WO2015177255A1 - Inductive heating device for heating an aerosol-forming substrate - Google Patents
Inductive heating device for heating an aerosol-forming substrate Download PDFInfo
- Publication number
- WO2015177255A1 WO2015177255A1 PCT/EP2015/061200 EP2015061200W WO2015177255A1 WO 2015177255 A1 WO2015177255 A1 WO 2015177255A1 EP 2015061200 W EP2015061200 W EP 2015061200W WO 2015177255 A1 WO2015177255 A1 WO 2015177255A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aerosol
- forming substrate
- susceptor
- inductive heating
- heating device
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B15/00—Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
- A24B15/10—Chemical features of tobacco products or tobacco substitutes
- A24B15/16—Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
- A24B15/167—Chemical features of tobacco products or tobacco substitutes of tobacco substitutes in liquid or vaporisable form, e.g. liquid compositions for electronic cigarettes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/06—Inhaling appliances shaped like cigars, cigarettes or pipes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/06—Control, e.g. of temperature, of power
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/46—Shape or structure of electric heating means
- A24F40/465—Shape or structure of electric heating means specially adapted for induction heating
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/46—Shape or structure of electric heating means
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/50—Control or monitoring
- A24F40/51—Arrangement of sensors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/50—Control or monitoring
- A24F40/53—Monitoring, e.g. fault detection
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/50—Control or monitoring
- A24F40/57—Temperature control
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/90—Arrangements or methods specially adapted for charging batteries thereof
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/217—Class D power amplifiers; Switching amplifiers
- H03F3/2176—Class E amplifiers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B1/00—Details of electric heating devices
- H05B1/02—Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
- H05B1/0227—Applications
- H05B1/023—Industrial applications
- H05B1/0244—Heating of fluids
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B1/00—Details of electric heating devices
- H05B1/02—Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
- H05B1/0227—Applications
- H05B1/0252—Domestic applications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/04—Sources of current
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/105—Induction heating apparatus, other than furnaces, for specific applications using a susceptor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/105—Induction heating apparatus, other than furnaces, for specific applications using a susceptor
- H05B6/108—Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/36—Coil arrangements
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/20—Devices using solid inhalable precursors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/021—Heaters specially adapted for heating liquids
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2206/00—Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
- H05B2206/02—Induction heating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2206/00—Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
- H05B2206/02—Induction heating
- H05B2206/023—Induction heating using the curie point of the material in which heating current is being generated to control the heating temperature
Definitions
- Inductive heating device for heating an aerosol-forming substrate
- the present invention relates to an inductive heating device for heating an aerosol-forming substrate, and more particularly relates to an inductive heating device for heating an aerosol-forming substrate of a smoking article.
- Previously known more conventional smoking articles for example cigarettes, deliver flavor and aroma to the user as a result of a combustion process.
- a mass of combustible material primarily tobacco, is combusted and an adjacent portion of material is pyrolized as the result of applied heat drawn therethrough, with typical combustion temperatures being in excess of 800°C during puffing.
- typical combustion temperatures being in excess of 800°C during puffing.
- inefficient oxidation of the combustible material takes place and yields various distillation and pyrolysis products. As these products are drawn through the body of the smoking article towards the mouth of the user, they cool and condense to form an aerosol or vapor which gives the consumer the flavor and aroma associated with smoking.
- a prior alternative to the more conventional smoking articles include those in which the combustible material itself does not directly provide the flavorants to the aerosol inhaled by the smoker.
- a combustible heating element typically carbonaceous in nature, is combusted to heat air as it is drawn over the heating element and through a zone which contains heat- activated elements that release the flavored aerosol.
- Yet another alternative to the more conventional smoking articles comprises an aerosol-forming tobacco-laden solid substrate comprising a magnetically permeable and electrically conductive susceptor which is arranged in thermal proximity to the aerosol-forming tobacco-laden substrate.
- the susceptor of the tobacco-laden substrate is exposed to an alternating magnetic field generated by an induction source, so that an alternating magnetic field is induced in the susceptor.
- This induced alternating magnetic field generates heat in the susceptor, and at least some of this heat generated in the susceptor is transferred from the susceptor to the aerosol-forming substrate arranged in thermal proximity to the susceptor to produce the aerosol and evolve the desired flavor .
- an induction heating device for aerosol-forming substrates including a susceptor, more particularly for solid aerosol-forming substrates including a susceptor, for example solid aerosol-forming substrates of a smoking article.
- the induction heating device shall be capable of operating without the need to be connected to an external power supply.
- the device shall be small in overall size and easy to use, so that it is attractive to users.
- the device shall allow for rapid generation of the required heat in the susceptor, which can then be transferred to the aerosol-forming substrate in order to produce the aerosol to allow a user to draw the aerosol on demand.
- an inductive heating device for heating an aerosol-forming substrate comprising a susceptor is suggested, in particular for heating a solid aerosol-forming substrate of a smoking article.
- the inductive heating device according to the invention comprises:
- a DC power source having a DC supply voltage a power supply electronics configured to operate at high frequency
- the power supply electronics comprising a DC/AC inverter connected to the DC power source, the DC/AC inverter including a Class-E power amplifier including a transistor switch and an LC load network configured to operate at low ohmic load, wherein the LC load network comprises a shunt capacitor and a series connection of a capacitor and an inductor having an ohmic resistance, and
- the cavity having an internal surface shaped to accommodate at least a portion of the aerosol-forming substrate, the cavity being arranged such that upon accommodation of the portion of the aerosol- forming substrate in the cavity the inductor of the LC load network is inductively coupled to the susceptor of the aerosol-forming substrate during operation.
- the aerosol-forming substrate is preferably a substrate capable of releasing volatile compounds that can form an aerosol.
- the volatile compounds are released by heating the aerosol-forming substrate.
- the aerosol-forming substrate may be solid or liquid or comprise both solid and liquid components. In a preferred embodiment, the aerosol- forming substrate is solid.
- the aerosol-forming substrate may comprise nicotine.
- the nicotine containing aerosol-forming substrate may be a nicotine salt matrix.
