WO2015186557A1 - 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム - Google Patents
熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム Download PDFInfo
- Publication number
- WO2015186557A1 WO2015186557A1 PCT/JP2015/064938 JP2015064938W WO2015186557A1 WO 2015186557 A1 WO2015186557 A1 WO 2015186557A1 JP 2015064938 W JP2015064938 W JP 2015064938W WO 2015186557 A1 WO2015186557 A1 WO 2015186557A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- working medium
- temperature
- hfo
- heat cycle
- hfc
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
- C09K5/041—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
- C09K5/044—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
- C09K5/045—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B31/00—Compressor arrangements
- F25B31/002—Lubrication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/12—Hydrocarbons
- C09K2205/122—Halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/12—Hydrocarbons
- C09K2205/126—Unsaturated fluorinated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/22—All components of a mixture being fluoro compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/40—Replacement mixtures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/12—Inflammable refrigerants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/16—Lubrication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/19—Calculation of parameters
Definitions
- the present invention relates to a working medium for heat cycle, a composition for a heat cycle system including the working medium, and a heat cycle system using the composition.
- CFC chlorofluorocarbons
- HCFC hydrochlorofluorocarbons
- HFC-32 difluoromethane
- HFC-125 pentafluoroethane
- HFC-134a 1,1,1,2-tetrafluoroethane
- R410A has been widely used for ordinary air-conditioning equipment called so-called package air conditioners and room air conditioners because of its high refrigerating capacity.
- GWP global warming potential
- the global warming potential (GWP) is as high as 2088, and therefore development of a low GWP working medium is required.
- R410A is simply replaced and the devices that have been used so far continue to be used.
- HFC-134a used as a refrigerant for automobile air conditioning equipment has a large GWP of 1430.
- GWP GWP of 1430.
- the refrigerant leaks into the atmosphere from a connection hose, a bearing portion, or the like.
- HFO olefins
- HFC saturated HFC
- HFC is referred to as HFC, and is used separately from HFO.
- HFC is specified as a saturated hydrofluorocarbon.
- Patent Document 1 discloses a technique related to a working medium using 1,2-difluoroethylene (HFO-1132) that has the above-mentioned characteristics and provides excellent cycle performance. ing. Patent Document 1 further attempts to use HFO-1132 in combination with various HFCs and HFOs for the purpose of improving the nonflammability and cycle performance of the working medium.
- HFO-1132 1,2-difluoroethylene
- Patent Document 1 discloses that HFO-1132 is an alternative candidate for R410A and HFC-134a from the viewpoint of obtaining a working medium that can be put into practical use by comprehensively considering the balance of capacity, efficiency, and temperature gradient. No knowledge or suggestion is given for a working medium combining two or more of HFC and other HFOs.
- the present invention relates to a working medium for heat cycle including HFO-1132, which has high stability and has a cycle performance that can replace R410A and HFC-134a while suppressing the influence on global warming. Another object is to provide a composition for a thermal cycle system using the same, and a thermal cycle system using the composition.
- the present invention provides a working medium for heat cycle, a composition for heat cycle system, and a heat cycle system having the configurations described in [1] to [13] below.
- a working fluid for heat cycle comprising at least two selected from saturated hydrofluorocarbons and hydrofluorocarbons having a carbon-carbon double bond other than HFO-1132 and HFO-1132.
- HFO-1132 is trans-1,2-difluoroethylene, cis-1,2-difluoroethylene, or a mixture thereof.
- the evaporation temperature is 0 ° C. (in the case of a non-azeotropic mixture, the average temperature of the evaporation start temperature and the evaporation completion temperature), and the condensation temperature is 40 ° C.
- the relative refrigeration capacity (RQ R410A ) calculated by the following formula (B1) is 0.70 to 1.60
- the relative coefficient of performance (RCOP R410A ) calculated by the following formula (C1) is 0.85 to The working medium for heat cycle according to any one of [1] to [5], which is 1.20.
- R410A represents a mixture of difluoromethane and pentafluoroethane in a mass ratio of 1: 1, and the specimen represents a working medium to be relatively evaluated.
- the refrigeration capacity of the specimen and R410A And the coefficient of performance are as follows: the evaporation temperature is 0 ° C (in the case of a non-azeotropic mixture, the average temperature of the evaporation start temperature and the evaporation completion temperature), and the condensation temperature is 40 ° C (in the case of a non-azeotropic mixture) Is the average temperature of the condensation start temperature and the condensation completion temperature), the output (kW) obtained when applied to the reference refrigeration cycle in which the degree of supercooling (SC) is 5 ° C. and the degree of superheat (SH) is 5 ° C.
- SC degree of supercooling
- SH degree of superheat
- the relative refrigeration capacity (RQ R134a ) calculated by the following formula (B2) is 0.70 to 1.60
- the relative coefficient of performance (RCOP R134a ) calculated by the following formula (C2) is 0.85 to The working medium for heat cycle according to any one of [1] to [6], which is 1.20.
- R134a represents 1,1,1,2-tetrafluoroethane
- the specimen represents a working medium to be relatively evaluated. Refrigerating capacity and coefficient of performance of the specimen and R134a These have an evaporation temperature of 0 ° C.
- the saturated hydrofluorocarbon is at least one selected from difluoromethane, 1,1-difluoroethane, 1,1,1,2-tetrafluoroethane and pentafluoroethane.
- the hydrofluorocarbon having a carbon-carbon double bond is at least one selected from 1,3,3,3-tetrafluoropropene and 2,3,3,3-tetrafluoropropene.
- a composition for a thermal cycle system comprising the thermal cycle working medium according to any one of the above [1] to [9] and a refrigerating machine oil.
- the heat cycle system according to [11] which is a refrigeration / refrigeration device, an air conditioning device, a power generation system, a heat transport device, or a secondary cooler.
- Room air conditioners store packaged air conditioners, building packaged air conditioners, facility packaged air conditioners, gas engine heat pumps, train air conditioners, automotive air conditioners, built-in showcases, separate showcases, commercial refrigerators / refrigerators
- the thermal cycle system according to [12] which is an ice making machine or a vending machine.
- a heat cycle having high cycle stability and cycle performance that can replace R410A and HFC-134a while suppressing the influence on global warming in a working medium for a heat cycle system including HFO-1132, a heat cycle having high cycle stability and cycle performance that can replace R410A and HFC-134a while suppressing the influence on global warming.
- a working medium and a composition for a heat cycle system including the same can be provided.
- the thermal cycle system of the present invention is a thermal cycle system to which a composition for a thermal cycle system that can replace R410A and HFC-134a and has little influence on global warming is applied.
- FIG. 2 is a cycle diagram in which a change in state of a working medium in the refrigeration cycle system of FIG. 1 is described on a pressure-enthalpy diagram.
- working medium for thermal cycle The working medium for heat cycle of the present invention (hereinafter also simply referred to as “working medium”) is at least two selected from saturated hydrofluorocarbons and hydrofluorocarbons having carbon-carbon double bonds other than HFO-1132 and HFO. -1132.
- the working medium for heat cycle of the present invention two or more types selected from HFC having a small influence on the ozone layer and HFO having a small influence on the ozone layer and a small GWP, and having excellent cycle performance and global warming
- HFO-1132 having a small influence on the environment, it is possible to easily obtain a working medium that can be substituted for R410A, HFC-134a, etc. in which the influence on global warming and the cycle performance are controlled in a well-balanced manner.
- HFO-1132 has a carbon-carbon double bond as described above, so it is easily decomposed and has little impact on global warming. Further, although it has excellent cycle performance as a working medium, when used alone, since it has a carbon-carbon double bond, there is a concern about stability in some cases. From this point of view, it can be said that a configuration in which two or more HFOs and HFCs other than HFO-1132 in the working medium of the present invention are combined with HFO-1132 is useful.
- HFO-1132 undergoes a self-decomposition reaction when an ignition source is present at high temperature or high pressure.
- the self-decomposition reaction was suppressed by mixing HFO-1132 with other components to obtain a mixture in which the content of HFO-1132 was suppressed.
- the self-decomposition reaction can be suppressed by controlling the temperature condition and the pressure condition, the method of adjusting the content of HFO-1132 in the working medium is advantageous in terms of operability when used in a heat cycle system. It is.
- HFC and HFO are used in combination with HFO-1132, and the content of HFO-1132 is specifically determined by the working medium. It is preferable that it is 80 mass% or less with respect to the whole quantity.
- HFO-1132 has stereoisomers of cis isomer (hereinafter referred to as Z isomer) and trans isomer (hereinafter referred to as E isomer) which have greatly different boiling points, that is, can be easily separated and purified. There is no difference in the self-decomposition reactivity (hereinafter also referred to as “self-decomposition”) of the Z-form, E-form, and mixtures thereof of HFO-1132. As described above, when it is not necessary to distinguish between the Z-form, the E-form, and the mixture of HFO-1132 in particular, it is assumed that the notation of “HFO-1132” is referred to as the Z-form, E-form, And a general term for these mixtures.
- Z isomer cis isomer
- E isomer trans isomer
- the Z-form, H-form of HFO-1132, and a mixture thereof have different physical properties
- the Z-form and H-form of HFO-1132 are respectively represented as HFO-1132.
- the following indicators are used as a viewpoint different from the self-decomposition reactivity. Is preferably used.
- Temperature gradient is one example of an index when a working medium composed of a mixture of a plurality of compounds is applied to a predetermined thermal cycle like the working medium of the present invention.
- the temperature gradient is an index for measuring the difference in composition between the liquid phase and the gas phase.
- the temperature gradient in a working medium composed of a single compound is “0”.
- the cycle performance is generally used as an index.
- the cycle performance is evaluated by (B) capacity (also referred to as “Q” in this specification) and (C) coefficient of performance (also referred to as “COP” in this specification).
- capacity also referred to as “Q” in this specification
- C coefficient of performance
- the capacity is a refrigeration capacity.
- the performance of the working medium is mainly evaluated using the above three items as indices. Specifically, using the reference refrigeration cycle under the temperature conditions shown below, for example, each item is measured by the method described later. The cycle performance is evaluated by converting it into a relative value based on the value of R410A or HFC-134a as an alternative object.
- the evaluation items will be specifically described below.
- the temperature gradient is an index that measures the difference in composition between the liquid phase and the gas phase, particularly in the working medium of the mixture.
- a temperature gradient is defined as the nature of heat exchangers, e.g., evaporation in an evaporator or condensation in a condenser, where the start and completion temperatures are different.
- the temperature gradient is zero, and in the pseudoazeotropic mixture such as R410A, the temperature gradient is very close to zero.
- the inlet temperature in the evaporator decreases, which increases the possibility of frost formation, which is a problem.
- a heat cycle system in order to improve heat exchange efficiency, it is common to make the working medium flowing through the heat exchanger and a heat source fluid such as water or air counter flow, and in a stable operation state, Since the temperature difference of the heat source fluid is small, it is difficult to obtain an energy efficient heat cycle system in the case of a non-azeotropic mixed medium having a large temperature gradient. For this reason, when a mixture is used as a working medium, a working medium having an appropriate temperature gradient is desired.
- the non-azeotropic mixing medium has a problem that a composition change occurs when filling from a pressure vessel to a refrigeration air conditioner. Furthermore, when refrigerant leakage from the refrigeration air conditioner occurs, the refrigerant composition in the refrigeration air conditioner is very likely to change, and it is difficult to restore the refrigerant composition to the initial state. On the other hand, the above problem can be avoided with an azeotropic or pseudo-azeotropic mixed medium.
- the refrigeration capacity is an output in the refrigeration cycle system.
- the relative refrigeration capacity for R410A can be obtained by the following equation (B1).
- the relative refrigeration capacity for HFC-134a can be obtained by the following equation (B2).
- the specimen indicates a working medium to be relatively evaluated.
- the relative refrigeration capacities for R410A and HFC-134a are also referred to as (B1) RQ R410A and (B2) RQ R134a , respectively. Alternatively , they are simply referred to as RQ R410A and RQ R134a .
- (C) Relative performance coefficient The performance coefficient is a value obtained by dividing the output (kW) by the power (kW) consumed to obtain the output (kW), and corresponds to the energy consumption efficiency. The higher the coefficient of performance, the greater the output can be obtained with fewer inputs.
- the relative coefficient of performance for R410A can be obtained by the following equation (C1).
- the relative coefficient of performance for HFC-134a can be obtained by the following equation (C2).
- the specimen indicates a working medium to be relatively evaluated.
- the relative coefficient of performance for R410A and HFC-134a is also referred to as (C1) RCOP R410A and (C2) RCOP R134a , respectively. Alternatively, they are simply referred to as RCOP R410A and RCOP R134a .
- GWP Global Warming Potential
- IPCC Intergovernmental Panel on climate Change
- HFO-1132 contained in the working medium according to the present invention is not described in the IPCC Fourth Assessment Report.
- the GWP of other HFOs for example, 6 of HFO-1234ze, 4 of HFO-1234yf, etc., is assumed to be 10 or less for both HFO-1132 (Z) and HFO-1132 (E).
- R410A (a 1: 1 (mass) composition of HFC-125 and HFC-32) excellent in cycle performance to be replaced by the working medium according to the present invention has an extremely high GWP of 2088, and HFC-134a GWP is 1430.
- HFC-125 is 3500 and HFC-32 is 675.
- Table 1 shows the relative coefficient of performance (RCOP R410A ) based on R410A , relative refrigeration capacity (RQ R410A ) and relative coefficient of performance (RCOP R134a ) based on HFC-134a for HFO-1132 (Z) and HFO-1132 (E).
- the relative refrigeration capacity (RQ R134a ) is shown together with GWP.
- HFO-1132 (Z) has low GWP and cycle performance exceeding HFC-134a when used alone, but from the viewpoint of enhancing stability as described above, superiority is recognized in the mixed composition of the present invention.
- HFO-1132 (E) it can be expected that the mixed composition of the present invention improves the shortage in terms of relative refrigeration capacity (RQ R410A ) when used alone to replace R410A. Furthermore, in this case, superiority is recognized in the mixed composition of the present invention from the viewpoint of improving the stability.
- Table 1 shows the cycle performance and GWP for each of HFO-1132 (Z) and HFO-1132 (E). About these mixtures, each relative value exists in the range by making the value of HFO-1132 (Z) and HFO-1132 (E) into an upper limit or a lower limit, respectively. Even in such a mixture of HFO-1132 (Z) and HFO-1132 (E), it can be said that superiority is recognized in the mixed composition of the present invention as described above.
- the HFO-1132 contained is in the form of a mixture containing a substantial amount of HFO-1132 (Z) and HFO-1132 (E), respectively.
- the HFO-1132 contained is in the form of a mixture containing a substantial amount of HFO-1132 (Z) and HFO-1132 (E), respectively.
- 80% of HFO-1132 (Z) or HFO-1132 (E) is used. It is preferable to use it in a form containing at least mass%.
- the working medium of the present invention is a mixture of three or more of HFO and HFC containing HFO-1132 as an essential component, and has a temperature gradient.
- the temperature gradient (A) which is an index for measuring the magnitude of composition change, is preferably 8 ° C. or lower.
- the temperature gradient is more preferably 5 ° C. or less, further preferably 3 ° C. or less, and particularly preferably 1 ° C. or less.
- the working medium of the present invention preferably has a cycle performance that can be used in place of R410A and / or HFC-134a.
- (B) the relative refrigeration capacity (B1) RQ R410A is 0.70 to 1.60
- (C) the relative coefficient of performance (C1) RCOP R410A is 0. It is preferably from .85 to 1.20. If (B1) RQ R410A and (C1) RCOP R410A are within the above ranges, they can be used in place of R410A.
- (B1) RQ R410A is more preferably 0.90 to 1.50, and particularly preferably 1.00 to 1.50.
- (C1) RCOP R410A is more preferably from 0.90 to 1.20, particularly preferably from 0.95 to 1.20.
- the relative refrigerating capacity (B2) RQ R134a is 0.70 to 1.60
- C) the relative coefficient of performance (C2) RCOP R134a is 0.85. It is preferably ⁇ 1.20. If (B2) RQ R134a and (C2) RCOP R134a are within the above ranges, they can be used in place of HFC-134a.
- B2) RQ R134a is more preferably 0.90 to 1.50, and particularly preferably 1.00 to 1.50.
- (C2) RCOP R134a is more preferably 0.90 to 1.20, and particularly preferably 0.95 to 1.20.
- (B1) RQ R410A is 0.70 to 1.60
- (C1) RCOP R410A is 0.85 to 1.20
- (B2) RQ R134a Is 0.70 to 1.60 and (C2) RCOP R134a is 0.85 to 1.20
- the working medium can be used in place of R410A and HFC-134a It is.
- the value calculated by estimating the GWP of HFO-1132 as 10 for both HFO-1132 (Z) and HFO-1132 (E) is preferably less than 1500, and less than 1000 Is more preferable, less than 750 is more preferable, and less than 500 is particularly preferable.
- Table 2 shows the relationship of preferable ranges for these items (A) to (D).
- a preferable condition range is limited in the order of (1) ⁇ (2) ⁇ (3) ⁇ (4).
- (4) shows the most preferable range.
- the numerical values of “(D) GWP” in Table 2 are based on values calculated by setting the GWP of HFO-1132 (Z) and HFO-1132 (E) to 10, respectively.
- the working medium of the present invention is a mixture of at least three compounds selected from HFO and HFC including HFO-1132 (however, HFO-1132 is an essential component).
- HFO-1132 is an essential component.
- (B1) and (C1) as cycle performance based on R410A are usually selected in combination.
- (B2) and (C2) as cycle performance based on HFC-134a are usually selected in combination.
- the most preferable working medium in the present invention is an operation satisfying all the conditions of (A)-(4), (B1)-(3), (C1)-(3) and (D)-(4). Or a working medium that satisfies all the conditions (A)-(4), (B2)-(3), (C2)-(3), and (D)-(4).
- a refrigeration cycle system whose schematic configuration diagram is shown in FIG. 1 can be used.
- a method for evaluating the cycle performance and the temperature gradient using the refrigeration cycle system shown in FIG. 1 will be described.
- a refrigeration cycle system 10 shown in FIG. 1 cools and liquefies a compressor 11 that compresses the working medium vapor A into a high-temperature and high-pressure working medium vapor B and the working medium vapor B discharged from the compressor 11.
- the condenser 12 as a low-temperature and high-pressure working medium C
- the expansion valve 13 that expands the working medium C discharged from the condenser 12 to form a low-temperature and low-pressure working medium D
- the working medium D discharged from the expansion valve 13 Is composed of an evaporator 14 that heats the working medium vapor A to a high-temperature and low-pressure working medium vapor A, a pump 15 that supplies a load fluid E to the evaporator 14, and a pump 16 that supplies a fluid F to the condenser 12.
- the working medium C discharged from the condenser 12 is expanded by the expansion valve 13 to obtain a low-temperature and low-pressure working medium D (hereinafter referred to as “CD process”).
- the working medium D discharged from the expansion valve 13 is heated by the load fluid E in the evaporator 14 to obtain high-temperature and low-pressure working medium vapor A. At this time, the load fluid E is cooled to become the load fluid E ′ and discharged from the evaporator 14 (hereinafter referred to as “DA process”).
- the refrigeration cycle system 10 is a cycle system including adiabatic / isoentropic change, isoenthalpy change, and isopressure change.
- the state change of the working medium is described on the pressure-enthalpy line (curve) diagram shown in FIG. 2, it can be expressed as a trapezoid having A, B, C, and D as apexes.
- the AB process is a process in which adiabatic compression is performed by the compressor 11 to convert the high-temperature and low-pressure working medium vapor A into the high-temperature and high-pressure working medium vapor B, which is indicated by an AB line in FIG.
- the working medium vapor A is introduced into the compressor 11 in an overheated state, and the obtained working medium vapor B is also an overheated vapor.
- the compressor discharge gas temperature (discharge temperature) is the temperature (Tx) in the state B in FIG. 2, and is the highest temperature in the refrigeration cycle.
- the composition of the working medium can be adjusted by further adding the difference in discharge temperature between the case where the working medium to be replaced, R410A or HFC-134a, and the case where the working medium of the present invention is used, to the index. Good.
- the discharge temperature when using the working medium of the present invention is lower than the discharge temperature when using the working medium to be replaced, R410A or HFC-134a, or even if the difference is 30 ° C. or less.
- it is 20 ° C. or less, more preferably 10 ° C. or less.
- the BC process is a process in which the condenser 12 performs isobaric cooling to convert the high-temperature and high-pressure working medium vapor B into a low-temperature and high-pressure working medium C, and is indicated by a BC line in FIG.
- the pressure at this time is the condensation pressure.
- Pressure - an intersection T 1 of the high enthalpy side condensing temperature of the intersection of the enthalpy and BC line, the low enthalpy side intersection T 2 is the condensation boiling temperature.
- the temperature gradient when the working medium is a non-azeotropic mixture medium is shown as the difference between T 1 and T 2 .
- the CD process is a process in which isenthalpy expansion is performed by the expansion valve 13 and the low-temperature and high-pressure working medium C is used as the low-temperature and low-pressure working medium D, and is indicated by a CD line in FIG. Incidentally, if Shimese the temperature in the working medium C of low temperature and high pressure at T 3, T 2 -T 3 is (i) ⁇ supercooling degree of the working medium in the cycle of (iv) (SC).
- the DA process is a process of performing isobaric heating in the evaporator 14 to return the low-temperature and low-pressure working medium D to the high-temperature and low-pressure working medium vapor A, and is indicated by a DA line in FIG.
- the pressure at this time is the evaporation pressure.
- Pressure - intersection T 6 of the high enthalpy side of the intersection of the enthalpy and DA line is evaporating temperature. If Shimese the temperature of the working medium vapor A in T 7, T 7 -T 6 is (i) ⁇ superheat of the working medium in the cycle of (iv) (SH).
- T 4 indicates the temperature of the working medium D.
- thermodynamic properties necessary for calculating the cycle performance of the working medium can be calculated based on a generalized equation of state (Soave-Redrich-Kwong equation) based on the corresponding state principle and thermodynamic relational equations. If characteristic values are not available, calculation is performed using an estimation method based on the group contribution method.
- Q indicated by (h A -h D ) corresponds to the output (kW) of the refrigeration cycle, and is required for operating the compression work indicated by (h B -h A ), for example, the compressor.
- the amount of electric power corresponds to the consumed power (kW).
- Q means the ability to freeze the load fluid, and the higher Q means that more work can be done in the same system. In other words, a large Q indicates that the target performance can be obtained with a small amount of working medium, and the system can be miniaturized.
- the content of HFO-1132 with respect to the total amount of the working medium is preferably 80% by mass or less as described above.
- at least two kinds selected from HFC and HFO other than HFO-1132 used together with HFO-1132 are not particularly limited. However, preferably, at least two selected from HFC and HFO other than HFO-1132 are compounds that do not have self-degradability.
- HFO-1132 preferably in combination with HFO-1132, more preferably in combination such that the content ratio of HFO-1132 is 80% by mass or less, an HFC that satisfies the above physical properties such as temperature gradient, cycle performance, GWP, etc.
- HFOs other than HFO-1132 are selected.
- the content of HFO-1132 with respect to the total amount of the working medium is preferably 20% by mass or more and more preferably 40% by mass from the viewpoint of cycle performance and GWP. Further, for higher stability of the working medium, in other words, durability, the content of HFO-1132 with respect to the total amount of the working medium is preferably 80% by mass or less.
- the HFO-1132 contained is a mixture containing a substantial amount of HFO-1132 (Z) and HFO-1132 (E).
- HFO-1132 (Z) and HFO-1132 (E) For example, in the total amount of HFO-1132 (Z) and HFO-1132 (E), 80% by mass of HFO-1132 (Z) or HFO-1132 (E) is used, mainly including one of them. % Or more, preferably 90% by mass or more.
- HFO other than HFC and HFO-1132 that can be contained in the working medium of the present invention will be specifically described.
- HFC As HFC combined with HFO-1132, in addition to improving the cycle performance as the above working medium and keeping the temperature gradient within an appropriate range, it has no self-decomposability from the viewpoint of keeping GWP within the above range. It is appropriately selected from the viewpoint.
- the HFC may be linear, branched, or cyclic.
- HFC examples include HFC-32, difluoroethane, trifluoroethane, tetrafluoroethane, HFC-125, pentafluoropropane, hexafluoropropane, heptafluoropropane, pentafluorobutane, heptafluorocyclopentane, and the like.
- HFC-32, 1,1-difluoroethane (HFC-152a), 1,1, HFC-32, 1,1-difluoroethane have a small influence on the ozone layer, excellent refrigeration cycle characteristics, and no self-degradability.
- 1-trifluoroethane (HFC-143a), 1,1,2,2-tetrafluoroethane (HFC-134), HFC-134a, and HFC-125 are preferred, and HFC-32, HFC-152a, HFC-134a And HFC-125 are more preferred.
- HFC may be used alone or in combination of two or more. When one type of HFC is used alone, at least one type of HFO other than the following HFO-1132 is selected and used.
- HFO-1132 is used in a form mainly composed of either HFO-1132 (Z) or HFO-1132 (E).
- the HFC to be used is preferably at least one HFC having a composition azeotropic with HFO-1132 mainly contained in the working medium.
