Nothing Special   »   [go: up one dir, main page]

WO2015190522A1 - Method for producing endodermal stem cells - Google Patents

Method for producing endodermal stem cells Download PDF

Info

Publication number
WO2015190522A1
WO2015190522A1 PCT/JP2015/066740 JP2015066740W WO2015190522A1 WO 2015190522 A1 WO2015190522 A1 WO 2015190522A1 JP 2015066740 W JP2015066740 W JP 2015066740W WO 2015190522 A1 WO2015190522 A1 WO 2015190522A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
insulin
producing
gene
Prior art date
Application number
PCT/JP2015/066740
Other languages
French (fr)
Japanese (ja)
Inventor
誠 土方
阿部 雄一
達哉 山口
Original Assignee
国立大学法人京都大学
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 東洋紡株式会社 filed Critical 国立大学法人京都大学
Publication of WO2015190522A1 publication Critical patent/WO2015190522A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a method for producing endoderm stem cells and a technique using the same.
  • Diabetes is a serious disease that is spreading worldwide.
  • the global diabetic population estimated by WHO is over 150 million in 2000 and is expected to reach about 300 million in 2025.
  • islet (insulin producing cell) transplantation is attracting attention as an effective treatment for patients with type I diabetes.
  • the shortage of donors providing transplantable islets is a serious problem. Yes.
  • HLA antigen suitability is low, it is necessary to use an immunosuppressive agent for the recipient in order to control the rejection reaction, and side effects due to the immunosuppressive agent also become a problem.
  • Non-patent Document 1 a method for isolating pancreatic stem cells from a patient's pancreatic tissue and inducing differentiation into pancreatic islet cells has been reported. It is difficult to obtain islet cells sufficient for transplantation, and it is practically used. The current situation is not.
  • an object of the present invention is to provide a technique capable of stably supplying stem cells that can also be used for islet transplantation.
  • hepatocytes from liver-derived cell groups (primary cultured hepatocytes) but also organs derived from other endoderm (for example, pancreas). It was found that cells that can differentiate into constituent cells (ie, endoderm stem cells) can be obtained.
  • endoderm stem cells ie, endoderm stem cells
  • Exemplary inventions include the following. Item 1.
  • A In a liver cell group, a step of expressing a gene encoding a protein having an activity of passing through the G0 phase or G1 phase and shifting to the S phase; (B) a step of culturing the cells obtained in step (A) in the presence of an extracellular growth factor; and (C) a cell in which expression of the molecular marker AFP is negative from the cells obtained in step (B).
  • a method for producing an endoderm stem cell comprising: Item 2. Item 2. The method according to Item 1, wherein the endoderm stem cell is a stem cell having an ability to differentiate into an insulin-producing cell. Item 3. Item 3.
  • Item 1 or 2 wherein the protein is a cyclin-dependent kinase.
  • Item 4. The method according to Item 3, wherein the cyclin-dependent kinase is cyclin-dependent kinase 4 or cyclin-dependent kinase 6.
  • Item 5. The method according to any one of Items 1 to 4, wherein the steps (A) and (B) are repeated at least twice.
  • Item 6. Item 6. The method according to any one of Items 1 to 5, wherein the extracellular growth factor is a hepatocyte growth factor.
  • Item 7. The method according to any one of Items 1 to 6, which is performed.
  • Item 8. The method according to any one of Items 1 to 7, wherein the culture is continued for 7 days or more.
  • Item 9. The method according to any one of Items 1 to 8, wherein the expression is transient expression.
  • Item 10. An endoderm stem cell obtainable by the method according to any one of Items 1 to 9. Item 11. Item 11. The endoderm stem cell according to Item 10, into which an exogenous gene has been introduced. Item 12.
  • Item 10 A method for producing insulin-producing cells, comprising a step of culturing endoderm stem cells obtained by the method according to any one of Items 1 to 9 in a medium suitable for differentiation into insulin-producing cells. Item 13. Item 14. The method according to Item 12 or 13, wherein the insulin-producing cells have glucose reactivity. Item 14. Item 14. An insulin-producing cell obtainable by the method according to item 12 or 13.
  • Human primary hepatocytes for example, cells derived from liver tissue that have become incompatible with organ transplantation for various reasons
  • the present invention using human primary hepatocytes as a raw material makes it possible to more stably provide cells that constitute an endoderm-derived organ including insulin-producing cells (or islet cells). Therefore, the possibility of constructing a large-scale insulin producing cell bank is expanded by utilizing the present invention.
  • These insulin-producing cell banks not only provide highly tissue-compatible transplant-producing insulin-producing cells to diabetics around the world, but also supply many donor-derived insulin-producing cells for research studies such as regenerative medicine Make it possible.
  • the present invention can also be used for the treatment of diseases relating to organs derived from the endoderm other than the pancreas.
  • FIG. 1 shows the results of examining gene markers expressed in proliferated cells by introducing and expressing the CDK4 gene or CDK6 gene in the primary hepatocyte group.
  • FIG. 2 shows a scheme for inducing differentiation of endoderm stem cells into insulin-producing cells.
  • FIG. 3 shows changes in the expression of the Pdx1 gene, which is a pancreatic differentiation marker associated with the induction of differentiation of endoderm stem cells into insulin-producing cells.
  • FIG. 4 shows changes in the expression of an insulin gene, which is a pancreatic ⁇ cell marker, with the induction of differentiation of endoderm stem cells into insulin-producing cells.
  • FIG. 1 shows the results of examining gene markers expressed in proliferated cells by introducing and expressing the CDK4 gene or CDK6 gene in the primary hepatocyte group.
  • FIG. 2 shows a scheme for inducing differentiation of endoderm stem cells into insulin-producing cells.
  • FIG. 3 shows changes in the expression of the Pdx1 gene, which is a pancreatic
  • FIG. 5 shows changes in the expression of a glucokinase gene, which is a pancreatic differentiation marker accompanying the induction of differentiation of endoderm stem cells into insulin-producing cells.
  • FIG. 6 shows changes in the expression of the glucagon gene, which is a marker for pancreatic ⁇ cells, with the induction of differentiation of endoderm stem cells into insulin-producing cells.
  • FIG. 7 shows changes in the expression of the somastatin gene, which is a pancreatic ⁇ cell marker, with the induction of differentiation of endoderm stem cells into insulin-producing cells.
  • FIG. 8 shows changes in expression of the Glut2 gene and the Nkx6-1 gene accompanying the induction of differentiation of endoderm stem cells into insulin-producing cells.
  • FIG. 9 shows changes in the expression of the insulin gene and the somatostatin gene before and after induction of differentiation into insulin-producing cells.
  • FIG. 10 shows the results of a glucose stimulation (glucose responsiveness) test in differentiation-induced insulin-producing cells.
  • FIG. 11 shows changes in expression of various gene markers accompanying the induction of differentiation of endoderm stem cells into hepatocytes.
  • the endoderm stem cells are obtained through the following steps (A) to (C).
  • (A) A step of expressing a gene encoding a protein having an activity of passing through the G0 phase or G1 phase and transferring to the S phase in the liver cell group
  • (B) Extracellular growth of the cells obtained in the step (A)
  • (C) A step of selecting a cell in which the expression of the molecular marker AFP is negative from the cells obtained in the step (B)
  • a liver cell group means a cell group prepared from liver tissue.
  • Liver cells are usually composed of a plurality of cells, mainly liver parenchymal cells, but may also include other cells such as sinusoidal endothelial cells, stellate cells, and Kupffer cells.
  • a commercially available product may be used, or a sample collected from a living body may be used.
  • human liver cells when used, commercially available frozen human liver cells sold by XenoTech, In Vitro Technologies, etc. can be used.
  • a cell separation kit or the like to remove dead cells by centrifugation.
  • liver tissue collected using a biopsy needle or the like can be prepared by digesting collagenase according to a conventional method to separate hepatocytes and removing dead cells.
  • the liver cell group preferably has high viability.
  • the viability is 50% or more, more preferably 60% or more, still more preferably 70% or more, still more preferably 80% or more, particularly preferably. 90% or more.
  • Cell viability can be measured using a commercially available analyzer.
  • the liver cell group preferably has a high adhesion rate (for example, 70% or more) to a plate coated with collagen or the like. Viability can be measured according to a known method, for example, by treating a group of cells with trypan blue dye and measuring the proportion of dead cells stained blue using a microscope or the like. Can do.
  • a protein having an activity of passing through the G0 phase or G1 phase and transferring to the S phase passes through the G0 phase or the G1 phase.
  • cell cycle reactivation protein passes through the G0 phase or the G1 phase.
  • Transfer to the S phase by passing the G0 phase or the G1 phase means (1) acting on the cells in the G0 phase and being in a dormant state by deviating (escaping) from the cell cycle. It means to enter the cell cycle again by shifting to (2), or to act on the cells in the G1 phase and shift the cell cycle from the G1 phase to the S phase.
  • the means for expressing the cell cycle reactivation protein gene is not limited as long as the cell cycle reactivation protein can be expressed.
  • transient expression means that a gene is introduced into a cell by a DNA transfection method or the like and expressed transiently. Transient usually refers to a period of hours to days.
  • stable expression means that a gene to be expressed is stably expressed in a chromosome.
  • the gene of the cell cycle reactivation protein is: It is preferably expressed transiently.
  • Transient expression is not particularly limited, and can be performed, for example, by introducing an expression vector having a target gene downstream of an expression promoter into a cell and expressing the gene from this expression vector.
  • an expression promoter for example, CMV promoter, SV40 promoter and the like can be used, but are not limited thereto.
  • expression vectors include, but are not limited to, plasmid vectors and liposomes as non-viral vectors, and adenovirus vectors and retrovirus vectors as virus vectors. It is preferable to use a non-viral vector from the viewpoint of safety when using the cells to be produced for pharmaceutical purposes and ensuring that the gene to be introduced is transiently expressed, and in particular, the origin of replication in the host cell.
  • Non-viral vectors that do not contain are preferred. In order to carry out transient expression more reliably, it is possible to add a step of confirming that the introduced cell is not incorporated into the chromosome.
  • plasmid vectors that can be used from such a viewpoint include pcDNA and pSVL.
  • a method for introducing an expression vector into a cell for example, a lipofection method, an electroporation method, a method in which a gene is incorporated into a viral vector and infected, and the like can be used, but not limited thereto.
  • stable expression is not particularly limited, it can be performed, for example, by the following method.
  • An expression vector having a target gene and a dominant selection marker downstream of the expression promoter is introduced into the cell, and a strain in which the target gene is integrated into the chromosome is established. In this established strain, stable expression is performed.
  • an expression promoter for example, CMV promoter, SV40 promoter and the like can be used, but are not limited thereto.
  • a dominant selection marker for example, various drug resistance genes can be used, but not limited thereto. When a drug resistance gene is used as a dominant selection marker, only cell lines that stably express the drug resistance gene can be selected by continuing cell culture in the presence of a drug exhibiting resistance. .
  • the target gene is considered to be stably expressed as well. Whether or not the target gene is actually stably expressed can be clarified by analyzing the base sequence of the chromosome by a DNA sequence or the like.
  • a lipofection method, an electroporation method, or the like can be used, but is not limited thereto.
  • a viral vector a method of incorporating a gene into a viral vector and infecting it can also be used.
  • the liver cell group can be cultured in advance in a medium capable of maintaining the original function of the cells.
  • a commercially available dedicated medium Human Hepatocyte Serum Free Medium, Toyobo
  • suitable for the characteristics of liver cells can be preferably used.
  • Step (B) is a step of culturing the cells obtained in step (A) while giving growth stimulation with extracellular growth factor.
  • the cell cycle shifts from the G0 phase or the G1 phase to the S phase, and further to the M phase (mitotic phase), and then to the G1 phase again Proceed with
  • the action of the cell cycle reactivation protein is activated by the action of the extracellular growth factor present in the medium.
  • stem cells proliferate predominantly and include endoderm stem cells.
  • the extracellular growth factor used in the step (B) is not particularly limited as long as it has a function of externally supporting the growth of liver-derived somatic stem cells.
  • extracellular growth factors include cell growth factors and hormones that stimulate cell growth.
  • the cell growth factor include epidermal growth factor (EGF), hepatocyte growth factor (Hepatocyte Growth Factor; HGF), platelet-derived growth factor (PDGF), insulin-like growth factor (IGF), vascular endothelial cells.
  • Examples include growth factors (Vascular Endothelial Growth Factor; VEGF) and fibroblast growth factors (FGF). Of these, EGF and HGF are preferred. These may be used alone or in combination of two or more.
  • a preferred extracellular growth factor is hepatocyte growth factor.
  • the concentration of the extracellular growth factor added in the medium is not particularly limited. For example, it is preferably 0.1 to 200 ng / ml, more preferably 1.0 to 100 ng / ml, and 5 to 50 ng / ml. Further preferred.
  • the medium may be exchanged at an appropriate interval. Although not particularly limited, the medium may be changed once every two or three days.
  • the medium may be replaced with a medium containing the same concentration of extracellular growth factor, or may be replaced with a medium containing a different concentration of extracellular growth factor.
  • the medium may be replaced with a medium containing the same extracellular growth factor, or may be replaced with a medium containing a different extracellular growth factor.
  • the culture in the step (B) is preferably performed using a medium suitable for obtaining embryonic stem cells.
  • a medium in addition to the above-mentioned extracellular growth factor, animal serum, epidermal growth factor, nicotinamide, dimethyl sulfoxide and HuS-E / 2 cells (FERM ABP-10908) culture supernatant It is preferable to include one or more selected, preferably two or more, more preferably three or more, still more preferably four or more, and still more preferably all.
  • Animal serum is not particularly limited, and examples include human serum and fetal bovine serum. These are preferably added to the medium in the range of 0.1 to 20% by volume. When nicotinamide is added to the medium, the amount added is preferably 1 to 100 mM. When dimethyl sulfoxide is added to the medium, the addition amount is preferably 0.1 to 2% by volume. When the culture supernatant of HuS-E / 2 cells is added to the medium, the amount added is preferably 10 to 90% by volume.
  • Steps (A) and (B) may be performed once each, or may be performed a plurality of times as necessary. Alternatively, these may be set as a set and repeated a plurality of times. When it is performed a plurality of times, it can be performed preferably 2 to 10 times, more preferably 3 to 8 times, and even more preferably 3 to 5 times. It is considered that repeating steps (A) and / or (B) in this way is preferable in order to transiently express a gene encoding a cell cycle reactivation protein and shift stem cells to a proliferative state. It is done.
  • Steps (A) and (B) can be continued until a stem cell containing the required amount of endoderm stem cells is obtained.
  • the culture period is not particularly limited and can be, for example, several days to several weeks. In one embodiment, the culture is preferably performed for 7 days or more.
  • the step (B) is performed only once, for example, if the step (B) is continued for a period until the colony formation by the stem cells is sufficiently performed, a group of stem cells including endoderm stem cells can be easily collected.
  • the end point of the step (B) is preferably a time point at which a stem cell colony can be confirmed with a microscope or the naked eye, or a time point at which a stem cell colony consisting of 10 to 10,000 cell groups is formed, and more preferably 100 to 100- This is the time when a stem cell colony consisting of 1000 cell groups is formed.
  • Many cells other than stem cells are killed by the end of the step (B), or even if they are alive, the growth is stopped and the cell morphology is clearly different. For this reason, a highly pure stem cell group can be acquired easily.
  • Process (C) By collecting the colonies obtained by the step (B) and selecting cells that are negative for the cell surface molecular marker AFP, endoderm stem cells can be obtained. Colony recovery can be performed by a conventionally known method, for example, a limiting dilution method or a method using a micropipette under a microscope.
  • the endoderm stem cells are preferably albumin negative, C-Met positive, EpCam positive, Thy1 positive, and CD34 negative.
  • the presence or absence of the expression of the molecular marker or gene marker can be confirmed by any technique, and can be performed using, for example, a commercially available kit.
  • Judgment of being an endoderm stem cell can also be performed by other methods (for example, examining whether or not to differentiate into cells of a plurality of endoderm-derived organs). For example, the differentiation of the obtained cells into pancreatic cells is performed, and the presence or absence of gene markers (Pdx1, insulin, glucokinase, etc.) of the pancreatic cells is confirmed to confirm whether the cells can be divided into pancreatic cells. Can do. In addition, hepatocyte differentiation can be induced on the obtained cells and the presence or absence of hepatocyte gene markers (albumin, drug metabolizing enzyme genes, etc.) can be confirmed. .
  • other methods for example, examining whether or not to differentiate into cells of a plurality of endoderm-derived organs. For example, the differentiation of the obtained cells into pancreatic cells is performed, and the presence or absence of gene markers (Pdx1, insulin, glucokinase, etc.) of the pancreatic cells is confirmed to confirm whether the cells can be divided into pancre
  • a stem cell group preferably containing 50% or more endoderm stem cells in terms of the number of cells, more preferably a cell group containing 80% or more endoderm stem cells can be prepared. According to the present invention, it is possible to produce a group of stem cells, more preferably substantially composed of only endoderm stem cells, and more preferably an isolated endoderm stem cell group.
  • Endoderm stem cells are somatic stem cells that have the ability to differentiate into cells that constitute an organ derived from the endoderm (ie, multipotent) and self-proliferating ability.
  • organs derived from the endoderm include, but are not limited to, the esophagus, stomach, small intestine, large intestine, lung, thyroid gland, pancreas, and liver.
  • organs constituted by cells from which endoderm stem cells can differentiate pancreas and liver are preferable.
  • the endoderm stem cells preferably have the ability to differentiate into insulin-producing cells, and stably supply a high-purity population of insulin-producing cells having properties equivalent to those of insulin-producing cells in vivo. Can be used to The insulin-producing cells thus obtained can be finally used in clinical applications such as cell preparations, or in various research and development such as new drug development or disease research.
  • the endoderm stem cell may further contain an exogenous gene as necessary.
  • Induction of differentiation of endoderm stem cells into insulin-producing cells can be performed by culturing endoderm stem cells in a medium suitable for differentiation into insulin-producing cells and other conditions.
  • a medium and other culture conditions suitable for differentiation can be set by appropriately selecting from known conditions.
  • Zhang D. Can be used to differentiate from ES cells to insulin-producing cells (Cell Research 19 (4), 429-38, 2009). That is, it is a method of inducing differentiation stepwise by changing the medium (culture environment) such as specialization, cell proliferation, and cell maturation from endoderm stem cells toward pancreatic differentiation.
  • the insulin-producing cells thus induced to differentiate preferably have glucose responsiveness.
  • Example 1 Preparation of endoderm stem cells (1) Culture of primary human hepatocytes After thawing frozen primary human hepatocytes (XenoTech), Ficoll isolation using Hepatocyte Isolation Kit (XenoTech) to separate live and dead cells As a result, a high viability hepatocyte suspension was obtained. These cells were suspended in Human Hepatocyte Serum Free Medium (Toyobo Co., Ltd.) supplemented with fetal bovine serum at a rate of 10% by volume, and about 5 ⁇ 10 5 cells / cell-coated 12-well cell culture plate (AGC Techno Glass) / It seed
  • Human Hepatocyte Serum Free Medium Toyobo Co., Ltd.
  • fetal bovine serum at a rate of 10% by
  • RNA purified from HuS-E / 2 cells human hepatocyte-derived cells, deposited at the National Institute of Advanced Industrial Science and Technology Patent Biological Depositary: FERM ABP-10908
  • a forward primer consisting of the base sequence shown in SEQ ID NO: 1
  • a reverse primer consisting of the base sequence shown in SEQ ID NO: 2 were used.
  • the base sequence of SEQ ID NO: 1 includes a sequence corresponding to Flag Tag.
  • the plasmid (pcDNA-FLAG-CDK4 or pcDNA-FLAG-CDK6) having Flag Tag introduced into the N-terminal side of the open reading frame of DNA encoding CDK4 or CDK6 obtained in this way was 0.3 ⁇ g per well. It was added to the medium together with Effectene transfection reagent (Qiagen), and the CDK4 or CDK6 gene was introduced into the hepatocyte group. Thereafter, transfection was repeated 5 times at a frequency of once every 5 days. As a negative control, a similar transfection operation was performed using a plasmid not containing the CDK gene.
  • the HuS-E / 2 cells are cultured in a DMEM-based culture solution containing 5% human serum and 5% fetal bovine serum.
  • a DMEM-based culture medium in which the prepared conditioned medium was added and mixed was used.
  • DMEM-based cultures include 35.8 mM sodium bicarbonate, 0.34 ⁇ g / ml insulin, 4.1 ⁇ g / ml transferrin, 4.1 ng / ml EGF (epidermal growth factor), 20 ng / ml.
  • HGF hepatocyte growth factor
  • 8.3 mM nicotinamide 0.81 vol% dimethyl sulfoxide were added.
  • FIG. 1 shows the results of examining the gene expression related to hepatocytes for each of the obtained clones. Although some of them showed the properties of hepatic stem cells, there were clonal cells that were negative for alpha fetoprotein (hereinafter, AFP), which is one of the markers of hepatic stem cells (FIG. 1).
  • AFP alpha fetoprotein
  • the cells having a negative AFP marker can also differentiate into cells constituting an organ (pancreas) derived from the endoderm other than the liver. Therefore, cells that are negative for the AFP marker were obtained as endoderm stem cells (ie, stem cells that can differentiate into endoderm-derived organs). Endodermal stem cells were confirmed to have self-replicating ability because of continued proliferation while maintaining the above-mentioned differentiation ability over one year after establishment.
  • Example 2 Confirmation of differentiation ability into endoderm-derived organ (1) Induction of differentiation into insulin-producing cells A test was conducted to differentiate the endoderm stem cells obtained in Example 1 into insulin-producing cells using a known technique. Specifically, the following three-stage differentiation induction procedure shown in FIG. 2 was performed. First, 0.5 mass / volume% bovine serum albumin, 0.5 volume% ITS solution (Life Technologies), 0.5 times B27 solution (Life Technologies), 2 ⁇ M retinoic acid (Sigma), The culture was performed for 4 days in a 1: 1 mixed medium of F12 medium and IMDM medium supplemented with 20 ng / ml FGF7 (Peprotech) and 50 ng / ml NOGGIN (Peprotech).
  • ITS solution 1 volume% bovine serum albumin
  • 1-fold N2 solution 50 ng / ml EGF (Sigma) were added. Cultivated in DMEM medium for 5 days. Thereafter, 1% by volume ITS solution (Life Technologies), 10 ng / ml bFGF (Peprotech), 10 mM nicotinamide (Sigma), 50 ng / ml Exendin4 (Peprotech), and 10 ng / ml BMP4 ( The cells were cultured for 4 days in DF12 medium supplemented with Peprotech.
  • Insulin and somatostatin are known to be produced in islet ⁇ cells and islet ⁇ cells, respectively.
  • the same cells were stained simultaneously by the indirect fluorescent antibody method using an anti-insulin antibody and an anti-somatostatin antibody before and after differentiation induction, it was confirmed that these two proteins were produced in one cell (FIG. 9). ).
  • Example 3 Induction of differentiation into hepatocytes Human hepatic stem cells having the properties of endoderm stem cells obtained in Example 1 were confirmed to have the ability to differentiate into hepatocytes. That is, human hepatic stem cells having the properties of endoderm stem cells are cultured in a medium in which 30 ng / ml FGF4 and 20 ng / ml BMP2 are added to Hepatic basal medium (Lonza) for 5 days, and then Human Hepatocyte Serum-free Medium. (Toyobo) was cultured for about one month. During this time, as a result of investigating gene markers expressed in the cells over time, AFP turned positive on the 5th day of culture and further showed albumin positive after about 1 month of culture (FIG. 11). This result indicates that human hepatic stem cells having the properties of endoderm stem cells are differentiated into hepatocytes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention addresses the problem of providing: a method for producing endodermal stem cells efficiently; and others. A method for producing endodermal stem cells, which comprises: (A) a step of expressing a gene in liver cells, wherein the gene is a gene that encodes a protein having an activity of allowing the phase of the cells to be transitioned to S phase through G0 or G1 phase; (B) a step of culturing the cells obtained in step (A) in the presence of an extracellular growth factor; and (C) a step of selecting cells in each of which the expression of a molecular marker AFP is negative among from the cells obtained in step (B).