- the aerosol-forming substrate may comprise plant-based material.
- the aerosol-forming substrate may comprise tobacco, and preferably the tobacco containing material contains volatile tobacco flavor compounds, which are released from the aerosol-forming substrate upon heating.
- the aerosol-forming substrate may comprise homogenized tobacco material.
- Homogenized tobacco material may be formed by agglomerating particulate tobacco.
- the homogenized tobacco material may have an aerosol-former content of equal to or greater than 5% on a dry weight basis, and preferably between greater than 5% and 30% by weight on a dry weight basis.
- the aerosol-forming substrate may alternatively comprise a non-tobacco-containing material.
- the aerosol-forming substrate may comprise homogenized plant-based material .
- the aerosol-forming substrate may comprise at least one aerosol-former.
- the aerosol-former may be any suitable known compound or mixture of compounds that, in use, facilitates formation of a dense and stable aerosol and that is substantially resistant to thermal degradation at the operating temperature of the aerosol-generating device.
- Suitable aerosol-formers are well known in the art and include, but are not limited to: polyhydric alcohols, such as triethylene glycol, 1 , 3-butanediol and glycerine; esters of polyhydric alcohols, such as glycerol mono-, di- or triacetate; and aliphatic esters of mono-, di- or polycarboxylic acids, such as dimethyl dodecanedioate and dimethyl tetradecanedioate .
- Particularly preferred aerosol formers are polyhydric alcohols or mixtures thereof, such as triethylene glycol, 1 , 3-butanediol and, most preferred, glycerine.
- the aerosol-forming substrate may comprise other additives and ingredients, such as flavorants.
- the aerosol- forming substrate preferably comprises nicotine and at least one aerosol-former. In a particularly preferred embodiment, the aerosol-former is glycerine.
- the DC power source generally may comprise any suitable DC power source including in particular a power supply unit to be connected to the mains, one or more single- use batteries, rechargeable batteries, or any other suitable DC power source capable of providing the required DC supply voltage and the required DC supply amperage.
- the DC supply voltage of the DC power source is in the range of about 2.5 Volts to about 4.5 Volts and the DC supply amperage is in the range of about 2.5 to about 5 Amperes (corresponding to a DC supply power in the range of about 6.25 Watts and about 22.5 Watts) .
- the DC power source comprises rechargeable batteries. Such batteries are generally available and have an acceptable overall volume of between approximately 1.2-3.5 cubic centimeters. Such batteries may have a substantially cylindrical or rectangular solid shape.
- the DC power source may include a DC feed choke .
- the power supply electronics is configured to operate at high frequency.
- high frequency is to be understood to denote a frequency ranging from about 1 Megahertz (MHz) to about 30 Megahertz (MHz) (including the range of 1 MHz to 30 MHz), in particular from about 1 Megahertz (MHz) to about 10 MHz (including the range of 1 MHz to 10 MHz), and even more particularly from about 5 Megahertz (MHz) to about 7 Megahertz (MHz) (including the range of 5 MHz to 7 MHz) .
- the power supply electronics comprises a DC/AC inverter connected to the DC power source.
- the DC/AC inverter includes a Class-E power amplifier including a transistor switch, a transistor switch driver circuit, and an LC load network.
- Class-E power amplifiers are generally known and are described in detail, for example, in the article "Class-E RF Power Amplifiers", Nathan 0. Sokal, published in the bimonthly magazine QEX, edition January/February 2001, pages 9-20, of the American Radio Relay League (ARRL) , Newington, CT, U.S.A..
- Class-E power amplifiers are advantageous as regards operation at high frequencies while at the same time having a simple circuit structure comprising a minimum number of components (e.g.
- Class-D power amplifiers which comprise two transistor switches that must be controlled at high frequency in a manner so as to make sure that one of the two transistors has been switched off at the time the other of the two transistors is switched on) .
- Class-E power amplifiers are known for minimum power dissipation in the switching transistor during the switching transitions.
- the Class-E power amplifier is a single-ended first order Class-E power amplifier having a single transistor switch only.
- the transistor switch of the Class-E power amplifier can be any type of transistor and may be embodied as a bipolar- junction transistor (BJT) . More preferably, however, the transistor switch is embodied as a field effect transistor (FET) such as a metal-oxide-semiconductor field effect transistor (MOSFET) or a metal-semiconductor field effect transistor (MESFET) .
- FET field effect transistor
- MOSFET metal-oxide-semiconductor field effect transistor
- MEFET metal-semiconductor field effect transistor
- the LC load network of the Class-E power amplifier of the induction heating device is configured to operate at low ohmic load.
- the term "low ohmic load” is to be understood to denote an ohmic load smaller than about 2 Ohms.
- the LC load network comprises a shunt capacitor, and a series connection of a capacitor and an inductor having an ohmic resistance. This ohmic resistance of the inductor is typically a few tenths of an Ohm.
- the ohmic resistance of the susceptor adds to the ohmic resistance of the inductor and should be higher than the ohmic resistance of the inductor, since the supplied electrical power should be converted to heat in the susceptor to an as high extent as possible in order to increase efficiency of the power amplifier and to allow transfer of as much heat as possible from the susceptor to the rest of the aerosol-forming substrate to effectively produce the aerosol.
- a susceptor is a conductor which is capable of being inductively heated. "Thermal proximity" means that the susceptor is positioned relative to the rest of the aerosol- forming substrate such that an adequate amount of heat is transferred from the susceptor to the rest of the aerosol- forming substrate to produce the aerosol.
- the susceptor Since the susceptor is not only magnetically permeable but also electrically conductive (it is a conductor, see above) , a current known as eddy current is produced in the susceptor and flows in the susceptor according to Ohm's law.
- the susceptor should have low electrical resistivity p to increase Joule heat dissipation.
- the frequency of the alternating eddy current must be considered because of the skin effect (more than 98% of the electrical current flow within a layer four times the skin depth ⁇ from the outer surface of the conductor) . Taking this into account the ohmic resistance R s of the susceptor is calculated from the equation wherein f denotes the frequency of the alternating eddy current ⁇ 0 denotes the magnetic permeability of free space
- ⁇ ⁇ denotes the relative magnetic permeability of the
- p denotes the electrical resistivity of the material of the susceptor .
- the power loss P e generated by the eddy current is calculated by the formula
- I denotes the amperage (rms) of the eddy current
- R s denotes the electrical resistance of the susceptor (see above)
- the frequency of the alternating eddy current (and correspondingly of the alternating magnetic field inducing the eddy current in the susceptor) cannot be arbitrarily increased, since the skin depth ⁇ decreases as the frequency of the eddy current (or of the alternating magnetic field inducing the eddy current in the susceptor) increases, so that above a certain cut-off frequency no eddy currents can be generated in the susceptor anymore since the skin depth is too small to allow eddy currents to be generated.
- Increasing the amperage (rms) requires an alternating magnetic field having a high magnetic flux density and thus requires voluminous induction sources (inductors) .
- V denotes the volume of the susceptor
- W H denotes the work required to magnetize the susceptor
- the maximum possible amount of W H depends on material properties of the susceptor (saturation remanence B R , coercivity H c ) , and the actual amount of W H depends on the actual magnetization B-H loop induced in the susceptor by the alternating magnetic field, and this actual magnetization B-H loop depends on the magnitude of the magnetic excitation.
- This heat generation is caused by dynamic losses of the magnetic domains in the magnetically permeable susceptor material when the susceptor is subjected to an alternating external magnetic field, and these dynamic losses also generally increase as the frequency of the alternating magnetic field increases.
- a cavity is arranged in the device housing.
- the cavity has an internal surface shaped to accommodate at least a portion of the aerosol-forming substrate.
- the cavity is arranged such that upon accommodation of the portion of the aerosol-forming substrate in the cavity the inductor of the LC load network is inductively coupled to the susceptor of the aerosol- forming substrate during operation.
- the inductor of the LC load network of the Class-E power amplifier is used to heat the susceptor through magnetic induction. This eliminates the need for additional components such as matching networks for matching the output impedance of the Class-E power amplifier to the load, thus allowing to further minimize the size of the power supply electronics.
- the inductive heating device provides for a small and easy to handle, efficient, clean and robust heating device due to the contactless heating of the substrate.
- susceptors forming low ohmic loads as specified above while having a resistance significantly higher than the ohmic resistance of the inductor of the LC load network it is thus possible to reach temperatures of the susceptor in the range of 350-400 degrees Celsius in five seconds only or in a time interval which is even less than five seconds, while at the same time the temperature of the inductor is low (due to a vast majority of the power being converted to heat in the susceptor) .
- the device is configured for heating an aerosol-forming substrate of a smoking article.
- the device is configured for heating a tobacco-laden solid aerosol-forming substrate of a smoking article .
- the total volume of the power supply electronics is equal to or smaller than 2 cm 3 . This allows for an arrangement of the batteries, the power supply electronics and the cavity in a device housing having an overall small size which is convenient and easy to handle.
- the inductor of the LC load network comprises a helically wound cylindrical inductor coil having an oblong shape and defining an inner volume in the range of about 0.15 cm 3 and about 1.10 cm 3 .
- the inner diameter of the helically wound cylindrical inductor coil may be between about 5 mm and about 10 mm, and may preferably be about 7 mm, and the length of the helically wound cylindrical inductor coil may be between about 8 mm and about 14 mm.
- the diameter or the thickness of the coil wire may be between about 0.5 mm and about 1 mm, depending on whether a coil wire with a circular cross-section or a coil wire with a flat rectangular cross-section is used.
- the helically wound inductor coil is positioned on or adjacent the internal surface of the cavity.
- a helically wound cylindrical inductor coil positioned on or adjacent the internal surface of the cavity allows to further minimize the size of the device.
- the device housing has a substantially cylindrical shape with the cavity being arranged at the proximal end of the device housing and with the DC power source being arranged at the distal end of the device housing.
- the power supply electronics is arranged between the DC power source and the cavity. This allows for a space-saving and aesthetically pleasing arrangement of all components of the inductive heating device in a small and easy to handle device housing.
- the DC power source comprises a rechargeable DC battery. This allows for recharging the batteries, preferably through a connection to the mains via a charging device comprising an AC/DC converter.
- the power supply electronics further comprises a microcontroller which is programmed to interrupt generation of AC power by the DC/AC inverter as the temperature of the susceptor of the aerosol- forming substrate has exceeded a Curie temperature of the susceptor during operation, and which is programmed to resume generation of AC power as the temperature of the susceptor has cooled down below this Curie temperature again.
- a microcontroller which is programmed to interrupt generation of AC power by the DC/AC inverter as the temperature of the susceptor of the aerosol- forming substrate has exceeded a Curie temperature of the susceptor during operation, and which is programmed to resume generation of AC power as the temperature of the susceptor has cooled down below this Curie temperature again.
- the Curie temperature should correspond to a maximum temperature the susceptor should have (that is to say the Curie temperature is identical with the maximum temperature to which the susceptor should be heated or deviates from this maximum temperature by about 1-3%. As the temperature of the susceptor exceeds the Curie temperature of this single material, the ferromagnetic properties of the susceptor are no longer present and the susceptor is paramagnetic only.
- the materials of the susceptor can be optimized with respect to further aspects.
- the materials can be selected such that a first material of the susceptor may have a Curie temperature which is above the maximum temperature to which the susceptor should be heated.
- This first material of the susceptor may then be optimized, for example, with respect to maximum heat generation and transfer to the rest of the aerosol-forming substrate to provide for an efficient heating of the susceptor on one hand, however, the susceptor then additionally may comprise a second material having a Curie temperature which corresponds to the maximum temperature to which the susceptor should be heated, and once the susceptor reaches this Curie temperature the magnetic properties of the susceptor as a whole change. This change can be detected and communicated to the microcontroller which then interrupts the generation of AC power until the temperature has cooled down below this Curie temperature again, whereupon AC power generation can be resumed .
- the class E power amplifier has an output impedance
- the power supply electronics further comprises a matching network for matching the output impedance of the class E power amplifier to the low ohmic load. This measure may be helpful to further increase power losses in the low ohmic load leading to an increased generation of heat in the low ohmic load.
- the matching network may include a small matching transformer .
- an inductive heating system comprising an inductive heating device according to anyone of the embodiments described above and an aerosol-forming substrate comprising a susceptor. At least a portion of the aerosol-forming substrate is accommodated in the cavity of the inductive heating device such that the inductor of the LC load network of the DC/AC inverter of the inductive heating device is inductively coupled to the susceptor of the aerosol-forming substrate during operation.
- the aerosol-forming substrate may be an aerosol-forming substrate of a smoking article.
- the aerosol-forming substrate may be a tobacco-laden solid aerosol-forming substrate which may be used in smoking articles (such as, for example, cigarettes) .
- kits comprising an inductive heating device in accordance with any of the afore-described embodiments and an aerosol-forming substrate comprising a susceptor.
- the inductive heating device and the aerosol-forming substrate are configured such that in operation at least a portion of the aerosol-forming substrate is accommodated in the cavity of the inductive heating device such that the inductor of the LC load network of the DC/AC inverter of the inductive heating device is inductively coupled to the susceptor of the aerosol-forming substrate.
- the aerosol-forming substrate and the inductive heating device can be provided separately, they can also be provided in the form of a kit of parts.
- a starter kit may comprise the inductive heating device and a plurality of aerosol-forming substrates while in addition only aerosol-forming substrates are provided, so that once the consumer has obtained an inductive heating device in the starter kit and has consumed the aerosol-forming substrates contained in the starter kit, the consumer is only in need of additional aerosol-forming substrates.
- the aerosol-forming substrate may be an aerosol-forming substrate of a smoking article, and in particular the aerosol-forming substrate of the smoking article may be a tobacco-laden solid aerosol-forming substrate .
- Still a further aspect of the invention relates to a method of operating an inductive heating system.
- the method comprises the steps of:
- the power supply electronics comprising a DC/AC inverter connected to the DC power source, the DC/AC inverter including a Class-E power amplifier including a transistor switch, a transistor switch driver circuit, and an LC load network configured to operate at low ohmic load, wherein the LC load network comprises a shunt capacitor and a series connection of a capacitor and an inductor having an ohmic resistance,
- a cavity capable of accommodating at least a portion of an aerosol-forming substrate, the cavity being arranged such that upon accommodation of the portion of the aerosol-forming substrate in the cavity the inductor of the LC load network is inductively coupled to the susceptor of the aerosol-forming substrate, and
- the DC power source is a rechargeable battery and the method further comprises the step of charging the rechargeable battery prior to inserting the portion of the aerosol-forming substrate into the cavity.
- the device can be used (after charging of the batteries) without a connection to the mains or to another external power source being necessary.
- the rechargeable battery can be easily recharged again, so that it is not necessary to carry any single-use replacement batteries along. If the battery charge is low, the rechargeable battery can be simply recharged and the device is ready for use again.
- rechargeable batteries are friendly to the environment since there are no single-use batteries that must be properly disposed of.
- Fig. 1 shows the general heating principle underlying the invention
- Fig. 2 shows a block diagram of an embodiment of the inductive heating device and system according to the invention, shows an embodiment of the inductive heating device with the essential components arranged in a device housing, shows an embodiment of essential components of the power electronics of the inductive heating device according to the invention (without matching network) , shows an embodiment of the inductor of the LC load network in form of a helically wound cylindrical inductor coil having an oblong shape, shows a detail of the LC load network including the inductivity and ohmic resistance of the coil, and in addition shows the ohmic resistance of the load.
- Fig. 1 the general heating principle underlying the instant invention is schematically illustrated.
- Schematically shown in Fig. 1 are a helically wound cylindrical inductor coil L2 having an oblong shape and defining an inner volume in which there is arranged a portion or all of an aerosol- forming substrate 20 of a smoking article 2, the aerosol- forming substrate comprising a susceptor 21.
- the smoking article 2 comprising the aerosol-forming substrate 20 with the susceptor 21 is schematically represented in the enlarged cross-sectional detail shown separately on the right hand side of Fig. 1.
- the aerosol-forming substrate 20 of the smoking article 2 may be a tobacco-laden solid substrate, however, without being limited thereto.
- the magnetic field within the inner volume of the inductor coil L2 is indicated schematically by a number of magnetic field lines B L at one specific moment in time, since the magnetic field generated by the alternating current i L2 flowing through the inductor coil L2 is an alternating magnetic field changing its polarity at the frequency of the alternating current i L2 which may be in the range of about 1 MHz to about 30 MHz (including the range of 1 MHz to 30 MHz), and may in particular be in the range of about 1 MHz to about 10 MHz (including the range of 1 MHz to 10 MHz, and may especially be smaller than 10 MHz), and very particularly the frequency may be in the range of about 5 MHz to about 7 MHz (including the range of 5 MHz to 7 MHz, and may for example be 5 MHz) .
- the two main mechanisms responsible for generating heat in the susceptor 21, the power losses P e caused by eddy currents (closed circle representing the eddy currents) and the power losses P h caused by hysteresis (closed hysteresis curve representing the hysteresis) are also schematically indicated in Fig. 1. With respect to these mechanisms it is referred to the more detailed discussion of these mechanisms above .
- Fig. 3 shows an embodiment of an inductive heating device 1 according to the invention.
- the inductive heating device 1 comprises a device housing 10 which can be made of plastic and a DC power source 11 (see Fig. 2) comprising a rechargeable battery 110.
- Inductive heating device 1 further comprises a docking port 12 comprising a pin 120 for docking the inductive heating device to a charging station or charging device for recharging the rechargeable battery 110.
- inductive heating device 1 comprises a power supply electronics 13 which is configured to operate at the desired frequency, for example at a frequency of 5 MHz as mentioned above.
- Power supply electronics 13 is electrically connected to the rechargeable battery 110 through a suitable electrical connection 130.