- HFO-1132 is mainly composed of HFO-1132 (Z)
- the HFC to be combined with HFO-1132 (Z) is pseudo-azeotrope close to azeotropy in a composition range of 99: 1 to 1:99 by mass ratio.
- HFC-134a which can form a mixture, is preferred.
- HFO-1132 is mainly composed of HFO-1132 (E)
- the HFC to be combined with HFO-1132 (E) is almost azeotropic with HFO-1132 (E) in a composition range of 99: 1 to 1:99, respectively.
- One or more selected from HFC-32 and HFC-125, which can form a pseudo azeotrope, are preferred.
- HFOs other than HFO-1132 are also preferably selected from the same viewpoint as HFC.
- HFO even if it is other than HFO-1132 GWP is much lower than HFC. Therefore, as HFOs other than HFO-1132 combined with HFO-1132, rather than considering GWP, the cycle performance as the above working medium is improved, the temperature gradient is kept within an appropriate range, and it has self-decomposability. It is preferable to select as appropriate with particular attention to not doing so.
- HFO other than HFO-1132 examples include 2,3,3,3-tetrafluoropropene (HFO-1234yf), 2-fluoropropene (HFO-1261yf), 1,1,2-trifluoropropene (HFO-1243yc).
- HFOs other than HFO-1132 have high critical temperature, no self-decomposability, and excellent coefficient of performance, so that HFO-1234yf, HFO-1234ze (E), HFO-1234ze (Z ) Is preferred, and HFO-1234yf is more preferred.
- HFOs other than HFO-1132 may be used alone or in combination of two or more. When one HFO other than HFO-1132 is used alone, at least one selected from the above HFCs is used.
- HFO-1132 is mainly composed of HFO-1132 (Z)
- HFO-1132 other than HFO-1132 to be combined with HFO-1132 (Z) in a mass ratio of 99: 1 to HFO-1234yf, which can form a near-azeotropic pseudoazeotrope in the 1:99 composition range is preferred.
- the upper limit is not particularly limited as long as it is two or more kinds of compounds selected from HFC and HFO other than HFO-1132 in combination with HFO-1132.
- the type of the compound is preferably 4 or less, more preferably 2 or 3 and particularly preferably 2 from the viewpoint of workability when producing a working medium.
- the compound is capable of forming a pseudo azeotrope with the main component of HFO-1132.
- Two types selected from HFO other than HFC and HFO-1132 may be a compound capable of forming a pseudo-azeotropic mixture with the main component of HFO-1132, both of which are included, and only one type has such properties It may be a compound.
- the content component is further selected in consideration of the balance of the preferable range in the indicators (A) to (D) of the working medium.
- preferable combinations of two types selected from HFO other than HFC and HFO-1132 and HFO-1132 in the working medium of the present invention include the following combinations.
- HFO-1132 is mainly composed of HFO-1132 (Z), HFO-1234yf or HFC-134a, one type selected from HFC-32, HFC-125 and HFO-1234ze (E), and the HFO-1132 Combination with.
- HFO-1132 is mainly composed of HFO-1132 (E), HFC-32 or HFC-125, one type selected from HFC-134a, HFO-1234yf and HFO-1234ze (E), and the HFO-1132 Combination with.
- the following combinations are particularly preferable combinations of two types selected from HFO other than HFC and HFO-1132 and HFO-1132 in the working medium of the present invention.
- the working medium of the present invention includes carbon dioxide, hydrocarbon, chlorofluoroolefin (CFO), hydrochlorofluoroolefin (in addition to the above-mentioned HFO-1132 and two or more components selected from HFO other than HFC and HFO-1132. HCFO) or the like may be contained as an optional component.
- CFO chlorofluoroolefin
- HCFO hydrochlorofluoroolefin
- hydrocarbon examples include propane, propylene, cyclopropane, butane, isobutane, pentane, isopentane and the like.
- a hydrocarbon may be used individually by 1 type and may be used in combination of 2 or more type.
- the working medium contains a hydrocarbon
- the content thereof is less than 10% by weight with respect to 100% by weight of the working medium, preferably 1 to 5% by weight, and more preferably 3 to 5% by weight. If a hydrocarbon is more than a lower limit, the solubility of the mineral refrigeration oil to a working medium will become more favorable.
- CFO examples include chlorofluoropropene and chlorofluoroethylene.
- CFO 1,1-dichloro-2,3,3,3-tetrafluoropropene (CFO-1214ya), 1 is easy to suppress the flammability of the working medium without greatly reducing the cycle performance of the working medium.
- CFO-1214yb 3-dichloro-1,2,3,3-tetrafluoropropene (CFO-1214yb) and 1,2-dichloro-1,2-difluoroethylene (CFO-1112) are preferred.
- One type of CFO may be used alone, or two or more types may be used in combination.
- the working medium contains CFO
- the content thereof is less than 10% by weight with respect to 100% by weight of the working medium, preferably 1 to 8% by weight, and more preferably 2 to 5% by weight. If the CFO content is at least the lower limit value, it is easy to suppress the combustibility of the working medium. If the content of CFO is not more than the upper limit value, good cycle performance can be easily obtained.
- HCFO examples include hydrochlorofluoropropene and hydrochlorofluoroethylene.
- HCFO 1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd)
- 1-chloro can be used because flammability of the working medium can be easily suppressed without greatly reducing the cycle performance of the working medium.
- -1,2-difluoroethylene (HCFO-1122) is preferred.
- HCFO may be used alone or in combination of two or more.
- the content of HCFO in 100% by mass of the working medium is less than 10% by mass, preferably 1 to 8% by mass, and more preferably 2 to 5% by mass. If the content of HCFO is equal to or higher than the lower limit value, it is easy to suppress the combustibility of the working medium. If the content of HCFO is not more than the upper limit value, good cycle performance can be easily obtained.
- the total content of the optional components in the working medium is less than 10% by mass with respect to 100% by mass of the working medium, preferably 8% by mass or less, 5 mass% or less is more preferable.
- composition for thermal cycle system The working medium of the present invention can be used as a composition for a heat cycle system of the present invention by mixing with a refrigerating machine oil when applied to a heat cycle system.
- the composition for a heat cycle system of the present invention containing the working medium of the present invention and refrigerating machine oil may further contain known additives such as a stabilizer and a leak detection substance.
- refrigerating machine oil a known refrigerating machine oil used for a composition for a heat cycle system can be employed without particular limitation, together with a working medium made of a halogenated hydrocarbon.
- the refrigerating machine oil include oxygen-containing synthetic oils (such as ester-based refrigerating machine oils, ether-based refrigerating machine oils), fluorine-based refrigerating machine oils, mineral-based refrigerating machine oils, and hydrocarbon-based synthetic oils.
- ester refrigerating machine oils include dibasic acid ester oils, polyol ester oils, complex ester oils, and polyol carbonate oils.
- the dibasic acid ester oil includes a dibasic acid having 5 to 10 carbon atoms (glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, etc.) and a carbon number having a linear or branched alkyl group.
- Esters with 1 to 15 monohydric alcohols methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, etc. are preferred.
- ditridecyl glutarate di (2-ethylhexyl) adipate, diisodecyl adipate, ditridecyl adipate, di (3-ethylhexyl) sebacate and the like.
- Polyol ester oils include diols (ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, 1,2-butanediol, 1,5-pentadiol, neopentyl glycol, 1,7- Heptanediol, 1,12-dodecanediol, etc.) or polyol having 3 to 20 hydroxyl groups (trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, glycerin, sorbitol, sorbitan, sorbitol glycerin condensate, etc.); Fatty acids having 6 to 20 carbon atoms (hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, eicosanoic acid,
- Polyol ester oils include esters of hindered alcohols (neopentyl glycol, trimethylol ethane, trimethylol propane, trimethylol butane, pentaerythritol, etc.) (trimethylol propane tripelargonate, pentaerythritol 2-ethylhexanoate). And pentaerythritol tetrapelargonate) are preferred.
- hindered alcohols neopentyl glycol, trimethylol ethane, trimethylol propane, trimethylol butane, pentaerythritol, etc.
- trimel propane tripelargonate pentaerythritol 2-ethylhexanoate
- pentaerythritol tetrapelargonate are preferred.
- the complex ester oil is an ester of a fatty acid and a dibasic acid, a monohydric alcohol and a polyol.
- fatty acid, dibasic acid, monohydric alcohol, and polyol the same ones as described above can be used.
- the polyol carbonate oil is an ester of carbonic acid and polyol.
- examples of the polyol include the same diol as described above and the same polyol as described above.
- the polyol carbonate oil may be a ring-opening polymer of cyclic alkylene carbonate.
- ether refrigerating machine oil examples include polyvinyl ether oil and polyoxyalkylene oil.
- polyvinyl ether oil examples include a polymer of a vinyl ether monomer, a copolymer of a vinyl ether monomer and a hydrocarbon monomer having an olefinic double bond, and a copolymer of a vinyl ether monomer and a vinyl ether monomer having a polyoxyalkylene chain. It is done.
- alkyl vinyl ethers such as methyl vinyl ether and ethyl vinyl ether are preferable.
- the vinyl ether monomer having a polyoxyalkylene chain include compounds in which one of the hydroxyl groups of polyoxyalkylene diol is alkyl etherified and the other is vinyl etherified.
- a vinyl ether monomer may be used individually by 1 type, and may be used in combination of 2 or more type.
- hydrocarbon monomers having an olefinic double bond examples include ethylene, propylene, various butenes, various pentenes, various hexenes, various heptenes, various octenes, diisobutylene, triisobutylene, styrene, ⁇ -methylstyrene, various alkyl-substituted styrenes, etc. Is mentioned.
- the hydrocarbon monomer which has an olefinic double bond may be used individually by 1 type, and may be used in combination of 2 or more type.
- the polyvinyl ether copolymer may be either a block or a random copolymer.
- a polyvinyl ether oil may be used individually by 1 type, and may be used in combination of 2 or more type.
- polyoxyalkylene oil examples include polyoxyalkylene monools, polyoxyalkylene polyols, alkyl etherified products of polyoxyalkylene monools and polyoxyalkylene polyols, and esterified products of polyoxyalkylene monools and polyoxyalkylene polyols.
- Polyoxyalkylene monools and polyoxyalkylene polyols are used to open a C 2-4 alkylene oxide (ethylene oxide, propylene oxide, etc.) in an initiator such as water or a hydroxyl group-containing compound in the presence of a catalyst such as an alkali hydroxide. Examples thereof include those obtained by a method of addition polymerization.
- the oxyalkylene units in the polyalkylene chain may be the same in one molecule, or two or more oxyalkylene units may be included. It is preferable that at least an oxypropylene unit is contained in one molecule.
- the initiator used for the reaction examples include water, monohydric alcohols such as methanol and butanol, and polyhydric alcohols such as ethylene glycol, propylene glycol, pentaerythritol, and glycerol.
- the polyoxyalkylene oil is preferably an alkyl etherified product or an esterified product of polyoxyalkylene monool or polyoxyalkylene polyol. Moreover, as a polyoxyalkylene polyol, polyoxyalkylene diol is preferable. As polyoxyalkylene oil, what is called polyalkylene glycol oil (PAG) obtained by alkyl etherifying all the hydroxyl groups of polyoxyalkylene monool or polyoxyalkylene diol is preferable.
- PAG polyalkylene glycol oil
- fluorinated refrigerating machine oil examples include compounds in which hydrogen atoms of synthetic oils (mineral oil, poly ⁇ -olefin, alkylbenzene, alkylnaphthalene, etc. described later) are substituted with fluorine atoms, perfluoropolyether oils, fluorinated silicone oils, and the like. It is done.
- mineral-based refrigeration oil refrigerating machine oil fraction obtained by atmospheric distillation or vacuum distillation of crude oil is refined (solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrogenation) Paraffinic mineral oil, naphthenic mineral oil, etc., which are refined by appropriately combining refining, clay treatment, etc.).
- hydrocarbon synthetic oil examples include poly ⁇ -olefin, alkylbenzene, alkylnaphthalene and the like.
- Refrigerating machine oil may be used individually by 1 type, and may be used in combination of 2 or more type.
- the refrigerating machine oil is preferably at least one selected from polyol ester oil, polyvinyl ether oil, and polyoxyalkylene oil from the viewpoint of compatibility with the working medium.
- the content of the refrigerating machine oil in the composition for a heat cycle system may be in a range that does not significantly reduce the effect of the present invention, and is preferably 10 to 100 parts by weight, preferably 20 to 50 parts by weight with respect to 100 parts by weight of the working medium. Part is more preferred.
- thermal cycle systems contains arbitrarily is a component which improves the stability of the working medium with respect to a heat
- a known stabilizer used in a heat cycle system together with a working medium composed of a halogenated hydrocarbon, for example, an oxidation resistance improver, a heat resistance improver, a metal deactivator, etc. is not particularly limited. Can be adopted.
- oxidation resistance improver and heat resistance improver examples include N, N′-diphenylphenylenediamine, p-octyldiphenylamine, p, p′-dioctyldiphenylamine, N-phenyl-1-naphthylamine, and N-phenyl-2-naphthylamine.
- the oxidation resistance improver and the heat resistance improver may be used alone or in combination of two or more.
- Metal deactivators include imidazole, benzimidazole, 2-mercaptobenzthiazole, 2,5-dimercaptothiadiazole, salicyridin-propylenediamine, pyrazole, benzotriazole, toltriazole, 2-methylbenzimidazole, 3,5-dimethyl Of pyrazole, methylenebis-benzotriazole, organic acids or their esters, primary, secondary or tertiary aliphatic amines, amine salts of organic or inorganic acids, heterocyclic nitrogen-containing compounds, alkyl acid phosphates Examples thereof include amine salts and derivatives thereof.
- the content of the stabilizer in the composition for the heat cycle system may be in a range that does not significantly reduce the effect of the present invention, and is preferably 5 parts by mass or less, preferably 1 part by mass or less with respect to 100 parts by mass of the working medium. More preferred.
- Examples of the leak detection substance optionally contained in the composition for a heat cycle system include an ultraviolet fluorescent dye, an odor gas, an odor masking agent, and the like.
- the ultraviolet fluorescent dyes are described in U.S. Pat. No. 4,249,412, JP-T-10-502737, JP-T 2007-511645, JP-T 2008-500437, JP-T 2008-531836.
- odor masking agent examples include known fragrances used in heat cycle systems, together with working media composed of halogenated hydrocarbons, such as those described in JP-T-2008-500337 and JP-A-2008-531836. Can be mentioned.
- a solubilizing agent that improves the solubility of the leak detection substance in the working medium may be used.
- solubilizer examples include those described in JP-T 2007-511645, JP-T 2008-500337, JP-T 2008-531836.
- the content of the leak detection substance in the composition for a heat cycle system may be in a range that does not significantly reduce the effect of the present invention, and is preferably 2 parts by mass or less, based on 100 parts by mass of the working medium, and 0.5 mass. Part or less is more preferable.
- the thermal cycle system of the present invention is a system using the composition for a thermal cycle system of the present invention.
- a heat cycle system using a heat exchanger such as a condenser or an evaporator is used without particular limitation.
- the heat cycle system of the present invention may be a heat pump system that uses warm heat obtained by a condenser, or may be a refrigeration cycle system that uses cold heat obtained by an evaporator.
- a heat cycle system for example, a refrigeration cycle, a gas working medium is compressed by a compressor, cooled by a condenser to produce a high-pressure liquid, the pressure is reduced by an expansion valve, and vaporized at a low temperature by an evaporator. It has a mechanism that takes heat away with heat.
- thermal cycle system of the present invention examples include refrigeration / refrigeration equipment, air conditioning equipment, power generation systems, heat transport devices, and secondary coolers.
- the thermal cycle system of the present invention can stably exhibit thermal cycle performance even in a higher temperature operating environment, it is preferably used as an air conditioner that is often installed outdoors.
- the thermal cycle system of the present invention is also preferably used as a refrigeration / refrigeration apparatus.
- the air conditioner include room air conditioners, packaged air conditioners (store packaged air conditioners, building packaged air conditioners, facility packaged air conditioners, etc.), gas engine heat pumps, train air conditioners, automobile air conditioners, and the like.
- refrigeration / refrigeration equipment include showcases (built-in showcases, separate showcases, etc.), commercial freezers / refrigerators, vending machines, ice makers, and the like.
- a power generation system using a Rankine cycle system is preferable.
- the working medium is heated by geothermal energy, solar heat, waste heat in the middle to high temperature range of about 50 to 200 ° C in the evaporator, and the working medium turned into high-temperature and high-pressure steam is expanded.
- An example is a system in which power is generated by adiabatic expansion by a machine, and a generator is driven by work generated by the adiabatic expansion.
- the heat cycle system of the present invention may be a heat transport device.
- a latent heat transport device is preferable.
- Examples of the latent heat transport device include a heat pipe and a two-phase sealed thermosyphon device that transport latent heat using phenomena such as evaporation, boiling, and condensation of a working medium enclosed in the device.
- the heat pipe is applied to a relatively small cooling device such as a cooling device for a heat generating part of a semiconductor element or an electronic device. Since the two-phase closed thermosyphon does not require a wig and has a simple structure, it is widely used for a gas-gas heat exchanger, for promoting snow melting on roads, and for preventing freezing.
- a method for controlling the moisture concentration in the thermal cycle system a method using a moisture removing means such as a desiccant (silica gel, activated alumina, zeolite, etc.) can be mentioned.
- the desiccant is preferably brought into contact with the liquid thermal cycle system composition in terms of dehydration efficiency. For example, it is preferable to place a desiccant at the outlet of the condenser 12 or the inlet of the evaporator 14 to contact the composition for the thermal cycle system.
- a zeolitic desiccant is preferable from the viewpoint of chemical reactivity between the desiccant and the composition for the heat cycle system and the moisture absorption capacity of the desiccant.
- the main component is a compound represented by the following formula (3) from the point of excellent hygroscopic capacity. Zeolite desiccants are preferred.
- M is a Group 1 element such as Na or K, or a Group 2 element such as Ca
- n is the valence of M
- x and y are values determined by the crystal structure.
- pore diameter and breaking strength are important.
- a desiccant having a pore size larger than the molecular diameter of the working medium contained in the composition for the heat cycle system is used, the working medium is adsorbed in the desiccant, and as a result, a chemical reaction between the working medium and the desiccant.
- undesirable phenomena such as generation of non-condensable gas, decrease in the strength of the desiccant, and decrease in adsorption ability occur.
- a zeolitic desiccant having a small pore size as the desiccant.
- a sodium / potassium A type synthetic zeolite having a pore diameter of 3.5 angstroms or less is preferable.
- the size of the zeolitic desiccant is preferably about 0.5 to 5 mm because if it is too small, it will cause clogging of valves and piping details of the heat cycle system, and if it is too large, the drying ability will be reduced.
- the shape is preferably granular or cylindrical.
- the zeolitic desiccant can be formed into an arbitrary shape by solidifying powdery zeolite with a binder (such as bentonite).
- a binder such as bentonite
- Other desiccants silicon gel, activated alumina, etc.
- the use ratio of the zeolitic desiccant with respect to the composition for a heat cycle system is not particularly limited.
- non-condensable gas when non-condensable gas is mixed in the heat cycle system, it adversely affects heat transfer in the condenser and the evaporator and increases in operating pressure. Therefore, it is necessary to suppress mixing as much as possible.
- oxygen which is one of non-condensable gases, reacts with the working medium and refrigerating machine oil to promote decomposition.
- the non-condensable gas concentration is preferably 1.5% by volume or less, particularly preferably 0.5% by volume or less in terms of volume ratio to the working medium in the gas phase part of the working medium.
- thermal cycle system of the present invention by using the working medium of the present invention, it is highly stable and can be replaced with R410A and HFC-134a while suppressing the influence on global warming. A practically sufficient cycle performance can be obtained, and there is almost no problem with the temperature gradient.
- Samples a to f are HFO-1132 (Z) and HFO-1132 (E) alone or a mixed medium in which these are mixed with HFC-32, HFC-125, HFC-134a, and HFO-1234yf in the ratio shown in Table 3.
- the self-decomposability test was conducted by the following method.
- a method based on the method A recommended as a facility for measuring the combustion range in a gas mixed with a halogen-containing gas in the individual notification in the high-pressure gas safety method was confirmed.
- Ignition was performed by a method (hot wire method) in which a platinum wire having an outer diameter of 0.5 mm and a length of 25 mm was blown with a voltage and current of 10 V and 50 A.
- the working medium of the present invention even if the composition has self-decomposability, the restrictions on the use conditions and apparatus of the thermal cycle system are lower than those of HFO-1132 (Z) and HFO-1132 (E) alone. Can be mitigated.
- the working medium of the present invention can be used in a thermal cycle system even if it has a self-decomposable composition, depending on the conditions of use and the apparatus, with sufficient care.
- a composition that does not have the self-decomposability confirmed above it is possible to obtain a working medium having high refrigeration cycle performance and high stability.
- Examples 1 to 140 In Examples 1 to 70, HFO-1132 (Z) and two types selected from HFC-32, HFC-125, HFC-134a, HFO-1234yf, and HFO-1234ze (E) were used in the ratios shown in Tables 5 to 9.
- a mixed working medium is prepared, and according to the method described above under the temperature conditions of the reference refrigeration cycle, (A) temperature gradient, relative refrigeration capacity relative to R410A (B1) RQ R410A , relative coefficient of performance (C1) RCOP R410A , HFC-134a Relative refrigeration capacity (B2) RQ R134a and relative coefficient of performance (C2) RCOP R134a were determined. The results are shown in Tables 5-9.
- HFO-1132 (E) and two types selected from HFC-32, HFC-125, HFC-134a, HFO-1234yf, and HFO-1234ze (E) are shown in Tables 10 to 14 at the ratios shown in Tables 10-14.
- a mixed working medium is prepared, and according to the method described above under the temperature conditions of the reference refrigeration cycle, (A) temperature gradient, relative refrigeration capacity relative to R410A (B1) RQ R410A , relative coefficient of performance (C1) RCOP R410A , HFC-134a Relative refrigeration capacity (B2) RQ R134a and relative coefficient of performance (C2) RCOP R134a were determined. The results are shown in Tables 10 to 14.
- the GWP of the working medium was obtained as a weighted average based on the composition mass based on the GWP of each compound shown in Table 4. That is, the GWP of the working medium was determined by dividing the sum of the product of mass% and GWP of each compound constituting the working medium by 100. Note that the GWP value “10” of HFO-1132 (Z) and HFO-1132 (E) is assumed based on HFO, GFO 6 known, HFO-1234ze (E) 6, HFO-1234yf 4 etc. Value. The results are shown in Tables 5 to 14.
- the working medium of the present invention includes refrigerants for refrigeration / refrigeration equipment (built-in showcases, separate-type showcases, commercial refrigeration / refrigerators, vending machines, ice machines, etc.), air conditioning equipment (room air conditioners, store packaged air conditioners, Package air conditioners for buildings, packaged air conditioners for facilities, gas engine heat pumps, air conditioners for trains, air conditioners for automobiles, etc.) refrigerants, working fluids for power generation systems (waste heat recovery power generation, etc.), heat transport devices (heat pipes, etc.) It is useful as a working medium and a medium for a secondary cooler.
- refrigerants for refrigeration / refrigeration equipment built-in showcases, separate-type showcases, commercial refrigeration / refrigerators, vending machines, ice machines, etc.
- air conditioning equipment room air conditioners, store packaged air conditioners, Package air conditioners for buildings, packaged air conditioners for facilities, gas engine heat pumps, air conditioners for trains, air conditioners for automobiles, etc.
- refrigerants working fluids for power generation
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Analytical Chemistry (AREA)
- Lubricants (AREA)
Abstract
Description
従来、冷凍機用冷媒、空調機器用冷媒、発電システム(廃熱回収発電等)用作動媒体、潜熱輸送装置(ヒートパイプ等)用作動媒体、二次冷却媒体等の熱サイクルシステム用の作動媒体としては、クロロトリフルオロメタン、ジクロロジフルオロメタン等のクロロフルオロカーボン(CFC)、クロロジフルオロメタン等のヒドロクロロフルオロカーボン(HCFC)が用いられてきた。しかし、CFCおよびHCFCは、成層圏のオゾン層への影響が指摘され、現在、規制の対象となっている。
[1]飽和のヒドロフルオロカーボンおよびHFO-1132以外の炭素-炭素二重結合を有するヒドロフルオロカーボンから選ばれる少なくとも2種と、HFO-1132とを含むことを特徴とする熱サイクル用作動媒体。
[2]HFO-1132が、トランス-1,2-ジフルオロエチレン、シス-1,2-ジフルオロエチレンまたはそれらの混合物である、[1]に記載の熱サイクル用作動媒体。
[3]前記熱サイクル用作動媒体の全量に対する1,2-ジフルオロエチレンの割合が80質量%以下である、[1]または[2]に記載の熱サイクル用作動媒体。
[4]前記熱サイクル用作動媒体の全量に対する1,2-ジフルオロエチレンの割合が20~80質量%である、[1]~[3]のいずれかに記載の熱サイクル用作動媒体。
[5]蒸発温度を0℃(ただし、非共沸混合物の場合は、蒸発開始温度と蒸発完了温度の平均温度)、凝縮温度を40℃(ただし、非共沸混合物の場合は、凝縮開始温度と凝縮完了温度の平均温度)、過冷却度(SC)を5℃、過熱度(SH)を5℃とする基準冷凍サイクルに適用した際の蒸発器における蒸発の開始温度と完了温度の差で示される温度勾配が、8℃以下である、[1]~[4]のいずれかに記載の熱サイクル用作動媒体。
[7]下記式(B2)で算出される相対冷凍能力(RQR134a)が0.70~1.60、かつ下記式(C2)で算出される相対成績係数(RCOPR134a)が0.85~1.20である、[1]~[6]のいずれかに記載の熱サイクル用作動媒体。
[9]前記炭素-炭素二重結合を有するヒドロフルオロカーボンが、1,3,3,3-テトラフルオロプロペンおよび2,3,3,3-テトラフルオロプロペンから選ばれる少なくとも1種である、[1]~[8]のいずれかに記載の熱サイクル用作動媒体。
[10]前記[1]~[9]のいずれかに記載の熱サイクル用作動媒体と、冷凍機油とを含む熱サイクルシステム用組成物。
[11]前記[10]に記載の熱サイクルシステム用組成物を用いた、熱サイクルシステム。
[12]冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置または二次冷却機である、[11]に記載の熱サイクルシステム。
[13]ルームエアコン、店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置、内蔵型ショーケース、別置型ショーケース、業務用冷凍・冷蔵庫、製氷機または自動販売機である、[12]に記載の熱サイクルシステム。
本発明の熱サイクルシステムは、R410AやHFC-134aと代替可能であり、かつ地球温暖化への影響が少ない熱サイクルシステム用組成物が適用された熱サイクルシステムである。
[熱サイクル用作動媒体]
本発明の熱サイクル用作動媒体(以下、単に「作動媒体」ともいう。)は、飽和のヒドロフルオロカーボンおよびHFO-1132以外の炭素-炭素二重結合を有するヒドロフルオロカーボンから選ばれる少なくとも2種とHFO-1132とを含むことを特徴とする。
蒸発温度;0℃(ただし、非共沸混合物の場合は、蒸発開始温度と蒸発完了温度の平均温度)
凝縮完了温度;40℃(ただし、非共沸混合物の場合は、凝縮開始温度と凝縮完了温度の平均温度)
過冷却度(SC);5℃
過熱度(SH);5℃
温度勾配は、特に混合物の作動媒体における液相、気相での組成の差異をはかる指標である。温度勾配は、熱交換器、例えば、蒸発器における蒸発の、または凝縮器における凝縮の、開始温度と完了温度が異なる性質、と定義される。共沸混合媒体においては、温度勾配は0であり、R410Aのような擬似共沸混合物では温度勾配は極めて0に近い。
冷凍能力は、冷凍サイクルシステムにおける出力である。R410Aに対する相対冷凍能力は以下の式(B1)で求めることができる。HFC-134aに対する相対冷凍能力は以下の式(B2)で求めることができる。なお、式(B1)、(B2)において、検体は相対評価されるべき作動媒体を示す。以下、R410AおよびHFC-134aに対する相対冷凍能力をそれぞれ(B1)RQR410Aおよび(B2)RQR134aともいう。または、単にRQR410A、RQR134aともいう。
成績係数は、出力(kW)を得るのに消費された動力(kW)で、該出力(kW)を除した値であり、エネルギー消費効率に相当する。成績係数の値が高いほど、少ない入力により大きな出力を得ることができる。R410Aに対する相対成績係数は以下の式(C1)で求めることができる。HFC-134aに対する相対成績係数は以下の式(C2)で求めることができる。なお、式(C1)、(C2)において、検体は相対評価されるべき作動媒体を示す。以下、R410AおよびHFC-134aに対する相対成績係数をそれぞれ(C1)RCOPR410Aおよび(C2)RCOPR134aともいう。または、単にRCOPR410A、RCOPR134aともいう。
(i)蒸発器14から排出された作動媒体蒸気Aを圧縮機11にて圧縮して高温高圧の作動媒体蒸気Bとする(以下、「AB過程」という。)。
(ii)圧縮機11から排出された作動媒体蒸気Bを凝縮器12にて流体Fによって冷却し、液化して低温高圧の作動媒体Cとする。この際、流体Fは加熱されて流体F’となり、凝縮器12から排出される(以下、「BC過程」という。)。
(iv)膨張弁13から排出された作動媒体Dを蒸発器14にて負荷流体Eによって加熱して高温低圧の作動媒体蒸気Aとする。この際、負荷流体Eは冷却されて負荷流体E’となり、蒸発器14から排出される(以下、「DA過程」という。)。
機器効率による損失、および配管、熱交換器における圧力損失はないものとする。
本発明の作動媒体は、HFO-1132の自己分解性を抑制する観点から、上記のとおり作動媒体全量に対するHFO-1132の含有量を80質量%以下とすることが好ましい。この観点からいえば、HFO-1132とともに用いる、HFCおよび、HFO-1132以外のHFOから選ばれる少なくとも2種は特に制限されない。ただし、好ましくは、HFCおよび、HFO-1132以外のHFOから選ばれる少なくとも2種は、自己分解性を有しない化合物である。
以下、本発明の作動媒体が含有可能なHFCおよびHFO-1132以外のHFOについて具体的に説明する。
HFO-1132と組合せるHFCとしては、上記作動媒体としてのサイクル性能を向上させ、かつ温度勾配を適切な範囲にとどめることに加えて、GWPを上記の範囲にとどめる観点、自己分解性を有しない観点等から、適宜選択される。
HFO-1132以外のHFOについても、上記HFCと同様の観点から選択されることが好ましい。なお、HFO-1132以外であってもHFOであれば、GWPはHFCに比べて桁違いに低い。したがって、HFO-1132と組合せるHFO-1132以外のHFOとしては、GWPを考慮するよりも、上記作動媒体としてのサイクル性能を向上させ、温度勾配を適切な範囲にとどめ、かつ自己分解性を有しないことに特に留意して、適宜選択されることが好ましい。
HFO-1132がHFO-1132(Z)を主体とする場合、HFO-1234yfまたはHFC-134aと、HFC-32、HFC-125およびHFO-1234ze(E)から選ばれる1種と、該HFO-1132との組み合わせ。
HFO-1132がHFO-1132(E)を主体とする場合、HFC-32またはHFC-125と、HFC-134a、HFO-1234yfおよびHFO-1234ze(E)から選ばれる1種と、該HFO-1132との組み合わせ。
HFO-1234yfと、HFC-134aと、HFO-1132(Z)との組み合わせ。
HFC-134aと、HFO-1234ze(E)と、HFO-1132(Z)との組み合わせ。
HFC-32と、HFC-134aと、HFO-1132(E)との組み合わせ。
HFC-125と、HFC-32と、HFO-1132(E)との組み合わせ。
本発明の作動媒体は、上記HFO-1132と、HFCおよびHFO-1132以外のHFOから選ばれる2種以上の成分以外に、二酸化炭素、炭化水素、クロロフルオロオレフィン(CFO)、ヒドロクロロフルオロオレフィン(HCFO)等を任意成分として含有してもよい。任意成分としてはオゾン層への影響が少なく、かつ地球温暖化への影響が小さく、自己分解性を有しない成分が好ましい。
炭化水素は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
CFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
HCFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
本発明の作動媒体は、熱サイクルシステムへの適用に際して、通常、冷凍機油と混合して本発明の熱サイクルシステム用組成物として使用することができる。本発明の作動媒体と冷凍機油を含む本発明の熱サイクルシステム用組成物は、これら以外にさらに、安定剤、漏れ検出物質等の公知の添加剤を含有してもよい。
冷凍機油としては、従来からハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステム用組成物に用いられる公知の冷凍機油が特に制限なく採用できる。冷凍機油として具体的には、含酸素系合成油(エステル系冷凍機油、エーテル系冷凍機油等)、フッ素系冷凍機油、鉱物系冷凍機油、炭化水素系合成油等が挙げられる。
なお、これらのポリオールエステル油は、遊離の水酸基を有していてもよい。
ポリオールとしては、上述と同様のジオールや上述と同様のポリオールが挙げられる。また、ポリオール炭酸エステル油としては、環状アルキレンカーボネートの開環重合体であってもよい。
ビニルエーテルモノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
オレフィン性二重結合を有する炭化水素モノマーとしては、エチレン、プロピレン、各種ブテン、各種ペンテン、各種ヘキセン、各種ヘプテン、各種オクテン、ジイソブチレン、トリイソブチレン、スチレン、α-メチルスチレン、各種アルキル置換スチレン等が挙げられる。オレフィン性二重結合を有する炭化水素モノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
ポリビニルエーテル共重合体は、ブロックまたはランダム共重合体のいずれであってもよい。ポリビニルエーテル油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
ポリオキシアルキレン油としては、ポリオキシアルキレンモノオールまたはポリオキシアルキレンジオールの水酸基のすべてをアルキルエーテル化して得られる、ポリアルキレングリコール油(PAG)と呼ばれているものが好ましい。
冷凍機油としては、作動媒体との相溶性の点から、ポリオールエステル油、ポリビニルエーテル油およびポリオキシアルキレン油から選ばれる1種以上が好ましい。
熱サイクルシステム用組成物が任意に含有する安定剤は、熱および酸化に対する作動媒体の安定性を向上させる成分である。安定剤としては、従来からハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステムに用いられる公知の安定剤、例えば、耐酸化性向上剤、耐熱性向上剤、金属不活性剤等が特に制限なく採用できる。
紫外線蛍光染料としては、米国特許第4249412号明細書、特表平10-502737号公報、特表2007-511645号公報、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等、従来、ハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステムに用いられる公知の紫外線蛍光染料が挙げられる。
本発明の熱サイクルシステムは、本発明の熱サイクルシステム用組成物を用いたシステムである。熱サイクルシステムとしては、凝縮器や蒸発器等の熱交換器による熱サイクルシステムが特に制限なく用いられる。本発明の熱サイクルシステムは、具体的には、凝縮器で得られる温熱を利用するヒートポンプシステムであってもよく、蒸発器で得られる冷熱を利用する冷凍サイクルシステムであってもよい。熱サイクルシステム、例えば、冷凍サイクルにおいては、気体の作動媒体を圧縮機で圧縮し、凝縮器で冷却して圧力が高い液体をつくり、膨張弁で圧力を下げ、蒸発器で低温気化させて気化熱で熱を奪う機構を有する。
発電システムとして、具体的には、蒸発器において地熱エネルギー、太陽熱、50~200℃程度の中~高温度域廃熱等により作動媒体を加熱し、高温高圧状態の蒸気となった作動媒体を膨張機にて断熱膨張させ、該断熱膨張によって発生する仕事によって発電機を駆動させ、発電を行うシステムが例示される。
ただし、Mは、Na、K等の1族の元素またはCa等の2族の元素であり、nは、Mの原子価であり、x、yは、結晶構造にて定まる値である。Mを変化させることにより細孔径を調整できる。
熱サイクルシステム用組成物が含有する作動媒体の分子径よりも大きい細孔径を有する乾燥剤を用いた場合、作動媒体が乾燥剤中に吸着され、その結果、作動媒体と乾燥剤との化学反応が生じ、不凝縮性気体の生成、乾燥剤の強度の低下、吸着能力の低下等の好ましくない現象を生じることとなる。
熱サイクルシステム用組成物に対するゼオライト系乾燥剤の使用割合は、特に限定されない。
HFO-1132(Z)、HFO-1132(E)の単体またはこれらとHFC-32、HFC-125、HFC-134a、HFO-1234yfを表3に示す割合で混合した混合媒体を検体a~fとして用いて、以下の方法で自己分解性試験を行った。
着火は、外径0.5mm、長さ25mmの白金線を10V、50Aの電圧、電流で溶断する方法(ホットワイヤー法)で行った。
例1~70において、HFO-1132(Z)と、HFC-32、HFC-125、HFC-134a、HFO-1234yf、HFO-1234ze(E)から選ばれる2種を表5~9に示す割合で混合した作動媒体を作製し、上記基準冷凍サイクルの温度条件における上記の方法で、(A)温度勾配、R410Aに対する相対冷凍能力(B1)RQR410A、相対成績係数(C1)RCOPR410A、HFC-134aに対する相対冷凍能力(B2)RQR134a、相対成績係数(C2)RCOPR134aを求めた。結果を表5~9に合わせて示す。
なお、2014年6月6日に出願された日本特許出願2014-118163号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Claims (13)
- 飽和のヒドロフルオロカーボンおよび1,2-ジフルオロエチレン以外の炭素-炭素二重結合を有するヒドロフルオロカーボンから選ばれる少なくとも2種と、1,2-ジフルオロエチレンとを含むことを特徴とする熱サイクル用作動媒体。
- 1,2-ジフルオロエチレンが、トランス-1,2-ジフルオロエチレン、シス-1,2-ジフルオロエチレンまたはそれらの混合物である、請求項1に記載の熱サイクル用作動媒体。
- 前記熱サイクル用作動媒体の全量に対する1,2-ジフルオロエチレンの割合が80質量%以下である、請求項1または2に記載の熱サイクル用作動媒体。
- 前記熱サイクル用作動媒体の全量に対する1,2-ジフルオロエチレンの割合が20~80質量%である、請求項1~3のいずれか1項に記載の熱サイクル用作動媒体。
- 蒸発温度を0℃(ただし、非共沸混合物の場合は、蒸発開始温度と蒸発完了温度の平均温度)、凝縮温度を40℃(ただし、非共沸混合物の場合は、凝縮開始温度と凝縮完了温度の平均温度)、過冷却度(SC)を5℃、過熱度(SH)を5℃とする基準冷凍サイクルに適用した際の蒸発器における蒸発の開始温度と完了温度の差で示される温度勾配が、8℃以下である、請求項1~4のいずれか1項に記載の熱サイクル用作動媒体。
- 下記式(B1)で算出される相対冷凍能力(RQR410A)が0.70~1.60、かつ下記式(C1)で算出される相対成績係数(RCOPR410A)が0.85~1.20である、請求項1~5のいずれか1項に記載の熱サイクル用作動媒体。
- 下記式(B2)で算出される相対冷凍能力(RQR134a)が0.70~1.60、かつ下記式(C2)で算出される相対成績係数(RCOPR134a)が0.85~1.20である、請求項1~6のいずれか1項に記載の熱サイクル用作動媒体。
- 前記飽和のヒドロフルオロカーボンがジフルオロメタン、1,1-ジフルオロエタン、1,1,1,2-テトラフルオロエタンおよびペンタフルオロエタンから選ばれる少なくとも1種である、請求項1~7のいずれか1項に記載の熱サイクル用作動媒体。
- 前記炭素-炭素二重結合を有するヒドロフルオロカーボンが、1,3,3,3-テトラフルオロプロペンおよび2,3,3,3-テトラフルオロプロペンから選ばれる少なくとも1種である、請求項1~8のいずれか1項に記載の熱サイクル用作動媒体。
- 請求項1~9のいずれか1項に記載の熱サイクル用作動媒体と、冷凍機油とを含む熱サイクルシステム用組成物。
- 請求項10に記載の熱サイクルシステム用組成物を用いた、熱サイクルシステム。
- 冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置または二次冷却機である、請求項11に記載の熱サイクルシステム。
- ルームエアコン、店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置、内蔵型ショーケース、別置型ショーケース、業務用冷凍・冷蔵庫、製氷機または自動販売機である、請求項12に記載の熱サイクルシステム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580029890.1A CN106414654A (zh) | 2014-06-06 | 2015-05-25 | 热循环用工作介质、热循环系统用组合物以及热循环系统 |
JP2016525777A JPWO2015186557A1 (ja) | 2014-06-06 | 2015-05-25 | 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム |
EP15803218.5A EP3153559A1 (en) | 2014-06-06 | 2015-05-25 | Working medium for heat cycle, composition for heat cycle system, and heat cycle system |
US15/350,492 US20170058173A1 (en) | 2014-06-06 | 2016-11-14 | Working fluid for heat cycle, composition for heat cycle system, and heat cycle system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014118163 | 2014-06-06 | ||
JP2014-118163 | 2014-06-06 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/350,492 Continuation US20170058173A1 (en) | 2014-06-06 | 2016-11-14 | Working fluid for heat cycle, composition for heat cycle system, and heat cycle system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015186557A1 true WO2015186557A1 (ja) | 2015-12-10 |
Family
ID=54766631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/064938 WO2015186557A1 (ja) | 2014-06-06 | 2015-05-25 | 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム |
Country Status (5)
Country | Link |
---|---|
US (1) | US20170058173A1 (ja) |
EP (1) | EP3153559A1 (ja) |
JP (1) | JPWO2015186557A1 (ja) |
CN (1) | CN106414654A (ja) |
WO (1) | WO2015186557A1 (ja) |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019124395A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 空調機 |
WO2019124399A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 圧縮機 |
WO2019124401A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2019124403A1 (ja) | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2019124400A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2019124409A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷凍サイクル装置 |
WO2019124404A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2020017520A1 (ja) * | 2018-07-17 | 2020-01-23 | ダイキン工業株式会社 | 自動車用冷凍サイクル装置 |
WO2020017521A1 (ja) * | 2018-07-17 | 2020-01-23 | ダイキン工業株式会社 | 冷媒サイクル装置 |
WO2020145375A1 (ja) * | 2019-01-11 | 2020-07-16 | ダイキン工業株式会社 | トランス-1,2-ジフルオロエチレンを含む組成物 |
WO2020145377A1 (ja) * | 2019-01-11 | 2020-07-16 | ダイキン工業株式会社 | シス-1,2-ジフルオロエチレンを含む組成物 |
JP6737391B1 (ja) * | 2019-01-30 | 2020-08-05 | ダイキン工業株式会社 | 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置 |
WO2020158731A1 (ja) * | 2019-01-30 | 2020-08-06 | ダイキン工業株式会社 | 庫内空気調節装置 |
WO2020158170A1 (ja) * | 2019-01-30 | 2020-08-06 | ダイキン工業株式会社 | 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置 |
WO2020162415A1 (ja) * | 2019-02-06 | 2020-08-13 | ダイキン工業株式会社 | 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置 |
WO2020213697A1 (ja) * | 2019-04-16 | 2020-10-22 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2020246611A1 (ja) * | 2019-06-07 | 2020-12-10 | ダイキン工業株式会社 | (e)-1,2-ジフルオロエチレンを含む反応ガスの製造方法 |
WO2020255986A1 (ja) * | 2019-06-18 | 2020-12-24 | ダイキン工業株式会社 | ジフルオロエチレンを含有する作動媒体の製造方法 |
WO2020256098A1 (ja) * | 2019-06-19 | 2020-12-24 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2020256126A1 (ja) * | 2019-06-19 | 2020-12-24 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機、その冷凍機の運転方法、及びそれを有する冷凍サイクル装置 |
WO2020256100A1 (ja) * | 2019-06-19 | 2020-12-24 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2020256129A1 (ja) * | 2019-06-19 | 2020-12-24 | ダイキン工業株式会社 | 1,2-ジフルオロエチレン(hfo-1132)と酸素とを気相で共存させる方法、並びにそれらを含む保存容器及び冷凍機 |
WO2020256119A1 (ja) * | 2019-06-19 | 2020-12-24 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機、その冷凍機の運転方法、及びそれを有する冷凍サイクル装置 |
WO2020255966A1 (ja) * | 2019-06-19 | 2020-12-24 | ダイキン工業株式会社 | 冷凍サイクル装置 |
WO2020256117A1 (ja) * | 2019-06-19 | 2020-12-24 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2020256122A1 (ja) * | 2019-06-19 | 2020-12-24 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2020262209A1 (ja) * | 2019-06-26 | 2020-12-30 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2022025287A1 (ja) * | 2020-07-30 | 2022-02-03 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2022075391A1 (ja) * | 2020-10-09 | 2022-04-14 | ダイキン工業株式会社 | 組成物、冷媒を保存する方法、及び冷媒の重合を抑制する方法 |
AU2018392390B2 (en) * | 2017-12-18 | 2022-05-19 | Daikin Industries, Ltd. | Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator |
US11365335B2 (en) | 2017-12-18 | 2022-06-21 | Daikin Industries, Ltd. | Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine |
WO2022163830A1 (ja) * | 2021-01-29 | 2022-08-04 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
US11435118B2 (en) | 2017-12-18 | 2022-09-06 | Daikin Industries, Ltd. | Heat source unit and refrigeration cycle apparatus |
US11441802B2 (en) | 2017-12-18 | 2022-09-13 | Daikin Industries, Ltd. | Air conditioning apparatus |
US11441819B2 (en) | 2017-12-18 | 2022-09-13 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11493244B2 (en) | 2017-12-18 | 2022-11-08 | Daikin Industries, Ltd. | Air-conditioning unit |
US11506425B2 (en) | 2017-12-18 | 2022-11-22 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11549041B2 (en) | 2017-12-18 | 2023-01-10 | Daikin Industries, Ltd. | Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator |
US11549695B2 (en) | 2017-12-18 | 2023-01-10 | Daikin Industries, Ltd. | Heat exchange unit |
JP7236021B1 (ja) | 2021-09-10 | 2023-03-09 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2023058558A1 (ja) * | 2021-10-04 | 2023-04-13 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
JPWO2023058558A1 (ja) * | 2021-10-04 | 2023-04-13 | ||
US11820933B2 (en) | 2017-12-18 | 2023-11-21 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11834602B2 (en) | 2019-02-05 | 2023-12-05 | Daikin Industries, Ltd. | Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition |
US11906207B2 (en) | 2017-12-18 | 2024-02-20 | Daikin Industries, Ltd. | Refrigeration apparatus |
US11939515B2 (en) | 2018-07-17 | 2024-03-26 | Daikin Industries, Ltd. | Refrigerant-containing composition, heat transfer medium, and heat cycle system |
WO2024142558A1 (ja) * | 2022-12-28 | 2024-07-04 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、それを用いる冷凍方法、並びにそれを含む冷凍装置及び冷凍機 |
WO2024180808A1 (ja) * | 2023-03-01 | 2024-09-06 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
US12146697B2 (en) | 2019-01-30 | 2024-11-19 | Daikin Industries, Ltd. | Inside air-conditioning device |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015115252A1 (ja) * | 2014-01-31 | 2015-08-06 | 旭硝子株式会社 | 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム |
WO2015186670A1 (ja) * | 2014-06-06 | 2015-12-10 | 旭硝子株式会社 | 熱サイクルシステム用組成物および熱サイクルシステム |
CN108139129A (zh) | 2015-08-11 | 2018-06-08 | 特灵国际有限公司 | 制冷剂回收和再利用 |
GB2562509B (en) * | 2017-05-17 | 2020-04-29 | Mexichem Fluor Sa De Cv | Heat transfer compositions |
GB201712813D0 (en) * | 2017-08-10 | 2017-09-27 | Mexichem Fluor Sa De Cv | Compositions |
US20220389299A1 (en) * | 2017-12-18 | 2022-12-08 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US20200326100A1 (en) * | 2017-12-18 | 2020-10-15 | Daikin Industries, Ltd. | Warm-water generating apparatus |
US11248152B2 (en) | 2018-04-25 | 2022-02-15 | Daikin Industries, Ltd. | Composition containing coolant, heat transfer medium and heat cycle system |
CN116792980A (zh) * | 2018-07-17 | 2023-09-22 | 大金工业株式会社 | 制冷循环装置 |
JP7166889B2 (ja) * | 2018-11-20 | 2022-11-08 | ダイキン工業株式会社 | 1,2-ジフルオロエチレンの製造方法 |
JP6897814B2 (ja) * | 2019-06-19 | 2021-07-07 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110252801A1 (en) * | 2010-04-15 | 2011-10-20 | E.I. Du Pont Nemours And Company | Compositions comprising z-1,2-difluoroethylene and uses thereof |
WO2012157765A1 (ja) * | 2011-05-19 | 2012-11-22 | 旭硝子株式会社 | 作動媒体および熱サイクルシステム |
CN102994052A (zh) * | 2012-11-30 | 2013-03-27 | 徐超 | 一种空调用制冷剂 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5935798B2 (ja) * | 2011-05-19 | 2016-06-15 | 旭硝子株式会社 | 作動媒体および熱サイクルシステム |
EP2735597A4 (en) * | 2011-07-22 | 2015-05-06 | Asahi Glass Co Ltd | WORKING LIQUID FOR HEAT CIRCUITS AND HEAT CIRCUIT SYSTEM |
CN104968757A (zh) * | 2013-02-05 | 2015-10-07 | 旭硝子株式会社 | 热泵用工作介质以及热泵系统 |
WO2014178353A1 (ja) * | 2013-04-30 | 2014-11-06 | 旭硝子株式会社 | 熱サイクル用作動媒体 |
WO2015115252A1 (ja) * | 2014-01-31 | 2015-08-06 | 旭硝子株式会社 | 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム |
EP4166624A1 (en) * | 2014-02-20 | 2023-04-19 | Agc Inc. | Composition for heat cycle system, and heat cycle system |
WO2015125874A1 (ja) * | 2014-02-20 | 2015-08-27 | 旭硝子株式会社 | 熱サイクル用作動媒体 |
EP3109302B1 (en) * | 2014-02-20 | 2020-08-05 | AGC Inc. | Composition for heat cycle system, and heat cycle system |
JP6614128B2 (ja) * | 2014-02-20 | 2019-12-04 | Agc株式会社 | 熱サイクルシステム用組成物および熱サイクルシステム |
JP6455506B2 (ja) * | 2014-02-24 | 2019-01-23 | Agc株式会社 | 熱サイクルシステム用組成物および熱サイクルシステム |
BR112016020985B1 (pt) * | 2014-03-18 | 2022-09-20 | Agc Inc | Composição para sistema de ciclo de calor e sistema de ciclo de calor |
WO2015141678A1 (ja) * | 2014-03-18 | 2015-09-24 | 旭硝子株式会社 | 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム |
WO2015186670A1 (ja) * | 2014-06-06 | 2015-12-10 | 旭硝子株式会社 | 熱サイクルシステム用組成物および熱サイクルシステム |
-
2015
- 2015-05-25 WO PCT/JP2015/064938 patent/WO2015186557A1/ja active Application Filing
- 2015-05-25 EP EP15803218.5A patent/EP3153559A1/en not_active Withdrawn
- 2015-05-25 CN CN201580029890.1A patent/CN106414654A/zh active Pending
- 2015-05-25 JP JP2016525777A patent/JPWO2015186557A1/ja active Pending
-
2016
- 2016-11-14 US US15/350,492 patent/US20170058173A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110252801A1 (en) * | 2010-04-15 | 2011-10-20 | E.I. Du Pont Nemours And Company | Compositions comprising z-1,2-difluoroethylene and uses thereof |
WO2012157765A1 (ja) * | 2011-05-19 | 2012-11-22 | 旭硝子株式会社 | 作動媒体および熱サイクルシステム |
CN102994052A (zh) * | 2012-11-30 | 2013-03-27 | 徐超 | 一种空调用制冷剂 |
Cited By (175)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200098614A (ko) | 2017-12-18 | 2020-08-20 | 다이킨 고교 가부시키가이샤 | 냉매를 포함하는 조성물, 그 사용, 그리고 그것을 갖는 냉동기 및 그 냉동기의 운전 방법 |
WO2019123807A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2019124398A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 圧縮機 |
WO2019124145A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 空気調和機 |
JPWO2019124145A1 (ja) * | 2017-12-18 | 2021-01-28 | ダイキン工業株式会社 | 空気調和機 |
WO2019124139A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷凍サイクル装置および冷凍サイクル装置における冷媒封入量の決定方法 |
WO2019124362A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷凍サイクル装置 |
WO2019124403A1 (ja) | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2019124360A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 空気調和機 |
WO2019124138A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 空調ユニット |
WO2019124400A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
KR20200098584A (ko) | 2017-12-18 | 2020-08-20 | 다이킨 고교 가부시키가이샤 | 냉매를 포함하는 조성물, 그 사용, 그리고 그것을 갖는 냉동기 및 그 냉동기의 운전 방법 |
WO2019124409A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷凍サイクル装置 |
WO2019124380A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷凍サイクル装置 |
WO2019124326A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 熱交換ユニット |
WO2019123782A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2019124229A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷凍装置 |
WO2019124361A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷凍サイクル装置 |
WO2019123898A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷媒用または冷媒組成物用の冷凍機油、冷凍機油の使用方法、および、冷凍機油としての使用 |
WO2019124379A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷凍サイクル装置 |
WO2019124404A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2019123806A1 (ja) | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2019123804A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2019124330A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 蓄熱装置 |
WO2019124359A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 空気調和機 |
WO2019124329A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷凍サイクル装置 |
WO2019124396A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 空調機 |
WO2019124402A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2019124140A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷凍サイクル装置 |
WO2019124230A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 温水製造装置 |
WO2019124146A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷凍サイクル |
WO2019123805A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2019124328A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 熱源ユニットおよび冷凍サイクル装置 |
WO2019124327A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷凍サイクル装置 |
WO2019124169A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 空気調和装置 |
JP6555453B1 (ja) * | 2017-12-18 | 2019-08-07 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
JP6555456B1 (ja) * | 2017-12-18 | 2019-08-07 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
JPWO2019124330A1 (ja) * | 2017-12-18 | 2021-01-21 | ダイキン工業株式会社 | 蓄熱装置 |
KR20200098576A (ko) * | 2017-12-18 | 2020-08-20 | 다이킨 고교 가부시키가이샤 | 냉매를 포함하는 조성물, 그 사용, 그리고 그것을 갖는 냉동기 및 그 냉동기의 운전 방법 |
JPWO2019124329A1 (ja) * | 2017-12-18 | 2021-01-21 | ダイキン工業株式会社 | 冷凍サイクル装置 |
JP7448851B2 (ja) | 2017-12-18 | 2024-03-13 | ダイキン工業株式会社 | 冷凍サイクル装置 |
JPWO2019124327A1 (ja) * | 2017-12-18 | 2021-01-21 | ダイキン工業株式会社 | 冷凍サイクル装置 |
WO2019124395A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 空調機 |
CN111492186A (zh) * | 2017-12-18 | 2020-08-04 | 大金工业株式会社 | 热源单元以及制冷循环装置 |
JPWO2019124362A1 (ja) * | 2017-12-18 | 2021-01-21 | ダイキン工業株式会社 | 冷凍サイクル装置 |
US11906207B2 (en) | 2017-12-18 | 2024-02-20 | Daikin Industries, Ltd. | Refrigeration apparatus |
JPWO2019124379A1 (ja) * | 2017-12-18 | 2021-01-14 | ダイキン工業株式会社 | 冷凍サイクル装置 |
JPWO2019124361A1 (ja) * | 2017-12-18 | 2021-01-14 | ダイキン工業株式会社 | 冷凍サイクル装置 |
US11820933B2 (en) | 2017-12-18 | 2023-11-21 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
KR102581223B1 (ko) | 2017-12-18 | 2023-09-21 | 다이킨 고교 가부시키가이샤 | 냉매를 포함하는 조성물, 그 사용, 그리고 그것을 갖는 냉동기 및 그 냉동기의 운전 방법 |
WO2019124401A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2019124399A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 圧縮機 |
JPWO2019124380A1 (ja) * | 2017-12-18 | 2021-01-14 | ダイキン工業株式会社 | 冷凍サイクル装置 |
JP7303445B2 (ja) | 2017-12-18 | 2023-07-05 | ダイキン工業株式会社 | 空調機 |
KR20230084315A (ko) | 2017-12-18 | 2023-06-12 | 다이킨 고교 가부시키가이샤 | 냉매를 포함하는 조성물, 그 사용, 그리고 그것을 갖는 냉동기 및 그 냉동기의 운전 방법 |
KR102539007B1 (ko) | 2017-12-18 | 2023-06-01 | 다이킨 고교 가부시키가이샤 | 냉매를 포함하는 조성물, 그 사용, 그리고 그것을 갖는 냉동기 및 그 냉동기의 운전 방법 |
JPWO2019123804A1 (ja) * | 2017-12-18 | 2020-11-19 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
JPWO2019123806A1 (ja) * | 2017-12-18 | 2020-11-19 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
JPWO2019124400A1 (ja) * | 2017-12-18 | 2020-11-19 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
JPWO2019124403A1 (ja) * | 2017-12-18 | 2020-11-19 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
JPWO2019124402A1 (ja) * | 2017-12-18 | 2020-11-19 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
JPWO2019124401A1 (ja) * | 2017-12-18 | 2020-11-19 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
JPWO2019124404A1 (ja) * | 2017-12-18 | 2020-11-26 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
JPWO2019124140A1 (ja) * | 2017-12-18 | 2020-12-10 | ダイキン工業株式会社 | 冷凍サイクル装置 |
JP7284405B2 (ja) | 2017-12-18 | 2023-05-31 | ダイキン工業株式会社 | 冷凍サイクル装置 |
JPWO2019123898A1 (ja) * | 2017-12-18 | 2020-12-10 | ダイキン工業株式会社 | 冷媒用または冷媒組成物用の冷凍機油、冷凍機油の使用方法、および、冷凍機油としての使用 |
JPWO2019124395A1 (ja) * | 2017-12-18 | 2020-12-17 | ダイキン工業株式会社 | 空調機 |
AU2021229248B9 (en) * | 2017-12-18 | 2023-05-11 | Daikin Industries, Ltd. | Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator |
JPWO2019124139A1 (ja) * | 2017-12-18 | 2020-12-17 | ダイキン工業株式会社 | 冷凍サイクル装置および冷凍サイクル装置における冷媒封入量の決定方法 |
JPWO2019124229A1 (ja) * | 2017-12-18 | 2020-12-17 | ダイキン工業株式会社 | 冷凍装置 |
AU2021229248B2 (en) * | 2017-12-18 | 2023-04-06 | Daikin Industries, Ltd. | Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator |
JP7244763B2 (ja) | 2017-12-18 | 2023-03-23 | ダイキン工業株式会社 | 冷凍装置 |
JP7231834B2 (ja) | 2017-12-18 | 2023-03-02 | ダイキン工業株式会社 | 温水製造装置 |
KR20230027334A (ko) | 2017-12-18 | 2023-02-27 | 다이킨 고교 가부시키가이샤 | 냉매를 포함하는 조성물, 그 사용, 그리고 그것을 갖는 냉동기 및 그 냉동기의 운전 방법 |
KR102502650B1 (ko) * | 2017-12-18 | 2023-02-23 | 다이킨 고교 가부시키가이샤 | 냉매를 포함하는 조성물, 그 사용, 그리고 그것을 갖는 냉동기 및 그 냉동기의 운전 방법 |
KR102496896B1 (ko) | 2017-12-18 | 2023-02-08 | 다이킨 고교 가부시키가이샤 | 냉매를 포함하는 조성물, 그 사용, 그리고 그것을 갖는 냉동기 및 그 냉동기의 운전 방법 |
JPWO2019124360A1 (ja) * | 2017-12-18 | 2020-12-24 | ダイキン工業株式会社 | 空気調和機 |
JP7212265B2 (ja) | 2017-12-18 | 2023-01-25 | ダイキン工業株式会社 | 冷凍サイクル装置 |
US11549695B2 (en) | 2017-12-18 | 2023-01-10 | Daikin Industries, Ltd. | Heat exchange unit |
JPWO2019124328A1 (ja) * | 2017-12-18 | 2020-12-24 | ダイキン工業株式会社 | 熱源ユニットおよび冷凍サイクル装置 |
US11549041B2 (en) | 2017-12-18 | 2023-01-10 | Daikin Industries, Ltd. | Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator |
US11535781B2 (en) | 2017-12-18 | 2022-12-27 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11506425B2 (en) | 2017-12-18 | 2022-11-22 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11493244B2 (en) | 2017-12-18 | 2022-11-08 | Daikin Industries, Ltd. | Air-conditioning unit |
US11492527B2 (en) | 2017-12-18 | 2022-11-08 | Daikin Industries, Ltd. | Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator |
US11441819B2 (en) | 2017-12-18 | 2022-09-13 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11441802B2 (en) | 2017-12-18 | 2022-09-13 | Daikin Industries, Ltd. | Air conditioning apparatus |
JPWO2019124230A1 (ja) * | 2017-12-18 | 2021-01-07 | ダイキン工業株式会社 | 温水製造装置 |
US11435118B2 (en) | 2017-12-18 | 2022-09-06 | Daikin Industries, Ltd. | Heat source unit and refrigeration cycle apparatus |
US11365335B2 (en) | 2017-12-18 | 2022-06-21 | Daikin Industries, Ltd. | Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine |
JPWO2019124409A1 (ja) * | 2017-12-18 | 2021-01-07 | ダイキン工業株式会社 | 冷凍サイクル装置 |
AU2018392390B2 (en) * | 2017-12-18 | 2022-05-19 | Daikin Industries, Ltd. | Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator |
JPWO2019124398A1 (ja) * | 2017-12-18 | 2021-01-14 | ダイキン工業株式会社 | 圧縮機 |
WO2020017521A1 (ja) * | 2018-07-17 | 2020-01-23 | ダイキン工業株式会社 | 冷媒サイクル装置 |
JP7393667B2 (ja) | 2018-07-17 | 2023-12-07 | ダイキン工業株式会社 | 自動車用冷凍サイクル装置 |
JPWO2020017521A1 (ja) * | 2018-07-17 | 2021-08-02 | ダイキン工業株式会社 | 冷媒サイクル装置 |
JP7393668B2 (ja) | 2018-07-17 | 2023-12-07 | ダイキン工業株式会社 | 冷媒サイクル装置 |
US11912922B2 (en) | 2018-07-17 | 2024-02-27 | Daikin Industries, Ltd. | Refrigerant cycle apparatus |
US11920077B2 (en) | 2018-07-17 | 2024-03-05 | Daikin Industries, Ltd. | Refrigeration cycle device for vehicle |
US11939515B2 (en) | 2018-07-17 | 2024-03-26 | Daikin Industries, Ltd. | Refrigerant-containing composition, heat transfer medium, and heat cycle system |
WO2020017520A1 (ja) * | 2018-07-17 | 2020-01-23 | ダイキン工業株式会社 | 自動車用冷凍サイクル装置 |
JPWO2020017520A1 (ja) * | 2018-07-17 | 2021-08-02 | ダイキン工業株式会社 | 自動車用冷凍サイクル装置 |
JP2020111743A (ja) * | 2019-01-11 | 2020-07-27 | ダイキン工業株式会社 | シス−1,2−ジフルオロエチレンを含む組成物 |
WO2020145375A1 (ja) * | 2019-01-11 | 2020-07-16 | ダイキン工業株式会社 | トランス-1,2-ジフルオロエチレンを含む組成物 |
JP7073420B2 (ja) | 2019-01-11 | 2022-05-23 | ダイキン工業株式会社 | トランス-1,2-ジフルオロエチレンを含む組成物 |
JP7073421B2 (ja) | 2019-01-11 | 2022-05-23 | ダイキン工業株式会社 | シス-1,2-ジフルオロエチレンを含む組成物 |
JP2020111742A (ja) * | 2019-01-11 | 2020-07-27 | ダイキン工業株式会社 | トランス−1,2−ジフルオロエチレンを含む組成物 |
WO2020145377A1 (ja) * | 2019-01-11 | 2020-07-16 | ダイキン工業株式会社 | シス-1,2-ジフルオロエチレンを含む組成物 |
KR20240023187A (ko) * | 2019-01-30 | 2024-02-20 | 다이킨 고교 가부시키가이샤 | 냉매를 함유하는 조성물, 그리고, 그 조성물을 이용한 냉동 방법, 냉동 장치의 운전 방법 및 냉동 장치 |
WO2020158170A1 (ja) * | 2019-01-30 | 2020-08-06 | ダイキン工業株式会社 | 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置 |
KR102666677B1 (ko) | 2019-01-30 | 2024-05-17 | 다이킨 고교 가부시키가이샤 | 냉매를 함유하는 조성물, 그리고, 그 조성물을 이용한 냉동 방법, 냉동 장치의 운전 방법 및 냉동 장치 |
JPWO2020158731A1 (ja) * | 2019-01-30 | 2021-12-02 | ダイキン工業株式会社 | 庫内空気調節装置 |
KR102360750B1 (ko) * | 2019-01-30 | 2022-02-09 | 다이킨 고교 가부시키가이샤 | 냉매를 함유하는 조성물, 그리고, 그 조성물을 이용한 냉동 방법, 냉동 장치의 운전 방법 및 냉동 장치 |
US20210340422A1 (en) * | 2019-01-30 | 2021-11-04 | Daikin Industries, Ltd. | Composition containing refrigerant, refrigeration method using said composition, method for operating refrigeration device, and refrigeration device |
KR20220025089A (ko) * | 2019-01-30 | 2022-03-03 | 다이킨 고교 가부시키가이샤 | 냉매를 함유하는 조성물, 그리고, 그 조성물을 이용한 냉동 방법, 냉동 장치의 운전 방법 및 냉동 장치 |
JP7534685B2 (ja) | 2019-01-30 | 2024-08-15 | ダイキン工業株式会社 | 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置 |
JP6737391B1 (ja) * | 2019-01-30 | 2020-08-05 | ダイキン工業株式会社 | 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置 |
JP2021001302A (ja) * | 2019-01-30 | 2021-01-07 | ダイキン工業株式会社 | 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置 |
KR20210039494A (ko) * | 2019-01-30 | 2021-04-09 | 다이킨 고교 가부시키가이샤 | 냉매를 함유하는 조성물, 그리고, 그 조성물을 이용한 냉동 방법, 냉동 장치의 운전 방법 및 냉동 장치 |
US12146697B2 (en) | 2019-01-30 | 2024-11-19 | Daikin Industries, Ltd. | Inside air-conditioning device |
WO2020158257A1 (ja) * | 2019-01-30 | 2020-08-06 | ダイキン工業株式会社 | 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置 |
JP7328550B2 (ja) | 2019-01-30 | 2023-08-17 | ダイキン工業株式会社 | 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置 |
KR102634152B1 (ko) | 2019-01-30 | 2024-02-13 | 다이킨 고교 가부시키가이샤 | 냉매를 함유하는 조성물, 그리고, 그 조성물을 이용한 냉동 방법, 냉동 장치의 운전 방법 및 냉동 장치 |
US11840658B2 (en) | 2019-01-30 | 2023-12-12 | Daikin Industries, Ltd. | Composition containing refrigerant, and refrigeration method using said composition, operating method for refrigeration device, and refrigeration device |
WO2020158731A1 (ja) * | 2019-01-30 | 2020-08-06 | ダイキン工業株式会社 | 庫内空気調節装置 |
JP7506321B2 (ja) | 2019-01-30 | 2024-06-26 | ダイキン工業株式会社 | 庫内空気調節装置 |
JP2021001334A (ja) * | 2019-01-30 | 2021-01-07 | ダイキン工業株式会社 | 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置 |
JP2020122134A (ja) * | 2019-01-30 | 2020-08-13 | ダイキン工業株式会社 | 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置 |
US11525076B2 (en) | 2019-01-30 | 2022-12-13 | Daikin Industries, Ltd. | Composition containing refrigerant, and refrigeration method using said composition, operating method for refrigeration device, and refrigeration device |
US11834601B2 (en) | 2019-01-30 | 2023-12-05 | Daikin Industries, Ltd. | Composition containing refrigerant, refrigeration method using said composition, method for operating refrigeration device, and refrigeration device |
US11834602B2 (en) | 2019-02-05 | 2023-12-05 | Daikin Industries, Ltd. | Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition |
US11827833B2 (en) | 2019-02-06 | 2023-11-28 | Daikin Industries, Ltd. | Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition |
WO2020162415A1 (ja) * | 2019-02-06 | 2020-08-13 | ダイキン工業株式会社 | 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置 |
JP2020128528A (ja) * | 2019-02-06 | 2020-08-27 | ダイキン工業株式会社 | 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置 |
WO2020213697A1 (ja) * | 2019-04-16 | 2020-10-22 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
JP2020176262A (ja) * | 2019-04-16 | 2020-10-29 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
US11465955B2 (en) | 2019-06-07 | 2022-10-11 | Daikin Industries, Ltd. | Method for producing reaction gas containing (E)-1,2-difluoroethylene |
US11155507B2 (en) | 2019-06-07 | 2021-10-26 | Daikin Industries, Ltd. | Method for producing reaction gas containing (E)-1,2-difluoroethylene |
WO2020246611A1 (ja) * | 2019-06-07 | 2020-12-10 | ダイキン工業株式会社 | (e)-1,2-ジフルオロエチレンを含む反応ガスの製造方法 |
JP2020200323A (ja) * | 2019-06-07 | 2020-12-17 | ダイキン工業株式会社 | (e)−1,2−ジフルオロエチレンを含む反応ガスの製造方法 |
WO2020255986A1 (ja) * | 2019-06-18 | 2020-12-24 | ダイキン工業株式会社 | ジフルオロエチレンを含有する作動媒体の製造方法 |
JP2020203863A (ja) * | 2019-06-18 | 2020-12-24 | ダイキン工業株式会社 | ジフルオロエチレンを含有する作動媒体の製造方法 |
WO2020256126A1 (ja) * | 2019-06-19 | 2020-12-24 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機、その冷凍機の運転方法、及びそれを有する冷凍サイクル装置 |
JP2021001304A (ja) * | 2019-06-19 | 2021-01-07 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
JP2021169598A (ja) * | 2019-06-19 | 2021-10-28 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
CN114008173A (zh) * | 2019-06-19 | 2022-02-01 | 大金工业株式会社 | 使1,2-二氟乙烯(hfo-1132)与氧以气相共存的方法、以及包含它们的保存容器和冷冻机 |
CN114008171A (zh) * | 2019-06-19 | 2022-02-01 | 大金工业株式会社 | 含有制冷剂的组合物、其用途以及具有其的冷冻机和该冷冻机的运转方法 |
JP2021001326A (ja) * | 2019-06-19 | 2021-01-07 | ダイキン工業株式会社 | 1,2−ジフルオロエチレン(hfo−1132)と酸素とを気相で共存させる方法、並びにそれらを含む保存容器及び冷凍機 |
JP2021001320A (ja) * | 2019-06-19 | 2021-01-07 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2020256098A1 (ja) * | 2019-06-19 | 2020-12-24 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2020256100A1 (ja) * | 2019-06-19 | 2020-12-24 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2020256129A1 (ja) * | 2019-06-19 | 2020-12-24 | ダイキン工業株式会社 | 1,2-ジフルオロエチレン(hfo-1132)と酸素とを気相で共存させる方法、並びにそれらを含む保存容器及び冷凍機 |
WO2020256119A1 (ja) * | 2019-06-19 | 2020-12-24 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機、その冷凍機の運転方法、及びそれを有する冷凍サイクル装置 |
WO2020255966A1 (ja) * | 2019-06-19 | 2020-12-24 | ダイキン工業株式会社 | 冷凍サイクル装置 |
WO2020256117A1 (ja) * | 2019-06-19 | 2020-12-24 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2020256122A1 (ja) * | 2019-06-19 | 2020-12-24 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
JP2021001321A (ja) * | 2019-06-19 | 2021-01-07 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機、その冷凍機の運転方法、及びそれを有する冷凍サイクル装置 |
JP2021001324A (ja) * | 2019-06-19 | 2021-01-07 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機、その冷凍機の運転方法、及びそれを有する冷凍サイクル装置 |
JP2021004313A (ja) * | 2019-06-26 | 2021-01-14 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2020262209A1 (ja) * | 2019-06-26 | 2020-12-30 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2022025287A1 (ja) * | 2020-07-30 | 2022-02-03 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
JP2022026117A (ja) * | 2020-07-30 | 2022-02-10 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
JP7093029B2 (ja) | 2020-07-30 | 2022-06-29 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
JP2022063162A (ja) * | 2020-10-09 | 2022-04-21 | ダイキン工業株式会社 | 組成物、冷媒を保存する方法、及び冷媒の重合を抑制する方法 |
WO2022075391A1 (ja) * | 2020-10-09 | 2022-04-14 | ダイキン工業株式会社 | 組成物、冷媒を保存する方法、及び冷媒の重合を抑制する方法 |
WO2022163830A1 (ja) * | 2021-01-29 | 2022-08-04 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
JP2022117494A (ja) * | 2021-01-29 | 2022-08-10 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2023037767A1 (ja) * | 2021-09-10 | 2023-03-16 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
JP2023041000A (ja) * | 2021-09-10 | 2023-03-23 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
JP7236021B1 (ja) | 2021-09-10 | 2023-03-09 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
JPWO2023058558A1 (ja) * | 2021-10-04 | 2023-04-13 | ||
WO2023058646A1 (ja) * | 2021-10-04 | 2023-04-13 | ダイキン工業株式会社 | 自動車用冷凍サイクル装置 |
WO2023058558A1 (ja) * | 2021-10-04 | 2023-04-13 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
WO2024142558A1 (ja) * | 2022-12-28 | 2024-07-04 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、それを用いる冷凍方法、並びにそれを含む冷凍装置及び冷凍機 |
WO2024180808A1 (ja) * | 2023-03-01 | 2024-09-06 | ダイキン工業株式会社 | 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3153559A1 (en) | 2017-04-12 |
JPWO2015186557A1 (ja) | 2017-04-27 |
US20170058173A1 (en) | 2017-03-02 |
CN106414654A (zh) | 2017-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7435893B2 (ja) | 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム | |
JP7334834B2 (ja) | 熱サイクルシステム用作動媒体および熱サイクルシステム | |
JP6848861B2 (ja) | 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム | |
JP6409595B2 (ja) | 熱サイクルシステム用組成物および熱サイクルシステム | |
WO2015186557A1 (ja) | 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム | |
JP5783341B1 (ja) | 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム | |
WO2020071380A1 (ja) | 熱サイクルシステム用組成物および熱サイクルシステム | |
JP6493388B2 (ja) | 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム | |
WO2015141678A1 (ja) | 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム | |
WO2015186558A1 (ja) | 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15803218 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016525777 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015803218 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015803218 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |