Nothing Special   »   [go: up one dir, main page]

WO2016093017A1 - ろう付方法 - Google Patents

ろう付方法 Download PDF

Info

Publication number
WO2016093017A1
WO2016093017A1 PCT/JP2015/082035 JP2015082035W WO2016093017A1 WO 2016093017 A1 WO2016093017 A1 WO 2016093017A1 JP 2015082035 W JP2015082035 W JP 2015082035W WO 2016093017 A1 WO2016093017 A1 WO 2016093017A1
Authority
WO
WIPO (PCT)
Prior art keywords
brazing
flux
material layer
less
workpiece
Prior art date
Application number
PCT/JP2015/082035
Other languages
English (en)
French (fr)
Inventor
柳川 裕
伊藤 泰永
知樹 山吉
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Priority to US15/533,869 priority Critical patent/US10150186B2/en
Priority to EP15867796.3A priority patent/EP3231545B1/en
Priority to CN201580062731.1A priority patent/CN107073618B/zh
Priority to JP2016563582A priority patent/JP7042023B2/ja
Publication of WO2016093017A1 publication Critical patent/WO2016093017A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • B23K35/288Al as the principal constituent with Sn or Zn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • B23K1/203Fluxing, i.e. applying flux onto surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • B23K1/206Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • B23K35/0238Sheets, foils layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing
    • F28F2275/045Fastening; Joining by brazing with particular processing steps, e.g. by allowing displacement of parts during brazing or by using a reservoir for storing brazing material

Definitions

  • the present invention relates to a method for brazing an aluminum material.
  • Aluminum materials are widely used in heat exchangers and the like because they have various advantages such as high thermal conductivity and light weight.
  • a heat exchanger mounted on an automobile has members such as a tank, a tube, and a fin made of pure aluminum or an aluminum alloy, and these members are joined by brazing.
  • a brazing sheet in which at least one plate surface of an aluminum alloy plate is clad with a brazing material is often used. Since a brazing sheet can braze many members at once, shortening and simplification of the brazing work process can be easily performed.
  • the vacuum brazing method is a technique in which a brazing material made of an Al-Si-Mg (aluminum-silicon-magnesium) alloy is used, and the workpiece is heated and brazed while the heating chamber of the brazing furnace is decompressed. is there.
  • a brazing material made of an Al-Si-Mg (aluminum-silicon-magnesium) alloy is used, and the workpiece is heated and brazed while the heating chamber of the brazing furnace is decompressed. is there.
  • the vacuum brazing method since the oxide film existing on the surface of the aluminum material is destroyed by Mg during brazing, brazing joint can be formed without using a flux.
  • the vacuum brazing method requires the use of a vacuum brazing furnace configured so that the pressure in the brazing chamber can be reduced. Since the vacuum brazing furnace is more expensive than a general brazing furnace, there is a problem that it is difficult to reduce the manufacturing cost when brazing is performed by the vacuum brazing method.
  • the Nocolok brazing method uses a brazing material made of an Al-Si alloy, applies a fluoride-type flux on the brazing material, and then brazes the workpiece by heating in an inert gas atmosphere. It is.
  • brazing can be performed using a general brazing furnace.
  • the Nocolok brazing method when the amount of flux applied is insufficient, the oxide film is not sufficiently broken by the flux, leading to a reduction in brazing properties, and in some cases, there is a risk of poor brazing. Moreover, brazing cannot be performed when the flux is not applied.
  • Defective brazing due to lack of flux or unapplied flux is likely to occur when flux is applied after assembling of the workpiece in brazing of the workpiece having a hollow portion such as a heat exchanger tube. Therefore, conventionally, the flux is insufficiently applied to the entire surface of the aluminum material constituting the object to be treated to prevent the flux from being insufficient or not applied, and the work process of brazing becomes complicated. is there.
  • Patent Document 1 includes a brazing material made of an Al—Si-based alloy, and brazing sheet containing Mg added to at least the brazing sheet constituting layer other than the brazing material, and brazing in an inert gas atmosphere.
  • a way to do it has been proposed. According to this method, brazing can be performed without applying a flux inside the hollow structure by forming the hollow structure with the brazing material clad surface of the brazing sheet facing inward.
  • the method of brazing in an inert gas atmosphere without using flux has a problem that the brazing property easily deteriorates when the oxygen concentration in the atmosphere increases. Therefore, when trying to apply to mass production equipment, depending on the shape and structure of the object to be processed and the position where the brazed joint is formed, the quality of the brazed joint may be deteriorated.
  • the hollow structure has a structure in which the wax can flow between the inside of the hollow portion and the outside, the wax is likely to collect in the hollow portion having excellent brazing properties. Therefore, there is a risk that brazing is insufficient on the outside side, which is inferior in brazing, and brazing failure such as fillet breakage may occur.
  • a method of applying a flux to the outside of the hollow structure to improve the brazing property on the outside can be considered.
  • the fluoride-based flux is consumed by reacting with Mg contained in the wax, and there is a problem that the effect of destroying the oxide film is lowered. Therefore, when the application amount of the flux is not sufficient, the brazing property on the outer side of the hollow structure may not be sufficiently improved.
  • the amount of flux applied is increased in order to improve the brazing property on the outer side of the hollow structure, the flux melts and spreads inside the hollow structure through the brazing during brazing, and the inside of the hollow structure There is a risk of worsening the brazeability.
  • the present invention has been made in view of such a background, and can be easily applied to mass production facilities, can easily simplify the work process, and can stabilize the quality of brazing joint. Is to provide.
  • an object to be processed which is made of an aluminum material and has a hollow portion
  • the inner bonded portion facing the hollow portion and the outer bonded portion facing the outer space are brazed together.
  • a method of attaching, Mg core content is controlled to be less than 0.2% (mass%, the same shall apply hereinafter), the remainder having a chemical component consisting of Al and inevitable impurities, Si: 4.0-13.0%, Bi: Essentially containing 0.01 to 0.3%, further including one or two of Li: 0.004 to 0.08% and Be: 0.006 to 0.12%, and the content of Mg is Preparing the object to be treated including a brazing sheet that is controlled to be less than 0.1%, the balance having a chemical component composed of Al and inevitable impurities, and having a brazing material layer clad on at least one surface of the core material layer And Assembling the object to be processed so that the brazing filler metal layer is present in both the inner and outer bonded parts, Next, a flux is applied to the bra
  • the object to be processed has the inner bonded portion facing the hollow portion and the outer bonded portion facing the external space. Since the inner bonded portion faces the hollow portion where the atmosphere of the external space is difficult to flow in, the state where the oxygen concentration in the atmosphere is low can be easily maintained. Therefore, it is easy to braze the inner bonded portion without using a flux. On the other hand, since the oxygen concentration in the atmosphere tends to fluctuate in the outer joint portion facing the outer space, it is necessary to use a flux for brazing. Thus, the to-be-processed object has two types of bonded parts with different suitable brazing methods.
  • the brazing sheet used for brazing the object to be processed has the core material layer and the brazing material layer in which the Mg content is regulated to be less than the specific amount. Therefore, the brazing sheet can suppress the consumption of the flux due to the reaction with Mg, and the brazing property of the outer bonded portion can be improved by the flux. For this reason, the brazing method described above provides good brazing at the outer welded portion where the oxygen concentration in the atmosphere tends to fluctuate by applying the flux only to the brazing material layer present at the outer welded portion. A bond can be formed.
  • the brazing filler metal layer contains at least one of Li (lithium) or Be (beryllium) and Bi (bismuth).
  • Li and Be have the effect
  • Bi has an action of promoting the destruction of the oxide film by Li and Be. Therefore, the brazing sheet can form a good brazed joint without using the flux in the inner joint portion that can stably maintain a low oxygen concentration.
  • the brazing method forms a good brazed joint at the same time on both the outer and inner joined parts having different conditions for forming a good brazed joint. And the quality of the brazed joint can be stabilized. Moreover, since the said brazing method can braze the said outer to-be-joined part which an oxygen concentration is easy to change using the said flux, it is not necessary to manage oxygen concentration strictly. Therefore, the brazing method can be easily applied to mass production facilities. Furthermore, since the brazing method does not require the flux to be applied to the inner joint portion, it is not necessary to apply the flux in advance before assembling the workpiece. Therefore, the brazing method can easily simplify the brazing operation process.
  • Example 1 The perspective view of the to-be-processed object in Example 1 before brazing.
  • Example 1 (a) a partially enlarged cross-sectional view before brazing, and (b) a partially enlarged cross-sectional view in a state where brazing has been completed, in the vicinity of a bonded portion.
  • Sectional drawing which consists of one brazing sheet in Example 3, and has completed the brazing of the to-be-processed object which has two hollow parts.
  • the perspective view of the state which consists of one brazing sheet in Example 3, and the brazing of the to-be-processed object which has one hollow part was completed.
  • the top view of the to-be-processed object in Example 4 which has a header, a fin, and a tube.
  • the workpiece includes at least the brazing sheet itself. That is, the said to-be-processed object may be comprised only from the brazing sheet, and may contain the other member brazed with a brazing sheet.
  • the material of the other members should be appropriately selected from pure aluminum and aluminum alloys according to the required mechanical properties, corrosion resistance, and workability. Can do. From the viewpoint of suppressing the deterioration of the brazing property due to Mg, the other member preferably has a Mg content of 0.2% or less.
  • the object to be processed has either a case where the brazing cannot flow between the outer bonded portion and the inner bonded portion, and a case where the brazing method has a structure where the brazing can flow.
  • good brazing joints can be collectively formed on both the outer and inner joint parts. That is, as described above, the brazing method can improve the brazing property of the outer joint portion by using the flux. Therefore, in the brazing of the workpiece having a structure in which the brazing cannot flow between the outer and inner joined parts, the brazing of each of the outer and inner joined parts is better. A bond can be formed.
  • brazing property of the outer bonded portion can be improved by the flux.
  • the above brazing method can suppress the consumption of flux due to Mg as described above, it is possible to reduce the amount of flux applied to the outer bonded portion as compared with the conventional case. Further, as will be described later, Li hardly reacts with the flux during brazing, and Be does not react with the flux at all. Therefore, in the brazing method of the object to be processed having the above structure, when the flux applied to the outer bonded portion oozes out to the inner bonded portion for some reason, the inner bonded portion is used. It is possible to avoid the deterioration of brazing.
  • the brazing method can form a good brazed joint even in a workpiece having a structure in which the brazing can flow between the outer joined portion and the inner joined portion.
  • the inert gas In the above brazing method, conventionally known gases can be used as the inert gas. From the viewpoint of application to mass production facilities, it is preferable to use nitrogen, argon, or a mixed gas of nitrogen and argon. In order to improve brazing, it is preferable that the oxygen concentration in the inert gas is low. Specifically, the oxygen concentration in the inert gas is preferably 100 ppm or less, and more preferably 50 ppm or less. By reducing the oxygen concentration in the inert gas, the effect of reducing the amount of flux applied can be obtained. Such an oxygen concentration can be easily realized by a conventionally used atmosphere furnace for flux brazing.
  • the heating temperature in brazing is preferably 585 to 620 ° C, more preferably 590 to 610 ° C.
  • the heating temperature is less than 585 ° C.
  • the brazing fluidity is lowered, and thus the brazing property may be deteriorated.
  • the heating temperature exceeds 620 ° C.
  • erosion in which the core material layer of the brazing sheet or a part of the brazing counterpart material melts may result in a failure.
  • the temperature increase rate until reaching a predetermined heating temperature is high.
  • the above brazing method can be suitably used for manufacturing a heat exchanger, for example.
  • the heat exchanger is composed of a large number of parts such as fins, tubes, and headers.
  • the heat exchanger has a large number of hollow portions inside the tube or between the fins and the tubes. Therefore, conventionally, the flux is applied to these parts and then assembled into a predetermined shape, which causes a problem that workability is very poor.
  • the brazing method described above is good at once for both the outer bonded portion and the inner bonded portion by applying a flux to the outer bonded portion after assembling the fins and the like into a predetermined shape. A brazed joint can be formed. Therefore, it is not necessary to apply flux to the parts in advance, and workability can be improved.
  • the brazing sheet used for the brazing method has a core material layer and a brazing material layer clad on at least one surface of the core material layer.
  • a brazing material layer clad on at least one surface of the core material layer.
  • the brazing filler metal layer essentially contains Si: 4.0-13.0%, Bi: 0.01-0.3%, and Li: 0.004-0.08% and Be: 0.006-0. .1% or 2 out of 12%, Mg content is regulated to less than 0.1%, and the balance has chemical components composed of Al and inevitable impurities.
  • ⁇ Si: 4.0 to 13.0% By setting the Si content to 4.0 to 13.0%, a sufficient amount of brazing can be supplied to the bonded portion. If the Si content is less than 4.0%, problems such as insufficient brazing supply and reduced brazing fluidity may occur, which may deteriorate brazing. On the other hand, when the Si content exceeds 13.0%, the supply amount of the wax becomes excessive, and the core material layer may be excessively dissolved. In this case, the melting temperature of the brazing material layer may become excessively high. As a result, the brazability may be deteriorated.
  • Bi has an action of weakening an oxide film present on the surface of the aluminum material. Therefore, when Bi coexists with Li or Be, it is possible to promote the breakage of the oxide film by Li and Be and improve the brazing property. Moreover, since Bi has the effect
  • the Bi content is preferably 0.01 to 0.03%.
  • the Bi content is less than 0.01%, the above-described effects are insufficient, and the brazing property of the inner bonded portion may be deteriorated.
  • the Bi content exceeds 0.3%, it is difficult to obtain the effect of improving the brazing property commensurate with the Bi content.
  • there is much Bi content there exists a possibility that the surface of a brazing material layer may discolor, and there exists a possibility that a brazing property may be deteriorated depending on the case.
  • Li 0.004 to 0.08%, Be: 0.006 to 0.12% Any one of Li and Be may be included in the brazing material layer, or both of them may be included. Both Li and Be have the action of breaking the oxide film present on the surface of the aluminum material and improving brazing. Further, Li hardly reacts with the flux, and Be does not react with the flux at all. Therefore, the wax containing Li and Be hardly inhibits the action of the flux.
  • Li and Be destroy the oxide film has not been clarified at present, but it is assumed that the oxide film is destroyed by the following mechanism. Since Li and Be are both elements that are more easily oxidized than Al, it is considered that oxygen can be taken from the oxide film present on the surface of the object to be processed. Then, since the oxide film deprived of oxygen becomes weaker than before the oxygen deprivation, it is considered that the oxide film is cracked and destroyed.
  • Be takes oxygen from the oxide film on the surface of the aluminum material and becomes an oxide.
  • the oxide of Be is considered to have a function of covering the surface of the brazing during brazing and preventing the oxidation of the brazing.
  • the Li content is 0.004 to 0.08%, the above-described effects can be sufficiently obtained, and the brazing property of the inner bonded portion can be improved.
  • the Li content is preferably 0.006 to 0.04%.
  • the content of Li is less than 0.004%, the effect of destroying the oxide film becomes insufficient, and the brazing property of the inner bonded portion may be deteriorated.
  • the Li content exceeds 0.08%, Li oxide grows on the surface of the brazing material layer in the brazing sheet, and the brazing property may be deteriorated.
  • the content of Be is 0.006 to 0.12%, the above-described effects can be sufficiently obtained, and the brazing property of the inner bonded portion can be improved.
  • the content of Be is preferably 0.008 to 0.04%.
  • the content of Be is less than 0.006%, the effect of destroying the oxide film is insufficient, and the brazing property of the inner bonded portion may be deteriorated.
  • the content of Be exceeds 0.12%, Be oxide grows on the surface of the brazing material layer in the brazing sheet, which may lead to deterioration of brazing properties.
  • Mg less than 0.1% Mg consumes flux by reacting with the flux, and deteriorates the brazing property of the outer bonded portion. Moreover, the reaction product of Mg and the flux decreases the fluidity of the wax and deteriorates the brazing property. From the viewpoint of suppressing these problems, it is necessary to regulate the Mg content in the brazing filler metal layer to less than 0.1%. From the same point of view, the smaller the Mg content, the better, and it is more preferable to regulate it to 0.05% or less.
  • the brazing filler metal layer is composed of Sr (strontium): 0.002 to 0.05%, Sb (antimony): 0.003 to 0.07%, Fe (iron) ): 0.05 to 0.8%, Mn (manganese): 0.05 to 0.2%, and Ti (titanium): 0.01 to 0.15%, one or more It may be included.
  • the brazing filler metal layer may further contain one or two of Cu (copper): 0.5 to 5.0% and Zn (zinc): 0.9 to 6.0%. . These elements can adjust the electric potential of a brazing material layer by making content in a brazing material layer in the said specific range, and can improve the corrosion resistance of a brazing sheet more.
  • the core material layer of the above brazing sheet has a Mg content of less than 0.2% (mass%, the same shall apply hereinafter), and the remainder has chemical components composed of Al and inevitable impurities. ing. Mg in the core layer diffuses into the brazing due to heating during brazing and may cause problems such as reacting with the flux and reducing the fluidity of the brazing as described above. From the viewpoint of suppressing these problems, it is necessary to regulate the Mg content in the core layer to less than 0.2%. From the same viewpoint, the smaller the Mg content, the better.
  • the core material layer further comprises Mn: 0.05 to 1.3%, Si: 1.0% or less, Fe: 1.0% or less, Cu: 0.9% or less, Zn: 6.5% or less, Ti: 0.2% And Zr (zirconium): 0.5% or less
  • the core material layer further comprises Mn: 0.05 to 1.3%, Si: 1.0% or less, Fe: 1.0% or less, Cu: 0.9%
  • one or more of Zn: 6.5% or less, Ti: 0.2% or less, and Zr: 0.5% or less may be contained.
  • the brazing sheet may be previously subjected to an etching treatment of an oxide film existing on the surface of the brazing material layer.