Description

内胚葉性幹細胞の製造方法Method for producing endoderm stem cells
 本発明は、内胚葉性幹細胞の製造方法、及び、それを利用した技術に関する。 The present invention relates to a method for producing endoderm stem cells and a technique using the same.
 糖尿病は、世界的に広がっている深刻な疾病である。WHOの推定する全世界の糖尿病人口は、2000年で1億5千万人余りであり、2025年では約3億人に達すると予測されている。このような状況の中、例えばI型糖尿病患者に対する有効な治療法として膵島(インスリン産生細胞)移植が注目を浴びているが、移植可能な膵島を提供するドナーの不足は深刻な問題となっている。また、HLA抗原適合が低ければ拒絶反応を制御するために、レシピエントに対して免疫抑制剤を使用する必要があり、免疫抑制剤による副作用も問題となる。 Diabetes is a serious disease that is spreading worldwide. The global diabetic population estimated by WHO is over 150 million in 2000 and is expected to reach about 300 million in 2025. In such a situation, for example, islet (insulin producing cell) transplantation is attracting attention as an effective treatment for patients with type I diabetes. However, the shortage of donors providing transplantable islets is a serious problem. Yes. In addition, if the HLA antigen suitability is low, it is necessary to use an immunosuppressive agent for the recipient in order to control the rejection reaction, and side effects due to the immunosuppressive agent also become a problem.
 I型糖尿病の新しい治療法の一つとして、自己の細胞から膵島細胞を再生し移植する再生医療による治療の研究が進められている。この方法は、自己の細胞を用いることによって拒絶反応の問題が解消される等、多くの利点があると考えられ大きな期待を集めている。 As one of the new treatments for type I diabetes, research on treatment by regenerative medicine in which islet cells are regenerated and transplanted from their own cells is underway. This method is expected to have many advantages such as elimination of the problem of rejection by using its own cells, and is highly expected.
 近年、胚性幹細胞(ES細胞)や遺伝子導入により人工的に調製された幹細胞(人工多能性幹細胞:iPS細胞)について盛んに研究が進められており、これらを含めた様々な幹細胞が再生医療に活用できると期待されている。
しかしながら、iPS細胞から膵島細胞を作製する方法は、近年急速に技術開発が進んだものの、移植後の腫瘍形成リスクなどの課題が依然として残っている(非特許文献1)。また、患者の膵臓組織から膵幹細胞を分離し、これを膵島細胞へと分化誘導する方法も報告されているが(非特許文献2)、移植に充分な膵島細胞を得ることは難しく実用化には至っていないのが現状である。
In recent years, vigorous research has been conducted on embryonic stem cells (ES cells) and stem cells artificially prepared by gene transfer (artificial pluripotent stem cells: iPS cells). It is expected that it can be utilized.
However, although methods for producing islet cells from iPS cells have been rapidly developed in recent years, problems such as the risk of tumor formation after transplantation still remain (Non-patent Document 1). In addition, although a method for isolating pancreatic stem cells from a patient's pancreatic tissue and inducing differentiation into pancreatic islet cells has been reported (Non-Patent Document 2), it is difficult to obtain islet cells sufficient for transplantation, and it is practically used. The current situation is not.
 上記の現状の下、糖尿病患者に対する膵島移植治療を実施するため、充分なドナー及び膵島細胞(特にインスリン産生細胞)を安定的に供給出来るようなシステムを構築するための技術が必要とされている。そこで、本発明は、膵島移植にも利用可能な幹細胞を安定的に供給可能な技術を提供すること等を目的とする。 In order to carry out islet transplantation treatment for diabetic patients under the above-described circumstances, a technique for constructing a system capable of stably supplying sufficient donors and islet cells (particularly insulin-producing cells) is required. . Therefore, an object of the present invention is to provide a technique capable of stably supplying stem cells that can also be used for islet transplantation.
 本発明者らは上記の課題に鑑み、鋭意研究を重ねた結果、肝臓由来の細胞群(初代培養肝細胞)から肝細胞だけでなく、他の内胚葉に由来する臓器(例えば、膵臓)を構成する細胞にも分化可能な細胞(即ち、内胚葉性幹細胞)を取得できることを見出した。本発明者らは、かかる知見を基に更なる検討と改良を重ね、本発明を完成するに至った。
代表的な本発明には、下記が含まれる。
項1.
(A) 肝臓細胞群において、G0期又はG1期を通過させS期へと移行させる活性を有するタンパク質をコードする遺伝子を発現させる工程;
(B) 工程(A)で得られた細胞を細胞外増殖因子の存在下で培養する工程;及び
(C) 工程(B)で得られた細胞から分子マーカーAFPの発現が陰性である細胞を選抜する工程;
を含む、内胚葉性幹細胞の製造方法。
項2.
前記内胚葉性幹細胞がインスリン産生細胞への分化能を備えた幹細胞である、項1に記載の方法。
項3.
前記タンパク質がサイクリン依存性キナーゼである、項1又は2に記載の方法。
項4.
サイクリン依存性キナーゼが、サイクリン依存性キナーゼ4又はサイクリン依存性キナーゼ6である、項3に記載の方法。
項5.
前記工程(A)及び(B)を少なくとも二回繰り返す、項1~4のいずれかに記載の方法。
項6.
前記細胞外増殖因子が肝細胞増殖因子である、項1~5のいずれかに記載の方法。
項7.
前記培養が、更に、動物血清、上皮成長因子、ニコチンアミド、ジメチルスルホキシド及びHuS-E/2細胞(FERM ABP-10908)の培養上清から成る群より選択される少なくとも2つ以上の存在下で行われる、項1~6のいずれかに記載の方法。
項8.
前記培養を7日間以上継続する、項1~7のいずれかに記載の方法。
項9.
前記発現が一過性発現である、項1~8のいずれかに記載の方法。
項10.
項1~9のいずれかに記載の方法により得られうる、内胚葉性幹細胞。
項11.
外因性遺伝子が導入されている、項10に記載の内胚葉性幹細胞。
項12.
項1~9のいずれかに記載の方法によって得られる内胚葉性幹細胞をインスリン産生細胞への分化に適した培地で培養する工程を含む、インスリン産生細胞の製造方法。
項13.
インスリン産生細胞がグルコース反応性を有する項12又は13に記載の方法。
項14.
項12又は13に記載の方法で得られうるインスリン産生細胞。
As a result of intensive studies in view of the above problems, the present inventors have determined not only hepatocytes from liver-derived cell groups (primary cultured hepatocytes) but also organs derived from other endoderm (for example, pancreas). It was found that cells that can differentiate into constituent cells (ie, endoderm stem cells) can be obtained. The present inventors have made further studies and improvements based on such knowledge, and have completed the present invention.
Exemplary inventions include the following.
Item 1.
(A) In a liver cell group, a step of expressing a gene encoding a protein having an activity of passing through the G0 phase or G1 phase and shifting to the S phase;
(B) a step of culturing the cells obtained in step (A) in the presence of an extracellular growth factor; and (C) a cell in which expression of the molecular marker AFP is negative from the cells obtained in step (B). Process of selecting;
A method for producing an endoderm stem cell, comprising:
Item 2.
Item 2. The method according to Item 1, wherein the endoderm stem cell is a stem cell having an ability to differentiate into an insulin-producing cell.
Item 3.
Item 3. The method according to Item 1 or 2, wherein the protein is a cyclin-dependent kinase.
Item 4.
Item 4. The method according to Item 3, wherein the cyclin-dependent kinase is cyclin-dependent kinase 4 or cyclin-dependent kinase 6.
Item 5.
Item 5. The method according to any one of Items 1 to 4, wherein the steps (A) and (B) are repeated at least twice.
Item 6.
Item 6. The method according to any one of Items 1 to 5, wherein the extracellular growth factor is a hepatocyte growth factor.
Item 7.
In the presence of at least two or more selected from the group consisting of the culture supernatant of animal serum, epidermal growth factor, nicotinamide, dimethyl sulfoxide and HuS-E / 2 cells (FERM ABP-10908). Item 7. The method according to any one of Items 1 to 6, which is performed.
Item 8.
Item 8. The method according to any one of Items 1 to 7, wherein the culture is continued for 7 days or more.
Item 9.
Item 9. The method according to any one of Items 1 to 8, wherein the expression is transient expression.
Item 10.
An endoderm stem cell obtainable by the method according to any one of Items 1 to 9.
Item 11.
Item 11. The endoderm stem cell according to Item 10, into which an exogenous gene has been introduced.
Item 12.
Item 10. A method for producing insulin-producing cells, comprising a step of culturing endoderm stem cells obtained by the method according to any one of Items 1 to 9 in a medium suitable for differentiation into insulin-producing cells.
Item 13.
Item 14. The method according to Item 12 or 13, wherein the insulin-producing cells have glucose reactivity.
Item 14.
Item 14. An insulin-producing cell obtainable by the method according to item 12 or 13.
 ヒト初代肝細胞(例えば、種々の理由により臓器移植不適合となった肝臓組織由来の細胞)は、その分離及び凍結保存方法が既に確立されており、商業的にも入手可能である。よって、ヒト初代肝細胞を原料として用いる本発明は、より安定的にインスリン産生細胞(又は膵島細胞)を初めとする内胚葉由来の臓器を構成する細胞を提供することを可能にする。よって、本発明を利用することにより、大規模なインスリン産生細胞バンクの構築への可能性が広がる。こうしたインスリン産生細胞バンクは、世界中の糖尿病患者に組織適合度の高い移植用インスリン産生細胞を供給できるだけでなく、再生医療などの試験研究のために、多くのドナー由来のインスリン産生細胞を供給することを可能にする。また、医療機関において糖尿病患者からの肝バイオプシーにより少量採取した肝細胞を出発材料とし、これを加工(培養)して自家移植用インスリン産生細胞を調製することが可能となる。更に、本発明は、膵臓以外の内胚葉由来の臓器に関する疾患の治療にも利用し得る。 Human primary hepatocytes (for example, cells derived from liver tissue that have become incompatible with organ transplantation for various reasons) have already been established for their isolation and cryopreservation, and are commercially available. Therefore, the present invention using human primary hepatocytes as a raw material makes it possible to more stably provide cells that constitute an endoderm-derived organ including insulin-producing cells (or islet cells). Therefore, the possibility of constructing a large-scale insulin producing cell bank is expanded by utilizing the present invention. These insulin-producing cell banks not only provide highly tissue-compatible transplant-producing insulin-producing cells to diabetics around the world, but also supply many donor-derived insulin-producing cells for research studies such as regenerative medicine Make it possible. In addition, it becomes possible to prepare hepatocytes collected in small quantities by a liver biopsy from a diabetic patient in a medical institution as a starting material, and process (cultivate) the cells to prepare insulin-producing cells for autotransplantation. Furthermore, the present invention can also be used for the treatment of diseases relating to organs derived from the endoderm other than the pancreas.
図1は、初代肝細胞群にCDK4遺伝子又はCDK6遺伝子を導入し、発現させることにより、増殖した細胞において発現している遺伝子マーカーを調べた結果を示す。FIG. 1 shows the results of examining gene markers expressed in proliferated cells by introducing and expressing the CDK4 gene or CDK6 gene in the primary hepatocyte group. 図2は、内胚葉性幹細胞をインスリン産生細胞へと分化誘導するスキームを示す。FIG. 2 shows a scheme for inducing differentiation of endoderm stem cells into insulin-producing cells. 図3は、内胚葉性幹細胞のインスリン産生細胞への分化誘導に伴った膵分化マーカーであるPdx1遺伝子の発現変動を示す。FIG. 3 shows changes in the expression of the Pdx1 gene, which is a pancreatic differentiation marker associated with the induction of differentiation of endoderm stem cells into insulin-producing cells. 図4は、内胚葉性幹細胞のインスリン産生細胞への分化誘導に伴った膵β細胞マーカーであるインスリン遺伝子の発現変動を示す。FIG. 4 shows changes in the expression of an insulin gene, which is a pancreatic β cell marker, with the induction of differentiation of endoderm stem cells into insulin-producing cells. 図5は、内胚葉性幹細胞のインスリン産生細胞への分化誘導に伴った膵分化マーカーであるグルコキナーゼ遺伝子の発現変動を示す。FIG. 5 shows changes in the expression of a glucokinase gene, which is a pancreatic differentiation marker accompanying the induction of differentiation of endoderm stem cells into insulin-producing cells. 図6は、内胚葉性幹細胞のインスリン産生細胞への分化誘導に伴った膵α細胞マーカーであるグルカゴン遺伝子の発現変動を示す。FIG. 6 shows changes in the expression of the glucagon gene, which is a marker for pancreatic α cells, with the induction of differentiation of endoderm stem cells into insulin-producing cells. 図7は、内胚葉性幹細胞のインスリン産生細胞への分化誘導に伴った膵Δ細胞マーカーであるソマスタチン遺伝子の発現変動を示す。FIG. 7 shows changes in the expression of the somastatin gene, which is a pancreatic Δ cell marker, with the induction of differentiation of endoderm stem cells into insulin-producing cells. 図8は、内胚葉性幹細胞のインスリン産生細胞への分化誘導に伴ったGlut2遺伝子及びNkx6-1遺伝子の発現変動を示す。FIG. 8 shows changes in expression of the Glut2 gene and the Nkx6-1 gene accompanying the induction of differentiation of endoderm stem cells into insulin-producing cells. 図9は、インスリン産生細胞への分化誘導の前後におけるインスリン遺伝子及びソマトスタチン遺伝子の発現の変動を示す。FIG. 9 shows changes in the expression of the insulin gene and the somatostatin gene before and after induction of differentiation into insulin-producing cells. 図10は、分化誘導されたインスリン産生細胞における糖刺激(グルコース反応性)試験の結果を示す。FIG. 10 shows the results of a glucose stimulation (glucose responsiveness) test in differentiation-induced insulin-producing cells. 図11は、内胚葉性幹細胞の肝細胞への分化誘導に伴った種々の遺伝子マーカーの発現の変化を示す。FIG. 11 shows changes in expression of various gene markers accompanying the induction of differentiation of endoderm stem cells into hepatocytes.
 内胚葉性幹細胞は、下記の工程(A)~(C)を経ることによって得られる。
(A) 肝臓細胞群において、G0期又はG1期を通過させS期へと移行させる活性を有するタンパク質をコードする遺伝子を発現させる工程
(B) 工程(A)で得られた細胞を細胞外増殖因子の存在下で培養する工程
(C) 工程(B)で得られた細胞から分子マーカーAFPの発現が陰性である細胞を選抜する工程
The endoderm stem cells are obtained through the following steps (A) to (C).
(A) A step of expressing a gene encoding a protein having an activity of passing through the G0 phase or G1 phase and transferring to the S phase in the liver cell group (B) Extracellular growth of the cells obtained in the step (A) A step of culturing in the presence of a factor (C) A step of selecting a cell in which the expression of the molecular marker AFP is negative from the cells obtained in the step (B)
1.工程(A)
 肝臓細胞群とは、肝臓組織から調製された細胞群を意味する。肝臓細胞は、通常複数の細胞から構成され、肝実質細胞を主体とするが、その他、類洞内皮細胞、星細胞、クッパー細胞などの細胞を含んでも良い。肝臓細胞群としては、市販のものを使用してもよいし、生体から採取したものを使用してもよい。例えば、ヒト肝臓細胞を使用する場合は、XenoTech社、In Vitro Technologies社などから販売されている市販の凍結ヒト肝臓細胞を用いることができる。市販の凍結ヒト肝臓細胞を用いる場合、細胞分離用キット等を利用し、死滅している細胞を遠心分離により除去して利用することが好ましい。生体から肝臓細胞群を採取する場合は、生検針などを用いて採取した肝臓組織を常法に従いコラゲナーゼ消化し肝細胞を分離し、死滅した細胞を除去して調製することができる。
1. Step (A)
A liver cell group means a cell group prepared from liver tissue. Liver cells are usually composed of a plurality of cells, mainly liver parenchymal cells, but may also include other cells such as sinusoidal endothelial cells, stellate cells, and Kupffer cells. As the liver cell group, a commercially available product may be used, or a sample collected from a living body may be used. For example, when human liver cells are used, commercially available frozen human liver cells sold by XenoTech, In Vitro Technologies, etc. can be used. When using commercially available frozen human liver cells, it is preferable to use a cell separation kit or the like to remove dead cells by centrifugation. When collecting a liver cell group from a living body, liver tissue collected using a biopsy needle or the like can be prepared by digesting collagenase according to a conventional method to separate hepatocytes and removing dead cells.
 肝臓細胞群は、高いバイアビリティーを有することが好ましく、例えば、バイアビリティーは50%以上であり、より好ましくは60%以上、更に好ましくは70%以上、より更に好ましくは80%以上、特に好ましくは90%以上である。細胞のバイアビリティーは、市販される分析器を用いて測定することが可能である。また、肝臓細胞群は、コラーゲン等でコートしたプレートに対する接着率が高いこと(例えば、70%以上)が好ましい。バイアビリティーは、公知の方法に従って測定することが可能であり、例えば、トリパンブルー色素を用いて細胞群を処理し、青く染色された死細胞の割合を顕微鏡等を用いて測定することによって求めることができる。 The liver cell group preferably has high viability. For example, the viability is 50% or more, more preferably 60% or more, still more preferably 70% or more, still more preferably 80% or more, particularly preferably. 90% or more. Cell viability can be measured using a commercially available analyzer. The liver cell group preferably has a high adhesion rate (for example, 70% or more) to a plate coated with collagen or the like. Viability can be measured according to a known method, for example, by treating a group of cells with trypan blue dye and measuring the proportion of dead cells stained blue using a microscope or the like. Can do.
 「G0期又はG1期を通過させS期へと移行させる活性を有するタンパク質」(本明細書において、「細胞周期再活性化タンパク質」ということがある。)は、G0期又はG1期を通過させS期へと移行させる活性を有していればよく、限定されない。「G0期又はG1期を通過させS期へと移行させる」とは、(1)細胞周期から逸脱(脱出)することによりG0期にあり休止状態となっている細胞に対して働きかけ、S期へと移行させることにより再び細胞周期へと進入させること、又は(2)G1期にある細胞に対して働きかけ、その細胞周期をG1期からS期へと移行させることを意味する。 “A protein having an activity of passing through the G0 phase or G1 phase and transferring to the S phase” (in this specification, sometimes referred to as “cell cycle reactivation protein”) passes through the G0 phase or the G1 phase. There is no limitation as long as it has an activity to shift to the S phase. “Transfer to the S phase by passing the G0 phase or the G1 phase” means (1) acting on the cells in the G0 phase and being in a dormant state by deviating (escaping) from the cell cycle. It means to enter the cell cycle again by shifting to (2), or to act on the cells in the G1 phase and shift the cell cycle from the G1 phase to the S phase.
 細胞周期再活性化タンパク質遺伝子を発現させる手段は、細胞周期再活性化タンパク質を発現させることができればよく、限定されない。例えば、一過性発現(transient expression)させてもよいし、安定発現(stable expression)させてもよい。一過性発現とは、遺伝子をDNAトランスフェクション法等により細胞に導入し、一過性に発現させることをいう。一過性とは通常、数時間から数日以内の期間をいう。これに対して安定発現とは、発現させようとする遺伝子が安定に染色体中に組み込まれた状態で発現することをいう。本発明の方法によって製造される内胚葉性幹細胞が、生体内の内胚葉性幹細胞と同一又は可能な限り類似する構造及び性質を有するという観点からは、当該細胞周期再活性化タンパク質の遺伝子は、一過性に発現されることが好ましい。 The means for expressing the cell cycle reactivation protein gene is not limited as long as the cell cycle reactivation protein can be expressed. For example, transient expression may be used, or stable expression may be used. Transient expression means that a gene is introduced into a cell by a DNA transfection method or the like and expressed transiently. Transient usually refers to a period of hours to days. In contrast, stable expression means that a gene to be expressed is stably expressed in a chromosome. From the viewpoint that the endoderm stem cells produced by the method of the present invention have the same or possible similar structures and properties as endoderm stem cells in vivo, the gene of the cell cycle reactivation protein is: It is preferably expressed transiently.
 一過性発現は、特に限定されないが、例えば、発現プロモーターの下流に目的の遺伝子を持つ発現ベクターを細胞に導入し、この発現ベクターから当該遺伝子を発現させること等によって行うことができる。この場合、発現プロモーターとしては、例えば、CMVプロモーター、SV40プロモーター等を用いることができるが、これらに限定されない。また、発現ベクターとしては、例えば、非ウイルスベクターとしてプラスミドベクターやリポソーム等、ウイルスベクターとしてアデノウイルスベクター、レトロウイルスベクター等を用いることができるが、これらに限定されない。製造する細胞を医薬の目的で使用する場合の安全性や導入する遺伝子をより確実に一過性発現とするという観点から、非ウイルスベクターを用いることが好ましく、中でも宿主細胞中での複製開始点を含まない非ウイルスベクターが好ましい。より確実に一過性発現を実施するために、導入した細胞が染色体に取り込まれていないことを確認する工程を加えることも可能である。このような観点から使用可能なプラスミドベクターとしては、例えばpcDNA、pSVL等を挙げることができる。細胞への発現ベクターの導入方法としては、例えば、リポフェクション法、エレクトロポレーション法、ウイルスベクターに遺伝子を組み込み感染させる方法等を用いることができるが、これらに限定されない。 Transient expression is not particularly limited, and can be performed, for example, by introducing an expression vector having a target gene downstream of an expression promoter into a cell and expressing the gene from this expression vector. In this case, as an expression promoter, for example, CMV promoter, SV40 promoter and the like can be used, but are not limited thereto. Examples of expression vectors include, but are not limited to, plasmid vectors and liposomes as non-viral vectors, and adenovirus vectors and retrovirus vectors as virus vectors. It is preferable to use a non-viral vector from the viewpoint of safety when using the cells to be produced for pharmaceutical purposes and ensuring that the gene to be introduced is transiently expressed, and in particular, the origin of replication in the host cell. Non-viral vectors that do not contain are preferred. In order to carry out transient expression more reliably, it is possible to add a step of confirming that the introduced cell is not incorporated into the chromosome. Examples of plasmid vectors that can be used from such a viewpoint include pcDNA and pSVL. As a method for introducing an expression vector into a cell, for example, a lipofection method, an electroporation method, a method in which a gene is incorporated into a viral vector and infected, and the like can be used, but not limited thereto.
 安定発現は、特に限定されないが、例えば、次の方法等によって行うことができる。発現プロモーターの下流に目的の遺伝子と優性選択マーカーを持つ発現ベクターを細胞に導入し、目的の遺伝子が染色体に組み込まれた株を樹立する。この樹立された株では安定発現が行われている。この場合、発現プロモーターとしては、例えば、CMVプロモーター、SV40プロモーター等を用いることができるが、これらに限定されない。優性選択マーカーとしては、例えば、各種の薬剤耐性遺伝子等を用いることができるが、これらに限定されない。優性選択マーカーとして薬剤耐性遺伝子を用いた場合は、耐性を示す薬剤の存在下で細胞培養を継続して行うことにより、当該薬剤耐性遺伝子を安定発現している細胞株のみを選別することができる。通常、そのような細胞株においては同様に目的の遺伝子も安定発現していると考えられる。なお、実際に目的の遺伝子が安定発現しているか否かについては、染色体の塩基配列をDNAシークエンス等によって解析すること等によって明らかにすることができる。また、細胞への発現ベクターの導入方法としては、例えば、リポフェクション法、エレクトロポレーション法等を用いることができるが、これらに限定されない。また、ウイルスベクターを用いる場合は、ウイルスベクターに遺伝子を組み込み感染させる方法も用いることができる。 Although stable expression is not particularly limited, it can be performed, for example, by the following method. An expression vector having a target gene and a dominant selection marker downstream of the expression promoter is introduced into the cell, and a strain in which the target gene is integrated into the chromosome is established. In this established strain, stable expression is performed. In this case, as an expression promoter, for example, CMV promoter, SV40 promoter and the like can be used, but are not limited thereto. As a dominant selection marker, for example, various drug resistance genes can be used, but not limited thereto. When a drug resistance gene is used as a dominant selection marker, only cell lines that stably express the drug resistance gene can be selected by continuing cell culture in the presence of a drug exhibiting resistance. . Usually, in such a cell line, the target gene is considered to be stably expressed as well. Whether or not the target gene is actually stably expressed can be clarified by analyzing the base sequence of the chromosome by a DNA sequence or the like. Moreover, as a method for introducing an expression vector into a cell, for example, a lipofection method, an electroporation method, or the like can be used, but is not limited thereto. When a viral vector is used, a method of incorporating a gene into a viral vector and infecting it can also be used.
 肝臓細胞に対して遺伝子導入を行う場合は、細胞毒性が比較的弱いとされるトランスフェクション試薬を用いることが好ましい。トランスフェクション効率を向上させるため、例えば、良好な状態にある細胞に対してトランスフェクションを行うことが好ましい。ヒト肝臓細胞の場合は、培養プレート上に播種した後、2~3日以内であれば細胞の状態が比較的良好である。工程(A)を行う以前に、肝臓細胞群を、細胞の本来的機能を維持できる培地中であらかじめ培養しておくことができる。例えば、肝臓細胞の特性に合わせた市販の専用培地(Human Hepatocyte Serum Free Medium、東洋紡)などが好適に使用出来る。凍結ヒト肝臓細胞を融解後、プレートに播種する際には接着を促すために培地に5~10容量%程度のウシ胎児血清を添加するのが望ましい。培養温度等その他の培養条件は、従来公知の方法に従って適宜設定することができる。 When a gene is introduced into liver cells, it is preferable to use a transfection reagent that has relatively low cytotoxicity. In order to improve transfection efficiency, for example, it is preferable to perform transfection on cells in good condition. In the case of human liver cells, the cell state is relatively good within 2 to 3 days after seeding on a culture plate. Before performing the step (A), the liver cell group can be cultured in advance in a medium capable of maintaining the original function of the cells. For example, a commercially available dedicated medium (Human Hepatocyte Serum Free Medium, Toyobo) suitable for the characteristics of liver cells can be preferably used. When frozen human liver cells are thawed and seeded on a plate, it is desirable to add about 5 to 10% by volume of fetal calf serum to the medium in order to promote adhesion. Other culture conditions such as culture temperature can be appropriately set according to a conventionally known method.
2.工程(B)
 工程(B)は、工程(A)で得られた細胞を細胞外増殖因子により増殖刺激を与えながら培養する工程である。工程(A)で外部から導入された細胞周期再活性化タンパク質の働きによって、細胞周期がG0期又はG1期からS期へと移行し、さらにM期(分裂期)、続いて再びG1期へと進む。同時に、培地中に存在する細胞外増殖因子の働きにより、細胞周期再活性化タンパク質の働きが活性化される。この結果、幹細胞が優勢的に増殖し、その中に内胚葉性幹細胞が含まれる。
2. Process (B)
Step (B) is a step of culturing the cells obtained in step (A) while giving growth stimulation with extracellular growth factor. By the action of the cell cycle reactivating protein introduced from the outside in the step (A), the cell cycle shifts from the G0 phase or the G1 phase to the S phase, and further to the M phase (mitotic phase), and then to the G1 phase again Proceed with At the same time, the action of the cell cycle reactivation protein is activated by the action of the extracellular growth factor present in the medium. As a result, stem cells proliferate predominantly and include endoderm stem cells.
 工程(B)で用いられる細胞外増殖因子としては、肝臓由来の体性幹細胞の増殖を外的にサポートする作用を有する物質であればよく、特に限定されない。細胞外増殖因子としては、例えば、細胞増殖因子、細胞増殖を刺激するホルモン類等を挙げることができる。細胞増殖因子としては、例えば、上皮成長因子(Epidermal Growth Factor;EGF)、肝細胞増殖因子(Hepatocyte Growth Factor;HGF)、血小板由来成長因子(PDGF)、インスリン様成長因子(IGF)、血管内皮細胞増殖因子(Vascular Endothelial Growth Factor;VEGF)及び繊維芽細胞増殖因子(Fibroblast Growth Factor;FGF)等を挙げることができる。中でもEGF及びHGFが好適である。これらを単独で用いてもよいし、複数種を組み合わせて用いてもよい。例えば、EGF及びHGFからなる群より選択される少なくとも1種の細胞増殖因子に、VEGF及びFGFからなる群より選択される少なくとも1種の細胞増殖因子をさらに組み合わせて用いることにより、相加的あるいは相乗的に増殖を向上させることができる。好ましい細胞外増殖因子は、肝細胞増殖因子である。細胞外増殖因子の培地中における添加濃度は特に限定されないが、例えば0.1~200ng/mlであれば好ましく、1.0~100ng/mlであればより好ましく、5~50ng/mlであればさらに好ましい。工程(B)においては、適当な間隔で培地を交換してもよい。特に制限されないが、2又は3日に一度の頻度で培地交換を行ってもよい。同じ濃度の細胞外増殖因子を含む培地へと交換してもよいし、異なる濃度の細胞外増殖因子を含む培地へと交換してもよい。同じ細胞外増殖因子を含む培地へと交換してもよいし、異なる細胞外増殖因子を含む培地へと交換してもよい。 The extracellular growth factor used in the step (B) is not particularly limited as long as it has a function of externally supporting the growth of liver-derived somatic stem cells. Examples of extracellular growth factors include cell growth factors and hormones that stimulate cell growth. Examples of the cell growth factor include epidermal growth factor (EGF), hepatocyte growth factor (Hepatocyte Growth Factor; HGF), platelet-derived growth factor (PDGF), insulin-like growth factor (IGF), vascular endothelial cells. Examples include growth factors (Vascular Endothelial Growth Factor; VEGF) and fibroblast growth factors (FGF). Of these, EGF and HGF are preferred. These may be used alone or in combination of two or more. For example, by using at least one cell growth factor selected from the group consisting of EGF and HGF in combination with at least one cell growth factor selected from the group consisting of VEGF and FGF, Proliferation can be improved synergistically. A preferred extracellular growth factor is hepatocyte growth factor. The concentration of the extracellular growth factor added in the medium is not particularly limited. For example, it is preferably 0.1 to 200 ng / ml, more preferably 1.0 to 100 ng / ml, and 5 to 50 ng / ml. Further preferred. In the step (B), the medium may be exchanged at an appropriate interval. Although not particularly limited, the medium may be changed once every two or three days. The medium may be replaced with a medium containing the same concentration of extracellular growth factor, or may be replaced with a medium containing a different concentration of extracellular growth factor. The medium may be replaced with a medium containing the same extracellular growth factor, or may be replaced with a medium containing a different extracellular growth factor.
 工程(B)における培養は、胚葉性幹細胞の取得に適した培地を用いて行うことが好ましい。そのような培地としては、上述する細胞外増殖因子に加えて、動物血清、上皮成長因子、ニコチンアミド、ジメチルスルホキシド及びHuS-E/2細胞(FERM ABP-10908)の培養上清から成る群より選択される1種以上、好ましくは2種以上、より好ましくは3種以上、更に好ましくは4種以上、より更に好ましくは全てを含むことが好ましい。 The culture in the step (B) is preferably performed using a medium suitable for obtaining embryonic stem cells. As such a medium, in addition to the above-mentioned extracellular growth factor, animal serum, epidermal growth factor, nicotinamide, dimethyl sulfoxide and HuS-E / 2 cells (FERM ABP-10908) culture supernatant It is preferable to include one or more selected, preferably two or more, more preferably three or more, still more preferably four or more, and still more preferably all.
 動物血清としては、特に制限されないが、ヒト血清及びウシ胎児血清等を挙げることができる。これらは、0.1~20容量%の範囲で培地に添加されることが好ましい。培地にニコチンアミドが添加される場合、その添加量は、1~100mMであることが好ましい。培地にジメチルスルホキシドが添加される場合、その添加量は0.1~2容量%であることが好ましい。培地にHuS-E/2細胞の培養上清が添加される場合、その添加量は、10~90容量%であることが好ましい。 Animal serum is not particularly limited, and examples include human serum and fetal bovine serum. These are preferably added to the medium in the range of 0.1 to 20% by volume. When nicotinamide is added to the medium, the amount added is preferably 1 to 100 mM. When dimethyl sulfoxide is added to the medium, the addition amount is preferably 0.1 to 2% by volume. When the culture supernatant of HuS-E / 2 cells is added to the medium, the amount added is preferably 10 to 90% by volume.
 工程(A)及び(B)はそれぞれ一回ずつ行ってもよいし、必要に応じて複数回ずつ行ってもよい。あるいは、これらを1セットとしてそれを複数回繰り返し行ってもよい。複数回行う場合、好ましくは2~10回、より好ましくは3~8回、さらに好ましくは3~5回行うことができる。このように工程(A)及び/又は(B)を繰り返すことは、細胞周期再活性化タンパク質をコードする遺伝子を一過性に発現させ、幹細胞を増殖性の状態にシフトさせるために好ましいと考えられる。 Steps (A) and (B) may be performed once each, or may be performed a plurality of times as necessary. Alternatively, these may be set as a set and repeated a plurality of times. When it is performed a plurality of times, it can be performed preferably 2 to 10 times, more preferably 3 to 8 times, and even more preferably 3 to 5 times. It is considered that repeating steps (A) and / or (B) in this way is preferable in order to transiently express a gene encoding a cell cycle reactivation protein and shift stem cells to a proliferative state. It is done.
 工程(A)及び(B)は、必要な量の内胚葉性幹細胞を含む幹細胞が得られるまで続けることができる。培養の期間は、特に制限されないが、例えば、数日~数週間行うことができる。一実施形態において、培養は、7日以上行うことが好ましい。工程(B)を一度だけ行う場合は、例えば、幹細胞によるコロニー形成が十分に行われるまでの期間工程(B)を続ければ、内胚葉性幹細胞を含む幹細胞群を容易に採取することができる。工程(B)の終了時点は、好ましくは顕微鏡若しくは肉眼で幹細胞のコロニーが確認できる時点、又は10~10000個の細胞群からなる幹細胞のコロニーが形成される時点であり、より好ましくは、100~1000個の細胞群からなる幹細胞のコロニーが形成される時点である。幹細胞以外の細胞は、工程(B)の終了時点までにはその多くが死滅し、あるいは生存していても増殖停止し細胞形態が明らかに異なっている。このため、純度の高い幹細胞群を容易に取得することができる。 Steps (A) and (B) can be continued until a stem cell containing the required amount of endoderm stem cells is obtained. The culture period is not particularly limited and can be, for example, several days to several weeks. In one embodiment, the culture is preferably performed for 7 days or more. When the step (B) is performed only once, for example, if the step (B) is continued for a period until the colony formation by the stem cells is sufficiently performed, a group of stem cells including endoderm stem cells can be easily collected. The end point of the step (B) is preferably a time point at which a stem cell colony can be confirmed with a microscope or the naked eye, or a time point at which a stem cell colony consisting of 10 to 10,000 cell groups is formed, and more preferably 100 to 100- This is the time when a stem cell colony consisting of 1000 cell groups is formed. Many cells other than stem cells are killed by the end of the step (B), or even if they are alive, the growth is stopped and the cell morphology is clearly different. For this reason, a highly pure stem cell group can be acquired easily.
3.工程(C)
 工程(B)によって得られたコロニーを回収し、その中から細胞表面分子マーカーAFPが陰性である細胞を選抜することにより、内胚葉性幹細胞を得ることができる。コロニーの回収は、従来公知の方法によって行うことができ、例えば、限界希釈法や顕微鏡観察下においてマイクロピペットを使用する方法等によって行うことができる。内胚葉性幹細胞は、分子マーカーAFPが陰性であることに加え、アルブミン陰性、C-Met陽性、EpCam陽性、Thy1陽性、且つCD34陰性であることが好ましい。分子マーカー又は遺伝子マーカーの発現の有無は、任意の手法で確認でき、例えば、市販されるキットを用いて行うことができる。
3. Process (C)
By collecting the colonies obtained by the step (B) and selecting cells that are negative for the cell surface molecular marker AFP, endoderm stem cells can be obtained. Colony recovery can be performed by a conventionally known method, for example, a limiting dilution method or a method using a micropipette under a microscope. In addition to being negative for the molecular marker AFP, the endoderm stem cells are preferably albumin negative, C-Met positive, EpCam positive, Thy1 positive, and CD34 negative. The presence or absence of the expression of the molecular marker or gene marker can be confirmed by any technique, and can be performed using, for example, a commercially available kit.
 内胚葉性幹細胞であることの判定は、他の手法(例えば、複数の内胚葉由来臓器の細胞へと分化するか否かを調べること)によって行うこともできる。例えば、得られた細胞に対して膵臓細胞への分化誘導を行い、膵臓細胞の遺伝子マーカー(Pdx1、インスリン及びグルコキナーゼ等)の有無を確認することによって、膵臓細胞への分可能を確認することができる。また、得られた細胞に対して肝細胞の分化誘導を行い肝細胞の遺伝子マーカー(アルブミン及び薬物代謝酵素遺伝子等)の有無を確認することによって、肝臓細胞への分可能の確認することができる。 Judgment of being an endoderm stem cell can also be performed by other methods (for example, examining whether or not to differentiate into cells of a plurality of endoderm-derived organs). For example, the differentiation of the obtained cells into pancreatic cells is performed, and the presence or absence of gene markers (Pdx1, insulin, glucokinase, etc.) of the pancreatic cells is confirmed to confirm whether the cells can be divided into pancreatic cells. Can do. In addition, hepatocyte differentiation can be induced on the obtained cells and the presence or absence of hepatocyte gene markers (albumin, drug metabolizing enzyme genes, etc.) can be confirmed. .
 本発明により、好ましくは内胚葉性幹細胞を細胞数換算で50%以上含む幹細胞群、より好ましくは内胚葉性幹細胞を80%以上含む細胞群を作製することができる。本発明により、さらに好ましくは実質的に内胚葉性幹細胞のみから構成されてなる幹細胞群、よりさらに好ましくは単離された内胚葉性幹細胞群を製造することができる。 According to the present invention, a stem cell group preferably containing 50% or more endoderm stem cells in terms of the number of cells, more preferably a cell group containing 80% or more endoderm stem cells can be prepared. According to the present invention, it is possible to produce a group of stem cells, more preferably substantially composed of only endoderm stem cells, and more preferably an isolated endoderm stem cell group.
 内胚葉性幹細胞は、内胚葉に由来する臓器を構成する細胞に分化する能力(即ち、多分化能)及び自己増殖能を有する体性幹細胞である。内胚葉に由来する臓器としては、通常、食道、胃、小腸、大腸、肺、甲状腺、膵臓、及び肝臓等を挙げることができるが、これらに限定されるわけではない。内胚葉性幹細胞が分化可能な細胞が構成する臓器としては、膵臓、及び肝臓が好ましい。一実施形態において、内胚葉性幹細胞は、インスリン産生細胞への分化能を備えていることが好ましく、生体内のインスリン産生細胞と同等の性質を持つインスリン産生細胞の高純度集団を安定的に供給するために利用することができる。こうして得られるインスリン産生細胞は、最終的に細胞製剤等の臨床応用、又は新薬開発若しくは疾患研究等の様々な研究開発において活用することができる。内胚葉性幹細胞は、必要に応じて、更に外因性の遺伝子を含んでいても良い。 Endoderm stem cells are somatic stem cells that have the ability to differentiate into cells that constitute an organ derived from the endoderm (ie, multipotent) and self-proliferating ability. Examples of organs derived from the endoderm include, but are not limited to, the esophagus, stomach, small intestine, large intestine, lung, thyroid gland, pancreas, and liver. As organs constituted by cells from which endoderm stem cells can differentiate, pancreas and liver are preferable. In one embodiment, the endoderm stem cells preferably have the ability to differentiate into insulin-producing cells, and stably supply a high-purity population of insulin-producing cells having properties equivalent to those of insulin-producing cells in vivo. Can be used to The insulin-producing cells thus obtained can be finally used in clinical applications such as cell preparations, or in various research and development such as new drug development or disease research. The endoderm stem cell may further contain an exogenous gene as necessary.
 内胚葉性幹細胞のインスリン産生細胞への分化誘導は、内胚葉性幹細胞をインスリン産生細胞への分化に適した培地及びその他の条件で培養することで実施できる。分化に適切な培地及びその他の培養条件は、公知の条件から適宜選択して設定することができる。例えばZhang D.らが報告したES細胞からインスリン産生細胞への分化方法(Cell Research 19(4),429-38,2009)が利用出来る。即ち、内胚葉性幹細胞から膵臓分化に向かわせる特殊化、細胞増殖、細胞成熟化というように培地(培養環境)を変化させ、段階的に分化誘導していく方法である。このようにして分化誘導されたインスリン産生細胞は、グルコース応答性を有することが好ましい。 Induction of differentiation of endoderm stem cells into insulin-producing cells can be performed by culturing endoderm stem cells in a medium suitable for differentiation into insulin-producing cells and other conditions. A medium and other culture conditions suitable for differentiation can be set by appropriately selecting from known conditions. For example, Zhang D. Can be used to differentiate from ES cells to insulin-producing cells (Cell Research 19 (4), 429-38, 2009). That is, it is a method of inducing differentiation stepwise by changing the medium (culture environment) such as specialization, cell proliferation, and cell maturation from endoderm stem cells toward pancreatic differentiation. The insulin-producing cells thus induced to differentiate preferably have glucose responsiveness.
 以下、実施例及び試験例を示して本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, although an example and a test example are shown and the present invention is explained in detail, the present invention is not limited to these examples.
実施例1.内胚葉性幹細胞の作製
(1)初代ヒト肝細胞の培養
 凍結初代ヒト肝細胞(XenoTech社)を融解後、Hepatocyte Isolation Kit(XenoTech社)を用いてFicoll分離を行い、生細胞と死細胞を分離することにより高いバイアビリティーの肝細胞懸濁液を得た。この細胞を10容量%の割合でウシ胎児血清を添加したHuman Hepatocyte Serum Free Medium(東洋紡株式会社)に懸濁し、コラーゲンコートした12ウェル細胞培養プレート(AGCテクノグラス)に約5×10個/ウェルの細胞密度となるように播種した。播種した細胞を37℃、5%COの条件下、COインキュベーター内で48時間培養し、肝細胞をプレートに充分接着させた。
Example 1. Preparation of endoderm stem cells (1) Culture of primary human hepatocytes After thawing frozen primary human hepatocytes (XenoTech), Ficoll isolation using Hepatocyte Isolation Kit (XenoTech) to separate live and dead cells As a result, a high viability hepatocyte suspension was obtained. These cells were suspended in Human Hepatocyte Serum Free Medium (Toyobo Co., Ltd.) supplemented with fetal bovine serum at a rate of 10% by volume, and about 5 × 10 5 cells / cell-coated 12-well cell culture plate (AGC Techno Glass) / It seed | inoculated so that it might become the cell density of a well. The seeded cells were cultured in a CO 2 incubator for 48 hours under conditions of 37 ° C. and 5% CO 2 , and hepatocytes were sufficiently adhered to the plate.
(2)トランスフェクション
 トランスフェクションには市販のタンパク質発現用プラスミドpcDNA3(ライフテクノロジーズ)を使用した。プラスミドのEcoRIとXbaIの間のクローニングサイトにヒトCDK4遺伝子を挿入してヒトCDK4遺伝子導入用プラスミドを作製した。また、プラスミドのHindIIIとBamHIの間のクローニングサイトにヒトCDK6遺伝子を挿入してヒトCDK6遺伝子導入用プラスミドを作製した。ヒトCDK4及びヒトCDK6をコードするDNAは、NCBI(National Center forBiotechnology Information)に登録された塩基配列(CDK4遺伝子のアクセッション番号:CAG47043、CDK6遺伝子のアクセッション番号:NP_001138778)を基にプライマーを設計し、HuS-E/2細胞(ヒト肝細胞由来の細胞で、独立行政法人産業技術総合研究所特許生物寄託センターに寄託されている:FERM ABP-10908)から精製したtotal RNAを鋳型としてRT-PCRを行って得た。上記のプライマーには、配列番号1に示される塩基配列から成るフォワードプライマーと配列番号2に示される塩基配列から成るリバースプライマーを用いた。配列番号1の塩基配列にはFlag Tagに相当する配列が含まれる。
(2) Transfection The commercially available protein expression plasmid pcDNA3 (Life Technologies) was used for transfection. A human CDK4 gene introduction plasmid was prepared by inserting the human CDK4 gene into the cloning site between EcoRI and XbaI of the plasmid. Further, a human CDK6 gene introduction plasmid was prepared by inserting the human CDK6 gene into the cloning site between HindIII and BamHI of the plasmid. DNAs encoding human CDK4 and human CDK6 are designed based on the nucleotide sequence registered in NCBI (National Center for Biotechnology Information) (accession number of CDK4 gene: CAG47043, accession number of CDK6 gene: NP_001138778). RT-PCR using total RNA purified from HuS-E / 2 cells (human hepatocyte-derived cells, deposited at the National Institute of Advanced Industrial Science and Technology Patent Biological Depositary: FERM ABP-10908) as a template Obtained. As the primer, a forward primer consisting of the base sequence shown in SEQ ID NO: 1 and a reverse primer consisting of the base sequence shown in SEQ ID NO: 2 were used. The base sequence of SEQ ID NO: 1 includes a sequence corresponding to Flag Tag.
 このようにして取得したCDK4又はCDK6をコードするDNAのオープンリーディングフレームのN末端側にFlag Tagが導入されたプラスミド(pcDNA-FLAG-CDK4又はpcDNA-FLAG-CDK6)を1ウェルあたり0.3μgとなるようEffectene transfection reagent(Quiagen)と共に培地に添加し、肝細胞群にCDK4又はCDK6の遺伝子を導入した。その後、5日に1度の頻度でトランスフェクションを計5回繰り返し実施した。ネガティブコントロールとして、CDK遺伝子を含まないプラスミドを用いて同様のトランスフェクション操作を実施した。 The plasmid (pcDNA-FLAG-CDK4 or pcDNA-FLAG-CDK6) having Flag Tag introduced into the N-terminal side of the open reading frame of DNA encoding CDK4 or CDK6 obtained in this way was 0.3 μg per well. It was added to the medium together with Effectene transfection reagent (Qiagen), and the CDK4 or CDK6 gene was introduced into the hepatocyte group. Thereafter, transfection was repeated 5 times at a frequency of once every 5 days. As a negative control, a similar transfection operation was performed using a plasmid not containing the CDK gene.
(3)トランスフェクション細胞の培養
 トランスフェクション実施時から、培養には、5容量%ヒト血清及び5容量%ウシ胎児血清を含むDMEMベースの培養液に、前記HuS-E/2細胞を培養して調製したコンディションドメディウムを加え混合したDMEMベースの培養液を用いた。更に、DMEMベースの培養液には、35.8mMの炭酸水素ナトリウム、0.34μg/mlのインスリン、4.1μg/mlのトランスフェリン、4.1ng/mlのEGF(上皮成長因子)、20ng/mlのHGF(肝細胞増殖因子)、8.3mMのニコチンアミド、0.81容量%のジメチルスルホキシドを添加した。
(3) Culture of transfected cells From the time of transfection, the HuS-E / 2 cells are cultured in a DMEM-based culture solution containing 5% human serum and 5% fetal bovine serum. A DMEM-based culture medium in which the prepared conditioned medium was added and mixed was used. In addition, DMEM-based cultures include 35.8 mM sodium bicarbonate, 0.34 μg / ml insulin, 4.1 μg / ml transferrin, 4.1 ng / ml EGF (epidermal growth factor), 20 ng / ml. HGF (hepatocyte growth factor), 8.3 mM nicotinamide, 0.81 vol% dimethyl sulfoxide were added.
(4)内胚葉性幹細胞の取得
 培養14日目にpcDNA-FLAG-CDK4、又はpcDNA-FLAG-CDK6をトランスフェクションした細胞はシャーレ内で数個の小さなコロニーを形成しているのが観察された。このコロニーを限界希釈法にてクローニングを実施し、クローン細胞を得た。得られた各クローンについて、肝細胞に関する遺伝子発現を調べた結果を図1に示す。いずれも一部で肝幹細胞の性質を示しながらも、肝幹細胞のマーカーの一つであるアルファフェトプロテイン(以下、AFP)については陰性であるクローン細胞が存在した(図1)。このAFPマーカーが陰性である細胞は、後述の通り、肝臓以外の内胚葉由来の臓器(膵臓)を構成する細胞にも分化可能であることが確認された。そこで、AFPマーカーが陰性である細胞を内胚葉性幹細胞(即ち、内胚葉由来の臓器に分化し得る幹細胞)として取得した。内胚葉性幹細胞は、樹立後1年以上に亘り前記の分化能を保ちつつ継続した増殖が認められ、自己複製能力を有していることが確認された。
(4) endodermal stem pcDNA-FLAG-CDK4 to obtain 14 days of culture cells, or cells with pcDNA-FLAG-CDK6 and transfection that forms several small colonies in the petri dish was observed . This colony was cloned by a limiting dilution method to obtain clonal cells. FIG. 1 shows the results of examining the gene expression related to hepatocytes for each of the obtained clones. Although some of them showed the properties of hepatic stem cells, there were clonal cells that were negative for alpha fetoprotein (hereinafter, AFP), which is one of the markers of hepatic stem cells (FIG. 1). As described later, it was confirmed that the cells having a negative AFP marker can also differentiate into cells constituting an organ (pancreas) derived from the endoderm other than the liver. Therefore, cells that are negative for the AFP marker were obtained as endoderm stem cells (ie, stem cells that can differentiate into endoderm-derived organs). Endodermal stem cells were confirmed to have self-replicating ability because of continued proliferation while maintaining the above-mentioned differentiation ability over one year after establishment.
実施例2.内胚葉由来臓器への分化能の確認
(1)インスリン産生細胞への分化誘導
 実施例1で得られた内胚葉性幹細胞を既知の手法を用いてインスリン産生細胞に分化させる試験を実施した。具体的には、図2に示す次の3段階の分化誘導手順を踏んだ。まず0.5質量/容量%のウシ血清アルブミン、0.5容量%のITS溶液(ライフテクノロジーズ社)、0.5倍濃度のB27溶液(ライフテクノロジーズ社)、2μMのレチノイン酸(Sigma社)、20ng/mlのFGF7(Peprotech社)、及び50ng/mlのNOGGIN(Peprotech社)を添加したF12培地とIMDM培地との1:1混合培地中で4日間の培養を行った。次に、0.5質量/容量%のウシ血清アルブミン、1容量%のITS溶液(ライフテクノロジーズ社)、1倍濃度のN2溶液(ライフテクノロジーズ)、50ng/mlのEGF(Sigma社)を添加したDMEM培地中で5日間培養した。その後、1容量%のITS溶液(ライフテクノロジーズ社)、10ng/mlのbFGF(Peprotech社)、10mMのニコチンアミド(Sigma社)、50ng/mlのExendin4(Peprotech社)、及び10ng/mlのBMP4(Peprotech社)を添加したDF12培地中で4日間培養した。
Example 2 Confirmation of differentiation ability into endoderm-derived organ (1) Induction of differentiation into insulin-producing cells A test was conducted to differentiate the endoderm stem cells obtained in Example 1 into insulin-producing cells using a known technique. Specifically, the following three-stage differentiation induction procedure shown in FIG. 2 was performed. First, 0.5 mass / volume% bovine serum albumin, 0.5 volume% ITS solution (Life Technologies), 0.5 times B27 solution (Life Technologies), 2 μM retinoic acid (Sigma), The culture was performed for 4 days in a 1: 1 mixed medium of F12 medium and IMDM medium supplemented with 20 ng / ml FGF7 (Peprotech) and 50 ng / ml NOGGIN (Peprotech). Next, 0.5 mass / volume% bovine serum albumin, 1 volume% ITS solution (Life Technologies), 1-fold N2 solution (Life Technologies), 50 ng / ml EGF (Sigma) were added. Cultivated in DMEM medium for 5 days. Thereafter, 1% by volume ITS solution (Life Technologies), 10 ng / ml bFGF (Peprotech), 10 mM nicotinamide (Sigma), 50 ng / ml Exendin4 (Peprotech), and 10 ng / ml BMP4 ( The cells were cultured for 4 days in DF12 medium supplemented with Peprotech.
(2)分化誘導後の細胞におけるマーカー発現
 上記の分化誘導を行う前及び後の細胞について種々のマーカー遺伝子の発現変動を調べた。その結果、膵分化マーカーであるPdx1、インスリン、グルコキナーゼ、グルカゴン、及びソマトスタチンは何れも分化誘導開始後9日目から13日目までの成熟期に大きく発現が誘導された。また、グルカゴンとソマトスタチンも同様に成熟期に大きく発現誘導されることがわかった(図3~7)。Glut2及びNkx6-1については、分化誘導後はヒト膵島組織と同等に近いレベルまで発現が誘導されていた(図8)。インスリン及びソマトスタチンは、各々膵島β細胞及び膵島δ細胞で産生されることが知られている。分化誘導の前後について、同一細胞を抗インスリン抗体及び抗ソマトスタチン抗体を用いた間接蛍光抗体法によって同時に染色したところ、これら二つのタンパク質が一つの細胞で産生されていることが確認された(図9)。
(2) examined the expression variation of various marker genes for cells before and after performing the differentiation induction of marker expression above in cells after differentiation induction. As a result, Pdx1, insulin, glucokinase, glucagon, and somatostatin, which are pancreatic differentiation markers, were all greatly expressed during the maturation period from the 9th day to the 13th day after the start of differentiation induction. It was also found that expression of glucagon and somatostatin was also greatly induced during maturation (FIGS. 3 to 7). For Glut2 and Nkx6-1, expression was induced to a level close to that of human islet tissue after differentiation induction (FIG. 8). Insulin and somatostatin are known to be produced in islet β cells and islet δ cells, respectively. When the same cells were stained simultaneously by the indirect fluorescent antibody method using an anti-insulin antibody and an anti-somatostatin antibody before and after differentiation induction, it was confirmed that these two proteins were produced in one cell (FIG. 9). ).
(3)インスリン産生能及びグルコース反応性
 分化誘導後の細胞からインスリンが培養液中に分泌されているか、及び、細胞の高濃度グルコースに対する反応性を、培養上清中のCペプチド(インスリンの切断産物)を指標にELISAキット(Mercodia社)を用いて調べた。この結果、培養液中には検出可能な量のCペプチドが存在した。また、培養液のグルコース濃度を10倍にして1時間曝露すると、Cペプチドの量が2倍に誘導されることがわかった(図10)。以上のことから、分化誘導した細胞は、インスリンを産生・分泌し、更に高濃度のグルコースに対して反応し、分泌量を誘導する能力を有する細胞であることがわかった。
(3) Insulin production ability and glucose-responsive differentiation induced cells are secreted into the culture medium, and the reactivity of the cells to high-concentration glucose is determined according to the C peptide in the culture supernatant (cleavage of insulin Product) was used as an index and examined using an ELISA kit (Mercodia). As a result, a detectable amount of C peptide was present in the culture solution. Moreover, it was found that when the glucose concentration of the culture solution was increased to 10 times and exposed for 1 hour, the amount of C peptide was induced twice (FIG. 10). From the above, it was found that differentiation-induced cells are cells that have the ability to produce and secrete insulin, react to a high concentration of glucose, and induce secretion.
実施例3.肝細胞への分化誘導
 実施例1で取得した内胚葉性幹細胞の性質を有したヒト肝幹細胞が、肝細胞へ分化する能力を有する確認を行った。即ち、内胚葉性幹細胞の性質を有したヒト肝幹細胞をHepatic basal medium(Lonza)に30ng/mlのFGF4及び20ng/mlのBMP2を添加した培地で5日間培養した後、Human Hepatocyte Serum-free Medium(東洋紡)にて約1ヶ月間培養を行った。この間、経時的に細胞中に発現する遺伝子マーカーを調べた結果、培養5日目にはAFPは陽性へと転じ、更に培養約1ヵ月後にはアルブミン陽性を示した(図11)。この結果は、内胚葉性幹細胞の性質を有したヒト肝幹細胞が肝細胞へと分化していることを示している。
Example 3 Induction of differentiation into hepatocytes Human hepatic stem cells having the properties of endoderm stem cells obtained in Example 1 were confirmed to have the ability to differentiate into hepatocytes. That is, human hepatic stem cells having the properties of endoderm stem cells are cultured in a medium in which 30 ng / ml FGF4 and 20 ng / ml BMP2 are added to Hepatic basal medium (Lonza) for 5 days, and then Human Hepatocyte Serum-free Medium. (Toyobo) was cultured for about one month. During this time, as a result of investigating gene markers expressed in the cells over time, AFP turned positive on the 5th day of culture and further showed albumin positive after about 1 month of culture (FIG. 11). This result indicates that human hepatic stem cells having the properties of endoderm stem cells are differentiated into hepatocytes.

Claims (14)

  1. (A) 肝臓細胞群において、G0期又はG1期を通過させS期へと移行させる活性を有するタンパク質をコードする遺伝子を発現させる工程;
    (B) 工程(A)で得られた細胞を細胞外増殖因子の存在下で培養する工程;及び
    (C) 工程(B)で得られた細胞から分子マーカーAFPの発現が陰性である細胞を選抜する工程;
    を含む、内胚葉性幹細胞の製造方法。
    (A) In a liver cell group, a step of expressing a gene encoding a protein having an activity of passing through the G0 phase or G1 phase and shifting to the S phase;
    (B) a step of culturing the cells obtained in step (A) in the presence of an extracellular growth factor; and (C) a cell in which expression of the molecular marker AFP is negative from the cells obtained in step (B). Process of selecting;
    A method for producing an endoderm stem cell, comprising:
  2. 前記内胚葉性幹細胞がインスリン産生細胞への分化能を備えた幹細胞である、請求項1に記載の方法。 The method according to claim 1, wherein the endoderm stem cell is a stem cell having an ability to differentiate into an insulin-producing cell.
  3. 前記タンパク質がサイクリン依存性キナーゼである、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the protein is a cyclin-dependent kinase.
  4. サイクリン依存性キナーゼが、サイクリン依存性キナーゼ4又はサイクリン依存性キナーゼ6である、請求項3に記載の方法。 The method according to claim 3, wherein the cyclin-dependent kinase is cyclin-dependent kinase 4 or cyclin-dependent kinase 6.
  5. 前記工程(A)及び(B)を少なくとも二回繰り返す、請求項1~4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein the steps (A) and (B) are repeated at least twice.
  6. 前記細胞外増殖因子が肝細胞増殖因子である、請求項1~5のいずれかに記載の方法。 The method according to any one of claims 1 to 5, wherein the extracellular growth factor is a hepatocyte growth factor.
  7. 前記培養が、更に、動物血清、上皮成長因子、ニコチンアミド、ジメチルスルホキシド及びHuS-E/2細胞(FERM ABP-10908)の培養上清から成る群より選択される少なくとも2つ以上の存在下で行われる、請求項1~6のいずれかに記載の方法。 In the presence of at least two or more selected from the group consisting of the culture supernatant of animal serum, epidermal growth factor, nicotinamide, dimethyl sulfoxide and HuS-E / 2 cells (FERM ABP-10908). The method according to any one of claims 1 to 6, which is carried out.
  8. 前記培養を7日間以上継続する、請求項1~7のいずれかに記載の方法。 The method according to any one of claims 1 to 7, wherein the culture is continued for 7 days or more.
  9. 前記発現が一過性発現である、請求項1~8のいずれかに記載の方法。 The method according to any one of claims 1 to 8, wherein the expression is transient expression.
  10.  請求項1~9のいずれかに記載の方法により得られうる、内胚葉性幹細胞。 An endoderm stem cell obtainable by the method according to any one of claims 1 to 9.
  11. 外因性遺伝子が導入されている、請求項10に記載の内胚葉性幹細胞。 The endoderm stem cell according to claim 10, into which an exogenous gene has been introduced.
  12. 請求項1~9のいずれかに記載の方法によって得られる内胚葉性幹細胞をインスリン産生細胞への分化に適した培地で培養する工程を含む、インスリン産生細胞の製造方法。 A method for producing insulin-producing cells, comprising a step of culturing endoderm stem cells obtained by the method according to any one of claims 1 to 9 in a medium suitable for differentiation into insulin-producing cells.
  13. インスリン産生細胞がグルコース反応性を有する請求項12又は13に記載の方法。 The method according to claim 12 or 13, wherein the insulin-producing cells have glucose reactivity.
  14. 請求項12又は13に記載の方法で得られうるインスリン産生細胞。
     
    Insulin-producing cells obtainable by the method according to claim 12 or 13.
PCT/JP2015/066740 2014-06-12 2015-06-10 Method for producing endodermal stem cells WO2015190522A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-121780 2014-06-12
JP2014121780 2014-06-12

Publications (1)

Publication Number Publication Date
WO2015190522A1 true WO2015190522A1 (en) 2015-12-17

Family

ID=54833611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066740 WO2015190522A1 (en) 2014-06-12 2015-06-10 Method for producing endodermal stem cells

Country Status (1)

Country Link
WO (1) WO2015190522A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126236A1 (en) * 2005-05-26 2006-11-30 Fresenius Medical Care Deutschland G.M.B.H. Liver progenitor cells
WO2009143353A1 (en) * 2008-05-22 2009-11-26 Vesta Therapeutics, Inc. Method of differentiating mammalian progenitor cells into insulin producing pancreatic islet cells
WO2012133156A1 (en) * 2011-03-25 2012-10-04 国立大学法人京都大学 Method for producing epithelial stem cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126236A1 (en) * 2005-05-26 2006-11-30 Fresenius Medical Care Deutschland G.M.B.H. Liver progenitor cells
WO2009143353A1 (en) * 2008-05-22 2009-11-26 Vesta Therapeutics, Inc. Method of differentiating mammalian progenitor cells into insulin producing pancreatic islet cells
WO2012133156A1 (en) * 2011-03-25 2012-10-04 国立大学法人京都大学 Method for producing epithelial stem cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG D ET AL.: "Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells.", CELL RES., vol. 19, no. 4, 19 April 2009 (2009-04-19), pages 429 - 438, XP055074920, ISSN: 1001-0602 *

Similar Documents

Publication Publication Date Title
JP4336821B2 (en) Induction of cardiomyocytes using mammalian bone marrow cells or cord blood-derived cells and adipose tissue
JP5135577B2 (en) Method for inducing differentiation of embryonic stem cells into insulin-secreting cells, insulin-secreting cells induced by the method, and use thereof
US11920160B2 (en) Pancreatic insulin-producing beta-cell lines derived from human pluripotent stem cells
JP7233717B2 (en) Construction of three-dimensional organs from pluripotent stem cells
EA035360B1 (en) Methods of transdifferentiation and methods of use thereof
WO2007010858A1 (en) Pluripotent stem cell cloned from single cell derived from skeletal muscle tissue
Wu et al. Modeling colorectal tumorigenesis using the organoids derived from conditionally immortalized mouse intestinal crypt cells (ciMICs)
Day Epithelial stem cells and tissue engineered intestine
JP6095272B2 (en) Method for producing epithelial somatic stem cells
JP2021512643A (en) Method of cell induction
US20200291358A1 (en) Stem cell derived from young pig and method for producing same
WO2015190522A1 (en) Method for producing endodermal stem cells
JP4913730B2 (en) Pancreatic β-cell regeneration method and apparatus
CN115044534A (en) Method for producing pancreatic islet beta cells in vitro by using BMP7 factor, pancreatic islet beta cells obtained by same and application thereof
KR101587231B1 (en) Composition and method for promoting direct conversion of fibroblasts into hepatocytes
WO2011110722A1 (en) Method for the in vitro proliferation of cells from endodermal tissues
JP5294041B2 (en) Pancreatic cell regenerative transplant kit for pancreatic disease or diabetes
JP6654323B2 (en) Cells capable of forming stratified epithelial tissue and method for producing the same
WO2014038655A1 (en) Method of producing intestinal epithelium-derived somatic stem cells
US20200095557A1 (en) Cell spheroids containing capillary structures and methods of using same
WO2014038652A1 (en) Production method for pancreas-derived somatic stem cells
WO2014038653A1 (en) Production method for kidney-derived somatic stem cells
Li Generation of Human Pancreatic Beta Like Cells from Pluripotent Stem Cells
Jahan Multi-stage endothelial differentiation and expansion of human pluripotent stem cells
JP2005287478A (en) Human fat precursor cell line and method for using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15806119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP