WO2015194391A1 - 検出装置および方法、並びにプログラム - Google Patents
検出装置および方法、並びにプログラム Download PDFInfo
- Publication number
- WO2015194391A1 WO2015194391A1 PCT/JP2015/066286 JP2015066286W WO2015194391A1 WO 2015194391 A1 WO2015194391 A1 WO 2015194391A1 JP 2015066286 W JP2015066286 W JP 2015066286W WO 2015194391 A1 WO2015194391 A1 WO 2015194391A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- state
- living body
- detection unit
- tear
- result
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14507—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/16—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
- A61B5/165—Evaluating the state of mind, e.g. depression, anxiety
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4824—Touch or pain perception evaluation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6814—Head
- A61B5/6821—Eye
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/25—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving enzymes not classifiable in groups C12Q1/26 - C12Q1/66
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/48—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/04—Contact lenses for the eyes
Definitions
- the present technology relates to a detection apparatus, method, and program, and more particularly, to a detection apparatus, method, and program that can detect a biological state with high accuracy.
- the present technology has been made in view of such a situation, and in particular, enables a user's biological state to be detected with high accuracy by a simple method.
- a detection device includes an analysis unit that analyzes a component of tears collected from a living body, and a detection unit that detects a state of the living body based on a result of the component analysis of tears.
- the detection unit may be configured to detect the state of the living body determined by the type of tear based on the result of the tear component analysis.
- the state of the living body can include an emotional state resulting from the emotion of the living body.
- Whether the state transitions to the predetermined emotional state can be specified.
- the detection unit is calculated based on an analysis result of a substance secreted when the state of the living body is about to transition to the first emotional state obtained as a result of the tear component analysis ,
- the degree of the transition to the first emotional state, and the state of the living body obtained as a result of the tear component analysis is secreted when attempting to transition to the second emotional state.
- the state of the living body is the first emotional state or the second emotional state based on the degree of the transition to the second emotional state calculated based on the analysis result of the substance. It can be made to specify in which state of emotional state it changes.
- the detection unit Based on the degree of transition to the first emotional state and the degree of transition to the second emotional state, the detection unit is estimated to transition from now on It is possible to further calculate a prior predicted emotion level indicating the degree of the above.
- the detection unit may be configured to predict a change in the prior predicted emotion level at a time later than the current time based on the prior predicted emotion level.
- the detection unit obtains the state of the living body based on an analysis result of a substance secreted when the biological state is a predetermined emotional state obtained as a result of the tear component analysis. Can be specified.
- the first emotional property calculated based on the analysis result of a substance secreted when the first emotional state is obtained as a result of the tear component analysis.
- the second emotion calculated based on the analysis result of the substance secreted in the second emotional state, obtained as a result of the component analysis of the tear Based on the degree of sexual status, it is possible to specify whether the tear state is the first emotional state or the second emotional state.
- the detection unit further calculates an emotion level indicating the degree of emotional state of the living body based on the degree of likelihood of the first emotional state and the degree of likelihood of the second emotional state You can make it.
- the detection unit can be made to predict fluctuations in the emotion level at a time later than the current time based on the emotion level.
- the state of the living body can include a state caused by stimulation to the living body.
- the detection unit is obtained based on the analysis result of the tear component analysis. It is possible to specify whether the state is a state caused by a stimulus to the living body or an emotional state caused by the emotion of the living body that is transitioned when a state in which the living body has pain continues. Can be.
- the detection unit has a value indicating a secretion amount of the substance based on an analysis result of the substance secreted when there is a stimulus to the living body or when the living body has pain becomes a predetermined threshold value or more. Based on the length of the period, it is possible to specify whether the state of the living body is a state caused by a stimulus to the living body or an emotional state caused by an emotion of the living body it can.
- the detection unit is configured to calculate a stimulation level or a pain level for the living body based on an analysis result of a substance secreted when the living body is stimulated or when the living body has pain. be able to.
- the detection unit may be configured to predict fluctuations in the stimulation level or the pain level at a time later than the current time based on the stimulation level or the pain level.
- the detection unit may be configured to specify the tear secretion level of the living body based on the analysis result of a specific substance obtained as a result of the tear component analysis.
- the detection device can be attached to and detached from the eyeball.
- the detection method includes a step of analyzing a component of a tear collected from a living body and detecting a state of the living body based on a result of the component analysis of the tear.
- a program according to one aspect of the present technology is a computer that performs processing including an analysis step of analyzing a component of tears collected from a living body, and a detection step of detecting the state of the living body based on a result of the component analysis of tears. To run.
- a component analysis of tears collected from a living body is performed, and the state of the living body is detected based on a result of the component analysis of tears.
- the detection device may be an independent device or a block that performs detection processing.
- the state of the living body can be easily detected with high accuracy.
- FIG. 11 is a diagram illustrating a configuration example of a general-purpose personal computer.
- This technique detects a person's emotion as living body information by detecting a tear of a person who is a subject and analyzing the detected tear.
- the first configuration example is a contact lens type, and a display device that collects tears and has a function of analyzing the collected tears specifies the biological state of the person based on the analyzed information on the tear components. And transmitted to a mobile terminal such as a smartphone.
- the collection of tears is performed by a contact lens type collection device, and then the collected tears are analyzed by an external analysis device. Is specified and transmitted to a mobile terminal such as a smartphone for display.
- a person H1 who is a subject is a contact lens type and has a function of collecting and analyzing tears.
- the display device identifies the biological state based on the tear component, and transmits it to the mobile terminal SP such as a smartphone for presentation.
- the person H2 of FIG. 1 the person who becomes a test subject can see the information on his / her biological state displayed on the mobile terminal SP.
- a person H1 who is a subject wears a contact lens type tear collecting device equipped with a tear collecting function, and then tears.
- the collection device is removed from the eyes as indicated by the person H11.
- the analysis device AN specifies the biological state based on the tear component and transmits it to the mobile terminal SP such as a smartphone.
- the person who becomes the subject can see his / her biological state displayed on the mobile terminal SP.
- FIG. 2 is a detection device to which the present technology is applied, and shows an external configuration of a display device having a contact lens type tear collecting function and a collected tear analyzing function according to the first configuration example described above. ing.
- the left part shows a side cross-section of the eyeball E when the display device 11 is mounted on the eyeball E
- the right part shows an external configuration when the eyeball E is viewed from the front.
- the display device 11 has a shape corresponding to the curved surface of the eyeball E, and is mounted in the same manner as when a contact lens is worn. Further, on the outer peripheral portion of the display device 11, collection ports G-1 to G-6 for collecting tears are provided at substantially equal intervals on the surface that contacts the eyeball E.
- or G-6 has shown the example at the time of providing six in the outer peripheral part, other numbers may be sufficient. If it is not necessary to individually distinguish the collection ports G-1 to G-6, the collection ports G-1 are simply referred to as the collection ports G, and other configurations are also referred to in the same manner.
- the display device 11 includes a display area 21, a feeding antenna 22, a signal antenna 23, a power generation unit 24, a posture detection unit 25, a tear detection unit 26-1 to a tear detection unit 26-6, a signal processing unit 27, and a display element.
- a drive unit 28 is provided.
- the display area 21 is arranged adjacent to the display element, which includes a plurality of display pixels that display information such as images and characters to be presented to the user, and receives light reflected from the surface of the user's eyeball. And a light receiving element for line-of-sight detection. Furthermore, the display area 21 also has a light emitting element and a light receiving element for detecting opening and closing of the user's eyelids.
- the feeding antenna 22 is provided so as to surround the display area 21 and receives an induced electromotive force due to a magnetic field or an electric field supplied from the outside.
- the signal antenna 23 transmits information supplied from the signal processing unit 27 such as a result of performing a user interface operation based on a user's line of sight, or has been transmitted from the outside such as information displayed on a display pixel. Information is received and supplied to the signal processing unit 27.
- the power generation unit 24 obtains and stores electric power by rectifying the induced current generated in the power supply antenna 22 by electromagnetic induction caused by an external magnetic field or the like, and supplies the electric power to each unit of the display device 11.
- the display antenna 11 may not be provided with the power feeding antenna 22.
- the posture detection unit 25 includes an electronic gyro sensor, an acceleration sensor, and the like, detects the posture and movement of the user wearing the display device 11, and supplies the detection result to the signal processing unit 27.
- the posture detection unit 25 detects, for example, the movement of the user's head and the posture of the user.
- the tear detection units 26-1 to 26-6 collect tears secreted from the user, and measure the amount of tears obtained and analyze the components of tears.
- the tear detection units 26-1 to 26-6 are also simply referred to as the tear detection unit 26 when it is not necessary to distinguish them.
- the signal processing unit 27 controls the entire display device 11. For example, the signal processing unit 27 calculates the difference (difference) in the amount of light received by the light receiving elements arranged in each area of the display device 11 based on the signal supplied from the light receiving elements for line-of-sight detection in the display area 21. By detecting it, the user's line of sight is detected. Further, the signal processing unit 27 detects the opening / closing of the user's eyelid based on, for example, a signal supplied from the light receiving element for detecting eyelid opening / closing in the display area 21.
- the signal processing unit 27 controls the display element driving unit 28 based on the detection result supplied from the posture detection unit 25, the line-of-sight detection result, the information received by the signal antenna 23, and the like in the display area 21. Display images.
- the posture detection unit 25 can detect the rotation direction and the rotation amount. Therefore, the signal processing unit 27 controls the display element driving unit 28 so that the amount of rotation of the display device 11 in the direction opposite to the rotation direction of the display device 11 with respect to the eyeball supplied from the posture detection unit 25 is displayed in the display region 21. Rotate the displayed image. As a result, even if the display device 11 rotates on the user's eyeball, the resulting image rotation can be corrected and presented to the user in an easy-to-view manner.
- the display element driving unit 28 drives the display elements in the display region 21 according to the control of the signal processing unit 27 to display an image, or causes the light emitting elements in the display region 21 to emit light according to the control of the signal processing unit 27. .
- the functional configuration of the display device 11 is, for example, the configuration shown in FIG. In FIG. 4, the same reference numerals are given to the portions corresponding to those in FIG. 2, and the description thereof will be omitted as appropriate.
- a display area 21 includes a display area 21, a power feeding antenna 22, a signal antenna 23, a power generation unit 24, a posture detection unit 25, a tear detection unit 26, a signal processing unit 27, a display element driving unit 28, and a pressure detection unit 51.
- the tear detection unit 26 includes an AD conversion unit 61. Further, the signal processing unit 27 has a biological state detection unit 64.
- the pressure detection unit 51 includes a pressure sensor and the like, detects the pressure applied to the display device 11, and outputs the detection result.
- the output from the pressure detection unit 51 is used, for example, for the bag opening / closing determination.
- the temperature detection unit 52 includes a plurality of temperature sensors, measures the temperature of the user's eye sphere, the temperature of the user's eyelid, or the outside air temperature, and outputs the measurement result.
- the recording unit 53 is composed of, for example, a non-volatile memory, and records data supplied from the signal processing unit 27 or supplies recorded data to the signal processing unit 27.
- outputs of the light receiving element 63, the pressure detection unit 51, the posture detection unit 25, the tear detection unit 26, and the temperature detection unit 52 are supplied to the signal processing unit 27. Further, in the display device 11, the recording unit 53, the signal antenna 23, the power feeding antenna 22, and the power generation unit 24 are also connected to the signal processing unit 27.
- the AD (analog-digital) conversion unit 61 converts various data supplied to the tear detection unit 26 into a digital signal and supplies the digital signal to the signal processing unit 27.
- the biological state detection unit 64 receives the measurement of the amount of tears secreted from the user and the supply of tear component analysis by the tear detection unit 26, and detects the biological state of the user based on the measurement result and the analysis result. .
- the tear detection unit 26 is provided at a position corresponding to each of the collection ports G, detects tears collected from the collection port G, and further analyzes the components of the detected tears.
- the left part is a front view of the tear detection part 26, and the right part in the figure is a side view.
- the tear detection unit 26 includes a surface that contacts the collection port G including the microscopic holes 81, a measuring chamber 82, a flow path 83, a differential pressure flow meter 84, control valves 85-1 and 85-2, and analysis chambers 86-1 to 86-. 5, a micro pump 87 and a discharge valve 88 are provided. Furthermore, the tear detection unit 26 includes an AD (analog / digital) conversion unit 61.
- the micropore 81 is made of a capillary tube, and collects tears L from the collection port G using the capillary phenomenon and supplies them to the measuring chamber 82 as shown in the figure.
- the measuring chamber 82 includes an electrode (not shown), detects the volume of collected tears, and the detection result is supplied to the AD conversion unit 61 and output as a digital signal.
- the tears accumulated in the measuring chamber 82 are transported to the analysis chamber 86 through the flow path 83 by the micro pump 87. During this time, a differential pressure flow meter 84 is provided in the flow path 83, the flow rate of tears conveyed through the flow path 83 is measured, and the measurement result is supplied to the AD conversion unit 61 and output as a digital signal.
- the analysis chambers 86-1 to 86-5 analyze the components of the substances a to e, respectively, supply the analysis results to the AD conversion unit 61, and output them as digital signals.
- the detailed configuration of the analysis chamber 86 will be described later with reference to FIG.
- the substances a to e are names used to identify the substances, and are not actual substance names.
- control valves 85-1 and 85-2 The opening of the control valves 85-1 and 85-2 is controlled by a control unit (not shown) in order to adjust the amount of circulating tears according to the flow rate measured by the differential pressure flow meter 84.
- the discharge valve 88 is controlled by a control unit (not shown) to open and close, and discharges the tears that have been analyzed from the discharge port.
- FIG. 5 shows an example in which five analysis chambers 86-1 to 86-5 are provided, but other numbers of analysis chambers 86 may be provided.
- the analysis chamber 86 includes an excitation light source 101, an analysis space 102, a heater 103, a lens 104, and a light receiver (spectral analysis unit) 106.
- the excitation light source 101 generates and irradiates excitation light in a state where a substance as an object is evaporated (or sublimated) by the heater 103 and is vaporized and filled in the analysis space 102. At this time, a spectrum corresponding to the vaporized substance is generated.
- the lens 104 condenses the spectrum with a light receiver (spectral analysis unit) 106.
- the photoreceiver 106 analyzes and specifies the substance that is the subject based on such a spectroscopic spectrum, and supplies the information of the specified detected object to the AD conversion unit 106 to output it as a digital signal.
- the air gap 105 is an air layer for reducing heat transfer provided to prevent the eyeball from being damaged by the heat generated in the heater 103. That is, in the analysis chamber 86, when the display device 11 is attached to the eyeball, the lower part in the drawing is in contact with the eyeball. Therefore, if heating by the heater 103 is performed in this state, the generated heat may be transmitted to the eyeball and may cause burns. Since the air gap 105 is a space filled with air having a relatively low heat transfer coefficient, the heat generated by the heater 103 is reduced from being transferred to the eyeball, thereby preventing the eyeball from being burned.
- step S 11 tears on the eyeball are collected from the microscopic hole 81 through the collection port G using the capillary phenomenon and supplied to the measuring chamber 82.
- step S12 the measuring chamber 82 measures the collected amount of collected tears, and supplies the measurement result to the AD conversion unit 61.
- the AD conversion unit 61 converts the collected amount of tears into a digital signal and supplies the digital signal to the biological state detection unit 64 of the signal processing unit 27.
- step S13 the biological state detection unit 64 determines whether or not the collected amount is sufficient. That is, when the collected amount of tears is small, the analysis accuracy may be lowered. Therefore, it is determined whether or not the collected amount is detectable with a predetermined accuracy.
- step S13 If it is determined in step S13 that the collected amount is not sufficient, the process returns to step S12. That is, the processes of steps S12 and S13 are repeated until it is considered that the amount of collection is sufficient.
- step S13 If it is determined in step S13 that the collected amount is sufficient, the process proceeds to step S14.
- step S14 the analysis chamber 86 analyzes the collected tears by spectroscopic analysis, and outputs the analysis result to the AD conversion unit 61.
- the AD conversion unit 61 digitizes the analysis result and outputs the digitized result to the biological state detection unit 64 of the signal processing unit 27.
- step S15 the biological state detection unit 64 controls the recording unit 53 to record the analysis result.
- step S16 the ecological state detection unit 64 detects the state of the living body based on the analysis result.
- step S17 the ecological state detection unit 64 determines whether or not the biological state is correct and appropriate. That is, if the result of the biological condition based on the analysis result is not supposed to exist, the process returns to step S16. In this case, since the same result is obtained unless the analysis method is changed, for example, the processing of steps S16 and S17 is repeated by changing the threshold value or the like. Whether or not the state of the living body is a result that should be originally obtained may be set in advance with information such as a threshold necessary for the determination, or may be determined directly by the user and information according to the determination. May be input. At this time, the user may change the determination method of the state of the living body according to the analysis result.
- step S17 when it determines with the state of the detected biological body being correct and appropriate in step S17, a process progresses to step S18.
- step S19 the biological state detection unit 64 controls the signal antenna 23 to transmit the detected biological information to the mobile terminal SP represented by a smartphone or the like for display.
- step S17 the analysis method is learned by repeating the processes in steps S16 and S17 while the analysis method and the threshold are changed until it is assumed that an appropriate biological state is detected. Can think.
- step S17 when learning is completed and it is no longer necessary to determine whether or not the biological information is appropriate in step S17, the processing in step S17 may be omitted.
- FIG. 8 is a flowchart illustrating a biological state detection process in which the process of determining whether the biological information corresponding to step S17 is appropriate is omitted. That is, the processing of steps S41 to S47 in the flowchart of FIG. 8 corresponds to the processing of steps S11 to S16 and S17 of FIG. Note that the individual processes are the same as those described with reference to the flowchart of FIG. 7, and therefore the description of the biological state detection process of FIG. 8 is omitted.
- the biological state according to the state of tears is roughly classified into three states, and is divided into a normal state, a defense state against reflex stimulation, and an emotional state.
- the normal state represents a state in which a tear film is stretched on the eyeball together with blinking in order to protect the eyes, and tears in such a state are referred to as continuous tears. Therefore, when the state of tears is continuous tears, the biological state is defined as the normal state.
- the defense state against reflex stimulation is a state in which foreign matter enters the eye or a state in which the eye is protected by flowing more tears than the state in which continuous tears are shed by stimulation such as onion allyl sulfide.
- tears shall be referred to as stimulating tears.
- this state is also referred to as a defense state.
- the emotional state represents a state in which tears shed when emotions appear, such as when joyful or sad, and such tears are also referred to as emotional tears.
- tears in the emotional state are further classified into three types: tears in the emotional state, tears in the neutral state, and tears in the emotional state.
- tears in the emotional state are emotions, for example, when you pass the exam, when a child is born, when some effort is rewarded, or when you suddenly change from negative to positive. Represents tears in a state of changing to a positive state.
- the emotional (Neutral) tear represents, for example, a tear in a state where the emotional (Positive) state and the emotional (Negative) state are antagonized.
- tears in a state where the emotional state (Positive) state and the emotional state (Negative) state are antagonized are tears in a continuous state.
- a state where a transition is made to one of the individual differences is common, and for convenience, it is defined as an initial state of tears in an emotional state.
- “Negative tears” represent tears in a state where emotions have changed to a negative state, for example, when they were surprised, experienced fear, and mental anxiety. In addition, tears in the case where pain is caused by hitting a little finger and emotions are in a negative state are classified as tears in this emotional state (negative).
- Component M is a tear component that contributes to the transition from the initial state to the defense state.
- the component M is, for example, lactoferrin, a substance P, and the like.
- the component M increases in a short period and reaches the threshold value, it can be determined that the component M has transitioned to the defense state. That is, the change of the component M makes it possible to grasp whether the pain is noticed by the user or not.
- Component N is a tear component that contributes to the transition from the initial state to the emotional state.
- the component N is, for example, adrenaline or the like, and when it reaches a threshold value by increasing, it can be determined as an emotional state. That is, the change in the component N makes it possible to grasp whether the person feels uplifted and excited, or whether the person is not aware of it.
- Component O is a component that contributes to the transition from the initial state to the emotional (Negative) state.
- the component O is, for example, an adrenocorticotropic hormone (ACTH), noradrenaline, or the like.
- ACTH adrenocorticotropic hormone
- noradrenaline or the like.
- Component Q is a component that contributes to the transition from the defense state to the emotional state.
- Ingredient Q is, for example, lactoferrin or substance P, and can be determined to be in an emotional state (derived from pain) when the threshold is maintained for a long time.
- the component Q is for judging a state similar to the component M, but is characterized by a long duration of the threshold, and a change in the component Q is a continuous pain noticed by the person, or Can understand whether the pain is continuous or unnoticeable.
- Component P is a component that contributes to the transition from the defense state to the emotional state.
- the component Q is a component that contributes to the transition from the defense state to the emotional state (Negative).
- component N that contributes to the transition to the emotional state (Positive) is present, and the component that contributes to the transition to the emotional (Negative) state.
- component Q component O exists. For this reason, the mutual state and level of the state of emotionality (Positive) and the state of emotionality (Negative) can be grasped from the ratio when each of the components N, O, P, and Q reaches the threshold value. .
- the component S is a component that indicates a sign of a transition from the initial state to the emotional state (Positive).
- the component S is, for example, phenylethanolamine-N-methyltransferase, and when the threshold value is reached, it can be determined that it is a precursor to a transition to the state of emotionality (Positive). .
- the component T is a component that shows a sign of a transition from the emotional state (Positive) to the initial state.
- the component U is a component that shows a sign of a transition from the initial state to the emotional state (Negative).
- the component U can be determined to be a sign that, for example, when hydrocortisone (cortisol) or the like reaches a threshold value, it subsequently transitions to a state of emotionality (Negative).
- the component V is a component that shows a sign of a transition from the emotional (Negative) state to the initial state.
- Component V can be determined as a precursor to the subsequent transition to the initial state when the corticotropin-releasing hormone or the like reaches a threshold value.
- the component T or the component V is a component in which the absolute value of emotionality shows a sign that it will be subsequently suppressed, so that serotonin, monoamine oxidase, catechol, which are components derived from both the component T or the component V, are used.
- the threshold value of -O-methyltransferase etc. reaches the threshold value, it can be determined that it is a precursor to the subsequent transition to the initial state.
- the time from the initial reference concentration to the maximum concentration is the maximum concentration arrival time.
- the time from the initial reference concentration to the half concentration passing through the maximum concentration is the half concentration reaching time.
- the tear component may change with the passage of time of about several hundred seconds, but may change with the passage of time of about several hours as shown in FIG. .
- FIG. 11 shows the variation of the cumulative component A of ⁇ t every predetermined time, the vertical axis is the cumulative value (integrated value) of the concentration of component A for each ⁇ t, and the horizontal axis is the horizontal axis.
- the amount of change for example, in units of seconds, minutes, hours, days, etc. It is necessary to judge the change by using a variation pattern.
- step S71 the biological state detection unit 64 reads the analysis results of the past components S, T, U, and V from the recording unit 53, and obtains reference values for these components. That is, since the analysis results of the components S, T, U, and V obtained in the past are recorded in the recording unit 53, these are read out.
- step S72 the biological state detection unit 64 obtains reference fluctuation amounts S ', T', U ', V' based on the reference values of the respective components.
- step S73 the biological state detection unit 64 reads the analysis results of the components S, T, U, and V at the current time from the recording unit 53, and the variation amounts S ⁇ t, T ⁇ t, and U ⁇ t that are ⁇ t variation amounts of these components. , V ⁇ t.
- ⁇ 1 to ⁇ 4 are component coefficients, which are obtained by coefficientizing the secretion ratio of each component, and are for normalizing the numerical values to be compared.
- step S75 the biological state detection unit 64 calculates the degree Pre_Pos_inc at which a transition to emotional (Positive) (emotional positive) occurs as a difference (S "-T").
- step S76 the biological state detection unit 64 calculates the degree Pre_Neg_inc in which the transition to emotional (Negative) (emotional negative) occurs as a difference (U "-V").
- step S77 the biological state detection unit 64 calculates the difference (U "-V") between the degree Pre_Pos_inc that causes the transition to emotional (Positive) and the degree Pre_Neg_inc that causes the transition to emotional (Negative). It is determined whether or not it is greater than zero. That is, the biological state detection unit 64 determines whether a transition to an emotional state (Positive) is likely to occur or whether a transition to emotional (Negative) is likely to occur.
- step S77 the difference between the degree Pre_Pos_inc in which the transition to emotional (Positive) occurs and the degree Pre_Neg_inc in which the transition to emotional (Negative) occurs is greater than 0, and it is determined that the transition to emotional (Positive) is likely to occur. If so, the process proceeds to step S78.
- step S ⁇ b> 79 the biological state detection unit 64 controls the display element driving unit 28 to transmit information indicating that the transition to the emotional state occurs to the mobile terminal SP via the signal antenna 23. To display.
- step S77 the difference between the degree Pre_Pos_inc in which the transition to emotional (Positive) occurs and the degree Pre_Neg_inc in which the transition to emotional (Negative) occurs is smaller than 0, and the transition to emotional (Negative) is likely to occur. If determined to be, the process proceeds to step S78.
- step S ⁇ b> 78 the biological state detection unit 64 controls the display element driving unit 28 to transmit information indicating that a transition to the emotional state (Negative) occurs to the mobile terminal SP via the signal antenna 23. To display.
- step S80 the living body state detection unit 64 determines the difference (U "-V") between the degree Pre_Pos_inc in which the transition to emotional (Positive) occurs and the degree Pre_Neg_inc in which the transition to emotional (Negative) occurs in advance prediction emotion
- the level is set and recorded in the recording unit 53.
- step S ⁇ b> 81 the biological state detection unit 64 performs variation prediction of the prior prediction emotion level based on the prior prediction emotion level, controls the display element driving unit 28, and transmits the variation prediction result via the signal antenna 23. It is transmitted to the mobile terminal SP and displayed.
- the biological state detection unit 64 is in a state of emotionality (Positive), or , Display whether there is a possibility of transition to any of the states of emotional (Negative). Also, when the emotional component increases by A and the emotional component decreases by B, after a predetermined time ⁇ T elapses from the timing when the threshold is exceeded, the emotional (Positive) component is increased. It may be displayed whether there is a possibility of transition to either the state or the emotional (Negative) state. Furthermore, the state of the emotion predicted from the relationship between the emotion identified by the emotion calculation process described later and the prediction may be learned and predicted based on the learning result.
- the analysis results of the components S, T, U, and V obtained in the past that are read out are, for example, the same transition pattern that transitions from the state immediately before the current state to the current state.
- the analysis result for a predetermined time after the state transition That is, for example, when the current state is the initial state and the immediately preceding state is the defense state, the components S, T, U, V for a predetermined time from the timing when the transition from the initial state to the defense state has occurred in the past.
- the analysis result is read out.
- the biological state detection unit 64 obtains the waveform of the reference value from the average of the analysis results of the components S, T, U, and V obtained in the past that has been read, and after the transition to the current state
- the inclination on the waveform of the reference value at the timing that coincides with the passage of time is calculated as the reference fluctuation amount S ′, T ′, U ′, V ′.
- the reference variation amounts S ′, T ′, U ′, V ′ are obtained from the analysis results of the past components S, T, U, V in the state transition pattern having the same state transition. Improve the accuracy of prior prediction calculations.
- the ⁇ t fluctuation amount to be used can also be changed by setting a range to be set in units of seconds, minutes, hours, or days, so that short-term prediction or Long-term prediction is also possible.
- the example using the ⁇ t fluctuation amount has been described above, it may be predicted in advance using a fluctuation pattern instead of the ⁇ t fluctuation amount.
- step S111 the biological state detection unit 64 reads the analysis results of the past components N, O, P, and Q from the recording unit 53, and obtains reference values for these components. That is, since the analysis results of the components N, O, P, and Q obtained in the past are recorded in the recording unit 53, these are read out.
- the analysis results of the components N, O, P, and Q obtained in the past to be read out have the same analysis results as the analysis results of the components S, T, U, and V read in step S71 described above. Read out.
- step S112 the biological state detection unit 64 obtains reference fluctuation amounts N ′, O ′, P ′, and Q ′ based on the reference values of the components.
- step S113 the biological state detection unit 64 reads the analysis results of the components N, O, P, and Q at the current time from the recording unit 53, and the variation amounts N ⁇ t, O ⁇ t, and P ⁇ t that are ⁇ t variation amounts of these components. , Q ⁇ t.
- step S ⁇ b> 114 the biological state detection unit 64 for the components N, O, P, and Q includes fluctuation amounts N ⁇ t, O ⁇ t, P ⁇ t, and Q ⁇ t that are ⁇ t fluctuation amounts and reference fluctuation amounts N ′, O ′, P ′, and Q.
- ⁇ 1 to ⁇ 4 are component coefficients, which are obtained by coefficientizing the secretion ratio of each component, and are for normalizing the numerical values to be compared.
- step S115 the biological state detection unit 64 calculates the degree of emotionality (Positive) Pos_inc as a sum
- step S116 the living body state detection unit 64 calculates the degree Neg_inc of emotionality (Negative) as the sum
- step S117 the living body state detection unit 64 calculates the difference between the degree of emotionality (Positive) Pos_inc and the degree of emotionality (Negative) Neg_inc, and determines whether it is greater than zero. That is, the biological state detection unit 64 determines whether or not the state is emotional (Positive).
- step S117 If it is determined in step S117 that the difference between the degree Pos_inc to emotional (Positive) and the degree Neg_inc of emotional (Negative) is greater than 0 and the state is emotional (Positive), the process proceeds to step S119. Proceed to
- step S119 the biological state detection unit 64 controls the display element driving unit 28 to control the signal antenna 23 to transmit information indicating that it is in the emotional state to the mobile terminal SP. To display.
- step S117 when it is determined in step S117 that the difference between the degree Pos_inc to emotional (Positive) and the degree Neg_inc of emotional (Negative) is less than 0 and the state is emotional (Negative), Proceed to step S118.
- step S118 the biological state detection unit 64 controls the display element driving unit 28 to control the signal antenna 23 to transmit information indicating that it is in an emotional state to the mobile terminal SP. To display.
- step S120 the biological state detection unit 64 sets the difference between the emotional degree Pos_inc and the emotional degree Neg_inc as the emotion level and records the difference in the recording unit 53.
- step S121 the biological state detection unit 64 performs emotion level fluctuation prediction based on the emotion level, and controls the signal antenna 23 to transmit the fluctuation prediction result to the mobile terminal SP for display.
- the biological state detection unit 64 is in a state of emotionality (Positive) Display whether there is a possibility of transition to one of the states of negative (Negative). Also, when the emotional component increases by A and the emotional component decreases by B, after a predetermined time ⁇ T elapses from the timing when the threshold is exceeded, the emotional (Positive) component is increased. It may be displayed whether there is a possibility of transition to either the state or the emotional state (Negative).
- the prediction after a predetermined time has elapsed may be made prediction using data in which the user inputs the state for the variation amount of each component, or may be predicted from the correlation of the variation amount of each component.
- environmental information such as when waking up / when eating rice / commuting / working / going home / conversing with family / before going to bed may be predicted as external text mining data based on these correlations.
- the prediction after a predetermined time has passed may be a moving average prediction or an approximate value prediction.
- step S151 the biological state detection unit 64 reads the analysis result of the past component M from the recording unit 53, and obtains the reference value of the component. That is, since the analysis result of the component M calculated
- step S152 the biological state detection unit 64 obtains the reference fluctuation amount M 'based on the reference value of the component M.
- step S153 the biological state detection unit 64 reads the analysis result of the component M at the current time from the recording unit 53, and obtains the variation amount M ⁇ t that is the ⁇ t variation amount of the component M.
- ⁇ 1 is a component coefficient, which is a coefficient of the secretion ratio of each component, and is used to normalize the numerical values to be compared.
- step S155 the biological state detection unit 64 determines whether or not the difference M ′′ is greater than a predetermined threshold. That is, the biological state detection unit 64 is emotional (Negative) due to pain, or Determine if you are in defense.
- Step S155 when it is determined that the difference M ′′ is larger than the threshold value, it is regarded as emotional (Negative) attributed to pain or in a defense state, and the process proceeds to Step S156.
- step S156 the biological state detection unit 64 determines whether or not the state where the difference M ′′ is larger than the threshold value continues for a time ⁇ T1 of about 5 to 6 minutes.
- step S156 when it is considered that the state in which the difference M ′′ is larger than the threshold value is continued for the time ⁇ T1 of about 5 to 6 minutes, the process proceeds to step S157.
- step S157 the biological state detection unit 64 controls the display element driving unit 28 to control the signal antenna 23 to transmit information to the mobile terminal SP for display. That is, when the component M is higher than the threshold value for a short time to some extent, it is highly likely that the component M is due to an external stimulus, so that it is determined to be in the defense state.
- step S156 determines whether the state where the difference M ′′ is greater than the threshold value does not continue for a time ⁇ T1 of about 5 to 6 minutes. If it is determined in step S156 that the state where the difference M ′′ is greater than the threshold value does not continue for a time ⁇ T1 of about 5 to 6 minutes, the process of step S157 is skipped.
- step S158 the biological state detection unit 64 determines whether or not the state where the difference M ′′ is larger than the threshold value continues for a time ⁇ TN of about one day.
- step S158 if it is considered that the state in which the difference M ′′ is larger than the threshold value continues for the time ⁇ TN of about one day, the process proceeds to step S159.
- step S159 the biological state detection unit 64 controls the display element driving unit 28 to control the signal antenna 23 to indicate information indicating that the state is emotional (Negative) attributed to pain. Send to SP for display. That is, when the component M is higher than a predetermined threshold for a long period of time of about one day, the emotional nature caused by the pain is caused by the continuing pain even if it is initially caused by an external stimulus. It is determined that the state is (Negative).
- step S158 determines whether the state in which the difference M ′′ is greater than the threshold value is not continued for a time ⁇ TN of about one day.
- step S160 the biological state detection unit 64 sets the difference M ′′ to the stimulus / pain level and records it in the recording unit 53.
- step S161 the biological state detection unit 64 performs fluctuation prediction of the stimulus / pain level based on the stimulus / pain level, controls the display element driving unit 28, and controls the signal antenna 23 with the fluctuation prediction result. To the mobile terminal SP for display.
- the biological state detection unit 64 may predict and display how a new stimulus / pain level change changes from a trend analysis of a fluctuation pattern of the stimulus / pain level.
- the biological state detection unit 64 predicts how the stimulus / pain level changes when the stimulus / pain level exceeds a threshold value or when a predetermined time has elapsed after the threshold value is exceeded. You may make it do.
- the biological state detection unit 64 may predict changes in the stimulation / pain level using data in which the user inputs the state as the variation amount of each component after a predetermined time has elapsed. In addition, the biological state detection unit 64 may predict a change in the stimulus / pain level from the correlation between the fluctuation amounts of the components.
- the biological state detection unit 64 stores and predicts environmental information together with external text mining data such as when waking up / when eating rice / commuting / working / going home / conversing with family / before going to bed.
- the prediction after a predetermined time elapses may be a moving average prediction or an approximate value prediction.
- the biological state detection unit 64 not only predicts and informs the user of, for example, whether or not fluctuations in the stimulus / pain level that cannot be recognized by the user will occur, but further, depending on the stimulus / pain level, as necessary You may make it report to etc.
- the state of the living body is identified by detecting the components that contribute to the transition of the state of the user's living body to other states, such as the emotional state described with reference to FIG. 9 and the defense state against reflex stimulation.
- the processing to perform and the processing to predict how the state of the living body will change will be described.
- a biological state that is not defined in FIG. 9 can be applied by detecting a component that contributes to the transition to a predetermined biological state.
- manganese chloride (II) or manganese (III) oxide that induces tear secretion may be measured as the component Z, and applied to a tear secretion amount calculation process for calculating a tear secretion amount. Then, the tear secretion amount calculation processing will be described next with reference to the flowchart of FIG.
- step S191 the biological state detection unit 64 reads the analysis result of the past component Z from the recording unit 53, and obtains the reference value of the component. That is, since the analysis result of the component Z calculated
- step S192 the biological state detection unit 64 obtains the reference variation amount Z 'based on the reference value of the component Z.
- step S193 the biological state detection unit 64 reads the analysis result of the component Z at the current time from the recording unit 53, and obtains the variation amount Z ⁇ t that is the ⁇ t variation amount of the component Z.
- ⁇ 1 is a component coefficient, which is a coefficient of the secretion ratio of each component, and is for normalizing the numerical values to be compared.
- step S195 the biological state detection unit 64 sets the difference Z ′′ to the tear secretion level and records it in the recording unit 53.
- step S196 the biological state detection unit 64 predicts the tear secretion level based on the tear secretion level, controls the display element driving unit 28, controls the signal antenna 23 based on the variation prediction result, and It is transmitted to the terminal SP and displayed.
- the biological state detection unit 64 may predict and display how the change in the new tear secretion level changes from the trend analysis of the fluctuation pattern of the tear secretion level.
- the biological state detection unit 64 predicts how the change in the tear secretion level changes when the tear secretion level exceeds the threshold or when a predetermined time elapses after exceeding the threshold. It may be.
- the biological state detection unit 64 may predict a change in the level of tear secretion using data in which the user inputs the state as the variation amount of each component after a predetermined time has elapsed. In addition, the biological state detection unit 64 may predict a change in the level of tear secretion from the correlation of the fluctuation amount of the component O or the component Q (adrenocorticotropic hormone (ACTH)).
- the biological state detection unit 64 stores and predicts environmental information together with external text mining data such as when waking up / when eating rice / commuting / working / going home / conversing with family / before going to bed.
- the prediction after a predetermined time elapses may be a moving average prediction or an approximate value prediction.
- the prior emotion prediction calculation process is performed in advance using the components S, T, U, and V in advance.
- the awakening component and the prior sleep component may be defined, and the awakening / sleep prior prediction calculation process may be executed to detect a biological state such as awakening / sleep prior prediction.
- the prior awakening component is, for example, adrenaline, and the prior sleep component is noradrenaline.
- step S221 the living body state detection unit 64 reads the analysis results of the past advance awakening component AA and the advance sleep component BB from the recording unit 53, and obtains reference values of these components. That is, since the analysis results of the components AA and BB obtained in the past are recorded in the recording unit 53, these are read out.
- step S222 the biological state detection unit 64 obtains reference fluctuation amounts AA 'and BB' based on the reference values of the respective components.
- step S223 the biological state detection unit 64 reads the analysis results of the components AA and BB at the current time from the recording unit 53, and obtains the variation amounts AA ⁇ t and BB ⁇ t that are ⁇ t variation amounts of these components.
- step S225 the biological state detection unit 64 calculates the degree Pre_Awa_inc at which the transition to wakefulness occurs as AA ′′.
- step S226 the biological state detection unit 64 calculates the degree Pre_Dor_inc at which the transition to sleep occurs to BB ′′.
- step S227 the biological state detection unit 64 obtains a difference between the degree Pre_Awa_inc in which the transition to awakening occurs and the degree Pre_Dor_inc in which the transition to sleep occurs, and determines whether or not it is greater than zero. That is, the biological state detection unit 64 determines whether a transition to awakening is likely to occur or a transition to sleep is likely to occur.