  • An oxide film on the surface of the brazing material layer can be thinned by performing an etching process on the brazing sheet.
  • the oxide film can be more easily broken by flux, Li, or the like, and the brazing property can be further improved.
  • Examples of the etching treatment include a method of immersing the brazing sheet in acid or alkali.
  • acid a diluted solution of hydrofluoric acid, a mixed diluted solution of hydrofluoric acid and nitric acid, a mixed diluted solution of phosphoric acid and sulfuric acid, or the like can be used.
  • alkali a caustic soda solution or the like can be used.
  • an oil agent having a thermal decomposition temperature in an inert gas of 380 ° C. or lower after the etching treatment to the surface of the brazing material layer.
  • an oil agent having a thermal decomposition temperature in an inert gas of 380 ° C. or lower after the etching treatment to the surface of the brazing material layer.
  • the oil agent is easily decomposed during the temperature rise during brazing, and therefore hardly remains on the surface of the object to be treated at the brazing temperature. Therefore, even if the brazing is started in a state where the oil agent adheres to the surface of the object to be treated, there is little possibility that the brazing property is impaired. Therefore, by using the above oil agent, the degreasing treatment can be omitted and the brazing operation process can be further simplified while obtaining the effect of maintaining good brazing properties.
  • Oils having a thermal decomposition temperature exceeding 380 ° C. are difficult to be decomposed by heating during brazing, and in some cases, may be seized on the surface of the workpiece. As a result, the brazability may be deteriorated.
  • a flux is applied onto the brazing material layer that exists in the outer bonded portion facing the external space of the workpiece.
  • the flux for example, a conventionally used K—Al—F (potassium-aluminum-fluorine) flux can be used.
  • K—Al—F potassium-aluminum-fluorine
  • the amount of flux applied to the brazing filler metal layer present at the outer bonded portion is preferably 0.5 to 7.0 g / m 2 , more preferably 0.5 to 4.5 g / m 2. 0.5 to 3.5 g / m 2 is more preferable.
  • the oxide film may be insufficiently broken by the flux.
  • oxidation may excessively proceed on the surface of the outer bonded portion during brazing.
  • the brazing property of the outer bonded portion may be deteriorated.
  • the application amount of the flux exceeds 7.0 g / m 2 , it is difficult to obtain an effect of improving the brazing property commensurate with the application amount. Further, in some cases, the flux becomes excessive, and there is a possibility that the appearance quality after brazing and the surface treatment property are deteriorated.
  • the amount of flux applied above is a value calculated by dividing the amount of flux applied on the brazing filler metal layer by the area of flux applied. That is, in the brazing method described above, coating unevenness may exist such that a portion where the amount of flux applied is large or a portion where the amount of flux applied is small locally on the brazing material layer.
  • the brazing method can suppress the consumption of flux due to Mg, the amount of flux applied can be reduced as compared with the conventional method. Furthermore, even if there is uneven application of the flux on the brazing material layer, the brazing property can be improved.
  • the content of the binder having a thermal decomposition temperature in an inert gas of 500 ° C. or less is regulated to 20% by mass or less.
  • the binder is used for uniformly applying the flux in the conventional brazing method.
  • the binder is thermally decomposed by heating at the time of brazing and the brazing property is deteriorated by a decomposition product.
  • the decomposition product of the binder stays in the hollow portion, and the inner bonded portion of the inner bonded portion It is easy to deteriorate brazeability.
  • the above brazing method does not necessarily require the flux to be uniformly applied, so that it is not necessary to use a binder. Therefore, by restricting the content of the binder to 20% by mass or less, it is possible to suppress the deterioration of the brazing property due to the decomposition product of the binder, and to improve the brazing properties of both the outer bonded portion and the inner bonded portion. It can be improved further.
  • Example 1 An example of the brazing method will be described with reference to the drawings.
  • the workpiece 1 of this example is composed of two brazing sheets 2, and there is a cylindrical hollow portion 11 surrounded by the two brazing sheets 2.
  • the brazing sheet 2 of this example is a single-sided brazing sheet in which a brazing filler metal layer B is clad on one side of a core material layer C as shown in FIG.
  • the brazing sheet 2 has a top wall portion 21 and a pair of side wall portions 22 that are bent at both ends of the top wall portion 21 in the plate width direction.
  • the pair of side wall portions 22 extends from the end portion of the top wall portion 21 toward the brazing filler metal layer B side in the thickness direction of the top wall portion 21.
  • a flange portion 23 formed by folding the brazing sheet 2 toward the top wall portion 21 is formed at the tip of the side wall portion 22.
  • the two brazing sheets 2 are arranged so that the brazing filler metal layers B of the top wall portion 21 face each other and the flange portions 23 come into contact with each other.
  • the to-be-processed object 1 of this example has the cylindrical hollow part 11 enclosed by the two brazing sheets 2, as shown to FIG.1 and FIG.2 (a). Further, the hollow portion 11 side of the flange portion 23 is the inner bonded portion 12, and the side facing the external space is the outer bonded portion 13.
  • the workpiece 1 After the flux 3 is applied to the outer joint portion 13 of the workpiece 1 having the above-described configuration, the workpiece 1 is heated and brazed in an inert gas atmosphere. Thereby, as shown in FIG.2 (b), the brazing part 14 is formed in both the inner side joined part 12 and the outer side joined part 13, and the two brazing sheets 2 are brazed.
  • brazing sheet 2 An aluminum alloy having the chemical components shown in Table 1 was cast to produce an ingot. The ingot was heated at 500 ° C. and homogenized, and then the ingot was hot-rolled to produce a brazing material plate having a thickness of 5 mm. In addition to the brazing material plate, an aluminum alloy having chemical components shown in Table 2 was cast to produce an ingot. The ingot was heated at 600 ° C. and homogenized, and then the ingot was hot-rolled to produce a core plate having a thickness of 45 mm.
  • the brazing material plate and the core material plate prepared as described above were superposed in the combinations shown in Table 3, and clad rolling was performed at a temperature of 500 ° C. to produce a clad rolling plate having a thickness of 2 mm.
  • the obtained clad rolled plate was cold-rolled to produce a cold-rolled plate having a thickness of 0.4 mm.
  • the cold rolled sheet was heated and annealed.
  • the brazing sheet 2 in which the brazing material layer B was clad on one side of the core material layer C was produced.
  • the clad rate of the brazing filler metal layer B in the obtained brazing sheet 2 was 10%.
  • the amount of flux 3 applied was calculated by the following method. First, the total mass of the applied flux 3 is subtracted from the mass of the workpiece 1 measured before applying the flux 3 from the mass of the workpiece 1 measured after the flux 3 is applied and dried. (G) was calculated. By dividing the total weight by the total area of the outer surface of the workpiece 1 (m 2), it is possible to calculate the average of the coating amount of the flux 3 is applied to the object to be processed 1. In this example, the average of the application amount is defined as the amount of flux 3 applied to the outer bonded portion 13.
  • the application conditions such as the concentration of the flux 3 in the alcohol suspension are set so that the average of the application amount is 2.5 g / m 2 in consideration of the application unevenness of the flux 3.
  • the average amount of the flux 3 applied varied in the range of 1.0 to 4.5 g / m 2 .
  • brazing For brazing the workpiece 1, a brazing furnace capable of replacing the brazing chamber with an inert gas was used. In this example, nitrogen gas was introduced into the brazing chamber, and the workpiece 1 was brazed while the oxygen concentration in the chamber was controlled to 20 ppm or less.
  • the object 1 was heated under the following conditions. After feeding the workpiece 1 into the brazing chamber, the workpiece 1 was heated so that the time until the temperature reached 600 ° C. was about 15 minutes while measuring the temperature of the workpiece 1. . After the temperature of the workpiece 1 reached 600 ° C., the temperature of 600 ° C. was held for 3 minutes. Thereafter, the workpiece 1 was cooled and taken out from the brazing furnace. The brazing of the workpiece 1 was completed as described above, and 33 types of test bodies (test bodies E1 to E23, C1 to C10) shown in Table 3 were produced.
  • brazing property evaluation was performed by visual evaluation and cross-sectional observation. The evaluation method will be described below.
  • the specimens E1 to E23 use the brazing sheet 2 in which the chemical components of the brazing material layer B and the core material layer C are within the specific range. Therefore, the test bodies E1 to E23 showed good results in both the visual evaluation and the cross-sectional observation. In the test body E15, discoloration occurred on the surface of the brazing part 14. This is probably because the Bi content is relatively large. Since the results of the visual evaluation and the cross-sectional observation in the test body E15 are good, the discoloration of the brazed portion 14 is not likely to cause a practical problem in the test body E15.
  • the specimens C1 to C6 use the brazing sheet 2 in which any of Bi, Li, or Be in the brazing material layer B is out of the specific range. Therefore, brazing defects such as fillet breakage and unbonding occurred in the inner bonded portion 12.
  • any of Bi, Li, or Be is out of the above specific range, so that the wetting of the wax in the inner bonded portion 12 occurs. It can be presumed that the sex declined.
  • Specimens C7 to C8 use a brazing sheet 2 in which Si in the brazing filler metal layer B is out of the specific range. Therefore, the fluidity of the brazing during brazing became insufficient, and a brazing defect occurred in both the inner bonded portion 12 and the outer bonded portion 13.
  • the specimens C9 to C10 use the brazing sheet 2 in which the Mg of the brazing material layer B or the core material layer C exceeds the specific range. Therefore, a brazing defect occurred in the outer bonded portion 13.
  • the flux 3 is consumed by reacting with Mg, so that the wettability of the wax in the outer welded portion 13 is reduced. It can be estimated that
  • Example 2 This example is an example of the brazing method of the workpiece 1b including other members than the brazing sheet 2.
  • the object to be processed 1b of this example includes a flat brazing sheet 2b and an upper member 4 placed on the brazing sheet 2b.
  • the brazing sheet 2b A cylindrical hollow portion 11 surrounded by the upper member 4 is present.
  • the same reference numerals as those used in the first embodiment denote the same components as in the first embodiment unless otherwise specified.
  • the upper member 4 is formed by bending a 0.4 mm thick aluminum plate made of JIS A 3003 alloy, and has the same shape as the brazing sheet 2 in Example 1. That is, as shown in FIGS. 3 and 4, the upper member 4 includes a top wall portion 41, a pair of side wall portions 42 that are bent at both ends in the width direction of the top wall portion 41, and a tip of the side wall portion 42. And a formed flange portion 43.
  • the brazing sheet 2b has the same configuration as that used for the specimen E2 and specimen E4 in Example 1.
  • the brazing sheet 2 of this example has a dimension of width 50 mm ⁇ length 100 mm.
  • the flux 3 was applied to a portion (see FIG. 4 (a)) to be the outer bonded portion 13 in the brazing material layer B of the brazing sheet 2b.
  • two types of alcohol suspensions with different concentrations of flux 3 were prepared so that the average amount of flux 3 applied was 1.5 g / m 2 and 3.5 g / m 2. After applying using a brush, it was dried.
  • the application experiment is performed a plurality of times in advance using the above two types of alcohol suspensions, and the application amount to the brazing sheet 2b used for brazing is minimized from the maximum value in the plurality of application experiments.
  • the experiment was carried out assuming that it was included in the range up to the value.
  • Table 4 shows the range from the maximum value to the minimum value in the coating experiment.
  • the upper member 4 was placed so that the flange portion 43 was in contact with the brazing material layer B (see FIG. 4A).
  • the brazing sheet 2b and the upper member 4 were fixed using a jig, and the workpiece 1b was assembled.
  • the workpiece 1 b of this example includes a cylindrical hollow portion 11 surrounded by the brazing sheet 2 b and the upper member 4. Further, the hollow portion 11 side of the flange portion 43 is the inner bonded portion 12, and the side facing the external space is the outer bonded portion 13.
  • brazing was performed in the same manner as in Example 1 to prepare four types of test bodies (test bodies E31 to E34) shown in Table 4.
  • test bodies E31 to E34 four test specimens (test specimens C31 to C32) prepared in the same manner as described above except that no flux 3 was applied were prepared.
  • the brazing property was evaluated in the same manner as in Example 1, and the results are shown in Table 4.
  • Example 3 This example is an example of another aspect of the workpiece 1 to which the brazing method can be applied.
  • the said brazing method is the to-be-processed object 1 which consists of aluminum materials and has the hollow part 11, it can apply to the to-be-processed object 1 of a various aspect.
  • FIG. 5 to FIG. 7 show examples of aspects of the workpiece 1 (1c, 1d, 1e). 5 to 7 show a state where the brazing of the workpiece 1 is completed.
  • the brazing material layer B in the brazing sheet 2 is melted by heating during brazing and moves to the inner bonded portion 12 and the outer bonded portion 13. Therefore, as shown in FIGS. 5 to 7, the brazing filler metal layer B does not remain on the surface of the core material layer C in the state where the brazing is completed except for the inner bonded portion 12 and the outer bonded portion 13.
  • the workpiece 1 may have an inner fin 5 sandwiched between two brazing sheets 2 as shown in FIG. 5 to be processed can be produced using a double-sided brazing sheet in which a brazing material layer B is clad on both sides of a core material layer C.
  • the object 1c to be processed can be manufactured as follows, for example. First, the both ends in the plate width direction of the brazing sheet 2 are bent to form the top wall portion 21 and a pair of tapered side wall portions 24. The tapered side wall portions 24 are bent so that the distance from each other increases as the distance from the top wall portion 21 increases. Next, the separately prepared inner fin 5 having a corrugated shape is accommodated inside one brazing sheet 2c of the two brazing sheets 2 (2c, 2d) and brought into contact with the brazing material layer B of the top wall portion 21.
  • the top wall portion 21 of the other brazing sheet 2d is accommodated inside the one brazing sheet 2c to bring the brazing material layer B into contact with the inner fin 5, and the tapered side wall portions 24 of the two brazing sheets 2 are used. Bring them together.
  • the to-be-processed object 1c obtained by the above has the some hollow part 11 (11a, 11b) between the two brazing sheets 2.
  • the contact portion between the brazing sheet 2 and the inner fin 5 is the inner bonded portion 12 facing the hollow portion 11a or 11b, a good brazed bonding can be formed without using the flux 3.
  • the abutting portion between the tapered side wall portions 24 has the outer joined portion 13 facing the external space. Therefore, a good brazing joint can be formed by applying the flux 3 to the outer surface at the contact portion between the tapered side wall portions 24.
  • the object to be processed 1 may be a cylindrical body formed by bending one brazing sheet 2.
  • the object to be processed 1d shown in FIG. 6 folds the both ends of the brazing sheet 2 in the plate width direction toward the center to form the folded portion 25, and further folds the tip to the inside to fold the central wall portion 26. It can be manufactured by forming. Thereby, the central wall part 26, the folding
  • the to-be-processed object 1d produced as described above has two hollow portions 11 surrounded by the central wall portion 26, the folded portion 25, and the base portion 27. Further, a portion where the base portion 27 and the central wall portion 26 are bonded is the inner bonded portion 12, and a portion where the pair of central wall portions 26 are bonded is the outer bonded portion 13.
  • flange portions 23 are formed at both ends in the plate width direction of the brazing sheet 2, and the flange portions 23.
  • An object to be processed 1e in which the brazing sheet 2 is formed into a cylindrical shape so that the abuts against each other can be considered.
  • Example 4 The brazing method can be applied to the manufacture of a heat exchanger.
  • the to-be-processed object 1f of this example includes a pair of headers 61, five extruded tubes 62 inserted through the header 61 in a state of being parallel to each other, and adjacent extruded tubes 62. And corrugated outer fins 63 disposed on the surface.
  • the to-be-processed object 1f has many hollow parts 11 (11c, 11d). That is, as shown in FIG. 8, the hollow portions 11 c surrounded by the header 61, the extruded tube 62, and the outer fin 63 exist at both ends of the workpieces 1 f in the arrangement direction of the header 61. Further, a hollow portion 11d surrounded by the extruded tube 62 and the outer fin 63 exists inside the hollow portion 11c in the arrangement direction.
  • the to-be-processed object 1f produces a heat exchanger by assembling the header 61, the extruded tube 62, and the outer fin 63 into a predetermined shape shown in FIG. be able to.
  • the extruded tube 62 for example, a multi-hole tube in which the inside of the tube is partitioned into a plurality of flow paths by partition walls can be used.
  • the header 61 and the outer fin 63 are composed of the brazing sheet 2 having the brazing material layer B on both surfaces of the core material layer C.
  • the header 61 has a through hole (not shown) for inserting the extruded tube 62.
  • the to-be-processed object 1f of this example has many hollow parts 11. Since the abutting portion between the extruded tube 62 and the outer fin 63 is the inner joined portion 12 facing the hollow portion 11c or 11d, a good brazing joint can be formed without using the flux 3. On the other hand, the contact portion between the header 61 and the extruded tube 62 has the outer joined portion 13 that faces the external space. Therefore, a good brazing joint can be formed by applying the flux 3 to the outer surface of the contact portion between the header 61 and the extruded tube 62.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geometry (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

 量産設備に容易に適用でき、作業工程の簡素化が容易であり、ろう付接合の品質を安定可能なろう付方法を提供する。Mg:0.2%未満に規制され残部Al及び不可避不純物からなる化学成分を有する心材層(B)と、Si:4.0~13.0%、Bi:0.01~0.3%を必須に含み、更にLi:0.004~0.08%及びBe:0.006~0.12%のうち1種又は2種を含み、Mg:0.1%未満に規制され残部Al及び不可避不純物からなる化学成分を有し、心材層(C)の少なくとも一方の面にクラッドされたろう材層(B)とを有するブレージングシート(2)を含む被処理物(1)を準備する。ろう材層(B)が内側被接合部(12)及び外側被接合部(13)の両方に存在するように被処理物(1)を組み立てる。外側被接合部(13)のろう材層(B)上にフラックス(3)を塗布した後、不活性ガス雰囲気下で被処理物(1)を加熱してろう付を行う。

Description

ろう付方法
 本発明は、アルミニウム材のろう付方法に関する。
 アルミニウム材は、熱伝導率が高い、軽量である等の種々の利点を有するため、熱交換器等に多用されている。例えば、自動車に搭載される熱交換器は、純アルミニウムまたはアルミニウム合金より構成されたタンク、チューブ及びフィン等の部材を有しており、これらの部材がろう付により接合されている。また、アルミニウム材のろう付には、アルミニウム合金板の少なくとも一方の板面にろう材がクラッドされてなるブレージングシートが多用されている。ブレージングシートは、多数の部材を一括してろう付することができるため、ろう付の作業工程の短縮及び簡素化を容易に行うことができる。
 従来、アルミニウム材のろう付方法としては、真空ろう付法やノコロックろう付法が知られている。真空ろう付法は、Al-Si-Mg(アルミニウム-シリコン-マグネシウム)系合金からなるろう材を用い、ろう付炉の加熱室内を減圧した状態で被処理物を加熱してろう付する技術である。真空ろう付法においては、ろう付の際に、アルミニウム材の表面に存在する酸化皮膜がMgにより破壊されるため、フラックスを用いることなくろう付接合を形成することができる。しかし、真空ろう付法は、ろう付室内の減圧ができるように構成された真空ろう付炉を使用する必要がある。真空ろう付炉は一般的なろう付炉に比べて高価であるため、真空ろう付法によりろう付を行う場合、製造コストの低減が難しいという問題がある。
 一方、ノコロックろう付法は、Al-Si系合金からなるろう材を用い、ろう材上にフッ化物系のフラックスを塗布した後に不活性ガス雰囲気下で被処理物を加熱してろう付する技術である。ノコロックろう付法は、一般的なろう付炉を用いてろう付を行うことができる。しかし、ノコロックろう付法においては、フラックスの塗布量が不足すると、フラックスによる酸化皮膜の破壊が不十分となってろう付性の低下を招き、場合によってはろう付不良が発生するおそれがある。また、フラックスが塗布されていない場合には、ろう付をすることができない。
 フラックスの不足や未塗布によるろう付不良は、例えば熱交換器のチューブ等の中空部を有する被処理物のろう付において、被処理物の組み立て後にフラックスを塗布する場合に発生しやすい。そのため、従来は、被処理物を構成するアルミニウム材の全面に予めフラックスを塗布することによりフラックスの不足や未塗布の防止を図っており、ろう付の作業工程が煩雑になっているという問題がある。
 そこで、高価な真空ろう付炉を用いずに、簡素な作業工程によりろう付を行うことができる方法として、Mgによる酸化皮膜を破壊する作用を利用して不活性ガス雰囲気下でろう付を行う方法が提案されている。例えば、特許文献1には、Al-Si系合金からなるろう材を有し、少なくともろう材以外のブレージングシート構成層にMgが添加されたブレージングシートを用い、不活性ガス雰囲気下でろう付を行う方法が提案されている。この方法によれば、ブレージングシートのろう材クラッド面が内側を向くようにして中空構造体を成形することにより、中空構造体の内部においてフラックスを塗布せずにろう付を行うことができる。
特開2004-25297号公報
 フラックスを用いずに不活性ガス雰囲気下でろう付を行う方法は、雰囲気中の酸素濃度が高くなるとろう付性が容易に悪化するという問題がある。そのため、量産設備に適用しようとすると、被処理物の形状や構造、及びろう付接合を形成する位置によっては、ろう付接合の品質が悪化するおそれがある。
 例えば特許文献1のような中空構造体のろう付を行う場合、中空構造体における中空部内は、中空構造体の外部の雰囲気が流入しにくいため、酸素濃度が低い状態を比較的容易に維持することができる。それ故、ろうが中空部内に留まる場合には、フラックスを用いることなく良好なろう付接合を形成することができる。しかし、ろう付炉内の酸素濃度は種々の要因によって変動するため、中空構造体の外部は、酸素濃度が低い状態を維持することが難しい。そのため、ろう付の際にろうが中空構造体の外部に露出する場合には、中空構造体の外部側におけるろう付性が悪化し易い。さらに、中空構造体が、中空部内と外部との間でろうが流通し得る構造を有する場合には、ろう付性に優れた中空部内にろうが集まり易い。それ故、ろう付性に劣る外部側においてろうが不足し、フィレット切れ等のろう付不良が発生するおそれがある。
 かかる問題に対して、中空構造体の外部にフラックスを塗布し、外部側のろう付性を改善する方法が考えられる。しかし、フッ化物系のフラックスは、ろうに含まれるMgと反応することにより消費され、酸化皮膜を破壊する効果が低下するという問題がある。それ故、フラックスの塗布量が十分でない場合には、中空構造体の外部側のろう付性が十分に改善されないおそれがある。一方、中空構造体の外部側のろう付性を改善するためにフラックスの塗布量を多くすると、ろう付の際にフラックスがろうを介して中空構造体の内部に溶け拡がり、中空構造体の内部におけるろう付性を悪化させるおそれがある。
 以上のように、フラックスを用いずに不活性ガス雰囲気下でろう付を行う方法は、量産設備に適用する場合には未だ改善の余地がある。そのため、被処理物の形状や構造、及びろう付接合を形成する位置によらず良好なろう付接合を形成できる技術が強く望まれている。
 本発明は、かかる背景に鑑みてなされたものであり、量産設備に容易に適用することができ、作業工程の簡素化が容易であり、ろう付接合の品質を安定させることができるろう付方法を提供しようとするものである。
 本発明の一態様は、アルミニウム材からなり中空部を有する被処理物における、上記中空部に面した内側被接合部と、外部空間に面した外側被接合部とを一括してろう付するろう付方法であって、
 Mgの含有量が0.2%(質量%、以下同じ)未満に規制され、残部がAl及び不可避不純物からなる化学成分を有する心材層と、Si:4.0~13.0%、Bi:0.01~0.3%を必須に含み、更にLi:0.004~0.08%及びBe:0.006~0.12%のうち1種又は2種を含み、Mgの含有量が0.1%未満に規制され、残部がAl及び不可避不純物からなる化学成分を有し、上記心材層の少なくとも一方の面にクラッドされたろう材層とを有するブレージングシートを含む上記被処理物を準備し、
 上記ろう材層が上記内側被接合部及び上記外側被接合部の両方に存在するように上記被処理物を組み立て、
 次いで、上記外側被接合部に存在する上記ろう材層にフラックスを塗布し、
 その後、不活性ガス雰囲気下で上記被処理物を加熱してろう付を行うことを特徴とするろう付方法にある。
 上記ろう付方法において、上記被処理物は、上記中空部に面した上記内側被接合部と、外部空間に面した上記外側被接合部とを有している。上記内側被接合部は、外部空間の雰囲気が流入しにくい上記中空部に面しているため、雰囲気中の酸素濃度が低い状態を容易に維持することができる。それ故、上記内側被接合部は、フラックスを用いずにろう付を行うことが容易である。一方、外部空間に面している上記外側被接合部では、雰囲気中の酸素濃度が変動し易いため、ろう付にフラックスを用いる必要がある。このように、上記被処理物は、好適なろう付方法が異なる2種類の被接合部を有している。
 これに対し、上記被処理物のろう付に用いる上記ブレージングシートは、Mgの含有量がそれぞれ上記特定の量未満に規制された上記心材層と上記ろう材層とを有している。そのため、上記ブレージングシートは、Mgとの反応による上記フラックスの消費を抑制することができ、上記フラックスにより上記外側被接合部のろう付性を向上させることができる。それ故、上記ろう付方法は、上記外側被接合部に存在する上記ろう材層のみに上記フラックスを塗布することにより、雰囲気中の酸素濃度が変動し易い上記外側被接合部において良好なろう付接合を形成することができる。
 また、上記ろう材層は、Li(リチウム)またはBe(ベリリウム)の少なくとも一方と、Bi(ビスマス)とを含有している。Li及びBeは、アルミニウム材表面の酸化皮膜を破壊する作用を有する。また、Biは、Li及びBeによる酸化皮膜の破壊を促進する作用を有する。そのため、上記ブレージングシートは、酸素濃度が低い状態を安定して維持できる上記内側被接合部において、上記フラックスを用いずに良好なろう付接合を形成することができる。
 以上の結果、上記ろう付方法は、良好なろう付接合を形成するための条件が互いに異なる上記外側被接合部と上記内側被接合部との両方に、一括して良好なろう付接合を形成することができ、ろう付接合の品質を安定させることができる。また、上記ろう付方法は、酸素濃度の変動し易い上記外側被接合部のろう付を上記フラックスを用いて行うことができるため、酸素濃度を厳格に管理する必要がない。それ故、上記ろう付方法は、量産設備へ容易に適用することができる。さらに、上記ろう付方法は、上記内側被接合部に上記フラックスを塗布する必要がないため、上記被処理物の組み立て前に、フラックスを予め塗布する必要がない。それ故、上記ろう付方法は、ろう付の作業工程を容易に簡素化することができる。
実施例1における、ろう付前の被処理物の斜視図。 実施例1における、被接合部近傍の(a)ろう付前の一部拡大断面図、(b)ろう付が完了した状態の一部拡大断面図。 実施例2における、ろう付前の被処理物の斜視図。 実施例2における、被接合部近傍の(a)ろう付前の一部拡大断面図、(b)ろう付が完了した状態の一部拡大断面図。 実施例3における、2枚のブレージングシートの間にフィンを狭持してなる被処理物のろう付が完了した状態の断面図。 実施例3における、1枚のブレージングシートよりなり、2箇所の中空部を有する被処理物のろう付が完了した状態の断面図。 実施例3における、1枚のブレージングシートよりなり、1箇所の中空部を有する被処理物のろう付が完了した状態の斜視図。 実施例4における、ヘッダ、フィン及びチューブを有する被処理物の平面図。
 上記ろう付方法において、上記被処理物には、少なくとも上記ブレージングシート自身が含まれている。即ち、上記被処理物は、ブレージングシートのみから構成されていてもよく、ブレージングシートによりろう付される他の部材を含んでいても良い。
 被処理物にブレージングシート以外の「他の部材」が含まれる場合、他の部材の材質は、要求される機械的特性や耐食性、加工性に応じて、純アルミニウム及びアルミニウム合金から適宜選択することができる。Mgによるろう付性の悪化を抑制する観点からは、上記の他の部材は、Mgの含有量が0.2%以下であることが好ましい。
 上記ろう付方法は、被処理物が、外側被接合部と内側被接合部との間でろうが流通し得ない構造を有する場合、及び、ろうが流通し得る構造を有する場合のいずれの場合にも、外側被接合部及び内側被接合部の両方に良好なろう付接合を一括して形成することができる。即ち、上記ろう付方法は、上述したように、フラックスを用いることにより外側被接合部のろう付性を向上させることができる。それ故、外側被接合部と内側被接合部との間でろうが流通し得ない構造を有する被処理物のろう付においては、外側接合部及び内側接合部のそれぞれのろうにより良好なろう付接合を形成することができる。
 また、外側被接合部と内側被接合部との間でろうが流通し得る構造を有する被処理物のろう付においては、外側被接合部のろう付性をフラックスにより向上させることができる。その結果、内側被接合部にろうが集まることを抑制できる。それ故、上記ろう付方法は、上記の構造を有する被処理物のろう付において、外側被接合部及び内側被接合部の両方に十分な量のろうを供給でき、両者に良好なろう付接合を形成することができる。
 さらに、上記ろう付方法は、上述のように、Mgによるフラックスの消費を抑制することができるため、外側被接合部におけるフラックスの塗布量を従来よりも低減することができる。また、後述するように、Liはろう付の際にフラックスとほとんど反応せず、Beはフラックスと全く反応しない。それ故、上記ろう付方法は、上記の構造を有する被処理物のろう付において、外側被接合部に塗布したフラックスが何らかの原因により内側被接合部に染み出した場合等に、内側被接合部のろう付性が悪化することを回避できる。
 以上の結果、上記ろう付方法は、外側被接合部と内側被接合部との間でろうが流通し得る構造を有する被処理物においても、良好なろう付接合を形成することができる。
 上記ろう付方法において、不活性ガスとしては、従来公知のものを用いることができる。量産設備への適用の観点からは、窒素、アルゴンまたは窒素とアルゴンとの混合ガスを用いることが好ましい。ろう付性を向上させるためには、不活性ガス中の酸素濃度が低い方が好ましい。具体的には、不活性ガス中の酸素濃度が100ppm以下であることが好ましく、50ppm以下であることがより好ましい。不活性ガス中の酸素濃度を低くすることにより、フラックスの塗布量の低減という効果を得ることもできる。かかる酸素濃度は、従来より用いられているフラックスろう付用の雰囲気炉により容易に実現することができる。
 ろう付における加熱温度は、585~620℃が好ましく、590~610℃がより好ましい。加熱温度が585℃未満の場合には、ろうの流動性が低くなるため、ろう付性が悪化するおそれがある。加熱温度が620℃を超える場合には、ブレージングシートの心材層や、ろう付の相手材の一部が溶融するエロージョンが発生し、不良となるおそれがある。また、昇温中における被処理物の不要な酸化を抑制するため、所定の加熱温度に到達するまでの昇温速度が速い方が好ましい。
 上記ろう付方法は、例えば熱交換器の製造に好適に用いることができる。熱交換器は、フィン、チューブ及びヘッダ等の多数の部品から構成されており、例えばチューブの筒内や、フィンとチューブとの間等に多数の中空部を有している。そのため、従来、これらの部品にフラックスを塗布した後に所定の形状への組み立てを行っており、作業性が非常に悪いという問題があった。これに対し、上記ろう付方法は、フィン等を所定の形状に組み付けた後に外側被接合部にフラックスを塗布することにより、外側被接合部及び内側被接合部の両方に、一括して良好なろう付接合を形成することができる。それ故、予め部品にフラックスを塗布する必要がなくなり、作業性を向上させることができる。
[ブレージングシート]
 上記ろう付法に用いるブレージングシートは、心材層と、心材層の少なくとも一方の面にクラッドされたろう材層とを有している。以下、心材層の化学成分及びろう材層の化学成分について詳説する。
 <ろう材層>
 ろう材層は、Si:4.0~13.0%、Bi:0.01~0.3%を必須に含み、更にLi:0.004~0.08%及びBe:0.006~0.12%のうち1種又は2種を含み、Mgの含有量が0.1%未満に規制され、残部がAl及び不可避不純物からなる化学成分を有している。
・Si:4.0~13.0%
 Siの含有量を4.0~13.0%とすることにより、被接合部に十分な量のろうを供給することができる。Siの含有量が4.0%未満の場合には、ろうの供給量が不足する、ろうの流動性が低下するなどの問題が生じ、ろう付性が悪化するおそれがある。一方、Siの含有量が13.0%を超える場合には、ろうの供給量が過剰となり、心材層の溶解量が過多となるおそれがある。また、この場合には、ろう材層の溶融温度が過度に高くなるおそれがある。これらの結果、ろう付性が悪化するおそれがある。
・Bi:0.01~0.3%
 Biは、アルミニウム材の表面に存在する酸化皮膜を脆弱化する作用を有する。そのため、Biは、LiまたはBeと共存することにより、Li及びBeによる酸化皮膜の破壊を促進させてろう付性を向上させることができる。また、Biは、ろうの表面張力を低下させる作用を有するため、被処理物の細い隙間にろうが流入し易くなる。その結果、ろう付接合の信頼性を向上させることができる。
 Biの含有量を0.01~0.3%とすることにより、上記の作用効果を十分に得ることができ、内側被接合部のろう付性を向上させることができる。同じ観点から、Biの含有量は、0.01~0.03%であることが好ましい。Biの含有量が0.01%未満の場合には、上記の作用効果が不十分となり、内側被接合部のろう付性が悪化するおそれがある。一方、Biの含有量が0.3%を超える場合には、Biの量に見合ったろう付性向上の効果を得ることが難しい。また、Biの含有量が多い場合にはろう材層の表面が変色するおそれがあり、場合によってはろう付性を悪化させるおそれがある。
・Li:0.004~0.08%、Be:0.006~0.12%
 Li及びBeは、ろう材層中にいずれか一方が含まれていれば良く、両方が含まれていても良い。Li及びBeは、いずれも、アルミニウム材表面に存在する酸化皮膜を破壊してろう付性を向上させる作用を有する。また、Liはフラックスとほとんど反応せず、Beはフラックスと全く反応しない。それ故、Li及びBeを含むろうは、フラックスの作用をほとんど阻害しない。
 Li及びBeが酸化皮膜を破壊するメカニズムは現時点において明らかになっていないが、以下のメカニズムにより酸化皮膜が破壊されると推測している。Li及びBeは、いずれもAlに比べて酸化されやすい元素であるため、被処理物の表面に存在する酸化皮膜から酸素を奪うことができると考えられる。そして、酸素を奪われた酸化皮膜が酸素を奪われる前に比べて脆弱化するため、酸化皮膜に亀裂が生じて破壊されると考えられる。
 また、Beは、アルミニウム材表面の酸化皮膜から酸素を奪い、酸化物となる。このBeの酸化物は、ろう付中にろうの表面を覆い、ろうの酸化を防ぐ作用を有すると考えられる。
 Liの含有量を0.004~0.08%とすることにより、上記の作用効果を十分に得ることができ、内側被接合部のろう付性を向上させることができる。同じ観点から、Liの含有量は、0.006~0.04%であることが好ましい。Liの含有量が0.004%未満の場合には、酸化皮膜を破壊する効果が不十分となり、内側被接合部のろう付性が悪化するおそれがある。また、Liの含有量が0.08%を超える場合には、ブレージングシートにおけるろう材層の表面にLiの酸化物が成長し、ろう付性の悪化を招くおそれがある。
 Beの含有量を0.006~0.12%とすることにより、上記の作用効果を十分に得ることができ、内側被接合部のろう付性を向上させることができる。同じ観点から、Beの含有量は、0.008~0.04%であることが好ましい。Beの含有量が0.006%未満の場合には、酸化皮膜を破壊する効果が不十分となり、内側被接合部のろう付性が悪化するおそれがある。また、Beの含有量が0.12%を超える場合には、ブレージングシートにおけるろう材層の表面にBeの酸化物が成長し、ろう付性の悪化を招くおそれがある。
・Mg:0.1%未満
 Mgは、フラックスと反応することによりフラックスを消費し、外側被接合部のろう付性を悪化させる。また、Mgとフラックスとの反応生成物は、ろうの流動性を低下させ、ろう付性を悪化させる。これらの問題を抑制する観点から、ろう材層中のMgの含有量を0.1%未満に規制する必要がある。同様の観点から、Mgの含有量は少ないほど好ましく、0.05%以下に規制することがより好ましい。
 上記ろう材層は、上述したSi、Bi、Li及びBeの他に、Sr(ストロンチウム):0.002~0.05%、Sb(アンチモン):0.003~0.07%、Fe(鉄):0.05~0.8%、Mn(マンガン):0.05~0.2%及びTi(チタン):0.01~0.15%からなる群のうち1種又は2種以上を含んでいても良い。これらの元素は、ろう材層中の含有量を上記特定の範囲内とすることにより、ろうの流動性を調整し、ろう付性をより向上させることができる。
 また、上記ろう材層は、更に、Cu(銅):0.5~5.0%、Zn(亜鉛):0.9~6.0%のうち1種または2種を含んでいても良い。これらの元素は、ろう材層中の含有量を上記特定の範囲内とすることにより、ろう材層の電位を調整し、ブレージングシートの耐食性をより向上させることができる。
<心材層>
・Mg:0.2%未満
 上記ブレージングシートの心材層は、Mgの含有量が0.2%(質量%、以下同じ)未満に規制され、残部がAl及び不可避不純物からなる化学成分を有している。心材層のMgは、ろう付時の加熱によりろうに拡散し、上述と同様にフラックスと反応する、ろうの流動性を低下させる等の問題を招くおそれがある。これらの問題を抑制する観点から、心材層中のMgの含有量を0.2%未満に規制する必要がある。同様の観点から、Mgの含有量は少ないほど好ましい。
・Mn:0.05~1.3%、Si:1.0%以下、Fe:1.0%以下、Cu:0.9%以下、Zn:6.5%以下、Ti:0.2%以下及びZr(ジルコニウム):0.5%以下
 心材層は、更にMn:0.05~1.3%、Si:1.0%以下、Fe:1.0%以下、Cu:0.9%以下、Zn:6.5%以下、Ti:0.2%以下及びZr:0.5%以下のうち1種または2種以上を含有していてもよい。これらの元素を心材層に添加することにより、ブレージングシートの強度や耐食性を向上させることができる。なお、これらの元素の含有量が過度に多い場合には、ブレージングシートを作製する際の圧延工程において割れが発生しやすくなるおそれがある。
 上記ブレージングシートは、予め、上記ろう材層の表面に存在する酸化皮膜のエッチング処理が施されていてもよい。ブレージングシートにエッチング処理を施すことによりろう材層表面の酸化皮膜を薄くすることができる。その結果、フラックスやLi等により、酸化皮膜をより容易に破壊することができ、ろう付性をより向上させることができる。かかる効果を十分に得るためには、エッチング処理により、ろう材層表面の酸化皮膜の厚みを5nm以下まで薄くすることが好ましい。
 上記エッチング処理としては、例えば、上記ブレージングシートを酸またはアルカリに浸漬する方法等が挙げられる。具体的に、酸としては、フッ酸の希釈溶液、フッ酸と硝酸との混合希釈溶液、リン酸と硫酸との混合希釈溶液等を用いることができる。また、アルカリとしては、苛性ソーダの溶液等を用いることができる。
 また、上記エッチング処理の後に、上記ろう材層の表面に不活性ガス中での熱分解温度が380℃以下である油剤を塗布することが好ましい。この場合には、上記油剤によりろう材層表面の酸化を抑制することができるため、エッチング処理による良好なろう付性を長期間に亘って容易に維持することができる。
 また、上記油剤は、ろう付時の昇温中に容易に分解されるため、ろう付温度において被処理物の表面に残留しにくい。それ故、被処理物の表面に油剤が付着した状態でろう付を開始してもろう付性を損なうおそれが小さい。従って、上記油剤を用いることにより、良好なろう付性を維持する効果を得つつ、脱脂処理を省略してろう付の作業工程をより簡素化することができる。
 380℃を超える熱分解温度を有する油剤は、ろう付時の加熱によって分解されにくく、場合によっては被処理物の表面に焼き付くおそれがある。その結果、ろう付性が悪化するおそれがある。
[フラックス]
 上記ろう付方法においては、被処理物の外部空間に面した外側被接合部に存在するろう材層上にフラックスを塗布する。フラックスとしては、例えば、従来用いられているK-Al-F(カリウム-アルミニウム-フッ素)系フラックスを用いることができる。なお、上記ろう付方法においては、中空部に面した内側被接合部にフラックスを積極的に塗布する必要はないが、内側被接合部にフラックスが塗布されていてもろう付性が悪化することはない。
 外側被接合部に存在するろう材層へのフラックスの塗布量は、0.5~7.0g/m2とすることが好ましく、0.5~4.5g/m2とすることがより好ましく、0.5~3.5g/m2とすることがさらに好ましい。フラックスの塗布量を上記特定の範囲内に制御することにより、良好なろう付接合を容易に形成することができると共に、フラックスが過剰となることを回避し、ろう付後の外観品質の低下を回避することができる。
 フラックスの塗布量が0.5g/m2未満の場合には、フラックスによる酸化皮膜の破壊が不十分となるおそれがある。また、場合によっては、ろう付中に外側被接合部の表面で過度に酸化が進行するおそれもある。これらの結果、外側被接合部のろう付性の悪化を招くおそれがある。一方、フラックスの塗布量が7.0g/m2を超える場合には、塗布量に見合ったろう付性の向上効果を得ることが難しい。また、場合によってはフラックスが過剰となり、ろう付後の外観品質の低下や表面処理性の低下を招くおそれがある。
 ここで、上記のフラックスの塗布量は、ろう材層上に塗布したフラックスの量を、フラックスの塗布面積で除することにより算出される値である。即ち、上記ろう付方法においては、ろう材層上にフラックスの塗布量が多い部位やフラックスの塗布量が少ない部位が局所的に存在する等、塗布ムラが存在していても良い。
 従来、中空部を有する被処理物を一括してろう付する場合には、上述したようにフラックスがMgにより消費されるため、フラックスの塗布量を低減することが困難であった。しかし、フラックスの塗布量が多くなると、フラックスが過剰となって無駄が生じる、あるいは、ろう付後の被処理物に付着するフラックス残渣の量が多くなり外観品質が低下する等の問題の発生を招いていた。そこで、フラックスが過剰になることを抑制するために、フラックスをできるだけ均一に塗布する必要があった。
 これに対し、上記ろう付方法は、Mgによるフラックスの消費を抑制することができるため、フラックスの塗布量を従来より低減することができる。更に、ろう材層上にフラックスの塗布ムラが存在していても、ろう付性を向上させることができる。
 上記フラックスは、不活性ガス中での熱分解温度が500℃以下であるバインダの含有量が20質量%以下に規制されていることが好ましい。バインダは、従来のろう付方法においてフラックスを均一に塗布するために用いられている。しかし、バインダはろう付時の加熱によって熱分解し、分解生成物によりろう付性を悪化させるという問題がある。特に、中空部に面した内側被接合部においては外部空間からの雰囲気の流入や外部空間への雰囲気の流出が起こりにくいため、バインダの分解生成物が中空部内に滞留し、内側被接合部のろう付性を悪化させやすい。
 これに対し、上記ろう付方法は、フラックスを必ずしも均一に塗布しなくてもよいため、バインダを使用する必要がない。それ故、上記バインダの含有量を20質量%以下に規制することにより、バインダの分解生成物によるろう付性の悪化を抑制し、外側被接合部及び内側被接合部の両方のろう付性をより向上させることができる。
(実施例1)
 上記ろう付方法の実施例を、図を用いて説明する。本例の被処理物1は、図1及び図2に示すように2枚のブレージングシート2から構成されており、2枚のブレージングシート2により囲まれた筒状の中空部11が存在している。本例のブレージングシート2は、図2(a)に示すように、心材層Cの片面にろう材層Bがクラッドされた片面ブレージングシートである。ブレージングシート2は、頂壁部21と、頂壁部21の板幅方向における両端に屈曲形成された一対の側壁部22とを有している。一対の側壁部22は、頂壁部21の厚み方向におけるろう材層B側に向けて頂壁部21の端部から延びている。また、側壁部22の先端には、ブレージングシート2が頂壁部21側に折り返されてなるフランジ部23が形成されている。
 2枚のブレージングシート2は、頂壁部21のろう材層B同士が対面し、フランジ部23同士が当接するように配置されている。本例の被処理物1は、図1及び図2(a)に示すように、2枚のブレージングシート2により囲まれた筒状の中空部11を有している。また、フランジ部23における中空部11側は内側被接合部12であり、外部空間に面した側は外側被接合部13である。
 上記の構成を有する被処理物1の外側被接合部13にフラックス3を塗布した後、被処理物1を不活性ガス雰囲気下で加熱してろう付を行う。これにより、図2(b)に示すように、内側被接合部12及び外側被接合部13の両方にろう付部14が形成され、2枚のブレージングシート2がろう付される。
 本例においては、ろう材層B及び心材層Cの化学成分を表1及び表2に示すように種々変更したブレージングシート2を用いて作製した被処理物1のろう付性の評価を行った。以下、実験の詳細について説明する。
[ブレージングシート2の作製]
 表1に示す化学成分を有するアルミニウム合金を鋳造し、鋳塊を作製した。鋳塊を500℃で加熱して均質化処理を行った後、鋳塊に熱間圧延を行って厚さ5mmのろう材板を作製した。また、ろう材板とは別に、表2に示す化学成分を有するアルミニウム合金を鋳造し、鋳塊を作製した。鋳塊を600℃で加熱して均質化処理を行った後、鋳塊に熱間圧延を行って厚さ45mmの心材板を作製した。
 以上により準備したろう材板及び心材板を表3に示す組み合わせで重ね合わせ、500℃の温度でクラッド圧延を行い、厚さ2mmのクラッド圧延板を作製した。次いで、得られたクラッド圧延板に冷間圧延を行い、厚さ0.4mmの冷間圧延板を作製した。この冷間圧延板を加熱して焼鈍処理を行った。以上により、心材層Cの片面にろう材層Bがクラッドされたブレージングシート2を作製した。得られたブレージングシート2におけるろう材層Bのクラッド率は10%であった。
[被処理物1の組み立て]
 ブレージングシート2にプレス成形を行って図1及び図2に示す形状に成形した後、図2(a)に示すように、フランジ部23のろう材層B同士が当接するようにして2枚のブレージングシート2を組み合わせた。この状態で治具(図示略)を用いて2枚のブレージングシート2を固定し、被処理物1を組み立てた。
[フラックス3の塗布]
 次に、フラックス3が中空部11内に進入しないように、被処理物1の一対の開口端111(図1参照)にテープ(図示略)を貼り付けて中空部11を一時的に封止した。この状態において、被処理物1の外表面、即ち外部空間に面した表面全体にK-Al-F系フラックスのアルコール懸濁液をスプレーにより塗布した。その後、被処理物1を乾燥させた後にテープを除去した。以上により被処理物1の外表面にフラックス3を塗布した。
 フラックス3の塗布量は、以下の方法により算出した。まず、フラックス3を塗布し、乾燥させた後に測定した被処理物1の質量から、フラックス3の塗布前に予め測定した被処理物1の質量を差し引くことにより、塗布されたフラックス3の総質量(g)を算出した。この総質量を被処理物1の外表面の総面積(m)で除することにより、被処理物1に塗布されたフラックス3の塗布量の平均を算出することができる。本例においては、この塗布量の平均を外側被接合部13に塗布されたフラックス3の量とする。
 本例においては、フラックス3の塗布ムラを考慮して、塗布量の平均が2.5g/mとなるように、アルコール懸濁液中のフラックス3の濃度等の塗布条件を設定した。しかしながら、実際には表3に示すように、フラックス3の塗布量の平均は1.0~4.5g/mの範囲で変動した。
[ろう付]
 被処理物1のろう付には、ろう付室内を不活性ガスにより置換可能なろう付炉を用いた。本例においては、ろう付室内に窒素ガスを導入し、室内の酸素濃度を20ppm以下に制御した状態で被処理物1のろう付を行った。
 被処理物1の加熱は、以下の条件により行った。ろう付室内に被処理物1を送入した後、被処理物1の温度を計測しながら、温度が600℃に到達するまでの時間が15分程度となるように被処理物1を加熱した。被処理物1の温度が600℃に到達した後、600℃の温度を3分間保持した。その後、被処理物1を冷却した後ろう付炉から取り出した。以上により被処理物1のろう付を完了し、表3に示す33種の試験体(試験体E1~E23、C1~C10)を作製した。
[ろう付性の評価]
 得られた試験体について、目視評価及び断面観察によりろう付性の評価を行った。以下に評価方法を説明する。
<目視評価>
 試験体の内側被接合部12及び外側被接合部13に形成されたフィレット121、131(図2(b)参照)の形状を目視により観察した。その結果を表3に示す。なお、表3における「目視評価」の欄に示した記号に対応する評価結果は以下の通りである。
 A+:フィレット121、131の大きさのばらつきが小さく、フィレット121、131に切れ目がない極めて良好な状態
 A:フィレット121、131の大きさに若干のばらつきがあるが、フィレット121、131に切れ目がない良好な状態
 B:フィレット121、131が部分的に途切れ、連続していない状態
 C:フィレット121、131がほとんど形成されていない、あるいはろう付接合がなされていない状態
<断面観察>
 試験体を切断して長手方向に垂直な断面を露出させ、当該断面に形成されたフィレット121、131の画像を取得した。この画像に基づき、図2(b)に示すように、フィレット121、131を円弧と仮定したときの曲率半径を算出した。即ち、図2(b)に示すように、上記の断面画像に基づいて、フィレット121、131の形状に最もよく合致する近似円122、132を決定し、得られた近似円122、132の半径を曲率半径とした。なお、フィレット121、131の曲率半径は、ろう付性が良好であり、ろう付中のろうの濡れ性が高いほど大きい値を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~表3より知られるように、試験体E1~E23は、ろう材層B及び心材層Cの化学成分が上記特定の範囲内であるブレージングシート2を用いている。それ故、試験体E1~E23は、目視評価及び断面観察のいずれの評価においても良好な結果を示した。なお、試験体E15は、ろう付部14の表面に変色が発生した。これは、Biの含有量が比較的多いためと考えられる。試験体E15における目視評価及び断面観察の結果は良好であるため、試験体E15においては、ろう付部14の変色が実用上問題となるおそれはない。
 一方、試験体C1~C6は、ろう材層B中のBi、LiまたはBeのいずれかが上記特定の範囲から外れているブレージングシート2を用いている。そのため、内側被接合部12においてフィレット切れや未接合等のろう付不良が発生した。試験体C1~C6は、内側被接合部12におけるフィレット121の曲率半径が小さいことから、Bi、LiまたはBeのいずれかが上記特定の範囲から外れたために、内側被接合部12におけるろうの濡れ性の低下を招いたと推定できる。
 試験体C7~C8は、ろう材層B中のSiが上記特定の範囲から外れているブレージングシート2を用いている。そのため、ろう付中のろうの流動性が不十分となり、内側被接合部12及び外側被接合部13のいずれにおいてもろう付不良が発生した。
 試験体C9~C10は、ろう材層Bまたは心材層CのMgが上記特定の範囲を超えているブレージングシート2を用いている。そのため、外側被接合部13においてろう付不良が発生した。試験体C9~C10は、外側被接合部13におけるフィレット131の曲率半径が小さいことから、フラックス3がMgと反応して消費されたために、外側被接合部13におけるろうの濡れ性の低下を招いたと推定できる。
(実施例2)
 本例は、ブレージングシート2以外の他の部材を含む被処理物1bのろう付方法の例である。本例の被処理物1bは、図3及び図4に示すように、平板状のブレージングシート2bと、ブレージングシート2b上に載置された上部部材4とから構成されており、ブレージングシート2bと上部部材4とにより囲まれた筒状の中空部11が存在している。なお、図3及び図4において用いた符号のうち、実施例1において用いた符号と同一のものは、特に説明の無い限り実施例1と同様の構成要素等を示す。
 上部部材4はJIS A 3003合金よりなる厚さ0.4mmのアルミニウム板を屈曲して形成されており、実施例1におけるブレージングシート2と同様の形状を有している。即ち、図3及び図4に示すように、上部部材4は、頂壁部41と、頂壁部41の幅方向における両端に屈曲形成された一対の側壁部42と、側壁部42の先端に形成されたフランジ部43とを有している。
 ブレージングシート2bは、実施例1における試験体E2及び試験体E4に用いたものと同一の構成を有している。本例のブレージングシート2は、幅50mm×長さ100mmの寸法を有している。
 本例においては、被処理物1bを組み立てる前に、ブレージングシート2bのろう材層Bにおける外側被接合部13となる部分(図4(a)参照)にフラックス3を塗布した。具体的には、フラックス3の塗布量の平均が1.5g/m及び3.5g/mとなるように、フラックス3の濃度が異なる2種類のアルコール懸濁液を調製し、これを刷毛を用いて塗布した後、乾燥させた。
 本例の方法では、実施例1のように被処理物1の全面に塗布する方法に比べて、塗布するフラックス3の総質量が少ない、塗布面積の算出が困難であるなどの問題があり、塗布後のブレージングシート2bそのものを用いて塗布量を正確に算出することが難しい。それ故、本例においては、上記2種類のアルコール懸濁液を用いて予め塗布実験を複数回行い、ろう付に用いるブレージングシート2bへの塗布量が上記複数回の塗布実験における最大値から最小値までの範囲に含まれていると推定して実験を進めた。表4に、上記塗布実験における最大値から最小値までの範囲を示す。
 ブレージングシート2bにフラックス3を塗布した後、ろう材層Bにフランジ部43が当接するようにして上部部材4を載置した(図4(a)参照)。この状態で、治具を用いてブレージングシート2bと上部部材4とを固定し、被処理物1bを組み立てた。本例の被処理物1bは、図3及び図4(a)に示すように、ブレージングシート2b及び上部部材4により囲まれた筒状の中空部11を有している。また、フランジ部43における中空部11側は内側被接合部12であり、外部空間に面した側は外側被接合部13である。
 その後、実施例1と同様にろう付を行い、表4に示す4種の試験体(試験体E31~E34)を作製した。また、本例においては、試験体E31~E34との比較のため、フラックス3を一切塗布しない以外は上記と同様に作製した2種の試験体(試験体C31~C32)を準備した。これらの6種の試験体について、実施例1と同様にろう付性の評価を行い、その結果を表4に示した。
Figure JPOXMLDOC01-appb-T000004
 表4より知られるように、外側被接合部13にフラックス3を塗布した試験体E31~E34は、目視評価及び断面観察のいずれの評価においても良好な結果を示した。一方、フラックス3を塗布せずに作製した試験体C31~C32は、外側被接合部13においてろう付不良が発生した。これらの結果から、外側被接合部13においては、ろう材層Bに含まれるBi、Li及びBeによるろう付性の向上効果を得ることが難しく、フラックス3が必須であることが理解できる。
(実施例3)
 本例は、上記ろう付方法を適用可能な被処理物1の他の態様の例である。上記ろう付方法は、アルミニウム材からなり、中空部11を有する被処理物1であれば、種々の態様の被処理物1に適用することができる。図5~図7に、被処理物1(1c、1d、1e)の態様の例を示す。なお、なお、図5~図7は、被処理物1のろう付が完了した状態を示している。ブレージングシート2におけるろう材層Bは、ろう付時の加熱により溶融して内側被接合部12及び外側被接合部13に移動する。そのため、図5~図7に示すように、ろう付が完了した状態における心材層Cの表面には、内側被接合部12及び外側被接合部13を除いてろう材層Bは残っていない。
 例えば、被処理物1は、図5に示すように、2枚のブレージングシート2の間にインナーフィン5を狭持していてもよい。図5の被処理物1cは、心材層Cの両面にろう材層Bがクラッドされた両面ブレージングシートを用いて作製することができる。
 被処理物1cの作製は、例えば、以下のようにして行うことができる。まず、ブレージングシート2の板幅方向における両端部を屈曲し、頂壁部21と、一対のテーパ状側壁部24とを形成する。テーパ状側壁部24は、頂壁部21から離れるほど互いの間隔が拡開するように屈曲される。次いで、別途準備したコルゲート形状を有するインナーフィン5を、2枚のブレージングシート2(2c、2d)のうち一方のブレージングシート2cの内側に収容し、頂壁部21のろう材層Bに当接させる。その後、他方のブレージングシート2dの頂壁部21を一方のブレージングシート2cの内側に収容してろう材層Bをインナーフィン5に当接させると共に、2枚のブレージングシート2のテーパ状側壁部24同士を当接させる。
 以上により得られた被処理物1cは、2枚のブレージングシート2の間に複数の中空部11(11a、11b)を有している。即ち、板幅方向における頂壁部21の両端には、頂壁部21、テーパ状側壁部24及びインナーフィン5により囲まれた筒状の中空部11aが存在している。また、中空部11aよりも板幅方向の内側には、頂壁部21とインナーフィン5とにより囲まれた筒状の中空部11bが存在している。
 ブレージングシート2とインナーフィン5との当接部は中空部11aまたは11bに面する内側被接合部12であるため、フラックス3を用いることなく良好なろう付接合を形成することができる。一方、テーパ状側壁部24同士の当接部は、外部空間に面する外側被接合部13を有する。それ故、テーパ状側壁部24同士の当接部における外表面にフラックス3を塗布することにより、良好なろう付接合を形成することができる。
 また、被処理物1は、1枚のブレージングシート2を折り曲げてなる筒状体であってもよい。例えば、図6に示す被処理物1dは、ブレージングシート2の板幅方向における両端部を中央側へ向けて折り返して折り返し部25を形成し、更にその先端を内側へ折り込んで中央壁部26を形成することにより作製できる。これにより、中央壁部26と、中央壁部26に連なる折り返し部25と、折り返し部25に対面する基部27とが形成される。
 上記のように作製された被処理物1dは、中央壁部26と、折り返し部25と、基部27とにより囲まれた2箇所の中空部11を有している。また、基部27と中央壁部26とが接合される部分は内側被接合部12であり、一対の中央壁部26が接合される部分は外側被接合部13である。
 1枚のブレージングシート2を折り曲げてなる被処理物1の他の態様としては、図7に示すように、ブレージングシート2の板幅方向における両端部にフランジ部23を形成し、フランジ部23同士が当接するようにブレージングシート2を筒状に成形した被処理物1eが考えられる。
 以上に列挙した被処理物1の態様は例示であり、アルミニウム材からなり、中空部11を有する被処理物1であれば、上記ろう付方法を適用することができる。
(実施例4)
 上記ろう付方法は、熱交換器の製造に適用することができる。図8に示すように、本例の被処理物1fは、一対のヘッダ61と、互いに平行に並んだ状態でヘッダ61に挿通される5本の押出管62と、隣り合う押出管62の間に配置されるコルゲート形状のアウターフィン63とを有している。
 被処理物1fは、多数の中空部11(11c、11d)を有している。即ち、図8に示すように、ヘッダ61の並び方向における被処理物1fの両端には、ヘッダ61、押出管62及びアウターフィン63により囲まれた中空部11cが存在している。また、中空部11cよりも上記並び方向の内側には、押出管62とアウターフィン63とにより囲まれた中空部11dが存在している。
 被処理物1fは、ヘッダ61、押出管62及びアウターフィン63を図8に示す所定の形状に組み立てた後、上記ろう付方法を適用してろう付を行うことにより、熱交換器を作製することができる。
 押出管62としては、例えば、管内部が隔壁により複数の流路に区画された多穴管を用いることができる。ヘッダ61及びアウターフィン63は心材層Cの両面にろう材層Bを有するブレージングシート2から構成されている。また、ヘッダ61は、押出管62を挿通するための貫通穴(図示略)を有している。
 図8に示すように、本例の被処理物1fには、多数の中空部11が存在している。押出管62とアウターフィン63との当接部は中空部11cまたは11dに面する内側被接合部12であるため、フラックス3を用いることなく良好なろう付接合を形成することができる。一方、ヘッダ61と押出管62との当接部は、外部空間に面する外側被接合部13を有する。それ故、ヘッダ61と押出管62との当接部における外表面にフラックス3を塗布することにより、良好なろう付接合を形成することができる。

Claims (7)

  1.  アルミニウム材からなり中空部を有する被処理物における、上記中空部に面した内側被接合部と、外部空間に面した外側被接合部とを一括してろう付するろう付方法であって、
     Mgの含有量が0.2%(質量%、以下同じ)未満に規制され、残部がAl及び不可避不純物からなる化学成分を有する心材層と、Si:4.0~13.0%、Bi:0.01~0.3%を必須に含み、更にLi:0.004~0.08%及びBe:0.006~0.12%のうち1種又は2種を含み、Mgの含有量が0.1%未満に規制され、残部がAl及び不可避不純物からなる化学成分を有し、上記心材層の少なくとも一方の面にクラッドされたろう材層とを有するブレージングシートを含む上記被処理物を準備し、
     上記ろう材層が上記内側被接合部及び上記外側被接合部の両方に存在するように上記被処理物を組み立て、
     次いで、上記外側被接合部に存在する上記ろう材層上にフラックスを塗布し、
     その後、不活性ガス雰囲気下で上記被処理物を加熱してろう付を行う、ろう付方法。
  2.  上記心材層は、更にMn:0.05~1.3%、Si:1.0%以下、Fe:1.0%以下、Cu:0.9%以下、Zn:6.5%以下、Ti:0.2%以下及びZr:0.5%以下のうち1種または2種以上を含有している、請求項1に記載のろう付方法。
  3.  上記ブレージングシートは、予め、上記ろう材層の表面に存在する酸化皮膜のエッチング処理を施されている、請求項1または2に記載のろう付方法。
  4.  上記エッチング処理の後に、上記ろう材層の表面に不活性ガス中での熱分解温度が380℃以下である油剤を塗布する、請求項3に記載のろう付方法。
  5.  上記フラックスは、不活性ガス中での熱分解温度が500℃以下であるバインダの含有量が20質量%以下に規制されている、請求項1~4のいずれか1項に記載のろう付方法。
  6.  上記外側被接合部に塗布するフラックスの量は、0.5~7.0g/m2である、請求項1~5のいずれか1項に記載のろう付方法。
  7.  熱交換器の製造に用いる、請求項1~6のいずれか1項に記載のろう付方法。
PCT/JP2015/082035 2014-12-11 2015-11-13 ろう付方法 WO2016093017A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/533,869 US10150186B2 (en) 2014-12-11 2015-11-13 Brazing method
EP15867796.3A EP3231545B1 (en) 2014-12-11 2015-11-13 Brazing method
CN201580062731.1A CN107073618B (zh) 2014-12-11 2015-11-13 钎焊方法
JP2016563582A JP7042023B2 (ja) 2014-12-11 2015-11-13 ろう付方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014250724 2014-12-11
JP2014-250724 2014-12-11

Publications (1)

Publication Number Publication Date
WO2016093017A1 true WO2016093017A1 (ja) 2016-06-16

Family

ID=56107211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082035 WO2016093017A1 (ja) 2014-12-11 2015-11-13 ろう付方法

Country Status (5)

Country Link
US (1) US10150186B2 (ja)
EP (1) EP3231545B1 (ja)
JP (1) JP7042023B2 (ja)
CN (1) CN107073618B (ja)
WO (1) WO2016093017A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021505404A (ja) * 2017-12-12 2021-02-18 コンステリウム ヌフ−ブリザックConstellium Neuf−Brisach フラックスフリーのろう付け用のアルミニウム多層ブレージングシート

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017716A1 (ja) 2014-07-30 2016-02-04 株式会社Uacj アルミニウム合金ブレージングシート
JP6468983B2 (ja) 2015-10-16 2019-02-13 株式会社Uacj アルミニウム合金ブレージングシート、その製造方法、アルミニウム合金シート及び熱交換器
JP2017074610A (ja) * 2015-10-16 2017-04-20 株式会社Uacj アルミニウム合金ブレージングシート及びろう付け方法
JP6186455B2 (ja) 2016-01-14 2017-08-23 株式会社Uacj 熱交換器及びその製造方法
JP6579037B2 (ja) * 2016-05-30 2019-09-25 日本軽金属株式会社 パワーデバイス用冷却器の製造方法
JP6263574B2 (ja) * 2016-05-30 2018-01-17 株式会社Uacj ブレージングシート及びその製造方法並びにアルミニウム構造体のろう付方法
DE102016008490A1 (de) * 2016-07-14 2018-01-18 Modine Manufacturing Company Flussmittelarmes CAB-Löten bei Wärmeübertragern
JP6312968B1 (ja) 2016-11-29 2018-04-18 株式会社Uacj ブレージングシート及びその製造方法
JP7053281B2 (ja) 2017-03-30 2022-04-12 株式会社Uacj アルミニウム合金クラッド材及びその製造方法
WO2019081690A1 (en) * 2017-10-27 2019-05-02 Solvay Sa IMPROVED BRAZING METHOD AND FLOW-COVERED PARTS
JP7256760B2 (ja) * 2018-02-02 2023-04-12 株式会社Uacj ろう付け方法
JP7149174B2 (ja) 2018-12-10 2022-10-06 ダイキン工業株式会社 クローズドインペラ及びその製造方法
DE102019120862A1 (de) * 2019-08-01 2021-02-04 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines Plattenwärmetauschers sowie Plattenwärmetauscher

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182992A (ja) * 1984-09-28 1986-04-26 Furukawa Alum Co Ltd Al合金ブレ−ジングシ−ト
JPH1034378A (ja) * 1996-07-29 1998-02-10 Mitsubishi Alum Co Ltd 長期にわたって優れた耐食性および接合強度を維持することができるろう付け構造
JPH1180870A (ja) * 1997-09-08 1999-03-26 Sumitomo Light Metal Ind Ltd 強度および耐食性に優れた熱交換器用アルミニウム合金クラッド材
JP2000225461A (ja) * 1999-02-04 2000-08-15 Sky Alum Co Ltd ドロンカップ積層型熱交換器およびろう付け方法
JP2009142870A (ja) * 2007-12-14 2009-07-02 Harima Chem Inc アルミニウムろう付け用組成物、その塗布方法及びろう付け方法
JP2010255014A (ja) * 2009-04-21 2010-11-11 Sumitomo Light Metal Ind Ltd アルミニウム合金製熱交換器の溶接チューブ用クラッド材およびその製造方法
EP2418042A1 (en) * 2011-01-17 2012-02-15 Aleris Aluminum Koblenz GmbH Aluminium brazing sheet material for tubes

Family Cites Families (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2143965C3 (de) 1971-09-02 1981-11-26 Vereinigte Aluminium-Werke Ag, 5300 Bonn Verwendung eines Lotes zum flußmittelfreien Hartlöten von Aluminiumwerkstoffen in Schutzgas, Inertgas oder Vakuum
US4905887A (en) 1969-12-15 1990-03-06 Heinz Schoer Process for soldering aluminum containing workpieces
US4121750A (en) 1969-12-15 1978-10-24 Vereinigte Aluminium-Werke Aktiengesellschaft Processes for soldering aluminum-containing workpieces
US4173302A (en) 1969-12-15 1979-11-06 Vereinigte Aluminium-Werke Aktiengesellschaft Process and alloy for brazing aluminum-containing articles
BE758884A (fr) 1969-12-15 1971-04-16 Vaw Ver Aluminium Werke Ag Procede de brasage de l'aluminium et de ses alliages
US3811177A (en) 1969-12-15 1974-05-21 Vaw Ver Aluminium Werke Ag Process for brazing workpieces of aluminum containing material
US3807033A (en) 1970-12-14 1974-04-30 Vaw Ver Aluminium Werke Ag Joining process
US3900151A (en) 1971-09-02 1975-08-19 Vaw Ver Aluminium Werke Ag Joining process
US3853547A (en) 1973-05-25 1974-12-10 Reynolds Metals Co Brazing materials
JPS5417349A (en) * 1977-07-11 1979-02-08 Mitsubishi Aluminium Aluminum alloy brazing material for brazing used for fluxxfree brazing in high vacuum or nonoxidizable atomosphere
JPS6015064A (ja) 1983-07-06 1985-01-25 Hitachi Ltd 熱交換器
JPS60228657A (ja) 1984-04-26 1985-11-13 Sumitomo Precision Prod Co Ltd アルミニウム合金構造物の製造方法
JPS61293699A (ja) 1985-06-20 1986-12-24 Toyota Central Res & Dev Lab Inc ろう付け用フラツクスおよびその製造方法
US4906307A (en) 1987-10-16 1990-03-06 Calsonic Corporation Flux used for brazing aluminum-based alloy
JPH01225736A (ja) 1988-03-07 1989-09-08 Mitsubishi Alum Co Ltd Al熱交換器の管継手用高強度Al合金
JPH0320594A (ja) 1989-06-19 1991-01-29 Honda Motor Co Ltd 熱交換器
JP2685927B2 (ja) 1989-10-05 1997-12-08 古河電気工業株式会社 A▲l▼製熱交換器の冷媒通路用ブレージングシート
JPH0763866B2 (ja) 1989-12-01 1995-07-12 株式会社豊田中央研究所 ろう付け用フラックス
NO174455C (no) 1991-06-14 1994-05-11 Norsk Hydro As Fremgangsmåte for sammenföyning av aluminiumkomponenter
JPH0525576A (ja) 1991-07-16 1993-02-02 Mitsubishi Alum Co Ltd 耐孔食性にすぐれたAl 熱交換器用高強度Al 合金管材
US5232788A (en) 1992-02-12 1993-08-03 Alcan International Limited Aluminum brazing sheet
JP3160099B2 (ja) 1992-12-11 2001-04-23 三菱アルミニウム株式会社 熱交換器の製造方法
US5418072A (en) 1993-09-20 1995-05-23 Alcan International Limited Totally consumable brazing encapsulate for use in joining aluminum surfaces
JP3674053B2 (ja) 1993-12-24 2005-07-20 株式会社デンソー ロウ付け用フラックス、熱交換器、及び熱交換器の製造法
US5450666A (en) 1994-02-28 1995-09-19 S.A. Day Mfg. Co., Inc. Flux composition for aluminum brazing
JPH07303858A (ja) 1994-05-13 1995-11-21 Nippon Light Metal Co Ltd ろう付け用スラリーの塗布方法
JP3534450B2 (ja) 1994-08-10 2004-06-07 三菱重工業株式会社 熱交換器の製造方法
JPH0985433A (ja) 1995-09-19 1997-03-31 Sky Alum Co Ltd フラックスレス非酸化性雰囲気ろう付け方法
JP3351249B2 (ja) 1996-07-23 2002-11-25 日本軽金属株式会社 アルミニウム合金のろう付方法
JP3212927B2 (ja) 1996-12-14 2001-09-25 三菱アルミニウム株式会社 アルミニウム合金粉末ろう材および該粉末ろう材を用いたろう付方法
DE19744734A1 (de) 1997-10-10 1999-04-15 Erbsloeh Ag Verfahren zur partiellen oder vollständigen Beschichtung von Metalloberflächen mit Lot und Bindemittel
JP3704632B2 (ja) 1997-12-24 2005-10-12 三菱アルミニウム株式会社 アルミニウム製熱交換器用フィン材およびアルミニウム製熱交換器の製造方法
JPH11221696A (ja) 1998-02-02 1999-08-17 Mitsubishi Alum Co Ltd ろう付用組成物および該組成物の塗布方法ならびにろう付用品
JP3556827B2 (ja) 1998-04-01 2004-08-25 古河スカイ株式会社 非酸化性ガス雰囲気無フラックスろう付け用材料の製造方法およびろう付け方法
JP3865933B2 (ja) 1998-05-25 2007-01-10 三菱アルミニウム株式会社 熱交換器用高強度アルミニウム合金押出材の製造方法
JPH11347783A (ja) 1998-06-09 1999-12-21 Nippon Light Metal Co Ltd アルミニウム又はアルミニウム合金接合用線状ろう材及びその製造方法
JP2000063970A (ja) 1998-08-21 2000-02-29 Nippon Light Metal Co Ltd アルミニウム合金製熱交換器用押出管
JP2000167688A (ja) 1998-12-03 2000-06-20 Sumitomo Light Metal Ind Ltd ろう付け性および耐食性に優れた熱交換器用アルミニウム合金クラッド材
JP4023760B2 (ja) 1999-01-11 2007-12-19 住友軽金属工業株式会社 ろう付け性および耐食性に優れた熱交換器用アルミニウム合金クラッド材
JP2000202682A (ja) 1999-01-13 2000-07-25 Sumitomo Light Metal Ind Ltd アルミニウム合金ろう材および該ろう材を皮材とするろう付け性と耐食性に優れた熱交換器用アルミニウム合金クラッド材
JP2000202620A (ja) 1999-01-13 2000-07-25 Denso Corp ろう付け用アルミニウム板材及び熱交換器の製造方法
JP2000317673A (ja) 1999-05-13 2000-11-21 Furukawa Electric Co Ltd:The ろう付け性に優れたブレージングシート
EP1198625B1 (en) 1999-05-21 2003-06-18 Corus Aluminium Walzprodukte GmbH Brazing sheet product and method of its manufacture
US6234243B1 (en) 1999-12-14 2001-05-22 Visteon Global Technologies, Inc. Heat exchanger assembly with magnesium barrier
US6497770B2 (en) 2000-02-17 2002-12-24 Toyo Aluminium Kabushiki Kaisha Flux-containing compositions for brazing aluminum, films and brazing method thereby
CA2402205C (en) 2000-03-10 2005-07-26 Corus Aluminium Walzprodukte Gmbh Brazing sheet product and method of manufacturing an assembly using the brazing sheet product
AU8176901A (en) 2000-05-18 2001-11-26 Corus Aluminium Walzprod Gmbh Method of manufacturing an aluminium product
US20020086179A1 (en) 2000-05-19 2002-07-04 Wittebrood Adrianus Jacobus Composite metal panel
US6503640B2 (en) 2000-05-19 2003-01-07 Corus Aluminium Walzeprodukte Gmbh Method of manufacturing an assembly of brazed dissimilar metal components
JP4475617B2 (ja) 2000-07-05 2010-06-09 住友軽金属工業株式会社 耐食性に優れた熱交換器用アルミニウム合金クラッド材
JP4577634B2 (ja) 2000-09-07 2010-11-10 三菱アルミニウム株式会社 熱交換器用ろう材被覆アルミニウム合金押出チューブ
JP3847077B2 (ja) 2000-11-17 2006-11-15 住友軽金属工業株式会社 成形性及びろう付け性に優れた熱交換器用アルミニウム合金フィン材
JP2002267382A (ja) 2001-03-08 2002-09-18 Sky Alum Co Ltd アルミニウム製熱交換器用ろう付け構造体の製造方法
JP4636520B2 (ja) 2001-07-30 2011-02-23 株式会社デンソー 熱交換器用アルミニウムブレージングシートのろう材およびその製造方法
JP2003053523A (ja) 2001-08-14 2003-02-26 Mitsubishi Alum Co Ltd 熱交換器およびその製造方法
JP2003094165A (ja) 2001-09-20 2003-04-02 Denso Corp ろう付け用アルミニウム材およびそれを用いたろう付け方法
JP4107931B2 (ja) 2001-09-28 2008-06-25 古河スカイ株式会社 アルミニウム又はアルミニウム合金材のろう付け方法およびアルミニウム合金製ブレージングシート
CN1277650C (zh) 2001-09-28 2006-10-04 古河Sky株式会社 铝合金钎焊板
JP4491478B2 (ja) 2001-09-28 2010-06-30 古河スカイ株式会社 アルミニウム又はアルミニウム合金材のろう付け方法およびアルミニウム合金製ブレージングシート
JP3780380B2 (ja) 2001-10-23 2006-05-31 古河スカイ株式会社 アルミニウム合金ブレ−ジングシ−ト、それを用いたろう付け方法、およびろう付け製品
JP2003225760A (ja) 2002-01-30 2003-08-12 Denso Corp アルミニウム熱交換器の製造方法
RU2334604C2 (ru) 2002-04-22 2008-09-27 Алкоа Инк. Листы для пайки, покрытые флюсом
US7534309B2 (en) 2002-06-17 2009-05-19 Sumitomo Light Metal Industries, Ltd. Aqueous aluminum brazing composition, aluminum material coated with the brazing composition, brazing method using the aluminum material, and automotive heat exchanger manufactured by using the brazing method
JP4166613B2 (ja) 2002-06-24 2008-10-15 株式会社デンソー 熱交換器用アルミニウム合金フィン材および該フィン材を組付けてなる熱交換器
JP2004042086A (ja) 2002-07-11 2004-02-12 Denso Corp アルミニウム材をろう付けするためのろう材粉末および該ろう材粉末を用いるアルミニウム材のろう付け方法
JP3910506B2 (ja) 2002-08-13 2007-04-25 住友軽金属工業株式会社 アルミニウム合金クラッド材およびその製造方法
US7056597B2 (en) 2002-12-13 2006-06-06 Corus Aluminium Walzprodukte Gmbh Brazing sheet product and method of its manufacture
AU2003289789B2 (en) * 2002-12-23 2009-03-19 Alcan International Limited Aluminum alloy tube and fin assembly for heat exchangers having improved corrosion resistance after brazing
US9283633B2 (en) 2003-05-06 2016-03-15 Mitsubishi Aluminum Co. Ltd. Heat exchanger tube precursor and method of producing the same
JP4413526B2 (ja) 2003-05-06 2010-02-10 三菱アルミニウム株式会社 熱交換器用チューブ
US8640766B2 (en) 2003-05-06 2014-02-04 Mitsubishi Aluminum Co., Ltd. Heat exchanger tube
JP2005016937A (ja) * 2003-06-06 2005-01-20 Denso Corp 耐食性に優れたアルミニウム製熱交換器
JP2005060790A (ja) 2003-08-18 2005-03-10 Sumitomo Light Metal Ind Ltd 熱交換器用アルミニウム合金ブレージングフィン材
JP2005111527A (ja) 2003-10-08 2005-04-28 Denso Corp アルミニュウム熱交換器の製造方法
KR101136210B1 (ko) 2003-10-20 2012-04-17 후루카와 스카이 가부시키가이샤 알루미늄 합금제 열교환기용 부재 및 그 제조방법
FR2862984B1 (fr) 2003-11-28 2006-11-03 Pechiney Rhenalu Bande en alliage d'aluminium pour brasage
CN1905980A (zh) 2003-12-24 2007-01-31 昭和电工株式会社 热交换器及其制造方法
JP4563204B2 (ja) 2004-02-13 2010-10-13 株式会社デンソー 熱交換器用アルミニウム合金押出材およびその製造方法
JP2006045667A (ja) 2004-06-28 2006-02-16 Showa Denko Kk アルミニウム製熱交換管およびその製造方法
JP4474228B2 (ja) 2004-08-05 2010-06-02 株式会社デンソー ろう付け方法
JP4634789B2 (ja) 2004-12-24 2011-02-16 古河スカイ株式会社 ロウ付け方法
JP4700359B2 (ja) 2005-02-01 2011-06-15 昭和電工株式会社 熱交換器用チューブの製造方法
JP2006255755A (ja) 2005-03-17 2006-09-28 Mitsubishi Alum Co Ltd ろう付用アルミニウム合金材およびアルミニウム合金材のろう付方法
JP4611797B2 (ja) 2005-04-28 2011-01-12 三菱アルミニウム株式会社 ろう付性に優れたラジエータチューブ用アルミニウム合金板材、及びそれを備えたラジエータチューブと熱交換器
JP2006348372A (ja) 2005-06-20 2006-12-28 Mitsubishi Alum Co Ltd 自動車熱交換器用高強度アルミニウム合金材
JP4824358B2 (ja) 2005-07-22 2011-11-30 株式会社デンソー 表面性状に優れたアルミニウム合金押出材とその製造方法、および熱交換器用多孔管ならびに該多孔管を組み込んだ熱交換器の製造方法
JP4807826B2 (ja) 2005-08-04 2011-11-02 住友軽金属工業株式会社 犠牲陽極材面のろう付けによる面接合性に優れたアルミニウム合金クラッド材
JP2007044713A (ja) 2005-08-08 2007-02-22 Mitsubishi Alum Co Ltd ろう付方法およびろう付装置
JP4698416B2 (ja) 2005-12-28 2011-06-08 株式会社デンソー ドロンカップ型熱交換器の製造方法、アルミニウムクラッド板材およびドロンカップ型熱交換器
JP4702797B2 (ja) 2006-02-20 2011-06-15 住友軽金属工業株式会社 犠牲陽極材面のろう付けによる面接合性に優れたアルミニウム合金クラッド材の製造方法
JP2007260733A (ja) 2006-03-29 2007-10-11 Mitsubishi Alum Co Ltd ろう付用混合物およびろう付方法
JP5026726B2 (ja) 2006-04-03 2012-09-19 東洋アルミニウム株式会社 アルミニウムろう付用ペースト状組成物、それが塗布されたアルミニウム含有部材、および、それを用いたアルミニウム含有部材のろう付方法
JP2008006480A (ja) 2006-06-30 2008-01-17 Sumitomo Light Metal Ind Ltd 熱交換器用ブレージングフィン材並びに熱交換器及びその製造方法
JP2008121108A (ja) 2006-10-16 2008-05-29 Showa Denko Kk 熱交換器用チューブおよびその製造方法
JP4111456B1 (ja) 2006-12-27 2008-07-02 株式会社神戸製鋼所 熱交換器用アルミニウム合金ブレージングシート
JP4955418B2 (ja) 2007-02-26 2012-06-20 古河スカイ株式会社 自然冷媒用熱交換器に用いられるアルミニウム合金押出材
DE102008009695B4 (de) 2007-03-02 2023-10-12 Mahle International Gmbh Halbzeug
JP5057439B2 (ja) 2007-04-13 2012-10-24 住友軽金属工業株式会社 耐久性に優れた高強度、高融点熱交換器用アルミニウム合金クラッド材とその製造方法、およびアルミニウム合金製熱交換器
HUE034136T2 (en) 2007-06-20 2018-02-28 Aleris Rolled Prod Germany Gmbh Aluminum alloy solder board product
JP2009058139A (ja) 2007-08-30 2009-03-19 Mitsubishi Alum Co Ltd 耐食性に優れたアルミニウム製熱交換器用部材
JP2009058167A (ja) 2007-08-31 2009-03-19 Mitsubishi Alum Co Ltd 耐食性に優れたチューブを用いたアルミニウム熱交換器および耐食性に優れたアルミニウム製熱交換器の製造方法
JP5115963B2 (ja) 2007-09-14 2013-01-09 三菱アルミニウム株式会社 耐食性に優れたアルミニウム製熱交換器用部材および耐食性に優れたアルミニウム製熱交換器の製造方法
JP2009106947A (ja) 2007-10-26 2009-05-21 Mitsubishi Alum Co Ltd アルミニウム合金チューブ
JP5152727B2 (ja) 2007-12-21 2013-02-27 ハリマ化成株式会社 アルミニウムろう付け用ペースト組成物
CN102089117B (zh) 2008-07-02 2014-04-09 阿勒里斯铝业科布伦茨有限公司 钎焊铝板材
EP2159528B1 (en) 2008-09-02 2015-11-04 Calsonic Kansei Corporation Heat exchanger made of aluminum alloy
JP2010075965A (ja) 2008-09-25 2010-04-08 Mitsubishi Alum Co Ltd ろう付用複合材
JP2010075966A (ja) 2008-09-25 2010-04-08 Mitsubishi Alum Co Ltd ろう付用複合材
KR101659102B1 (ko) 2008-11-10 2016-09-22 알레리스 알루미늄 코블렌쯔 게엠베하 알루미늄의 플럭스리스 브레이징 방법 및 이 방법에 사용하기 위한 브레이징 시트
JP4980390B2 (ja) 2009-03-27 2012-07-18 三菱アルミニウム株式会社 熱交換器用チューブ
JP4547032B1 (ja) 2009-04-17 2010-09-22 三菱アルミニウム株式会社 アルミニウム材のフラックスレスろう付け方法およびフラックスレスろう付け用アルミニウムクラッド材
JP5302751B2 (ja) 2009-04-21 2013-10-02 株式会社デンソー 熱交換器用アルミニウム合金クラッド材
JP5302114B2 (ja) 2009-06-16 2013-10-02 古河スカイ株式会社 真空ろう付け用アルミニウム合金ブレージングシート
JP2011000614A (ja) 2009-06-18 2011-01-06 Showa Denko Kk 熱交換器のろう付方法
JP5610714B2 (ja) 2009-06-24 2014-10-22 株式会社Uacj アルミニウム合金製熱交換器
SE534689C2 (sv) * 2009-09-17 2011-11-15 Sapa Heat Transfer Ab Lodpläterad aluminiumplåt
JP5417160B2 (ja) 2009-12-28 2014-02-12 三菱アルミニウム株式会社 耐食性に優れる粉末ろう組成物及びそれを用いてなる熱交換器用アルミニウム合金チューブ及び熱交換器
JP5632175B2 (ja) 2010-03-19 2014-11-26 株式会社デンソー ろう付け性に優れた高強度熱交換器用アルミニウム合金クラッド材および熱交換器
JP5491927B2 (ja) * 2010-03-29 2014-05-14 株式会社神戸製鋼所 アルミニウム合金ブレージングシート
JP5750237B2 (ja) 2010-05-25 2015-07-15 株式会社Uacj アルミニウム合金製熱交換器の製造方法
JP5670100B2 (ja) 2010-05-25 2015-02-18 株式会社Uacj アルミニウム合金製熱交換器の製造方法
JP2013536085A (ja) 2010-08-23 2013-09-19 ノルスク・ヒドロ・アーエスアー ろう付け用プリフラックスコーティング
JP5557157B2 (ja) 2010-09-27 2014-07-23 日本軽金属株式会社 複数列熱交換装置
DE112012000619T5 (de) 2011-01-31 2013-10-31 Aleris Rolled Products Germany Gmbh Aluminium Lotblechmaterial für flussmittelfreies Löten
JP2013146756A (ja) 2012-01-19 2013-08-01 Sumitomo Light Metal Ind Ltd アルミニウム合金ブレージングシートとその製造方法、およびアルミニウム製熱交換器のろう付け方法
JP5893450B2 (ja) 2012-03-12 2016-03-23 株式会社Uacj 熱交換器のヘッダ用アルミニウム合金製ブレージングシート、その製造方法及び熱交換器の製造方法
JP5750077B2 (ja) * 2012-03-16 2015-07-15 株式会社神戸製鋼所 熱交換器用アルミニウム合金ブレージングシート
JP2015517911A (ja) 2012-03-26 2015-06-25 エルプスロー・アルミニウム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング はんだ粉末
JP5844212B2 (ja) 2012-05-07 2016-01-13 株式会社Uacj アルミニウム合金ブレージングシート
JP6184671B2 (ja) 2012-09-04 2017-08-23 株式会社神戸製鋼所 アルミニウム複合材の製造方法
JP2014050861A (ja) 2012-09-07 2014-03-20 Uacj Corp アルミニウム合金製ブレージングシート
JP5628266B2 (ja) 2012-10-24 2014-11-19 ハリマ化成株式会社 熱交換器用チューブ、熱交換器および塗膜の製造方法
JP6090736B2 (ja) 2012-10-26 2017-03-08 株式会社Uacj アルミニウム合金のろう付方法及びフラックス成分被覆アルミニウム合金部材
JP2014226704A (ja) 2013-05-23 2014-12-08 株式会社Uacj アルミニウム合金材料のろう付方法
NO3150327T3 (ja) 2014-05-26 2018-12-22
WO2016017716A1 (ja) 2014-07-30 2016-02-04 株式会社Uacj アルミニウム合金ブレージングシート
JP6186455B2 (ja) 2016-01-14 2017-08-23 株式会社Uacj 熱交換器及びその製造方法
JP6055573B1 (ja) * 2016-06-23 2016-12-27 三菱アルミニウム株式会社 フラックスフリーろう付用のブレージングシート、フラックスフリーろう付方法および熱交換器のフラックスフリーろう付方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182992A (ja) * 1984-09-28 1986-04-26 Furukawa Alum Co Ltd Al合金ブレ−ジングシ−ト
JPH1034378A (ja) * 1996-07-29 1998-02-10 Mitsubishi Alum Co Ltd 長期にわたって優れた耐食性および接合強度を維持することができるろう付け構造
JPH1180870A (ja) * 1997-09-08 1999-03-26 Sumitomo Light Metal Ind Ltd 強度および耐食性に優れた熱交換器用アルミニウム合金クラッド材
JP2000225461A (ja) * 1999-02-04 2000-08-15 Sky Alum Co Ltd ドロンカップ積層型熱交換器およびろう付け方法
JP2009142870A (ja) * 2007-12-14 2009-07-02 Harima Chem Inc アルミニウムろう付け用組成物、その塗布方法及びろう付け方法
JP2010255014A (ja) * 2009-04-21 2010-11-11 Sumitomo Light Metal Ind Ltd アルミニウム合金製熱交換器の溶接チューブ用クラッド材およびその製造方法
EP2418042A1 (en) * 2011-01-17 2012-02-15 Aleris Aluminum Koblenz GmbH Aluminium brazing sheet material for tubes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021505404A (ja) * 2017-12-12 2021-02-18 コンステリウム ヌフ−ブリザックConstellium Neuf−Brisach フラックスフリーのろう付け用のアルミニウム多層ブレージングシート
JP7366022B2 (ja) 2017-12-12 2023-10-20 コンステリウム ヌフ-ブリザック フラックスフリーのろう付け用のアルミニウム多層ブレージングシート

Also Published As

Publication number Publication date
CN107073618B (zh) 2019-05-28
CN107073618A (zh) 2017-08-18
EP3231545B1 (en) 2019-09-18
JPWO2016093017A1 (ja) 2017-11-02
US10150186B2 (en) 2018-12-11
JP7042023B2 (ja) 2022-03-25
EP3231545A4 (en) 2018-07-25
US20170320170A1 (en) 2017-11-09
EP3231545A1 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
WO2016093017A1 (ja) ろう付方法
JP6312968B1 (ja) ブレージングシート及びその製造方法
JP6186455B2 (ja) 熱交換器及びその製造方法
EP3459676B1 (en) Brazing sheet for flux-free brazing, flux-free brazing method and method for producing heat exchanger
JP5976200B2 (ja) フラックスレスろう付け用アルミニウム複合材料
WO2016190199A1 (ja) アルミニウム構造体の製造方法
WO2017208940A1 (ja) ブレージングシート及びその製造方法並びにアルミニウム構造体のろう付方法
EP3563968B1 (en) Brazing sheet for flux-free brazing, method for flux-free brazing, and method for heat manufacturing heat exchanger
WO2017018030A1 (ja) アルミニウム構造体の製造方法
CN109070278B (zh) 钎焊板
WO2017115597A1 (ja) アルミニウム合金ブレージングシート及びアルミニウム合金製熱交換器の製造方法
CN111448028A (zh) 用于无助焊剂钎焊的铝多层钎焊板
JP2009068083A (ja) 耐食性に優れたアルミニウム製熱交換器用部材および耐食性に優れたアルミニウム製熱交換器の製造方法
US11229978B2 (en) Brazing sheet for flux-free brazing, method for flux-free brazing and method for manufacturing heat exchanger
JP5695490B2 (ja) アルミニウム合金製ブレージングシート
JP6231800B2 (ja) 微細通路を備えた熱交換器用Al部材及びその製造方法
JP5649405B2 (ja) フラックスレスろう付用アルミニウム合金ブレージングシートおよびアルミニウム材のフラックスレスろう付け方法
WO2021200638A1 (ja) アルミニウム製被ろう付部材及びろう付体の製造方法
WO2021200639A1 (ja) アルミニウム製被ろう付部材及びろう付体の製造方法
JP2009291840A (ja) アルミニウムのろう付け方法および該ろう付け方法により製造されるアルミニウム熱交換器用偏平チューブ
JP2009058140A (ja) 耐食性に優れたアルミニウム製熱交換器用部材および耐食性に優れたアルミニウム熱交換器の製造方法
JP2024060897A (ja) ろう付性に優れるアルミニウム合金とアルミニウム合金クラッド材
JP2015020183A (ja) 微細通路を備えた熱交換器用Al部材及びその製造方法
JP2023066678A (ja) アルミニウム合金ブレージングシート及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563582

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15533869

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015867796

Country of ref document: EP