WO2015122164A1 - Separator for non-aqueous electrolyte secondary batteries - Google Patents
Separator for non-aqueous electrolyte secondary batteries Download PDFInfo
- Publication number
- WO2015122164A1 WO2015122164A1 PCT/JP2015/000539 JP2015000539W WO2015122164A1 WO 2015122164 A1 WO2015122164 A1 WO 2015122164A1 JP 2015000539 W JP2015000539 W JP 2015000539W WO 2015122164 A1 WO2015122164 A1 WO 2015122164A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- separator
- inorganic particles
- electrolyte secondary
- inorganic particle
- aqueous electrolyte
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/44—Fibrous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/451—Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a separator for a non-aqueous electrolyte secondary battery.
- a separator having a heat-resistant layer containing inorganic particles has been proposed as a separator.
- Patent Document 1 it is proposed to use plate-like inorganic particles for the heat-resistant layer to suppress the thermal contraction of the separator.
- a separator for a non-aqueous electrolyte secondary battery includes a microporous film and an inorganic particle film formed on the microporous film, and the inorganic particle film has a needle shape.
- the needle-like inorganic particles have a major axis / minor axis ratio of 12 or more and 20 or less.
- the non-aqueous electrolyte secondary battery using the non-aqueous electrolyte secondary battery separator of the present invention can suppress the thermal contraction of the separator at a high temperature because the strength of the inorganic particle film is increased.
- a nonaqueous electrolyte secondary battery which is an example of an embodiment of the present invention includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a nonaqueous electrolyte including a nonaqueous solvent, and a separator.
- a positive electrode including a positive electrode active material a positive electrode active material
- a negative electrode including a negative electrode active material a nonaqueous electrolyte including a nonaqueous solvent
- separator As an example of the non-aqueous electrolyte secondary battery, there is a structure in which an electrode body in which a positive electrode and a negative electrode are wound via a separator and a non-aqueous electrolyte are accommodated in an exterior body.
- the average pore diameter of the microporous membrane is 0.03 to 3 ⁇ m, more preferably 0.03 to 0.3 ⁇ m. If the average pore size of the microporous membrane is too large, the shutdown function due to melting of the microporous membrane at a high temperature tends to be insufficient. If the average pore size of the microporous membrane is too small, there is a possibility that the electrolyte decomposition products accompanying charge / discharge may clog the pores and inhibit the movement of lithium ions.
- the average thickness of the microporous membrane is 5 to 30 ⁇ m, more preferably 5 to 20 ⁇ m.
- the inorganic particle film formed on the microporous film preferably includes acicular inorganic particles having a major axis / minor axis ratio of 10 or more and 20 or less.
- acicular inorganic particles having a major axis / minor axis ratio of 10 or more and 20 or less are provided, the strength of the inorganic particle layer increases due to the entanglement of the inorganic particles, and the microporous membrane is thermally contracted to cause the microporous membrane and the inorganic particles to shrink.
- the major axis / minor axis ratio is preferably 10 to 20, more preferably 12 to 15.
- the short diameter of the needle-like inorganic particles is preferably 0.05 to 1 ⁇ m, more preferably 0.1 to 0.5 ⁇ m. If the minor axis is too large, the inorganic particle layer becomes thick and the energy density of the battery tends to decrease. If the minor axis is too small, inorganic particles may enter the pores of the microporous membrane and clog the pores.
- the mass of the binder with respect to the mass of the acicular inorganic particles is preferably 3 to 25% by mass, and more preferably 3 to 20% by mass.
- the content is less than 3% by mass, the adhesion between the inorganic particle layer and the microporous film is lowered, and the above-described effect of suppressing the thermal shrinkage of the separator tends to be reduced. It tends to close the hole.
- the average pore diameter of the microporous membrane is preferably smaller than the minor diameter of the acicular inorganic particles in the inorganic particle membrane.
- the short diameter of the inorganic particles is smaller than the pore diameter of the microporous membrane, the inorganic particles tend to enter the pores of the microporous membrane and easily close the pores.
- the thickness of the inorganic particle film is preferably 1 to 5 ⁇ m, more preferably 1 to 2 ⁇ m. If the thickness is too large, the energy density of the battery tends to decrease. If the thickness is too small, the strength of the inorganic particle layer becomes insufficient, and the above-described effect of suppressing the heat shrinkage of the microporous film decreases. Tend.
- the air permeability of the separator represented by the Gurley value is preferably 10 to 500 s / 100 mL.
- the Gurley value is more preferably 100 to 200 s / 100 mL.
- the Gurley value is a value of the number of seconds that 100 mL of air permeates through the membrane under a pressure of 0.879 g / mm 2 measured by a method according to JIS P 8117. If the Gurley value is too large, the ion permeability decreases, whereas if it is too small, the strength of the separator may decrease.
- the inorganic particle film may be formed on one side of the microporous film or on both sides.
- the positive electrode is preferably composed of a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector.
- a positive electrode current collector for example, a conductive thin film, particularly a metal foil or alloy foil that is stable in the potential range of the positive electrode such as aluminum, or a film having a metal surface layer such as aluminum is used.
- the positive electrode active material layer preferably contains a conductive material and a binder in addition to the positive electrode active material.
- the positive electrode active material includes an oxide including lithium and a metal element M, and the metal element M includes at least one selected from the group including cobalt and nickel.
- Preferred is a lithium-containing transition metal oxide.
- the lithium-containing transition metal oxide may contain non-transition metal elements such as Mg and Al. Specific examples include lithium-containing transition metal oxides such as lithium cobaltate, Ni—Co—Mn, Ni—Mn—Al, and Ni—Co—Al. These positive electrode active materials may be used alone or in combination of two or more.
- the negative electrode preferably includes a negative electrode current collector and a negative electrode mixture layer formed on the negative electrode current collector.
- a negative electrode current collector for example, a conductive thin film, particularly a metal foil or alloy foil that is stable in the potential range of the negative electrode such as copper, or a film having a metal surface layer such as copper is used.
- the negative electrode mixture layer preferably contains a binder in addition to the negative electrode active material and carboxymethylcellulose ammonium salt (CMC ammonium salt).
- CMC ammonium salt carboxymethylcellulose ammonium salt
- SBR styrene-butadiene rubber
- polyimide polyimide
- Non-aqueous electrolyte examples include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , and lower aliphatic carboxylic acid.
- Lithium, LiCl, LiBr, LiI, chloroborane lithium, borates, imide salts, and the like can be used.
- LiPF 6 is preferably used from the viewpoint of ion conductivity and electrochemical stability.
- One electrolyte salt may be used alone, or two or more electrolyte salts may be used in combination. These electrolyte salts are preferably contained at a ratio of 0.8 to 1.5 mol with respect to 1 L of the nonaqueous electrolyte.