- step S227 If it is determined in step S227 that the difference between the degree Pre_Awa_inc that causes the transition to awakening and the degree Pre_Dor_inc that causes the transition to sleep is greater than 0 and the transition to the awakening is likely to occur, the process proceeds to step S229.
- step S229 the biological state detection unit 64 controls the signal antenna 23 to transmit and display information indicating that a transition occurs in the awake state to the portable terminal SP.
- step S227 if it is determined in step S227 that the difference between the degree Pre_Awa_inc that causes the transition to awakening and the degree Pre_Dor_inc that causes the transition to sleep is smaller than 0 and the transition to sleep is likely to occur, the process proceeds to step S228. move on.
- step S228, the biological state detection unit 64 controls the signal antenna 23 to transmit and display information indicating that a transition occurs in the sleep state to the mobile terminal SP.
- step S230 the biological state detection unit 64 sets the difference between the degree Pre_Awa_inc in which the transition to wakefulness occurs and the degree Pre_Dor_inc in which the transition to sleep occurs to the prior predicted wakefulness / sleep level, and records the difference in the recording unit 53.
- step S231 the biological state detection unit 64 performs fluctuation prediction of the advance prediction awakening / sleep level based on the advance prediction awakening / sleep level, and controls the signal antenna 23 to change the prediction result to the mobile terminal SP. Send and display.
- the biological state detection unit 64 determines whether the awake state or sleep state when the prior predicted awakening / sleep level exceeds a predetermined threshold or when a predetermined time ⁇ T has elapsed from the timing when the threshold is exceeded. Display whether there is a possibility of transition to any of the states. Further, when the awakening component increases by A and the sleep component decreases by B, either a state of awakening or a state of dawn after a predetermined time ⁇ T has elapsed from the timing when the threshold is exceeded. It may be displayed whether there is a possibility of transition to. Furthermore, the state of the emotion predicted from the relationship between the emotion identified by the awakening / sleep calculation process described later and the prediction may be learned and predicted based on the learning result.
- the biological state detection unit 64 may predict using the data in which the state is input by the user after the predetermined time has elapsed. In addition, the biological state detection unit 64 may predict a prior prediction wakefulness / sleep level from the correlation of the fluctuation amount of the component O or the component Q (adrenocorticotropic hormone (ACTH)), and eats a meal when it happens.
- Environmental information such as time / commuting / working / going home / conversation with family / before going to bed may be predicted together with external text mining data.
- the biological state detection unit 64 may perform a moving average prediction or an approximate value prediction for a prediction after a predetermined time has elapsed.
- the awakening / sleep prior prediction calculation process has been described.
- a biological state such as awakening / sleep can be detected from the awakening component and the sleep component.
- the awakening / sleep calculation process will be described with reference to the flowchart of FIG.
- the arousal component CC is, for example, phenylethanolamine-N-methyltransferase (PNMT)
- the sleep component DD is, for example, dopamine ⁇ -hydroxylase (dopamine ⁇ -hydroxylase). hydroxylase, DBH).
- step S261 the biological state detection unit 64 reads the analysis results of the past components CC and DD from the recording unit 53, and obtains reference values for these components. That is, since the analysis results of the components CC and DD obtained in the past are recorded in the recording unit 53, these are read out.
- step S262 the biological state detection unit 64 obtains reference fluctuation amounts CC 'and DD' based on the reference value of each component.
- step S263 the biological state detection unit 64 reads the analysis results of the components CC and DD at the current time from the recording unit 53, and obtains the variation amounts CC ⁇ t and DD ⁇ t that are ⁇ t variation amounts of these components.
- step S265 the biological state detection unit 64 calculates the awakening degree Awa_inc as
- step S266 the biological state detection unit 64 calculates the sleep degree Dor_inc as
- step S267 the biological state detection unit 64 subtracts the difference between the awakening degree Awa_inc and the sleep degree Dor_inc, and determines whether or not the difference is greater than zero. That is, the living body state detection unit 64 determines whether or not the state is an awakening state.
- step S267 If it is determined in step S267 that the difference between the arousal degree Awa_inc and the sleep degree Dor_inc is greater than 0 and the state is awake, the process proceeds to step S269.
- step S269 the biological state detection unit 64 controls the signal antenna 23 to transmit the information indicating that the state is awakening to the mobile terminal SP to be displayed.
- step S267 if it is determined in step S267 that the difference between the awakening degree Awa_inc and the sleep degree Dor_inc is smaller than 0 and the sleep state is determined, the process proceeds to step S268.
- step S268 the biological state detection unit 64 controls the signal antenna 23 to transmit information to the portable terminal SP and display the information indicating that the state is the sleep state.
- step S270 the living body state detection unit 64 sets the difference between the awakening degree Awa_inc and the sleep degree Dor_inc to the awakening / sleep level, and records the difference in the recording unit 53.
- step S271 the biological state detection unit 64 performs fluctuation prediction of the awakening / sleep level based on the awakening / sleep level, controls the display element driving unit 28, and controls the signal antenna 23 with the fluctuation prediction result. To the mobile terminal SP for display.
- the biological state detection unit 64 enters either the awake / sleep state. You may make it display whether there is a possibility of transition. Further, when the wakefulness component increases by A and the sleep component decreases by B, after a predetermined time ⁇ T has elapsed from the timing when the threshold is exceeded, either the wakefulness state or the sleep state You may make it display whether there is a possibility of transition.
- the fluctuation amount of each component may be predicted using data in which the user inputs the state, or may be predicted from the correlation of the fluctuation amount of each component. Furthermore, environmental information such as when waking up / when eating rice / commuting / working / going home / conversing with family / before going to bed may be predicted as external text mining data based on these correlations. Furthermore, the prediction after a predetermined time has passed may be a moving average prediction or an approximate value prediction.
- ⁇ Dry eye determination process> In the above, examples of detecting various biological state information from tear components have been described. However, information indicating whether or not dry eyes are present from the amount of tear secretion, the component, and the secretion frequency is used as the biological state information. It may be detected as information. Next, the dry eye determination process will be described with reference to the flowchart of FIG.
- step S 301 tears on the eyeball are collected from the microscopic hole 81 through the collection port G and supplied to the measuring chamber 82.
- step S ⁇ b> 302 the measuring chamber 82 measures the collected amount of collected tears, and supplies the measurement result to the AD conversion unit 61.
- the AD conversion unit 61 converts the collected amount of tears into a digital signal and supplies the digital signal to the biological state detection unit 64 of the signal processing unit 27.
- step S303 the analysis chamber 86 analyzes the collected tears by spectroscopic analysis, and outputs the analysis result to the AD conversion unit 61.
- the AD conversion unit 61 digitizes the analysis result and outputs the digitized result to the biological state detection unit 64 of the signal processing unit 27.
- step S304 the biological state detection unit 64 detects the secretion frequency of tears and controls the recording unit 53 to record information on the secretion frequency.
- step S305 the ecological state detection unit 64 determines whether or not it is dry eye syndrome based on the collected amount of tears, the component analysis result, and the secretion frequency of tears, and controls the signal antenna 23 based on the determination result. Then, it is transmitted to the mobile terminal SP and displayed.
- the data of tear collection amount, component analysis result, and tear secretion frequency are transmitted to an external device through the signal antenna 23, and dry eye syndrome is caused by a determination system using the external device itself and the external device and a data server. It may be estimated whether or not.
- Tears may be forcibly secreted.
- a display such as a smartphone may be used to display a request for the user to rehabilitate or cure dry eye syndrome, and the data may be stored on a server that can be shared with a hospital, etc. It is good also as a system which prescribes advice and a medicine.
- the biological state A or B is determined.
- a threshold value may be set for each, and the biological state A or B may be determined based on the relationship with each threshold value.
- the concentration of the component X (Positive) that contributes to emotionality (Positive) becomes larger than the threshold value Xp ′, and as shown in the lower part of FIG. From the timing when the concentration of the component X (negative) contributing to negative) becomes smaller than the threshold value Xn ′′, the concentration of the component X (Positive) contributing to emotionality (Positive) becomes smaller than the threshold value Xp ′′, and Until the concentration of the component X (negative) that contributes to emotionality (negative) exceeds the threshold value Xn ′, the state of emotionality (Positive) indicated by section 1 may be used.
- the component X is, for example, adrenaline, and the component X (Negative) from the initial state is, for example, adrenocorticotropic hormone (ACTH) or noradrenaline.
- ACTH adrenocorticotropic hormone
- the predetermined time ⁇ Tp ′, ⁇ Tn ′ may be set as the state of emotion (Positive) as shown in section 2.
- the state of emotionality is based on the mutual condition of the component X (Positive) contributing to emotionality (Positive) and the component X (negative) contributing to emotionality (negative).
- the state is emotional (Positive) only under one of the conditions, or emotional (negative) You may make it set whether it is a state of.
- the interval 1 until the concentration of the component X (Positive) contributing to emotionality (Positive) becomes larger than the threshold value X ′ and becomes smaller than the threshold value X ′′ is emotional (Positive).
- the other sections may be set as emotional (negative) states.
- the component X (Positive) contributing to emotionality (Positive) is, for example, the component N described above, and is, for example, adrenaline.
- the interval 2 from the timing when the time becomes smaller to the timing when the predetermined time ⁇ T ′′ elapses is the state of emotionality (Positive), and the other interval is the state of emotionality (negative)
- the component X (Positive) which contributes to emotionality (Positive) is, for example, the component S described above, and is, for example, phenylethanolamine-N-methyltransferase.
- the interval 1 until the concentration of the component X (negative) contributing to emotionality (negative) is smaller than the threshold value X ′′ and greater than the threshold value X ′ is expressed as emotionality. It may be set as a (negative) state, and other sections may be set as being in an emotional state (Positive).
- the component X (negative) that contributes to emotionality (negative) is, for example, the component S described above, such as phenylethanolamine-N-methyltransferase.
- the period from the time when the time becomes larger to the time when the predetermined time ⁇ T ′′ has passed is assumed to be an emotional state (negative), and the other sections are assumed to be emotional (Positive) state. You may make it grasp as a precursor.
- the component X (negative) contributing to emotionality (negative) is, for example, the above-described component N, and is, for example, adrenaline.
- the waveform pattern of the emotion level so far may be stored and predicted by matching.
- the pre-predicted emotion level can also be predicted by the same method as the emotion level.
- the content to be presented to the user may be determined using the above-described prior predicted emotion level or the waveform pattern of the emotion level.
- the schedule is related to the pre-predicted emotion level or the waveform pattern of the emotion level, it is preferable for the user to compare these schedules and present a recommendation now. You may make it show so-called agent whether it becomes annoyance, whether there is room for a joke, or whether it is easy to just present a distraction music.
- FIG. 25 shows a configuration example in the case where a contact lens type tear collecting device and tears collected by the collecting device are analyzed by the analyzer AN and the analysis result is displayed on a portable terminal or the like.
- the upper part of FIG. 25 is a tear collecting device 201, and the lower part shows the configuration of the analyzer AN.
- the collection device 201 has a configuration corresponding to the tear detection unit 26 in the contact lens type display device 11, and is provided in the collection port G of FIG.
- the collection device 201 is provided with a microscopic hole 81 at a site in contact with the eyeball in the same manner as the collection port G of FIG. 5, collects tears by capillary action, and stores them in the storage container 202. .
- the collection device 201 in the state of collecting tears is stored as it is in the analysis device AN.
- the analyzer AN has both the analysis function in the tear detection unit 26 and the biological state detection function in the display device 11. That is, the analyzer AN includes a flow path 83, a differential pressure flow meter 84, control valves 85-1, 85-2, analysis chambers 86-1 to 86-5, AD conversion units 211, 212-1 to 221-5, The micropump 87, the signal processing unit 27, the biological state detection unit 64, the recording unit 53, the signal antenna 23, the power feeding antenna 22, and the power generation unit 24 are provided.
- the analyzer AN is provided with a part to which the collection device 201 can be attached, and a flow path 83 for taking out tears collected from the storage container 202 of the attached collection device 201 is provided. Tears are sent out to the analysis chambers 86-1 to 86-5.
- the analysis chambers 86-1 to 86-5 detect various components, output the detection results to the AD conversion units 221-1 to 221-5, convert them into digital signals, and output them to the signal processing unit 27.
- the differential pressure flow meter 84 also measures the tear flow rate read from the collection device 201, converts it into a digital signal, and outputs it to the signal processing unit 27.
- the biological state detection unit 64 of the signal processing unit 27 controls the signal antenna 23 by executing the same processing as described above based on the analysis results supplied from the analysis chambers 86-1 to 86-5. Then, information corresponding to the analysis result is transmitted to the mobile terminal SP represented by the smartphone.
- the above-described series of processing can be executed by hardware, but can also be executed by software.
- a program constituting the software may execute various functions by installing a computer incorporated in dedicated hardware or various programs. For example, it is installed from a recording medium in a general-purpose personal computer or the like.
- FIG. 27 shows a configuration example of a general-purpose personal computer.
- This personal computer incorporates a CPU (Central Processing Unit) 1001.
- An input / output interface 1005 is connected to the CPU 1001 via a bus 1004.
- a ROM (Read Only Memory) 1002 and a RAM (Random Access Memory) 1003 are connected to the bus 1004.
- the input / output interface 1005 includes an input unit 1006 including an input device such as a keyboard and a mouse for a user to input an operation command, an output unit 1007 for outputting a processing operation screen and an image of the processing result to a display device, programs, and various types.
- a storage unit 1008 including a hard disk drive for storing data, a LAN (Local Area Network) adapter, and the like are connected to a communication unit 1009 that executes communication processing via a network represented by the Internet.
- magnetic disks including flexible disks
- optical disks including CD-ROM (Compact Disc-Read Only Memory), DVD (Digital Versatile Disc)), magneto-optical disks (including MD (Mini Disc)), or semiconductors
- a drive 1010 for reading / writing data from / to a removable medium 1011 such as a memory is connected.
- the CPU 1001 is read from a program stored in the ROM 1002 or a removable medium 1011 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, installed in the storage unit 1008, and loaded from the storage unit 1008 to the RAM 1003. Various processes are executed according to the program.
- the RAM 1003 also appropriately stores data necessary for the CPU 1001 to execute various processes.
- the CPU 1001 loads the program stored in the storage unit 1008 to the RAM 1003 via the input / output interface 1005 and the bus 1004 and executes the program, for example. Is performed.
- the program executed by the computer (CPU 1001) can be provided by being recorded on the removable medium 1011 as a package medium, for example.
- the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
- the program can be installed in the storage unit 1008 via the input / output interface 1005 by attaching the removable medium 1011 to the drive 1010. Further, the program can be received by the communication unit 1009 via a wired or wireless transmission medium and installed in the storage unit 1008. In addition, the program can be installed in advance in the ROM 1002 or the storage unit 1008.
- the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
- the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Accordingly, a plurality of devices housed in separate housings and connected via a network and a single device housing a plurality of modules in one housing are all systems. .
- the present technology can take a cloud computing configuration in which one function is shared by a plurality of devices via a network and is jointly processed.
- each step described in the above flowchart can be executed by one device or can be shared by a plurality of devices.
- the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.
- this technique can also take the following structures.
- an analysis unit for analyzing a component of tears collected from a living body And a detection unit that detects the state of the living body based on the result of the component analysis of the tears.
- the detection unit detects a state of the living body determined by a type of the tear based on a result of component analysis of the tear.
- the state of the living body includes an emotional state caused by the emotion of the living body.
- the detection unit is based on the analysis result of the substance secreted when the state of the living body is about to transition to a predetermined emotional state obtained as a result of the tear component analysis, The detection device according to (3), wherein the state of the living body is determined to transition to the predetermined emotional state.
- the detection unit is calculated based on an analysis result of a substance secreted when the state of the living body is about to transition to the first emotional state obtained as a result of the tear component analysis
- the state of the living body obtained as a result of the component analysis of the tear and the degree of the transition to the first emotional state is changed to the second emotional state
- the state of the living body is the first emotional state or the first emotional state.
- the detection device according to (4), wherein the state of transition to the emotional state of 2 is specified.
- the living body estimated to transition from the detection unit based on the degree of transition to the first emotional state and the degree of transition to the second emotional state.
- the detection device further calculating a pre-predicted emotion level indicating the degree of the state.
- the detection device further calculating a pre-predicted emotion level indicating the degree of the state.
- the detection device further calculating a pre-predicted emotion level indicating the degree of the state.
- the detection device further calculating a pre-predicted emotion level indicating the degree of the state.
- the detection device further calculating a pre-predicted emotion level indicating the degree of the state.
- the detection unit predicts a change in the prior predicted emotion level at a time later than a current time based on the prior predicted emotion level.
- the detection unit is calculated based on an analysis result of a substance secreted frequently when the first emotional state is obtained as a result of the tear component analysis, Calculated based on the degree of emotional state-likeness and the analysis result of a substance secreted in a second emotional state obtained as a result of the tear component analysis, the second And (8) specifying whether the tear state is the first emotional state or the second emotional state based on the degree of the emotional state likelihood
- the detection unit may calculate an emotion level indicating a degree of the emotional state of the living body based on the degree of likelihood of the first emotional state and the degree of likelihood of the second emotional state. Further calculating.
- the detection device (11) The detection device according to (10), wherein the detection unit predicts a change in the emotion level at a time later than the current time based on the emotion level. (12) The detection state according to (2), wherein the state of the living body includes a state caused by a stimulus to the living body. (13) Based on the analysis result of the substance secreted when there is a stimulus to the living body or when the living body has pain obtained as a result of the tear component analysis, Specify whether the state of the living body is a state caused by stimulation to the living body or an emotional state caused by the feeling of the living body that transitions when the state in which the living body has pain continues The detection device according to (12).
- the detection unit has a value indicating a secretion amount of the substance based on an analysis result of the substance secreted when there is a stimulus to the living body or when there is pain in the living body. It is specified whether the state of the living body is a state caused by stimulation to the living body or an emotional state caused by the feeling of the living body based on the length of the period (13)
- the detection device according to 1. (15)
- the detection unit calculates a stimulation level or a pain level for the living body based on an analysis result of a substance secreted when the living body is stimulated or when the living body has pain.
- the detection apparatus according to 13) or (14).
- the detection device (16) The detection device according to (15), wherein the detection unit predicts a change in the stimulation level or the pain level at a time later than a current time based on the stimulation level or the pain level.
- the detection unit identifies a tear secretion level of the living body based on an analysis result of a specific substance obtained as a result of the tear component analysis (any one of (1) to (16)) The detection device according to 1.
- the detection device 18) The detection device according to any one of (1) to (17), wherein the detection device is detachable from an eyeball.
- Perform a component analysis of tears collected from the living body A detection method comprising a step of detecting the state of the living body based on a result of the component analysis of the tear.
- 11 display device 21 display area, 25 posture detection unit, 26-1 to 26-3, 26 tear detection unit, 27 signal processing unit, 61 AD conversion unit, 64 biological state detection unit, 86, 86-1 to 86- 5 analysis room, 101 excitation light source, 102 analysis space, 103 heater, 104 lens, 105 air gap, 106 light receiver
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Zoology (AREA)
- Immunology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medical Informatics (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Ophthalmology & Optometry (AREA)
- Psychiatry (AREA)
- Optics & Photonics (AREA)
- Urology & Nephrology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Hematology (AREA)
- General Physics & Mathematics (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Hospice & Palliative Care (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Cell Biology (AREA)
- Physiology (AREA)
- Developmental Disabilities (AREA)
Abstract
本技術は、人体の生体状態を容易で、かつ、正確に検出できるようにする検出装置および方法、並びにプログラムに関する。 コンタクトレンズ型の表示装置に、涙検出部26を設けて、眼球の涙を採集すると共に、成分を分析して、ユーザの感情性の情報を検出し、コンタクトレンズ型の表示装置11より携帯端末SPに検出結果を送信し表示させる。これにより、ユーザの涙の成分に基づいて、生体状態を検出することができるので、正確にユーザの生体状態を検出することができる。本技術は、コンタクトレンズ型の表示部に適用することができる。
Description
本技術は、検出装置および方法、並びにプログラムに関し、特に、生体の状態を高精度で検出できるようにした検出装置および方法、並びにプログラムに関する。
近年、生体の状態を検出する技術として、例えば、ユーザの周囲の環境の情報を検出し、検出した環境の情報から、ユーザの生体状態として行動特性を判断し、判断した行動特性に応じた処理をアバタに反映させる技術が提案されている(特許文献1参照)。
しかしながら、特許文献1の技術においては、ユーザの周辺の環境情報を取得することで、ユーザの生体状態に対応する行動特性を判断し、判断した行動特性に応じた処理をアバタに反映させるに過ぎず、人物の生体に関する情報を直接得て判断するものではないため、必ずしも適切な処理を施すことができなかった。
本技術は、このような状況に鑑みてなされたものであり、特に、簡単な方法で、ユーザの生体状態を高精度に検出できるようにするものである。
本技術の一側面の検出装置は、生体から採取された涙の成分分析を行う分析部と、前記涙の成分分析の結果に基づいて、前記生体の状態を検出する検出部とを含む。
前記検出部には、前記涙の成分分析の結果に基づいて、前記涙の種別により定まる前記生体の状態を検出させるようにすることができる。
前記生体の状態には、前記生体の感情に起因する感情性の状態が含まれるようにすることができる。
前記検出部には、前記涙の成分分析の結果として得られた、前記生体の状態が所定の感情性の状態に遷移しようとするときに分泌される物質の分析結果に基づいて、前記生体の状態が前記所定の感情性の状態に遷移するかを特定させるようにすることができる。
前記検出部には、前記涙の成分分析の結果として得られた、前記生体の状態が第1の感情性の状態に遷移しようとするときに分泌される物質の分析結果に基づいて算出された、前記第1の感情性の状態に遷移しようとする度合いと、前記涙の成分分析の結果として得られた、前記生体の状態が第2の感情性の状態に遷移しようとするときに分泌される物質の分析結果に基づいて算出された、前記第2の感情性の状態に遷移しようとする度合いとに基づいて、前記生体の状態が、前記第1の感情性の状態または前記第2の感情性の状態の何れの状態に遷移するかを特定させるようにすることができる。
前記検出部には、前記第1の感情性の状態に遷移しようとする度合い、および前記第2の感情性の状態に遷移しようとする度合いに基づいて、これから遷移すると推定される前記生体の状態の度合いを示す事前予測感情レベルをさらに算出させるようにすることができる。
前記検出部には、前記事前予測感情レベルに基づいて、現在時刻よりも後の時刻における前記事前予測感情レベルの変動を予測させるようにすることができる。
前記検出部には、前記涙の成分分析の結果として得られた、前記生体の状態が所定の感情性の状態であるときに多く分泌される物質の分析結果に基づいて、前記生体の状態を特定させるようにすることができる。
前記検出部には、前記涙の成分分析の結果として得られた、第1の感情性の状態であるときに多く分泌される物質の分析結果に基づいて算出された、前記第1の感情性の状態らしさの度合いと、前記涙の成分分析の結果として得られた、第2の感情性の状態であるときに多く分泌される物質の分析結果に基づいて算出された、前記第2の感情性の状態らしさの度合いとに基づいて、前記涙の状態が、前記第1の感情性の状態または前記第2の感情性の状態の何れの状態であるかを特定させるようにすることができる。
前記検出部には、前記第1の感情性の状態らしさの度合い、および前記第2の感情性の状態らしさの度合いに基づいて、前記生体の感情性の状態の度合いを示す感情レベルをさらに算出させるようにすることができる。
前記検出部には、前記感情レベルに基づいて、現在時刻よりも後の時刻における前記感情レベルの変動を予測させるようにすることができる。
前記生体の状態には、前記生体への刺激に起因する状態が含まれるようにすることができる。
前記検出部には、前記涙の成分分析の結果として得られた、前記生体への刺激があるとき、または前記生体に疼痛があるときに分泌される物質の分析結果に基づいて、前記生体の状態が、前記生体への刺激に起因する状態であるか、または前記生体に疼痛がある状態が継続したときに遷移する、前記生体の感情に起因する感情性の状態であるかを特定させるようにすることができる。
前記検出部には、前記生体への刺激があるとき、または前記生体に疼痛があるときに分泌される物質の分析結果に基づく、その前記物質の分泌量を示す値が所定の閾値以上となる期間の長さに基づいて、前記生体の状態が、前記生体への刺激に起因する状態であるか、または前記生体の感情に起因する感情性の状態であるかを特定させるようにすることができる。
前記検出部には、前記生体への刺激があるとき、または前記生体に疼痛があるときに分泌される物質の分析結果に基づいて、前記生体への刺激レベルまたは疼痛レベルを算出させるようにすることができる。
前記検出部には、前記刺激レベルまたは前記疼痛レベルに基づいて、現在時刻よりも後の時刻における前記刺激レベルまたは前記疼痛レベルの変動を予測させるようにすることができる。
前記検出部には、前記涙の成分分析の結果として得られた、特定の物質の分析結果に基づいて、前記生体の涙の分泌レベルを特定させるようにすることができる。
前記検出装置は眼球に着脱可能となるようにすることができる。
本技術の一側面の検出方法は、生体から採取された涙の成分分析を行い、前記涙の成分分析の結果に基づいて、前記生体の状態を検出するステップを含む。
本技術の一側面のプログラムは、生体から採取された涙の成分分析を行う分析ステップと、前記涙の成分分析の結果に基づいて、前記生体の状態を検出する検出ステップとを含む処理をコンピュータに実行させる。
本技術の一側面においては、生体から採取された涙の成分分析が行われ、前記涙の成分分析の結果に基づいて、前記生体の状態が検出される。
本技術の一側面の検出装置は、独立した装置であっても良いし、検出処理を行うブロックであっても良い。
本技術の一側面によれば、生体の状態を容易で、かつ、高精度に検出することが可能となる。
<生体の状態を検出する技術>
本技術は、被験者である人物の涙を検出し、検出した涙を分析することで、人物の感情を生体の情報として検出するものである。
本技術は、被験者である人物の涙を検出し、検出した涙を分析することで、人物の感情を生体の情報として検出するものである。
本技術の構成例は、大きく2つある。第1の構成例は、コンタクトレンズ型であって涙を採集し、採集した涙を分析する機能を備えた表示装置が、分析した涙の成分の情報に基づいて、人物の生体状態を特定し、スマートフォンなどの携帯端末に送信して表示させるものである。
また、第2の構成例は、コンタクトレンズ型の採集装置で涙の採集のみを実行し、その後、採集した涙を外部の分析装置が分析し、分析した涙の成分の情報に基づいて、人物の生体状態を特定し、スマートフォンなどの携帯端末に送信して表示させるものである。
すなわち、上述した第1の構成例においては、図1のCase1で示されるように、被験者となる人物H1が、コンタクトレンズ型であって涙を採集して、分析する機能を備えた表示装置を装着すると、表示装置が涙の成分に基づいて生体状態を特定し、スマートフォンなどの携帯端末SPに送信して提示させる。これにより、図1の人物H2で示されるように、被験者となる人物は、携帯端末SPに表示される自らの生体状態の情報を見ることができる。
また、上述した第2の構成例においては、図1のCase2で示されるように、被験者となる人物H1が、涙の採集機能を備えたコンタクトレンズ型の涙の採集装置を装着した後、涙の採集が完了した時点で、人物H11で示されるように、採集装置を目から外す。さらに、人物H12で示されるように、分析装置ANに格納すると、分析装置ANが涙の成分に基づいて、生体状態を特定し、スマートフォンなどの携帯端末SPに送信する。これにより、図1の人物H13で示されるように、被験者となる人物は、携帯端末SPに表示される自らの生体状態を見ることができる。
<第1の構成例>
まず、上述した、本技術の第1の構成例について説明する。
まず、上述した、本技術の第1の構成例について説明する。
図2は、本技術を適用した検出装置であって、上述した第1の構成例にあたるコンタクトレンズ型の涙の採集機能と、採集した涙の分析機能とを備えた表示装置の外観構成を示している。
尚、図2は、左部が、眼球Eに表示装置11を装着したときの眼球Eの側面断面を示したものであり、右部が眼球Eを正面からみたときの外観構成を示している。表示装置11は、眼球Eの曲面に対応する形状とされており、コンタクトレンズを装用する場合と同様に装着される。また、表示装置11の外周部には、涙を採集するための採集口G-1乃至G-6がほぼ等間隔であって、眼球Eに接触する面に設けられている。
尚、採集口G-1乃至G-6は、外周部に6個設けた場合の例を示しているが、それ以外の個数であってもよい。尚、採集口G-1乃至G-6を個別に区別する必要がない場合、単に、採集口Gと称するものとし、その他の構成についても同様に称するものとする。
<表示装置の電気的な構成例>
次に、図3を参照して、表示装置11の電気的な構成例について説明する。
次に、図3を参照して、表示装置11の電気的な構成例について説明する。
すなわち、表示装置11は、表示領域21、給電アンテナ22、信号アンテナ23、発電部24、姿勢検出部25、涙検出部26-1乃至涙検出部26-6、信号処理部27、および表示素子駆動部28を有している。
表示領域21は、ユーザに対して提示する画像や文字等の情報を表示する複数の表示画素からなる表示素子と、表示画素に隣接して配置され、ユーザの眼球表面で反射した光を受光する視線検出用の受光素子とを有している。さらに、表示領域21はユーザの瞼の開閉を検出するための発光素子と受光素子も有している。
給電アンテナ22は、表示領域21を囲むように設けられており、外部から供給される磁界または電界による誘導起電力を受ける。信号アンテナ23は、ユーザの視線に基づいてユーザインターフェース操作を行なった結果などの信号処理部27から供給された情報を外部に送信したり、表示画素に表示する情報などの外部から送信されてきた情報を受信して信号処理部27に供給したりする。
発電部24は、外部からの磁界等による電磁誘導によって給電アンテナ22で生じた誘導電流を整流することで電力を得て蓄電し、表示装置11の各部に電力を供給する。なお、発電部24が所定方法により自ら発電を行なう場合や、充電池を有している場合には、表示装置11に給電アンテナ22を設けなくてもよい。
姿勢検出部25は、電子ジャイロセンサや加速度センサなどからなり、表示装置11が装着されたユーザの姿勢や動きを検出し、その検出結果を信号処理部27に供給する。姿勢検出部25は、例えば、ユーザの頭部の動きやユーザの姿勢を検出する。
涙検出部26-1乃至26-6は、ユーザから分泌される涙を採取し、得られた涙の分泌量の計測や涙の成分分析を行う。なお、以下、涙検出部26-1乃至26-6を特に区別する必要のない場合、単に涙検出部26とも称する。
信号処理部27は、表示装置11全体を制御する。信号処理部27は、例えば、表示領域21の視線検出用の受光素子から供給された信号に基づいて、表示装置11の各領域に配置された受光素子における光の受光量の違い(差)を検出することで、ユーザの視線を検出する。また、信号処理部27は、例えば、表示領域21の瞼開閉検出用の受光素子から供給された信号に基づいて、ユーザの瞼の開閉を検出する。
さらに、信号処理部27は、姿勢検出部25から供給された検出結果や、視線の検出結果、信号アンテナ23により受信された情報などに基づいて表示素子駆動部28を制御し、表示領域21に画像等を表示させる。
具体的には、例えば表示装置11がユーザの眼球に対して回転した場合、姿勢検出部25ではその回転方向と回転量を検出することができる。そこで、信号処理部27は表示素子駆動部28を制御して、姿勢検出部25から供給された眼球に対する表示装置11の回転方向とは逆方向に表示装置11の回転量だけ、表示領域21に表示されている画像を回転させる。これにより、表示装置11がユーザの眼球上で回転してしまうことがあっても、その結果生じる画像の回転を補正し、ユーザに対して画像を見やすく提示することができる。
表示素子駆動部28は、信号処理部27の制御にしたがって表示領域21の表示素子を駆動させ、画像を表示させたり、信号処理部27の制御にしたがって表示領域21の発光素子を発光させたりする。
<表示装置の機能の構成例>
次に、以上において説明した表示装置11の機能の構成例について説明する。
次に、以上において説明した表示装置11の機能の構成例について説明する。
表示装置11の機能的な構成は、例えば、図4に示す構成とされる。なお、図4において、図2における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
図4に示す表示装置11は、表示領域21、給電アンテナ22、信号アンテナ23、発電部24、姿勢検出部25、涙検出部26、信号処理部27、表示素子駆動部28、圧力検出部51、温度検出部52、および記録部53を有している。
また、表示領域21には、発光素子62、および受光素子63が設けられている。また、涙検出部26は、AD変換部61を備えている。さらに、信号処理部27は、生体状態検出部64を有している。
圧力検出部51は圧力センサなどからなり、表示装置11に対して加えられた圧力を検出し、その検出結果を出力する。圧力検出部51からの出力は、例えば瞼開閉判定等に用いられる。
温度検出部52は、複数の温度センサからなり、ユーザの眼球面の温度や、ユーザの瞼の温度または外気温を測定し、その測定結果を出力する。
記録部53は、例えば不揮発性のメモリなどからなり、信号処理部27から供給されたデータを記録したり、記録しているデータを信号処理部27に供給したりする。
また、表示装置11では、受光素子63、圧力検出部51、姿勢検出部25、涙検出部26、および温度検出部52の出力が、信号処理部27に供給されるようになされている。さらに、表示装置11では、記録部53、信号アンテナ23、給電アンテナ22、および発電部24も信号処理部27と接続されている。
AD(アナログデジタル)変換部61は、涙検出部26に供給されてくる各種のデータをデジタル信号に変換して、信号処理部27に供給する。
生体状態検出部64は、涙検出部26により、ユーザから分泌される涙の分泌量の計測や涙の成分分析の供給を受け付けると共に、計測結果や分析結果に基づいてユーザの生体状態を検出する。
<涙検出部の構成例>
次に、図5を参照して、涙検出部26の構成例について説明する。涙検出部26は、それぞれ採集口Gに対応する位置に設けられており、採集口Gより採集された涙を検出し、さらに、検出した涙の成分を分析するものである。尚、図5においては、左部が涙検出部26の正面図であり、図中の右部が側面図である。
次に、図5を参照して、涙検出部26の構成例について説明する。涙検出部26は、それぞれ採集口Gに対応する位置に設けられており、採集口Gより採集された涙を検出し、さらに、検出した涙の成分を分析するものである。尚、図5においては、左部が涙検出部26の正面図であり、図中の右部が側面図である。
涙検出部26は、微細孔81からなる採集口Gに接する面、計量室82、流路83、差圧流量計84、制御弁85-1,85-2、分析室86-1乃至86-5、マイクロポンプ87、および排出弁88を備えている。さらに、涙検出部26は、AD(アナログデジタル)変換部61を備えている。
微細孔81は、毛細管からなり、採集口Gより、毛細管現象を利用して、図中のように涙Lを採集して計量室82に供給する。計量室82は、図示せぬ電極を備えており、採集された涙の容量を検出し、検出結果が、AD変換部61に供給されて、デジタル信号として出力される。
計量室82に蓄積された涙は、マイクロポンプ87により流路83を介して分析室86へと搬送される。この間、流路83には、差圧流量計84が設けられており、流路83を搬送された涙の流量が計測され、計測結果がAD変換部61に供給されて、デジタル信号として出力される。
分析室86-1乃至86-5は、それぞれ物質a乃至eの成分を分析し、分析結果をAD変換部61に供給し、デジタル信号として出力させる。尚、分析室86の詳細な構成については、図6を参照して詳細を後述する。尚、物質a乃至eとは、物質を識別するために使用する名称であり、実際の物質名ではない。
制御弁85-1,85-2は、差圧流量計84により計測された流量に応じて、循環する涙の量を調整するために、図示せぬ制御部により開度が制御される。
排出弁88は、図示せぬ制御部により制御されて開閉し、分析が終了した涙を排出口より排出する。
尚、図5において、分析室86-1乃至86-5の5個が設けられる例が示されているが、それ以外の数の分析室86が設けられるようにしてもよい。
<分析室の構成例>
次に、図6を参照して、上述した分析室86の構成例について説明する。
次に、図6を参照して、上述した分析室86の構成例について説明する。
分析室86は、励起光源101、分析空間102、ヒータ103、レンズ104、および受光器(分光分析部)106を備えている。
励起光源101は、被検体である物質がヒータ103により蒸発(または昇華)されて分析空間102内で気化されて満たされた状態で、励起光を発生して照射する。このとき、気化された物質に対応した分光スペクトルが発生する。レンズ104は、この分光スペクトルを受光器(分光分析部)106で集光させる。
受光器106は、このような分光スペクトルにより被検体である物質を分析して特定すると共に、特定した検出物体の情報をAD変換部106に供給して、デジタル信号として出力させる。
エアギャップ105は、ヒータ103において発生する熱により、眼球を傷つけたりしないようにするために設けられた熱伝達を低減させるための空気層である。すなわち、分析室86は、表示装置11が眼球に装着されるとき、図中の下部が眼球に接触した状態となる。従って、この状態で、ヒータ103による加熱がなされると、発生した熱が眼球に伝達し、熱傷を与える恐れがある。エアギャップ105は、比較的熱伝達率の低い空気で満たされた空間であるので、ヒータ103により発生された熱を眼球へと伝達するのを低減させ、眼球の熱傷等を防止する。
<生体情報検出処理>
次に、図7のフローチャートを参照して、生体情報検出処理について説明する。
次に、図7のフローチャートを参照して、生体情報検出処理について説明する。
ステップS11において、採集口Gを介して、微細孔81より眼球上の涙を、毛細管現象を利用して採集し、計量室82に供給する。
ステップS12において、計量室82は、採集された涙の採集量を計量し、計量結果をAD変換部61に供給する。AD変換部61は、涙の採集量をデジタル信号に変換して、信号処理部27の生体状態検出部64に供給する。
ステップS13において、生体状態検出部64は、採集量が十分であるか否かを判定する。すなわち、涙の採集量が少ない場合、分析精度が低下する恐れがあるため、所定の精度で検出可能な採集量となったか否かを判定する。
ステップS13において、採集量が十分ではないと見なされた場合、処理は、ステップS12に戻る。すなわち、十分な採集量であると見なされるまで、ステップS12,S13の処理が繰り返される。
そして、ステップS13において、採集量が十分であると見なされた場合、処理は、ステップS14に進む。
ステップS14において、分析室86は、採集された涙を分光解析により分析し、分析結果をAD変換部61に出力する。AD変換部61は、分析結果をデジタル化して信号処理部27の生体状態検出部64に出力する。
ステップS15において、生体状態検出部64は、記録部53を制御して分析結果を記録させる。
ステップS16において、生態状態検出部64は、分析結果に基づいて、生体の状態を検出する。
ステップS17において、生態状態検出部64は、生体状態が正しく適切なものであるか否かを判定する。すなわち、分析結果に基づいた、生体の状態が本来あるべきではない結果であるような場合、処理は、ステップS16に戻る。この場合、分析方法を変更するなどしないと同様の結果となるため、例えば、閾値等を変化させるなどして、ステップS16,S17の処理が繰り返される。尚、この生体の状態が本来あるべき結果であるか否かについては、判断に必要な閾値などの情報を予め設定しておいても良いし、ユーザが直接判断し、その判断に応じた情報が入力されるようにしてもよい。このとき、分析結果に応じた生体の状態の判定方法をユーザが変更させるようにしてもよい。
そして、ステップS17において、検出された生体の状態が正しく、適切なものであると判定された場合、処理は、ステップS18に進む。
ステップS19において、生体状態検出部64は、信号アンテナ23を制御して、検出された生体情報をスマートフォンなどに代表される携帯端末SPに送信して、表示させる。
以上の処理により、生体の状態が携帯端末SPに表示されるので、ユーザは、特段の意識をすることなく生体状態を認識することができる。尚、ステップS17において、適切な生体の状態が検出されていると見なされるまで、分析方法や閾値が変更されながら、ステップS16,S17の処理が繰り返されることにより、分析方法が学習されているとも考えることができる。
従って、学習が完了し、ステップS17において、生体情報が適切であるか否かを判定する必要がなくなった場合については、ステップS17の処理を省略するようにしても良い。
図8は、ステップS17に対応する生体情報が適切であるか否かを判定する処理を省略した生体状態検出処理を説明するフローチャートである。すなわち、図8のフローチャートにおけるステップS41乃至S47の処理は、図7のステップS11乃至S16,S17の処理に対応するものである。尚、個々の処理については、図7のフローチャートを参照して説明した処理と同様であるので、図8の生体状態検出処理については、説明を省略するものとする。
<涙の状態と生体状態との関係>
次に、図9を参照して、涙の状態と生体状態との関係について一例を挙げて説明する。尚、図9における状態は、いずれも生体状態の1である。また、M,N,O,P,Q,R,S,Tは、いずれも矢印方向の生体状態の状態遷移に寄与する涙の成分であり、以降においては、成分M,N,O,P,Q,R,S,Tと称するものとする。
次に、図9を参照して、涙の状態と生体状態との関係について一例を挙げて説明する。尚、図9における状態は、いずれも生体状態の1である。また、M,N,O,P,Q,R,S,Tは、いずれも矢印方向の生体状態の状態遷移に寄与する涙の成分であり、以降においては、成分M,N,O,P,Q,R,S,Tと称するものとする。
涙の状態に応じた生体状態は、大きく3つの状態に分類され、通常状態、反射刺激に対する防衛状態、および感情性の状態に分けられる。
ここで、通常状態とは、目を保護するために、まばたきとともに涙の膜を眼球に張る状態を表し、このような状態の涙を連続性の涙と称するものとする。従って、涙の状態が連続性の涙である場合には、生体状態が通常状態であるものと定義する。
また、反射刺激に対する防衛状態とは、目に異物が入ったり、玉ねぎの硫化アリルなどの刺激により、連続性の涙を流す状態より多くの量の涙を流して、目を保護しようとする状態を表し、このような涙を、刺激性の状態の涙と称するものとする。以降において、この状態を防衛状態とも称するものとする。
さらに、感情性の状態とは、嬉しい時や悲しい時など、感情の発露とともに涙を流す状態を表し、このような涙をエモーションティアとも称する。
この感情性の状態の涙は、さらに、感情性(Positive)の状態の涙、感情性(Neutral)の状態の涙、感情性(Negative)の状態の涙の3種類に分類される。
感情性(Positive)の状態の涙は、例えば、試験に合格した時、子供が生まれた時、何かの努力が報われた時、Negativeの状態からPositiveの状態に一気に変化した時など、感情がPositiveな状態に変化した状態の涙を表す。
感情性(Neutral)の状態の涙は、例えば、感情性(Positive)の状態と感情性(Negative)の状態が拮抗した状態の涙を表す。ここで、感情性(Positive)の状態と感情性(Negative)の状態が拮抗した状態の涙は、連続性の状態の涙である。ただし、人間であれば、個人差によってどちらかに遷移している状態が一般的で、便宜上、感情性の状態の涙の初期状態として定義する。
感情性(Negative)の状態の涙は、例えば、びっくりした時、恐怖体験をした、心的不安など、感情がNegativeな状態に変化した状態の涙を表す。尚、小指ぶつけて疼痛がずっと発生し、感情がNegativeの状態になった場合の涙は、この感情性(Negative)の状態の涙に分類される。
尚、上述した通常状態、および感情性(Neutral)の状態(初期状態)は、いずれも連続性の状態の涙であるので、通常状態も、初期状態に含まれるものとして説明を進めるものとする。
成分Mは、初期状態から防衛状態に遷移するのに寄与する涙の成分である。成分Mは、例えば、ラクトフェリンやP物質などであり、短期的に増加して閾値に到達した場合、防衛状態に遷移していると判断することができる。すなわち、この成分Mの変化で、ユーザが気づく痛みであるか、または、気づけない痛みであるかを把握することができる。
成分Nは、初期状態から感情性(Positive)の状態へと遷移するのに寄与する涙の成分である。成分Nは、例えば、アドレナリンなどであり、増加して閾値に到達した場合、感情性(Positive)の状態と判断することができる。すなわち、この成分Nの変化で、本人が気づく気分の高揚や興奮であるか、または気づけない気分の高揚や興奮であるかを把握することができる。
成分Oは、初期状態から感情性(Negative)の状態へと遷移するのに寄与する成分である。成分Oは、例えば、副腎皮質刺激ホルモン(ACTH)やノルアドレナリンなどであり、閾値に到達した場合、感情性(Negative)の状態と判断することができる。すなわち、この成分Oの変化で、本人が気づくストレスやフラストレーションであるか、または気づけないストレスやフラストレーションであるかを把握することができる。
成分Qは、防衛状態から感情性の状態へと遷移するのに寄与する成分である。成分Qは、例えば、ラクトフェリンやP物質などであり、長期的に閾値を維持した場合、感情性の状態(疼痛由来)と判断することができる。尚、成分Qは、成分Mと類似した状態を判断するものであるが、閾値の継続時間が長いのが特徴であり、成分Qの変化で、本人が気づく継続的な痛みであるか、または気づけない継続的な痛みであるかを把握することができる。
成分Pは、防衛状態から感情性(Positive)の状態へと遷移するのに寄与する成分である。成分Qは、防衛状態から感情性(Negative)の状態へと遷移するのに寄与する成分である。
また、感情性(Positive)の状態へと遷移するのに寄与する成分は、成分Pの他にも上述した成分Nが存在し、感情性(Negative)の状態へと遷移するのに寄与する成分は、成分Qの他にも成分Oが存在する。このため、成分N,O,P,Qがそれぞれ閾値に到達したときの比率から、感情性(Positive)の状態と感情性(Negative)の状態との相互の状態とレベルを把握することができる。
このため、感情性の絶対値、すなわち、感情性(Positive)の状態および感情性(Negative)の状態のいずれであるかだけを把握したい場合には、成分Nか、若しくは成分P、および成分O若しくは成分Qの両方に起因する成分の増減が閾値に到達したとき、その感情性の状態と判断することができる。
成分Sは、初期状態から感情性(Positive)の状態へと、この後遷移していく前兆を示す成分である。成分Sは、例えば、フェニルエタノールアミン-N-メチル基転移酵素などであり、閾値に到達した場合、感情性(Positive)の状態に、この後遷移していく前兆であると判断することができる。
成分Tは、感情性(Positive)の状態から初期状態へと、この後遷移していく前兆を示す成分である。
成分Uは、初期状態から感情性(Negative)の状態へと、この後遷移していく前兆を示す成分である。成分Uは、例えば、ヒドロコルチゾン(コルチゾール)などが、閾値に到達した場合、感情性(Negative)の状態へと、この後遷移していく前兆と判断することができる。
成分Vは、感情性(Negative)の状態から初期状態へと、この後遷移していく前兆を示す成分である。成分Vは、副腎皮質刺激ホルモン放出ホルモンなどが閾値に到達した場合、初期状態にこの後遷移していく前兆と判断することができる。
すなわち、成分Tまたは成分Vは、感情性の絶対値が、この後抑制される前兆を示す成分であるので、成分Tまたは成分Vの両方に起因する成分である、セロトニン、モノアミン酸化酵素、カテコール-O-メチル基転移酵素などが閾値に到達した場合、初期状態へと、この後遷移していく前兆であると判断することができる。
<涙の成分と時間推移の関係>
次に、図10を参照して、涙の成分と時間推移の関係について説明する。図10は、縦軸が成分Aの濃度を、横軸が経過時間t(s)をそれぞれ示している。尚、図10においては、秒(s)単位の変異を示している。
次に、図10を参照して、涙の成分と時間推移の関係について説明する。図10は、縦軸が成分Aの濃度を、横軸が経過時間t(s)をそれぞれ示している。尚、図10においては、秒(s)単位の変異を示している。
図10で示されるように、初期基準濃度から最大濃度に達するまでの時間が最大濃度到達時間であることを示している。また、初期基準濃度から最大濃度を経て、半減濃度に達するまでの時間が半減濃度到達時間であることが示されている。
図10で示されるように、涙の成分は、数百秒程度の時間の経過とともに変動するものもあるが、図11で示されるように、数時間程度の時間の経過により変化するものもある。尚、図11においては、所定時間毎のΔtの累積的な成分Aの変動を示したものであり、縦軸が成分Aの濃度のΔtごとの累積値(積分値)であり、横軸が経過時間T(s)である。図11においては、時間の単位が時間(hour)とされている。
従って、涙の成分の変化については、物質などに応じて、適切な時間経過に応じた、例えば、秒単位、分単位、時間単位、日単位などを換えた変動量(グラフの傾き)、または、変動パターン等を利用して変化を判断する必要がある。
<感情事前予測演算処理>
次に、図12のフローチャートを参照して、感情事前予測演算処理について説明する。
次に、図12のフローチャートを参照して、感情事前予測演算処理について説明する。
ステップS71において、生体状態検出部64は、過去の成分S,T,U,Vの分析結果を記録部53より読み出して、それらの各成分の基準値を求める。すなわち、記録部53には、過去に求められた成分S,T,U,Vの分析結果が記録されているので、これらが読み出される。
ステップS72において、生体状態検出部64は、各成分の基準値に基づいて、基準変動量S’,T’,U’,V’を求める。
ステップS73において、生体状態検出部64は、現在時刻における成分S,T,U,Vの分析結果を記録部53より読み出して、それらの各成分のΔt変動量である変動量SΔt,TΔt,UΔt,VΔtを求める。
ステップS74において、生体状態検出部64は、成分S,T,U,Vについて、Δt変動量である変動量SΔt,TΔt,UΔt,VΔtと、基準変動量S’,T’,U’,V’との差分S”,T”,U”,V”(=α1(SΔt-S’),α2(TΔt-T’),α3(UΔt-U’),α4(VΔt-V’))を求める。尚、ここで、α1乃至α4は、成分係数であり、各成分の分泌比率を係数化したものであり、比較する数値を正規化するためのものである。
ステップS75において、生体状態検出部64は、感情性(Positive)(感情性ポジティブ)への遷移が生じる度合いPre_Pos_incを差分(S”-T”)として算出する。
ステップS76において、生体状態検出部64は、感情性(Negative)(感情性ネガティブ)への遷移が生じる度合いPre_Neg_incを差分(U”-V”)として算出する。
ステップS77において、生体状態検出部64は、感情性(Positive)への遷移が生じる度合いPre_Pos_incと感情性(Negative)への遷移が生じる度合いPre_Neg_incとの差分(U”-V”)を算出し、0より大きいか否かを判定する。すなわち、生体状態検出部64は、感情性(Positive)の状態へ遷移が生じ易いか、感情性(Negative)への遷移が生じ易いかを判定する。
ステップS77において、感情性(Positive)への遷移が生じる度合いPre_Pos_incと感情性(Negative)への遷移が生じる度合いPre_Neg_incとの差分が0より大きく、感情性(Positive)への遷移が生じ易いと判定された場合、処理は、ステップS78に進む。
ステップS79において、生体状態検出部64は、表示素子駆動部28を制御して、感情性(Positive)の状態に遷移が生じる旨を示す情報を、信号アンテナ23を介して携帯端末SPに送信して表示させる。
一方、ステップS77において、感情性(Positive)への遷移が生じる度合いPre_Pos_incと感情性(Negative)への遷移が生じる度合いPre_Neg_incとの差分が0より小さく、感情性(Negative)への遷移が生じ易いと判定された場合、処理は、ステップS78に進む。
ステップS78において、生体状態検出部64は、表示素子駆動部28を制御して、感情性(Negative)の状態に遷移が生じる旨を示す情報を、信号アンテナ23を介して携帯端末SPに送信して表示させる。
ステップS80において、生体状態検出部64は、感情性(Positive)への遷移が生じる度合いPre_Pos_incと感情性(Negative)への遷移が生じる度合いPre_Neg_incとの差分(U”-V”)を事前予測感情レベルに設定し、記録部53に記録する。
ステップS81において、生体状態検出部64は、事前予測感情レベルに基づいて、事前予測感情レベルの変動予測を行い、表示素子駆動部28を制御して、変動予測結果を、信号アンテナ23を介して携帯端末SPに送信して表示させる。
すなわち、例えば、生体状態検出部64は、事前予測感情レベルが所定の閾値を超えた場合、または、閾値を超えたタイミングから所定の時間ΔTが経過した場合、感情性(Positive)の状態、または、感情性(Negative)の状態のいずれかに遷移する可能性があるのかを表示させる。また、感情性(Positive)の成分がAだけ増加して、感情性(Negative)の成分がBだけ減少した場合、閾値を超えたタイミングから所定の時間ΔTが経過した後、感情性(Positive)の状態、または、感情性(Negative)の状態のいずれかに遷移する可能性があるのかを表示するようにしてもよい。さらに、後述する感情演算処理により特定された感情と、予測との関係から予測される感情の状態を学習し、学習結果に基づいて予測するようにしてもよい。
また、ステップS71において、読み出される過去に求められた成分S,T,U,Vの分析結果は、例えば、今現在の状態の直前の状態から、今現在の状態へと遷移する同一の遷移パターンであって、状態が遷移してから所定の時間分の分析結果である。すなわち、例えば、今現在の状態が初期状態であり、その直前の状態が防衛状態である場合、過去において、初期状態から防衛状態に遷移したタイミングから所定時間分の成分S,T,U,Vの分析結果が読み出される。そして、生体状態検出部64は、読み出された過去に求められた成分S,T,U,Vの分析結果における平均などから基準値の波形を求め、今現在の状態に遷移してからの時間経過と一致するタイミングの、基準値の波形上の傾きを基準変動量S’,T’,U’,V’として算出する。
このように状態遷移が同一の状態遷移パターンにおける過去の成分S,T,U,Vの分析結果から、基準変動量S’,T’,U’,V’を求めるようにすることで、感情事前予測演算の精度を向上させる。
結果として、生体状態の情報として、感情性の状態の遷移を事前予想することが可能となる。
また、図10,図11を参照して説明したように、使用するΔt変動量についても、秒単位、分単位、時間単位、日単位で設定する範囲を変化させることで、短期的な予測や、長期的な予測も可能となる。さらに、以上においては、Δt変動量を用いた例について説明してきたが、Δt変動量に代えて、変動パターンを用いて事前予想するようにしてもよい。
<感情演算処理>
次に、図13のフローチャートを参照して、感情演算処理について説明する。
次に、図13のフローチャートを参照して、感情演算処理について説明する。
ステップS111において、生体状態検出部64は、過去の成分N,O,P,Qの分析結果を記録部53より読み出して、それらの各成分の基準値を求める。すなわち、記録部53には、過去に求められた成分N,O,P,Qの分析結果が記録されているので、これらが読み出される。ここで、読み出される過去に求められた成分N,O,P,Qの分析結果については、上述したステップS71において読み出される成分S,T,U,Vの分析結果と同様の趣旨の分析結果が読み出される。
ステップS112において、生体状態検出部64は、各成分の基準値に基づいて、基準変動量N’,O’,P’,Q’を求める。
ステップS113において、生体状態検出部64は、現在時刻における成分N,O,P,Qの分析結果を記録部53より読み出して、それらの各成分のΔt変動量である変動量NΔt,OΔt,PΔt,QΔtを求める。
ステップS114において、生体状態検出部64は、成分N,O,P,Qについて、Δt変動量である変動量NΔt,OΔt,PΔt,QΔtと、基準変動量N’,O’,P’,Q’との差分N”,O”,P”,Q”(=β1(NΔt-N’),β2(OΔt-O’),β3(PΔt-P’),β4(QΔt-Q’))を求める。尚、ここで、β1乃至β4は、成分係数であり、各成分の分泌比率を係数化したものであり、比較する数値を正規化するためのものである。
ステップS115において、生体状態検出部64は、感情性(Positive)の度合いPos_incを和|N”+P”|として算出する。
ステップS116において、生体状態検出部64は、感情性(Negative)の度合いNeg_incを和|O”+Q”|として算出する。
ステップS117において、生体状態検出部64は、感情性(Positive)の度合いPos_incと感情性(Negative)の度合いNeg_incとの差分を演算し、0より大きいか否かを判定する。すなわち、生体状態検出部64は、感情性(Positive)の状態であるか否かを判定する。
ステップS117において、感情性(Positive)への度合いPos_incと感情性(Negative)の度合いNeg_incとの差分が0より大きく、感情性(Positive)の状態であると判定された場合、処理は、ステップS119に進む。
ステップS119において、生体状態検出部64は、表示素子駆動部28を制御して、感情性(Positive)の状態である旨を示す情報を、信号アンテナ23を制御して、携帯端末SPに送信し、表示させる。
一方、ステップS117において、感情性(Positive)への度合いPos_incと感情性(Negative)の度合いNeg_incとの差分が0より小さく、感情性(Negative)の状態であると判定された場合、処理は、ステップS118に進む。
ステップS118において、生体状態検出部64は、表示素子駆動部28を制御して、感情性(Negative)の状態である旨を示す情報を、信号アンテナ23を制御して、携帯端末SPに送信し、表示させる。
ステップS120において、生体状態検出部64は、感情性(Positive)の度合いPos_incと感情性(Negative)の度合いNeg_incとの差分を感情レベルに設定し、記録部53に記録する。
ステップS121において、生体状態検出部64は、感情レベルに基づいて、感情レベルの変動予測を行い、変動予測結果を、信号アンテナ23を制御して、携帯端末SPに送信し、表示させる。
すなわち、例えば、生体状態検出部64は、感情レベルが所定の閾値を超えた場合、または、閾値を超えたタイミングから所定の時間ΔTが経過した場合、感情性(Positive)の状態、または、感情性(Negative)の状態のいずれかに遷移する可能性があるのかを表示させる。また、感情性(Positive)の成分がAだけ増加して、感情性(Negative)の成分がBだけ減少した場合、閾値を超えたタイミングから所定の時間ΔTが経過した後、感情性(Positive)の状態、または、感情性(Negative)の状態のいずれかに遷移する可能性があるのかを表示させるようにしてもよい。
また、所定の時間が経過した後、各成分の変動量にユーザが状態を入力したデータを使って予測できるようにしてもよいし、各成分の変動量の相関から予測するようにしてもよい。さらに、起きた時/ごはんを食べる時/通勤/仕事中/帰宅/家族と会話/就寝前といった環境情報を外部テキストマイニングデータとして、これらの相関に基づいて予測するようにしてもよい。さらに、所定の時間が経過した後の予測を移動平均予測または近似値予測するようにしてもよい。
<激痛・疼痛演算処理>
次に、図14のフローチャートを参照して、激痛・疼痛演算処理について説明する。
次に、図14のフローチャートを参照して、激痛・疼痛演算処理について説明する。
ステップS151において、生体状態検出部64は、過去の成分Mの分析結果を記録部53より読み出して、成分の基準値を求める。すなわち、記録部53には、過去に求められた成分Mの分析結果が記録されているので、これらが読み出される。
ステップS152において、生体状態検出部64は、成分Mの基準値に基づいて、基準変動量M’を求める。
ステップS153において、生体状態検出部64は、現在時刻における成分Mの分析結果を記録部53より読み出して、成分MのΔt変動量である変動量MΔtを求める。
ステップS154において、生体状態検出部64は、成分Mについて、Δt変動量である変動量MΔtと、基準変動量M’との差分M”(=γ1(MΔt-M’)を求める。尚、ここで、γ1は、成分係数であり、各成分の分泌比率を係数化したものであり、比較する数値を正規化するためのものである。
ステップS155において、生体状態検出部64は、差分M”が所定の閾値より大きいか否かを判定する。すなわち、生体状態検出部64は、疼痛に起因する感情性(Negative)であるか、または防衛状態であるか否かを判定する。
ステップS155において、差分M”が閾値より大きいと判定された場合、疼痛に起因する感情性(Negative)であるか、または防衛状態であるものとみなされて、処理は、ステップS156に進む。
ステップS156において、生体状態検出部64は、5乃至6分程度の時間ΔT1の間、差分M”が閾値よりも大きい状態が継続しているか否かを判定する。
ステップS156において、5乃至6分程度の時間ΔT1の間、差分M”が閾値よりも大きい状態が継続しているとみなされた場合、処理は、ステップS157に進む。
ステップS157において、生体状態検出部64は、表示素子駆動部28を制御して、防衛状態である旨を示す情報を、信号アンテナ23を制御して、携帯端末SPに送信し、表示させる。すなわち、成分Mがある程度短期的に閾値よりも高い場合には、外部刺激によるものである可能性が高いので、防衛状態であると判定される。
一方、ステップS156において、5乃至6分程度の時間ΔT1の間、差分M”が閾値よりも大きい状態が継続していないとみなされた場合、ステップS157の処理はスキップされる。
ステップS158において、生体状態検出部64は、1日程度の時間ΔTNの間、差分M”が閾値よりも大きい状態が継続しているか否かを判定する。
ステップS158において、1日程度の時間ΔTNの間、差分M”が閾値よりも大きい状態が継続しているとみなされた場合、処理は、ステップS159に進む。
ステップS159において、生体状態検出部64は、表示素子駆動部28を制御して、疼痛に起因する感情性(Negative)の状態である旨を示す情報を、信号アンテナ23を制御して、携帯端末SPに送信し、表示させる。すなわち、1日程度というある程度長期的な期間、成分Mが所定の閾値よりも高い場合には、当初は、外部刺激によるものであっても、痛みが継続することにより、疼痛に起因する感情性(Negative)の状態であると判定される。
一方、ステップS158において、1日程度の時間ΔTNの間、差分M”が閾値よりも大きい状態が継続していないとみなされた場合、ステップS159の処理はスキップされる。
ステップS160において、生体状態検出部64は、差分M”を刺激・疼痛レベルに設定し、記録部53に記録する。
ステップS161において、生体状態検出部64は、刺激・疼痛レベルに基づいて、刺激・疼痛レベルの変動予測を行い、表示素子駆動部28を制御して、変動予測結果を、信号アンテナ23を制御して、携帯端末SPに送信し、表示させる。
すなわち、例えば、生体状態検出部64は、刺激・疼痛レベルの変動パターンの傾向分析から、新しい刺激・疼痛レベルの変化がどのように推移するかを予測して表示させるようにしてもよい。
また、生体状態検出部64は、刺激・疼痛レベルが、閾値を超えた場合、または、閾値を超えてから所定の時間が経過したら、刺激・疼痛レベルの変化がどのように推移するかを予測するようにしてもよい。
さらに、生体状態検出部64は、所定の時間が経過した後、各成分の変動量にユーザが状態を入力したデータを使って刺激・疼痛レベルの変化を予測するようにしてもよい。また、生体状態検出部64は、各成分の変動量の相関から刺激・疼痛レベルの変化を予測するようにしてもよい。
さらに、生体状態検出部64は、起きた時/ごはんを食べる時/通勤/仕事中/帰宅/家族と会話/就寝前といった環境情報を外部テキストマイニングデータと一緒に記憶して予測するようにしてもよいし、所定の時間が経過した後の予測を移動平均予測または近似値予測するようにしてもよい。
また、生体状態検出部64は、例えば、ユーザが認識できない刺激・疼痛レベルの変動が発生するかを予測してユーザに知らせるのみならず、さらに、刺激・疼痛レベルにより、必要に応じて医療機関等に報告するようにしてもよい。
<涙分泌量演算処理>
以上においては、図9を参照して説明した感情性の状態と反射刺激に対する防衛状態といったユーザの生体の状態がその他の状態へと遷移するのに寄与する成分の検出により、生体の状態を特定する処理や、この先で、どのように生体の状態が変化するのかを予測する処理について説明してきた。このため、図9で定義されていない生体状態についても、所定の生体状態への遷移に寄与する成分を検出することで応用することができる。
以上においては、図9を参照して説明した感情性の状態と反射刺激に対する防衛状態といったユーザの生体の状態がその他の状態へと遷移するのに寄与する成分の検出により、生体の状態を特定する処理や、この先で、どのように生体の状態が変化するのかを予測する処理について説明してきた。このため、図9で定義されていない生体状態についても、所定の生体状態への遷移に寄与する成分を検出することで応用することができる。
例えば、涙の分泌を誘発する塩化マンガン(II)や酸化マンガン(III)を成分Zとして測定し、涙分泌量を演算する涙分泌量演算処理に適用するようにしても良い。そこで、次に、図14のフローチャートを参照して、涙分泌量演算処理について説明する。
ステップS191において、生体状態検出部64は、過去の成分Zの分析結果を記録部53より読み出して、成分の基準値を求める。すなわち、記録部53には、過去に求められた成分Zの分析結果が記録されているので、これらが読み出される。
ステップS192において、生体状態検出部64は、成分Zの基準値に基づいて、基準変動量Z’を求める。
ステップS193において、生体状態検出部64は、現在時刻における成分Zの分析結果を記録部53より読み出して、成分ZのΔt変動量である変動量ZΔtを求める。
ステップS194において、生体状態検出部64は、成分Zについて、Δt変動量である変動量ZΔtと、基準変動量Z’との差分Z”(=Θ1(ZΔt-Z’)を求める。尚、ここで、Θ1は、成分係数であり、各成分の分泌比率を係数化したものであり、比較する数値を正規化するためのものである。
ステップS195において、生体状態検出部64は、差分Z”を涙分泌レベルに設定し、記録部53に記録する。
ステップS196において、生体状態検出部64は、涙分泌レベルに基づいて、涙分泌レベルの変動予測を行い、表示素子駆動部28を制御して、変動予測結果を信号アンテナ23を制御して、携帯端末SPに送信し、表示させる。
すなわち、例えば、生体状態検出部64は、涙分泌レベルの変動パターンの傾向分析から、新しい涙分泌レベルの変化がどのように推移するかを予測して表示させるようにしてもよい。
また、生体状態検出部64は、涙分泌レベルが、閾値を超えた場合、または、閾値を超えてから所定の時間が経過したら、涙分泌レベルの変化がどのように推移するかを予測するようにしてもよい。
さらに、生体状態検出部64は、所定の時間が経過した後、各成分の変動量にユーザが状態を入力したデータを使って涙分泌レベルの変化を予測するようにしてもよい。また、生体状態検出部64は、成分Oまたは成分Q(副腎皮質刺激ホルモン(ACTH))の変動量の相関から涙分泌レベルの変化を予測するようにしてもよい。
さらに、生体状態検出部64は、起きた時/ごはんを食べる時/通勤/仕事中/帰宅/家族と会話/就寝前といった環境情報を外部テキストマイニングデータと一緒に記憶して予測するようにしてもよいし、所定の時間が経過した後の予測を移動平均予測または近似値予測するようにしてもよい。
<覚醒・睡眠事前予測演算処理>
以上においては、涙分泌量を成分Zにより予測する例について説明してきたが、例えば、成分S,T,U,Vを用いて、事前感情予測演算処理を実行する例と同様の手法により、事前覚醒成分と事前睡眠成分を定義して、覚醒・睡眠事前予測演算処理を実行するようにして、覚醒・睡眠事前予測といった生体状態を検出するようにしても良い。ここで、事前覚醒成分は、例えば、アドレナリンなどであり、また、事前睡眠成分は、ノルアドレナリンなどである。
以上においては、涙分泌量を成分Zにより予測する例について説明してきたが、例えば、成分S,T,U,Vを用いて、事前感情予測演算処理を実行する例と同様の手法により、事前覚醒成分と事前睡眠成分を定義して、覚醒・睡眠事前予測演算処理を実行するようにして、覚醒・睡眠事前予測といった生体状態を検出するようにしても良い。ここで、事前覚醒成分は、例えば、アドレナリンなどであり、また、事前睡眠成分は、ノルアドレナリンなどである。
そこで、次に、図16のフローチャートを参照して、覚醒・睡眠事前予測演算処理について説明する。
ステップS221において、生体状態検出部64は、過去の事前覚醒成分AAと事前睡眠成分BBの分析結果を記録部53より読み出して、それらの各成分の基準値を求める。すなわち、記録部53には、過去に求められた成分AA,BBの分析結果が記録されているので、これらが読み出される。
ステップS222において、生体状態検出部64は、各成分の基準値に基づいて、基準変動量AA’,BB’を求める。
ステップS223において、生体状態検出部64は、現在時刻における成分AA,BBの分析結果を記録部53より読み出して、それらの各成分のΔt変動量である変動量AAΔt,BBΔtを求める。
ステップS224において、生体状態検出部64は、成分AA,BBについて、Δt変動量である変動量AAΔt,BBΔtと、基準変動量AA’,BB’との差分AA”,BB”(=η1(AAΔt-AA’),η2(BBΔt-BB’)を求める。尚、ここで、η1,η2は、成分係数であり、各成分の分泌比率を係数化したものであり、比較する数値を正規化するためのものである。
ステップS225において、生体状態検出部64は、覚醒への遷移が生じる度合いPre_Awa_incをAA”として算出する。
ステップS226において、生体状態検出部64は、睡眠への遷移が生じる度合いPre_Dor_incをBB”として算出する。
ステップS227において、生体状態検出部64は、覚醒への遷移が生じる度合いPre_Awa_incと睡眠への遷移が生じる度合いPre_Dor_incとの差分を求め、0より大きいか否かを判定する。すなわち、生体状態検出部64は、覚醒へ遷移が生じ易いか、睡眠への遷移が生じ易いかを判定する。
ステップS227において、覚醒への遷移が生じる度合いPre_Awa_incと睡眠への遷移が生じる度合いPre_Dor_incとの差分が0より大きく、覚醒への遷移が生じ易いと判定された場合、処理は、ステップS229に進む。
ステップS229において、生体状態検出部64は、覚醒の状態に遷移が生じる旨を示す情報を、信号アンテナ23を制御して、携帯端末SPに送信し、表示させる。
一方、ステップS227において、覚醒への遷移が生じる度合いPre_Awa_incと睡眠への遷移が生じる度合いPre_Dor_incとの差分が0より小さく、睡眠への遷移が生じ易いと判定された場合、処理は、ステップS228に進む。
ステップS228において、生体状態検出部64は、睡眠の状態に遷移が生じる旨を示す情報を、信号アンテナ23を制御して、携帯端末SPに送信し、表示させる。
ステップS230において、生体状態検出部64は、覚醒への遷移が生じる度合いPre_Awa_incと睡眠への遷移が生じる度合いPre_Dor_incとの差分を事前予測覚醒・睡眠レベルに設定し、記録部53に記録する。
ステップS231において、生体状態検出部64は、事前予測覚醒・睡眠レベルに基づいて、事前予測覚醒・睡眠レベルの変動予測を行い、変動予測結果を、信号アンテナ23を制御して、携帯端末SPに送信し、表示させる。
すなわち、例えば、生体状態検出部64は、事前予測覚醒・睡眠レベルが所定の閾値を超えた場合、または、閾値を超えたタイミングから所定の時間ΔTが経過した場合、覚醒の状態、または、睡眠の状態のいずれかに遷移する可能性があるのかを表示させる。また、覚醒の成分がAだけ増加して、睡眠の成分がBだけ減少した場合、閾値を超えたタイミングから所定の時間ΔTが経過した後、覚醒の状態、または、嗣明の状態のいずれかに遷移する可能性があるのかを表示させるようにしてもよい。さらに、後述する覚醒・睡眠演算処理により特定された感情と、予測との関係から予測される感情の状態を学習し、学習結果に基づいて予測するようにしてもよい。
生体状態検出部64は、所定の時間が経過した後、各成分の変動量にユーザが状態を入力したデータを使って予測するようにしてもよい。また、生体状態検出部64は、成分Oまたは成分Q(副腎皮質刺激ホルモン(ACTH))の変動量の相関から事前予測覚醒・睡眠レベルを予測してもよいし、起きた時/ごはんを食べる時/通勤/仕事中/帰宅/家族と会話/就寝前といった環境情報を外部テキストマイニングデータと一緒に予測するようにしてもよい。さらに、生体状態検出部64は、所定の時間が経過した後の予測を移動平均予測または近似値予測するようにしてもよい。
<覚醒・睡眠演算処理>
以上においては、覚醒・睡眠事前予測演算処理について説明してきたが、感情演算処理と同様に、覚醒成分と睡眠成分とから覚醒・睡眠といった生体状態を検出することもできる。そこで、次に、図17のフローチャートを参照して、覚醒・睡眠演算処理について説明する。尚、ここでは、覚醒成分CCは、例えば、フェニルエタノールアミン-N-メチル基転移酵素 (phenylethanolamine N-methyltransferase, PNMT)などであり、睡眠成分DDは、例えば、ドーパミンβ水酸化酵素 (dopamine β-hydroxylase, DBH)などである。
以上においては、覚醒・睡眠事前予測演算処理について説明してきたが、感情演算処理と同様に、覚醒成分と睡眠成分とから覚醒・睡眠といった生体状態を検出することもできる。そこで、次に、図17のフローチャートを参照して、覚醒・睡眠演算処理について説明する。尚、ここでは、覚醒成分CCは、例えば、フェニルエタノールアミン-N-メチル基転移酵素 (phenylethanolamine N-methyltransferase, PNMT)などであり、睡眠成分DDは、例えば、ドーパミンβ水酸化酵素 (dopamine β-hydroxylase, DBH)などである。
ステップS261において、生体状態検出部64は、過去の成分CC,DDの分析結果を記録部53より読み出して、それらの各成分の基準値を求める。すなわち、記録部53には、過去に求められた成分CC,DDの分析結果が記録されているので、これらが読み出される。
ステップS262において、生体状態検出部64は、各成分の基準値に基づいて、基準変動量CC’,DD’を求める。
ステップS263において、生体状態検出部64は、現在時刻における成分CC,DDの分析結果を記録部53より読み出して、それらの各成分のΔt変動量である変動量CCΔt,DDΔtを求める。
ステップS264において、生体状態検出部64は、成分CC,DDについて、Δt変動量である変動量CCΔt,DDΔtと、基準変動量CC’,DD’との差分CC”,DD”(=μ1(CCΔt-CC’),μ2(DDΔt-DD’)を求める。尚、ここで、μ1,μ2は、成分係数であり、各成分の分泌比率を係数化したものであり、比較する数値を正規化するためのものである。
ステップS265において、生体状態検出部64は、覚醒の度合いAwa_incを|CC”|として算出する。
ステップS266において、生体状態検出部64は、睡眠の度合いDor_incを|DD”|として算出する。
ステップS267において、生体状態検出部64は、覚醒の度合いAwa_incと睡眠の度合いDor_incとの差分を減算し、0より大きいか否かを判定する。すなわち、生体状態検出部64は、覚醒の状態であるか否かを判定する。
ステップS267において、覚醒への度合いAwa_incと睡眠の度合いDor_incとの差分が0より大きく、覚醒状態であると判定された場合、処理は、ステップS269に進む。
ステップS269において、生体状態検出部64は、覚醒の状態である旨を示す情報を、信号アンテナ23を制御して、携帯端末SPに送信し、表示させる。
一方、ステップS267において、覚醒の度合いAwa_incと睡眠の度合いDor_incとの差分が0より小さく、睡眠状態であると判定された場合、処理は、ステップS268に進む。
ステップS268において、生体状態検出部64は、睡眠の状態である旨を示す情報を、信号アンテナ23を制御して、携帯端末SPに送信し、表示させる。
ステップS270において、生体状態検出部64は、覚醒への度合いAwa_incと睡眠の度合いDor_incとの差分を覚醒・睡眠レベルに設定し、記録部53に記録する。
ステップS271において、生体状態検出部64は、覚醒・睡眠レベルに基づいて、覚醒・睡眠レベルの変動予測を行い、表示素子駆動部28を制御して、変動予測結果を、信号アンテナ23を制御して、携帯端末SPに送信し、表示させる。
すなわち、例えば、生体状態検出部64は、覚醒・睡眠レベルが所定の閾値を超えた場合、または、閾値を超えたタイミングから所定の時間ΔTが経過した場合、覚醒・睡眠の状態のいずれかに遷移する可能性があるのかを表示させるようにしてもよい。また、覚醒の成分がAだけ増加して、睡眠の成分がBだけ減少した場合、閾値を超えたタイミングから所定の時間ΔTが経過した後、覚醒の状態、または、睡眠の状態のいずれかに遷移する可能性があるのかを表示させるようにしてもよい。
所定の時間が経過した後、各成分の変動量にユーザが状態を入力したデータを使って予測できるようにしてもよいし、各成分の変動量の相関から予測するようにしてもよい。さらに、起きた時/ごはんを食べる時/通勤/仕事中/帰宅/家族と会話/就寝前といった環境情報を外部テキストマイニングデータとして、これらの相関に基づいて予測するようにしてもよい。さらに、所定の時間が経過した後の予測を移動平均予測または近似値予測するようにしてもよい。
<ドライアイズ判定処理>
以上においては、涙の成分から各種の生体状態の情報を検出する例について説明してきたが、涙の分泌量、成分、および分泌頻度などからドライアイズであるか否かを示す情報を生体状態の情報として検出するようにしても良い。そこで、次に、図18のフローチャートを参照して、ドライアイズ判定処理について説明する。
以上においては、涙の成分から各種の生体状態の情報を検出する例について説明してきたが、涙の分泌量、成分、および分泌頻度などからドライアイズであるか否かを示す情報を生体状態の情報として検出するようにしても良い。そこで、次に、図18のフローチャートを参照して、ドライアイズ判定処理について説明する。
ステップS301において、採集口Gを介して、微細孔81より眼球上の涙を採集し、計量室82に供給する。
ステップS302において、計量室82は、採集された涙の採集量を計量し、計量結果をAD変換部61に供給する。AD変換部61は、涙の採集量をデジタル信号に変換して、信号処理部27の生体状態検出部64に供給する。
ステップS303において、分析室86は、採集された涙を分光解析により分析し、分析結果をAD変換部61に出力する。AD変換部61は、分析結果をデジタル化して信号処理部27の生体状態検出部64に出力する。
ステップS304において、生体状態検出部64は、涙の分泌頻度を検出し、記録部53を制御して分泌頻度の情報を記録させる。
ステップS305において、生態状態検出部64は、涙の採集量、成分分析結果、および涙の分泌頻度に基づいて、ドライアイズ症候群であるか否かを判定し、判定結果を、信号アンテナ23を制御して、携帯端末SPに送信し、表示させる。
以上の処理により、ドライアイズ症候群であるか否かの判定結果を、ユーザの生体情報として検出し、ユーザに告知することが可能となる。また、涙の採集量、成分分析結果、および涙の分泌頻度のデータを信号アンテナ23を通じて外部機器に送信し、外部機器自身や外部機器とデータサーバを用いた判定システムにより、ドライアイズ症候群であるかどうかを推定してもよい。
さらに推定結果により、予め、催涙物質が蓄えられた容器を有する効果器から催涙物質を分泌し、涙腺を化学的に刺激したり、光や電気、構造物の接触などにより、物理的に刺激し、涙を強制的に分泌させてもよい。また、スマートフォンなどの表示器にドライアイズ症候群を緩和ないし根治させるためのリハビリ動作をユーザに求める表示をしてもよいし、データを病院などと共有できるサーバへ格納し、ユーザに対して専門医からアドバイスや薬剤を処方するシステムとしてもよい。
<第1の変形例>
以上においては、例えば、生体状態Aに寄与する成分と生体状態Bに寄与する成分とのそれぞれの度合いの差分が正であるか否かに基づいて、生体状態A,Bのいずれかを判定するといった処理の例について説明してきたが、例えば、それぞれに閾値を設定し、それぞれの閾値との関係に基づいて、生体状態A,Bのいずれであるかを判定するようにしてもよい。
以上においては、例えば、生体状態Aに寄与する成分と生体状態Bに寄与する成分とのそれぞれの度合いの差分が正であるか否かに基づいて、生体状態A,Bのいずれかを判定するといった処理の例について説明してきたが、例えば、それぞれに閾値を設定し、それぞれの閾値との関係に基づいて、生体状態A,Bのいずれであるかを判定するようにしてもよい。
すなわち、図19の上段で示されるように、感情性(Positive)に寄与する成分X(Positive)の濃度が閾値Xp’より大きくなり、かつ、図19の下段で示されるように、感情性(negative)に寄与する成分X(negative)の濃度が閾値Xn’’よりも小さくなったタイミングから、感情性(Positive)に寄与する成分X(Positive)の濃度が閾値Xp’’より小さくなり、かつ、感情性(negative)に寄与する成分X(negative)の濃度が閾値Xn’を超えた時にまでを、区間1で示される、感情性(Positive)の状態とするようにしてもよい。
この成分X(Positive)は、例えば、アドレナリンなどであり、初期状態から成分X(Negative)は、例えば、副腎皮質刺激ホルモン(ACTH)やノルアドレナリンなどである。
また、感情性(Positive)の状態が満たされるタイミングから所定の時間ΔTp’,ΔTn’だけ経過したタイミングから、感情性(Positive)の状態が満たされなくなるタイミングから、所定の時間ΔTp’’,ΔTn’’だけ経過したタイミングまでを、区間2で示されるように、感情性(Positive)の状態として設定するようにしてもよい。
<第2の変形例>
以上においては、感情性(Positive)に寄与する成分X(Positive)と、感情性(negative)に寄与する成分X(negative)との相互の条件に基づいて、感情性(Positive)の状態であるか、または、感情性(negative)の状態であるか設定する例について説明してきたが、例えば、いずれか一方の条件のみで感情性(Positive)の状態であるか、または、感情性(negative)の状態であるかを設定するようにしてもよい。
以上においては、感情性(Positive)に寄与する成分X(Positive)と、感情性(negative)に寄与する成分X(negative)との相互の条件に基づいて、感情性(Positive)の状態であるか、または、感情性(negative)の状態であるか設定する例について説明してきたが、例えば、いずれか一方の条件のみで感情性(Positive)の状態であるか、または、感情性(negative)の状態であるかを設定するようにしてもよい。
例えば、図20で示されるように、感情性(Positive)に寄与する成分X(Positive)の濃度が閾値X’より大きくなり、閾値X’’より小さくなるまでの区間1を感情性(Positive)の状態であるものとし、それ以外の区間を感情性(negative)の状態であるものとして設定するようにしてもよい。この場合、感情性(Positive)に寄与する成分X(Positive)は、例えば、上述した成分Nなどであり、例えば、アドレナリンなどである。
また、図20で示されるように、感情性(Positive)に寄与する成分X(Positive)の濃度が閾値X’より大きくなったタイミングから所定の時間ΔT’が経過したタイミングから、閾値X’’より小さくなったタイミングから所定の時間ΔT’’が経過したタイミングまでの区間2を感情性(Positive)の状態であるものとし、それ以外の区間を感情性(negative)の状態であるものとして、今後遷移していく前兆として把握するようにしてもよい。この場合、感情性(Positive)に寄与する成分X(Positive)は、例えば、上述した成分Sなどであり、例えば、フェニルエタノールアミン-N-メチル基転移酵素などである。
同様に、例えば、図21で示されるように、感情性(negative)に寄与する成分X(negative)の濃度が閾値X’’より小さくなり、閾値X’より大きくなるまでの区間1を感情性(negative)の状態であるものとし、それ以外の区間を感情性(Positive)の状態であるものとして設定するようにしてもよい。この場合、感情性(negative)に寄与する成分X(negative)は、例えば、上述した成分Sなどであり、例えば、フェニルエタノールアミン-N-メチル基転移酵素などである。
また、図21で示されるように、感情性(negative)に寄与する成分X(negative)の濃度が閾値X’’より小さくなったタイミングから所定の時間ΔT’が経過したタイミングから、閾値X’より大きくなったタイミングから所定の時間ΔT’’が経過したタイミングまでを感情性(negative)の状態であるものとし、それ以外の区間を感情性(Positive)の状態であるものとして、今後遷移していく前兆として把握するようにしてもよい。この場合、感情性(negative)に寄与する成分X(negative)は、例えば、上述した成分Nなどであり、例えば、アドレナリンなどである。
<第3の変形例>
ユーザの特定の動作から、事前予測感情レベル、または、感情レベルの変動予測をするようにしてもよい。
ユーザの特定の動作から、事前予測感情レベル、または、感情レベルの変動予測をするようにしてもよい。
すなわち、図22で示されるように、時刻t12のタイミングで、感情性(negative)の状態であることを示すようなスタンプ(例えば、図中のハートマーク)が押下される操作などがなされた場合、このタイミングから、図中の方形の枠で囲まれた範囲内における感情レベルのランキングを求め、最低値となる値から、感情レベルが0の状態になるまでの期間を予測する。
すなわち、図23で示されるように、感情レベルの値ごとに0に戻るまでの平均時間の分布を求めておくことにより、感情レベルが0になる大凡の時刻を予測することができる。
すなわち、図22の場合、時刻t11が、感情レベルが最低であるので、この値を、図23のグラフに当てはめることで、0になるまでの時間を予測することができる。
また、これまでの感情レベルの波形パターンを記憶しておき、マッチングにより予測するようにしてもよい。尚、事前予測感情レベルについても、感情レベルと同様の手法で予測することが可能である。
<第4の変形例>
さらに、上述した事前予測感情レベル、または、感情レベルの波形パターンを利用して、ユーザに提示する内容を判断するようにしてもよい。
さらに、上述した事前予測感情レベル、または、感情レベルの波形パターンを利用して、ユーザに提示する内容を判断するようにしてもよい。
すなわち、図24で示されるように、事前予測感情レベル、または、感情レベルの波形パターンと、スケジュールは関連しているので、これらのスケジュールを比較して、今お勧めを提示するのがユーザにとって迷惑になるか否か、冗談を挟む余地があるか否か、または、ただ気晴らしの音楽をかけるだけの提示をすへきか、といった判断材料を、いわゆるエージェントに提示するようにしてもよい。
例えば、感情性(negative)を通知する際、仕事の時間帯であれば、感情性(negative)を通知しても気晴らしをして、感情性(Positive)の状態に遷移させるのは難しいだけでなく、作業効率を落としてしまう恐れがある。そこで、このような場合には、感情性(negative)の通知を中止する。そして、例えば、感情性(negative)の通知を受けたときに、散歩などで感情性(Positive)の状態に遷移させ易い昼休みなどの時間帯に通知するようにすることができる。
また、事前予測感情レベル、または、感情レベルの波形パターンと、スケジュール/場所情報の履歴/視聴履歴/行動履歴/詮索し暦/操作履歴などと連動して、各種の判断をさせるようにしてもよい。
<第2の構成例>
以上においては、図1のCase1に対応する、コンタクトレンズ型の涙の採集機能と、その分析機能を備えた表示装置の構成について説明してきた。そこで、次に、図1のCase2に対応する、コンタクトレンズ型の涙の採集装置と、採集装置により採集された涙を分析装置ANで分析し、分析結果を携帯端末などに表示させる構成について説明する。
以上においては、図1のCase1に対応する、コンタクトレンズ型の涙の採集機能と、その分析機能を備えた表示装置の構成について説明してきた。そこで、次に、図1のCase2に対応する、コンタクトレンズ型の涙の採集装置と、採集装置により採集された涙を分析装置ANで分析し、分析結果を携帯端末などに表示させる構成について説明する。
図25は、コンタクトレンズ型の涙の採集装置と、採集装置により採集された涙を分析装置ANで分析し、分析結果を携帯端末などに表示させる場合の構成例を示している。図25の上部は、涙の採集装置201であり、下部は、分析装置ANの構成を示している。
尚、採集装置201は、コンタクトレンズ型の表示装置11における涙検出部26に対応する構成であり、図2の採集口Gに設けられている。
より詳細には、採集装置201は、図5の採集口Gと同様に、微細孔81が、眼球と接触する部位に設けられており、毛細管現象により涙を採集し、格納容器202に格納する。
そして、涙を採集した状態の採集装置201は、分析装置ANにそのままの状態で格納される。
<分析装置の構成例>
次に、図26の分析装置ANの構成例について説明する。尚、図26の分析装置ANにおいて、図4の表示装置11、および図5の涙検出部26を構成する機能と同一の機能を備えた構成については、同一の符号および名称を付しており、その説明は適宜省略するものとする。ただし、同一の機能を備えているが、コンタクトレンズ型の構成内に設けられる図4の表示装置11における構成とは、大きさが異なる。
次に、図26の分析装置ANの構成例について説明する。尚、図26の分析装置ANにおいて、図4の表示装置11、および図5の涙検出部26を構成する機能と同一の機能を備えた構成については、同一の符号および名称を付しており、その説明は適宜省略するものとする。ただし、同一の機能を備えているが、コンタクトレンズ型の構成内に設けられる図4の表示装置11における構成とは、大きさが異なる。
すなわち、分析装置ANは、涙検出部26における分析機能と、表示装置11における生体状態検出機能とを合わせ持ったものである。すなわち、分析装置ANは、流路83、差圧流量計84、制御弁85-1,85-2、分析室86-1乃至86-5、AD変換部211,221-1乃至221-5、マイクロポンプ87、信号処理部27、生体状態検出部64、記録部53、信号アンテナ23、給電アンテナ22、および発電部24を備えている。
尚、分析装置ANは、採集装置201を装着できる部位が設けられており、装着された採集装置201の格納容器202より採集された涙を取り出す流路83が設けられており、ここから採集された涙が分析室86-1乃至86-5に送り出される。分析室86-1乃至86-5は、各種の成分を検出し、検出結果をそれぞれ、AD変換部221-1乃至221-5に出力して、デジタル信号に変換させて信号処理部27に出力させる。この時、差圧流量計84も採集装置201より読み出される涙の流量を計測し、デジタル信号に変換して信号処理部27に出力する。
信号処理部27の生体状態検出部64は、分析室86-1乃至86-5より供給されてくる分析結果に基づいて、上述した処理と同様の処理を実行して信号アンテナ23を制御して、スマートフォンに代表される携帯端末SPに分析結果に応じた情報を送信する。
尚、各種の処理については、Case1における場合と同様であるので、その説明は省略するものとする。
ところで、上述した一連の処理は、ハードウェアにより実行させることもできるが、ソフトウェアにより実行させることもできる。一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどに、記録媒体からインストールされる。
図27は、汎用のパーソナルコンピュータの構成例を示している。このパーソナルコンピュータは、CPU(Central Processing Unit)1001を内蔵している。CPU1001にはバス1004を介して、入出力インタ-フェイス1005が接続されている。バス1004には、ROM(Read Only Memory)1002およびRAM(Random Access Memory)1003が接続されている。
入出力インタ-フェイス1005には、ユーザが操作コマンドを入力するキーボード、マウスなどの入力デバイスよりなる入力部1006、処理操作画面や処理結果の画像を表示デバイスに出力する出力部1007、プログラムや各種データを格納するハードディスクドライブなどよりなる記憶部1008、LAN(Local Area Network)アダプタなどよりなり、インターネットに代表されるネットワークを介した通信処理を実行する通信部1009が接続されている。また、磁気ディスク(フレキシブルディスクを含む)、光ディスク(CD-ROM(Compact Disc-Read Only Memory)、DVD(Digital Versatile Disc)を含む)、光磁気ディスク(MD(Mini Disc)を含む)、もしくは半導体メモリなどのリムーバブルメディア1011に対してデータを読み書きするドライブ1010が接続されている。
CPU1001は、ROM1002に記憶されているプログラム、または磁気ディスク、光ディスク、光磁気ディスク、もしくは半導体メモリ等のリムーバブルメディア1011ら読み出されて記憶部1008にインストールされ、記憶部1008からRAM1003にロードされたプログラムに従って各種の処理を実行する。RAM1003にはまた、CPU1001が各種の処理を実行する上において必要なデータなども適宜記憶される。
以上のように構成されるコンピュータでは、CPU1001が、例えば、記憶部1008に記憶されているプログラムを、入出力インタフェース1005及びバス1004を介して、RAM1003にロードして実行することにより、上述した一連の処理が行われる。
コンピュータ(CPU1001)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア1011に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
コンピュータでは、プログラムは、リムーバブルメディア1011をドライブ1010に装着することにより、入出力インタフェース1005を介して、記憶部1008にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部1009で受信し、記憶部1008にインストールすることができる。その他、プログラムは、ROM1002や記憶部1008に、あらかじめインストールしておくことができる。
なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
尚、本技術は、以下のような構成も取ることができる。
(1) 生体から採取された涙の成分分析を行う分析部と、
前記涙の成分分析の結果に基づいて、前記生体の状態を検出する検出部と
を含む検出装置。
(2) 前記検出部は、前記涙の成分分析の結果に基づいて、前記涙の種別により定まる前記生体の状態を検出する
(1)に記載の検出装置。
(3) 前記生体の状態には、前記生体の感情に起因する感情性の状態が含まれる
(1)または(2)に記載の検出装置。
(4) 前記検出部は、前記涙の成分分析の結果として得られた、前記生体の状態が所定の感情性の状態に遷移しようとするときに分泌される物質の分析結果に基づいて、前記生体の状態が前記所定の感情性の状態に遷移するかを特定する
(3)に記載の検出装置。
(5) 前記検出部は、前記涙の成分分析の結果として得られた、前記生体の状態が第1の感情性の状態に遷移しようとするときに分泌される物質の分析結果に基づいて算出された、前記第1の感情性の状態に遷移しようとする度合いと、前記涙の成分分析の結果として得られた、前記生体の状態が第2の感情性の状態に遷移しようとするときに分泌される物質の分析結果に基づいて算出された、前記第2の感情性の状態に遷移しようとする度合いとに基づいて、前記生体の状態が、前記第1の感情性の状態または前記第2の感情性の状態の何れの状態に遷移するかを特定する
(4)に記載の検出装置。
(6) 前記検出部は、前記第1の感情性の状態に遷移しようとする度合い、および前記第2の感情性の状態に遷移しようとする度合いに基づいて、これから遷移すると推定される前記生体の状態の度合いを示す事前予測感情レベルをさらに算出する
(5)に記載の検出装置。
(7) 前記検出部は、前記事前予測感情レベルに基づいて、現在時刻よりも後の時刻における前記事前予測感情レベルの変動を予測する
(6)に記載の検出装置。
(8) 前記検出部は、前記涙の成分分析の結果として得られた、前記生体の状態が所定の感情性の状態であるときに多く分泌される物質の分析結果に基づいて、前記生体の状態を特定する
(3)に記載の検出装置。
(9) 前記検出部は、前記涙の成分分析の結果として得られた、第1の感情性の状態であるときに多く分泌される物質の分析結果に基づいて算出された、前記第1の感情性の状態らしさの度合いと、前記涙の成分分析の結果として得られた、第2の感情性の状態であるときに多く分泌される物質の分析結果に基づいて算出された、前記第2の感情性の状態らしさの度合いとに基づいて、前記涙の状態が、前記第1の感情性の状態または前記第2の感情性の状態の何れの状態であるかを特定する
(8)に記載の検出装置。
(10) 前記検出部は、前記第1の感情性の状態らしさの度合い、および前記第2の感情性の状態らしさの度合いに基づいて、前記生体の感情性の状態の度合いを示す感情レベルをさらに算出する
(9)に記載の検出装置。
(11) 前記検出部は、前記感情レベルに基づいて、現在時刻よりも後の時刻における前記感情レベルの変動を予測する
(10)に記載の検出装置。
(12) 前記生体の状態には、前記生体への刺激に起因する状態が含まれる
(2)に記載の検出装置。
(13) 前記検出部は、前記涙の成分分析の結果として得られた、前記生体への刺激があるとき、または前記生体に疼痛があるときに分泌される物質の分析結果に基づいて、前記生体の状態が、前記生体への刺激に起因する状態であるか、または前記生体に疼痛がある状態が継続したときに遷移する、前記生体の感情に起因する感情性の状態であるかを特定する
(12)に記載の検出装置。
(14) 前記検出部は、前記生体への刺激があるとき、または前記生体に疼痛があるときに分泌される物質の分析結果に基づく、その前記物質の分泌量を示す値が所定の閾値以上となる期間の長さに基づいて、前記生体の状態が、前記生体への刺激に起因する状態であるか、または前記生体の感情に起因する感情性の状態であるかを特定する
(13)に記載の検出装置。
(15) 前記検出部は、前記生体への刺激があるとき、または前記生体に疼痛があるときに分泌される物質の分析結果に基づいて、前記生体への刺激レベルまたは疼痛レベルを算出する
(13)または(14)に記載の検出装置。
(16) 前記検出部は、前記刺激レベルまたは前記疼痛レベルに基づいて、現在時刻よりも後の時刻における前記刺激レベルまたは前記疼痛レベルの変動を予測する
(15)に記載の検出装置。
(17) 前記検出部は、前記涙の成分分析の結果として得られた、特定の物質の分析結果に基づいて、前記生体の涙の分泌レベルを特定する
(1)乃至(16)の何れかに記載の検出装置。
(18) 前記検出装置は眼球に着脱可能となっている
(1)乃至(17)の何れかに記載の検出装置。
(19) 生体から採取された涙の成分分析を行い、
前記涙の成分分析の結果に基づいて、前記生体の状態を検出する
ステップを含む検出方法。
(20) 生体から採取された涙の成分分析を行う分析ステップと、
前記涙の成分分析の結果に基づいて、前記生体の状態を検出する検出ステップと
を含む処理をコンピュータに実行させるプログラム。
(1) 生体から採取された涙の成分分析を行う分析部と、
前記涙の成分分析の結果に基づいて、前記生体の状態を検出する検出部と
を含む検出装置。
(2) 前記検出部は、前記涙の成分分析の結果に基づいて、前記涙の種別により定まる前記生体の状態を検出する
(1)に記載の検出装置。
(3) 前記生体の状態には、前記生体の感情に起因する感情性の状態が含まれる
(1)または(2)に記載の検出装置。
(4) 前記検出部は、前記涙の成分分析の結果として得られた、前記生体の状態が所定の感情性の状態に遷移しようとするときに分泌される物質の分析結果に基づいて、前記生体の状態が前記所定の感情性の状態に遷移するかを特定する
(3)に記載の検出装置。
(5) 前記検出部は、前記涙の成分分析の結果として得られた、前記生体の状態が第1の感情性の状態に遷移しようとするときに分泌される物質の分析結果に基づいて算出された、前記第1の感情性の状態に遷移しようとする度合いと、前記涙の成分分析の結果として得られた、前記生体の状態が第2の感情性の状態に遷移しようとするときに分泌される物質の分析結果に基づいて算出された、前記第2の感情性の状態に遷移しようとする度合いとに基づいて、前記生体の状態が、前記第1の感情性の状態または前記第2の感情性の状態の何れの状態に遷移するかを特定する
(4)に記載の検出装置。
(6) 前記検出部は、前記第1の感情性の状態に遷移しようとする度合い、および前記第2の感情性の状態に遷移しようとする度合いに基づいて、これから遷移すると推定される前記生体の状態の度合いを示す事前予測感情レベルをさらに算出する
(5)に記載の検出装置。
(7) 前記検出部は、前記事前予測感情レベルに基づいて、現在時刻よりも後の時刻における前記事前予測感情レベルの変動を予測する
(6)に記載の検出装置。
(8) 前記検出部は、前記涙の成分分析の結果として得られた、前記生体の状態が所定の感情性の状態であるときに多く分泌される物質の分析結果に基づいて、前記生体の状態を特定する
(3)に記載の検出装置。
(9) 前記検出部は、前記涙の成分分析の結果として得られた、第1の感情性の状態であるときに多く分泌される物質の分析結果に基づいて算出された、前記第1の感情性の状態らしさの度合いと、前記涙の成分分析の結果として得られた、第2の感情性の状態であるときに多く分泌される物質の分析結果に基づいて算出された、前記第2の感情性の状態らしさの度合いとに基づいて、前記涙の状態が、前記第1の感情性の状態または前記第2の感情性の状態の何れの状態であるかを特定する
(8)に記載の検出装置。
(10) 前記検出部は、前記第1の感情性の状態らしさの度合い、および前記第2の感情性の状態らしさの度合いに基づいて、前記生体の感情性の状態の度合いを示す感情レベルをさらに算出する
(9)に記載の検出装置。
(11) 前記検出部は、前記感情レベルに基づいて、現在時刻よりも後の時刻における前記感情レベルの変動を予測する
(10)に記載の検出装置。
(12) 前記生体の状態には、前記生体への刺激に起因する状態が含まれる
(2)に記載の検出装置。
(13) 前記検出部は、前記涙の成分分析の結果として得られた、前記生体への刺激があるとき、または前記生体に疼痛があるときに分泌される物質の分析結果に基づいて、前記生体の状態が、前記生体への刺激に起因する状態であるか、または前記生体に疼痛がある状態が継続したときに遷移する、前記生体の感情に起因する感情性の状態であるかを特定する
(12)に記載の検出装置。
(14) 前記検出部は、前記生体への刺激があるとき、または前記生体に疼痛があるときに分泌される物質の分析結果に基づく、その前記物質の分泌量を示す値が所定の閾値以上となる期間の長さに基づいて、前記生体の状態が、前記生体への刺激に起因する状態であるか、または前記生体の感情に起因する感情性の状態であるかを特定する
(13)に記載の検出装置。
(15) 前記検出部は、前記生体への刺激があるとき、または前記生体に疼痛があるときに分泌される物質の分析結果に基づいて、前記生体への刺激レベルまたは疼痛レベルを算出する
(13)または(14)に記載の検出装置。
(16) 前記検出部は、前記刺激レベルまたは前記疼痛レベルに基づいて、現在時刻よりも後の時刻における前記刺激レベルまたは前記疼痛レベルの変動を予測する
(15)に記載の検出装置。
(17) 前記検出部は、前記涙の成分分析の結果として得られた、特定の物質の分析結果に基づいて、前記生体の涙の分泌レベルを特定する
(1)乃至(16)の何れかに記載の検出装置。
(18) 前記検出装置は眼球に着脱可能となっている
(1)乃至(17)の何れかに記載の検出装置。
(19) 生体から採取された涙の成分分析を行い、
前記涙の成分分析の結果に基づいて、前記生体の状態を検出する
ステップを含む検出方法。
(20) 生体から採取された涙の成分分析を行う分析ステップと、
前記涙の成分分析の結果に基づいて、前記生体の状態を検出する検出ステップと
を含む処理をコンピュータに実行させるプログラム。
11 表示装置, 21 表示領域, 25 姿勢検出部, 26-1乃至26-3,26 涙検出部, 27 信号処理部, 61 AD変換部, 64 生体状態検出部, 86,86-1乃至86-5 分析室, 101 励起光源, 102 分析空間, 103 ヒータ, 104 レンズ, 105 エアギャップ, 106 受光器
Claims (20)
- 生体から採取された涙の成分分析を行う分析部と、
前記涙の成分分析の結果に基づいて、前記生体の状態を検出する検出部と
を含む検出装置。 - 前記検出部は、前記涙の成分分析の結果に基づいて、前記涙の種別により定まる前記生体の状態を検出する
請求項1に記載の検出装置。 - 前記生体の状態には、前記生体の感情に起因する感情性の状態が含まれる
請求項1に記載の検出装置。 - 前記検出部は、前記涙の成分分析の結果として得られた、前記生体の状態が所定の感情性の状態に遷移しようとするときに分泌される物質の分析結果に基づいて、前記生体の状態が前記所定の感情性の状態に遷移するかを特定する
請求項3に記載の検出装置。 - 前記検出部は、前記涙の成分分析の結果として得られた、前記生体の状態が第1の感情性の状態に遷移しようとするときに分泌される物質の分析結果に基づいて算出された、前記第1の感情性の状態に遷移しようとする度合いと、前記涙の成分分析の結果として得られた、前記生体の状態が第2の感情性の状態に遷移しようとするときに分泌される物質の分析結果に基づいて算出された、前記第2の感情性の状態に遷移しようとする度合いとに基づいて、前記生体の状態が、前記第1の感情性の状態または前記第2の感情性の状態の何れの状態に遷移するかを特定する
請求項4に記載の検出装置。 - 前記検出部は、前記第1の感情性の状態に遷移しようとする度合い、および前記第2の感情性の状態に遷移しようとする度合いに基づいて、これから遷移すると推定される前記生体の状態の度合いを示す事前予測感情レベルをさらに算出する
請求項5に記載の検出装置。 - 前記検出部は、前記事前予測感情レベルに基づいて、現在時刻よりも後の時刻における前記事前予測感情レベルの変動を予測する
請求項6に記載の検出装置。 - 前記検出部は、前記涙の成分分析の結果として得られた、前記生体の状態が所定の感情性の状態であるときに多く分泌される物質の分析結果に基づいて、前記生体の状態を特定する
請求項3に記載の検出装置。 - 前記検出部は、前記涙の成分分析の結果として得られた、第1の感情性の状態であるときに多く分泌される物質の分析結果に基づいて算出された、前記第1の感情性の状態らしさの度合いと、前記涙の成分分析の結果として得られた、第2の感情性の状態であるときに多く分泌される物質の分析結果に基づいて算出された、前記第2の感情性の状態らしさの度合いとに基づいて、前記涙の状態が、前記第1の感情性の状態または前記第2の感情性の状態の何れの状態であるかを特定する
請求項8に記載の検出装置。 - 前記検出部は、前記第1の感情性の状態らしさの度合い、および前記第2の感情性の状態らしさの度合いに基づいて、前記生体の感情性の状態の度合いを示す感情レベルをさらに算出する
請求項9に記載の検出装置。 - 前記検出部は、前記感情レベルに基づいて、現在時刻よりも後の時刻における前記感情レベルの変動を予測する
請求項10に記載の検出装置。 - 前記生体の状態には、前記生体への刺激に起因する状態が含まれる
請求項2に記載の検出装置。 - 前記検出部は、前記涙の成分分析の結果として得られた、前記生体への刺激があるとき、または前記生体に疼痛があるときに分泌される物質の分析結果に基づいて、前記生体の状態が、前記生体への刺激に起因する状態であるか、または前記生体に疼痛がある状態が継続したときに遷移する、前記生体の感情に起因する感情性の状態であるかを特定する
請求項12に記載の検出装置。 - 前記検出部は、前記生体への刺激があるとき、または前記生体に疼痛があるときに分泌される物質の分析結果に基づく、その前記物質の分泌量を示す値が所定の閾値以上となる期間の長さに基づいて、前記生体の状態が、前記生体への刺激に起因する状態であるか、または前記生体の感情に起因する感情性の状態であるかを特定する
請求項13に記載の検出装置。 - 前記検出部は、前記生体への刺激があるとき、または前記生体に疼痛があるときに分泌される物質の分析結果に基づいて、前記生体への刺激レベルまたは疼痛レベルを算出する
請求項13に記載の検出装置。 - 前記検出部は、前記刺激レベルまたは前記疼痛レベルに基づいて、現在時刻よりも後の時刻における前記刺激レベルまたは前記疼痛レベルの変動を予測する
請求項15に記載の検出装置。 - 前記検出部は、前記涙の成分分析の結果として得られた、特定の物質の分析結果に基づいて、前記生体の涙の分泌レベルを特定する
請求項1に記載の検出装置。 - 前記検出装置は眼球に着脱可能となっている
請求項1に記載の検出装置。 - 生体から採取された涙の成分分析を行い、
前記涙の成分分析の結果に基づいて、前記生体の状態を検出する
ステップを含む検出方法。 - 生体から採取された涙の成分分析を行う分析ステップと、
前記涙の成分分析の結果に基づいて、前記生体の状態を検出する検出ステップと
を含む処理をコンピュータに実行させるプログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/314,742 US10426382B2 (en) | 2014-06-20 | 2015-06-05 | Detection device and detection method |
EP15809486.2A EP3159693B1 (en) | 2014-06-20 | 2015-06-05 | Detection device and method, and program |
CN201580031577.1A CN106415268B (zh) | 2014-06-20 | 2015-06-05 | 检测装置和方法及程序 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-127712 | 2014-06-20 | ||
JP2014127712A JP2016008818A (ja) | 2014-06-20 | 2014-06-20 | 検出装置および方法、並びにプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015194391A1 true WO2015194391A1 (ja) | 2015-12-23 |
Family
ID=54935380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/066286 WO2015194391A1 (ja) | 2014-06-20 | 2015-06-05 | 検出装置および方法、並びにプログラム |
Country Status (5)
Country | Link |
---|---|
US (1) | US10426382B2 (ja) |
EP (1) | EP3159693B1 (ja) |
JP (1) | JP2016008818A (ja) |
CN (1) | CN106415268B (ja) |
WO (1) | WO2015194391A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106419831A (zh) * | 2016-07-22 | 2017-02-22 | 广州市眼视光健康产业投资管理有限公司 | 身体健康监测的眼镜 |
WO2018078420A1 (en) * | 2016-10-27 | 2018-05-03 | Eyethink Sàrl | Contact lens for determining the eye temperature |
CN111655149A (zh) * | 2018-03-15 | 2020-09-11 | 松下知识产权经营株式会社 | 用于推断用户的心理状态的系统、记录介质以及方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110959133B (zh) * | 2017-08-03 | 2022-06-24 | 索尼公司 | 隐形眼镜和检测方法 |
CN109044411B (zh) * | 2018-09-06 | 2021-04-23 | 清华大学深圳研究生院 | 基于毛细力驱动的泪液检测接触镜 |
US10852545B2 (en) | 2018-09-07 | 2020-12-01 | Xcelsis Corporation | Head mounted viewer for AR and VR scenes |
CN114113065B (zh) * | 2021-12-27 | 2024-05-24 | 东北师范大学 | 一种柔性无创眼贴式可穿戴传感器及其应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0593723A (ja) * | 1991-04-26 | 1993-04-16 | Nippondenso Co Ltd | 涙液物質の測定装置 |
JP2002528212A (ja) * | 1998-11-02 | 2002-09-03 | アブリュー・マルシオ・マルク・オウレリオ・マーチン | 接触装置を使用した信号の発信と検査の方向及び装置 |
JP2005502389A (ja) * | 2001-02-23 | 2005-01-27 | マルシオ マルク アブリュー | 身体対する接触装置、非侵襲性測定用機器、非侵襲性測定方法、身体器官異常状態治療方法及び身体器官異常状態治療機器 |
JP2006012171A (ja) * | 2004-06-24 | 2006-01-12 | Hitachi Ltd | 生体認識を用いたレビュー管理システム及び管理方法 |
JP2010091359A (ja) * | 2008-10-07 | 2010-04-22 | Sony Corp | 生体リズム情報取得方法 |
WO2013177465A1 (en) * | 2012-05-23 | 2013-11-28 | Capia Ip | Phenotypic integrated social search database and method |
WO2014052125A1 (en) * | 2012-09-26 | 2014-04-03 | Google Inc. | Facilitation of tear sample collection and testing using a contact lens |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4421160B2 (ja) * | 1999-08-26 | 2010-02-24 | アイセンス・アクチエンゲゼルシャフト | 眼の被分析物センサー |
EP2508935A1 (en) * | 2011-04-08 | 2012-10-10 | Nxp B.V. | Flexible eye insert and glucose measuring system |
JP5887851B2 (ja) | 2011-11-14 | 2016-03-16 | ソニー株式会社 | 特定装置、制御装置、特定方法、プログラムおよび特定システム |
-
2014
- 2014-06-20 JP JP2014127712A patent/JP2016008818A/ja active Pending
-
2015
- 2015-06-05 WO PCT/JP2015/066286 patent/WO2015194391A1/ja active Application Filing
- 2015-06-05 CN CN201580031577.1A patent/CN106415268B/zh not_active Expired - Fee Related
- 2015-06-05 US US15/314,742 patent/US10426382B2/en active Active
- 2015-06-05 EP EP15809486.2A patent/EP3159693B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0593723A (ja) * | 1991-04-26 | 1993-04-16 | Nippondenso Co Ltd | 涙液物質の測定装置 |
JP2002528212A (ja) * | 1998-11-02 | 2002-09-03 | アブリュー・マルシオ・マルク・オウレリオ・マーチン | 接触装置を使用した信号の発信と検査の方向及び装置 |
JP2005502389A (ja) * | 2001-02-23 | 2005-01-27 | マルシオ マルク アブリュー | 身体対する接触装置、非侵襲性測定用機器、非侵襲性測定方法、身体器官異常状態治療方法及び身体器官異常状態治療機器 |
JP2006012171A (ja) * | 2004-06-24 | 2006-01-12 | Hitachi Ltd | 生体認識を用いたレビュー管理システム及び管理方法 |
JP2010091359A (ja) * | 2008-10-07 | 2010-04-22 | Sony Corp | 生体リズム情報取得方法 |
WO2013177465A1 (en) * | 2012-05-23 | 2013-11-28 | Capia Ip | Phenotypic integrated social search database and method |
WO2014052125A1 (en) * | 2012-09-26 | 2014-04-03 | Google Inc. | Facilitation of tear sample collection and testing using a contact lens |
Non-Patent Citations (5)
Title |
---|
FREY W H II ET AL.: "Effect of stimulus on the chemical composition of human tears", AMERICAN JOURNAL OF OPHTHALMOLOGY, vol. 92, no. 4, 1981, pages 559 - 67, XP008086627 * |
GELSTEIN SHANI ET AL.: "Human Tears Contain a Chemosignal", SCIENCE, vol. 331, no. 6014, 2011, pages 226 - 230, XP055244366, ISSN: 0036-8075 * |
MARTIN X D ET AL.: "Serotonin in human tears", EUROPEAN JOURNAL OF OPHTHALMOLOGY, vol. 4, no. 3, 1994, pages 159 - 65, XP002057824 * |
MESSMER E M: "Emotional tears", DER OPHTHALMOLOGE : ZEITSCHRIFT DER DEUTSCHEN OPHTHALMOLOGISCHEN GESELLSCHAFT, vol. 106, no. 7, July 2009 (2009-07-01), pages 593 - 602, XP019739219 * |
See also references of EP3159693A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106419831A (zh) * | 2016-07-22 | 2017-02-22 | 广州市眼视光健康产业投资管理有限公司 | 身体健康监测的眼镜 |
WO2018078420A1 (en) * | 2016-10-27 | 2018-05-03 | Eyethink Sàrl | Contact lens for determining the eye temperature |
CN111655149A (zh) * | 2018-03-15 | 2020-09-11 | 松下知识产权经营株式会社 | 用于推断用户的心理状态的系统、记录介质以及方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3159693A4 (en) | 2018-03-14 |
EP3159693A1 (en) | 2017-04-26 |
US20170196490A1 (en) | 2017-07-13 |
CN106415268B (zh) | 2020-10-09 |
JP2016008818A (ja) | 2016-01-18 |
CN106415268A (zh) | 2017-02-15 |
EP3159693B1 (en) | 2023-05-24 |
US10426382B2 (en) | 2019-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015194391A1 (ja) | 検出装置および方法、並びにプログラム | |
US11253196B2 (en) | Method and system for transdermal alcohol monitoring | |
US20190216333A1 (en) | Thermal face image use for health estimation | |
US11324449B2 (en) | Method and system for transdermal alcohol monitoring | |
Adams et al. | Towards personal stress informatics: comparing minimally invasive techniques for measuring daily stress in the wild | |
CN107784357B (zh) | 基于多模态深度神经网络的个性化智能唤醒系统及方法 | |
US20180242907A1 (en) | Determining metabolic parameters using wearables | |
US20160073953A1 (en) | Food intake monitor | |
JP2018506773A (ja) | ジェスチャベースの行動を監視し、それに影響を与える方法およびシステム | |
WO2016088413A1 (ja) | 情報処理装置、情報処理方法およびプログラム | |
US10376207B2 (en) | Calculating a current circadian rhythm of a person | |
Abujrida et al. | Machine learning-based motor assessment of Parkinson’s disease using postural sway, gait and lifestyle features on crowdsourced smartphone data | |
CN111986530A (zh) | 一种基于学习状态检测的交互学习系统 | |
WO2019132772A1 (en) | Method and system for monitoring emotions | |
US20210249116A1 (en) | Smart Glasses and Wearable Systems for Measuring Food Consumption | |
KR102177740B1 (ko) | 인지 능력 평가 방법, 이의 시스템 및 이를 위한 웨어러블 디바이스 | |
Rouast et al. | Using Deep Learning and 360 Video to Detect Eating Behavior for User Assistance Systems. | |
Bi et al. | Measuring children’s eating behavior with a wearable device | |
US20220257176A1 (en) | Nap evaluation device, nap evaluation system, nap evaluation method, and program | |
US11457875B2 (en) | Event prediction system, sensor signal processing system, event prediction method, and non-transitory storage medium | |
GB2488521A (en) | Activity recognition in living species using tri-axial acceleration data | |
WO2018167791A1 (en) | System for monitoring disease progression | |
EP4166076A1 (en) | Method and device for predicting frailty of a subject | |
US20200227173A1 (en) | Methods and Systems for Monitoring and Understanding Health Events | |
WO2024039367A1 (en) | Momentary stress algorithm for a wearable computing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15809486 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15314742 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2015809486 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015809486 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |