WO2016078446A1 - 光信噪比检测电路、装置及方法 - Google Patents
光信噪比检测电路、装置及方法 Download PDFInfo
- Publication number
- WO2016078446A1 WO2016078446A1 PCT/CN2015/086677 CN2015086677W WO2016078446A1 WO 2016078446 A1 WO2016078446 A1 WO 2016078446A1 CN 2015086677 W CN2015086677 W CN 2015086677W WO 2016078446 A1 WO2016078446 A1 WO 2016078446A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- optical
- optical signal
- resistor
- noise ratio
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
- H04B10/0795—Performance monitoring; Measurement of transmission parameters
- H04B10/07953—Monitoring or measuring OSNR, BER or Q
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/548—Phase or frequency modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0007—Construction
- H04Q2011/0018—Construction using tunable transmitters or receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0037—Operation
- H04Q2011/0039—Electrical control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0079—Operation or maintenance aspects
- H04Q2011/0083—Testing; Monitoring
Definitions
- the present invention relates to the field of optical communication technologies, and in particular, to an optical signal to noise ratio detection circuit, apparatus, and method.
- DWDM Dense Wavelength Division Multiplexing
- OSNR Optical Signal to Noise Ratio
- Optical signal-to-noise ratio is defined as the ratio of optical signal power to noise power over a light effective bandwidth of 0.1 nm.
- the main object of the embodiments of the present invention is to provide an optical signal to noise ratio detection circuit, apparatus, and method, which aim to solve the problem that the conventional interpolation method cannot realize the optical signal to noise ratio detection in the high speed optical transmission system.
- an embodiment of the present invention provides an optical signal-to-noise ratio detecting circuit, where the optical signal-to-noise ratio detecting circuit includes: an optical switch, which is configured to be connected to a multi-channel containing a modulating signal and an ASE (Amplified Spontaneous Emission).
- the tunable optical filter is set to adjust the modulation frequency of the optical signal to be tested for strobing the optical switch a center frequency of the optical signal to be measured; a photoelectric conversion module configured to convert the optical signal to be measured after adjusting the modulation frequency into a voltage signal; and a signal conditioning module for adjusting the top, and setting the alternating current signal and the direct current in the voltage signal
- the signals are separately amplified and converted into two digital signals, and the modulation depth of the topping signal and the modulation depth of the ASE noise are determined according to the two digital signals, and the optical signal to noise ratio of the optical signal to be measured is calculated; the control module And configured to control the optical switch module, the tunable optical filter, the photoelectric conversion module, and the modulating signal conditioning module to work, and report the optical signal to noise ratio calculation result to Optical transmission management system.
- the photoelectric conversion module includes a photodetector and a sampling resistor; a negative end of the photodetector is connected to a linear power source, and a positive end of the photodetector is grounded via the sampling resistor, the photodetector And a common end of the sampling resistor is connected to an input end of the top signal conditioning module to output the voltage signal to the top signal conditioning module.
- the top signal conditioning module comprises: a voltage following unit configured to extract a voltage signal output by the photoelectric conversion module; and an AC signal conditioning unit configured to amplify the AC signal in the voltage signal and The amplified AC signal is converted into a first digital signal; the DC signal conditioning unit is configured to perform signal amplification on the DC signal in the voltage signal and convert the amplified DC signal into a second digital signal; optical signal to noise ratio calculation a unit configured to calculate, according to the first digital signal and the second digital signal, an optical power AC amplitude of the topping signal, a DC power amplitude of the optical signal of the optical signal when loading the topping signal, and a tunable optical filter bandwidth
- the noise power is determined to determine the modulation depth of the topping signal and the modulation depth of the ASE noise, and calculate the optical signal to noise ratio of the optical signal to be measured according to the modulation depth of the topping signal and the modulation depth of the ASE noise.
- the voltage following unit includes a first voltage follower; a non-inverting input of the first voltage follower is connected to an output of the photoelectric conversion module, and an inverting input end of the first voltage follower is An output end of the first voltage follower is connected, and an output end of the first voltage follower is respectively connected to an input end of the AC signal conditioning unit and the DC signal conditioning unit.
- the AC signal conditioning unit comprises: a first amplifying subunit configured to amplify an AC signal in a voltage signal extracted by the voltage following unit; the first voltage following subunit is configured to extract a medium An amplified AC signal of the first amplifying subunit; a first ADC sampling subunit configured to convert an AC signal extracted by the first voltage following subunit into a first digital signal, and to convert the first digital signal Output to the optical signal to noise ratio calculation unit.
- the first amplifying subunit includes a first amplifier, a second amplifier, a first capacitor, a second capacitor, a third capacitor, a first resistor, a second resistor, a third resistor, and a fourth resistor;
- An inverting input of an amplifier is coupled to an output of the voltage follower unit via a first capacitor, an output of the first amplifier being coupled to a non-inverting input of the second amplifier, and in turn via the first resistor, a second resistor, the second capacitor is grounded, an inverting input end of the first amplifier is coupled to a common end of the first resistor and the second resistor; an output of the second amplifier and the first voltage follower
- An input end of the unit is connected, and is grounded via the third resistor, the fourth resistor, and the third capacitor in sequence, and an inverting input end of the second amplifier is connected to a common end of the third resistor and the fourth resistor;
- the first voltage following subunit includes a second voltage follower; the non-inverting input of the
- the DC signal conditioning unit comprises: a second amplifying subunit configured to amplify a DC signal in the voltage signal extracted by the voltage following unit; and a second voltage following subunit configured to extract the medium a second amplified sub-unit amplified DC signal; a second ADC sampling sub-unit configured to convert the DC signal extracted by the second voltage following sub-unit into a second digital signal, and the second digital signal Output to the optical signal to noise ratio calculation unit.
- the second amplifying subunit includes a fourth amplifier, a fifth amplifier, a ninth resistor, a tenth resistor, an eleventh resistor and a twelfth resistor; a non-inverting input terminal of the fourth amplifier and the voltage Connected to the output of the following unit, the output of the fourth amplifier is connected to the non-inverting input of the fifth amplifier, and is grounded via the ninth resistor and the tenth resistor in turn, and the inverting input of the fourth amplifier The end is connected to the common end of the ninth resistor and the tenth resistor; the output end of the fifth amplifier is connected to the input end of the second voltage following subunit, and sequentially passes through the eleventh resistor, tenth Two resistors are grounded, an inverting input of the fifth amplifier is coupled to a common terminal of the eleventh resistor and a twelfth resistor; the second voltage following subunit includes a third voltage follower; a non-inverting input terminal of the voltage follower is connected to
- an embodiment of the present invention further provides an optical signal to noise ratio detecting apparatus, where the optical signal to noise ratio detecting apparatus includes an optical forwarding unit, a plurality of optical amplifying units, and an optical signal to noise ratio detecting circuit;
- the topping signal is modulated onto the main optical signal, and the optical signal with the topping signal is output, and each optical amplifying unit receives the optical signal output by the optical forwarding unit, and selects a part of the received optical signal to be sent.
- the optical SNR detecting circuit includes: an optical switch, configured to be connected to multiple channels a light signal to be measured containing a tempo signal and an ASE noise, and strobing a signal to be detected to be detected from the plurality of signals to be measured; a tunable optical filter, which is set to illuminate the optical signal to be measured by the optical switch
- the modulation frequency is adjusted to the center frequency of the optical signal to be tested;
- the photoelectric conversion module is configured to convert the optical signal to be measured after adjusting the modulation frequency into a voltage signal; and the signal conditioning module for adjusting the top is set to be
- the alternating current signal and the direct current signal in the voltage signal are separately amplified and correspondingly converted into two digital signals, and the modulation depth of the topping signal and the modulation depth of the ASE noise are determined according to the two digital signals, and
- an embodiment of the present invention further provides an optical signal to noise ratio detecting method applied to the optical signal to noise ratio detecting apparatus, where the optical signal to noise ratio detecting method includes the following steps: on a main optical signal. Modulating the topping signal, outputting the optical signal with the tempered signal; selecting a part of the optical signal with the tempered signal for optical signal to noise ratio detection to provide multiple optical signals to be measured containing the tempered signal and the ASE noise Selecting the to-be-measured optical signal to be detected from the plurality of optical signals to be detected containing the tempered signal and the ASE noise, and adjusting the modulation frequency of the selected optical signal to be measured to the center frequency of the optical signal to be measured; The optical signal to be measured after adjusting the modulation frequency is converted into a voltage signal; the alternating current signal and the direct current signal in the voltage signal are separately amplified and correspondingly converted into two digital signals, and the to-be-tested is calculated according to the two digital signals.
- Optical signal Optical
- the optical signal-to-noise ratio detecting circuit, device and method provided by the embodiments of the present invention connect multiple optical signals to be measured containing the tempered signal and the ASE noise through the optical switch, and strobe the multi-channel optical signal to be detected.
- the optical signal to be measured is subjected to optical signal to noise ratio detection, and the tunable optical filter adjusts the modulation frequency of the optical signal to be tested of the optical switch to the center frequency of the optical signal to be measured, and the photoelectric conversion module adjusts the modulation frequency.
- the photometric signal is converted into a voltage signal, and the modulating signal conditioning module separately converts the alternating current signal and the direct current signal in the voltage signal into two digital signals, and determines the modulating signal according to the two digital signals.
- the optical signal-to-noise ratio is suitable for high-speed optical transmission systems of 40Gb/s and 100Gb/s, which solves the problem that the traditional interpolation method cannot realize the optical signal-to-noise ratio detection in the high-speed optical transmission system.
- FIG. 1 is a schematic structural diagram of a preferred embodiment of an optical signal to noise ratio detecting circuit of the present invention
- FIG. 2 is a schematic diagram of waveforms of an optical signal with a topping signal in an optical signal to noise ratio detecting circuit according to an embodiment of the present invention
- FIG. 3 is a schematic diagram of waveforms of an optical signal with a tempo signal and ASE noise in an optical signal to noise ratio detection circuit according to an embodiment of the present invention
- FIG. 4 is a schematic structural diagram of a circuit of a preferred embodiment of an optical signal to noise ratio detecting circuit according to the present invention.
- FIG. 5 is a schematic block diagram of a preferred embodiment of an optical signal to noise ratio detecting apparatus according to the present invention.
- FIG. 6 is a schematic flow chart of a preferred embodiment of an optical signal to noise ratio detecting method according to the present invention.
- Embodiments of the present invention provide an optical signal to noise ratio detection circuit that is applied to a high speed optical transmission system.
- FIG. 1 to 3 a schematic block diagram of a preferred embodiment of an optical signal-to-noise ratio detecting circuit of the present invention
- FIG. 2 is a schematic diagram of a waveform of an optical signal with a topping signal in an optical signal-to-noise ratio detecting circuit according to an embodiment of the present invention
- 3 is a waveform diagram of an optical signal with a tempo signal and ASE noise in an optical signal to noise ratio detection circuit according to an embodiment of the present invention.
- the optical signal to noise ratio detection circuit includes an optical switch 100, a tunable optical filter 200, a photoelectric conversion module 300, a modulating signal conditioning module 400, and a control module 500; an optical switch 100, and a tunable optical filter. 200, photoelectric conversion The switching module 300 and the topping signal conditioning module 400 are sequentially connected, and the optical switch 100, the tunable optical filter 200, the photoelectric conversion module 300, and the modulating signal conditioning are all connected to the control module 500.
- the optical switch 100 is configured to access multiple optical signals to be tested that have a modulating signal and ASE noise, and strobe the optical signal to be detected from the plurality of optical signals to be detected; the tunable optical filter 200 is configured to The modulation frequency of the optical signal to be tested that is strobed by the optical switch 100 is adjusted to the center frequency of the optical signal to be tested; the photoelectric conversion module 300 is configured to convert the optical signal to be measured after adjusting the modulation frequency into a voltage signal; The module 400 is configured to separately convert the alternating current signal and the direct current signal in the voltage signal into two digital signals, and determine the modulation depth of the topping signal and the modulation depth of the ASE noise according to the two digital signals, and calculate the light to be measured.
- the optical signal to noise ratio of the signal; the control module 500 is configured to control the optical switch 100 module, the tunable optical filter 200, the photoelectric conversion module 300, and the modulating signal conditioning module 400, and report the optical signal to noise ratio calculation result to the optical transmission.
- the management system, the control module 500 can be a CPU of a high speed optical transmission system.
- one or more stations can be set to detect the optical signal-to-noise ratio of the optical signal, and each station can cyclically detect one or more optical signals.
- the optical switch 100 is connected to the optical signal to be tested, which includes the modulating signal and the ASE noise, and the illuminating signal to be detected is strobed from the plurality of optical signals to be detected.
- the optical switch 100 can access 4 to 8 optical signals to be measured, and the optical switch 100 strobes one optical signal to be tested each time, for example, when the optical switch 100 is connected to 5 optical signals to be measured, Each time, the optical switch 100 strobes one signal to be measured for detection, and sequentially circulates five signals to be measured.
- the tunable optical filter 200 adjusts the modulation frequency of the optical signal to be tested that is strobed by the optical switch 100 to the center frequency of the optical signal to be tested, and the optical signal to be tested that is strobed by the optical switch 100 includes a plurality of different frequencies (ie, different The wavelength of the partial wave, each of which has its center frequency, the tunable optical filter 200 cyclically scans each partial wave, finds the center frequency of one partial wave each time, and then adjusts the frequency of the partial wave to The center frequency stabilizes the frequency of the split.
- different frequencies ie, different The wavelength of the partial wave, each of which has its center frequency
- a road light signal to be measured includes 80 partial waves, and the tunable optical filter 200 cyclically scans 80 partial waves to find their center frequencies; in addition, not all of the 80 partial waves are to be detected, and the adjustable The optical filter 200 can select a partial wave to be detected as needed, and filter the remaining partial waves.
- the photoelectric conversion module 300 converts the optical signal to be measured after adjusting the modulation frequency into a voltage signal, and the voltage signal includes an alternating current signal with a tempered signal, a direct current signal with ASE noise and a tempered signal.
- the modulating signal conditioning module 400 separately converts the alternating current signal and the direct current signal in the voltage signal into two digital signals, and determines the modulation depth of the modulating signal and the modulation depth of the ASE noise according to the two digital signals, and calculates The optical signal-to-noise ratio of the optical signal is measured, and the optical signal-to-noise ratio calculation result is reported by the control module 500 to the optical transmission management system, so that the optical signal-to-noise ratio of each signal to be tested is cyclically calculated, thereby detecting the high-speed optical transmission system.
- the optical signal to noise ratio of the medium optical signal is measured, and the optical signal-to-noise ratio calculation result is reported by the control module 500 to the optical transmission management system, so that the optical signal-to-
- the optical signal to noise ratio detection circuit of the embodiment of the present invention can accurately detect the optical signal to noise ratio of each optical signal that is accessed, and is suitable for a high speed optical transmission system of 40 Gb/s and 100 Gb/s.
- the traditional interpolation method cannot realize the problem of optical signal-to-noise ratio detection in high-speed optical transmission systems.
- the top signal conditioning module 400 includes a voltage following unit 410 , an alternating current signal conditioning unit 420 , a direct current signal conditioning unit 430 , and an optical signal to noise ratio calculation unit 440 ; an input end of the voltage following unit 410 and the photoelectric conversion module 300 The output end is connected, and the output end of the voltage follower unit 410 is respectively connected to the input end of the AC signal conditioning unit 420 and the input end of the DC signal conditioning unit 430, and the output end of the AC signal conditioning unit 420 and the optical signal to noise ratio calculation unit 440 An input terminal is coupled to the output of the DC signal conditioning unit 430 and the second input of the optical signal to noise ratio calculation unit 440 connection.
- the voltage following unit 410 is configured to extract the voltage signal output by the photoelectric conversion module 300; the AC signal conditioning unit 420 is configured to perform signal amplification on the AC signal in the voltage signal and convert the amplified AC signal into the first digital signal; The signal conditioning unit 430 is configured to perform signal amplification on the DC signal in the voltage signal and convert the amplified DC signal into a second digital signal; the optical signal to noise ratio calculation unit 440 is configured to utilize the first digital signal and the second digital signal.
- the FFT algorithm calculates the optical power AC amplitude of the topping signal, the optical power DC amplitude of the optical signal when loading the topping signal, and the noise power within the bandwidth of the tunable optical filter 200 to determine the modulation depth and ASE noise of the topping signal. The depth is modulated, and the optical signal to noise ratio of the optical signal to be measured is calculated according to the modulation depth of the tempered signal and the modulation depth of the ASE noise.
- the optical signal to noise ratio calculation unit 440 may be an FPGA (Field-Programmable Gate Array) and/or a DSP (Digital Signal Processing).
- the voltage signal outputted by the photoelectric conversion module 300 is extracted by the voltage following unit 410 in the top signal conditioning module 400, so that the voltage signal is stably outputted to the AC signal conditioning unit 420 and the DC signal conditioning unit 430 to avoid distortion of the voltage signal.
- the AC signal conditioning unit 420 obtains an AC signal in the voltage signal output by the voltage following unit 410, and performs signal amplification on the AC signal, and then performs analog-to-digital conversion on the amplified AC signal to convert the AC signal into a first digital signal.
- the DC signal conditioning unit 430 acquires the DC signal in the voltage signal output by the voltage following unit 410, and after the signal is amplified by the DC signal, the amplified DC signal is obtained. Analog-to-digital conversion is performed, converted into a second digital signal via the DC signal, and the second digital signal is output to the optical signal-to-noise ratio calculation unit 440.
- the optical signal to noise ratio calculation unit 440 calculates the optical power AC amplitude of the topping signal, and the optical power DC amplitude of the optical signal when the topping signal is loaded, and is adjustable according to the received first digital signal and the second digital signal.
- the noise power in the bandwidth of the optical filter 200 specifically the signal amplitude of the AC signal, the DC signal, and the amplitude of the ASE noise signal in a certain period of time, thereby calculating the optical power AC amplitude of the topping signal and loading the topping signal time signal.
- the optical power DC amplitude and the noise power in the bandwidth of the tunable optical filter 200, the calculation principle of the specific FFT algorithm is common knowledge in the art, and will not be described herein.
- the optical signal with the tempered signal (ie, the optical signal output by the optical module of the optical forwarding unit) is as shown in FIG. 2, and the optical signal with the tempered signal and the ASE noise is shown in FIG.
- the horizontal axis t represents time
- the vertical axis P represents power
- the logic "1" indicates that there is a topping signal
- the logic "0” indicates no topping signal
- T1 indicates the period of the topping signal
- f1 indicates the tone.
- the modulation frequency of the top signal Pt1 represents the optical power AC amplitude of the topping signal
- Ps1 represents the optical power DC amplitude of the optical signal loaded with the topping signal at the source end
- Pase represents the noise power within the bandwidth of the tunable optical filter 200.
- the optical signal-to-noise ratio calculation unit 440 determines the tone according to the calculated optical power AC amplitude Pt1 of the topping signal, the optical power DC amplitude of the optical signal when the topping signal is loaded, and the noise power Pase within the bandwidth of the tunable optical filter 200.
- the modulation depth of the top signal and the modulation depth of the ASE noise and calculate the optical signal-to-noise ratio of the optical signal to be measured according to the modulation depth of the tempered signal and the modulation depth of the ASE noise.
- the specific calculation process is as follows:
- the labeling information is marked in the topping signal loaded by the optical module of the optical forwarding unit to obtain
- the source end that is, the optical module of the optical forwarding unit
- the optical signal-to-noise ratio calculation unit 440 pre-configures the coding mode corresponding to the label information.
- FIG. 2 and FIG. 3 there is a topping.
- the tag information of the signal is the bit signal "1”
- the tag information of the unadjusted signal is the bit signal "0”
- the format of the encoding is set according to the actual situation.
- the optical power DC amplitude of the optical signal, Pase is the noise power within the bandwidth of the tunable optical filter 200, as shown in FIG.
- the AC signal conditioning unit 420 includes a first amplifying subunit 421, a first voltage following subunit 422, and a first ADC sampling subunit 423; the input end of the first amplifying subunit 421 and the voltage following The output of the unit 410 is connected, the output of the first amplifying subunit 421 is connected to the input of the first voltage following subunit 422, and the output of the first voltage following subunit 422 and the input of the first ADC sampling subunit 423 Connected, the output of the first ADC sampling subunit 423 is coupled to the first input of the optical signal to noise ratio calculation unit 440.
- the first amplifying subunit 421 is configured to perform signal amplification on the AC signal in the voltage signal extracted by the voltage following unit 410; the first voltage following subunit 422 is configured to extract the AC signal amplified by the first amplifying subunit 421;
- An ADC sampling subunit 423 is arranged to convert the AC signal extracted by the first voltage following subunit 422 into a first digital signal and output the first digital signal to the optical signal to noise ratio calculation unit 440.
- the DC signal conditioning unit 430 includes a second amplifying subunit 431 , a second voltage following subunit 432 , and a second ADC sampling subunit 433 .
- the input end of the second amplifying subunit 431 and the voltage following unit 410 The output end is connected, the output end of the second amplifying subunit 431 is connected to the input end of the second voltage following subunit 432, and the output end of the second voltage following subunit 432 is connected to the input end of the second ADC sampling subunit 433.
- the output of the two ADC sampling subunit 433 is coupled to the second input of the optical signal to noise ratio calculation unit 440.
- the second amplifying sub-unit 431 is configured to perform signal amplification on the DC signal in the voltage signal extracted by the voltage following unit; the second voltage following sub-unit 432 is configured to extract the DC signal amplified by the second amplifying sub-unit 431;
- the ADC sampling subunit 433 is configured to convert the DC signal extracted by the second voltage following subunit 432 into a second digital signal, and output the second digital signal to the optical signal to noise ratio calculation unit 440.
- the optical signal to noise ratio detecting circuit of the embodiment of the present invention passes through two ADC sampling subunits (ie, The second ADC sampling sub-unit 433 and the second ADC sampling sub-unit 433) simultaneously sample the AC signal and the DC signal to ensure synchronous detection of the AC signal and the DC signal.
- FIG. 4 is a schematic structural diagram of a circuit of a preferred embodiment of an optical signal-to-noise ratio detecting circuit according to an embodiment of the present invention.
- the photoelectric conversion module 300 includes a photodetector PD and a sampling resistor RS; the negative end of the photodetector PD is connected to a linear power supply VCC, and the positive end of the photodetector PD is grounded via a sampling resistor RS, and the photodetector
- the common end of the PD and the sampling resistor RS serves as the output end of the photoelectric conversion module 300, and the common end of the photodetector PD and the sampling resistor RS
- the input of the top signal conditioning module 400 is coupled to output a voltage signal to the tuned signal conditioning module 400.
- the reverse bias voltage connected to the photodetector PD in the photoelectric conversion module 300 samples the linear power supply instead of the switching power supply, thereby avoiding interference caused by the switching power supply to the output of the photodetector PD.
- a shield case 301 may be disposed on the periphery of the photodetector PD, and the shield case 301 is grounded, that is, the grounded shield case 301 will be a photodetector PD. Packed inside.
- a high-precision resistor such as a resistor with an accuracy of 0.1% is used.
- the voltage following unit 410 includes a first voltage follower U1; the non-inverting input of the first voltage follower U1 serves as an input of the voltage following unit 410, and also serves as an input of the leveling signal conditioning module 400.
- the non-inverting input end of the first voltage follower U1 is connected to the output end of the photoelectric conversion module 300.
- the non-inverting input end of the first voltage follower U1 is connected to the common end of the photodetector PD and the sampling resistor RS.
- An inverting input of a voltage follower U1 is coupled to an output of the first voltage follower U1, and an output of the first voltage follower U1 is coupled to an input of the AC signal conditioning unit 420 and the DC signal conditioning unit 430, respectively.
- the first amplifying subunit 421 includes a first amplifier U2, a second amplifier U3, a first capacitor C1, a second capacitor C2, a third capacitor C3, a first resistor R1, a second resistor R2, a third resistor R3, and a fourth resistor. R4.
- the non-inverting input of the first amplifier U2 is connected to the output of the voltage follower unit via the first capacitor C1.
- the non-inverting input of the first amplifier U2 is connected to the output of the first voltage follower U1 via the first capacitor C1.
- the output of the first amplifier U2 is connected to the non-inverting input terminal of the second amplifier U3, and is grounded via the first resistor R1, the second resistor R2, and the second capacitor C2 in sequence, and the inverting input terminal of the first amplifier U2 is first.
- the common terminal of the resistor R1 and the second resistor R2 is connected.
- the output end of the second amplifier U3 is connected to the input end of the first voltage follower sub-unit 422, and is grounded via the third resistor R3, the fourth resistor R4, and the third capacitor C3 in sequence, and the inverting input terminal of the second amplifier U3 is The common terminal of the three resistor R3 and the fourth resistor R4 is connected.
- the first voltage follower subunit 422 includes a second voltage follower U4; the non-inverting input of the second voltage follower U4 is coupled to the output of the first amplifying subunit 421, and the inverting input of the second voltage follower U4 is The output of the two voltage follower U4 is connected, and the output of the second voltage follower U4 is connected to the input of the first ADC sampling subunit 423.
- the first ADC sampling sub-unit 423 includes a third amplifier U5, a fifth resistor R5, a sixth resistor R6, a seventh resistor R7, an eighth resistor R8, and a first analog-to-digital converter 4231; the non-inverting input terminal of the third amplifier U5 is The fifth resistor R5 is connected to the output end of the first voltage follower subunit 422.
- a third amplifier U5 a fifth resistor R5, a sixth resistor R6, a seventh resistor R7, an eighth resistor R8, and a first analog-to-digital converter 4231; the non-inverting input terminal of the third amplifier U5 is The fifth resistor R5 is connected to the output end of the first voltage follower subunit 422.
- the non-inverting input terminal of the third amplifier U5 is connected to the output end of the second amplifier U3 via the fifth resistor R5, and the inverse of the third amplifier U5
- the phase input terminal is connected to the first reference power source Vfix1 via a sixth resistor R6, the first differential output terminal of the third amplifier U5 is connected to the first sampling terminal of the first analog-to-digital converter 4231, and the second differential output of the third amplifier U5 is The terminal is connected to the second sampling end of the first analog-to-digital converter 4231; the seventh resistor R7 is connected between the first differential output terminal of the third amplifier U5 and the non-inverting input terminal of the third amplifier U5, and the eighth resistor R8 is connected to The second differential output of the third amplifier U5 is coupled to the inverting input of the third amplifier U5; the output of the first analog to digital converter 4231 is coupled to the first input of the optical signal to noise ratio calculation unit 440.
- the second amplifying subunit 431 includes a fourth amplifier U6, a fifth amplifier U7, a ninth resistor R9, a tenth resistor R10, an eleventh resistor R11, and a twelfth resistor R12.
- the non-inverting input terminal of the fourth amplifier U6 is connected to the output end of the voltage follower unit, and the output end of the fourth amplifier U6 is connected to the non-inverting input end of the fifth amplifier U7, and is grounded via the ninth resistor R9 and the tenth resistor R10 in turn,
- the inverting input of the four amplifier U6 is connected to the common terminal of the ninth resistor R9 and the tenth resistor R10.
- the output end of the fifth amplifier U7 is connected to the input end of the second voltage following sub-unit 432, and is grounded via the eleventh resistor R11 and the twelfth resistor R12 in turn, and the inverting input terminal and the eleventh resistor of the fifth amplifier U7.
- R11 is connected to the common terminal of the twelfth resistor R12.
- the second voltage follower subunit 432 includes a third voltage follower U8; the non-inverting input of the third voltage follower U8 is coupled to the output of the second amplifying subunit 431, and the inverting input of the third voltage follower U8 is The output of the three voltage follower U8 is connected, and the output of the third voltage follower U8 is connected to the input of the second ADC sampling subunit 433.
- the second ADC sampling subunit 433 includes a sixth amplifier U9, a thirteenth resistor R13, a fourteenth resistor R14, a fifteenth resistor R15, a sixteenth resistor R16 and a second analog to digital converter 4331, and a sixth amplifier U9.
- the non-inverting input is connected to the output of the second voltage following sub-unit 432 via the thirteenth resistor R13, and the inverting input of the sixth amplifier U9 is connected to the second reference power supply Vfix2 via the fourteenth resistor R14 (in this embodiment)
- the second reference power supply Vfix2 is the same as the reference voltage provided by the first reference power supply Vfix1
- the first differential output of the sixth amplifier U9 is connected to the first sampling end of the second analog-to-digital converter 4331
- the sixth amplifier U9 is The two differential outputs are connected to the second sampling end of the second analog-to-digital converter 4331;
- the fifteenth resistor R15 is connected between the first differential output of the sixth amplifier U9 and the non-inverting input of the sixth amplifier U9, tenth
- the sixth resistor R16 is connected between the second differential output of the sixth amplifier U9 and the inverting input of the sixth amplifier U9; the output of the second analog-to-digital converter 4331 and the second input of the optical signal
- the optical signal to be tested that is strobed by the optical switch 100 enters the tunable optical filter 200, and the tunable optical filter 200 adjusts the modulation frequency of the optical signal to be tested that is strobed by the optical switch 100 to the center frequency of the optical signal to be tested. And filtering the optical signal to be tested, selecting a partial wave to be detected by the optical signal to be measured, and filtering the remaining partial waves as needed.
- the photodetector PD detects the optical signal to be measured outputted by the tunable optical filter 200.
- the optical detector PD detects the optical signal to be measured, receives the optical signal to be tested, and converts the optical signal to be measured into a corresponding signal.
- a current signal the current signal forms a voltage signal on the sampling resistor RS, and the voltage signal is output to the non-inverting input terminal of the first voltage follower U1.
- the output of the first voltage follower U1 outputs a complete distortion-free voltage. signal.
- the AC signal in the voltage signal is input to the non-inverting input terminal of the first amplifier U2 through the first capacitor C1, and the first amplifier U2 and the second amplifier U3 perform signal amplification on the input AC signal.
- the resistance values of the resistors R1 and R3 can be adapted to set the amplification factor of the first amplifying subunit 421, so that the magnification of the first amplifying subunit 421 can be flexibly adjusted.
- the AC signal amplified by the first amplifier U2 and the second amplifier U3 is input to the non-inverting input terminal of the second voltage follower U4, and the second voltage follower U4 extracts the amplified AC signal, that is, the amplified AC signal is copied.
- the third amplifier U5 outputs the first differential signal output to the first analog-to-digital conversion according to the reference voltage provided by the first reference power source Vfix1 and the AC signal input from the non-inverting input terminal of the third amplifier U5.
- the fourth analog-to-digital converter 4231 converts the first differential signal into a first digital signal after performing analog-to-digital conversion processing on the first differential signal, thereby converting the analog signal into an optical signal-to-noise ratio (SNR).
- the digital signal, the first analog to digital converter 4231 outputs the output first digital signal to the optical signal to noise ratio performing unit.
- the DC signal in the voltage signal is input to the non-inverting input terminal of the fourth amplifier U6, and the fourth amplifier U6 and the fifth amplifier U7 perform signal amplification on the input DC signal, as shown in FIG. 4, the second amplifying subunit 431
- the magnification of the second amplifying subunit 431 can be adapted, so that the magnification of the second amplifying subunit 431 can be flexibly adjusted.
- the DC signal amplified by the fourth amplifier U6 and the fifth amplifier U7 is input to the non-inverting input terminal of the third voltage follower U8, and the third voltage follower U8 extracts the amplified DC signal, that is, the amplified DC signal is copied.
- the sixth amplifier U9 outputs a second differential signal output to the second analog-to-digital conversion according to the reference voltage provided by the second reference power source Vfix2 and the DC signal input from the non-inverting input terminal of the sixth amplifier U9.
- the second analog-to-digital converter 4331 performs analog-to-digital conversion processing on the second differential signal to convert the second differential signal into a second digital signal, thereby converting the analog signal into an optical signal-to-noise ratio (SNR).
- the digital signal, the second analog to digital converter 4331 outputs the output second digital signal to the optical signal to noise ratio performing unit.
- the optical signal-to-noise ratio calculation unit 440 calculates the optical power AC amplitude Pt1 of the topping signal and the DC power amplitude of the optical signal when the topping signal is loaded, according to the received first digital signal and the second digital signal.
- the noise power Pase within the bandwidth of the dimming filter 200, and according to the calculated optical power AC amplitude Pt1 of the topping signal, the optical power DC amplitude of the optical signal when the topping signal is loaded, and the bandwidth of the tunable optical filter 200
- the noise power Pase determines the modulation depth m1 of the topping signal and the modulation depth m2 of the ASE noise, and then calculates the optical signal-to-noise ratio OSNRt of the optical signal to be measured according to the modulation depth m1 of the topping signal and the modulation depth m2 of the ASE noise, specifically The calculation process is referred to the above description and will not be described here.
- the embodiment of the invention further provides an optical signal to noise ratio detecting device, which is applied to a high speed optical transmission system.
- FIG. 5 is a schematic block diagram of a preferred embodiment of the optical signal to noise ratio detecting apparatus of the present invention.
- the optical signal to noise ratio detecting means includes an optical forwarding unit 101, a plurality of optical amplifying units 102, and an optical signal to noise ratio detecting circuit 103.
- the optical forwarding unit 101 modulates the modulating signal onto the main optical signal in its optical module, and outputs the optical signal with the tempered signal
- each optical amplifying unit 102 receives the optical signal output by the optical forwarding unit 101, and selects to receive the optical signal.
- a portion of the optical signal is sent to the optical signal-to-noise ratio detecting circuit 103 for optical signal-to-noise ratio detection to provide a plurality of optical signals to be measured containing the tempered signal and the ASE noise.
- the optical forwarding unit 101 modulates the tempo signal to the main optical signal in its optical module, and the modulating signal modulated on the main optical signal is tagged, marking the modulation depth m1 of the tempered signal, thereby detecting the optical signal to noise ratio
- the modulating signal conditioning module in the circuit 103 can recognize the modulation depth m1 of the tempo signal when receiving the optical signal to be measured.
- a plurality of detection stations can be set to detect the optical signal-to-noise ratio of the optical signal.
- each detection station needs an optical signal-to-noise ratio detection circuit 103 for detection.
- a plurality of optical amplifying units 102 can be disposed at each station, and each optical amplifying unit 102 sends the received optical signals with modulated signals to the optical signal to noise ratio detecting circuit 103 for detection, thereby enabling optical signals.
- the optical switch of the noise ratio detecting circuit 103 can access the multi-channel optical signal to be measured, and circulate and strobe one optical signal to be tested for detection. Since the optical amplifying unit 102 has ASE noise interference during the process of transmitting the optical signal to be measured, Therefore, the optical signal to be tested received by the optical switch includes a topping signal and an ASE noise.
- the optical signal-to-noise ratio detecting circuit 103 calculates the optical signal-to-noise ratio of the optical signal to be measured according to the optical signal to be measured that is connected to the optical switch and includes the tempo signal and the ASE noise, and reports the calculated optical signal-to-noise ratio to the optical signal. Transmission management system.
- the structure of the optical signal-to-noise ratio detecting circuit 103, the process of specifically detecting the optical signal-to-noise ratio, and the beneficial effects are all referred to the above embodiments, and are not described herein again.
- the embodiment of the invention further provides an optical signal to noise ratio detection method, which is applied to the above optical signal to noise ratio detection apparatus.
- FIG. 6 is a schematic flowchart of a preferred embodiment of an optical signal to noise ratio detecting method according to the present invention.
- the optical signal to noise ratio detection method includes the following steps:
- Step S10 modulating the topping signal on the main optical signal, and outputting the optical signal with the topping signal;
- Step S20 selecting a part of the optical signal with the tempered signal for optical signal to noise ratio detection to provide a plurality of optical signals to be measured including the tempered signal and the ASE noise;
- Step S30 strobing the to-be-measured optical signal to be detected from the plurality of optical signals to be detected containing the tempered signal and the ASE noise, and adjusting the modulation frequency of the selected optical signal to be measured to the center frequency of the optical signal to be measured. ;
- Step S40 converting the optical signal to be measured after adjusting the modulation frequency into a voltage signal
- Step S50 separately converting the alternating current signal and the direct current signal in the voltage signal into two digital signals, and calculating an optical signal to noise ratio of the optical signal to be measured according to the two digital signals, and The signal to noise ratio calculation result is reported to the optical transmission management system.
- the optical forwarding unit modulates the modulating signal to the main optical signal in the optical module, and the modulating signal modulated on the main optical signal carries a label, marking the modulation depth of the tempered signal, Therefore, the top signal conditioning module in the optical signal to noise ratio detection circuit can recognize the modulation depth of the topping signal when receiving the optical signal to be measured.
- a plurality of detection stations can be set to detect the optical signal-to-noise ratio of the optical signal.
- each detection station needs an optical signal-to-noise ratio detection circuit for detection.
- multiple optical amplifying units can be set at each site.
- Each optical amplifying unit sends the received optical signal with the modulated signal to the optical signal to noise ratio detecting circuit for detection, so that the optical switch of the optical signal to noise ratio detecting circuit can access the multiple optical signals to be measured and circulate therefrom
- the illuminating signal is strobed for detection, and the ASE noise is interfered in the process of transmitting the optical signal to be measured by the optical amplifying unit, so that the optical signal to be tested received by the optical switch includes the tempo signal and the ASE noise.
- the optical signal-to-noise ratio detecting circuit a plurality of optical signals to be measured containing the tempered signal and the ASE noise are connected through the optical switch, and the optical signal to be detected is strobed from the plurality of optical signals to be measured.
- the optical switch can access 4 to 8 optical signals to be measured, and the optical switch strobes one optical signal to be tested every time. For example, when the optical switch is connected to 5 optical signals to be measured, the optical switch The secondary strobe passes the light signal to be tested for detection, and sequentially circulates 5 signals to be measured.
- the tunable optical filter adjusts the modulation frequency of the optical signal to be tested of the optical switch strobe to the center frequency of the optical signal to be tested, and the optical signal to be tested of the optical switch strobe includes a plurality of different frequencies (ie, different wavelengths) Partially divided, each partial wave has its center frequency, and the tunable optical filter cyclically scans each partial wave, finds the center frequency of one partial wave each time, and then adjusts the frequency of the partial wave to its center frequency, so that The frequency of the partial wave is stable.
- a road light signal to be measured includes 80 partial waves, and the tunable optical filter cyclically scans 80 partial waves to find their center frequencies; in addition, not all of the 80 partial waves are to be detected, and dimmable.
- the filter can select the partial wave to be detected as needed, and filter the remaining partial waves.
- the photoelectric conversion module converts the optical signal to be tested after adjusting the modulation frequency into a voltage signal, and the voltage signal includes an alternating current signal with a tempered signal, a direct current signal with ASE noise and a tempered signal.
- the modulating signal conditioning module separately converts the alternating current signal and the direct current signal in the voltage signal into two digital signals, and determines the modulation depth of the modulating signal and the modulation depth of the ASE noise according to the two digital signals.
- the optical signal to noise ratio detection method of the embodiment of the present invention can accurately detect the optical signal to noise ratio of each optical signal that is accessed, and is suitable for a high speed optical transmission system of 40 Gb/s and 100 Gb/s.
- the traditional interpolation method cannot realize the problem of optical signal-to-noise ratio detection in high-speed optical transmission systems.
- the optical signal-to-noise ratio of each optical signal that is accessed can be accurately detected, and is applicable to a high-speed optical transmission system of 40 Gb/s and 100 Gb/s, and the conventional interpolation is solved.
- the method cannot realize the problem of optical signal-to-noise ratio detection in high-speed optical transmission systems.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
- Amplifiers (AREA)
Abstract
一种光信噪比检测电路(103),采用光开关(100)、可调光滤波器(200)、光电转换模块(300)、调顶信号调理模块(400)和控制模块(500)。光电转换模块(300)将待测光信号转换为电压信号后,调顶信号调理模块(400)分开放大电压信号中的交流信号和直流信号并对应转换为两路数字信号,并根据两路数字信号确定调顶信号的调制深度和ASE噪声的调制深度,计算出光信号的光信噪比。一种光信噪比检测装置,具有光转发单元(101)、光放大单元(102)和光信噪比检测电路(103)。还采用一种应用于光信噪比检测装置的光信噪比检测方法。本技术方案能够准确地检测接入的每一路光信号的光信噪比,适用于高速光传输系统,解决了传统内插法无法实现高速光传输系统中光信噪比检测的问题。
Description
本发明涉及光通信技术领域,尤其涉及一种光信噪比检测电路、装置及方法。
DWDM(Dense Wavelength Division Multiplexing,密集型光波复用)是能组合一组光波长用一根光纤进行传送。这是一项用来在现有的光纤骨干网上提高带宽的激光技术。波分复用系统中的OSNR(Optical Signal to Noise Ratio,光信噪比)是衡量光波分复用系统中的关键性能参数。光信噪比的定义是在光有效带宽为0.1nm内光信号功率和噪声功率的比值。
随着波分复用系统传输速率不断在提升,光信噪比的测量也越来困难。传统速率为2.5Gb/s和10Gb/s的光传输系统,因为其光谱宽度远小于光系统通道间隔,通常采用内插法来测量OSNR,即先测光谱外的噪声功率,然后再利用内插法得到临近波长的噪声功率,最后计算出光信噪比。但是对于目前的40Gb/s和100Gb/s等的高速光传输系统,由于其光谱宽度接近甚至大于光系统通道间隔,用内插法无法准确测量通道间的噪声功率,也无法临近波长的噪声功率,因此,采用传统的内插法将无法实现高速光传输系统的光信噪比的检测。
发明内容
本发明实施例的主要目的是提供一种光信噪比检测电路、装置及方法,旨在解决传统内插法无法实现高速光传输系统中光信噪比检测的问题。
为了达到上述目的,本发明实施例提供一种光信噪比检测电路,所述光信噪比检测电路包括:光开关,设置为接入多路含有调顶信号和ASE(Amplified Spontaneous Emission,放大自发辐射)噪声的待测光信号,并从多路待测光信号中选通要检测的待测光信号;可调光滤波器,设置为将光开关选通的待测光信号的调制频率调整为该待测光信号的中心频率;光电转换模块,设置为将调整调制频率后的待测光信号转换为电压信号;调顶信号调理模块,设置为对所述电压信号中的交流信号和直流信号分开放大后对应转换为两路数字信号,并根据两路所述数字信号确定调顶信号的调制深度和ASE噪声的调制深度,计算所述待测光信号的光信噪比;控制模块,设置为控制所述光开关模块、可调光滤波器、光电转换模块和调顶信号调理模块工作,并将光信噪比计算结果上报至光传输管理系统。
优选地,所述光电转换模块包括光探测器和采样电阻;所述光探测器的负端与一线性电源连接,所述光探测器的正端经由所述采样电阻接地,所述光探测器和所述采样电阻的公共端与所述调顶信号调理模块的输入端连接,以将所述电压信号输出至所述调顶信号调理模块。
优选地,所述调顶信号调理模块包括:电压跟随单元,设置为提取所述光电转换模块输出的电压信号;交流信号调理单元,设置为对所述电压信号中的交流信号进行信号放大并将
放大后的交流信号转换为第一数字信号;直流信号调理单元,设置为对所述电压信号中的直流信号进行信号放大并将放大后的直流信号转换为第二数字信号;光信噪比计算单元,设置为根据所述第一数字信号和第二数字信号利用FFT算法计算调顶信号的光功率交流幅值、加载调顶信号时光信号的光功率直流幅值和可调光滤波器带宽内的噪声功率,以确定调顶信号的调制深度和ASE噪声的调制深度,并根据所述调顶信号的调制深度和ASE噪声的调制深度计算待测光信号的光信噪比。
优选地,所述电压跟随单元包括第一电压跟随器;所述第一电压跟随器的同相输入端与所述光电转换模块的输出端连接,所述第一电压跟随器的反相输入端与所述第一电压跟随器的输出端连接,所述第一电压跟随器的输出端分别与所述交流信号调理单元和直流信号调理单元的输入端连接。
优选地,所述交流信号调理单元包括:第一放大子单元,设置为将所述电压跟随单元提取到的电压信号中的交流信号进行信号放大;第一电压跟随子单元,设置为提取经所述第一放大子单元放大后的交流信号;第一ADC采样子单元,设置为将所述第一电压跟随子单元提取到的交流信号转换为第一数字信号,并将所述第一数字信号输出至所述光信噪比计算单元。
优选地,所述第一放大子单元包括第一放大器、第二放大器、第一电容、第二电容、第三电容、第一电阻、第二电阻、第三电阻和第四电阻;所述第一放大器的同相输入端经由第一电容与所述电压跟随单元的输出端连接,所述第一放大器的输出端与所述第二放大器的同相输入端连接,且依次经由所述第一电阻、第二电阻、第二电容接地,所述第一放大器的反相输入端与所述第一电阻和第二电阻的公共端连接;所述第二放大器的输出端与所述第一电压跟随子单元的输入端连接,且依次经由所述第三电阻、第四电阻、第三电容接地,所述第二放大器的反相输入端与所述第三电阻和第四电阻的公共端连接;所述第一电压跟随子单元包括第二电压跟随器;所述第二电压跟随器的同相输入端与所述第一放大子单元的输出端连接,所述第二电压跟随器的反相输入端与所述第二电压跟随器的输出端连接,所述第二电压跟随器的输出端与所述第一ADC采样子单元的输入端连接;第一ADC采样子单元包括第三放大器、第五电阻、第六电阻、第七电阻、第八电阻和第一模数转换器;所述第三放大器的同相输入端经由所述第五电阻与所述第一电压跟随子单元的输出端连接,所述第三放大器的反相输入端经由所述第六电阻连接至第一基准电源,所述第三放大器的第一差分输出端与所述第一模数转换器的第一采样端连接,所述第三放大器的第二差分输出端与所述第一模数转换器的第二采样端连接;所述第七电阻连接于所述第三放大器的第一差分输出端与所述第三放大器的同相输入端之间,所述第八电阻连接于所述第三放大器的第二差分输出端与所述第三放大器的反相输入端之间;所述第一模数转换器的输出端与所述光信噪比计算单元的第一输入端连接。
优选地,所述直流信号调理单元包括:第二放大子单元,设置为将所述电压跟随单元提取到的电压信号中的直流信号进行信号放大;第二电压跟随子单元,设置为提取经所述第二放大子单元放大后的直流信号;第二ADC采样子单元,设置为将所述第二电压跟随子单元提取到的直流信号转换为第二数字信号,并将所述第二数字信号输出至所述光信噪比计算单元。
优选地,所述第二放大子单元包括第四放大器、第五放大器、第九电阻、第十电阻、第十一电阻和第十二电阻;所述第四放大器的同相输入端与所述电压跟随单元的输出端连接,所述第四放大器的输出端与所述第五放大器的同相输入端连接,且依次经由所述第九电阻、第十电阻接地,所述第四放大器的反相输入端与所述第九电阻和第十电阻的公共端连接;所述第五放大器的输出端与所述第二电压跟随子单元的输入端连接,且依次经由所述第十一电阻、第十二电阻接地,所述第五放大器的反相输入端与所述第十一电阻和第十二电阻的公共端连接;所述第二电压跟随子单元包括第三电压跟随器;所述第三电压跟随器的同相输入端与所述第二放大子单元的输出端连接,所述第三电压跟随器的反相输入端与所述第三电压跟随器的输出端连接,所述第三电压跟随器的输出端与所述第二ADC采样子单元的输入端连接;第二ADC采样子单元包括第六放大器、第十三电阻、第十四电阻、第十五电阻、第十六电阻和第二模数转换器;所述第六放大器的同相输入端经由所述第十三电阻与所述第二电压跟随子单元的输出端连接,所述第六放大器的反相输入端经由所述第十四电阻连接至第二基准电源,所述第六放大器的第一差分输出端与所述第二模数转换器的第一采样端连接,所述第六放大器的第二差分输出端与所述第二模数转换器的第二采样端连接;所述第十五电阻连接于所述第六放大器的第一差分输出端与所述第六放大器的同相输入端之间,所述第十六电阻连接于所述第六放大器的第二差分输出端与所述第六放大器的反相输入端之间;所述第二模数转换器的输出端与所述光信噪比计算单元的第二输入端连接。
为了达到上述目的,本发明实施例还提供一种光信噪比检测装置,所述光信噪比检测装置包括光转发单元、若干光放大单元和光信噪比检测电路;所述光转发单元在其光模块中将调顶信号调制到主光信号上,并输出带有调顶信号的光信号,各个光放大单元接收光转发单元输出的光信号,并选择接收到的光信号中的一部分发送给光信噪比检测电路进行光信噪比检测,以提供多路含有调顶信号和ASE噪声的待测光信号;所述光信噪比检测电路包括:光开关,设置为接入多路含有调顶信号和ASE噪声的待测光信号,并从多路待测光信号中选通要检测的待测光信号;可调光滤波器,设置为将光开关选通的待测光信号的调制频率调整为该待测光信号的中心频率;光电转换模块,设置为将调整调制频率后的待测光信号转换为电压信号;调顶信号调理模块,设置为对所述电压信号中的交流信号和直流信号分开放大后对应转换为两路数字信号,并根据两路所述数字信号确定调顶信号的调制深度和ASE噪声的调制深度,计算所述待测光信号的光信噪比;控制模块,设置为控制所述光开关模块、可调光滤波器、光电转换模块和调顶信号调理模块工作,并将光信噪比计算结果上报至光传输管理系统。
此外,为了达到上述目的,本发明实施例还提供一种应用于所述光信噪比检测装置的光信噪比检测方法,所述光信噪比检测方法包括以下步骤:在主光信号上调制调顶信号,输出带有调顶信号的光信号;选择带有调顶信号的光信号中的一部分进行光信噪比检测,以提供多路含有调顶信号和ASE噪声的待测光信号;从多路含有调顶信号和ASE噪声的待测光信号中选通要检测的待测光信号,将所选通的待测光信号的调制频率调整为该待测光信号的中心频率;将调整调制频率后的待测光信号转换为电压信号;对所述电压信号中的交流信号和直流信号分开放大后对应转换为两路数字信号,根据两路所述数字信号计算所述待测光信号的
光信噪比,并将光信噪比计算结果上报至光传输管理系统。
本发明实施例提供的光信噪比检测电路、装置及方法,通过光开关接入多路含有调顶信号和ASE噪声的待测光信号,并从多路待测光信号选通要检测的待测光信号进行光信噪比检测,可调光滤波器将光开关选通的待测光信号的调制频率调整为该待测光信号的中心频率,光电转换模块将调整调制频率后的待测光信号转换为电压信号,调顶信号调理模块对所述电压信号中的交流信号和直流信号分开放大后对应转换为两路数字信号,并根据两路所述数字信号确定调顶信号的调制深度和ASE噪声的调制深度,计算所述光信号的光信噪比,并由控制模块将光信噪比计算结果上报至光传输管理系统,从而可以准确地检测接入的每一路光信号的光信噪比,适用于40Gb/s和100Gb/s的高速光传输系统,解决了传统内插法无法实现高速光传输系统中光信噪比检测的问题。
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明光信噪比检测电路较佳实施例的原理结构;
图2为本发明实施例光信噪比检测电路中带有调顶信号的光信号的波形示意图;
图3为本发明实施例光信噪比检测电路中带有调顶信号和ASE噪声的光信号的波形示意图;
图4为本发明光信噪比检测电路较佳实施例的电路结构示意图;
图5为本发明光信噪比检测装置较佳实施例的原理框图;
图6为本发明光信噪比检测方法较佳实施例的流程示意图。
本发明的目的、功能特点及优点的实现,将结合实施例,并参照附图作进一步说明。
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供一种光信噪比检测电路,应用于高速光传输系统。
参照图1至图3,本发明光信噪比检测电路较佳实施例的原理框图;图2为本发明实施例光信噪比检测电路中带有调顶信号的光信号的波形示意图;图3为本发明实施例光信噪比检测电路中带有调顶信号和ASE噪声的光信号的波形示意图。
本发明较佳实施例中,光信噪比检测电路包括光开关100、可调光滤波器200、光电转换模块300、调顶信号调理模块400和控制模块500;光开关100、可调光滤波器200、光电转
换模块300和调顶信号调理模块400依次连接,且光开关100、可调光滤波器200、光电转换模块300和调顶信号调理均与控制模块500连接。
其中,光开关100设置为接入多路含有调顶信号和ASE噪声的待测光信号,并从多路待测光信号中选通要检测的待测光信号;可调光滤波器200设置为将光开关100选通的待测光信号的调制频率调整为该待测光信号的中心频率;光电转换模块300设置为将调整调制频率后的待测光信号转换为电压信号;调顶信号调理模块400设置为对电压信号中的交流信号和直流信号分开放大后对应转换为两路数字信号,并根据两路数字信号确定调顶信号的调制深度和ASE噪声的调制深度,计算待测光信号的光信噪比;控制模块500设置为控制光开关100模块、可调光滤波器200、光电转换模块300和调顶信号调理模块400工作,并将光信噪比计算结果上报至光传输管理系统,控制模块500可以是高速光传输系统的CPU。
在高速光传输系统中,可以设置一个或多个站点来检测光信号的光信噪比,每个站点可以循环检测一路或多路光信号。在本实施例中,通过光开关100接入多路含有调顶信号和ASE噪声的待测光信号,并从接入的多路待测光信号中选通要检测的一路待测光信号进行光信噪比检测,此光开关100可以接入4~8路待测光信号,光开关100每次选通一路待测光信号进行检测,例如光开关100接入5路待测光信号时,光开关100每次选通一路待测光信号进行检测,依次循环选通5路待测光信号。可调光滤波器200将光开关100选通的待测光信号的调制频率调整为该待测光信号的中心频率,光开关100选通的待测光信号会包括多个不同频率(即不同波长)的分波,每个分波都有其中心频率,可调光滤波器200循环扫描每个分波,每次找出一个分波的中心频率,然后将该分波的频率调整为其中心频率,使该分波的频率稳定。例如一待测路光信号包括80个分波,可调光滤波器200循环扫描80个分波,找出它们的中心频率;另外,这80个分波中不一定全部要进行检测,可调光滤波器200可根据需要选出要进行检测的分波,而将其余分波滤除。
光电转换模块300将调整调制频率后的待测光信号转换为电压信号,该电压信号包括带有调顶信号的交流信号、带有ASE噪声和调顶信号的直流信号。调顶信号调理模块400对电压信号中的交流信号和直流信号分开放大后对应转换为两路数字信号,并根据两路数字信号确定调顶信号的调制深度和ASE噪声的调制深度,计算待测光信号的光信噪比,并由控制模块500将光信噪比计算结果上报至光传输管理系统,如此,循环计算各路待测信号的光信噪比,从而检测出高速光传输系统中光信号的光信噪比。
相对于现有技术,本发明实施例的光信噪比检测电路能够准确地检测接入的每一路光信号的光信噪比,适用于40Gb/s和100Gb/s的高速光传输系统,解决了传统内插法无法实现高速光传输系统中光信噪比检测的问题。
如图1所示,调顶信号调理模块400包括电压跟随单元410、交流信号调理单元420、直流信号调理单元430和光信噪比计算单元440;电压跟随单元410的输入端与光电转换模块300的输出端连接,电压跟随单元410的输出端分别与交流信号调理单元420的输入端和直流信号调理单元430的输入端连接,交流信号调理单元420的输出端与光信噪比计算单元440的第一输入端连接,直流信号调理单元430的输出端与光信噪比计算单元440的第二输入端
连接。
其中,电压跟随单元410设置为提取光电转换模块300输出的电压信号;交流信号调理单元420设置为对电压信号中的交流信号进行信号放大并将放大后的交流信号转换为第一数字信号;直流信号调理单元430设置为对电压信号中的直流信号进行信号放大并将放大后的直流信号转换为第二数字信号;光信噪比计算单元440设置为根据第一数字信号和第二数字信号利用FFT算法计算调顶信号的光功率交流幅值、加载调顶信号时光信号的光功率直流幅值和可调光滤波器200带宽内的噪声功率,以确定调顶信号的调制深度和ASE噪声的调制深度,并根据调顶信号的调制深度和ASE噪声的调制深度计算待测光信号的光信噪比。
光信噪比计算单元440可以是FPGA(Field-Programmable Gate Array,可编程逻辑器件)和/或DSP(Digital Signal Processing,数字信号处理器)。
调顶信号调理模块400中通过电压跟随单元410提取光电转换模块300输出的电压信号,使得电压信号稳定地输出至交流信号调理单元420和直流信号调理单元430中,避免电压信号失真。交流信号调理单元420获取电压跟随单元410输出的电压信号中的交流信号,对该交流信号进行信号放大后,对放大后的交流信号进行模数转换,将该交流信号转换为第一数字信号,并将第一数字信号输出至光信噪比计算单元440;直流信号调理单元430获取电压跟随单元410输出的电压信号中的直流信号,对该直流信号进行信号放大后,对放大后的直流信号进行模数转换,经该直流信号转换为第二数字信号,并将第二数字信号输出至光信噪比计算单元440。
光信噪比计算单元440根据接收到的第一数字信号和第二数字信号,利用FFT算法计算调顶信号的光功率交流幅值、加载调顶信号时光信号的光功率直流幅值和可调光滤波器200带宽内的噪声功率,具体可以某段时间内交流信号、直流信号的信号幅度和ASE噪声信号幅值,从而计算出调顶信号的光功率交流幅值、加载调顶信号时光信号的光功率直流幅值和可调光滤波器200带宽内的噪声功率,具体FFT算法的计算原理为本领域公知常识,在此不作赘述。带有调顶信号的光信号(即光转发单元的光模块输出的光信号)如图2所示,带有调顶信号和ASE噪声的光信号如图3所示。图2和图3中,横轴t表示时间,纵轴P表示功率,逻辑“1”表示有调顶信号,逻辑“0”表示无调顶信号,T1表示调顶信号的周期,f1表示调顶信号的调制频率,Pt1表示调顶信号的光功率交流幅值,Ps1表示源端加载有调顶信号的光信号的光功率直流幅值,Pase表示可调光滤波器200带宽内的噪声功率。
光信噪比计算单元440根据计算得到的调顶信号的光功率交流幅值Pt1、加载调顶信号时光信号的光功率直流幅值和可调光滤波器200带宽内的噪声功率Pase,确定调顶信号的调制深度和ASE噪声的调制深度,并根据调顶信号的调制深度和ASE噪声的调制深度计算待测光信号的光信噪比,具体计算过程如下:
调顶信号的调制深度m1=Pt1/Ps1,其中,Pt1为源端调顶信号的光功率交流幅值,Ps1为源端加载有调顶信号的光信号的光功率直流幅值,如图2所示。
通常,高速光传输系统中光转发单元的光模块加载的调顶信号中标记标签信息,以得到
源端(即光转发单元的光模块)调顶信号的调制深度m1,光信噪比计算单元440预先配置与标签信息对应的编码方式,例如,如图2和图3所示,有调顶信号的标签信息为比特信号“1”,无调顶信号的标签信息为比特信号“0”,且根据实际情况跟设定编码的格式。
调顶信号的调制深度m2=Pt2/(Ps2+Pase),其中,Pt2为光开关100接入的调顶信号的光功率交流幅值,Ps2为光开关100接入的加载有调顶信号的光信号的光功率直流幅值,Pase为可调光滤波器200带宽内的噪声功率,如图3所示。
从而可以计算出光信噪比OSNRt=Ps2/Pase=m1/(m1-m2),然后通过可调光滤波器200根据其带宽特性,将上述计算出的校准为符合标准的光信噪比,即0.1nm带宽内的光信噪比。
具体地,如图1所示,交流信号调理单元420包括第一放大子单元421、第一电压跟随子单元422和第一ADC采样子单元423;第一放大子单元421的输入端与电压跟随单元410的输出端连接,第一放大子单元421的输出端与第一电压跟随子单元422的输入端连接,第一电压跟随子单元422的输出端与第一ADC采样子单元423的输入端连接,第一ADC采样子单元423的输出端与光信噪比计算单元440的第一输入端连接。
第一放大子单元421设置为将电压跟随单元410提取到的电压信号中的交流信号进行信号放大;第一电压跟随子单元422设置为提取经第一放大子单元421放大后的交流信号;第一ADC采样子单元423设置为将第一电压跟随子单元422提取到的交流信号转换为第一数字信号,并将第一数字信号输出至光信噪比计算单元440。
如图1所示,直流信号调理单元430包括第二放大子单元431、第二电压跟随子单元432和第二ADC采样子单元433,第二放大子单元431的输入端与电压跟随单元410的输出端连接,第二放大子单元431的输出端与第二电压跟随子单元432的输入端连接,第二电压跟随子单元432的输出端与第二ADC采样子单元433的输入端连接,第二ADC采样子单元433的输出端与光信噪比计算单元440的第二输入端连接。
第二放大子单元431设置为将电压跟随单元提取到的电压信号中的直流信号进行信号放大;第二电压跟随子单元432设置为提取经第二放大子单元431放大后的直流信号;第二ADC采样子单元433设置为将第二电压跟随子单元432提取到的直流信号转换为第二数字信号,并将第二数字信号输出至光信噪比计算单元440。
为了达到检测调制深度的准确性,电压信号中的交流信号和直流信号都需要被ADC采样子单元检测到,因此,本发明实施例的光信噪比检测电路通过两个ADC采样子单元(即第二ADC采样子单元433和第二ADC采样子单元433)同时对交流信号和直流信号进行采样,保证了交流信号和直流信号的同步检测。
再参照图4,图4为本发明实施例光信噪比检测电路较佳实施例的电路结构示意图。
如图4所示,光电转换模块300包括光探测器PD和采样电阻RS;光探测器PD的负端与一线性电源VCC连接,光探测器PD的正端经由采样电阻RS接地,光探测器PD和采样电阻RS的公共端作为光电转换模块300的输出端,光探测器PD和采样电阻RS的公共端与调
顶信号调理模块400的输入端连接,以将电压信号输出至调顶信号调理模块400。
光电转换模块300中的光探测器PD接入的反偏电压采样线性电源,而不采用开关电源,避免了用开关电源给光探测器PD的输出造成干扰。为了避免光探测器PD外部的干扰信号,如图4所示,可在光探测器PD的外围设置屏蔽外壳301,并使该屏蔽外壳301接地,即该接地的屏蔽外壳301将光探测器PD包在内部。为确保采样电阻RS的电流采样精度,采用高精度的电阻,如精度为0.1%的电阻。
调顶信号调理模块400中,电压跟随单元410包括第一电压跟随器U1;第一电压跟随器U1的同相输入端作为电压跟随单元410的输入端,也作为调顶信号调理模块400的输入端,第一电压跟随器U1的同相输入端与光电转换模块300的输出端连接,图4中,第一电压跟随器U1的同相输入端与光探测器PD和采样电阻RS的公共端连接,第一电压跟随器U1的反相输入端与第一电压跟随器U1的输出端连接,第一电压跟随器U1的输出端分别与交流信号调理单元420和直流信号调理单元430的输入端连接。
第一放大子单元421包括第一放大器U2、第二放大器U3、第一电容C1、第二电容C2、第三电容C3、第一电阻R1、第二电阻R2、第三电阻R3和第四电阻R4。
第一放大器U2的同相输入端经由第一电容C1与电压跟随单元的输出端连接,图4中,第一放大器U2的同相输入端经由第一电容C1与第一电压跟随器U1的输出端连接,第一放大器U2的输出端与第二放大器U3的同相输入端连接,且依次经由第一电阻R1、第二电阻R2、第二电容C2接地,第一放大器U2的反相输入端与第一电阻R1和第二电阻R2的公共端连接。
第二放大器U3的输出端与第一电压跟随子单元422的输入端连接,且依次经由第三电阻R3、第四电阻R4、第三电容C3接地,第二放大器U3的反相输入端与第三电阻R3和第四电阻R4的公共端连接。
第一电压跟随子单元422包括第二电压跟随器U4;第二电压跟随器U4的同相输入端与第一放大子单元421的输出端连接,第二电压跟随器U4的反相输入端与第二电压跟随器U4的输出端连接,第二电压跟随器U4的输出端与第一ADC采样子单元423的输入端连接。
第一ADC采样子单元423包括第三放大器U5、第五电阻R5、第六电阻R6、第七电阻R7、第八电阻R8和第一模数转换器4231;第三放大器U5的同相输入端经由第五电阻R5与第一电压跟随子单元422的输出端连接,图4中,第三放大器U5的同相输入端经由第五电阻R5与第二放大器U3的输出端连接,第三放大器U5的反相输入端经由第六电阻R6连接至第一基准电源Vfix1,第三放大器U5的第一差分输出端与第一模数转换器4231的第一采样端连接,第三放大器U5的第二差分输出端与第一模数转换器4231的第二采样端连接;第七电阻R7连接于第三放大器U5的第一差分输出端与第三放大器U5的同相输入端之间,第八电阻R8连接于第三放大器U5的第二差分输出端与第三放大器U5的反相输入端之间;第一模数转换器4231的输出端与光信噪比计算单元440的第一输入端连接。
第二放大子单元431包括第四放大器U6、第五放大器U7、第九电阻R9、第十电阻R10、第十一电阻R11和第十二电阻R12。
第四放大器U6的同相输入端与电压跟随单元的输出端连接,第四放大器U6的输出端与第五放大器U7的同相输入端连接,且依次经由第九电阻R9、第十电阻R10接地,第四放大器U6的反相输入端与第九电阻R9和第十电阻R10的公共端连接。
第五放大器U7的输出端与第二电压跟随子单元432的输入端连接,且依次经由第十一电阻R11、第十二电阻R12接地,第五放大器U7的反相输入端与第十一电阻R11和第十二电阻R12的公共端连接。
第二电压跟随子单元432包括第三电压跟随器U8;第三电压跟随器U8的同相输入端与第二放大子单元431的输出端连接,第三电压跟随器U8的反相输入端与第三电压跟随器U8的输出端连接,第三电压跟随器U8的输出端与第二ADC采样子单元433的输入端连接。
第二ADC采样子单元433包括第六放大器U9、第十三电阻R13、第十四电阻R14、第十五电阻R15、第十六电阻R16和第二模数转换器4331;第六放大器U9的同相输入端经由第十三电阻R13与第二电压跟随子单元432的输出端连接,第六放大器U9的反相输入端经由第十四电阻R14连接至第二基准电源Vfix2(在本实施例中,第二基准电源Vfix2和第一基准电源Vfix1提供的基准电压相同),第六放大器U9的第一差分输出端与第二模数转换器4331的第一采样端连接,第六放大器U9的第二差分输出端与第二模数转换器4331的第二采样端连接;第十五电阻R15连接于第六放大器U9的第一差分输出端与第六放大器U9的同相输入端之间,第十六电阻R16连接于第六放大器U9的第二差分输出端与第六放大器U9的反相输入端之间;第二模数转换器4331的输出端与光信噪比计算单元440的第二输入端连接。
如图4所示,本发明实施例光信噪比检测电路的工作原理具体描述如下:
光开关100选通的待测光信号进入到可调光滤波器200中,可调光滤波器200将光开关100选通的待测光信号的调制频率调整为该待测光信号的中心频率,并对该待测光信号进行滤波,根据需要选出该待测光信号要进行检测的分波,而将其余分波滤除。
光探测器PD对可调光滤波器200输出的待测光信号进行探测,当光探测器PD探测到有待测光信号,接收该待测光信号,并将该待测光信号转换为相应的电流信号,该电流信号在采样电阻RS上形成电压信号,该电压信号输出至第一电压跟随器U1的同相输入端,此时,第一电压跟随器U1的输出端输出完整的无失真的电压信号。
由于第一电容C1的隔直通交作用,电压信号中的交流信号经过第一电容C1输入到第一放大器U2的同相输入端,第一放大器U2和第二放大器U3对输入的交流信号进行信号放大,如图4所示,第一放大子单元421的放大倍数为:G=((R1+R2)/R2)*((R3+R4)/R4),其中,R1为第一电阻R1的阻值,R2为第二电阻R2的阻值,R3为第三电阻R3的阻值,R4为第四电阻R4的阻值,由上述公式可知,通过调节第一电阻R1、第三电阻R3的阻值可适应设置第一放大子单元421的放大倍数,从而可灵活调整第一放大子单元421的放大倍数。
经第一放大器U2和第二放大器U3放大后的交流信号输入到第二电压跟随器U4的同相输入端,第二电压跟随器U4提取经放大后的交流信号,即将经放大后的交流信号复制到第三放大器U5的同相输入端,第三放大器U5根据第一基准电源Vfix1提供的基准电压和第三放大器U5的同相输入端输入的交流信号,输出第一差分信号输出至第一模数转换器4231,第一模数转换器4231对该第一差分信号进行模数转换处理后将该第一差分信号转换为第一数字信号,从而将模拟信号转换为光信噪比进行单元所能识别的数字信号,第一模数转换器4231将输出的第一数字信号输出至光信噪比进行单元。
同时,电压信号中的直流信号输入到第四放大器U6的同相输入端,第四放大器U6和第五放大器U7对输入的直流信号进行信号放大,如图4所示,第二放大子单元431的放大倍数为:G=((R9+R10)/R10)*((R11+R12)/R12),其中,R9为第九电阻R9的阻值,R10为第十电阻R10的阻值,R11为第十一电阻R11的阻值,R12为第十二电阻R12的阻值,由上述公式可知,通过调节第九电阻R9、第十一电阻R11的阻值可适应设置第二放大子单元431的放大倍数,从而可灵活调整第二放大子单元431的放大倍数。
经第四放大器U6和第五放大器U7放大后的直流信号输入到第三电压跟随器U8的同相输入端,第三电压跟随器U8提取经放大后的直流信号,即将经放大后的直流信号复制到第六放大器U9的同相输入端,第六放大器U9根据第二基准电源Vfix2提供的基准电压和第六放大器U9的同相输入端输入的直流信号,输出第二差分信号输出至第二模数转换器4331,第二模数转换器4331对该第二差分信号进行模数转换处理后将该第二差分信号转换为第二数字信号,从而将模拟信号转换为光信噪比进行单元所能识别的数字信号,第二模数转换器4331将输出的第二数字信号输出至光信噪比进行单元。
光信噪比计算单元440根据接收到的第一数字信号和第二数字信号,利用FFT算法计算调顶信号的光功率交流幅值Pt1、加载调顶信号时光信号的光功率直流幅值和可调光滤波器200带宽内的噪声功率Pase,并根据计算得到的调顶信号的光功率交流幅值Pt1、加载调顶信号时光信号的光功率直流幅值和可调光滤波器200带宽内的噪声功率Pase,确定调顶信号的调制深度m1和ASE噪声的调制深度m2,然后根据调顶信号的调制深度m1和ASE噪声的调制深度m2计算出待测光信号的光信噪比OSNRt,具体计算过程参照上述描述,此处不再赘述。
本发明实施例还提供一种光信噪比检测装置,应用于高速光传输系统。
结合参照图1至图5,其中图5为本发明光信噪比检测装置较佳实施例的原理框图。
如图5所示,光信噪比检测装置包括光转发单元101、若干光放大单元102和光信噪比检测电路103。光转发单元101在其光模块中将调顶信号调制到主光信号上,并输出带有调顶信号的光信号,各个光放大单元102接收光转发单元101输出的光信号,并选择接收到的光信号中的一部分发送给光信噪比检测电路103进行光信噪比检测,以提供多路含有调顶信号和ASE噪声的待测光信号。
光转发单元101在其光模块中将调顶信号调制到主光信号上,在主光信号上调制的调顶信号带有标签,标记着调顶信号的调制深度m1,从而光信噪比检测电路103中的调顶信号调理模块在接收到待测光信号时,可识别出调顶信号的调制深度m1。
在高速光传输系统中可设置多个检测站点来检测光信号的光信噪比,通常每一检测站点需要一个光信噪比检测电路103进行检测。根据实际需要,可在每一站点上设置多个光放大单元102,各个光放大单元102将接收到的带有调制信号的光信号均发送给光信噪比检测电路103进行检测,从而光信噪比检测电路103的光开关可以接入多路待测光信号,并从中循环选通一路待测光信号进行检测,由于光放大单元102在发送待测光信号过程中,有ASE噪声干扰,从而光开关接收到的待测光信号中含有调顶信号和ASE噪声。
光信噪比检测电路103根据光开关接入的含有调顶信号和ASE噪声的待测光信号,计算出待测光信号的光信噪比,并将计算所得的光信噪比上报至光传输管理系统。光信噪比检测装置中,光信噪比检测电路103的结构、具体检测光信噪比的过程以及所带来的有益效果均参照上述实施例,此处不再赘述。
本发明实施例还提供一种光信噪比检测方法,该光信噪比检测方法应用于上述光信噪比检测装置。
参照图6,图6为本发明光信噪比检测方法较佳实施例的流程示意图。
如图6所示,该光信噪比检测方法包括以下步骤:
步骤S10:在主光信号上调制调顶信号,输出带有调顶信号的光信号;
步骤S20:选择带有调顶信号的光信号中的一部分进行光信噪比检测,以提供多路含有调顶信号和ASE噪声的待测光信号;
步骤S30:从多路含有调顶信号和ASE噪声的待测光信号中选通要检测的待测光信号,将所选通的待测光信号的调制频率调整为该待测光信号的中心频率;
步骤S40:将调整调制频率后的待测光信号转换为电压信号;
步骤S50:对所述电压信号中的交流信号和直流信号分开放大后对应转换为两路数字信号,根据两路所述数字信号计算所述待测光信号的光信噪比,并将光信噪比计算结果上报至光传输管理系统。
光信噪比检测装置中,光转发单元在其光模块中将调顶信号调制到主光信号上,在主光信号上调制的调顶信号带有标签,标记着调顶信号的调制深度,从而光信噪比检测电路中的调顶信号调理模块在接收到待测光信号时,可识别出调顶信号的调制深度。
在高速光传输系统中可设置多个检测站点来检测光信号的光信噪比,通常每一检测站点需要一个光信噪比检测电路进行检测。根据实际需要,可在每一站点上设置多个光放大单元,
各个光放大单元将接收到的带有调制信号的光信号均发送给光信噪比检测电路进行检测,从而光信噪比检测电路的光开关可以接入多路待测光信号,并从中循环选通一路待测光信号进行检测,由于光放大单元在发送待测光信号过程中,有ASE噪声干扰,从而光开关接收到的待测光信号中含有调顶信号和ASE噪声。
光信噪比检测电路中,通过光开关接入多路含有调顶信号和ASE噪声的待测光信号,并从接入的多路待测光信号中选通要检测的待测光信号进行光信噪比检测,此光开关可以接入4~8路待测光信号,光开关每次选通一路待测光信号进行检测,例如光开关接入5路待测光信号时,光开关每次选通一路待测光信号进行检测,依次循环选通5路待测光信号。可调光滤波器将光开关选通的待测光信号的调制频率调整为该待测光信号的中心频率,光开关选通的待测光信号会包括多个不同频率(即不同波长)的分波,每个分波都有其中心频率,可调光滤波器循环扫描每个分波,每次找出一个分波的中心频率,然后将该分波的频率调整为其中心频率,使该分波的频率稳定。例如一待测路光信号包括80个分波,可调光滤波器循环扫描80个分波,找出它们的中心频率;另外,这80个分波中不一定全部要进行检测,可调光滤波器可根据需要选出要进行检测的分波,而将其余分波滤除。
光电转换模块将调整调制频率后的待测光信号转换为电压信号,该电压信号包括带有调顶信号的交流信号、带有ASE噪声和调顶信号的直流信号。调顶信号调理模块对所述电压信号中的交流信号和直流信号分开放大后对应转换为两路数字信号,并根据两路所述数字信号确定调顶信号的调制深度和ASE噪声的调制深度,计算待测光信号的光信噪比,并由控制模块将光信噪比计算结果上报至光传输管理系统,如此,循环计算各路待测信号的光信噪比,从而检测出高速光传输系统中光信号的光信噪比。
相对于现有技术,本发明实施例的光信噪比检测方法能够准确地检测接入的每一路光信号的光信噪比,适用于40Gb/s和100Gb/s的高速光传输系统,解决了传统内插法无法实现高速光传输系统中光信噪比检测的问题。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
如上所述,通过上述实施例及优选实施方式,可以准确地检测接入的每一路光信号的光信噪比,适用于40Gb/s和100Gb/s的高速光传输系统,解决了传统内插法无法实现高速光传输系统中光信噪比检测的问题。
Claims (10)
- 一种光信噪比检测电路,所述光信噪比检测电路包括:光开关,设置为接入多路含有调顶信号和ASE噪声的待测光信号,并从多路待测光信号中选通要检测的待测光信号;可调光滤波器,设置为将光开关选通的待测光信号的调制频率调整为该待测光信号的中心频率;光电转换模块,设置为将调整调制频率后的待测光信号转换为电压信号;调顶信号调理模块,设置为对所述电压信号中的交流信号和直流信号分开放大后对应转换为两路数字信号,并根据两路所述数字信号确定调顶信号的调制深度和ASE噪声的调制深度,计算所述待测光信号的光信噪比;控制模块,设置为控制所述光开关模块、可调光滤波器、光电转换模块和调顶信号调理模块工作,并将光信噪比计算结果上报至光传输管理系统。
- 如权利要求1所述的光信噪比检测电路,其中,所述光电转换模块包括光探测器和采样电阻;所述光探测器的负端与一线性电源连接,所述光探测器的正端经由所述采样电阻接地,所述光探测器和所述采样电阻的公共端与所述调顶信号调理模块的输入端连接,以将所述电压信号输出至所述调顶信号调理模块。
- 如权利要求1所述的光信噪比检测电路,其中,所述调顶信号调理模块包括:电压跟随单元,设置为提取所述光电转换模块输出的电压信号;交流信号调理单元,设置为对所述电压信号中的交流信号进行信号放大并将放大后的交流信号转换为第一数字信号;直流信号调理单元,设置为对所述电压信号中的直流信号进行信号放大并将放大后的直流信号转换为第二数字信号;光信噪比计算单元,设置为根据所述第一数字信号和第二数字信号利用FFT算法计算调顶信号的光功率交流幅值、加载调顶信号时光信号的光功率直流幅值和可调光滤波器带宽内的噪声功率,以确定调顶信号的调制深度和ASE噪声的调制深度,并根据所述调顶信号的调制深度和ASE噪声的调制深度计算待测光信号的光信噪比。
- 如权利要求3所述的光信噪比检测电路,其中,所述电压跟随单元包括第一电压跟随器;所述第一电压跟随器的同相输入端与所述光电转换模块的输出端连接,所述第一电压跟随器的反相输入端与所述第一电压跟随器的输出端连接,所述第一电压跟随器的输出端 分别与所述交流信号调理单元和直流信号调理单元的输入端连接。
- 如权利要求3所述的光信噪比检测电路,其中,所述交流信号调理单元包括:第一放大子单元,设置为将所述电压跟随单元提取到的电压信号中的交流信号进行信号放大;第一电压跟随子单元,设置为提取经所述第一放大子单元放大后的交流信号;第一ADC采样子单元,设置为将所述第一电压跟随子单元提取到的交流信号转换为第一数字信号,并将所述第一数字信号输出至所述光信噪比计算单元。
- 如权利要求5所述的光信噪比检测电路,其中,所述第一放大子单元包括第一放大器、第二放大器、第一电容、第二电容、第三电容、第一电阻、第二电阻、第三电阻和第四电阻;所述第一放大器的同相输入端经由第一电容与所述电压跟随单元的输出端连接,所述第一放大器的输出端与所述第二放大器的同相输入端连接,且依次经由所述第一电阻、第二电阻、第二电容接地,所述第一放大器的反相输入端与所述第一电阻和第二电阻的公共端连接;所述第二放大器的输出端与所述第一电压跟随子单元的输入端连接,且依次经由所述第三电阻、第四电阻、第三电容接地,所述第二放大器的反相输入端与所述第三电阻和第四电阻的公共端连接;所述第一电压跟随子单元包括第二电压跟随器;所述第二电压跟随器的同相输入端与所述第一放大子单元的输出端连接,所述第二电压跟随器的反相输入端与所述第二电压跟随器的输出端连接,所述第二电压跟随器的输出端与所述第一ADC采样子单元的输入端连接;第一ADC采样子单元包括第三放大器、第五电阻、第六电阻、第七电阻、第八电阻和第一模数转换器;所述第三放大器的同相输入端经由所述第五电阻与所述第一电压跟随子单元的输出端连接,所述第三放大器的反相输入端经由所述第六电阻连接至第一基准电源,所述第三放大器的第一差分输出端与所述第一模数转换器的第一采样端连接,所述第三放大器的第二差分输出端与所述第一模数转换器的第二采样端连接;所述第七电阻连接于所述第三放大器的第一差分输出端与所述第三放大器的同相输入端之间,所述第八电阻连接于所述第三放大器的第二差分输出端与所述第三放大器的反相输入端之间;所述第一模数转换器的输出端与所述光信噪比计算单元的第一输入端连接。
- 如权利要求3所述的光信噪比检测电路,其中,所述直流信号调理单元包括:第二放大子单元,设置为将所述电压跟随单元提取到的电压信号中的直流信号进行信号放大;第二电压跟随子单元,设置为提取经所述第二放大子单元放大后的直流信号;第二ADC采样子单元,设置为将所述第二电压跟随子单元提取到的直流信号转换为第二数字信号,并将所述第二数字信号输出至所述光信噪比计算单元。
- 如权利要求7所述的光信噪比检测电路,其中,所述第二放大子单元包括第四放大器、第五放大器、第九电阻、第十电阻、第十一电阻和第十二电阻;所述第四放大器的同相输入端与所述电压跟随单元的输出端连接,所述第四放大器的输出端与所述第五放大器的同相输入端连接,且依次经由所述第九电阻、第十电阻接地,所述第四放大器的反相输入端与所述第九电阻和第十电阻的公共端连接;所述第五放大器的输出端与所述第二电压跟随子单元的输入端连接,且依次经由所述第十一电阻、第十二电阻接地,所述第五放大器的反相输入端与所述第十一电阻和第十二电阻的公共端连接;所述第二电压跟随子单元包括第三电压跟随器;所述第三电压跟随器的同相输入端与所述第二放大子单元的输出端连接,所述第三电压跟随器的反相输入端与所述第三电压跟随器的输出端连接,所述第三电压跟随器的输出端与所述第二ADC采样子单元的输入端连接;第二ADC采样子单元包括第六放大器、第十三电阻、第十四电阻、第十五电阻、第十六电阻和第二模数转换器;所述第六放大器的同相输入端经由所述第十三电阻与所述第二电压跟随子单元的输出端连接,所述第六放大器的反相输入端经由所述第十四电阻连接至第二基准电源,所述第六放大器的第一差分输出端与所述第二模数转换器的第一采样端连接,所述第六放大器的第二差分输出端与所述第二模数转换器的第二采样端连接;所述第十五电阻连接于所述第六放大器的第一差分输出端与所述第六放大器的同相输入端之间,所述第十六电阻连接于所述第六放大器的第二差分输出端与所述第六放大器的反相输入端之间;所述第二模数转换器的输出端与所述光信噪比计算单元的第二输入端连接。
- 一种光信噪比检测装置,包括光转发单元和若干光放大单元,所述光信噪比检测装置还包括权利要求1至8中任意一项所述的光信噪比检测电路;所述光转发单元在其光模块中将调顶信号调制到主光信号上,并输出带有调顶信号的光信号,各个光放大单元接收光转发单元输出的光信号,并选择接收到的光信号中的一部分发送给光信噪比检测电路 进行光信噪比检测,以提供多路含有调顶信号和ASE噪声的待测光信号。
- 一种应用于权利要求9所述的光信噪比检测装置的光信噪比检测方法,所述光信噪比检测方法包括以下步骤:在主光信号上调制调顶信号,输出带有调顶信号的光信号;选择带有调顶信号的光信号中的一部分进行光信噪比检测,以提供多路含有调顶信号和ASE噪声的待测光信号;从多路含有调顶信号和ASE噪声的待测光信号中选通要检测的待测光信号,将所选通的待测光信号的调制频率调整为该待测光信号的中心频率;将调整调制频率后的待测光信号转换为电压信号;对所述电压信号中的交流信号和直流信号分开放大后对应转换为两路数字信号,根据两路所述数字信号计算所述待测光信号的光信噪比,并将光信噪比计算结果上报至光传输管理系统。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15860955.2A EP3223442A4 (en) | 2014-11-21 | 2015-08-11 | Optical signal to noise ratio detection circuit, apparatus and method |
US15/528,484 US10103807B2 (en) | 2014-11-21 | 2015-08-11 | Optical signal to noise ratio detection circuit, apparatus and method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410674816.2A CN105606910A (zh) | 2014-11-21 | 2014-11-21 | 光信噪比检测电路、装置及方法 |
CN201410674816.2 | 2014-11-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016078446A1 true WO2016078446A1 (zh) | 2016-05-26 |
Family
ID=55986998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/086677 WO2016078446A1 (zh) | 2014-11-21 | 2015-08-11 | 光信噪比检测电路、装置及方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10103807B2 (zh) |
EP (1) | EP3223442A4 (zh) |
CN (1) | CN105606910A (zh) |
WO (1) | WO2016078446A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019024830A1 (en) | 2017-07-31 | 2019-02-07 | Huawei Technologies Co., Ltd. | SYSTEMS AND METHODS FOR MONITORING SIGNAL RATIO ON OPTICAL NOISE |
CN111983588A (zh) * | 2020-08-25 | 2020-11-24 | 中国科学技术大学 | 一种自适应反馈控制装置、方法 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6112202B2 (ja) * | 2013-07-11 | 2017-04-12 | 日本電気株式会社 | 光通信システム、光受信器、光受信器の制御方法及びプログラム |
CN107592156B (zh) * | 2016-07-07 | 2020-02-14 | 华为技术有限公司 | 光信噪比获取方法及装置 |
CN107966167B (zh) * | 2016-10-19 | 2020-06-26 | 上海云杉信息科技有限公司 | 一种光信号接收装置和光电检测设备 |
CN112394218A (zh) * | 2019-08-16 | 2021-02-23 | 宇瞻科技股份有限公司 | 信号测量电路及所适用的光学模块 |
CN110515490B (zh) * | 2019-08-27 | 2023-05-05 | 广州华欣电子科技有限公司 | 信号处理电路 |
CN110768722A (zh) * | 2019-11-20 | 2020-02-07 | 西北核技术研究院 | 辐射探测宽带模拟光纤传输系统 |
CN111829562B (zh) * | 2020-06-12 | 2022-02-15 | 东南大学 | 一种基于光电振荡器的传感测量装置及方法 |
US11228368B1 (en) * | 2020-09-03 | 2022-01-18 | Microsoft Technology Licensing, Llc | Characterization of inter-channel crosstalk in an optical network |
CN114157362A (zh) * | 2020-09-07 | 2022-03-08 | 中兴通讯股份有限公司 | 通信方法、通信设备及存储介质 |
CN112564810B (zh) * | 2020-11-26 | 2022-04-19 | 江苏科大亨芯半导体技术有限公司 | 一种调顶发射机电路及调顶信号传输方法 |
CN113295924A (zh) * | 2021-05-25 | 2021-08-24 | 中国核动力研究设计院 | 适用于频率输出的核仪表系统的中子噪声测量方法和装置 |
CN113949449B (zh) * | 2021-09-24 | 2023-11-17 | 昂纳科技(深圳)集团股份有限公司 | 光电二极管检测电路、光模块及其监控系统、监控方法 |
CN114124004B (zh) * | 2021-11-23 | 2024-06-21 | 上海天马微电子有限公司 | 一种信号处理电路及信号处理装置 |
CN114448552A (zh) * | 2022-02-11 | 2022-05-06 | 东莞铭普光磁股份有限公司 | 一种波长可调谐的密集波分光模块及光电传输网络 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003103187A1 (en) * | 2002-06-04 | 2003-12-11 | Celion Networks, Inc. | Flexible, dense line card architecture |
CN1567804A (zh) * | 2003-06-17 | 2005-01-19 | 中兴通讯股份有限公司 | 密集通道光传输系统光谱监测装置与方法 |
CN1859043A (zh) * | 2006-03-27 | 2006-11-08 | 华为技术有限公司 | 一种光随路信号的加载、检测和监控方法、及其实现装置 |
JP2010245772A (ja) * | 2009-04-03 | 2010-10-28 | Fujitsu Ltd | 光受信機および光受信方法 |
CN102742185A (zh) * | 2012-03-23 | 2012-10-17 | 华为技术有限公司 | 检测光信噪比的方法、装置、节点设备和网络系统 |
US20120301139A1 (en) * | 2011-05-24 | 2012-11-29 | Shota Mori | Optical packet switching system |
CN102904635A (zh) * | 2012-10-25 | 2013-01-30 | 中兴通讯股份有限公司 | 一种光信噪比检测的方法、系统和设备 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1223132C (zh) * | 2002-01-26 | 2005-10-12 | 华为技术有限公司 | 光传输系统中实现调顶的方法及其装置 |
US7336728B2 (en) * | 2004-04-29 | 2008-02-26 | Lucent Technologies Inc. | Method and apparatus for monitoring phase-shift keyed optical signals |
CN100479352C (zh) * | 2006-02-21 | 2009-04-15 | 华为技术有限公司 | 光随路信号加载、监控的方法及装置 |
US9425894B2 (en) * | 2010-10-29 | 2016-08-23 | Alcatel Lucent | In-band optical signal-to-noise ratio measurement |
WO2013028241A1 (en) * | 2011-08-25 | 2013-02-28 | The Trustees Of Columbia University In The City Of New York | Systems and methods for a cross-layer optical network node |
CN102377485B (zh) * | 2011-10-17 | 2014-08-20 | 中兴通讯股份有限公司 | 一种解调光调顶信号的方法和装置 |
CN104104431B (zh) * | 2013-04-11 | 2018-12-28 | 上海中兴软件有限责任公司 | 对roadm光网络进行监测的方法、装置以及系统 |
US9264144B2 (en) * | 2013-10-22 | 2016-02-16 | Zte Corporation | Transmission and reception of quad-subcarrier orthogonal frequency division multiplexed signals |
JP6323651B2 (ja) * | 2013-12-20 | 2018-05-16 | セイコーエプソン株式会社 | 面発光レーザーおよび原子発振器 |
CN106161329B (zh) * | 2015-04-24 | 2019-07-30 | 富士通株式会社 | 信号处理装置、信号发送装置以及接收机 |
CN106571867B (zh) * | 2015-10-12 | 2019-02-22 | 富士通株式会社 | 光信噪比的监测装置以及接收机 |
-
2014
- 2014-11-21 CN CN201410674816.2A patent/CN105606910A/zh active Pending
-
2015
- 2015-08-11 WO PCT/CN2015/086677 patent/WO2016078446A1/zh active Application Filing
- 2015-08-11 US US15/528,484 patent/US10103807B2/en active Active
- 2015-08-11 EP EP15860955.2A patent/EP3223442A4/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003103187A1 (en) * | 2002-06-04 | 2003-12-11 | Celion Networks, Inc. | Flexible, dense line card architecture |
CN1567804A (zh) * | 2003-06-17 | 2005-01-19 | 中兴通讯股份有限公司 | 密集通道光传输系统光谱监测装置与方法 |
CN1859043A (zh) * | 2006-03-27 | 2006-11-08 | 华为技术有限公司 | 一种光随路信号的加载、检测和监控方法、及其实现装置 |
JP2010245772A (ja) * | 2009-04-03 | 2010-10-28 | Fujitsu Ltd | 光受信機および光受信方法 |
US20120301139A1 (en) * | 2011-05-24 | 2012-11-29 | Shota Mori | Optical packet switching system |
CN102742185A (zh) * | 2012-03-23 | 2012-10-17 | 华为技术有限公司 | 检测光信噪比的方法、装置、节点设备和网络系统 |
CN102904635A (zh) * | 2012-10-25 | 2013-01-30 | 中兴通讯股份有限公司 | 一种光信噪比检测的方法、系统和设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3223442A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019024830A1 (en) | 2017-07-31 | 2019-02-07 | Huawei Technologies Co., Ltd. | SYSTEMS AND METHODS FOR MONITORING SIGNAL RATIO ON OPTICAL NOISE |
EP3625902A4 (en) * | 2017-07-31 | 2020-05-27 | Huawei Technologies Co., Ltd. | SYSTEMS AND METHODS FOR THE OPTICAL MONITORING OF THE SIGNAL-NOISE RATIO |
CN111983588A (zh) * | 2020-08-25 | 2020-11-24 | 中国科学技术大学 | 一种自适应反馈控制装置、方法 |
CN111983588B (zh) * | 2020-08-25 | 2024-05-17 | 中国科学技术大学 | 一种自适应反馈控制装置、方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3223442A4 (en) | 2018-09-12 |
EP3223442A1 (en) | 2017-09-27 |
US10103807B2 (en) | 2018-10-16 |
CN105606910A (zh) | 2016-05-25 |
US20170264363A1 (en) | 2017-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016078446A1 (zh) | 光信噪比检测电路、装置及方法 | |
CN102201868B (zh) | 双并联mz调制器的偏置控制方法与装置 | |
JP5236074B2 (ja) | 誘導ラマン拡散に対するトーンベースの光チャネル監視の耐性を改善するための装置および方法 | |
CN103245369B (zh) | 基于多纵模f-p激光器的新型光纤光栅解调方法及其系统 | |
CN103326777A (zh) | 光功率监测器、光功率控制系统和光功率监测方法 | |
EP3474463A1 (en) | Optical power detection method, apparatus and device, and optical module | |
JP2016010040A (ja) | 光伝送システム、光伝送装置、及び、波長間隔測定装置 | |
CN105282068B (zh) | 无线光通信中基于最小二乘法的预加重和均衡方法 | |
US8249467B2 (en) | Self test of a dual polarization transmitter | |
RU2014142687A (ru) | Способ и устройство для обнаружения отношения оптического сигнала к шуму, узловое устройство и сетевая система | |
JP6311443B2 (ja) | 測定装置、測定方法および伝送システム | |
CN108362388B (zh) | 一种双通道差分激光器相位噪声的测量方法 | |
US6088144A (en) | Detection of frequency-modulated tones in electromagnetic signals | |
CN104471878A (zh) | 一种监控光信号方法、信号监测装置和光网络系统 | |
CA2381682A1 (en) | Performance monitoring in an optical communication system | |
JPH11194050A (ja) | 光信号パワーの計測方法 | |
CN108344515B (zh) | 一种双通道激光器相位噪声的测量装置 | |
US6842561B2 (en) | Optical performance monitoring scheme | |
US8311418B2 (en) | Optical communication apparatus and optical communication method | |
Tao et al. | Characterization, modelling and measurement of device imperfections in advanced coherent transceivers | |
CN111385021A (zh) | 一种基于载波调制的多波长光功率监测系统及方法 | |
CN112422177A (zh) | 光通道识别方法、装置、光通信监测设备及存储介质 | |
JP2016143975A (ja) | 光信号品質モニタ装置、光信号品質モニタ方法、及び光中継器 | |
Jiang et al. | DSP enabled, amplitude modulation pilot tone based optical performance monitoring in coherent systems | |
Zhang et al. | Time division multiplexing optical time domain reflectometry based on dual frequency probe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15860955 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15528484 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015860955 Country of ref document: EP |