. When the concentration of cupric oxide nanoparticles in the composition is too high, the sample for measurement may be prepared by diluting with water or the like.
動的光散乱法の測定には、本発明の導電膜形成用組成物をそのまま又は水などで希釈して使用することができる。組成物中の酸化第二銅ナノ粒子の濃度が0.01~0.1質量%となる範囲で測定を実施することが好ましい。組成物中の酸化第二銅ナノ粒子の濃度が高すぎる場合は、水などによって希釈して、測定用のサンプルを作製してもよい。 The particle diameter and 50% particle diameter of (A) cupric oxide nanoparticles in the conductive film forming composition of the present invention can be measured by a dynamic light scattering method. More specifically, the measurement is performed using a nanotrack particle size distribution analyzer UPA-EX150 (manufactured by Nikkiso Co., Ltd.).
For the measurement of the dynamic light scattering method, the composition for forming a conductive film of the present invention can be used as it is or diluted with water or the like. It is preferable to carry out the measurement in a range where the concentration of cupric oxide nanoparticles in the composition is 0.01 to 0.1% by mass. When the concentration of cupric oxide nanoparticles in the composition is too high, the sample for measurement may be prepared by diluting with water or the like.
なお、本発明の導電膜形成用組成物中における(A)酸化第二銅ナノ粒子の粒子径、50%粒子径の制御方法は特に制限されず、例えば、使用される(A)酸化第二銅ナノ粒子や分散剤の種類を制御する方法や、分散剤と(A)酸化第二銅ナノ粒子との混合条件(混合方法、混合手順)を制御する方法や、使用する分散機、分散時間を変更する方法や、(A)酸化第二銅ナノ粒子と溶媒(水)との混合割合を制御する方法など、公知の方法が選択される。
The method for controlling the particle diameter and 50% particle diameter of the (A) cupric oxide nanoparticles in the composition for forming a conductive film of the present invention is not particularly limited. Methods for controlling the type of copper nanoparticles and dispersant, methods for controlling the mixing conditions (mixing method, mixing procedure) of the dispersant and (A) cupric oxide nanoparticles, the disperser used, and the dispersion time A known method such as a method of changing (A) or a method of controlling the mixing ratio of cupric oxide nanoparticles and a solvent (water) is selected.
(A)酸化第二銅ナノ粒子の平均1次粒子径は、形成される導電膜の導電性がより優れ、欠陥発生をより抑制できる点で、2~40nmが好ましく、2~25nmがより好ましく、2~20nmがさらに好ましく、5~15nmが特に好ましい。
なお、平均1次粒子径は、透過型電子顕微鏡(TEM:Transmission Electron Microscopeの略称)観察または走査型電子顕微鏡(SEM:Scanning Electron Microscopeの略称)観察により、少なくとも400個以上の(A)酸化第二銅ナノ粒子の円相当径を測定し、それらを算術平均して求める。円相当径とは、観察される(A)酸化第二銅ナノ粒子の2次元形状と同じ面積に相当する円の直径を意味する。 (A) The average primary particle diameter of the cupric oxide nanoparticles is preferably 2 to 40 nm, more preferably 2 to 25 nm, from the viewpoint that the conductivity of the conductive film to be formed is more excellent and defects can be further suppressed. 2 to 20 nm is more preferable, and 5 to 15 nm is particularly preferable.
Note that the average primary particle diameter is at least 400 (A) oxidized by observation with a transmission electron microscope (abbreviation of TEM: Transmission Electron Microscope) or scanning electron microscope (abbreviation of Scanning Electron Microscope). Measure the equivalent circle diameters of the cuprous nanoparticles and calculate them by arithmetic averaging. The equivalent circle diameter means the diameter of a circle corresponding to the same area as the observed two-dimensional shape of the cupric oxide nanoparticles (A).
なお、平均1次粒子径は、透過型電子顕微鏡(TEM:Transmission Electron Microscopeの略称)観察または走査型電子顕微鏡(SEM:Scanning Electron Microscopeの略称)観察により、少なくとも400個以上の(A)酸化第二銅ナノ粒子の円相当径を測定し、それらを算術平均して求める。円相当径とは、観察される(A)酸化第二銅ナノ粒子の2次元形状と同じ面積に相当する円の直径を意味する。 (A) The average primary particle diameter of the cupric oxide nanoparticles is preferably 2 to 40 nm, more preferably 2 to 25 nm, from the viewpoint that the conductivity of the conductive film to be formed is more excellent and defects can be further suppressed. 2 to 20 nm is more preferable, and 5 to 15 nm is particularly preferable.
Note that the average primary particle diameter is at least 400 (A) oxidized by observation with a transmission electron microscope (abbreviation of TEM: Transmission Electron Microscope) or scanning electron microscope (abbreviation of Scanning Electron Microscope). Measure the equivalent circle diameters of the cuprous nanoparticles and calculate them by arithmetic averaging. The equivalent circle diameter means the diameter of a circle corresponding to the same area as the observed two-dimensional shape of the cupric oxide nanoparticles (A).
(A)酸化第二銅ナノ粒子の平均1次粒子径と50%粒子径は、形成される導電膜の導電性がより優れ、欠陥発生をより抑制できる点で、50%粒子径/平均1次粒子径の比が2~75であることが好ましく、2~50であることがより好ましく、2~20が最も好ましい。
(A) The average primary particle diameter and 50% particle diameter of cupric oxide nanoparticles are 50% particle diameter / average 1 in that the conductivity of the formed conductive film is more excellent and the generation of defects can be further suppressed. The ratio of the next particle diameter is preferably 2 to 75, more preferably 2 to 50, and most preferably 2 to 20.
なお、(A)酸化第二銅ナノ粒子は、市販品を使用しても、公知の製造方法で製造してもよい。
(A)酸化第二銅ナノ粒子の製造方法としては、例えば、気相中で造粒を行う方式(気相法)と、湿式で造粒を行う方式(湿式法)があるが、なかでも、(A)酸化第二銅ナノ粒子は湿式法で製造されたものであるのが好ましい。湿式法で造粒を行うことで、所望の粒子形状に制御することが可能となるからである。
(A)酸化第二銅ナノ粒子の合成には、例えば、特開2003-183024号公報等に記載されているように、硝酸銅等の2価の塩と塩基を反応させることで、水酸化銅を生成し、加熱脱水によって酸化銅を造粒する方法が好ましい。この方法によれば、より低温で、短時間で(A)酸化第二銅ナノ粒子を合成することが可能であり、所望の粒子形状/分布に制御することができる。
湿式法で造粒を行う場合、溶媒として、水、または、沸点が150~300℃の多価アルコールを用いることが好ましい。加熱脱水時に揮発せず、また、作製した酸化第二銅ナノ粒子の分散安定性に優れるので好ましい。 In addition, (A) Cupric oxide nanoparticles may use a commercial item, or may be manufactured with a well-known manufacturing method.
(A) As a manufacturing method of cupric oxide nanoparticles, for example, there are a method of performing granulation in a gas phase (gas phase method) and a method of performing granulation in a wet state (wet method). (A) The cupric oxide nanoparticles are preferably produced by a wet method. It is because it becomes possible to control to a desired particle shape by granulating by a wet method.
(A) For the synthesis of cupric oxide nanoparticles, for example, as described in JP-A No. 2003-183024, etc., a divalent salt such as copper nitrate is reacted with a base to produce hydroxylation. A method of producing copper and granulating copper oxide by heat dehydration is preferred. According to this method, it is possible to synthesize cupric oxide nanoparticles (A) at a lower temperature and in a shorter time, and the desired particle shape / distribution can be controlled.
When granulating by a wet method, it is preferable to use water or a polyhydric alcohol having a boiling point of 150 to 300 ° C. as a solvent. It is preferable because it does not volatilize during heating and dehydration and is excellent in dispersion stability of the prepared cupric oxide nanoparticles.
(A)酸化第二銅ナノ粒子の製造方法としては、例えば、気相中で造粒を行う方式(気相法)と、湿式で造粒を行う方式(湿式法)があるが、なかでも、(A)酸化第二銅ナノ粒子は湿式法で製造されたものであるのが好ましい。湿式法で造粒を行うことで、所望の粒子形状に制御することが可能となるからである。
(A)酸化第二銅ナノ粒子の合成には、例えば、特開2003-183024号公報等に記載されているように、硝酸銅等の2価の塩と塩基を反応させることで、水酸化銅を生成し、加熱脱水によって酸化銅を造粒する方法が好ましい。この方法によれば、より低温で、短時間で(A)酸化第二銅ナノ粒子を合成することが可能であり、所望の粒子形状/分布に制御することができる。
湿式法で造粒を行う場合、溶媒として、水、または、沸点が150~300℃の多価アルコールを用いることが好ましい。加熱脱水時に揮発せず、また、作製した酸化第二銅ナノ粒子の分散安定性に優れるので好ましい。 In addition, (A) Cupric oxide nanoparticles may use a commercial item, or may be manufactured with a well-known manufacturing method.
(A) As a manufacturing method of cupric oxide nanoparticles, for example, there are a method of performing granulation in a gas phase (gas phase method) and a method of performing granulation in a wet state (wet method). (A) The cupric oxide nanoparticles are preferably produced by a wet method. It is because it becomes possible to control to a desired particle shape by granulating by a wet method.
(A) For the synthesis of cupric oxide nanoparticles, for example, as described in JP-A No. 2003-183024, etc., a divalent salt such as copper nitrate is reacted with a base to produce hydroxylation. A method of producing copper and granulating copper oxide by heat dehydration is preferred. According to this method, it is possible to synthesize cupric oxide nanoparticles (A) at a lower temperature and in a shorter time, and the desired particle shape / distribution can be controlled.
When granulating by a wet method, it is preferable to use water or a polyhydric alcohol having a boiling point of 150 to 300 ° C. as a solvent. It is preferable because it does not volatilize during heating and dehydration and is excellent in dispersion stability of the prepared cupric oxide nanoparticles.
本発明の導電膜形成用組成物中における酸化第二銅ナノ粒子の含有量は特に制限されないが、所定の組成物を調製しやすく、形成される導電膜の特性(欠陥抑制、導電性)がより優れる点で、組成物全質量に対して、3~80質量%が好ましく、10~60質量%がより好ましい。
The content of cupric oxide nanoparticles in the composition for forming a conductive film of the present invention is not particularly limited, but it is easy to prepare a predetermined composition, and the characteristics (defect suppression, conductivity) of the formed conductive film are From the standpoint of superiority, it is preferably 3 to 80% by mass, more preferably 10 to 60% by mass, based on the total mass of the composition.
<(B)ポリオール系有機溶媒>
(B)本発明の導電膜形成用組成物はポリオール系有機溶媒を含有し、その沸点は190~340℃である。なお、上記沸点は、1気圧下のものである。
ポリオール系有機溶媒はその構造について、1分子中にヒドロキシ基を2個以上有する化合物であれば特に制限されない。
(B)ポリオール系有機溶媒は、いわゆる還元剤として機能することができる。 <(B) Polyol organic solvent>
(B) The composition for forming a conductive film of the present invention contains a polyol organic solvent and has a boiling point of 190 to 340 ° C. In addition, the said boiling point is a thing under 1 atmosphere.
The polyol organic solvent is not particularly limited as long as it is a compound having two or more hydroxy groups in one molecule.
(B) The polyol organic solvent can function as a so-called reducing agent.
(B)本発明の導電膜形成用組成物はポリオール系有機溶媒を含有し、その沸点は190~340℃である。なお、上記沸点は、1気圧下のものである。
ポリオール系有機溶媒はその構造について、1分子中にヒドロキシ基を2個以上有する化合物であれば特に制限されない。
(B)ポリオール系有機溶媒は、いわゆる還元剤として機能することができる。 <(B) Polyol organic solvent>
(B) The composition for forming a conductive film of the present invention contains a polyol organic solvent and has a boiling point of 190 to 340 ° C. In addition, the said boiling point is a thing under 1 atmosphere.
The polyol organic solvent is not particularly limited as long as it is a compound having two or more hydroxy groups in one molecule.
(B) The polyol organic solvent can function as a so-called reducing agent.
(B)ポリオール系有機溶媒としては、例えば、ジオール;1,2,3-ブタントリオール、エリトリトール、ペンタエリトリトール、トリメチロールプロパン、グリセリンのような3官能以上のポリオール(ヒドロキシ基を3個以上有するアルコール)が挙げられる。(B)ポリオール系有機溶媒は、なかでもジオールまたはトリオールであるのが好ましい。
ジオールとしては、例えば、エチレングリコール、2,3-ブタンジオールのようなヒドロキシ基を2個有するアルコール;ジエチレングリコールのようなジアルキレングリコール;トリエチレングリコールのようなトリアルキレングリコールが挙げられる。ジオールとしてジアルキレングリコール、トリアルキレングリコールのようなポリアルキレングリコールを使用する場合、その重量平均分子量は1,000未満であるのが好ましい態様の1つとして挙げられる。
ジオールは、なかでも、エチレングリコール、ジエチレングリコールおよびトリエチレングリコールからなる群から選ばれる少なくとも1種であるのが好ましい。
トリオールは、トリメチロールプロパン、グリセリンが好ましい。 (B) Examples of polyol organic solvents include diols; trifunctional or higher functional polyols such as 1,2,3-butanetriol, erythritol, pentaerythritol, trimethylolpropane, and glycerin (alcohols having three or more hydroxy groups). ). (B) The polyol-based organic solvent is preferably diol or triol.
Examples of the diol include alcohols having two hydroxy groups such as ethylene glycol and 2,3-butanediol; dialkylene glycols such as diethylene glycol; trialkylene glycols such as triethylene glycol. When polyalkylene glycol such as dialkylene glycol and trialkylene glycol is used as the diol, it is mentioned as one of preferred embodiments that its weight average molecular weight is less than 1,000.
Among them, the diol is preferably at least one selected from the group consisting of ethylene glycol, diethylene glycol and triethylene glycol.
The triol is preferably trimethylolpropane or glycerin.
ジオールとしては、例えば、エチレングリコール、2,3-ブタンジオールのようなヒドロキシ基を2個有するアルコール;ジエチレングリコールのようなジアルキレングリコール;トリエチレングリコールのようなトリアルキレングリコールが挙げられる。ジオールとしてジアルキレングリコール、トリアルキレングリコールのようなポリアルキレングリコールを使用する場合、その重量平均分子量は1,000未満であるのが好ましい態様の1つとして挙げられる。
ジオールは、なかでも、エチレングリコール、ジエチレングリコールおよびトリエチレングリコールからなる群から選ばれる少なくとも1種であるのが好ましい。
トリオールは、トリメチロールプロパン、グリセリンが好ましい。 (B) Examples of polyol organic solvents include diols; trifunctional or higher functional polyols such as 1,2,3-butanetriol, erythritol, pentaerythritol, trimethylolpropane, and glycerin (alcohols having three or more hydroxy groups). ). (B) The polyol-based organic solvent is preferably diol or triol.
Examples of the diol include alcohols having two hydroxy groups such as ethylene glycol and 2,3-butanediol; dialkylene glycols such as diethylene glycol; trialkylene glycols such as triethylene glycol. When polyalkylene glycol such as dialkylene glycol and trialkylene glycol is used as the diol, it is mentioned as one of preferred embodiments that its weight average molecular weight is less than 1,000.
Among them, the diol is preferably at least one selected from the group consisting of ethylene glycol, diethylene glycol and triethylene glycol.
The triol is preferably trimethylolpropane or glycerin.
また、(B)ポリオール系有機溶媒の沸点は、190~340℃であり、形成される導電膜の導電性がより優れ、欠陥発生をより抑制できる点で、200~300℃であるのが好ましい。
沸点が190℃未満の場合、形成される導電膜の導電性が劣ると共に、欠陥も多く発生する。また、沸点が340℃超の場合、形成される導電膜の導電性が劣る。 The boiling point of the (B) polyol-based organic solvent is 190 to 340 ° C., and is preferably 200 to 300 ° C. from the viewpoint that the conductive film to be formed is more excellent in conductivity and the generation of defects can be further suppressed. .
When the boiling point is less than 190 ° C., the conductivity of the conductive film formed is inferior and many defects are generated. Moreover, when the boiling point is higher than 340 ° C., the conductivity of the formed conductive film is inferior.
沸点が190℃未満の場合、形成される導電膜の導電性が劣ると共に、欠陥も多く発生する。また、沸点が340℃超の場合、形成される導電膜の導電性が劣る。 The boiling point of the (B) polyol-based organic solvent is 190 to 340 ° C., and is preferably 200 to 300 ° C. from the viewpoint that the conductive film to be formed is more excellent in conductivity and the generation of defects can be further suppressed. .
When the boiling point is less than 190 ° C., the conductivity of the conductive film formed is inferior and many defects are generated. Moreover, when the boiling point is higher than 340 ° C., the conductivity of the formed conductive film is inferior.
(A)酸化第二銅ナノ粒子と(B)ポリオール系有機溶媒の質量比は、還元力が十分であり、形成される導電膜の導電性がより優れ、欠陥発生をより抑制できる点で、1:0.005~1:2であるのが好ましく、1:0.005~1:1であるのがより好ましく、1:0.005~1:0.5であるのが更に好ましい。
(A) The mass ratio of cupric oxide nanoparticles and (B) polyol-based organic solvent is sufficient in reducing power, more excellent in conductivity of the conductive film formed, and more capable of suppressing the occurrence of defects. It is preferably 1: 0.005 to 1: 2, more preferably 1: 0.005 to 1: 1, and still more preferably 1: 0.005 to 1: 0.5.
((C)ポリオキシアルキレン系化合物)
本発明の導電膜形成用組成物は、さらに、(C)重量平均分子量1,000以上のポリオキシアルキレン系化合物を含有することができる。この場合、形成される導電膜の導電性がより優れ、欠陥発生をより抑制できる点から好ましい。
(C)ポリオキシアルキレン系化合物としては、例えば、ポリエチレングリコール、ポリプロピレングリコールが挙げられ、ポリエチレングリコールが好ましい。 ((C) polyoxyalkylene compound)
The composition for forming a conductive film of the present invention may further contain (C) a polyoxyalkylene compound having a weight average molecular weight of 1,000 or more. In this case, it is preferable from the viewpoint that the conductivity of the conductive film to be formed is more excellent and the occurrence of defects can be further suppressed.
Examples of the (C) polyoxyalkylene compound include polyethylene glycol and polypropylene glycol, and polyethylene glycol is preferable.
本発明の導電膜形成用組成物は、さらに、(C)重量平均分子量1,000以上のポリオキシアルキレン系化合物を含有することができる。この場合、形成される導電膜の導電性がより優れ、欠陥発生をより抑制できる点から好ましい。
(C)ポリオキシアルキレン系化合物としては、例えば、ポリエチレングリコール、ポリプロピレングリコールが挙げられ、ポリエチレングリコールが好ましい。 ((C) polyoxyalkylene compound)
The composition for forming a conductive film of the present invention may further contain (C) a polyoxyalkylene compound having a weight average molecular weight of 1,000 or more. In this case, it is preferable from the viewpoint that the conductivity of the conductive film to be formed is more excellent and the occurrence of defects can be further suppressed.
Examples of the (C) polyoxyalkylene compound include polyethylene glycol and polypropylene glycol, and polyethylene glycol is preferable.
(C)ポリオキシアルキレン系化合物の重量平均分子量は、形成される導電膜の導電性がより優れ、欠陥発生をより抑制できる点から、4,000以上であるのが好ましく、8,000~500,000であるのがより好ましい。
(C)ポリオキシアルキレン系化合物の重量平均分子量は、GPC(ゲル浸透クロマトグラフィー、Gel Permeation Chromatographyの略称)法(溶媒:N-メチルピロリドン)により得られたポリスチレン換算値である。 (C) The weight average molecular weight of the polyoxyalkylene compound is preferably 4,000 or more, more preferably from 8,000 to 500, from the viewpoint that the conductivity of the formed conductive film is more excellent and the occurrence of defects can be further suppressed. More preferably, it is 1,000.
(C) The weight average molecular weight of the polyoxyalkylene compound is a polystyrene equivalent value obtained by GPC (gel permeation chromatography, abbreviation for Gel Permeation Chromatography) method (solvent: N-methylpyrrolidone).
(C)ポリオキシアルキレン系化合物の重量平均分子量は、GPC(ゲル浸透クロマトグラフィー、Gel Permeation Chromatographyの略称)法(溶媒:N-メチルピロリドン)により得られたポリスチレン換算値である。 (C) The weight average molecular weight of the polyoxyalkylene compound is preferably 4,000 or more, more preferably from 8,000 to 500, from the viewpoint that the conductivity of the formed conductive film is more excellent and the occurrence of defects can be further suppressed. More preferably, it is 1,000.
(C) The weight average molecular weight of the polyoxyalkylene compound is a polystyrene equivalent value obtained by GPC (gel permeation chromatography, abbreviation for Gel Permeation Chromatography) method (solvent: N-methylpyrrolidone).
(A)酸化第二銅ナノ粒子と(C)ポリオキシアルキレン系化合物の質量比は、形成される導電膜の導電性がより優れ、欠陥発生をより抑制できる点から1:0.01~1:0.5であるのが好ましく、1:0.02~1:0.4であるのがより好ましい。
The mass ratio of (A) cupric oxide nanoparticles and (C) polyoxyalkylene compound is 1: 0.01 to 1 from the viewpoint that the conductivity of the conductive film to be formed is better and the generation of defects can be further suppressed. : 0.5 is preferable, and 1: 0.02 to 1: 0.4 is more preferable.
((D)アルコール系有機溶媒またはケトン系有機溶媒)
本発明の導電膜形成用組成物は、さらに、表面張力が40mN/m以下で、沸点50~180℃である、アルコール系有機溶媒またはケトン系有機溶媒(D)を含有することができる。この場合、優れた印刷性を得ることができる。
表面張力は20℃の条件下において滴下式による測定方法で測定されたものである。
アルコール系有機溶媒またはケトン系有機溶媒(D)としては、例えば、エタノール(沸点78.37℃、表面張力22.55mN/m)、1-ブタノール(沸点117℃、表面張力26mN/m)などのアルコール系有機溶媒;メチルエチルケトン(沸点79.5℃、表面張力24.6mN/m)、アセトン(沸点56.5℃、表面張力23.3mN/m)などのケトン系有機溶媒が挙げられる。
アルコール系有機溶媒またはケトン系有機溶媒(D)の表面張力は、形成される導電膜の導電性がより優れ、欠陥発生をより抑制できる点から、20~40mN/mであるのが好ましく、20~30mN/mであるのがより好ましい。
アルコール系有機溶媒またはケトン系有機溶媒(D)の沸点は、形成される導電膜の導電性がより優れ、欠陥発生をより抑制できる点から、50~180℃であるのが好ましく、70~150℃であるのがより好ましく、70~120℃であるのが更に好ましい。 ((D) alcohol-based organic solvent or ketone-based organic solvent)
The composition for forming a conductive film of the present invention can further contain an alcohol organic solvent or a ketone organic solvent (D) having a surface tension of 40 mN / m or less and a boiling point of 50 to 180 ° C. In this case, excellent printability can be obtained.
The surface tension is measured by a measurement method using a dropping method under the condition of 20 ° C.
Examples of the alcohol organic solvent or ketone organic solvent (D) include ethanol (boiling point 78.37 ° C., surface tension 22.55 mN / m), 1-butanol (boiling point 117 ° C., surface tension 26 mN / m), and the like. Alcohol-based organic solvents: ketone-based organic solvents such as methyl ethyl ketone (boiling point 79.5 ° C., surface tension 24.6 mN / m), acetone (boiling point 56.5 ° C., surface tension 23.3 mN / m), and the like.
The surface tension of the alcohol-based organic solvent or the ketone-based organic solvent (D) is preferably 20 to 40 mN / m from the viewpoint that the conductivity of the conductive film to be formed is more excellent and defects can be further suppressed. More preferably, it is ˜30 mN / m.
The boiling point of the alcohol-based organic solvent or the ketone-based organic solvent (D) is preferably 50 to 180 ° C. from the viewpoint that the conductivity of the conductive film to be formed is better and the generation of defects can be further suppressed, and 70 to 150 ° C. More preferably, the temperature is 70 ° C., and more preferably 70 to 120 ° C.
本発明の導電膜形成用組成物は、さらに、表面張力が40mN/m以下で、沸点50~180℃である、アルコール系有機溶媒またはケトン系有機溶媒(D)を含有することができる。この場合、優れた印刷性を得ることができる。
表面張力は20℃の条件下において滴下式による測定方法で測定されたものである。
アルコール系有機溶媒またはケトン系有機溶媒(D)としては、例えば、エタノール(沸点78.37℃、表面張力22.55mN/m)、1-ブタノール(沸点117℃、表面張力26mN/m)などのアルコール系有機溶媒;メチルエチルケトン(沸点79.5℃、表面張力24.6mN/m)、アセトン(沸点56.5℃、表面張力23.3mN/m)などのケトン系有機溶媒が挙げられる。
アルコール系有機溶媒またはケトン系有機溶媒(D)の表面張力は、形成される導電膜の導電性がより優れ、欠陥発生をより抑制できる点から、20~40mN/mであるのが好ましく、20~30mN/mであるのがより好ましい。
アルコール系有機溶媒またはケトン系有機溶媒(D)の沸点は、形成される導電膜の導電性がより優れ、欠陥発生をより抑制できる点から、50~180℃であるのが好ましく、70~150℃であるのがより好ましく、70~120℃であるのが更に好ましい。 ((D) alcohol-based organic solvent or ketone-based organic solvent)
The composition for forming a conductive film of the present invention can further contain an alcohol organic solvent or a ketone organic solvent (D) having a surface tension of 40 mN / m or less and a boiling point of 50 to 180 ° C. In this case, excellent printability can be obtained.
The surface tension is measured by a measurement method using a dropping method under the condition of 20 ° C.
Examples of the alcohol organic solvent or ketone organic solvent (D) include ethanol (boiling point 78.37 ° C., surface tension 22.55 mN / m), 1-butanol (boiling point 117 ° C., surface tension 26 mN / m), and the like. Alcohol-based organic solvents: ketone-based organic solvents such as methyl ethyl ketone (boiling point 79.5 ° C., surface tension 24.6 mN / m), acetone (boiling point 56.5 ° C., surface tension 23.3 mN / m), and the like.
The surface tension of the alcohol-based organic solvent or the ketone-based organic solvent (D) is preferably 20 to 40 mN / m from the viewpoint that the conductivity of the conductive film to be formed is more excellent and defects can be further suppressed. More preferably, it is ˜30 mN / m.
The boiling point of the alcohol-based organic solvent or the ketone-based organic solvent (D) is preferably 50 to 180 ° C. from the viewpoint that the conductivity of the conductive film to be formed is better and the generation of defects can be further suppressed, and 70 to 150 ° C. More preferably, the temperature is 70 ° C., and more preferably 70 to 120 ° C.
アルコール系有機溶媒またはケトン系有機溶媒(D)の量が、導電膜形成用組成物中の1~50質量%であるのが好ましく、1~45質量%であるのがより好ましく、1~20質量%であるのが更に好ましい。
The amount of the alcohol-based organic solvent or the ketone-based organic solvent (D) is preferably 1 to 50% by mass, more preferably 1 to 45% by mass in the composition for forming a conductive film. More preferably, it is mass%.
((E)金属触媒)
本発明の導電膜形成用組成物は、さらに(E)金属触媒を含有することができる。
金属触媒(E)は周期律表の8族~11族からなる群から選択される少なくとも1種の金属元素(金属)を含むのが好ましい。導電膜の導電性がより優れる点で、金属元素としては、金、銀、銅、白金、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム、および、ニッケルからなる群より選ばれる少なくとも1種の金属元素が好ましく、銀、白金、パラジウム、および、ニッケルからなる群より選択される少なくとも1種の金属元素であることがより好ましく、パラジウムまたは白金であることが特に好ましく、パラジウムであることが最も好ましい。すなわち、得られる導電膜の導電性がより優れる理由から、金属触媒(E)は、パラジウムを含む金属触媒であることが好ましい。 ((E) Metal catalyst)
The composition for forming a conductive film of the present invention can further contain (E) a metal catalyst.
The metal catalyst (E) preferably contains at least one metal element (metal) selected from the group consisting of groups 8 to 11 of the periodic table. The metal element is at least one metal element selected from the group consisting of gold, silver, copper, platinum, palladium, rhodium, iridium, ruthenium, osmium, and nickel in that the conductivity of the conductive film is more excellent. Preferably, it is at least one metal element selected from the group consisting of silver, platinum, palladium, and nickel, more preferably palladium or platinum, and most preferably palladium. That is, the metal catalyst (E) is preferably a metal catalyst containing palladium because the conductivity of the obtained conductive film is more excellent.
本発明の導電膜形成用組成物は、さらに(E)金属触媒を含有することができる。
金属触媒(E)は周期律表の8族~11族からなる群から選択される少なくとも1種の金属元素(金属)を含むのが好ましい。導電膜の導電性がより優れる点で、金属元素としては、金、銀、銅、白金、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム、および、ニッケルからなる群より選ばれる少なくとも1種の金属元素が好ましく、銀、白金、パラジウム、および、ニッケルからなる群より選択される少なくとも1種の金属元素であることがより好ましく、パラジウムまたは白金であることが特に好ましく、パラジウムであることが最も好ましい。すなわち、得られる導電膜の導電性がより優れる理由から、金属触媒(E)は、パラジウムを含む金属触媒であることが好ましい。 ((E) Metal catalyst)
The composition for forming a conductive film of the present invention can further contain (E) a metal catalyst.
The metal catalyst (E) preferably contains at least one metal element (metal) selected from the group consisting of groups 8 to 11 of the periodic table. The metal element is at least one metal element selected from the group consisting of gold, silver, copper, platinum, palladium, rhodium, iridium, ruthenium, osmium, and nickel in that the conductivity of the conductive film is more excellent. Preferably, it is at least one metal element selected from the group consisting of silver, platinum, palladium, and nickel, more preferably palladium or platinum, and most preferably palladium. That is, the metal catalyst (E) is preferably a metal catalyst containing palladium because the conductivity of the obtained conductive film is more excellent.
金属触媒(E)の好適な態様としては、例えば、パラジウム塩、パラジウム錯体が挙げられる。なかでもパラジウム塩が好ましい態様として挙げられる。
パラジウム塩の種類は特に制限されず、その具体例としては、パラジウムの塩酸塩、硝酸塩、硫酸塩、カルボン酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩などが挙げられる。なかでも、カルボン酸塩であることが好ましい。
カルボン酸塩を形成するカルボン酸の炭素数は特に制限されないが、1~10であることが好ましく、1~5であることがより好ましい。カルボン酸塩を形成するカルボン酸はハロゲン原子(好ましくはフッ素原子)を有してもよい。 As a suitable aspect of a metal catalyst (E), palladium salt and a palladium complex are mentioned, for example. Of these, a palladium salt is preferable.
The kind of palladium salt is not particularly limited, and specific examples thereof include palladium hydrochloride, nitrate, sulfate, carboxylate, sulfonate, phosphate, phosphonate and the like. Of these, carboxylate is preferable.
The number of carbon atoms of the carboxylic acid forming the carboxylate is not particularly limited, but is preferably 1 to 10, and more preferably 1 to 5. The carboxylic acid forming the carboxylate may have a halogen atom (preferably a fluorine atom).
パラジウム塩の種類は特に制限されず、その具体例としては、パラジウムの塩酸塩、硝酸塩、硫酸塩、カルボン酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩などが挙げられる。なかでも、カルボン酸塩であることが好ましい。
カルボン酸塩を形成するカルボン酸の炭素数は特に制限されないが、1~10であることが好ましく、1~5であることがより好ましい。カルボン酸塩を形成するカルボン酸はハロゲン原子(好ましくはフッ素原子)を有してもよい。 As a suitable aspect of a metal catalyst (E), palladium salt and a palladium complex are mentioned, for example. Of these, a palladium salt is preferable.
The kind of palladium salt is not particularly limited, and specific examples thereof include palladium hydrochloride, nitrate, sulfate, carboxylate, sulfonate, phosphate, phosphonate and the like. Of these, carboxylate is preferable.
The number of carbon atoms of the carboxylic acid forming the carboxylate is not particularly limited, but is preferably 1 to 10, and more preferably 1 to 5. The carboxylic acid forming the carboxylate may have a halogen atom (preferably a fluorine atom).
金属触媒(E)は、酢酸パラジウム、トリフルオロ酢酸パラジウムおよびテトラキス(トリフェニルホスフィン)パラジウムからなる群より選択される少なくとも1種の化合物であることが好ましく、酢酸パラジウムであることがより好ましい。
The metal catalyst (E) is preferably at least one compound selected from the group consisting of palladium acetate, palladium trifluoroacetate and tetrakis (triphenylphosphine) palladium, and more preferably palladium acetate.
(A)酸化第二銅ナノ粒子と(E)金属触媒の質量比は、α1/α2がより適正な範囲となり(A)酸化第二銅ナノ粒子の分散性に優れ、形成される導電膜の導電性がより優れ、欠陥発生をより抑制できる点から、1:0.001~1:0.1であるのが好ましく、1:0.001~1:0.05であるのがより好ましい。
(A) The mass ratio of cupric oxide nanoparticles and (E) metal catalyst is such that α1 / α2 is in a more appropriate range. (A) Dispersibility of cupric oxide nanoparticles is excellent. From the viewpoint of more excellent electrical conductivity and further suppressing the occurrence of defects, the ratio is preferably 1: 0.001 to 1: 0.1, more preferably 1: 0.001 to 1: 0.05.
(水)
導電膜形成用組成物は、さらに水を含有することができる。水は、(A)酸化第二銅ナノ粒子の分散媒として機能する。溶媒として水を使用することは、安全性において優れており好ましい。
水としては、イオン交換水のレベルの純度を有するものが好ましい。
水の含有量は、導電膜形成用組成物全質量に対して、1~90質量%とすることができる。 (water)
The composition for electrically conductive film formation can contain water further. Water functions as a dispersion medium for (A) cupric oxide nanoparticles. Use of water as a solvent is preferable because of its excellent safety.
As water, what has the purity of the level of ion-exchange water is preferable.
The water content can be 1 to 90% by mass with respect to the total mass of the conductive film-forming composition.
導電膜形成用組成物は、さらに水を含有することができる。水は、(A)酸化第二銅ナノ粒子の分散媒として機能する。溶媒として水を使用することは、安全性において優れており好ましい。
水としては、イオン交換水のレベルの純度を有するものが好ましい。
水の含有量は、導電膜形成用組成物全質量に対して、1~90質量%とすることができる。 (water)
The composition for electrically conductive film formation can contain water further. Water functions as a dispersion medium for (A) cupric oxide nanoparticles. Use of water as a solvent is preferable because of its excellent safety.
As water, what has the purity of the level of ion-exchange water is preferable.
The water content can be 1 to 90% by mass with respect to the total mass of the conductive film-forming composition.
(その他の成分)
導電膜形成用組成物には、(A)~(E)、水以外の成分をさらに含有することができる。上記以外の成分としては、例えば、水溶性高分子、界面活性剤、揺変剤のような添加剤が挙げられる。添加剤の種類、量は、本発明の目的、効果を妨げない範囲において適宜選択することができる。 (Other ingredients)
The composition for forming a conductive film can further contain components other than (A) to (E) and water. Examples of components other than the above include additives such as water-soluble polymers, surfactants, and thixotropic agents. The kind and amount of the additive can be appropriately selected within a range that does not hinder the object and effect of the present invention.
導電膜形成用組成物には、(A)~(E)、水以外の成分をさらに含有することができる。上記以外の成分としては、例えば、水溶性高分子、界面活性剤、揺変剤のような添加剤が挙げられる。添加剤の種類、量は、本発明の目的、効果を妨げない範囲において適宜選択することができる。 (Other ingredients)
The composition for forming a conductive film can further contain components other than (A) to (E) and water. Examples of components other than the above include additives such as water-soluble polymers, surfactants, and thixotropic agents. The kind and amount of the additive can be appropriately selected within a range that does not hinder the object and effect of the present invention.
導電膜形成用組成物の製造方法は特に制限されず、公知の方法を採用できる。
なかでも、上述した(A)酸化第二銅ナノ粒子、(B)ポリオール系有機溶媒、必要に応じて使用することができる、他の任意成分を混合して、導電膜形成用組成物を製造できる。
混合する方法は特に制限されないが、例えば、ホモジナイザー(例えば、超音波ホモジナイザー、高圧ホモジナイザー)、ミル(例えば、ビーズミル、ボールミル、タワーミル、3本ロールミル)、ミキサー(例えば、プラネタリーミキサー、ディスパーミキサー、ヘンシルミキサー、ニーダー、クレアミックス、自公転ミキサー(攪拌脱泡機))などを用いて混合分散させる方法が挙げられる。なかでも、酸化第二銅ナノ粒子の分散性がより優れる点で、超音波ホモジナイザーやビーズミルを用いることが好ましい。 The manufacturing method in particular of the composition for electrically conductive film formation is not restrict | limited, A well-known method is employable.
Especially, (A) cupric oxide nanoparticle mentioned above, (B) polyol type organic solvent, and other arbitrary components which can be used as needed are mixed, and the composition for electrically conductive film formation is manufactured. it can.
The mixing method is not particularly limited. For example, a homogenizer (for example, an ultrasonic homogenizer, a high-pressure homogenizer), a mill (for example, a bead mill, a ball mill, a tower mill, a three roll mill), a mixer (for example, a planetary mixer, a disper mixer, a hen) Examples thereof include a method of mixing and dispersing using a sill mixer, a kneader, a Clare mix, a self-revolving mixer (stirring deaerator), and the like. Among these, it is preferable to use an ultrasonic homogenizer or a bead mill because the dispersibility of cupric oxide nanoparticles is more excellent.
なかでも、上述した(A)酸化第二銅ナノ粒子、(B)ポリオール系有機溶媒、必要に応じて使用することができる、他の任意成分を混合して、導電膜形成用組成物を製造できる。
混合する方法は特に制限されないが、例えば、ホモジナイザー(例えば、超音波ホモジナイザー、高圧ホモジナイザー)、ミル(例えば、ビーズミル、ボールミル、タワーミル、3本ロールミル)、ミキサー(例えば、プラネタリーミキサー、ディスパーミキサー、ヘンシルミキサー、ニーダー、クレアミックス、自公転ミキサー(攪拌脱泡機))などを用いて混合分散させる方法が挙げられる。なかでも、酸化第二銅ナノ粒子の分散性がより優れる点で、超音波ホモジナイザーやビーズミルを用いることが好ましい。 The manufacturing method in particular of the composition for electrically conductive film formation is not restrict | limited, A well-known method is employable.
Especially, (A) cupric oxide nanoparticle mentioned above, (B) polyol type organic solvent, and other arbitrary components which can be used as needed are mixed, and the composition for electrically conductive film formation is manufactured. it can.
The mixing method is not particularly limited. For example, a homogenizer (for example, an ultrasonic homogenizer, a high-pressure homogenizer), a mill (for example, a bead mill, a ball mill, a tower mill, a three roll mill), a mixer (for example, a planetary mixer, a disper mixer, a hen) Examples thereof include a method of mixing and dispersing using a sill mixer, a kneader, a Clare mix, a self-revolving mixer (stirring deaerator), and the like. Among these, it is preferable to use an ultrasonic homogenizer or a bead mill because the dispersibility of cupric oxide nanoparticles is more excellent.
<導電膜形成用組成物の特性>
導電膜形成用組成物について、分光光度計により測定された波長400nmおよび波長600nmにおける吸光度の比が以下の式1を満たす。
式1 5>α1/α2>3
式1において、α1は波長400nmにおける吸光度を表し、α2は波長600nmにおける吸光度を表す。
α1/α2は、形成される導電膜の導電性がより優れ、欠陥発生をより抑制できる点から、5>α1/α2>4が好ましい。 <Characteristics of conductive film forming composition>
About the composition for electrically conductive film formation, ratio of the light absorbency in wavelength 400nm and wavelength 600nm measured with the spectrophotometer satisfy | fills the following formula | equation 1.
Formula 1 5> α1 / α2> 3
In Equation 1, α1 represents absorbance at a wavelength of 400 nm, and α2 represents absorbance at a wavelength of 600 nm.
α> α2 is preferably 5> α1 / α2> 4 from the viewpoint that the conductivity of the conductive film to be formed is more excellent and defects can be further suppressed.
導電膜形成用組成物について、分光光度計により測定された波長400nmおよび波長600nmにおける吸光度の比が以下の式1を満たす。
式1 5>α1/α2>3
式1において、α1は波長400nmにおける吸光度を表し、α2は波長600nmにおける吸光度を表す。
α1/α2は、形成される導電膜の導電性がより優れ、欠陥発生をより抑制できる点から、5>α1/α2>4が好ましい。 <Characteristics of conductive film forming composition>
About the composition for electrically conductive film formation, ratio of the light absorbency in wavelength 400nm and wavelength 600nm measured with the spectrophotometer satisfy | fills the following formula | equation 1.
Formula 1 5> α1 / α2> 3
In Equation 1, α1 represents absorbance at a wavelength of 400 nm, and α2 represents absorbance at a wavelength of 600 nm.
α> α2 is preferably 5> α1 / α2> 4 from the viewpoint that the conductivity of the conductive film to be formed is more excellent and defects can be further suppressed.
分光光度計による測定(紫外可視吸収スペクトル測定)は、紫外可視分光光度計(UV-2450、(株)島津製作所製)を用いて実施される。
その際、組成物中の酸化第二銅ナノ粒子の濃度が0.0005~0.1質量%となる範囲で測定を実施する。組成物中の酸化第二銅ナノ粒子の濃度が高すぎる場合は、水によって希釈して、測定用のサンプルを作製してもよい。
上記測定により得られる紫外可視吸収スペクトル図から、波長400nmにおける吸光度、および、波長600nmにおける吸光度を測定し、上記式1に当てはめて、比(α1/α2)を算出する。 Measurement with a spectrophotometer (ultraviolet-visible absorption spectrum measurement) is performed using an ultraviolet-visible spectrophotometer (UV-2450, manufactured by Shimadzu Corporation).
At that time, the measurement is performed in the range where the concentration of cupric oxide nanoparticles in the composition is 0.0005 to 0.1 mass%. When the concentration of cupric oxide nanoparticles in the composition is too high, the sample for measurement may be prepared by diluting with water.
From the ultraviolet-visible absorption spectrum obtained by the above measurement, the absorbance at a wavelength of 400 nm and the absorbance at a wavelength of 600 nm are measured, and applied to the above equation 1 to calculate the ratio (α1 / α2).
その際、組成物中の酸化第二銅ナノ粒子の濃度が0.0005~0.1質量%となる範囲で測定を実施する。組成物中の酸化第二銅ナノ粒子の濃度が高すぎる場合は、水によって希釈して、測定用のサンプルを作製してもよい。
上記測定により得られる紫外可視吸収スペクトル図から、波長400nmにおける吸光度、および、波長600nmにおける吸光度を測定し、上記式1に当てはめて、比(α1/α2)を算出する。 Measurement with a spectrophotometer (ultraviolet-visible absorption spectrum measurement) is performed using an ultraviolet-visible spectrophotometer (UV-2450, manufactured by Shimadzu Corporation).
At that time, the measurement is performed in the range where the concentration of cupric oxide nanoparticles in the composition is 0.0005 to 0.1 mass%. When the concentration of cupric oxide nanoparticles in the composition is too high, the sample for measurement may be prepared by diluting with water.
From the ultraviolet-visible absorption spectrum obtained by the above measurement, the absorbance at a wavelength of 400 nm and the absorbance at a wavelength of 600 nm are measured, and applied to the above equation 1 to calculate the ratio (α1 / α2).
なお、本発明の導電膜形成用組成物のα1/α2の制御方法は特に制限されない。α1/α2には酸化第二銅ナノ粒子の状態が大きく影響すると考えられることから、α1/α2の制御方法としては例えば、上述したように、粒子の平均1次粒子径を所定の範囲に制御し、かつ、その凝集状態を制御(いわゆる、本発明の導電膜形成用組成物中の酸化第二銅ナノ粒子の粒子径の分布を制御)する方法が挙げられる。
In addition, the control method in particular of (alpha) 1 / (alpha) 2 of the composition for electrically conductive film formation of this invention is not restrict | limited. Since α1 / α2 is thought to be greatly influenced by the state of cupric oxide nanoparticles, as a method for controlling α1 / α2, for example, as described above, the average primary particle diameter of particles is controlled within a predetermined range. And a method of controlling the aggregation state (so-called control of particle size distribution of cupric oxide nanoparticles in the composition for forming a conductive film of the present invention).
[導電膜の製造方法]
次に、本発明の導電膜の製造方法について以下に説明する。
本発明の導電膜の製造方法は、
本発明の導電膜形成用組成物を樹脂基材上に塗布し、塗膜を形成する工程(以後、適宜塗膜形成工程とも称する。)と、
塗膜に対して光照射処理を行い、酸化第二銅ナノ粒子を還元して金属銅を含有する導電膜を形成する工程(以後、導電膜形成工程とも称する。)と、を備える、導電膜の製造方法である。
以下に、それぞれの工程について詳述する。 [Method for producing conductive film]
Next, the manufacturing method of the electrically conductive film of this invention is demonstrated below.
The method for producing the conductive film of the present invention comprises:
A step of applying the composition for forming a conductive film of the present invention on a resin base material to form a coating film (hereinafter also referred to as a coating film forming step as appropriate);
Performing a light irradiation treatment on the coating film, and reducing the cupric oxide nanoparticles to form a conductive film containing metallic copper (hereinafter also referred to as a conductive film forming process). It is a manufacturing method.
Below, each process is explained in full detail.
次に、本発明の導電膜の製造方法について以下に説明する。
本発明の導電膜の製造方法は、
本発明の導電膜形成用組成物を樹脂基材上に塗布し、塗膜を形成する工程(以後、適宜塗膜形成工程とも称する。)と、
塗膜に対して光照射処理を行い、酸化第二銅ナノ粒子を還元して金属銅を含有する導電膜を形成する工程(以後、導電膜形成工程とも称する。)と、を備える、導電膜の製造方法である。
以下に、それぞれの工程について詳述する。 [Method for producing conductive film]
Next, the manufacturing method of the electrically conductive film of this invention is demonstrated below.
The method for producing the conductive film of the present invention comprises:
A step of applying the composition for forming a conductive film of the present invention on a resin base material to form a coating film (hereinafter also referred to as a coating film forming step as appropriate);
Performing a light irradiation treatment on the coating film, and reducing the cupric oxide nanoparticles to form a conductive film containing metallic copper (hereinafter also referred to as a conductive film forming process). It is a manufacturing method.
Below, each process is explained in full detail.
<塗膜形成工程>
本工程は、上述した導電膜形成用組成物を樹脂基材上に塗布して、塗膜を形成する工程である。本工程により還元処理が施される前の前駆体膜が得られる。
使用される導電膜形成用組成物については、上述のとおりである。 <Coating film formation process>
This step is a step of applying the above-described composition for forming a conductive film on a resin substrate to form a coating film. The precursor film before the reduction treatment is obtained in this step.
The composition for forming a conductive film used is as described above.
本工程は、上述した導電膜形成用組成物を樹脂基材上に塗布して、塗膜を形成する工程である。本工程により還元処理が施される前の前駆体膜が得られる。
使用される導電膜形成用組成物については、上述のとおりである。 <Coating film formation process>
This step is a step of applying the above-described composition for forming a conductive film on a resin substrate to form a coating film. The precursor film before the reduction treatment is obtained in this step.
The composition for forming a conductive film used is as described above.
樹脂基材の材料としては、例えば、低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、ポリプロピレン、ポリブチレンなどのポリオレフィン系樹脂;ポリメチルメタクリレートなどのメタクリル系樹脂;ポリスチレン、アクリロニトリルブタジエンスチレン共重合体(ABS)、アクリロニトリルスチレン共重合体(AS)などのポリスチレン系樹脂;アクリル樹脂;ポリエステル樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ1,4-シクロヘキシルジメチレンテレフタレートなど);ナイロン樹脂およびナイロン共重合体から選ばれるポリアミド樹脂;ポリ塩化ビニル樹脂;ポリオキシメチレン樹脂;ポリカーボネート樹脂;ポリフェニレンサルファイド樹脂;変性ポリフェニレンエーテル樹脂;ポリアセタール樹脂;ポリサルフォン樹脂;ポリエーテルスルホン樹脂;ポリケトン樹脂;ポリエーテルニトリル樹脂;ポリエーテルエーテルケトン樹脂;ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリエーテルケトンケトン樹脂;ポリイミド樹脂;ポリアミドイミド樹脂;フッ素樹脂;セルロース誘導体等の樹脂基材が挙げられる。これらの中でも、ポリエステル樹脂基材、ポリカーボネート樹脂基材、ポリイミド樹脂基材、ポリエーテルイミド樹脂基材が好ましく使用される。
Examples of the resin base material include polyolefin resins such as low density polyethylene resin, high density polyethylene resin, polypropylene, and polybutylene; methacrylic resins such as polymethyl methacrylate; polystyrene, acrylonitrile butadiene styrene copolymer (ABS), Polystyrene resin such as acrylonitrile styrene copolymer (AS); acrylic resin; polyester resin (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, poly 1,4-cyclohexyldimethylene terephthalate, etc.); nylon resin and nylon copolymer Polyamide resin selected from: Polyvinyl chloride resin; Polyoxymethylene resin; Polycarbonate resin; Polyphenylene sulfide resin; Modified polypheny Polyether resin; Polysulfone resin; Polyethersulfone resin; Polyketone resin; Polyethernitrile resin; Polyetheretherketone resin; Polyetherimide resin, Polyetherketone resin, Polyetherketoneketone resin; Polyimide resin; Polyamideimide resin A fluororesin; a resin substrate such as a cellulose derivative. Among these, a polyester resin base material, a polycarbonate resin base material, a polyimide resin base material, and a polyetherimide resin base material are preferably used.
導電膜形成用組成物を樹脂基材上に塗布する方法は特に制限されず、公知の方法を採用できる。例えば、スクリーン印刷法、ディップコーティング法、スプレー塗布法、スピンコーティング法、インクジェット法などの塗布法が挙げられる。
塗布の形状は特に制限されず、樹脂基材全面を覆う面状であっても、パターン状(例えば、配線状、ドット状)であってもよい。
樹脂基材上への導電膜形成用組成物の塗布量としては、所望する導電膜の膜厚に応じて適宜調整すればよい。通常、塗膜の膜厚は0.01~5000μmが好ましく、0.1~1000μmがより好ましく、1~100μmがさらに好ましい。 The method in particular of apply | coating the composition for electrically conductive film formation on a resin base material is not restrict | limited, A well-known method is employable. For example, coating methods such as a screen printing method, a dip coating method, a spray coating method, a spin coating method, and an ink jet method can be used.
The shape of application is not particularly limited, and may be a planar shape covering the entire surface of the resin base material or a pattern shape (for example, a wiring shape or a dot shape).
What is necessary is just to adjust suitably as an application quantity of the composition for electrically conductive film formation on the resin base material according to the film thickness of the electrically conductive film desired. Usually, the thickness of the coating film is preferably 0.01 to 5000 μm, more preferably 0.1 to 1000 μm, and further preferably 1 to 100 μm.
塗布の形状は特に制限されず、樹脂基材全面を覆う面状であっても、パターン状(例えば、配線状、ドット状)であってもよい。
樹脂基材上への導電膜形成用組成物の塗布量としては、所望する導電膜の膜厚に応じて適宜調整すればよい。通常、塗膜の膜厚は0.01~5000μmが好ましく、0.1~1000μmがより好ましく、1~100μmがさらに好ましい。 The method in particular of apply | coating the composition for electrically conductive film formation on a resin base material is not restrict | limited, A well-known method is employable. For example, coating methods such as a screen printing method, a dip coating method, a spray coating method, a spin coating method, and an ink jet method can be used.
The shape of application is not particularly limited, and may be a planar shape covering the entire surface of the resin base material or a pattern shape (for example, a wiring shape or a dot shape).
What is necessary is just to adjust suitably as an application quantity of the composition for electrically conductive film formation on the resin base material according to the film thickness of the electrically conductive film desired. Usually, the thickness of the coating film is preferably 0.01 to 5000 μm, more preferably 0.1 to 1000 μm, and further preferably 1 to 100 μm.
本工程においては、必要に応じて、導電膜形成用組成物を樹脂基材へ塗布した後に乾燥処理を行い、溶媒を除去してもよい。残存する溶媒を除去することにより、後述する導電膜形成工程において、溶媒の気化膨張に起因する微小なクラックや空隙の発生を抑制することができ、導電膜の導電性および導電膜と基材との密着性の点で好ましい。
乾燥処理の方法としては温風乾燥機などを用いることができる。乾燥処理の温度としては、40℃~200℃が好ましく、50℃以上150℃未満がより好ましく、50℃~120℃がさらに好ましい。
乾燥時間は特に限定されないが、樹脂基材と導電膜との密着性がより良好になることから、10秒~60分であることが好ましい。 In this step, if necessary, the conductive film-forming composition may be applied to the resin substrate and then dried to remove the solvent. By removing the remaining solvent, it is possible to suppress the generation of minute cracks and voids due to the vaporization and expansion of the solvent in the conductive film forming step described later. It is preferable in terms of adhesion.
A warm air dryer or the like can be used as a method for the drying treatment. The temperature for the drying treatment is preferably 40 ° C. to 200 ° C., more preferably 50 ° C. or more and less than 150 ° C., and further preferably 50 ° C. to 120 ° C.
The drying time is not particularly limited, but it is preferably 10 seconds to 60 minutes because the adhesion between the resin substrate and the conductive film becomes better.
乾燥処理の方法としては温風乾燥機などを用いることができる。乾燥処理の温度としては、40℃~200℃が好ましく、50℃以上150℃未満がより好ましく、50℃~120℃がさらに好ましい。
乾燥時間は特に限定されないが、樹脂基材と導電膜との密着性がより良好になることから、10秒~60分であることが好ましい。 In this step, if necessary, the conductive film-forming composition may be applied to the resin substrate and then dried to remove the solvent. By removing the remaining solvent, it is possible to suppress the generation of minute cracks and voids due to the vaporization and expansion of the solvent in the conductive film forming step described later. It is preferable in terms of adhesion.
A warm air dryer or the like can be used as a method for the drying treatment. The temperature for the drying treatment is preferably 40 ° C. to 200 ° C., more preferably 50 ° C. or more and less than 150 ° C., and further preferably 50 ° C. to 120 ° C.
The drying time is not particularly limited, but it is preferably 10 seconds to 60 minutes because the adhesion between the resin substrate and the conductive film becomes better.
<導電膜形成工程>
本工程は、上記塗膜形成工程で形成された塗膜に対して光照射処理を行い、金属銅を含有する導電膜を形成する工程である。
光照射処理を行うことにより、(A)酸化第二銅ナノ粒子が還元され、さらに融着して金属銅が得られる。より具体的には、(A)酸化第二銅ナノ粒子が還元されて金属銅粒子が形成され、生成した金属銅粒子が互いに融着してグレインを形成し、さらにグレイン同士が接着・融着して銅を含有する導電性薄膜を形成する。 <Conductive film formation process>
This step is a step of performing a light irradiation treatment on the coating film formed in the coating film forming step to form a conductive film containing metallic copper.
By performing the light irradiation treatment, (A) cupric oxide nanoparticles are reduced and further fused to obtain metallic copper. More specifically, (A) cupric oxide nanoparticles are reduced to form metallic copper particles, the produced metallic copper particles are fused together to form grains, and the grains are bonded and fused together. Thus, a conductive thin film containing copper is formed.
本工程は、上記塗膜形成工程で形成された塗膜に対して光照射処理を行い、金属銅を含有する導電膜を形成する工程である。
光照射処理を行うことにより、(A)酸化第二銅ナノ粒子が還元され、さらに融着して金属銅が得られる。より具体的には、(A)酸化第二銅ナノ粒子が還元されて金属銅粒子が形成され、生成した金属銅粒子が互いに融着してグレインを形成し、さらにグレイン同士が接着・融着して銅を含有する導電性薄膜を形成する。 <Conductive film formation process>
This step is a step of performing a light irradiation treatment on the coating film formed in the coating film forming step to form a conductive film containing metallic copper.
By performing the light irradiation treatment, (A) cupric oxide nanoparticles are reduced and further fused to obtain metallic copper. More specifically, (A) cupric oxide nanoparticles are reduced to form metallic copper particles, the produced metallic copper particles are fused together to form grains, and the grains are bonded and fused together. Thus, a conductive thin film containing copper is formed.
光照射処理は、室温にて塗膜が付与された部分に対して光を短時間照射することで金属銅への還元および焼結が可能となり、長時間の加熱による樹脂基材の劣化が起こらず、導電膜の樹脂基材との密着性がより良好となる。
Light irradiation treatment enables reduction and sintering to metallic copper by irradiating light at a room temperature to a portion to which a coating film has been applied for a short time, and causes deterioration of the resin base material due to prolonged heating. Therefore, the adhesion of the conductive film to the resin base material becomes better.
光照射処理で使用される光源は特に制限されず、例えば、水銀灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、カーボンアーク灯等がある。放射線としては、電子線、X線、イオンビーム、遠赤外線などがある。また、g線(波長436nm)、i線(波長365nm)、遠紫外光(Deep-UV光)、高密度エネルギービーム(レーザービーム)も使用される。
具体的な態様としては、赤外線レーザーによる走査露光、キセノン放電灯などの高照度フラッシュ露光、赤外線ランプ露光などが好適に挙げられる。 The light source used in the light irradiation treatment is not particularly limited, and examples thereof include a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a carbon arc lamp. Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays. Further, g-line (wavelength 436 nm), i-line (wavelength 365 nm), deep ultraviolet light (Deep-UV light), and high-density energy beam (laser beam) are also used.
Specific examples of preferred embodiments include scanning exposure with an infrared laser, high-illuminance flash exposure such as a xenon discharge lamp, and infrared lamp exposure.
具体的な態様としては、赤外線レーザーによる走査露光、キセノン放電灯などの高照度フラッシュ露光、赤外線ランプ露光などが好適に挙げられる。 The light source used in the light irradiation treatment is not particularly limited, and examples thereof include a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a carbon arc lamp. Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays. Further, g-line (wavelength 436 nm), i-line (wavelength 365 nm), deep ultraviolet light (Deep-UV light), and high-density energy beam (laser beam) are also used.
Specific examples of preferred embodiments include scanning exposure with an infrared laser, high-illuminance flash exposure such as a xenon discharge lamp, and infrared lamp exposure.
光照射は、フラッシュランプによる光照射が好ましく、パルス光照射(例:キセノン(Xe)フラッシュランプによるパルス光照射)であることがより好ましい。高エネルギーのパルス光の照射は、塗膜を付与した部分の表面を、極めて短い時間で集中して加熱することができるため、樹脂基材への熱の影響を極めて小さくすることができる。
パルス光の照射エネルギーとしては、1~100J/cm2が好ましく、1~30J/cm2がより好ましい。パルス幅としては1μ秒~100m秒が好ましく、10μ秒~10m秒がより好ましい。パルス光の照射間隔は、1m秒~10秒が好ましく、1秒~10秒がより好ましく、1~5秒がさらに好ましい。 The light irradiation is preferably light irradiation with a flash lamp, and more preferably pulsed light irradiation (eg, pulsed light irradiation with a xenon (Xe) flash lamp). Irradiation with high-energy pulsed light can concentrate and heat the surface of the portion to which the coating film has been applied in a very short time, so that the influence of heat on the resin substrate can be extremely reduced.
The irradiation energy of the pulsed light is preferably 1 to 100 J / cm 2 and more preferably 1 to 30 J / cm 2 . The pulse width is preferably 1 μsec to 100 msec, and more preferably 10 μsec to 10 msec. The irradiation interval of the pulsed light is preferably 1 msec to 10 seconds, more preferably 1 second to 10 seconds, and further preferably 1 to 5 seconds.
パルス光の照射エネルギーとしては、1~100J/cm2が好ましく、1~30J/cm2がより好ましい。パルス幅としては1μ秒~100m秒が好ましく、10μ秒~10m秒がより好ましい。パルス光の照射間隔は、1m秒~10秒が好ましく、1秒~10秒がより好ましく、1~5秒がさらに好ましい。 The light irradiation is preferably light irradiation with a flash lamp, and more preferably pulsed light irradiation (eg, pulsed light irradiation with a xenon (Xe) flash lamp). Irradiation with high-energy pulsed light can concentrate and heat the surface of the portion to which the coating film has been applied in a very short time, so that the influence of heat on the resin substrate can be extremely reduced.
The irradiation energy of the pulsed light is preferably 1 to 100 J / cm 2 and more preferably 1 to 30 J / cm 2 . The pulse width is preferably 1 μsec to 100 msec, and more preferably 10 μsec to 10 msec. The irradiation interval of the pulsed light is preferably 1 msec to 10 seconds, more preferably 1 second to 10 seconds, and further preferably 1 to 5 seconds.
光照射処理を実施する雰囲気は特に制限されず、大気雰囲気下、不活性雰囲気下、または還元性雰囲気下などが挙げられる。なお、不活性雰囲気とは、例えば、アルゴン、ヘリウム、ネオン、窒素等の不活性ガスで満たされた雰囲気を指す。また、還元性雰囲気とは、水素、一酸化炭素等の還元性ガスが存在する雰囲気を指す。
The atmosphere for performing the light irradiation treatment is not particularly limited, and examples thereof include an air atmosphere, an inert atmosphere, and a reducing atmosphere. Note that the inert atmosphere refers to an atmosphere filled with an inert gas such as argon, helium, neon, or nitrogen. The reducing atmosphere refers to an atmosphere in which a reducing gas such as hydrogen or carbon monoxide exists.
<導電膜>
上記工程を実施することにより、金属銅を含有する導電膜(金属銅膜)が得られる。
導電膜の膜厚は特に制限されず、使用される用途に応じて適宜最適な膜厚が調整される。なかでも、プリント配線基板用途の点からは、0.01~1000μmが好ましく、0.1~100μmがより好ましい。
なお、膜厚は、導電膜の任意の点における厚みを3箇所以上測定し、その値を算術平均して得られる値(平均値)である。
導電膜の体積抵抗率は、導電特性の点から、1000μΩ・cm未満が好ましく、300μΩ・cm未満がより好ましく、100μΩ・cm未満がさらに好ましい。
体積抵抗率は、導電膜の表面抵抗値を四探針法にて測定後、得られた表面抵抗値に膜厚を乗算することで算出することができる。 <Conductive film>
By carrying out the above steps, a conductive film (metal copper film) containing metal copper is obtained.
The film thickness of the conductive film is not particularly limited, and an optimum film thickness is appropriately adjusted according to the intended use. Of these, 0.01 to 1000 μm is preferable and 0.1 to 100 μm is more preferable from the viewpoint of printed wiring board use.
The film thickness is a value (average value) obtained by measuring three or more thicknesses at arbitrary points on the conductive film and arithmetically averaging the values.
The volume resistivity of the conductive film is preferably less than 1000 μΩ · cm, more preferably less than 300 μΩ · cm, and even more preferably less than 100 μΩ · cm from the viewpoint of conductive characteristics.
The volume resistivity can be calculated by measuring the surface resistance value of the conductive film by the four-probe method and then multiplying the obtained surface resistance value by the film thickness.
上記工程を実施することにより、金属銅を含有する導電膜(金属銅膜)が得られる。
導電膜の膜厚は特に制限されず、使用される用途に応じて適宜最適な膜厚が調整される。なかでも、プリント配線基板用途の点からは、0.01~1000μmが好ましく、0.1~100μmがより好ましい。
なお、膜厚は、導電膜の任意の点における厚みを3箇所以上測定し、その値を算術平均して得られる値(平均値)である。
導電膜の体積抵抗率は、導電特性の点から、1000μΩ・cm未満が好ましく、300μΩ・cm未満がより好ましく、100μΩ・cm未満がさらに好ましい。
体積抵抗率は、導電膜の表面抵抗値を四探針法にて測定後、得られた表面抵抗値に膜厚を乗算することで算出することができる。 <Conductive film>
By carrying out the above steps, a conductive film (metal copper film) containing metal copper is obtained.
The film thickness of the conductive film is not particularly limited, and an optimum film thickness is appropriately adjusted according to the intended use. Of these, 0.01 to 1000 μm is preferable and 0.1 to 100 μm is more preferable from the viewpoint of printed wiring board use.
The film thickness is a value (average value) obtained by measuring three or more thicknesses at arbitrary points on the conductive film and arithmetically averaging the values.
The volume resistivity of the conductive film is preferably less than 1000 μΩ · cm, more preferably less than 300 μΩ · cm, and even more preferably less than 100 μΩ · cm from the viewpoint of conductive characteristics.
The volume resistivity can be calculated by measuring the surface resistance value of the conductive film by the four-probe method and then multiplying the obtained surface resistance value by the film thickness.
導電膜は、例えば、樹脂基材の全面、または、パターン状に設けられてもよい。パターン状の導電膜は、プリント配線基板などの導体配線(配線)として有用である。
パターン状の導電膜を得る方法としては、例えば、上記導電膜形成用組成物をパターン状に樹脂基材に付与して、上記光照射処理を行う方法や、樹脂基材全面に設けられた導電膜をパターン状にエッチングする方法などが挙げられる。
エッチングの方法は特に制限されず、例えば、公知のサブトラクティブ法、セミアディティブ法などを採用できる。 The conductive film may be provided, for example, on the entire surface of the resin base material or in a pattern. The patterned conductive film is useful as a conductor wiring (wiring) such as a printed wiring board.
As a method for obtaining a patterned conductive film, for example, a method of applying the above-mentioned composition for forming a conductive film to a resin base material in a pattern and performing the light irradiation treatment, or a conductive material provided on the entire surface of the resin base material. For example, a method of etching the film into a pattern may be used.
The etching method is not particularly limited, and for example, a known subtractive method or semi-additive method can be employed.
パターン状の導電膜を得る方法としては、例えば、上記導電膜形成用組成物をパターン状に樹脂基材に付与して、上記光照射処理を行う方法や、樹脂基材全面に設けられた導電膜をパターン状にエッチングする方法などが挙げられる。
エッチングの方法は特に制限されず、例えば、公知のサブトラクティブ法、セミアディティブ法などを採用できる。 The conductive film may be provided, for example, on the entire surface of the resin base material or in a pattern. The patterned conductive film is useful as a conductor wiring (wiring) such as a printed wiring board.
As a method for obtaining a patterned conductive film, for example, a method of applying the above-mentioned composition for forming a conductive film to a resin base material in a pattern and performing the light irradiation treatment, or a conductive material provided on the entire surface of the resin base material. For example, a method of etching the film into a pattern may be used.
The etching method is not particularly limited, and for example, a known subtractive method or semi-additive method can be employed.
パターン状の導電膜を多層配線基板として構成する場合、パターン状の導電膜の表面に、さらに絶縁層(絶縁樹脂層、層間絶縁膜、ソルダーレジスト)を積層して、その表面にさらなる配線(金属パターン)を形成してもよい。
When a patterned conductive film is configured as a multilayer wiring board, an insulating layer (insulating resin layer, interlayer insulating film, solder resist) is further laminated on the surface of the patterned conductive film, and further wiring (metal) is formed on the surface. Pattern) may be formed.
絶縁膜の材料は特に制限されないが、例えば、エポキシ樹脂、ガラスエポキシ樹脂、アラミド樹脂、結晶性ポリオレフィン樹脂、非晶性ポリオレフィン樹脂、フッ素含有樹脂(ポリテトラフルオロエチレン、全フッ素化ポリイミド、全フッ素化アモルファス樹脂など)、ポリイミド樹脂、ポリエーテルスルフォン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、液晶樹脂など挙げられる。
これらの中でも、密着性、寸法安定性、耐熱性、電気絶縁性等の観点から、エポキシ樹脂、ポリイミド樹脂、または液晶樹脂を含有するものであることが好ましく、より好ましくはエポキシ樹脂である。具体的には、味の素ファインテクノ(株)製、ABF GX-13などが挙げられる。 The material of the insulating film is not particularly limited. For example, epoxy resin, glass epoxy resin, aramid resin, crystalline polyolefin resin, amorphous polyolefin resin, fluorine-containing resin (polytetrafluoroethylene, perfluorinated polyimide, perfluorinated) Amorphous resin), polyimide resin, polyether sulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, liquid crystal resin, and the like.
Among these, from the viewpoints of adhesion, dimensional stability, heat resistance, electrical insulation, and the like, it is preferable to contain an epoxy resin, a polyimide resin, or a liquid crystal resin, and more preferably an epoxy resin. Specific examples include ABF GX-13 manufactured by Ajinomoto Fine Techno Co., Ltd.
これらの中でも、密着性、寸法安定性、耐熱性、電気絶縁性等の観点から、エポキシ樹脂、ポリイミド樹脂、または液晶樹脂を含有するものであることが好ましく、より好ましくはエポキシ樹脂である。具体的には、味の素ファインテクノ(株)製、ABF GX-13などが挙げられる。 The material of the insulating film is not particularly limited. For example, epoxy resin, glass epoxy resin, aramid resin, crystalline polyolefin resin, amorphous polyolefin resin, fluorine-containing resin (polytetrafluoroethylene, perfluorinated polyimide, perfluorinated) Amorphous resin), polyimide resin, polyether sulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, liquid crystal resin, and the like.
Among these, from the viewpoints of adhesion, dimensional stability, heat resistance, electrical insulation, and the like, it is preferable to contain an epoxy resin, a polyimide resin, or a liquid crystal resin, and more preferably an epoxy resin. Specific examples include ABF GX-13 manufactured by Ajinomoto Fine Techno Co., Ltd.
また、配線保護のために用いられる絶縁層の材料の一種であるソルダーレジストについては、例えば、特開平10-204150号公報や、特開2003-222993号公報等に詳細に記載され、ここに記載の材料を所望により本発明にも適用することができる。ソルダーレジストは市販品を用いてもよく、具体的には、例えば、太陽インキ製造(株)製PFR800、PSR4000(商品名)、日立化成工業(株)製 SR7200G、などが挙げられる。
The solder resist, which is a kind of insulating layer material used for wiring protection, is described in detail in, for example, Japanese Patent Application Laid-Open No. 10-204150 and Japanese Patent Application Laid-Open No. 2003-222993. These materials can also be applied to the present invention if desired. As the solder resist, commercially available products may be used. Specific examples include PFR800 manufactured by Taiyo Ink Manufacturing Co., Ltd., PSR4000 (trade name), SR7200G manufactured by Hitachi Chemical Co., Ltd., and the like.
上記で得られた導電膜を有する樹脂基材(導電膜付き樹脂基材)は、種々の用途に使用することができる。例えば、プリント配線基板、TFT(薄膜トランジスタ、Thin Film Transistorの略称)、FPC(フレキシブルプリント基板、Flexible Printed Circuitsの略称)、RFID(radio frequency identifierの略称)などが挙げられる。
The resin base material (resin base material with a conductive film) having the conductive film obtained above can be used for various applications. Examples include printed wiring boards, TFTs (thin film transistors, Thin Film Transistors), FPCs (Flexible Printed Circuits, Flexible Printed Circuits), RFIDs (radio frequency identifiers), and the like.
以下に実施例を示して本発明を具体的に説明する。ただし本発明はこれらに限定されない。
<実施例1>
(酸化第二銅ナノ粒子1の合成)
硝酸銅(和光純薬工業株式会社製)の所定量を精製水に溶かし、0.1mol/lの硝酸銅水溶液をあらかじめ調製した。イオン交換水100mlをガラス製200mlフラスコにとり、オイルバスで90℃に加熱した。ここに、上記硝酸銅水溶液と0.2mol/lの水酸化ナトリウム水溶液をそれぞれ20mlずつ10秒以内に添加し、10分間加熱して、酸化第二銅微粒子を得た。その後、遠心分離(10000G,30分)により粒子を回収した後、イオン交換水中に再分散させ、その後、イオン交換水を用いて限外ろ過を十分に行うことにより不純物を除いた後、濃縮処理を行い、粒子濃度が40質量%の酸化銅ペーストを得た。XRD(エックス線回折、X‐ray diffractionの略称。以下同様)分析により、35.5°および38°付近にそれぞれ(002)、(111)面に由来する強い回折ピークを観測し、得られた粒子が酸化第二銅であることを確認した。また、TEM(Transmission Electron Microscopeの略称。以下同様)観察の結果、上述のとおり得られた酸化第二銅ナノ粒子1の平均1次粒子径は18nmであった。 The present invention will be specifically described below with reference to examples. However, the present invention is not limited to these.
<Example 1>
(Synthesis of cupric oxide nanoparticles 1)
A predetermined amount of copper nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in purified water to prepare a 0.1 mol / l aqueous copper nitrate solution in advance. 100 ml of ion exchange water was placed in a glass 200 ml flask and heated to 90 ° C. in an oil bath. 20 ml each of the copper nitrate aqueous solution and 0.2 mol / l sodium hydroxide aqueous solution were added thereto within 10 seconds and heated for 10 minutes to obtain cupric oxide fine particles. Thereafter, the particles are collected by centrifugation (10000 G, 30 minutes), redispersed in ion-exchanged water, and then subjected to concentration by ultrafiltration using ion-exchanged water to sufficiently remove impurities. And a copper oxide paste having a particle concentration of 40% by mass was obtained. By XRD (abbreviation of X-ray diffraction, the same applies hereinafter) analysis, strong diffraction peaks derived from the (002) and (111) planes were observed near 35.5 ° and 38 °, respectively. Was confirmed to be cupric oxide. Moreover, as a result of TEM (abbreviation of Transmission Electron Microscope; hereinafter the same) observation, the average primary particle diameter of the cupric oxide nanoparticles 1 obtained as described above was 18 nm.
<実施例1>
(酸化第二銅ナノ粒子1の合成)
硝酸銅(和光純薬工業株式会社製)の所定量を精製水に溶かし、0.1mol/lの硝酸銅水溶液をあらかじめ調製した。イオン交換水100mlをガラス製200mlフラスコにとり、オイルバスで90℃に加熱した。ここに、上記硝酸銅水溶液と0.2mol/lの水酸化ナトリウム水溶液をそれぞれ20mlずつ10秒以内に添加し、10分間加熱して、酸化第二銅微粒子を得た。その後、遠心分離(10000G,30分)により粒子を回収した後、イオン交換水中に再分散させ、その後、イオン交換水を用いて限外ろ過を十分に行うことにより不純物を除いた後、濃縮処理を行い、粒子濃度が40質量%の酸化銅ペーストを得た。XRD(エックス線回折、X‐ray diffractionの略称。以下同様)分析により、35.5°および38°付近にそれぞれ(002)、(111)面に由来する強い回折ピークを観測し、得られた粒子が酸化第二銅であることを確認した。また、TEM(Transmission Electron Microscopeの略称。以下同様)観察の結果、上述のとおり得られた酸化第二銅ナノ粒子1の平均1次粒子径は18nmであった。 The present invention will be specifically described below with reference to examples. However, the present invention is not limited to these.
<Example 1>
(Synthesis of cupric oxide nanoparticles 1)
A predetermined amount of copper nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in purified water to prepare a 0.1 mol / l aqueous copper nitrate solution in advance. 100 ml of ion exchange water was placed in a glass 200 ml flask and heated to 90 ° C. in an oil bath. 20 ml each of the copper nitrate aqueous solution and 0.2 mol / l sodium hydroxide aqueous solution were added thereto within 10 seconds and heated for 10 minutes to obtain cupric oxide fine particles. Thereafter, the particles are collected by centrifugation (10000 G, 30 minutes), redispersed in ion-exchanged water, and then subjected to concentration by ultrafiltration using ion-exchanged water to sufficiently remove impurities. And a copper oxide paste having a particle concentration of 40% by mass was obtained. By XRD (abbreviation of X-ray diffraction, the same applies hereinafter) analysis, strong diffraction peaks derived from the (002) and (111) planes were observed near 35.5 ° and 38 °, respectively. Was confirmed to be cupric oxide. Moreover, as a result of TEM (abbreviation of Transmission Electron Microscope; hereinafter the same) observation, the average primary particle diameter of the cupric oxide nanoparticles 1 obtained as described above was 18 nm.
(導電膜形成用組成物1の調製)
上記のとおり得られた酸化第二銅ペースト(30質量部。酸化第二銅固形分として12質量部とイオン交換水18質量部とを含む。)と、(B)ジエチレングリコールを(7.8質量部)、イオン交換水(27.2質量部)、(D)1-ブタノール(3質量部)、エタノール(32質量部)とを混合し、自転公転ミキサー(THINKY社製、あわとり練太郎ARE-250)で5分間処理した後、超音波分散処理を行い、導電膜形成用組成物1を得た。
導電膜形成用組成物1を、イオン交換水で(A)酸化第二銅ナノ粒子が0.01質量%となるよう希釈し、紫外可視分光光度計(UV-2450、(株)島津製作所製)により得られた組成物の波長400nmにおける吸光度α1および波長600nmにおける吸光度α2を測定し、α1/α2の比を求めると、4.3であった。 (Preparation of conductive film forming composition 1)
Cupric oxide paste (30 parts by mass, including 12 parts by mass as cupric oxide solids and 18 parts by mass of ion-exchanged water) obtained as described above, and (B) diethylene glycol (7.8 parts by mass). Part), ion-exchanged water (27.2 parts by mass), (D) 1-butanol (3 parts by mass), and ethanol (32 parts by mass), and a revolving mixer (THINKY, manufactured by Aritori Neritaro ARE) -250) for 5 minutes, followed by ultrasonic dispersion treatment to obtain a conductive film-forming composition 1.
The conductive film-forming composition 1 was diluted with ion-exchanged water so that the (A) cupric oxide nanoparticles were 0.01% by mass, and an ultraviolet-visible spectrophotometer (UV-2450, manufactured by Shimadzu Corporation) The absorbance α1 at a wavelength of 400 nm and the absorbance α2 at a wavelength of 600 nm of the composition obtained in the above were measured, and the ratio of α1 / α2 was determined to be 4.3.
上記のとおり得られた酸化第二銅ペースト(30質量部。酸化第二銅固形分として12質量部とイオン交換水18質量部とを含む。)と、(B)ジエチレングリコールを(7.8質量部)、イオン交換水(27.2質量部)、(D)1-ブタノール(3質量部)、エタノール(32質量部)とを混合し、自転公転ミキサー(THINKY社製、あわとり練太郎ARE-250)で5分間処理した後、超音波分散処理を行い、導電膜形成用組成物1を得た。
導電膜形成用組成物1を、イオン交換水で(A)酸化第二銅ナノ粒子が0.01質量%となるよう希釈し、紫外可視分光光度計(UV-2450、(株)島津製作所製)により得られた組成物の波長400nmにおける吸光度α1および波長600nmにおける吸光度α2を測定し、α1/α2の比を求めると、4.3であった。 (Preparation of conductive film forming composition 1)
Cupric oxide paste (30 parts by mass, including 12 parts by mass as cupric oxide solids and 18 parts by mass of ion-exchanged water) obtained as described above, and (B) diethylene glycol (7.8 parts by mass). Part), ion-exchanged water (27.2 parts by mass), (D) 1-butanol (3 parts by mass), and ethanol (32 parts by mass), and a revolving mixer (THINKY, manufactured by Aritori Neritaro ARE) -250) for 5 minutes, followed by ultrasonic dispersion treatment to obtain a conductive film-forming composition 1.
The conductive film-forming composition 1 was diluted with ion-exchanged water so that the (A) cupric oxide nanoparticles were 0.01% by mass, and an ultraviolet-visible spectrophotometer (UV-2450, manufactured by Shimadzu Corporation) The absorbance α1 at a wavelength of 400 nm and the absorbance α2 at a wavelength of 600 nm of the composition obtained in the above were measured, and the ratio of α1 / α2 was determined to be 4.3.
また、希釈液を用いて商品名ナノトラック粒度分布測定装置UPA-EX150(日機装(株)製)で酸化第二銅ナノ粒子の粒度分布測定を行った。
その結果、導電膜形成用組成物中の酸化第二銅ナノ粒子の、動的光散乱法により測定される累積体積粒度分布における粒子径200nm以上の粒子の割合は酸化第二銅ナノ粒子全体の2%であった。粒子径が0nmを超え100nm未満の粒子の割合、粒子径が100nm以上200nm未満の粒子の割合も同様に測定した。結果を表1に示す。 Further, the particle size distribution of cupric oxide nanoparticles was measured using a diluted solution with a trade name Nanotrac particle size distribution analyzer UPA-EX150 (manufactured by Nikkiso Co., Ltd.).
As a result, the ratio of particles having a particle size of 200 nm or more in the cumulative volume particle size distribution measured by the dynamic light scattering method of the cupric oxide nanoparticles in the composition for forming a conductive film is based on the whole cupric oxide nanoparticles. 2%. The ratio of particles having a particle diameter of more than 0 nm and less than 100 nm and the ratio of particles having a particle diameter of 100 nm to less than 200 nm were also measured in the same manner. The results are shown in Table 1.
その結果、導電膜形成用組成物中の酸化第二銅ナノ粒子の、動的光散乱法により測定される累積体積粒度分布における粒子径200nm以上の粒子の割合は酸化第二銅ナノ粒子全体の2%であった。粒子径が0nmを超え100nm未満の粒子の割合、粒子径が100nm以上200nm未満の粒子の割合も同様に測定した。結果を表1に示す。 Further, the particle size distribution of cupric oxide nanoparticles was measured using a diluted solution with a trade name Nanotrac particle size distribution analyzer UPA-EX150 (manufactured by Nikkiso Co., Ltd.).
As a result, the ratio of particles having a particle size of 200 nm or more in the cumulative volume particle size distribution measured by the dynamic light scattering method of the cupric oxide nanoparticles in the composition for forming a conductive film is based on the whole cupric oxide nanoparticles. 2%. The ratio of particles having a particle diameter of more than 0 nm and less than 100 nm and the ratio of particles having a particle diameter of 100 nm to less than 200 nm were also measured in the same manner. The results are shown in Table 1.
(導電膜の作製)
ポリエチレンナフタレート(PEN)基材(Q65HA、厚み125μm、帝人デュポン社製)上に、導電膜形成用組成物1をWet膜の厚み12μmとなるようバー塗布し、50℃で1分間乾燥させることで塗膜を得た。
その後、得られた塗膜にパルス光照射処理(Xenon社製光焼結装置Sinteron2000、照射エネルギー:5.5J/cm2、3秒間隔で2回光照射)を行うことで導電膜を得た。得られた導電膜の厚みを表1に示す。 (Preparation of conductive film)
On a polyethylene naphthalate (PEN) base material (Q65HA, thickness 125 μm, manufactured by Teijin DuPont), a conductive film forming composition 1 is coated with a bar so as to have a wet film thickness of 12 μm, and dried at 50 ° C. for 1 minute. A coating film was obtained.
Thereafter, the obtained coating film was subjected to pulsed light irradiation treatment (Xenon's photosintering apparatus Sinteron 2000, irradiation energy: 5.5 J / cm 2 , light irradiation twice at intervals of 3 seconds) to obtain a conductive film. . Table 1 shows the thickness of the obtained conductive film.
ポリエチレンナフタレート(PEN)基材(Q65HA、厚み125μm、帝人デュポン社製)上に、導電膜形成用組成物1をWet膜の厚み12μmとなるようバー塗布し、50℃で1分間乾燥させることで塗膜を得た。
その後、得られた塗膜にパルス光照射処理(Xenon社製光焼結装置Sinteron2000、照射エネルギー:5.5J/cm2、3秒間隔で2回光照射)を行うことで導電膜を得た。得られた導電膜の厚みを表1に示す。 (Preparation of conductive film)
On a polyethylene naphthalate (PEN) base material (Q65HA, thickness 125 μm, manufactured by Teijin DuPont), a conductive film forming composition 1 is coated with a bar so as to have a wet film thickness of 12 μm, and dried at 50 ° C. for 1 minute. A coating film was obtained.
Thereafter, the obtained coating film was subjected to pulsed light irradiation treatment (Xenon's photosintering apparatus Sinteron 2000, irradiation energy: 5.5 J / cm 2 , light irradiation twice at intervals of 3 seconds) to obtain a conductive film. . Table 1 shows the thickness of the obtained conductive film.
<欠陥評価>
得られた導電膜を、光学顕微鏡を用いて倍率450倍で観察し、欠陥の有無、欠陥の状態を以下の基準に基づき評価した。実用上、A~Bであることが好ましい。結果を表1に示す。
・「A」:導電膜が全面に形成できており、欠陥がほとんどない。
・「B」:導電膜においてクラックおよび/またはアブレーションしている部分がある。
・「C」:導電膜の全面がアブレーションしており導電膜が形成できない。 <Defect evaluation>
The obtained conductive film was observed at a magnification of 450 times using an optical microscope, and the presence or absence of defects and the state of defects were evaluated based on the following criteria. Practically, it is preferably A to B. The results are shown in Table 1.
"A": The conductive film is formed on the entire surface, and there are almost no defects.
“B”: There is a cracked and / or ablated portion in the conductive film.
"C": The entire surface of the conductive film is ablated and the conductive film cannot be formed.
得られた導電膜を、光学顕微鏡を用いて倍率450倍で観察し、欠陥の有無、欠陥の状態を以下の基準に基づき評価した。実用上、A~Bであることが好ましい。結果を表1に示す。
・「A」:導電膜が全面に形成できており、欠陥がほとんどない。
・「B」:導電膜においてクラックおよび/またはアブレーションしている部分がある。
・「C」:導電膜の全面がアブレーションしており導電膜が形成できない。 <Defect evaluation>
The obtained conductive film was observed at a magnification of 450 times using an optical microscope, and the presence or absence of defects and the state of defects were evaluated based on the following criteria. Practically, it is preferably A to B. The results are shown in Table 1.
"A": The conductive film is formed on the entire surface, and there are almost no defects.
“B”: There is a cracked and / or ablated portion in the conductive film.
"C": The entire surface of the conductive film is ablated and the conductive film cannot be formed.
<導電性>
得られた導電膜について、四探針法抵抗率計を用いて体積抵抗率を測定し、導電性を評価した。評価基準は以下のとおりである。なお、実用上、A、BまたはCであることが求められる。結果を表1に示す。
・「A」:体積抵抗率が100μΩ・cm未満
・「B」:体積抵抗率が100μΩ・cm以上300μΩ・cm未満
・「C」:体積抵抗率が300μΩ・cm以上1000μΩ・cm未満
・「D」:体積抵抗率が1000μΩ・cm以上 <Conductivity>
About the obtained electrically conductive film, volume resistivity was measured using the four-probe method resistivity meter, and electroconductivity was evaluated. The evaluation criteria are as follows. In practice, it is required to be A, B or C. The results are shown in Table 1.
“A”: Volume resistivity is less than 100 μΩ · cm “B”: Volume resistivity is 100 μΩ · cm or more and less than 300 μΩ · cm • “C”: Volume resistivity is 300 μΩ · cm or more and less than 1000 μΩ · cm • “D” ”: Volume resistivity is 1000 μΩ · cm or more
得られた導電膜について、四探針法抵抗率計を用いて体積抵抗率を測定し、導電性を評価した。評価基準は以下のとおりである。なお、実用上、A、BまたはCであることが求められる。結果を表1に示す。
・「A」:体積抵抗率が100μΩ・cm未満
・「B」:体積抵抗率が100μΩ・cm以上300μΩ・cm未満
・「C」:体積抵抗率が300μΩ・cm以上1000μΩ・cm未満
・「D」:体積抵抗率が1000μΩ・cm以上 <Conductivity>
About the obtained electrically conductive film, volume resistivity was measured using the four-probe method resistivity meter, and electroconductivity was evaluated. The evaluation criteria are as follows. In practice, it is required to be A, B or C. The results are shown in Table 1.
“A”: Volume resistivity is less than 100 μΩ · cm “B”: Volume resistivity is 100 μΩ · cm or more and less than 300 μΩ · cm • “C”: Volume resistivity is 300 μΩ · cm or more and less than 1000 μΩ · cm • “D” ”: Volume resistivity is 1000 μΩ · cm or more
<比較例1>
ジエチレングリコールのかわりに2,3-ブタンジオールを用いた以外は実施例1と同様にして導電膜形成用組成物、導電膜を作製し、評価した。 <Comparative Example 1>
A conductive film-forming composition and a conductive film were prepared and evaluated in the same manner as in Example 1 except that 2,3-butanediol was used in place of diethylene glycol.
ジエチレングリコールのかわりに2,3-ブタンジオールを用いた以外は実施例1と同様にして導電膜形成用組成物、導電膜を作製し、評価した。 <Comparative Example 1>
A conductive film-forming composition and a conductive film were prepared and evaluated in the same manner as in Example 1 except that 2,3-butanediol was used in place of diethylene glycol.
<実施例2>
ジエチレングリコールのかわりにエチレングリコール14.1質量部を用い、イオン交換水の添加量を導電膜形成用組成物総量が100質量部となるようにし、照射エネルギーを5J/cm2に代えた以外は実施例1と同様にして、導電膜形成用組成物、導電膜を作製し、評価した。 <Example 2>
Implemented except that 14.1 parts by mass of ethylene glycol is used in place of diethylene glycol, the total amount of the composition for forming a conductive film is 100 parts by mass, and the irradiation energy is changed to 5 J / cm 2. In the same manner as in Example 1, a composition for forming a conductive film and a conductive film were prepared and evaluated.
ジエチレングリコールのかわりにエチレングリコール14.1質量部を用い、イオン交換水の添加量を導電膜形成用組成物総量が100質量部となるようにし、照射エネルギーを5J/cm2に代えた以外は実施例1と同様にして、導電膜形成用組成物、導電膜を作製し、評価した。 <Example 2>
Implemented except that 14.1 parts by mass of ethylene glycol is used in place of diethylene glycol, the total amount of the composition for forming a conductive film is 100 parts by mass, and the irradiation energy is changed to 5 J / cm 2. In the same manner as in Example 1, a composition for forming a conductive film and a conductive film were prepared and evaluated.
<実施例3>
エチレングリコールの量を9.4質量部に変更し、触媒として酢酸パラジウム(0.12質量部)をアセトン(5.88質量部)に溶解させた液Aを6質量部添加し、導電膜形成用組成物の総量が100質量部となるようイオン交換水の量を調整し、照射エネルギーを4.5J/cm2に代えた以外は、実施例2と同様にして、導電膜形成用組成物、導電膜を作製し、評価した。
なお、本明細書の実施例において、(E)金属触媒として酢酸パラジウムを使用する場合、上記の液Aと同様の混合物が使用された。 <Example 3>
The amount of ethylene glycol was changed to 9.4 parts by mass, and 6 parts by mass of liquid A prepared by dissolving palladium acetate (0.12 parts by mass) in acetone (5.88 parts by mass) as a catalyst was added to form a conductive film. Conductive film forming composition in the same manner as in Example 2, except that the amount of ion-exchanged water was adjusted so that the total amount of the composition for use was 100 parts by mass, and the irradiation energy was changed to 4.5 J / cm 2 . A conductive film was prepared and evaluated.
In Examples of the present specification, when palladium acetate was used as the metal catalyst (E), a mixture similar to the above liquid A was used.
エチレングリコールの量を9.4質量部に変更し、触媒として酢酸パラジウム(0.12質量部)をアセトン(5.88質量部)に溶解させた液Aを6質量部添加し、導電膜形成用組成物の総量が100質量部となるようイオン交換水の量を調整し、照射エネルギーを4.5J/cm2に代えた以外は、実施例2と同様にして、導電膜形成用組成物、導電膜を作製し、評価した。
なお、本明細書の実施例において、(E)金属触媒として酢酸パラジウムを使用する場合、上記の液Aと同様の混合物が使用された。 <Example 3>
The amount of ethylene glycol was changed to 9.4 parts by mass, and 6 parts by mass of liquid A prepared by dissolving palladium acetate (0.12 parts by mass) in acetone (5.88 parts by mass) as a catalyst was added to form a conductive film. Conductive film forming composition in the same manner as in Example 2, except that the amount of ion-exchanged water was adjusted so that the total amount of the composition for use was 100 parts by mass, and the irradiation energy was changed to 4.5 J / cm 2 . A conductive film was prepared and evaluated.
In Examples of the present specification, when palladium acetate was used as the metal catalyst (E), a mixture similar to the above liquid A was used.
<実施例4~7、比較例2>
(B)ポリオール系有機溶媒を下記表1に記載した成分を同表に示す割合となるよう用い、照射エネルギーを下記表1の値に代えた他は実施例3と同様にして導電膜形成用組成物、導電膜を作製し、評価した。なお実施例5の照射エネルギーの値は実施例3と同じである。 <Examples 4 to 7, Comparative Example 2>
(B) For the formation of a conductive film in the same manner as in Example 3, except that the polyol-based organic solvent was used so that the components listed in the following Table 1 were used in the proportions shown in the same table, and the irradiation energy was changed to the values in the following Table 1. A composition and a conductive film were prepared and evaluated. In addition, the value of the irradiation energy of Example 5 is the same as that of Example 3.
(B)ポリオール系有機溶媒を下記表1に記載した成分を同表に示す割合となるよう用い、照射エネルギーを下記表1の値に代えた他は実施例3と同様にして導電膜形成用組成物、導電膜を作製し、評価した。なお実施例5の照射エネルギーの値は実施例3と同じである。 <Examples 4 to 7, Comparative Example 2>
(B) For the formation of a conductive film in the same manner as in Example 3, except that the polyol-based organic solvent was used so that the components listed in the following Table 1 were used in the proportions shown in the same table, and the irradiation energy was changed to the values in the following Table 1. A composition and a conductive film were prepared and evaluated. In addition, the value of the irradiation energy of Example 5 is the same as that of Example 3.
<比較例3>
平均1次粒子径48nmの酸化第二銅ナノ粒子2(酸化第二銅ナノ粒子、シーアイ化成株式会社製)を用いた以外は実施例1と同様にして、導電膜形成用組成物、導電膜を作製した。 <Comparative Example 3>
A conductive film-forming composition and a conductive film were obtained in the same manner as in Example 1 except that cupric oxide nanoparticles 2 (cupric oxide nanoparticles, manufactured by CI Kasei Co., Ltd.) having an average primary particle diameter of 48 nm were used. Was made.
平均1次粒子径48nmの酸化第二銅ナノ粒子2(酸化第二銅ナノ粒子、シーアイ化成株式会社製)を用いた以外は実施例1と同様にして、導電膜形成用組成物、導電膜を作製した。 <Comparative Example 3>
A conductive film-forming composition and a conductive film were obtained in the same manner as in Example 1 except that cupric oxide nanoparticles 2 (cupric oxide nanoparticles, manufactured by CI Kasei Co., Ltd.) having an average primary particle diameter of 48 nm were used. Was made.
<比較例4>
(酸化第二銅ナノ粒子3の合成)
硝酸銅(和光純薬工業株式会社製)の所定量を精製水に溶かし、0.1mol/lの硝酸銅水溶液をあらかじめ調製した。エチレングリコール100mlをガラス製200mlフラスコにとり、オイルバスで90℃に加熱した。ここに、上記硝酸銅水溶液と0.2mol/lの水酸化ナトリウム水溶液をそれぞれ15mlずつ10秒以内に添加し、10分間加熱して、酸化第二銅微粒子を得た。その後、遠心分離(10000G,30分)により粒子を回収した後、イオン交換水中に再分散させ、その後イオン交換水を用いて限外ろ過を行うことにより不純物を除き、濃縮して酸化第二銅粒子濃度が30質量%の酸化銅ペーストを得た。XRD分析により、35.5°、および38°付近にそれぞれ(002)、(111)面に由来する強い回折ピークを観測し、得られた粒子が酸化第二銅であることを確認した。また、TEM観察の結果、得られた酸化第二銅ナノ粒子3の平均1次粒子径は4nmであった。 <Comparative example 4>
(Synthesis of cupric oxide nanoparticles 3)
A predetermined amount of copper nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in purified water to prepare a 0.1 mol / l aqueous copper nitrate solution in advance. 100 ml of ethylene glycol was placed in a glass 200 ml flask and heated to 90 ° C. in an oil bath. Here, 15 ml each of the copper nitrate aqueous solution and 0.2 mol / l sodium hydroxide aqueous solution were added within 10 seconds and heated for 10 minutes to obtain cupric oxide fine particles. Thereafter, the particles are recovered by centrifugation (10000 G, 30 minutes), then redispersed in ion-exchanged water, and then subjected to ultrafiltration using ion-exchanged water to remove impurities, and concentrated to cupric oxide. A copper oxide paste having a particle concentration of 30% by mass was obtained. By XRD analysis, strong diffraction peaks derived from the (002) and (111) planes were observed near 35.5 ° and 38 °, respectively, and it was confirmed that the obtained particles were cupric oxide. As a result of TEM observation, the average primary particle diameter of the obtained cupric oxide nanoparticles 3 was 4 nm.
(酸化第二銅ナノ粒子3の合成)
硝酸銅(和光純薬工業株式会社製)の所定量を精製水に溶かし、0.1mol/lの硝酸銅水溶液をあらかじめ調製した。エチレングリコール100mlをガラス製200mlフラスコにとり、オイルバスで90℃に加熱した。ここに、上記硝酸銅水溶液と0.2mol/lの水酸化ナトリウム水溶液をそれぞれ15mlずつ10秒以内に添加し、10分間加熱して、酸化第二銅微粒子を得た。その後、遠心分離(10000G,30分)により粒子を回収した後、イオン交換水中に再分散させ、その後イオン交換水を用いて限外ろ過を行うことにより不純物を除き、濃縮して酸化第二銅粒子濃度が30質量%の酸化銅ペーストを得た。XRD分析により、35.5°、および38°付近にそれぞれ(002)、(111)面に由来する強い回折ピークを観測し、得られた粒子が酸化第二銅であることを確認した。また、TEM観察の結果、得られた酸化第二銅ナノ粒子3の平均1次粒子径は4nmであった。 <Comparative example 4>
(Synthesis of cupric oxide nanoparticles 3)
A predetermined amount of copper nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in purified water to prepare a 0.1 mol / l aqueous copper nitrate solution in advance. 100 ml of ethylene glycol was placed in a glass 200 ml flask and heated to 90 ° C. in an oil bath. Here, 15 ml each of the copper nitrate aqueous solution and 0.2 mol / l sodium hydroxide aqueous solution were added within 10 seconds and heated for 10 minutes to obtain cupric oxide fine particles. Thereafter, the particles are recovered by centrifugation (10000 G, 30 minutes), then redispersed in ion-exchanged water, and then subjected to ultrafiltration using ion-exchanged water to remove impurities, and concentrated to cupric oxide. A copper oxide paste having a particle concentration of 30% by mass was obtained. By XRD analysis, strong diffraction peaks derived from the (002) and (111) planes were observed near 35.5 ° and 38 °, respectively, and it was confirmed that the obtained particles were cupric oxide. As a result of TEM observation, the average primary particle diameter of the obtained cupric oxide nanoparticles 3 was 4 nm.
(導電膜形成用組成物、導電膜の作製)
上記のとおり得られた、酸化第二銅ナノ粒子3を含む酸化第二銅分散物(40質量部)と、(B)ジエチレングリコールを(7.8質量部)、イオン交換水17.2質量部、(D)1-ブタノール(3質量部)、エタノール(32質量部)とを混合し、超音波分散処理することで導電膜形成用組成物を得た。
また、上記のとおり得られた導電膜形成用組成物を用いて実施例1と同様にして導電膜を作製し、評価した。 (Composition for forming conductive film, preparation of conductive film)
The cupric oxide dispersion containing cupric oxide nanoparticles 3 (40 parts by mass) obtained as described above, (B) diethylene glycol (7.8 parts by mass), and 17.2 parts by mass of ion-exchanged water. (D) 1-butanol (3 parts by mass) and ethanol (32 parts by mass) were mixed and subjected to ultrasonic dispersion treatment to obtain a composition for forming a conductive film.
A conductive film was prepared and evaluated in the same manner as in Example 1 using the conductive film-forming composition obtained as described above.
上記のとおり得られた、酸化第二銅ナノ粒子3を含む酸化第二銅分散物(40質量部)と、(B)ジエチレングリコールを(7.8質量部)、イオン交換水17.2質量部、(D)1-ブタノール(3質量部)、エタノール(32質量部)とを混合し、超音波分散処理することで導電膜形成用組成物を得た。
また、上記のとおり得られた導電膜形成用組成物を用いて実施例1と同様にして導電膜を作製し、評価した。 (Composition for forming conductive film, preparation of conductive film)
The cupric oxide dispersion containing cupric oxide nanoparticles 3 (40 parts by mass) obtained as described above, (B) diethylene glycol (7.8 parts by mass), and 17.2 parts by mass of ion-exchanged water. (D) 1-butanol (3 parts by mass) and ethanol (32 parts by mass) were mixed and subjected to ultrasonic dispersion treatment to obtain a composition for forming a conductive film.
A conductive film was prepared and evaluated in the same manner as in Example 1 using the conductive film-forming composition obtained as described above.
<実施例8>
(酸化第二銅ナノ粒子4の合成)
酸化第二銅ナノ粒子の合成に際に、添加する硝酸銅水溶液および水酸化ナトリウム水溶液の量を4倍にした以外は、実施例1と同様にして酸化第二銅ナノ粒子4を得た。酸化第二銅ナノ粒子4の平均1次粒子径は10nmであった。
(導電膜形成用組成物、導電膜の作製)
上記のとおり得られた、酸化第二銅ナノ粒子4を含む酸化第二銅分散物を用いる以外は、実施例4と同様に導電膜形成用組成物、導電膜を作製し、評価した。 <Example 8>
(Synthesis of cupric oxide nanoparticles 4)
In the synthesis of cupric oxide nanoparticles, cupric oxide nanoparticles 4 were obtained in the same manner as in Example 1 except that the amount of the copper nitrate aqueous solution and the sodium hydroxide aqueous solution added was quadrupled. The average primary particle diameter of cupric oxide nanoparticles 4 was 10 nm.
(Composition for forming conductive film, preparation of conductive film)
A conductive film-forming composition and a conductive film were prepared and evaluated in the same manner as in Example 4 except that the cupric oxide dispersion containing cupric oxide nanoparticles 4 obtained as described above was used.
(酸化第二銅ナノ粒子4の合成)
酸化第二銅ナノ粒子の合成に際に、添加する硝酸銅水溶液および水酸化ナトリウム水溶液の量を4倍にした以外は、実施例1と同様にして酸化第二銅ナノ粒子4を得た。酸化第二銅ナノ粒子4の平均1次粒子径は10nmであった。
(導電膜形成用組成物、導電膜の作製)
上記のとおり得られた、酸化第二銅ナノ粒子4を含む酸化第二銅分散物を用いる以外は、実施例4と同様に導電膜形成用組成物、導電膜を作製し、評価した。 <Example 8>
(Synthesis of cupric oxide nanoparticles 4)
In the synthesis of cupric oxide nanoparticles, cupric oxide nanoparticles 4 were obtained in the same manner as in Example 1 except that the amount of the copper nitrate aqueous solution and the sodium hydroxide aqueous solution added was quadrupled. The average primary particle diameter of cupric oxide nanoparticles 4 was 10 nm.
(Composition for forming conductive film, preparation of conductive film)
A conductive film-forming composition and a conductive film were prepared and evaluated in the same manner as in Example 4 except that the cupric oxide dispersion containing cupric oxide nanoparticles 4 obtained as described above was used.
<実施例9>
ジエチレングリコールのかわりにエチレングリコールを用い、エチレングリコール量を表1に記載の量とし、導電膜形成用組成物の総量が100質量部となるようイオン交換水の量を調整した以外は実施例8と同様に導電膜形成用組成物、導電膜を作製し、評価した。
<実施例10、11>
(B)ポリオール系有機溶媒、(C)ポリオキシアルキレン系化合物について下記表1に示す成分を同表に示す量で使用し、Wet膜の厚みを40μmとし、照射エネルギー、照射回数を表1に示す値に代えた以外は実施例8と同様に導電膜形成用組成物、導電膜を作製し、評価した。なお実施例11は(E)金属触媒を使用しなかった。
<実施例12~15>
(B)ポリオール系有機溶媒、(C)ポリオキシアルキレン系化合物について下記表1に示す成分を同表に示す量で使用し、照射エネルギーを表1に示す値に代えた以外は、実施例8と同様に導電膜形成用組成物、導電膜を作製し、評価した。なお実施例12は(E)金属触媒を使用しなかった。また実施例12の照射エネルギーは実施例8と同じであった。実施例15のジエチレングリコールの量は実施例8と同じであった。 <Example 9>
Example 8 except that ethylene glycol was used instead of diethylene glycol, the amount of ethylene glycol was set to the amount shown in Table 1, and the amount of ion-exchanged water was adjusted so that the total amount of the composition for forming a conductive film was 100 parts by mass. Similarly, a composition for forming a conductive film and a conductive film were prepared and evaluated.
<Examples 10 and 11>
For the (B) polyol-based organic solvent and (C) polyoxyalkylene-based compound, the components shown in Table 1 below are used in the amounts shown in the same table, the thickness of the Wet film is 40 μm, the irradiation energy and the number of irradiations are shown in Table 1. Except having replaced with the value shown, the composition for electrically conductive film formation and the electrically conductive film were produced similarly to Example 8, and evaluated. In Example 11, (E) a metal catalyst was not used.
<Examples 12 to 15>
Example 8 For the (B) polyol organic solvent and (C) polyoxyalkylene compound, the components shown in Table 1 below were used in the amounts shown in the same table, and the irradiation energy was changed to the values shown in Table 1. The composition for electrically conductive film formation and the electrically conductive film were produced similarly, and evaluated. In Example 12, the metal catalyst (E) was not used. The irradiation energy of Example 12 was the same as that of Example 8. The amount of diethylene glycol in Example 15 was the same as in Example 8.
ジエチレングリコールのかわりにエチレングリコールを用い、エチレングリコール量を表1に記載の量とし、導電膜形成用組成物の総量が100質量部となるようイオン交換水の量を調整した以外は実施例8と同様に導電膜形成用組成物、導電膜を作製し、評価した。
<実施例10、11>
(B)ポリオール系有機溶媒、(C)ポリオキシアルキレン系化合物について下記表1に示す成分を同表に示す量で使用し、Wet膜の厚みを40μmとし、照射エネルギー、照射回数を表1に示す値に代えた以外は実施例8と同様に導電膜形成用組成物、導電膜を作製し、評価した。なお実施例11は(E)金属触媒を使用しなかった。
<実施例12~15>
(B)ポリオール系有機溶媒、(C)ポリオキシアルキレン系化合物について下記表1に示す成分を同表に示す量で使用し、照射エネルギーを表1に示す値に代えた以外は、実施例8と同様に導電膜形成用組成物、導電膜を作製し、評価した。なお実施例12は(E)金属触媒を使用しなかった。また実施例12の照射エネルギーは実施例8と同じであった。実施例15のジエチレングリコールの量は実施例8と同じであった。 <Example 9>
Example 8 except that ethylene glycol was used instead of diethylene glycol, the amount of ethylene glycol was set to the amount shown in Table 1, and the amount of ion-exchanged water was adjusted so that the total amount of the composition for forming a conductive film was 100 parts by mass. Similarly, a composition for forming a conductive film and a conductive film were prepared and evaluated.
<Examples 10 and 11>
For the (B) polyol-based organic solvent and (C) polyoxyalkylene-based compound, the components shown in Table 1 below are used in the amounts shown in the same table, the thickness of the Wet film is 40 μm, the irradiation energy and the number of irradiations are shown in Table 1. Except having replaced with the value shown, the composition for electrically conductive film formation and the electrically conductive film were produced similarly to Example 8, and evaluated. In Example 11, (E) a metal catalyst was not used.
<Examples 12 to 15>
Example 8 For the (B) polyol organic solvent and (C) polyoxyalkylene compound, the components shown in Table 1 below were used in the amounts shown in the same table, and the irradiation energy was changed to the values shown in Table 1. The composition for electrically conductive film formation and the electrically conductive film were produced similarly, and evaluated. In Example 12, the metal catalyst (E) was not used. The irradiation energy of Example 12 was the same as that of Example 8. The amount of diethylene glycol in Example 15 was the same as in Example 8.
<実施例16>
気相法で作製した、平均1次粒子径28nmの酸化第二銅ナノ粒子5を用いる以外は実施例4と同様にして導電膜形成用組成物、導電膜を作製し、評価した。
<実施例17>
1-ブタノール及びエタノールの代わりにイオン交換水を添加した以外は、実施例12と同様にして導電膜形成用組成物、導電膜を作製し、評価した。 <Example 16>
A conductive film-forming composition and a conductive film were prepared and evaluated in the same manner as in Example 4 except that cupric oxide nanoparticles 5 having an average primary particle diameter of 28 nm prepared by a vapor phase method were used.
<Example 17>
A conductive film-forming composition and a conductive film were prepared and evaluated in the same manner as in Example 12 except that ion-exchanged water was added instead of 1-butanol and ethanol.
気相法で作製した、平均1次粒子径28nmの酸化第二銅ナノ粒子5を用いる以外は実施例4と同様にして導電膜形成用組成物、導電膜を作製し、評価した。
<実施例17>
1-ブタノール及びエタノールの代わりにイオン交換水を添加した以外は、実施例12と同様にして導電膜形成用組成物、導電膜を作製し、評価した。 <Example 16>
A conductive film-forming composition and a conductive film were prepared and evaluated in the same manner as in Example 4 except that cupric oxide nanoparticles 5 having an average primary particle diameter of 28 nm prepared by a vapor phase method were used.
<Example 17>
A conductive film-forming composition and a conductive film were prepared and evaluated in the same manner as in Example 12 except that ion-exchanged water was added instead of 1-butanol and ethanol.
表1中の「wt%」は「質量%」を意図する。
また、表1中、「ポリエチレングリコール Mw20000」は、重量平均分子量20,000のポリエチレングリコール(和光純薬工業(株)社製)を意図する。
また、表1中、各実施例、比較例において、(A)酸化第二銅ナノ粒子(正味の量)、(B)ポリオール系有機溶媒、(C)ポリオキシアルキレン系化合物、(E)金属触媒の量を、導電膜形成用組成物全体中の濃度で示した。 “Wt%” in Table 1 intends “mass%”.
In Table 1, “polyethylene glycol Mw 20000” intends polyethylene glycol having a weight average molecular weight of 20,000 (manufactured by Wako Pure Chemical Industries, Ltd.).
In Table 1, in each example and comparative example, (A) cupric oxide nanoparticles (net amount), (B) polyol organic solvent, (C) polyoxyalkylene compound, (E) metal The amount of the catalyst was shown as a concentration in the entire composition for forming a conductive film.
また、表1中、「ポリエチレングリコール Mw20000」は、重量平均分子量20,000のポリエチレングリコール(和光純薬工業(株)社製)を意図する。
また、表1中、各実施例、比較例において、(A)酸化第二銅ナノ粒子(正味の量)、(B)ポリオール系有機溶媒、(C)ポリオキシアルキレン系化合物、(E)金属触媒の量を、導電膜形成用組成物全体中の濃度で示した。 “Wt%” in Table 1 intends “mass%”.
In Table 1, “polyethylene glycol Mw 20000” intends polyethylene glycol having a weight average molecular weight of 20,000 (manufactured by Wako Pure Chemical Industries, Ltd.).
In Table 1, in each example and comparative example, (A) cupric oxide nanoparticles (net amount), (B) polyol organic solvent, (C) polyoxyalkylene compound, (E) metal The amount of the catalyst was shown as a concentration in the entire composition for forming a conductive film.
上記表1に示すように、本発明の導電膜形成用組成物を使用した場合、形成された導電膜は欠陥が少なく、導電性にも優れることが確認された。
また、実施例8、4、16の比較からわかるように、α1/α2が所定の範囲である場合、平均1次粒子径がより小さく、α1/α2がより大きいほど、導電膜の導電性がより優れ、欠陥の発生をより抑制できることが確認された。 As shown in Table 1 above, when the conductive film forming composition of the present invention was used, it was confirmed that the formed conductive film had few defects and excellent conductivity.
Further, as can be seen from the comparison of Examples 8, 4, and 16, when α1 / α2 is within a predetermined range, the conductivity of the conductive film is increased as the average primary particle diameter is smaller and α1 / α2 is larger. It was confirmed that it was superior and the occurrence of defects could be further suppressed.
また、実施例8、4、16の比較からわかるように、α1/α2が所定の範囲である場合、平均1次粒子径がより小さく、α1/α2がより大きいほど、導電膜の導電性がより優れ、欠陥の発生をより抑制できることが確認された。 As shown in Table 1 above, when the conductive film forming composition of the present invention was used, it was confirmed that the formed conductive film had few defects and excellent conductivity.
Further, as can be seen from the comparison of Examples 8, 4, and 16, when α1 / α2 is within a predetermined range, the conductivity of the conductive film is increased as the average primary particle diameter is smaller and α1 / α2 is larger. It was confirmed that it was superior and the occurrence of defects could be further suppressed.
一方、比較例1に示すように、ポリオール系有機溶媒の沸点が所定の範囲より小さい場合、導電性、欠陥発生の抑制に劣ることが確認された。
また、比較例2に示すように、ポリオール系有機溶媒の沸点が所定の範囲より大きい場合、導電性に劣ることが確認された。また、ポリオール系有機溶媒の沸点が所定の範囲より大きい場合、α1/α2が所定の範囲より小さくなった。このことから、ポリオール系有機溶媒の沸点が高すぎると酸化第二銅ナノ粒子の分散性が低くなると推測される。
また、比較例3、4に示すように、α1/α2が所定の範囲外である場合、導電性、欠陥発生の抑制に劣ることが確認された。 On the other hand, as shown in Comparative Example 1, it was confirmed that when the boiling point of the polyol-based organic solvent was smaller than the predetermined range, the conductivity and the generation of defects were inferior.
Moreover, as shown in Comparative Example 2, when the boiling point of the polyol organic solvent was larger than the predetermined range, it was confirmed that the conductivity was inferior. Moreover, when the boiling point of the polyol organic solvent was larger than the predetermined range, α1 / α2 was smaller than the predetermined range. From this, it is presumed that the dispersibility of cupric oxide nanoparticles is lowered when the boiling point of the polyol-based organic solvent is too high.
Further, as shown in Comparative Examples 3 and 4, when α1 / α2 was outside the predetermined range, it was confirmed that the conductivity and the generation of defects were inferior.
また、比較例2に示すように、ポリオール系有機溶媒の沸点が所定の範囲より大きい場合、導電性に劣ることが確認された。また、ポリオール系有機溶媒の沸点が所定の範囲より大きい場合、α1/α2が所定の範囲より小さくなった。このことから、ポリオール系有機溶媒の沸点が高すぎると酸化第二銅ナノ粒子の分散性が低くなると推測される。
また、比較例3、4に示すように、α1/α2が所定の範囲外である場合、導電性、欠陥発生の抑制に劣ることが確認された。 On the other hand, as shown in Comparative Example 1, it was confirmed that when the boiling point of the polyol-based organic solvent was smaller than the predetermined range, the conductivity and the generation of defects were inferior.
Moreover, as shown in Comparative Example 2, when the boiling point of the polyol organic solvent was larger than the predetermined range, it was confirmed that the conductivity was inferior. Moreover, when the boiling point of the polyol organic solvent was larger than the predetermined range, α1 / α2 was smaller than the predetermined range. From this, it is presumed that the dispersibility of cupric oxide nanoparticles is lowered when the boiling point of the polyol-based organic solvent is too high.
Further, as shown in Comparative Examples 3 and 4, when α1 / α2 was outside the predetermined range, it was confirmed that the conductivity and the generation of defects were inferior.
Claims (14)
- 酸化第二銅ナノ粒子と、
沸点190~340℃であるポリオール系有機溶媒とを少なくとも含有する、導電膜形成用組成物であって、
分光光度計により測定された波長400nmおよび波長600nmにおける吸光度の比が以下の式1を満たす、導電膜形成用組成物。
式1 5>α1/α2>3
式1中、α1は波長400nmにおける組成物の吸光度を表し、α2は波長600nmにおける組成物の吸光度を表す。 Cupric oxide nanoparticles,
A composition for forming a conductive film, comprising at least a polyol organic solvent having a boiling point of 190 to 340 ° C.,
The composition for electrically conductive film formation in which the ratio of the light absorbency in wavelength 400nm and wavelength 600nm measured with the spectrophotometer satisfy | fills the following formula | equation 1.
Formula 1 5> α1 / α2> 3
In Formula 1, α1 represents the absorbance of the composition at a wavelength of 400 nm, and α2 represents the absorbance of the composition at a wavelength of 600 nm. - 前記酸化第二銅ナノ粒子の平均1次粒子径が2~25nmである、請求項1に記載の導電膜形成用組成物。 The composition for forming a conductive film according to claim 1, wherein the cupric oxide nanoparticles have an average primary particle diameter of 2 to 25 nm.
- さらに、重量平均分子量1,000以上のポリオキシアルキレン系化合物を含有する、請求項1または2に記載の導電膜形成用組成物。 Furthermore, the composition for electrically conductive film formation of Claim 1 or 2 containing the polyoxyalkylene type compound of weight average molecular weight 1,000 or more.
- 前記ポリオキシアルキレン系化合物がポリエチレングリコールである、請求項3に記載の導電膜形成用組成物。 The composition for forming a conductive film according to claim 3, wherein the polyoxyalkylene compound is polyethylene glycol.
- 前記酸化第二銅ナノ粒子の、動的光散乱法により測定される累積体積粒度分布における粒子径200nm以上の粒子の割合が、前記酸化第二銅ナノ粒子全体の15%以下である、請求項1~4のいずれか1項に記載の導電膜形成用組成物。 The ratio of particles having a particle diameter of 200 nm or more in the cumulative volume particle size distribution measured by a dynamic light scattering method of the cupric oxide nanoparticles is 15% or less of the whole cupric oxide nanoparticles. 5. The composition for forming a conductive film according to any one of 1 to 4.
- さらに、表面張力が40mN/m以下で沸点50~180℃である、アルコール系有機溶媒またはケトン系有機溶媒を含有し、
前記アルコール系有機溶媒またはケトン系有機溶媒の含有量が、組成物全質量に対して、1~50質量%である、請求項1~5のいずれか1項に記載の導電膜形成用組成物。 Furthermore, it contains an alcohol-based organic solvent or a ketone-based organic solvent having a surface tension of 40 mN / m or less and a boiling point of 50 to 180 ° C.,
The composition for forming a conductive film according to any one of claims 1 to 5, wherein the content of the alcohol-based organic solvent or the ketone-based organic solvent is 1 to 50 mass% with respect to the total mass of the composition. . - 前記酸化第二銅ナノ粒子と前記ポリオール系有機溶媒との質量比が、1:0.005~1:2である、請求項1~6のいずれか1項に記載の導電膜形成用組成物。 The composition for forming a conductive film according to any one of claims 1 to 6, wherein a mass ratio of the cupric oxide nanoparticles to the polyol organic solvent is 1: 0.005 to 1: 2. .
- 前記酸化第二銅ナノ粒子と前記ポリオキシアルキレン系化合物との質量比が、1:0.01~1:0.5である、請求項3~7のいずれか1項に記載の導電膜形成用組成物。 The conductive film formation according to any one of claims 3 to 7, wherein a mass ratio of the cupric oxide nanoparticles to the polyoxyalkylene compound is 1: 0.01 to 1: 0.5. Composition.
- 前記ポリオール系有機溶媒がジオールまたはトリオールである、請求項1~8のいずれか1項に記載の導電膜形成用組成物。 The composition for forming a conductive film according to any one of claims 1 to 8, wherein the polyol organic solvent is a diol or a triol.
- 前記ポリオール系有機溶媒が、エチレングリコール、ジエチレングリコール、トリエチレングリコール、トリメチロールプロパン及びグリセリンからなる群から選ばれる少なくとも1種である、請求項1~9のいずれか1項に記載の導電膜形成用組成物。 The conductive film-forming material according to any one of claims 1 to 9, wherein the polyol organic solvent is at least one selected from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, trimethylolpropane, and glycerin. Composition.
- さらに、金属触媒を含有し、
前記酸化第二銅ナノ粒子と前記金属触媒との質量比が、1:0.001~1:0.1である、請求項1~10のいずれか1項に記載の導電膜形成用組成物。 In addition, it contains a metal catalyst,
The conductive film-forming composition according to any one of claims 1 to 10, wherein a mass ratio of the cupric oxide nanoparticles to the metal catalyst is 1: 0.001 to 1: 0.1. . - 前記α1/α2が、4より大きく5未満である、請求項1~11のいずれか1項に記載の導電膜形成用組成物。 The conductive film forming composition according to any one of claims 1 to 11, wherein the α1 / α2 is greater than 4 and less than 5.
- 前記酸化第二銅ナノ粒子が湿式法で製造されたものであり、かつ、前記酸化第二銅ナノ粒子の平均1次粒子径が2~25nmである、請求項1~12のいずれか1項に記載の導電膜形成用組成物。 The cupric oxide nanoparticles are produced by a wet method, and the average primary particle diameter of the cupric oxide nanoparticles is 2 to 25 nm. The composition for electrically conductive film formation of description.
- 請求項1~13のいずれか1項に記載の導電膜形成用組成物を樹脂基材上に塗布し、塗膜を形成する工程と、
前記塗膜に対して光照射処理を行い、前記酸化第二銅ナノ粒子を還元して金属銅を含有する導電膜を形成する工程とを備える、導電膜の製造方法。 Applying the composition for forming a conductive film according to any one of claims 1 to 13 on a resin substrate to form a coating film;
A process for producing a conductive film, comprising: subjecting the coating film to light irradiation treatment, and reducing the cupric oxide nanoparticles to form a conductive film containing metallic copper.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016545037A JPWO2016031404A1 (en) | 2014-08-28 | 2015-07-10 | Conductive film forming composition and method for producing conductive film using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-173950 | 2014-08-28 | ||
JP2014173950 | 2014-08-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016031404A1 true WO2016031404A1 (en) | 2016-03-03 |
Family
ID=55399307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/069928 WO2016031404A1 (en) | 2014-08-28 | 2015-07-10 | Composition for electrically conductive film formation use, and method for producing electrically conductive film using same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2016031404A1 (en) |
WO (1) | WO2016031404A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004155638A (en) * | 2002-11-08 | 2004-06-03 | Asahi Kasei Corp | Metal oxide dispersion |
JP2010135140A (en) * | 2008-12-03 | 2010-06-17 | Fukuda Metal Foil & Powder Co Ltd | Flaky metal fine powder of conductive paint, and manufacturing method thereof |
JP2014067617A (en) * | 2012-09-26 | 2014-04-17 | Fujifilm Corp | Method for producing conductive film and conductive film-forming composition |
JP2014116315A (en) * | 2007-05-18 | 2014-06-26 | Applied Nanotech Holdings Inc | Metallic ink |
JP2014148633A (en) * | 2013-02-04 | 2014-08-21 | Fujifilm Corp | Composition for forming electrically conductive film, and method for producing electrically conductive film |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10297544B4 (en) * | 2001-12-18 | 2015-10-29 | Asahi Kasei Kabushiki Kaisha | Process for producing a metal thin film |
JP2004071467A (en) * | 2002-08-08 | 2004-03-04 | Asahi Kasei Corp | Connecting material |
JP5778382B2 (en) * | 2008-10-22 | 2015-09-16 | 東ソー株式会社 | Composition for producing metal film, method for producing metal film, and method for producing metal powder |
JP2013206722A (en) * | 2012-03-28 | 2013-10-07 | Fujifilm Corp | Liquid composition, metal copper film, conductor wiring, and method for manufacturing metal copper film |
JP2014199720A (en) * | 2013-03-29 | 2014-10-23 | 富士フイルム株式会社 | Conductive film-forming composition and method for producing conductive film using the same |
-
2015
- 2015-07-10 WO PCT/JP2015/069928 patent/WO2016031404A1/en active Application Filing
- 2015-07-10 JP JP2016545037A patent/JPWO2016031404A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004155638A (en) * | 2002-11-08 | 2004-06-03 | Asahi Kasei Corp | Metal oxide dispersion |
JP2014116315A (en) * | 2007-05-18 | 2014-06-26 | Applied Nanotech Holdings Inc | Metallic ink |
JP2010135140A (en) * | 2008-12-03 | 2010-06-17 | Fukuda Metal Foil & Powder Co Ltd | Flaky metal fine powder of conductive paint, and manufacturing method thereof |
JP2014067617A (en) * | 2012-09-26 | 2014-04-17 | Fujifilm Corp | Method for producing conductive film and conductive film-forming composition |
JP2014148633A (en) * | 2013-02-04 | 2014-08-21 | Fujifilm Corp | Composition for forming electrically conductive film, and method for producing electrically conductive film |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016031404A1 (en) | 2017-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5972187B2 (en) | Conductive film forming composition and method for producing conductive film | |
KR20140134304A (en) | Liquid composition, metal film, conductive wiring line, and method for producing metal film | |
JP2016058227A (en) | Method for producing conductive film | |
EP2980169A1 (en) | Composition for forming conductive film, and conductive film manufacturing method using same | |
KR20140134305A (en) | Liquid composition, copper metal film, conductive wiring line, and method for producing copper metal film | |
WO2015015918A1 (en) | Electroconductive-film-forming composition and method for producing electroconductive film | |
JP6562196B2 (en) | Copper fine particle sintered body and method for producing conductive substrate | |
JP6071913B2 (en) | Conductive ink composition for inkjet | |
WO2015033823A1 (en) | Production method for conductive film | |
JP5871762B2 (en) | Conductive film forming composition and conductive film manufacturing method | |
WO2014157303A1 (en) | Composition for forming conductive films and method for producing conductive film using same | |
JP6410278B2 (en) | Conductive film forming composition and conductive film manufacturing method | |
JP2014167872A (en) | Method for producing conductive film, and wiring board | |
WO2016031404A1 (en) | Composition for electrically conductive film formation use, and method for producing electrically conductive film using same | |
JP2009218167A (en) | Conductive substrate, manufacturing method thereof, copper wiring substrate, and manufacturing method thereof | |
JP6109130B2 (en) | Conductive film forming composition, conductive film manufacturing method, and conductive film | |
WO2016031426A1 (en) | Method for manufacturing conductive film | |
JP2015141752A (en) | Conductive film-forming composition and method for producing conductive film | |
JP6263630B2 (en) | Conductive film forming composition and conductive film forming method | |
JP2016050246A (en) | Composition for forming conductive film | |
JP2014044907A (en) | Composition for forming conductive film and method for producing conductive film | |
JP2015144089A (en) | Method for producing conductive film | |
JP2016160453A (en) | Conductive film formation composition and method for manufacturing conductive film using the same | |
WO2015005178A1 (en) | Composition for forming electrically conductive film, and method for producing electrically conductive film using same | |
JP2015106523A (en) | Composition for forming conductive film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15836023 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016545037 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15836023 Country of ref document: EP Kind code of ref document: A1 |