- non-aqueous electrolyte solvent for example, a cyclic carbonate, a chain carbonate, a cyclic carboxylic acid ester or the like is used.
- cyclic carbonate examples include propylene carbonate (PC), ethylene carbonate (EC), and fluoroethylene carbonate (FEC).
- chain carbonate examples include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC).
- examples of the cyclic carboxylic acid ester include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
- examples of the chain carboxylic acid ester examples include methyl propionate (MP) fluoromethyl propionate (FMP).
- a non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
- acicular titanium oxide major axis: 1.68 ⁇ m, minor axis: 0.13 ⁇ m, aspect ratio 12.9
- carboxymethyl cellulose carboxymethyl cellulose
- styrene-butadiene rubber have a mass ratio of 100: 1.
- water as a dispersion medium was added so that titanium oxide was 15% by mass to prepare a slurry.
- the prepared slurry was coated on the surface of a polyethylene microporous film (film thickness: 16 ⁇ m, Gurley value: 156 s / 100 mL, pore size: 0.06 ⁇ m) by a gravure method, and water was dried and removed.
- Separator A1 was produced in which an inorganic particle film containing acicular titanium oxide was formed on one side of the microporous film. The thickness of the inorganic particle film was set to 2 ⁇ m.
- Separator heat shrinkage inhibition rate (melting area of separator R1 ⁇ melting area of each separator) / melting area of separator R1 ⁇ 100 (%) (1)
- the Gurley values of the separators A1 to A3 are smaller than those of the separators B1 to B2, and it can be seen that the separators A1 to A3 are separators with high ion permeability. This is because a porous inorganic particle film with more voids was formed by entanglement of the needle-like inorganic particles, and therefore the increase in the Gurley value due to the formation of the inorganic particle film was suppressed more than B1 and B2. It is guessed.
- the inorganic particle film provided with acicular particles needs to be formed on the microporous film so as to be adhered.
- the effect of suppressing the thermal shrinkage of the separator described above is exhibited only when the base material on which the inorganic particle film including needle-like particles is formed is a microporous film.
- the nonwoven fabric does not thermally shrink even at a high temperature of 300 ° C. or higher.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Cell Separators (AREA)
Abstract
Provided is a separator for non-aqueous electrolyte secondary batteries, having excellent thermal shrinkage resistance. Provided is a separator for non-aqueous electrolyte secondary batteries comprising a porous film and a heat-resistant porous film formed upon said porous film. An inorganic particle film comprises needle-shaped inorganic particles and a binder. The major diameter/minor diameter ratio for the needle-shaped inorganic particles is 10-20. Ideally, the minor diameter of the needle-shaped inorganic particles is 0.05-1 µm. Ideally, the average pore diameter of the finely porous film is 0.03-0.3 µm.
Description
本発明は、非水電解質二次電池用セパレータに関する。
The present invention relates to a separator for a non-aqueous electrolyte secondary battery.
非水電解質二次電池が高温に晒された場合の安全性を高めるために、セパレータとして、無機粒子を含む耐熱層を備えるセパレータが提案されている。
In order to enhance the safety when the nonaqueous electrolyte secondary battery is exposed to a high temperature, a separator having a heat-resistant layer containing inorganic particles has been proposed as a separator.
下記特許文献1においては、耐熱層に板状の無機粒子を用い、セパレータの熱収縮を抑制することが提案されている。
In the following Patent Document 1, it is proposed to use plate-like inorganic particles for the heat-resistant layer to suppress the thermal contraction of the separator.
特許文献1においては、150℃におけるセパレータの熱収縮率について検討されているが、さらに高温となった場合には、セパレータの熱収縮を抑制できなくなるという課題があった。
In Patent Document 1, the thermal contraction rate of the separator at 150 ° C. has been studied. However, when the temperature becomes higher, there is a problem that the thermal contraction of the separator cannot be suppressed.
上記課題を解決すべく、本発明に係る非水電解質二次電池用セパレータは、微多孔膜と、前記微多孔膜上に形成された無機粒子膜とを備え、前記無機粒子膜は、針状の無機粒子と、結着剤とを備え、前記針状の無機粒子の長径/短径比は12以上20以下である、ことを特徴とする。
In order to solve the above problems, a separator for a non-aqueous electrolyte secondary battery according to the present invention includes a microporous film and an inorganic particle film formed on the microporous film, and the inorganic particle film has a needle shape. The needle-like inorganic particles have a major axis / minor axis ratio of 12 or more and 20 or less.
本発明の非水電解質二次電池用セパレータを用いた非水電解質二次電池は、無機粒子膜の強度が大きくなるので、高温でのセパレータの熱収縮を抑制できる。
The non-aqueous electrolyte secondary battery using the non-aqueous electrolyte secondary battery separator of the present invention can suppress the thermal contraction of the separator at a high temperature because the strength of the inorganic particle film is increased.
以下、本発明の実施形態について詳細に説明する。
本発明の実施形態の一例である非水電解質二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、非水溶媒を含む非水電解質と、セパレータと、を備える。非水電解質二次電池の一例としては、正極及び負極がセパレータを介して巻回されてなる電極体と非水電解質とが外装体に収容された構造が挙げられる。 Hereinafter, embodiments of the present invention will be described in detail.
A nonaqueous electrolyte secondary battery which is an example of an embodiment of the present invention includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a nonaqueous electrolyte including a nonaqueous solvent, and a separator. As an example of the non-aqueous electrolyte secondary battery, there is a structure in which an electrode body in which a positive electrode and a negative electrode are wound via a separator and a non-aqueous electrolyte are accommodated in an exterior body.
本発明の実施形態の一例である非水電解質二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、非水溶媒を含む非水電解質と、セパレータと、を備える。非水電解質二次電池の一例としては、正極及び負極がセパレータを介して巻回されてなる電極体と非水電解質とが外装体に収容された構造が挙げられる。 Hereinafter, embodiments of the present invention will be described in detail.
A nonaqueous electrolyte secondary battery which is an example of an embodiment of the present invention includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a nonaqueous electrolyte including a nonaqueous solvent, and a separator. As an example of the non-aqueous electrolyte secondary battery, there is a structure in which an electrode body in which a positive electrode and a negative electrode are wound via a separator and a non-aqueous electrolyte are accommodated in an exterior body.
〔セパレータ〕
セパレータは、微多孔膜と、微多孔膜上に形成された無機粒子膜とを備える。微多孔膜は、シャットダウン機能を備えることが好ましい。 [Separator]
The separator includes a microporous film and an inorganic particle film formed on the microporous film. The microporous membrane preferably has a shutdown function.
セパレータは、微多孔膜と、微多孔膜上に形成された無機粒子膜とを備える。微多孔膜は、シャットダウン機能を備えることが好ましい。 [Separator]
The separator includes a microporous film and an inorganic particle film formed on the microporous film. The microporous membrane preferably has a shutdown function.
微多孔膜は、イオン透過性及び絶縁性を有する。微多孔膜の材質としては、ポリエチレン、ポリプロピレン、ポリエステル、ナイロン等が例示される。このうち、ポリエチレン、ポリプロピレン等のポリオレフィンを用いることが好適である。
The microporous membrane has ion permeability and insulating properties. Examples of the material of the microporous film include polyethylene, polypropylene, polyester, nylon, and the like. Among these, it is preferable to use polyolefins such as polyethylene and polypropylene.
微多孔膜の平均孔径は、0.03~3μm、さらに好ましくは、0.03~0.3μmである。微多孔膜の平均孔径が大きすぎると、高温時における微多孔膜の溶融によるシャットダウン機能が不十分となる傾向がある。微多孔膜の平均孔径が小さすぎると、充放電に伴う電解液の分解物等が孔に詰まり、リチウムイオンの移動を阻害するおそれがある。
The average pore diameter of the microporous membrane is 0.03 to 3 μm, more preferably 0.03 to 0.3 μm. If the average pore size of the microporous membrane is too large, the shutdown function due to melting of the microporous membrane at a high temperature tends to be insufficient. If the average pore size of the microporous membrane is too small, there is a possibility that the electrolyte decomposition products accompanying charge / discharge may clog the pores and inhibit the movement of lithium ions.
微多孔膜の平均厚みは、5~30μm、さらに好ましくは、5~20μmである。
The average thickness of the microporous membrane is 5 to 30 μm, more preferably 5 to 20 μm.
微多孔膜上に形成された無機粒子膜は、長径/短径比が10以上20以下である、針状の無機粒子を備えることが好ましい。長径/短径比が10以上20以下の針状の無機粒子を備えると、無機粒子同士の絡み合いにより、無機粒子層の強度が大きくなり、微多孔膜が熱収縮して微多孔膜と無機粒子膜との界面にかかる力が大きくなった場合に、セパレータの熱収縮を抑制することが可能である。長径/短径比は10~20が好ましく、より好ましくは12~15である。長径/短径比が小さくなりすぎると無機粒子同士の絡み合いが少なくなって無機粒子層の強度が小さくなる傾向がある。長径/短径比が大きくなりすぎると無機粒子同士を均一に絡み合わせることが難しく、不均一な無機粒子層になる傾向がある。
The inorganic particle film formed on the microporous film preferably includes acicular inorganic particles having a major axis / minor axis ratio of 10 or more and 20 or less. When acicular inorganic particles having a major axis / minor axis ratio of 10 or more and 20 or less are provided, the strength of the inorganic particle layer increases due to the entanglement of the inorganic particles, and the microporous membrane is thermally contracted to cause the microporous membrane and the inorganic particles to shrink. When the force applied to the interface with the film is increased, the thermal contraction of the separator can be suppressed. The major axis / minor axis ratio is preferably 10 to 20, more preferably 12 to 15. If the ratio of major axis / minor axis is too small, the entanglement between the inorganic particles tends to be small, and the strength of the inorganic particle layer tends to be small. If the major axis / minor axis ratio is too large, it is difficult to uniformly entangle the inorganic particles with each other, which tends to result in a non-uniform inorganic particle layer.
針状の無機粒子の長径は、1~20μmが好ましく、さらに好ましくは1~10μmである。長径が大きすぎると無機粒子層の柔軟性が下がり、セパレータを巻回した際や折り曲げた際などに無機粒子層がはがれやすくなる傾向がある。長径が小さすぎると、無機粒子層の強度が低下する傾向がある。
The major axis of the needle-like inorganic particles is preferably 1 to 20 μm, more preferably 1 to 10 μm. If the major axis is too large, the flexibility of the inorganic particle layer is lowered, and the inorganic particle layer tends to be peeled off when the separator is wound or folded. When the major axis is too small, the strength of the inorganic particle layer tends to decrease.
針状の無機粒子の短径は、0.05~1μmが好ましく、さらに好ましくは0.1~0.5μmである。短径が大きすぎると無機粒子層が厚くなり、電池のエネルギー密度低下する傾向がある。短径が小さすぎると、微多孔膜の孔に無機粒子が入り、孔が詰まるおそれがある。
The short diameter of the needle-like inorganic particles is preferably 0.05 to 1 μm, more preferably 0.1 to 0.5 μm. If the minor axis is too large, the inorganic particle layer becomes thick and the energy density of the battery tends to decrease. If the minor axis is too small, inorganic particles may enter the pores of the microporous membrane and clog the pores.
無機粒子膜は、針状の無機粒子の他に、結着剤を備えることが好ましい。結着剤としては、電気化学的安定で、かつ電解液に対しても安定で、無機粒子同士の結着や無機粒子と微多孔膜を結着させるものであれば、制限なく使用することができる。このうち、アクリル系樹脂や、スチレンブタジエンラバー、ポリフッ化ビニリデン、ポリビニルアルコール等を用いることが好ましい。
The inorganic particle film preferably includes a binder in addition to the needle-like inorganic particles. Any binder can be used without limitation as long as it is electrochemically stable and stable with respect to the electrolyte, and binds inorganic particles or binds inorganic particles to a microporous membrane. it can. Of these, acrylic resins, styrene butadiene rubber, polyvinylidene fluoride, polyvinyl alcohol, and the like are preferably used.
無機粒子膜において、針状の無機粒子の質量に対する結着剤の質量は、3~25質量%が好ましく、さらに好ましくは3~20質量%である。3質量%より小さいと無機粒子層と微多孔膜の密着性が低下し、上述した、セパレータの熱収縮抑制効果が低下する傾向があり、25質量%よりも大きいと結着剤が微多孔膜の孔を塞ぎやすくなる傾向がある。
In the inorganic particle film, the mass of the binder with respect to the mass of the acicular inorganic particles is preferably 3 to 25% by mass, and more preferably 3 to 20% by mass. When the content is less than 3% by mass, the adhesion between the inorganic particle layer and the microporous film is lowered, and the above-described effect of suppressing the thermal shrinkage of the separator tends to be reduced. It tends to close the hole.
無機粒子膜は、針状の無機粒子の他に、球状または板状の無機粒子を備えていても良い。無機粒子膜に含まれる無機粒子全体のうち、針状の無機粒子は、50~100質量%であることが好ましく、より好ましくは、80~100質量%である。針状の無機粒子の割合が少なすぎると、無機粒子膜の強度が不十分となり、上述した、セパレータの熱収縮を抑制する効果が得られなくなる傾向がある。
The inorganic particle film may include spherical or plate-like inorganic particles in addition to the needle-like inorganic particles. Of the total inorganic particles contained in the inorganic particle film, the acicular inorganic particles are preferably 50 to 100% by mass, more preferably 80 to 100% by mass. When the ratio of the acicular inorganic particles is too small, the strength of the inorganic particle film becomes insufficient, and the above-described effect of suppressing the thermal contraction of the separator tends to be not obtained.
針状の無機粒子の材質としては、ルチル型チタニア又はアルミナから選ばれる少なくとも1種であることが好ましい。針状の無機粒子は、AlやSi、Ti等の親水性を付与し得る化合物で表面処理されていても良い。
The material of the needle-like inorganic particles is preferably at least one selected from rutile type titania or alumina. The needle-like inorganic particles may be surface-treated with a compound capable of imparting hydrophilicity, such as Al, Si, and Ti.
微多孔膜の平均孔径は、無機粒子膜中の針状の無機粒子の短径よりも、小さいことが好ましい。無機粒子の短径が微多孔膜の孔径よりも小さいと、微多孔膜の孔に無機粒子が入り、孔を塞ぎやすくなる傾向がある。
The average pore diameter of the microporous membrane is preferably smaller than the minor diameter of the acicular inorganic particles in the inorganic particle membrane. When the short diameter of the inorganic particles is smaller than the pore diameter of the microporous membrane, the inorganic particles tend to enter the pores of the microporous membrane and easily close the pores.
無機粒子膜の厚みは、1~5μmが好ましく、さらに好ましくは1~2μmである。厚みが大きすぎると、電池のエネルギー密度が低下する傾向があり、厚みが小さすぎると、無機粒子層の強度が不十分になり、上述した、微多孔膜の熱収縮を抑制する効果が低下する傾向がある。
The thickness of the inorganic particle film is preferably 1 to 5 μm, more preferably 1 to 2 μm. If the thickness is too large, the energy density of the battery tends to decrease. If the thickness is too small, the strength of the inorganic particle layer becomes insufficient, and the above-described effect of suppressing the heat shrinkage of the microporous film decreases. Tend.
ガーレ値で表されるセパレータの透気度は、10~500s/100mLであることが好ましい。ガーレ値は、より好ましくは、100~200s/100mLである。ここで、ガーレ値とは、JIS P 8117に準拠した方法で測定される、0.879g/mm2の圧力下で100mLの空気が膜を透過する秒数の値をいう。ガーレ値が大きすぎると、イオン透過性が小さくなり、他方、小さすぎると、セパレータの強度が小さくなることがある。
The air permeability of the separator represented by the Gurley value is preferably 10 to 500 s / 100 mL. The Gurley value is more preferably 100 to 200 s / 100 mL. Here, the Gurley value is a value of the number of seconds that 100 mL of air permeates through the membrane under a pressure of 0.879 g / mm 2 measured by a method according to JIS P 8117. If the Gurley value is too large, the ion permeability decreases, whereas if it is too small, the strength of the separator may decrease.
無機粒子膜は、微多孔膜の片面に形成されていても、両面に形成されていても良い。
The inorganic particle film may be formed on one side of the microporous film or on both sides.
〔正極〕
正極は、正極集電体と、正極集電体上に形成された正極活物質層とで構成されることが好適である。正極集電体には、例えば、導電性を有する薄膜体、特にアルミニウムなどの正極の電位範囲で安定な金属箔や合金箔、アルミニウムなどの金属表層を有するフィルムが用いられる。正極活物質層は、正極活物質の他に、導電材及び結着剤を含むことが好ましい。 [Positive electrode]
The positive electrode is preferably composed of a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector. For the positive electrode current collector, for example, a conductive thin film, particularly a metal foil or alloy foil that is stable in the potential range of the positive electrode such as aluminum, or a film having a metal surface layer such as aluminum is used. The positive electrode active material layer preferably contains a conductive material and a binder in addition to the positive electrode active material.
正極は、正極集電体と、正極集電体上に形成された正極活物質層とで構成されることが好適である。正極集電体には、例えば、導電性を有する薄膜体、特にアルミニウムなどの正極の電位範囲で安定な金属箔や合金箔、アルミニウムなどの金属表層を有するフィルムが用いられる。正極活物質層は、正極活物質の他に、導電材及び結着剤を含むことが好ましい。 [Positive electrode]
The positive electrode is preferably composed of a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector. For the positive electrode current collector, for example, a conductive thin film, particularly a metal foil or alloy foil that is stable in the potential range of the positive electrode such as aluminum, or a film having a metal surface layer such as aluminum is used. The positive electrode active material layer preferably contains a conductive material and a binder in addition to the positive electrode active material.
正極活物質は、リチウムと、金属元素Mとを含む酸化物を含み、前記金属元素Mは、コバルト、ニッケルを含む群より選択される少なくとも一種を含む。好ましくはリチウム含有遷移金属酸化物である。リチウム含有遷移金属酸化物は、Mg、Al等の非遷移金属元素を含有するものであってもよい。具体例としては、コバルト酸リチウム、Ni-Co-Mn、Ni-Mn-Al、Ni-Co-Al等のリチウム含有遷移金属酸化物が挙げられる。正極活物質は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。
The positive electrode active material includes an oxide including lithium and a metal element M, and the metal element M includes at least one selected from the group including cobalt and nickel. Preferred is a lithium-containing transition metal oxide. The lithium-containing transition metal oxide may contain non-transition metal elements such as Mg and Al. Specific examples include lithium-containing transition metal oxides such as lithium cobaltate, Ni—Co—Mn, Ni—Mn—Al, and Ni—Co—Al. These positive electrode active materials may be used alone or in combination of two or more.
〔負極〕
負極は、負極集電体と、負極集電体上に形成された負極合剤層とを備えることが好適である。負極集電体には、例えば、導電性を有する薄膜体、特に銅などの負極の電位範囲で安定な金属箔や合金箔、銅などの金属表層を有するフィルムが用いられる。負極合剤層は、負極活物質及びカルボキシメチルセルロースアンモニウム塩(CMCアンモニウム塩)の他に、結着剤を含むことが好適である。結着剤としてはスチレン-ブタジエンゴム(SBR)やポリイミド等を用いることが好ましい。 [Negative electrode]
The negative electrode preferably includes a negative electrode current collector and a negative electrode mixture layer formed on the negative electrode current collector. For the negative electrode current collector, for example, a conductive thin film, particularly a metal foil or alloy foil that is stable in the potential range of the negative electrode such as copper, or a film having a metal surface layer such as copper is used. The negative electrode mixture layer preferably contains a binder in addition to the negative electrode active material and carboxymethylcellulose ammonium salt (CMC ammonium salt). As the binder, styrene-butadiene rubber (SBR), polyimide, or the like is preferably used.
負極は、負極集電体と、負極集電体上に形成された負極合剤層とを備えることが好適である。負極集電体には、例えば、導電性を有する薄膜体、特に銅などの負極の電位範囲で安定な金属箔や合金箔、銅などの金属表層を有するフィルムが用いられる。負極合剤層は、負極活物質及びカルボキシメチルセルロースアンモニウム塩(CMCアンモニウム塩)の他に、結着剤を含むことが好適である。結着剤としてはスチレン-ブタジエンゴム(SBR)やポリイミド等を用いることが好ましい。 [Negative electrode]
The negative electrode preferably includes a negative electrode current collector and a negative electrode mixture layer formed on the negative electrode current collector. For the negative electrode current collector, for example, a conductive thin film, particularly a metal foil or alloy foil that is stable in the potential range of the negative electrode such as copper, or a film having a metal surface layer such as copper is used. The negative electrode mixture layer preferably contains a binder in addition to the negative electrode active material and carboxymethylcellulose ammonium salt (CMC ammonium salt). As the binder, styrene-butadiene rubber (SBR), polyimide, or the like is preferably used.
〔非水電解質〕
非水電解質の電解質塩としては、例えばLiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiCF3CO2、LiAsF6、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、クロロボランリチウム、ホウ酸塩類、イミド塩類などを用いることができる。この中でも、イオン伝導性と電気化学的安定性の観点から、LiPF6を用いることが好ましい。電解質塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これら電解質塩は、非水電解質1Lに対し0.8~1.5molの割合で含まれていることが好ましい。 [Non-aqueous electrolyte]
Examples of the electrolyte salt of the non-aqueous electrolyte include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , and lower aliphatic carboxylic acid. Lithium, LiCl, LiBr, LiI, chloroborane lithium, borates, imide salts, and the like can be used. Among these, LiPF 6 is preferably used from the viewpoint of ion conductivity and electrochemical stability. One electrolyte salt may be used alone, or two or more electrolyte salts may be used in combination. These electrolyte salts are preferably contained at a ratio of 0.8 to 1.5 mol with respect to 1 L of the nonaqueous electrolyte.
非水電解質の電解質塩としては、例えばLiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiCF3CO2、LiAsF6、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、クロロボランリチウム、ホウ酸塩類、イミド塩類などを用いることができる。この中でも、イオン伝導性と電気化学的安定性の観点から、LiPF6を用いることが好ましい。電解質塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これら電解質塩は、非水電解質1Lに対し0.8~1.5molの割合で含まれていることが好ましい。 [Non-aqueous electrolyte]
Examples of the electrolyte salt of the non-aqueous electrolyte include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , and lower aliphatic carboxylic acid. Lithium, LiCl, LiBr, LiI, chloroborane lithium, borates, imide salts, and the like can be used. Among these, LiPF 6 is preferably used from the viewpoint of ion conductivity and electrochemical stability. One electrolyte salt may be used alone, or two or more electrolyte salts may be used in combination. These electrolyte salts are preferably contained at a ratio of 0.8 to 1.5 mol with respect to 1 L of the nonaqueous electrolyte.
非水電解質の溶媒としては、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステルなどが用いられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、フルオロエチレンカーボネート(FEC)、などが挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などが挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)などが挙げられる。鎖状カルボン酸エステルとしては、メチルプロピオネート(MP)フルオロメチルプロピオネート(FMP)が挙げられる。非水溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
As the non-aqueous electrolyte solvent, for example, a cyclic carbonate, a chain carbonate, a cyclic carboxylic acid ester or the like is used. Examples of the cyclic carbonate include propylene carbonate (PC), ethylene carbonate (EC), and fluoroethylene carbonate (FEC). Examples of the chain carbonate include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC). Examples of the cyclic carboxylic acid ester include γ-butyrolactone (GBL) and γ-valerolactone (GVL). Examples of the chain carboxylic acid ester include methyl propionate (MP) fluoromethyl propionate (FMP). A non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
以下、実施例により本発明をさらに説明するが、本発明はこれらの実施例に限定されるものではない。
Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited to these examples.
<実施例1>
<実験1>
溶剤として水を用い、針状の酸化チタン(長径:1.68μm、短径:0.13μm、アスペクト比12.9)と、カルボキシメチルセルロースと、スチレンブタジエンゴムとを、質量比が100:1.5:20の割合になるように秤量、混合したのち、酸化チタンが15質量%となるようにして、分散媒としての水を添加してスラリーを作成した。作製したスラリーを、ポリエチレン製微多孔膜(膜厚:16μmm、ガーレ値:156s/100mL、空孔径:0.06μm)の表面上にグラビア方式で塗工し、水を乾燥、除去して、ポリエチレン製微多孔膜の片面に、針状の酸化チタンを含む無機粒子膜が形成された、セパレータA1を作製した。無機粒子膜の厚みは、2μmとなるようにした。 <Example 1>
<Experiment 1>
Using water as a solvent, acicular titanium oxide (major axis: 1.68 μm, minor axis: 0.13 μm, aspect ratio 12.9), carboxymethyl cellulose, and styrene-butadiene rubber have a mass ratio of 100: 1. After weighing and mixing so as to have a ratio of 5:20, water as a dispersion medium was added so that titanium oxide was 15% by mass to prepare a slurry. The prepared slurry was coated on the surface of a polyethylene microporous film (film thickness: 16 μm, Gurley value: 156 s / 100 mL, pore size: 0.06 μm) by a gravure method, and water was dried and removed. Separator A1 was produced in which an inorganic particle film containing acicular titanium oxide was formed on one side of the microporous film. The thickness of the inorganic particle film was set to 2 μm.
<実験1>
溶剤として水を用い、針状の酸化チタン(長径:1.68μm、短径:0.13μm、アスペクト比12.9)と、カルボキシメチルセルロースと、スチレンブタジエンゴムとを、質量比が100:1.5:20の割合になるように秤量、混合したのち、酸化チタンが15質量%となるようにして、分散媒としての水を添加してスラリーを作成した。作製したスラリーを、ポリエチレン製微多孔膜(膜厚:16μmm、ガーレ値:156s/100mL、空孔径:0.06μm)の表面上にグラビア方式で塗工し、水を乾燥、除去して、ポリエチレン製微多孔膜の片面に、針状の酸化チタンを含む無機粒子膜が形成された、セパレータA1を作製した。無機粒子膜の厚みは、2μmとなるようにした。 <Example 1>
<Experiment 1>
Using water as a solvent, acicular titanium oxide (major axis: 1.68 μm, minor axis: 0.13 μm, aspect ratio 12.9), carboxymethyl cellulose, and styrene-butadiene rubber have a mass ratio of 100: 1. After weighing and mixing so as to have a ratio of 5:20, water as a dispersion medium was added so that titanium oxide was 15% by mass to prepare a slurry. The prepared slurry was coated on the surface of a polyethylene microporous film (film thickness: 16 μm, Gurley value: 156 s / 100 mL, pore size: 0.06 μm) by a gravure method, and water was dried and removed. Separator A1 was produced in which an inorganic particle film containing acicular titanium oxide was formed on one side of the microporous film. The thickness of the inorganic particle film was set to 2 μm.
<実験2>
針状の酸化チタン(長径:1.68μm、短径:0.13μm)に代えて、針状の酸化チタン(長径:2.86μm、短径:0.21μm、アスペクト比13.6)を用いたこと以外は、実験1と同様にしてセパレータA2を作製した。 <Experiment 2>
Instead of acicular titanium oxide (major axis: 1.68 μm, minor axis: 0.13 μm), acicular titanium oxide (major axis: 2.86 μm, minor axis: 0.21 μm, aspect ratio 13.6) is used. A separator A2 was produced in the same manner as in Experiment 1 except that the above was performed.
針状の酸化チタン(長径:1.68μm、短径:0.13μm)に代えて、針状の酸化チタン(長径:2.86μm、短径:0.21μm、アスペクト比13.6)を用いたこと以外は、実験1と同様にしてセパレータA2を作製した。 <Experiment 2>
Instead of acicular titanium oxide (major axis: 1.68 μm, minor axis: 0.13 μm), acicular titanium oxide (major axis: 2.86 μm, minor axis: 0.21 μm, aspect ratio 13.6) is used. A separator A2 was produced in the same manner as in Experiment 1 except that the above was performed.
<実験3>
針状の酸化チタン(長径:1.68μm、短径:0.13μm)に代えて、針状の酸化チタン(長径:5.15μm、短径:0.27μm、アスペクト比19.1)を用いたこと以外は、実験1と同様にしてセパレータA3を作製した。 <Experiment 3>
Instead of acicular titanium oxide (major axis: 1.68 μm, minor axis: 0.13 μm), acicular titanium oxide (major axis: 5.15 μm, minor axis: 0.27 μm, aspect ratio 19.1) is used. A separator A3 was produced in the same manner as in Experiment 1 except that it was not.
針状の酸化チタン(長径:1.68μm、短径:0.13μm)に代えて、針状の酸化チタン(長径:5.15μm、短径:0.27μm、アスペクト比19.1)を用いたこと以外は、実験1と同様にしてセパレータA3を作製した。 <Experiment 3>
Instead of acicular titanium oxide (major axis: 1.68 μm, minor axis: 0.13 μm), acicular titanium oxide (major axis: 5.15 μm, minor axis: 0.27 μm, aspect ratio 19.1) is used. A separator A3 was produced in the same manner as in Experiment 1 except that it was not.
<実験4>
針状の酸化チタン(長径:1.68μm、短径:0.13μm)に代えて、球状の酸化チタン(粒径:0.25μm)を用いたこと以外は、実験1と同様にしてセパレータB1を作製した。 <Experiment 4>
Separator B1 was performed in the same manner as in Experiment 1 except that spherical titanium oxide (particle size: 0.25 μm) was used instead of needle-like titanium oxide (major axis: 1.68 μm, minor axis: 0.13 μm). Was made.
針状の酸化チタン(長径:1.68μm、短径:0.13μm)に代えて、球状の酸化チタン(粒径:0.25μm)を用いたこと以外は、実験1と同様にしてセパレータB1を作製した。 <Experiment 4>
Separator B1 was performed in the same manner as in Experiment 1 except that spherical titanium oxide (particle size: 0.25 μm) was used instead of needle-like titanium oxide (major axis: 1.68 μm, minor axis: 0.13 μm). Was made.
<実験5>
針状の酸化チタン(長径:1.68μm、短径:0.13μm)に代えて、板状のベーマイト(粒径:0.8~1.0μm、アスペクト比:10)を用いたこと以外は、実験1と同様にしてセパレータB2を作製した。 <Experiment 5>
Other than using plate-like boehmite (particle diameter: 0.8 to 1.0 μm, aspect ratio: 10) instead of needle-like titanium oxide (major axis: 1.68 μm, minor axis: 0.13 μm) In the same manner as in Experiment 1, a separator B2 was produced.
針状の酸化チタン(長径:1.68μm、短径:0.13μm)に代えて、板状のベーマイト(粒径:0.8~1.0μm、アスペクト比:10)を用いたこと以外は、実験1と同様にしてセパレータB2を作製した。 <Experiment 5>
Other than using plate-like boehmite (particle diameter: 0.8 to 1.0 μm, aspect ratio: 10) instead of needle-like titanium oxide (major axis: 1.68 μm, minor axis: 0.13 μm) In the same manner as in Experiment 1, a separator B2 was produced.
<実験6>
無機粒子膜を形成していない、ポリエチレン製微多孔膜(膜厚:16μmm、ガーレ値:156s/100mL、空孔径:0.06μm)をセパレータR1とした。 <Experiment 6>
A polyethylene microporous film (film thickness: 16 μm, Gurley value: 156 s / 100 mL, pore diameter: 0.06 μm) without forming an inorganic particle film was used as the separator R1.
無機粒子膜を形成していない、ポリエチレン製微多孔膜(膜厚:16μmm、ガーレ値:156s/100mL、空孔径:0.06μm)をセパレータR1とした。 <Experiment 6>
A polyethylene microporous film (film thickness: 16 μm, Gurley value: 156 s / 100 mL, pore diameter: 0.06 μm) without forming an inorganic particle film was used as the separator R1.
(実験)
上記の各セパレータについて、以下の条件で熱収縮抑制率及びガーレ値について調べたので、その結果を表1に示す。 (Experiment)
About each said separator, since it investigated about the thermal contraction suppression rate and the Gurley value on the following conditions, the result is shown in Table 1.
上記の各セパレータについて、以下の条件で熱収縮抑制率及びガーレ値について調べたので、その結果を表1に示す。 (Experiment)
About each said separator, since it investigated about the thermal contraction suppression rate and the Gurley value on the following conditions, the result is shown in Table 1.
〔溶融面積の測定〕
セパレータを直径2cmの孔の空いた板で挟み、セパレータの中央部に、半田ごて(白光株式会社製HAKKO937)の先端を2mm突き刺し、200℃になるまで加熱して、200℃で5秒間保持した。半田ごてをセパレータから抜き、セパレータの溶融面積を測定した。300℃及び400℃でのセパレータの溶融面積についても、同様に測定した。 [Measurement of melting area]
The separator is sandwiched between 2 cm diameter holes, the tip of a soldering iron (HAKKO937 manufactured by Hakuko Co., Ltd.) is inserted 2 mm into the center of the separator, heated to 200 ° C, and held at 200 ° C for 5 seconds. did. The soldering iron was removed from the separator, and the melting area of the separator was measured. The melting area of the separator at 300 ° C. and 400 ° C. was also measured in the same manner.
セパレータを直径2cmの孔の空いた板で挟み、セパレータの中央部に、半田ごて(白光株式会社製HAKKO937)の先端を2mm突き刺し、200℃になるまで加熱して、200℃で5秒間保持した。半田ごてをセパレータから抜き、セパレータの溶融面積を測定した。300℃及び400℃でのセパレータの溶融面積についても、同様に測定した。 [Measurement of melting area]
The separator is sandwiched between 2 cm diameter holes, the tip of a soldering iron (HAKKO937 manufactured by Hakuko Co., Ltd.) is inserted 2 mm into the center of the separator, heated to 200 ° C, and held at 200 ° C for 5 seconds. did. The soldering iron was removed from the separator, and the melting area of the separator was measured. The melting area of the separator at 300 ° C. and 400 ° C. was also measured in the same manner.
〔セパレータ熱収縮抑制率の算出〕
以下の式(1)に基づき、セパレータの熱収縮抑制率を算出した。
セパレータ熱収縮抑制率
=(セパレータR1の溶融面積-各セパレータの溶融面積)/セパレータR1の溶融面積×100(%)・・・(1) (Calculation of separator thermal shrinkage inhibition rate)
Based on the following formula (1), the thermal shrinkage suppression rate of the separator was calculated.
Separator heat shrinkage inhibition rate = (melting area of separator R1−melting area of each separator) / melting area of separator R1 × 100 (%) (1)
以下の式(1)に基づき、セパレータの熱収縮抑制率を算出した。
セパレータ熱収縮抑制率
=(セパレータR1の溶融面積-各セパレータの溶融面積)/セパレータR1の溶融面積×100(%)・・・(1) (Calculation of separator thermal shrinkage inhibition rate)
Based on the following formula (1), the thermal shrinkage suppression rate of the separator was calculated.
Separator heat shrinkage inhibition rate = (melting area of separator R1−melting area of each separator) / melting area of separator R1 × 100 (%) (1)
〔ガーレ値の測定〕
東洋精機製GURLEY TYPE DENSOMETERを用いてセパレータのガーレ値を測定した。 [Measurement of Gurley value]
The Gurley value of the separator was measured using GURLEY TYPE DENSOMETER manufactured by Toyo Seiki.
東洋精機製GURLEY TYPE DENSOMETERを用いてセパレータのガーレ値を測定した。 [Measurement of Gurley value]
The Gurley value of the separator was measured using GURLEY TYPE DENSOMETER manufactured by Toyo Seiki.
表1から明らかなように、300℃以上においては、セパレータA1~A3の熱収縮抑制率が高い一方、セパレータB1~B2の熱収縮抑制率は低かった。これは、以下の理由によると考えられる。
As is clear from Table 1, at 300 ° C. or higher, the thermal shrinkage inhibition rate of the separators A1 to A3 was high, while the thermal shrinkage inhibition rate of the separators B1 to B2 was low. This is considered to be due to the following reason.
300℃以上の高温においては、微多孔膜の熱収縮が大きくなって、微多孔膜と無機粒子膜との界面にかかる力が、200℃以下の場合と比較して、非常に大きくなったと考えられる。無機粒子膜に板状や球状の無機粒子を用いたセパレータB1~B2においては、無機粒子同士の絡み合いが少なく、無機粒子層の強度が小さいために、微多孔膜の収縮に伴うセパレータの熱収縮を十分に抑制することができなかったと推測される。
At a high temperature of 300 ° C. or higher, the thermal shrinkage of the microporous membrane is increased, and the force applied to the interface between the microporous membrane and the inorganic particle film is considered to be very large compared to the case of 200 ° C. or lower. It is done. In separators B1 and B2, which use plate-like or spherical inorganic particles for the inorganic particle film, there is little entanglement between the inorganic particles and the strength of the inorganic particle layer is small. It is presumed that this could not be sufficiently suppressed.
無機粒子膜に針状の無機粒子を用いたセパレータA1~A3においては、無機粒子同士の絡み合いにより、無機粒子層の強度が大きくなり、セパレータの熱収縮を抑制することができたと考えられる。
In the separators A1 to A3 using needle-like inorganic particles for the inorganic particle film, it is considered that the strength of the inorganic particle layer is increased due to the entanglement of the inorganic particles, and the thermal contraction of the separator can be suppressed.
200℃においては、無機粒子の形状による熱収縮抑制率には大差がみられない。これは、200℃以下においては、微多孔膜の熱収縮が少なく、微多孔膜と無機粒子層の界面にかかる力が小さいため、無機粒子膜の強度が、200℃以下におけるセパレータの熱収縮率に影響を与えていないためと考えられる。
At 200 ° C., there is no significant difference in the heat shrinkage inhibition rate due to the shape of the inorganic particles. This is because the heat shrinkage of the microporous membrane is small at 200 ° C. or less, and the force applied to the interface between the microporous membrane and the inorganic particle layer is small. This is thought to be because it does not affect
なお、セパレータA1~A3のガーレ値は、セパレータB1~B2と比較して小さくなっており、セパレータA1~A3はイオン透過性の高いセパレータであることがわかる。これは、針状の無機粒子が絡み合うことにより、より空隙の多い多孔質な無機粒子膜が形成されたので、無機粒子膜を形成することによるガーレ値の上昇がB1~B2よりも抑制されたためと推測される。
Note that the Gurley values of the separators A1 to A3 are smaller than those of the separators B1 to B2, and it can be seen that the separators A1 to A3 are separators with high ion permeability. This is because a porous inorganic particle film with more voids was formed by entanglement of the needle-like inorganic particles, and therefore the increase in the Gurley value due to the formation of the inorganic particle film was suppressed more than B1 and B2. It is guessed.
上記の結果及び考察から、針状粒子を備える無機粒子膜は、微多孔膜上に、接着されるように形成されている必要があることが推測される。
From the above results and discussion, it is presumed that the inorganic particle film provided with acicular particles needs to be formed on the microporous film so as to be adhered.
また、針状粒子を備える無機粒子膜が形成される基材が、微多孔膜である場合にのみ、上記の、セパレータの熱収縮抑制効果が発現すると考えられる。例えば、不織布上に針状粒子を備える無機粒子膜が形成されているセパレータでは、300℃以上の高温においても不織布は熱収縮しないと考えられる。
Further, it is considered that the effect of suppressing the thermal shrinkage of the separator described above is exhibited only when the base material on which the inorganic particle film including needle-like particles is formed is a microporous film. For example, in a separator in which an inorganic particle film having needle-like particles is formed on a nonwoven fabric, it is considered that the nonwoven fabric does not thermally shrink even at a high temperature of 300 ° C. or higher.
Claims (3)
- 非水電解質二次電池用セパレータであって、
微多孔膜と、前記微多孔膜上に形成された無機粒子膜とを備え、
前記無機粒子膜は、針状の無機粒子と、結着剤とを備え、
前記針状の無機粒子の長径/短径比は10以上20以下である、非水電解質二次電池用セパレータ。 A separator for a non-aqueous electrolyte secondary battery,
Comprising a microporous membrane and an inorganic particle membrane formed on the microporous membrane,
The inorganic particle film includes needle-like inorganic particles and a binder,
A separator for a non-aqueous electrolyte secondary battery, wherein the needle-like inorganic particles have a major axis / minor axis ratio of 10 or more and 20 or less. - 前記針状の無機粒子の短径は0.05μm以上1μm以下である、請求項1に記載の非水電解質二次電池用セパレータ。 2. The separator for a non-aqueous electrolyte secondary battery according to claim 1, wherein the acicular inorganic particles have a minor axis of 0.05 μm or more and 1 μm or less.
- 前記微多孔膜の平均孔径は、0.03μm以上0.3μm以下である、請求項1または請求項2に記載の非水電解質二次電池用セパレータ。 The separator for a nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein an average pore diameter of the microporous membrane is 0.03 µm or more and 0.3 µm or less.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-027176 | 2014-02-17 | ||
JP2014027176 | 2014-02-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015122164A1 true WO2015122164A1 (en) | 2015-08-20 |
Family
ID=53799915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/000539 WO2015122164A1 (en) | 2014-02-17 | 2015-02-06 | Separator for non-aqueous electrolyte secondary batteries |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015122164A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4210160A3 (en) * | 2022-01-06 | 2023-07-26 | SK Innovation Co., Ltd. | Separator for a secondary battery and method for producing the same |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001019906A1 (en) * | 1999-09-13 | 2001-03-22 | Teijin Limited | Polymethaphenylene isophthalamide based polymer porous film, method for producing the same and separator for cell |
JP2008234853A (en) * | 2007-03-16 | 2008-10-02 | Matsushita Electric Ind Co Ltd | Separator for nonaqueous secondary battery, and nonaqueous secondary battery having the same |
WO2008149986A1 (en) * | 2007-06-06 | 2008-12-11 | Asahi Kasei E-Materials Corporation | Multilayer porous film |
JP2009129668A (en) * | 2007-11-22 | 2009-06-11 | Asahi Kasei Chemicals Corp | Multilayer porous membrane |
JP2010202987A (en) * | 2009-02-27 | 2010-09-16 | Asahi Kasei Corp | Composite sheet material and method for producing the same |
JP2011023162A (en) * | 2009-07-14 | 2011-02-03 | Teijin Ltd | Separator for nonaqueous secondary battery |
JP2011154937A (en) * | 2010-01-28 | 2011-08-11 | Mitsubishi Paper Mills Ltd | Porous separator film |
JP2012003938A (en) * | 2010-06-17 | 2012-01-05 | Hitachi Maxell Ltd | Separator for cell and lithium secondary cell |
WO2014148036A1 (en) * | 2013-03-19 | 2014-09-25 | ソニー株式会社 | Separator, battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system |
-
2015
- 2015-02-06 WO PCT/JP2015/000539 patent/WO2015122164A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001019906A1 (en) * | 1999-09-13 | 2001-03-22 | Teijin Limited | Polymethaphenylene isophthalamide based polymer porous film, method for producing the same and separator for cell |
JP2008234853A (en) * | 2007-03-16 | 2008-10-02 | Matsushita Electric Ind Co Ltd | Separator for nonaqueous secondary battery, and nonaqueous secondary battery having the same |
WO2008149986A1 (en) * | 2007-06-06 | 2008-12-11 | Asahi Kasei E-Materials Corporation | Multilayer porous film |
JP2009129668A (en) * | 2007-11-22 | 2009-06-11 | Asahi Kasei Chemicals Corp | Multilayer porous membrane |
JP2010202987A (en) * | 2009-02-27 | 2010-09-16 | Asahi Kasei Corp | Composite sheet material and method for producing the same |
JP2011023162A (en) * | 2009-07-14 | 2011-02-03 | Teijin Ltd | Separator for nonaqueous secondary battery |
JP2011154937A (en) * | 2010-01-28 | 2011-08-11 | Mitsubishi Paper Mills Ltd | Porous separator film |
JP2012003938A (en) * | 2010-06-17 | 2012-01-05 | Hitachi Maxell Ltd | Separator for cell and lithium secondary cell |
WO2014148036A1 (en) * | 2013-03-19 | 2014-09-25 | ソニー株式会社 | Separator, battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4210160A3 (en) * | 2022-01-06 | 2023-07-26 | SK Innovation Co., Ltd. | Separator for a secondary battery and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5219387B2 (en) | Nonaqueous electrolyte secondary battery | |
JP6469450B2 (en) | Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
WO2010131401A1 (en) | Electrode for lithium ion secondary battery, and lithium ion secondary battery | |
US20130101888A1 (en) | Battery separator and battery | |
CN109728244B (en) | Positive pole piece and lithium ion battery containing same | |
JP2014199714A (en) | Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery | |
JPWO2010104127A1 (en) | Battery separator and non-aqueous electrolyte battery using the same | |
JP4529436B2 (en) | Electrode plate for lithium ion secondary battery and lithium ion secondary battery | |
JP6601065B2 (en) | Secondary battery | |
JP2007227357A (en) | Lithium secondary battery | |
JP5930387B2 (en) | Electricity storage element | |
KR20150015918A (en) | Separator for secondary battery and secondary battery comprising the same | |
WO2017149927A1 (en) | Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery | |
JP6750196B2 (en) | Non-aqueous lithium battery and method of using the same | |
JP4992203B2 (en) | Lithium ion secondary battery | |
JP2010287472A (en) | Nonaqueous electrolyte secondary battery | |
JP2007109633A (en) | Nonaqueous electrolyte secondary battery | |
JP6808948B2 (en) | Negative electrode for non-aqueous lithium-ion secondary battery, its manufacturing method and non-aqueous lithium-ion secondary battery | |
JP2023529141A (en) | Lithium secondary battery separator and lithium secondary battery having the same | |
WO2017204077A1 (en) | Electrode for batteries, battery provided with said electrode, and method for producing said electrode | |
JP2019145306A (en) | Nonaqueous electrolyte secondary battery | |
WO2013038702A1 (en) | Nonaqueous electrolyte secondary cell | |
JP2014165038A (en) | Electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same | |
US10903467B2 (en) | Separator for rechargeable lithium battery and rechargeable lithium battery including same | |
JP2014120214A (en) | Nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15749463 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15749463 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |