WO2016075026A1 - Verfahren und vorrichtung zur belichtungssteuerung einer selektiven lasersinter- oder laserschmelzvorrichtung - Google Patents
Verfahren und vorrichtung zur belichtungssteuerung einer selektiven lasersinter- oder laserschmelzvorrichtung Download PDFInfo
- Publication number
- WO2016075026A1 WO2016075026A1 PCT/EP2015/075832 EP2015075832W WO2016075026A1 WO 2016075026 A1 WO2016075026 A1 WO 2016075026A1 EP 2015075832 W EP2015075832 W EP 2015075832W WO 2016075026 A1 WO2016075026 A1 WO 2016075026A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- irradiation
- scanner
- individual
- irradiating
- scanners
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
- B22F10/366—Scanning parameters, e.g. hatch distance or scanning strategy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/49—Scanners
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/0604—Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/264—Arrangements for irradiation
- B29C64/277—Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
- B29C64/393—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/101—Lasers provided with means to change the location from which, or the direction in which, laser radiation is emitted
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/102—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/90—Means for process control, e.g. cameras or sensors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the invention relates to a method for exposure control of a selective laser sintering or laser melting apparatus for producing three-dimensional objects with the method steps of the preamble of claim 1.
- the invention relates to a device for carrying out the method according to claim 9.
- laser sintering or laser melting devices with which three-dimensional objects can be produced by selectively irradiating a building material, with a To perform a plurality of scanners.
- the scanners are placed over a building field and can either be fixed or mobile, i. be arranged movable in some areas over the construction field area.
- a separate scanner is assigned to each section of a construction field, or the scanners are mounted or exposed so that they can also at least partially expose construction field sections that are actually associated with another scanner to that other scanner upon exposure of the same Assign assigned construction field area, if there is the exposure time or area significantly higher than in the adjacent construction field section, which is then correspondingly less exposure.
- the present invention has for its object to provide a method and an apparatus for performing this method, which or allows an optimization of the construction process and in particular a shortening of the required construction time for an object.
- This object is achieved by the combination of the features of claim 1, advantageous developments of the method can be found in the dependent claims 2-8.
- the irradiation times of each individual scanner and / or the irradiation areas detected by this individual scanner are separately recorded and stored in a first step.
- the detection of the irradiation times can be determined for example by a shutter opening signal, the Radiation energy from a radiation source passes, but there are also other detection options conceivable, for example, by photosensitive elements or the like, which provide a time signal on activation of a scanner, which can be stored electronically.
- the detection of the irradiation surfaces can also be done in different ways, either fototechnisch by detecting an irradiation image in a certain period of time or by resorting to determined irradiation times and scanner deflections so that irradiated building panel sections can be determined in terms of their irradiated size.
- the recorded and stored irradiation time values and irradiation area values are compared with each other electronically. This can be done by a comparison device that is integrated in a suitably suitable processor or computer.
- a redistribution of the surface areas of a powder layer to be irradiated by each individual scanner is determined for the next layer or for a next layer section such that the irradiation times for each individual scanner are as far as possible are approximated to each other and / or the irradiation surface of each individual scanner in terms of area as far as possible aligned with each other.
- This process is carried out iteratively, ie repeated over and over again, in order to be able to respond quickly to irradiation geometries that change during the construction process.
- the division of the scan fields is each dynamically adjusted after solidification of one or more layers such that the resulting exposure time for each scanner is at least approximately the same for each subsequent irradiation run.
- an operator can, on the basis of readable control data from the scanners, preselect the scan fields for each scanner.
- an operator during the construction process quasi-manually intervenes in the iterative approximation of the scan characters and quite deliberately a shift of the scan fields, eg for thermal reasons or the like.
- the method according to the invention can also be carried out as a "mixing method", ie that, for example, irradiation times and irradiation areas are measured and, for example, from the irradiation times of a first scanner on surfaces irradiated therefrom is closed, which with the irradiation surfaces a second scanner to achieve the alignment according to the invention.
- a mixing method ie that, for example, irradiation times and irradiation areas are measured and, for example, from the irradiation times of a first scanner on surfaces irradiated therefrom is closed, which with the irradiation surfaces a second scanner to achieve the alignment according to the invention.
- the border between the scan fields of two scanners can be a straight line. However, if more than two scanners are in use above a construction site, it may be advantageous to also choose other boundary courses between the scan fields.
- the controller according to the invention optimally adjusts the boundary between the scan fields of different scanners. Due to the fact that the change of the melt area and position over a whole building process is large, but usually relatively small from layer to layer, the control is able to achieve a construction time close to the building due to small incremental adaptation of the scan field boundary over the entire construction process to bring theoretical minimum.
- Fig. 1 is a schematic representation of the essential components of a
- Fig. 2 shows three representations for scan field adaptation, wherein in Fig. 2a a
- the device 1 shown in Figure 1 comprises as essential components a process chamber 2, in which a building container 3 with a height-adjustable Construction platform 4 is arranged. Over the building platform 4, a coater arrangement 5 is arranged, through which building material 6 can be applied from a metering chamber 7 in the region of the building container 3 in the form of thin layers. Above the building container 3, a plurality of scanners 8a, 8b are arranged in the process chamber 2, by means of which the radiation 9 of a radiation source 10 in the form of a laser can be controlled in a process-controlled manner onto the building material layer 11 in order to selectively solidify it.
- the device furthermore has an electronic detection unit 20, by means of which irradiation times relative to each scanner 8 and / or irradiation surfaces detected by a scanner 8 during an irradiation step can be detected separately and stored in an electronic memory 21.
- an electronic comparison device 22 Connected to the memory 21 is an electronic comparison device 22, by means of which the stored irradiation time values of the individual scanners 8 can be compared with one another.
- an electronic comparison device 22 Connected to the memory 21 is an electronic comparison device 22, by means of which the stored irradiation time values of the individual scanners 8 can be compared with one another.
- a comparison of the surface areas to be exposed by each individual scanner 8 is calculated such that the irradiation times (or the irradiation areas) of each individual scanner 8 are as far as possible in terms of area are aligned with each other.
- FIG. 1 also shows an input device 25 with a display 26, via which an operator can intervene in the construction process of the laser sintering laser melting device 1.
- the radiation 9 of the radiation source 10 is conducted in the illustrated embodiment via a beam splitter 15, and from there passes through a window 16 in the upper region of the process chamber 2 to to get to the scanners 8a, 8b.
- the detection unit 20 comprises sensor elements (shutters) which adjoin the scanners or optical switches preceding them and record the irradiation times of the scanners 8 and store them in the memory 21 as irradiation time values T1 and T2 to be compared. These values are compared in the comparator 22 to allow the processor to optimize the drive of the scanners.
- sensor elements shutters
- T1 and T2 irradiation time values
- FIGS. 2a-2c now show in greater detail how the optimization of the scan fields 31, 32 or irradiation surfaces is optimized with respect to the individual scanners 8a, 8b.
- FIG. 2 a shows a state in which the surface of the scan field 32 to be melted is larger than the scan field 31. For this reason, it is expedient to shift the boundary 30 between the scan field 31 and the scan field 32 downwards so that in the next slice n + 1 according to FIG. 2 b an approximation of the scan fields 31, 32 has already been made.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Plasma & Fusion (AREA)
- Electromagnetism (AREA)
- General Health & Medical Sciences (AREA)
- Automation & Control Theory (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES15801125T ES2686793T5 (es) | 2014-11-12 | 2015-11-05 | Procedimiento y dispositivo para el control de exposición de un dispositivo de sinterización selectiva o un dispositivo de fusión por láser |
EP18166334.5A EP3363621B1 (de) | 2014-11-12 | 2015-11-05 | Verfahren und vorrichtung zur belichtungssteuerung einer selektiven lasersinter- oder laserschmelzvorrichtung |
JP2017525577A JP6573670B2 (ja) | 2014-11-12 | 2015-11-05 | 選択的なレーザ焼結装置又はレーザ溶融装置を露光制御するための方法及び装置 |
US15/526,711 US10137633B2 (en) | 2014-11-12 | 2015-11-05 | Method and device for controlling the exposure of a selective laser sintering or laser melting device |
CN201580061317.9A CN107107467B (zh) | 2014-11-12 | 2015-11-05 | 用于选择性激光烧结设备或激光熔融设备的曝光控制的方法和设备 |
EP15801125.4A EP3218168B2 (de) | 2014-11-12 | 2015-11-05 | Verfahren und vorrichtung zur belichtungssteuerung einer selektiven lasersinter- oder laserschmelzvorrichtung |
US16/007,813 US10836103B2 (en) | 2014-11-12 | 2018-06-13 | Apparatus for controlling the exposure of a selective laser sintering or laser melting apparatus |
US17/072,137 US11945159B2 (en) | 2014-11-12 | 2020-10-16 | Method and apparatus for controlling the exposure of a selective laser sintering or laser melting apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014016679.1A DE102014016679A1 (de) | 2014-11-12 | 2014-11-12 | Verfahren und Vorrichtung zur Belichtungssteuerung einer selektiven Lasersinter- oder Laserschmelzvorrichtung |
DE102014016679.1 | 2014-11-12 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/526,711 A-371-Of-International US10137633B2 (en) | 2014-11-12 | 2015-11-05 | Method and device for controlling the exposure of a selective laser sintering or laser melting device |
US16/007,813 Division US10836103B2 (en) | 2014-11-12 | 2018-06-13 | Apparatus for controlling the exposure of a selective laser sintering or laser melting apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016075026A1 true WO2016075026A1 (de) | 2016-05-19 |
Family
ID=54705154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2015/075832 WO2016075026A1 (de) | 2014-11-12 | 2015-11-05 | Verfahren und vorrichtung zur belichtungssteuerung einer selektiven lasersinter- oder laserschmelzvorrichtung |
Country Status (7)
Country | Link |
---|---|
US (3) | US10137633B2 (de) |
EP (2) | EP3218168B2 (de) |
JP (3) | JP6573670B2 (de) |
CN (2) | CN110239090B (de) |
DE (1) | DE102014016679A1 (de) |
ES (1) | ES2686793T5 (de) |
WO (1) | WO2016075026A1 (de) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9573225B2 (en) | 2014-06-20 | 2017-02-21 | Velo3D, Inc. | Apparatuses, systems and methods for three-dimensional printing |
US9662840B1 (en) | 2015-11-06 | 2017-05-30 | Velo3D, Inc. | Adept three-dimensional printing |
US9919360B2 (en) | 2016-02-18 | 2018-03-20 | Velo3D, Inc. | Accurate three-dimensional printing |
US9962767B2 (en) | 2015-12-10 | 2018-05-08 | Velo3D, Inc. | Apparatuses for three-dimensional printing |
US20180126649A1 (en) | 2016-11-07 | 2018-05-10 | Velo3D, Inc. | Gas flow in three-dimensional printing |
US10144176B1 (en) | 2018-01-15 | 2018-12-04 | Velo3D, Inc. | Three-dimensional printing systems and methods of their use |
US10252336B2 (en) | 2016-06-29 | 2019-04-09 | Velo3D, Inc. | Three-dimensional printing and three-dimensional printers |
US10272525B1 (en) | 2017-12-27 | 2019-04-30 | Velo3D, Inc. | Three-dimensional printing systems and methods of their use |
US10315252B2 (en) | 2017-03-02 | 2019-06-11 | Velo3D, Inc. | Three-dimensional printing of three-dimensional objects |
US10449696B2 (en) | 2017-03-28 | 2019-10-22 | Velo3D, Inc. | Material manipulation in three-dimensional printing |
US10611092B2 (en) | 2017-01-05 | 2020-04-07 | Velo3D, Inc. | Optics in three-dimensional printing |
WO2022223411A1 (en) | 2021-04-21 | 2022-10-27 | SLM Solutions Group AG | Powder bed fusion additive manufacturing with load balancing for multiple beams |
WO2022233860A1 (en) | 2021-05-07 | 2022-11-10 | SLM Solutions Group AG | Process chamber for an additive manufacturing apparatus and method for operating the process chamber |
US11691343B2 (en) | 2016-06-29 | 2023-07-04 | Velo3D, Inc. | Three-dimensional printing and three-dimensional printers |
DE102022108550A1 (de) | 2022-04-08 | 2023-10-12 | Trumpf Laser- Und Systemtechnik Gmbh | Verfahren zur schichtweisen Fertigung einer Vielzahl von Objekten und entsprechendes Planungsverfahren, mit volumenbasierter Aufteilung der Objekte auf Teilbereiche der Bauplattform |
US11999110B2 (en) | 2019-07-26 | 2024-06-04 | Velo3D, Inc. | Quality assurance in formation of three-dimensional objects |
US12070907B2 (en) | 2016-09-30 | 2024-08-27 | Velo3D | Three-dimensional objects and their formation |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014016679A1 (de) | 2014-11-12 | 2016-05-12 | Cl Schutzrechtsverwaltungs Gmbh | Verfahren und Vorrichtung zur Belichtungssteuerung einer selektiven Lasersinter- oder Laserschmelzvorrichtung |
DE102016011801A1 (de) * | 2016-09-30 | 2018-04-05 | Eos Gmbh Electro Optical Systems | Verfahren zum Kalibrieren einer Vorrichtung zum Herstellen eines dreidimensionalen Objekts und zum Durchführen des Verfahrens ausgebildete Vorrichtung |
DE102018203233A1 (de) | 2018-03-05 | 2019-09-05 | MTU Aero Engines AG | Belichtungsverfahren, Herstellungsverfahren und Vorrichtung zum selektiven Laserschmelzen |
US10695867B2 (en) | 2018-03-08 | 2020-06-30 | General Electric Company | Controlling microstructure of selected range of layers of object during additive manufacture |
US11426818B2 (en) | 2018-08-10 | 2022-08-30 | The Research Foundation for the State University | Additive manufacturing processes and additively manufactured products |
EP3659784B1 (de) * | 2018-11-28 | 2022-01-19 | Concept Laser GmbH | Verfahren zur generativen fertigung von mindestens einem dreidimensionalen objekt |
CN110398200B (zh) * | 2019-08-29 | 2024-10-11 | 四川智能创新铸造有限公司 | 一种铸钢件缺陷坡口的体积检测装置及其检测方法 |
JP6892957B1 (ja) * | 2020-07-22 | 2021-06-23 | 株式会社ソディック | 積層造形方法および積層造形システム |
CN113715337B (zh) * | 2021-09-26 | 2023-10-27 | 上海联泰科技股份有限公司 | 控制装置、方法、3d打印方法及打印设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030052105A1 (en) * | 2001-09-10 | 2003-03-20 | Fuji Photo Film Co., Ltd. | Laser sintering apparatus |
US20140263209A1 (en) * | 2013-03-15 | 2014-09-18 | Matterfab Corp. | Apparatus and methods for manufacturing |
DE102014005916A1 (de) | 2014-04-25 | 2015-10-29 | Cl Schutzrechtsverwaltungs Gmbh | Vorrichtung zum Herstellen von dreidimensionalen Objekten |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4469442A (en) | 1982-01-11 | 1984-09-04 | Japan Crown Cork Co., Ltd. | Detecting irregularities in a coating on a substrate |
US4555179A (en) | 1982-11-08 | 1985-11-26 | John Langerholc | Detection and imaging of objects in scattering media by light irradiation |
US5574215A (en) * | 1994-03-01 | 1996-11-12 | James W. Bunger & Associates, Inc. | Method for determining thermodynamic and molecular properties in the liquid phase |
US5615013A (en) * | 1995-06-27 | 1997-03-25 | Virtek Vision Corp. | Galvanometer and camera system |
US5724140A (en) | 1996-10-28 | 1998-03-03 | Ford Motor Company | Method and apparatus for determining the quality of flat glass sheet |
CA2252308C (en) | 1998-10-30 | 2005-01-04 | Image Processing Systems, Inc. | Glass inspection system |
JP2000263650A (ja) * | 1999-03-16 | 2000-09-26 | Hitachi Ltd | 光造形装置 |
JP3515419B2 (ja) * | 1999-04-30 | 2004-04-05 | ティーエスコーポレーション株式会社 | 光学的立体造形方法および装置 |
JP4582894B2 (ja) | 2000-11-16 | 2010-11-17 | ナブテスコ株式会社 | 光学的立体造形装置及び造形方法 |
DE102004009126A1 (de) * | 2004-02-25 | 2005-09-22 | Bego Medical Ag | Verfahren und Einrichtung zum Erzeugen von Steuerungsdatensätzen für die Herstellung von Produkten durch Freiform-Sintern bzw. -Schmelzen sowie Vorrichtung für diese Herstellung |
US7151603B2 (en) | 2004-04-30 | 2006-12-19 | Samsung Electronics Co. Ltd. | Overhead transparency clarity simulator |
JP4992155B2 (ja) * | 2004-05-05 | 2012-08-08 | サイン−トロニツク・アクチエンゲゼルシヤフト | 等しい量のエネルギーを伝送する方法及びエネルギーの伝送を制御する装置 |
DE102005024790A1 (de) * | 2005-05-26 | 2006-12-07 | Eos Gmbh Electro Optical Systems | Strahlungsheizung zum Heizen des Aufbaumaterials in einer Lasersintervorrichtung |
JP4916392B2 (ja) * | 2007-06-26 | 2012-04-11 | パナソニック株式会社 | 三次元形状造形物の製造方法及び製造装置 |
US8666142B2 (en) * | 2008-11-18 | 2014-03-04 | Global Filtration Systems | System and method for manufacturing |
KR20110138389A (ko) * | 2009-03-17 | 2011-12-27 | 우시 썬테크 파워 컴퍼니 리미티드 | 복수의 공동-위치된 복사선 공급원을 이용한 플레이트 조사 |
US8229204B2 (en) | 2009-06-29 | 2012-07-24 | Ecolab Inc. | Optical processing of surfaces to determine cleanliness |
DE102010041284A1 (de) * | 2010-09-23 | 2012-03-29 | Siemens Aktiengesellschaft | Verfahren zum selektiven Lasersintern und für dieses Verfahren geeignete Anlage zum selektiven Lasersintern |
US8687472B1 (en) | 2011-11-08 | 2014-04-01 | Marvell International Ltd. | Method and apparatus for determining the cleanliness of a lens in an optical disc drive |
FR2984779B1 (fr) * | 2011-12-23 | 2015-06-19 | Michelin Soc Tech | Procede et appareil pour realiser des objets tridimensionnels |
GB201205591D0 (en) | 2012-03-29 | 2012-05-16 | Materials Solutions | Apparatus and methods for additive-layer manufacturing of an article |
CN103358555A (zh) * | 2012-03-30 | 2013-10-23 | 通用电气公司 | 用于激光快速成型加工设备的多束激光扫描系统及方法 |
DE102012014839A1 (de) * | 2012-07-27 | 2014-01-30 | Cl Schutzrechtsverwaltungs Gmbh | Vorrichtung zur Herstellung dreidimensionaler Objekte |
FR2993805B1 (fr) * | 2012-07-27 | 2014-09-12 | Phenix Systems | Dispositif de fabrication d'objets tridimensionnels par couches superposees et procede de fabrication associe |
DE102012014840A1 (de) * | 2012-07-27 | 2014-01-30 | Cl Schutzrechtsverwaltungs Gmbh | Vorrichtung zur Herstellung dreidimensionaler Objekte durch sukzessives Verfestigen von Schichten |
US8913251B2 (en) | 2012-08-27 | 2014-12-16 | Canon Kabushiki Kaisha | Estimating material properties using speckle statistics |
CN102818538B (zh) | 2012-09-14 | 2014-09-10 | 洛阳兰迪玻璃机器股份有限公司 | 基于调制玻璃线结构激光图像的检测系统 |
US8836936B2 (en) | 2013-02-05 | 2014-09-16 | Shenzhen China Star Optoelectronics Technology Co., Ltd | Inspecting device for detecting appearance of debris on a surface of a glass substrate, inspecting apparatus and method for conducting inspection |
DE102013208651A1 (de) * | 2013-05-10 | 2014-11-13 | Eos Gmbh Electro Optical Systems | Verfahren zum automatischen Kalibrieren einer Vorrichtung zum generativen Herstellen eines dreidimensionalen Objekts |
ES2725889T3 (es) | 2013-06-10 | 2019-09-30 | Renishaw Plc | Aparato y método de solidificación selectiva por láser |
KR20150115596A (ko) * | 2014-04-04 | 2015-10-14 | 가부시키가이샤 마쓰우라 기카이 세이사쿠쇼 | 3차원 조형 장치 및 3차원 형상 조형물의 제조 방법 |
CN103978307B (zh) * | 2014-04-30 | 2015-08-05 | 中国科学院化学研究所 | 一种用于精确控温的高分子材料紫外激光3d打印方法及装置 |
US9682345B2 (en) | 2014-07-08 | 2017-06-20 | Particle Measuring Systems, Inc. | Method of treating a cleanroom enclosure |
DE102014016679A1 (de) | 2014-11-12 | 2016-05-12 | Cl Schutzrechtsverwaltungs Gmbh | Verfahren und Vorrichtung zur Belichtungssteuerung einer selektiven Lasersinter- oder Laserschmelzvorrichtung |
DE102016209933A1 (de) * | 2016-06-06 | 2017-12-07 | Eos Gmbh Electro Optical Systems | Vorrichtung und Verfahren zum generativen Herstellen eines dreidimensionalen Objekts |
DE102017105056A1 (de) * | 2017-03-09 | 2018-09-13 | Cl Schutzrechtsverwaltungs Gmbh | Vorrichtung zur additiven Herstellung dreidimensionaler Objekte |
US11084097B2 (en) * | 2017-06-23 | 2021-08-10 | Applied Materials, Inc. | Additive manufacturing with cell processing recipes |
WO2019028184A1 (en) * | 2017-08-01 | 2019-02-07 | Sigma Labs, Inc. | SYSTEMS AND METHODS FOR RADIANT THERMAL ENERGY MEASUREMENT DURING ADDITIVE MANUFACTURING OPERATION |
US10710307B2 (en) * | 2017-08-11 | 2020-07-14 | Applied Materials, Inc. | Temperature control for additive manufacturing |
EP3636415B1 (de) | 2018-10-12 | 2023-01-04 | Concept Laser GmbH | Vorrichtung zur generativen fertigung dreidimensionaler objekte |
EP3656539B1 (de) | 2018-11-21 | 2023-05-03 | Concept Laser GmbH | Bestrahlungsvorrichtung für eine vorrichtung zur generativen fertigung dreidimensionaler objekte |
-
2014
- 2014-11-12 DE DE102014016679.1A patent/DE102014016679A1/de active Pending
-
2015
- 2015-11-05 US US15/526,711 patent/US10137633B2/en active Active
- 2015-11-05 EP EP15801125.4A patent/EP3218168B2/de active Active
- 2015-11-05 ES ES15801125T patent/ES2686793T5/es active Active
- 2015-11-05 CN CN201910355834.7A patent/CN110239090B/zh active Active
- 2015-11-05 EP EP18166334.5A patent/EP3363621B1/de active Active
- 2015-11-05 JP JP2017525577A patent/JP6573670B2/ja active Active
- 2015-11-05 WO PCT/EP2015/075832 patent/WO2016075026A1/de active Application Filing
- 2015-11-05 CN CN201580061317.9A patent/CN107107467B/zh active Active
-
2018
- 2018-06-13 US US16/007,813 patent/US10836103B2/en active Active
-
2019
- 2019-06-04 JP JP2019104310A patent/JP6873190B2/ja active Active
-
2020
- 2020-10-16 US US17/072,137 patent/US11945159B2/en active Active
-
2021
- 2021-04-19 JP JP2021070165A patent/JP7127896B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030052105A1 (en) * | 2001-09-10 | 2003-03-20 | Fuji Photo Film Co., Ltd. | Laser sintering apparatus |
US20140263209A1 (en) * | 2013-03-15 | 2014-09-18 | Matterfab Corp. | Apparatus and methods for manufacturing |
DE102014005916A1 (de) | 2014-04-25 | 2015-10-29 | Cl Schutzrechtsverwaltungs Gmbh | Vorrichtung zum Herstellen von dreidimensionalen Objekten |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10195693B2 (en) | 2014-06-20 | 2019-02-05 | Vel03D, Inc. | Apparatuses, systems and methods for three-dimensional printing |
US9586290B2 (en) | 2014-06-20 | 2017-03-07 | Velo3D, Inc. | Systems for three-dimensional printing |
US9821411B2 (en) | 2014-06-20 | 2017-11-21 | Velo3D, Inc. | Apparatuses, systems and methods for three-dimensional printing |
US10507549B2 (en) | 2014-06-20 | 2019-12-17 | Velo3D, Inc. | Apparatuses, systems and methods for three-dimensional printing |
US10493564B2 (en) | 2014-06-20 | 2019-12-03 | Velo3D, Inc. | Apparatuses, systems and methods for three-dimensional printing |
US9573225B2 (en) | 2014-06-20 | 2017-02-21 | Velo3D, Inc. | Apparatuses, systems and methods for three-dimensional printing |
US9662840B1 (en) | 2015-11-06 | 2017-05-30 | Velo3D, Inc. | Adept three-dimensional printing |
US9676145B2 (en) | 2015-11-06 | 2017-06-13 | Velo3D, Inc. | Adept three-dimensional printing |
US10357957B2 (en) | 2015-11-06 | 2019-07-23 | Velo3D, Inc. | Adept three-dimensional printing |
US10065270B2 (en) | 2015-11-06 | 2018-09-04 | Velo3D, Inc. | Three-dimensional printing in real time |
US10286603B2 (en) | 2015-12-10 | 2019-05-14 | Velo3D, Inc. | Skillful three-dimensional printing |
US9962767B2 (en) | 2015-12-10 | 2018-05-08 | Velo3D, Inc. | Apparatuses for three-dimensional printing |
US10183330B2 (en) | 2015-12-10 | 2019-01-22 | Vel03D, Inc. | Skillful three-dimensional printing |
US10071422B2 (en) | 2015-12-10 | 2018-09-11 | Velo3D, Inc. | Skillful three-dimensional printing |
US10207454B2 (en) | 2015-12-10 | 2019-02-19 | Velo3D, Inc. | Systems for three-dimensional printing |
US10688722B2 (en) | 2015-12-10 | 2020-06-23 | Velo3D, Inc. | Skillful three-dimensional printing |
US10434573B2 (en) | 2016-02-18 | 2019-10-08 | Velo3D, Inc. | Accurate three-dimensional printing |
US9931697B2 (en) | 2016-02-18 | 2018-04-03 | Velo3D, Inc. | Accurate three-dimensional printing |
US10252335B2 (en) | 2016-02-18 | 2019-04-09 | Vel03D, Inc. | Accurate three-dimensional printing |
US9919360B2 (en) | 2016-02-18 | 2018-03-20 | Velo3D, Inc. | Accurate three-dimensional printing |
US10286452B2 (en) | 2016-06-29 | 2019-05-14 | Velo3D, Inc. | Three-dimensional printing and three-dimensional printers |
US11691343B2 (en) | 2016-06-29 | 2023-07-04 | Velo3D, Inc. | Three-dimensional printing and three-dimensional printers |
US10259044B2 (en) | 2016-06-29 | 2019-04-16 | Velo3D, Inc. | Three-dimensional printing and three-dimensional printers |
US10252336B2 (en) | 2016-06-29 | 2019-04-09 | Velo3D, Inc. | Three-dimensional printing and three-dimensional printers |
US12070907B2 (en) | 2016-09-30 | 2024-08-27 | Velo3D | Three-dimensional objects and their formation |
US20180126649A1 (en) | 2016-11-07 | 2018-05-10 | Velo3D, Inc. | Gas flow in three-dimensional printing |
US10661341B2 (en) | 2016-11-07 | 2020-05-26 | Velo3D, Inc. | Gas flow in three-dimensional printing |
US10611092B2 (en) | 2017-01-05 | 2020-04-07 | Velo3D, Inc. | Optics in three-dimensional printing |
US10357829B2 (en) | 2017-03-02 | 2019-07-23 | Velo3D, Inc. | Three-dimensional printing of three-dimensional objects |
US10442003B2 (en) | 2017-03-02 | 2019-10-15 | Velo3D, Inc. | Three-dimensional printing of three-dimensional objects |
US10369629B2 (en) | 2017-03-02 | 2019-08-06 | Veo3D, Inc. | Three-dimensional printing of three-dimensional objects |
US10888925B2 (en) | 2017-03-02 | 2021-01-12 | Velo3D, Inc. | Three-dimensional printing of three-dimensional objects |
US10315252B2 (en) | 2017-03-02 | 2019-06-11 | Velo3D, Inc. | Three-dimensional printing of three-dimensional objects |
US10449696B2 (en) | 2017-03-28 | 2019-10-22 | Velo3D, Inc. | Material manipulation in three-dimensional printing |
US10272525B1 (en) | 2017-12-27 | 2019-04-30 | Velo3D, Inc. | Three-dimensional printing systems and methods of their use |
US10144176B1 (en) | 2018-01-15 | 2018-12-04 | Velo3D, Inc. | Three-dimensional printing systems and methods of their use |
US11999110B2 (en) | 2019-07-26 | 2024-06-04 | Velo3D, Inc. | Quality assurance in formation of three-dimensional objects |
WO2022223411A1 (en) | 2021-04-21 | 2022-10-27 | SLM Solutions Group AG | Powder bed fusion additive manufacturing with load balancing for multiple beams |
WO2022233860A1 (en) | 2021-05-07 | 2022-11-10 | SLM Solutions Group AG | Process chamber for an additive manufacturing apparatus and method for operating the process chamber |
DE102022108550A1 (de) | 2022-04-08 | 2023-10-12 | Trumpf Laser- Und Systemtechnik Gmbh | Verfahren zur schichtweisen Fertigung einer Vielzahl von Objekten und entsprechendes Planungsverfahren, mit volumenbasierter Aufteilung der Objekte auf Teilbereiche der Bauplattform |
Also Published As
Publication number | Publication date |
---|---|
US20180370128A1 (en) | 2018-12-27 |
JP6573670B2 (ja) | 2019-09-11 |
EP3218168B1 (de) | 2018-06-13 |
US11945159B2 (en) | 2024-04-02 |
EP3363621B1 (de) | 2023-05-03 |
US10137633B2 (en) | 2018-11-27 |
EP3363621A1 (de) | 2018-08-22 |
JP2017537814A (ja) | 2017-12-21 |
JP2019137075A (ja) | 2019-08-22 |
EP3218168A1 (de) | 2017-09-20 |
ES2686793T3 (es) | 2018-10-19 |
EP3218168B2 (de) | 2024-03-06 |
JP7127896B2 (ja) | 2022-08-30 |
CN107107467B (zh) | 2019-03-29 |
US20170320264A1 (en) | 2017-11-09 |
CN110239090A (zh) | 2019-09-17 |
DE102014016679A1 (de) | 2016-05-12 |
JP2021112916A (ja) | 2021-08-05 |
JP6873190B2 (ja) | 2021-05-19 |
US20210101333A1 (en) | 2021-04-08 |
CN107107467A (zh) | 2017-08-29 |
ES2686793T5 (es) | 2024-09-16 |
US10836103B2 (en) | 2020-11-17 |
CN110239090B (zh) | 2021-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3218168B1 (de) | Verfahren und vorrichtung zur belichtungssteuerung einer selektiven lasersinter- oder laserschmelzvorrichtung | |
EP3383624B1 (de) | Verfahren zum kalibrieren einer vorrichtung zum herstellen eines dreidimensionalen objekts | |
EP3062991B1 (de) | Verfahren zum herstellen eines dreidimensionalen bauteils | |
EP3392019A1 (de) | Vorrichtung zum herstellen von dreidimensionalen objekten durch aufeinander-folgendes verfestigen von schichten sowie ein zugehöriges verfahren | |
EP2983898A1 (de) | Verfahren zum automatischen kalibrieren einer vorrichtung zum generativen herstellen eines dreidimensionalen objekts | |
DE102013213547A1 (de) | Kalibriereinrichtung und Kalibrierverfahren für eine Vorrichtung zum schichtweisen Herstellen eines Objekts | |
DE102014201818A1 (de) | Verfahren und Vorrichtung zur verbesserten Steuerung des Energieeintrags in einem generativen Schichtbauverfahren | |
DE202006016477U1 (de) | Vorrichtung zum Herstellen eines dreidimensionalen Objektes | |
DE102015207306A1 (de) | Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts | |
DE102012021284B4 (de) | Vorrichtung und Verfahren zur schichtweisen Herstellung von Bauteilen mittels Photopolymerisation | |
EP3297813B1 (de) | Verfahren und vorrichtung zum herstellen eines dreidimensionalen objekts | |
DE102015219866A1 (de) | Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts | |
EP3642038B1 (de) | Vorrichtung und verfahren zum generativen herstellen eines dreidimensionalen objekts mit einem hubsystem | |
DE102014010929A1 (de) | Vorrichtung zur Herstellung dreidimensionaler Objekte | |
DE102017205051A1 (de) | Überlappoptimierung | |
WO2017153187A1 (de) | Generatives schichtbauverfahren mit verbesserter detailauflösung und vorrichtung zur durchführung desselben | |
DE102011121568A1 (de) | Verfahren und Herstellung von dreidimensionalen Objekten durch aufeinanderfolgendes Verfestigen von Schichten eines pulverförmigen Aufbaumaterials | |
DE102013011307A1 (de) | Verfahren und Vorrichtung zur Werkzeugmessung oder Werkstückmessung | |
EP3307523A1 (de) | Vorrichtung zum herstellen von dreidimensionalen objekten sowie ein zugehöriges verfahren | |
EP2979849B1 (de) | Vorrichtung zur herstellung dreidimensionaler objekte durch sukzessives verfestigen von schichten | |
DE102015214690A1 (de) | Verfahren und Vorrichtung zur Herstellung eines dreidimensionalen Objektes mittels eines generativen Schichtbauverfahrens | |
DE102016212572A1 (de) | Verfahren zur Herstellung von dreidimensionalen Bauteilen mit einem pulverbettbasierten Strahlschmelzverfahren | |
WO2019201498A1 (de) | Selektive nachbelichtung | |
DE102004058868B4 (de) | Vorrichtung und Verfahren zur Bearbeitung eines Kraftfahrzeug-Innenverkleidungsteils | |
EP4225524A1 (de) | Lokal selektive bestrahlung eines arbeitsbereichs mit einer von einer kreisform abweichende strahlform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REEP | Request for entry into the european phase |
Ref document number: 2015801125 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15801125 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017525577 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15526711 Country of ref document: US |