- the power supply electronics 13 comprises additional components which cannot be seen in Fig.
- Inductor L2 is embedded in the device housing 10 at the proximal end of device housing 10 to surround a cavity 14 which is also arranged at the proximal end of the device housing 10.
- Inductor L2 may comprise a helically wound cylindrical inductor coil having an oblong shape, as shown in Fig. 5.
- the helically wound cylindrical inductor coil L2 may have a radius r in the range of about 5 mm to about 10 mm, and in particular the radius r may be about 7mm.
- the length 1 of the helically wound cylindrical inductor coil may be in the range of about 8 mm to about 14 mm.
- the inner volume accordingly, may be in the range of about 0.15 cm 3 to about 1.10 cm 3 .
- the tobacco-laden solid aerosol- forming substrate 20 comprising susceptor 21 is accommodated in cavity 14 at the proximal end of the device housing 10 such that during operation the inductor L2 (the helically wound cylindrical inductor coil) is inductively coupled to susceptor 21 of the tobacco-laden solid aerosol-forming substrate 20 of smoking article 2.
- a filter portion 22 of the smoking article 2 may be arranged outside the cavity 14 of the inductive heating device 1 so that during operation the consumer may draw the aerosol through the filter portion 22.
- the cavity 14 can be easily cleaned since except for the open distal end through which the aerosol-forming substrate 20 of the smoking article 2 is to be inserted the cavity is fully closed and surrounded by those inner walls of the plastic device housing 10 defining the cavity 14.
- Fig. 2 shows a block diagram of an embodiment of the inductive heating device 1 according to the invention, however, with some optional aspects or components as will be discussed below.
- Inductive heating device 1 together with the aerosol-forming substrate 20 including the susceptor 21 forms an embodiment of the inductive heating system according to the invention.
- the block diagram shown in Fig. 2 is an illustration taking the manner of operation into account.
- the inductive heating device 1 comprises a DC power source 11 (in Fig. 3 comprising the rechargeable battery 110), a microprocessor control unit 131, a DC/AC inverter 132, a matching network 133 for adaptation to the load, and the inductor L2.
- Microprocessor controller unit 131, DC/AC inverter 132 and matching network 133 as well as inductor L2 are all part of the power supply electronics 13 (see Fig. 1) .
- Two feed-back channels 134 and 135 are provided for providing feed-back signals indicating the voltage and current through inductor L2 allowing to control the further supply of power. For example, in case the temperature of the susceptor exceeds a desired temperature, a corresponding signal may be generated interrupting the further supply of power until the temperature of the susceptor is again below the desired temperature whereupon further supply of power may be resumed.
- a matching network 133 may be provided for optimum adaptation to the load but is not mandatory and is not contained in the embodiment described in more detail in the following.
- Fig. 4 shows some essential components of the power supply electronics 13, more particularly of the DC/AC inverter 132.
- the DC/AC inverter includes a Class-E power amplifier including a transistor switch 1320 comprising a Field Effect Transistor (FET) 1321, for example a Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) , a transistor switch supply circuit indicated by the arrow 1322 for supplying the switching signal (gate-source voltage) to the FET 1321, and an LC load network 1323 comprising a shunt capacitor CI and a series connection of a capacitor C2 and inductor L2.
- FET Field Effect Transistor
- MOSFET Metal-Oxide-Semiconductor Field Effect Transistor
- the DC power source 11 including a choke LI is shown for supplying a DC supply voltage +V C c ⁇
- the ohmic resistance R representing the total ohmic load 1324, which is the sum of the ohmic resistance Rc o ii of the inductor L2 and the ohmic resistance R Load of the susceptor 21, as this is shown in Fig. 6.
- the volume of the power supply electronics 13 can be kept extremely small.
- the volume of the power supply electronics may be equal or smaller than 2 cm 3 .
- This extremely small volume of the power supply electronics is possible due to the inductor L2 of the LC load network 1323 being directly used as the inductor for the inductive coupling to the susceptor 21 of aerosol-forming substrate 20, and this small volume allows to keep the overall dimensions of the entire inductive heating device 1 small.
- a separate inductor other than the inductor L2 is used for the inductive coupling to the susceptor 21, this would automatically increase the volume of the power supply electronics, this volume being also increased if a matching network 133 is included in the power supply electronics.
- Class-E power amplifier While the general operating principle of the Class-E power amplifier is known and described in detail in the already mentioned article "Class-E RF Power Amplifiers", Nathan 0. Sokal, published in the bimonthly magazine QEX, edition January/February 2001, pages 9-20, of the American Radio Relay League (ARRL) , Newington, CT, U.S.A., some general principles will be explained in the following.
- ARRL American Radio Relay League
- the transistor switch supply circuit 1322 supplies a switching voltage (gate-source voltage of the FET) having a rectangular profile to FET 1321.
- FET 1321 As long as FET 1321 is conducting ("on"-state) , it does essentially constitute a short circuit (low resistance) and the entire current flows through choke LI and FET 1321.
- FET 1321 As FET 1321 is non-conducting ("off-state) , the entire current flows into the LC load network since FET 1321 essentially represents an open circuit (high resistance) . Switching the transistor between these two states inverts the supplied DC voltage and DC current into an AC voltage and AC current.
- an as large as possible amount of the supplied DC power is to be trans- ferred in the form of AC power to inductor L2 (helically wound cylindrical inductor coil) and subsequently to the susceptor 21 of aerosol-forming substrate 20 which is inductively coupled to inductor 2.
- the power dissipated in the susceptor 21 (eddy current losses, hysteresis losses) generates heat in the susceptor 21, as described further above. Or to say it in other words, power dissipation in FET 1321 must be minimized while maximizing power dissipation in susceptor 21.
- the power dissipation in FET 1321 during one period of the AC voltage/current is the product of the transistor voltage and current at each point in time during that period of the alternating voltage/current, integrated over that period, and averaged over that period. Since the FET 1321 must sustain high voltage during a part of that period and conduct high current during a part of that period, it must be avoided that high voltage and high current exist at the same time, since this would lead to substantial power dissipation in FET 1321. In the "on-"state of FET 1321, the transistor voltage is nearly zero when high current is flowing through the FET 1321. In the "off-"state of FET 1321, the transistor voltage is high but the current through FET 1321 is nearly zero.
- the switching transitions unavoidably also extend over some fractions of the period. Nevertheless, a high voltage- current product representing a high power loss in FET 1321 can be avoided by the following additional measures. Firstly, the rise of the transistor voltage is delayed until after the current through the transistor has reduced to zero. Secondly, the transistor voltage returns to zero before the current through the transistor begins to rise. This is achieved by load network 1323 comprising shunt capacitor CI and the series connection of capacitor C2 and inductor L2, this load network being the network between FET 1321 and the load 1324. Thirdly, the transistor voltage at turn-on time is practically zero (for a bipolar- junction transistor "BJT" it is the saturation offset voltage V 0 ) .
- BJT bipolar- junction transistor
- the turning-on transistor does not discharge the charged shunt capacitor CI, thus avoiding dissipating the shunt capacitor' s stored energy.
- the slope of the transistor voltage is zero at turn-on time.
- the current injected into the turning- on transistor by the load network rises smoothly from zero at a controlled moderate rate resulting in low power dissipation while the transistor conductance is building up from zero during the turn-on transition.
- the transistor voltage and current are never high simultaneously.
- the voltage and current switching transitions are time-displaced from each other.
- Q L quality factor of the LC load circuit
- the susceptor 21 can be made of a material or of a combination of materials having a Curie temperature which is close to the desired temperature to which the susceptor 21 should be heated. Once the temperature of the susceptor 21 exceeds this Curie temperature, the material changes its ferromagnetic proper ⁇ ties to paramagnetic properties. Accordingly, the energy dissipation in the susceptor 21 is significantly reduced since the hysteresis losses of the material having paramagnetic properties are much lower than those of the material having the ferromagnetic properties.
- This reduced power dissipation in the susceptor 21 can be detected and, for example, the generation of AC power by the DC/AC inverter may then be interrupted until the susceptor 21 has cooled down below the Curie temperature again and has regained its ferromagnetic properties. Generation of AC power by the DC/AC inverter may then be resumed again.
- the smoking article 2 is inserted into the cavity 14 (see Fig. 2) of the inductive heating device 1 such that the aerosol-forming substrate 20 comprising the susceptor 21 is inductively coupled to inductor 2 (e.g. the helically wound cylindrical coil) .
- Susceptor 21 is then heated for a few seconds as described above, and then the consumer may begin drawing the aerosol through the filter 22 (of course, the smoking article does not necessarily have to comprise a filter 22) .
- the inductive heating device and the smoking articles can generally be distributed separately or as a kit of parts.
- a so-called “starter kit” comprising the inductive heating device as well as a plurality of smoking articles. Once the consumer has purchased such starter kit, in the future the consumer may only purchase smoking articles that can be used with this inductive heating device of the starter kit.
- the inductive heating device is easy to clean and in case of rechargeable batteries as the DC power source, these rechargeable batteries are easy to be recharged using a suitable charging device that is to be connected to the docking port 12 comprising pin 120 (or the inductive heating device is to be docked to a corresponding docking station of a charging device) .
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Anesthesiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pulmonology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Power Engineering (AREA)
- General Induction Heating (AREA)
- Air-Conditioning For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
Claims
Priority Applications (21)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2015261878A AU2015261878B2 (en) | 2014-05-21 | 2015-05-21 | Inductive heating device for heating an aerosol-forming substrate |
RU2016149758A RU2670951C9 (en) | 2014-05-21 | 2015-05-21 | Inductive heating device for heating aerosol-forming substrate |
MX2016015134A MX2016015134A (en) | 2014-05-21 | 2015-05-21 | Inductive heating device for heating an aerosol-forming substrate. |
EP15724989.7A EP3145347B1 (en) | 2014-05-21 | 2015-05-21 | Inductive heating device for heating an aerosol-forming substrate |
CN201580007754.2A CN105992528B (en) | 2014-05-21 | 2015-05-21 | The induction heating apparatus of matrix is formed for heating aerosol |
UAA201608778A UA120921C2 (en) | 2014-05-21 | 2015-05-21 | Inductive heating device for heating an aerosol-forming substrate |
PL15724989T PL3145347T3 (en) | 2014-05-21 | 2015-05-21 | Inductive heating device for heating an aerosol-forming substrate |
JP2016552513A JP6452709B2 (en) | 2014-05-21 | 2015-05-21 | Induction heating apparatus for heating an aerosol-forming substrate |
EP23176783.1A EP4255115A3 (en) | 2014-05-21 | 2015-05-21 | Inductive heating device for heating an aerosol-forming substrate |
CN201910982720.5A CN110522092B (en) | 2014-05-21 | 2015-05-21 | Induction heating device for heating an aerosol-forming substrate |
CA2937066A CA2937066C (en) | 2014-05-21 | 2015-05-21 | Inductive heating device for heating an aerosol-forming substrate |
ES15724989T ES2800056T3 (en) | 2014-05-21 | 2015-05-21 | Inductive heating device for heating an aerosol-forming substrate |
SG11201605885VA SG11201605885VA (en) | 2014-05-21 | 2015-05-21 | Inductive heating device for heating an aerosol-forming substrate |
EP20174413.3A EP3723452B1 (en) | 2014-05-21 | 2015-05-21 | Inductive heating device for heating an aerosol-forming substrate |
KR1020197038771A KR102282571B1 (en) | 2014-05-21 | 2015-05-21 | Inductive heating device for heating an aerosol-forming substrate |
KR1020167022040A KR102062721B1 (en) | 2014-05-21 | 2015-05-21 | Inductive heating device for heating an aerosol-forming substrate |
US15/121,548 US10477894B2 (en) | 2014-05-21 | 2015-05-21 | Inductive heating device for heating an aerosol-forming substrate |
PH12016501239A PH12016501239B1 (en) | 2014-05-21 | 2016-06-23 | Inductive heating device for heating an aerosol-forming substrate |
ZA2016/04314A ZA201604314B (en) | 2014-05-21 | 2016-06-24 | Inductive heating device for heating an aerosol-forming substrate |
IL246460A IL246460B (en) | 2014-05-21 | 2016-06-26 | Inductive heating device for heating an aerosol-forming substrate |
US16/686,340 US20200077715A1 (en) | 2014-05-21 | 2019-11-18 | Inductive heating device for heating an aerosol-forming substrate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14169191.5 | 2014-05-21 | ||
EP14169191 | 2014-05-21 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/121,548 A-371-Of-International US10477894B2 (en) | 2014-05-21 | 2015-05-21 | Inductive heating device for heating an aerosol-forming substrate |
US16/686,340 Continuation US20200077715A1 (en) | 2014-05-21 | 2019-11-18 | Inductive heating device for heating an aerosol-forming substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015177255A1 true WO2015177255A1 (en) | 2015-11-26 |
Family
ID=50735956
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2015/061202 WO2015177257A1 (en) | 2014-05-21 | 2015-05-21 | Inductive heating device, aerosol-delivery system comprising an inductive heating device, and method of operating same |
PCT/EP2015/061200 WO2015177255A1 (en) | 2014-05-21 | 2015-05-21 | Inductive heating device for heating an aerosol-forming substrate |
PCT/EP2015/061201 WO2015177256A1 (en) | 2014-05-21 | 2015-05-21 | Inductive heating device, aerosol-delivery system comprising an inductive heating device, and method of operating same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2015/061202 WO2015177257A1 (en) | 2014-05-21 | 2015-05-21 | Inductive heating device, aerosol-delivery system comprising an inductive heating device, and method of operating same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2015/061201 WO2015177256A1 (en) | 2014-05-21 | 2015-05-21 | Inductive heating device, aerosol-delivery system comprising an inductive heating device, and method of operating same |
Country Status (27)
Country | Link |
---|---|
US (6) | US10674763B2 (en) |
EP (5) | EP3723452B1 (en) |
JP (6) | JP6623175B2 (en) |
KR (5) | KR102062721B1 (en) |
CN (4) | CN105992528B (en) |
AR (3) | AR100541A1 (en) |
AU (3) | AU2015261878B2 (en) |
BR (2) | BR112016021509B1 (en) |
CA (3) | CA2937066C (en) |
DK (2) | DK2967156T3 (en) |
ES (4) | ES2800056T3 (en) |
HU (4) | HUE039428T2 (en) |
IL (3) | IL246460B (en) |
LT (2) | LT2967156T (en) |
MX (3) | MX2016015142A (en) |
MY (3) | MY182566A (en) |
PH (3) | PH12016501239B1 (en) |
PL (4) | PL2967156T3 (en) |
PT (2) | PT2967156T (en) |
RS (2) | RS57456B1 (en) |
RU (3) | RU2677111C2 (en) |
SG (3) | SG11201605885VA (en) |
SI (1) | SI3145342T1 (en) |
TW (3) | TWI692274B (en) |
UA (3) | UA118867C2 (en) |
WO (3) | WO2015177257A1 (en) |
ZA (3) | ZA201604314B (en) |
Cited By (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2533080A (en) * | 2014-11-11 | 2016-06-15 | Relco Induction Dev Ltd | Electronic vapour inhalers |
WO2017036954A1 (en) * | 2015-08-31 | 2017-03-09 | British American Tobacco (Investments) Limited | Article for use with apparatus for heating smokable material |
GB2543329A (en) * | 2015-10-15 | 2017-04-19 | Relco Induction Dev Ltd | A method for operating an electronic vapour inhaler |
WO2017036955A3 (en) * | 2015-08-31 | 2017-05-04 | British American Tobacco (Investments) Limited | Apparatus for heating smokable material |
WO2017133870A1 (en) * | 2016-02-01 | 2017-08-10 | Philip Morris Products S.A. | Aerosol-generating device having multiple power supplies |
WO2017153443A1 (en) * | 2016-03-09 | 2017-09-14 | Philip Morris Products S.A. | Aerosol-generating article |
WO2018002086A1 (en) * | 2016-06-29 | 2018-01-04 | British American Tobacco (Investments) Limited | Apparatus for heating smokable material |
WO2018002083A1 (en) * | 2016-06-29 | 2018-01-04 | British American Tobacco (Investments) Limited | Apparatus for heating smokable material |
WO2018096000A1 (en) | 2016-11-22 | 2018-05-31 | Philip Morris Products S.A. | Inductive heating device, aerosol-generating system comprising an inductive heating device and method of operating the same |
US10104912B2 (en) | 2016-01-20 | 2018-10-23 | Rai Strategic Holdings, Inc. | Control for an induction-based aerosol delivery device |
WO2019003117A1 (en) | 2017-06-28 | 2019-01-03 | Philip Morris Products S.A. | Shisha cartridge having a plurality of chambers |
WO2019003116A1 (en) | 2017-06-28 | 2019-01-03 | Philip Morris Products S.A. | Shisha device with air preheat without combustion |
WO2019002377A1 (en) * | 2017-06-30 | 2019-01-03 | Philip Morris Products S.A. | Aerosol-generating device and aerosol-generating system with inductive heating system with efficient power control |
WO2019002613A1 (en) | 2017-06-30 | 2019-01-03 | Philip Morris Products S.A. | Inductive heating device, aerosol-generating system comprising an inductive heating device and method of operating the same |
WO2019016740A1 (en) | 2017-07-21 | 2019-01-24 | Philip Morris Products S.A. | Aerosol generating device with spiral movement for heating |
WO2019016737A1 (en) | 2017-07-19 | 2019-01-24 | Philip Morris Products S.A. | Shisha device for enhanced aerosol characteristics |
WO2019021119A1 (en) | 2017-07-25 | 2019-01-31 | Philip Morris Products S.A. | Heat transfer adaptor for aerosol generating device |
WO2019030170A1 (en) | 2017-08-09 | 2019-02-14 | Philip Morris Products S.A. | Aerosol-generating device with modular induction heater |
WO2019030167A1 (en) | 2017-08-09 | 2019-02-14 | Philip Morris Products S.A. | Aerosol-generating device with detachably insertable heating compartment |
WO2019030166A1 (en) | 2017-08-09 | 2019-02-14 | Philip Morris Products S.A. | Aerosol-generating device with induction heater with side opening |
WO2019030172A1 (en) | 2017-08-09 | 2019-02-14 | Philip Morris Products S.A. | Aerosol-generating device with induction heater and movable components |
WO2019030168A1 (en) | 2017-08-09 | 2019-02-14 | Philip Morris Products S.A. | Aerosol-generating device with an induction heater with a conical induction coil |
WO2019048379A1 (en) * | 2017-09-06 | 2019-03-14 | Jt International Sa | Induction heating assembly for a vapour generating device |
WO2019064119A1 (en) | 2017-09-27 | 2019-04-04 | Philip Morris Products S.A. | Heat diffuser for aerosol generating device |
WO2019069160A1 (en) | 2017-10-06 | 2019-04-11 | Philip Morris Products S.A. | Shisha device with aerosol condensation |
WO2019138325A1 (en) | 2018-01-15 | 2019-07-18 | Philip Morris Products S.A. | Shisha device with active cooling for enhanced aerosol characteristics |
WO2019207511A1 (en) | 2018-04-25 | 2019-10-31 | Philip Morris Products S.A. | Ventilation for shisha device |
WO2019234582A1 (en) | 2018-06-05 | 2019-12-12 | Philip Morris Products S.A. | Device for heating aerosol-forming substrate with air preheat |
US10524508B2 (en) | 2016-11-15 | 2020-01-07 | Rai Strategic Holdings, Inc. | Induction-based aerosol delivery device |
WO2020008008A1 (en) | 2018-07-05 | 2020-01-09 | Philip Morris Products S.A. | Inductively heated aerosol-generating system with ambient temperature sensor |
US10582726B2 (en) | 2015-10-21 | 2020-03-10 | Rai Strategic Holdings, Inc. | Induction charging for an aerosol delivery device |
WO2020074494A1 (en) | 2018-10-08 | 2020-04-16 | Philip Morris Products S.A. | Novel clove-containing aerosol-generating substrate |
AU2017289114B2 (en) * | 2016-06-29 | 2020-04-30 | Nicoventures Trading Limited | Apparatus for heating smokable material |
WO2020130752A1 (en) | 2018-12-21 | 2020-06-25 | 주식회사 이엠텍 | Fine particle generation apparatus having induction heater |
KR20200078410A (en) | 2018-12-21 | 2020-07-01 | 주식회사 이엠텍 | Microparticle generating device with induction heater |
WO2020148213A1 (en) | 2019-01-14 | 2020-07-23 | Philip Morris Products S.A. | Infrared heated aerosol-generating element |
WO2020148214A1 (en) | 2019-01-14 | 2020-07-23 | Philip Morris Products S.A. | Radiation heated aerosol-generating system, cartridge, aerosol-generating element and method therefor |
WO2020207732A1 (en) | 2019-04-08 | 2020-10-15 | Philip Morris Products S.A. | Aerosol-generating article comprising an aerosol-generating film |
WO2020207733A1 (en) | 2019-04-08 | 2020-10-15 | Philip Morris Products S.A. | Aerosol-generating substrate comprising an aerosol-generating film |
US10820630B2 (en) | 2015-11-06 | 2020-11-03 | Rai Strategic Holdings, Inc. | Aerosol delivery device including a wirelessly-heated atomizer and related method |
WO2020229465A1 (en) | 2019-05-16 | 2020-11-19 | Philip Morris Products S.A. | Device assembly method and device manufactured according to such method |
WO2020239597A1 (en) | 2019-05-24 | 2020-12-03 | Philip Morris Products S.A. | Novel aerosol-generating substrate |
WO2020249600A1 (en) | 2019-06-12 | 2020-12-17 | Philip Morris Products S.A. | Aerosol-generating article comprising three dimensional code |
AU2019240608B2 (en) * | 2014-06-27 | 2021-03-25 | Jt International Sa | Electronic vapour inhalers |
EP3800965A1 (en) * | 2019-09-27 | 2021-04-07 | Tuanfang Liu | Electromagnetic induction heater |
WO2021078683A1 (en) | 2019-10-21 | 2021-04-29 | Philip Morris Products S.A. | Novel aerosol-generating substrate comprising illicium species |
WO2021078691A1 (en) | 2019-10-21 | 2021-04-29 | Philip Morris Products S.A. | Novel aerosol-generating substrate comprising zingiber species |
WO2021110684A1 (en) | 2019-12-02 | 2021-06-10 | Philip Morris Products S.A. | Shisha device with trough |
US11064725B2 (en) | 2015-08-31 | 2021-07-20 | British American Tobacco (Investments) Limited | Material for use with apparatus for heating smokable material |
WO2021170670A1 (en) | 2020-02-28 | 2021-09-02 | Philip Morris Products S.A. | Novel aerosol-generating substrate |
WO2021170655A1 (en) | 2020-02-28 | 2021-09-02 | Philip Morris Products S.A. | Novel aerosol-generating substrate comprising rosmarinus species |
US11185110B2 (en) | 2015-06-29 | 2021-11-30 | Nicoventures Trading Limited | Electronic vapor provision system |
KR20210158581A (en) | 2020-06-24 | 2021-12-31 | 주식회사 이엠텍 | Microparticle generating device with insulation structure |
WO2022002879A1 (en) | 2020-06-30 | 2022-01-06 | Philip Morris Products S.A. | Novel aerosol-generating substrate comprising thymus species |
WO2022002875A1 (en) | 2020-06-30 | 2022-01-06 | Philip Morris Products S.A. | Novel aerosol-generating substrate comprising anethum species |
WO2022002872A1 (en) | 2020-06-30 | 2022-01-06 | Philip Morris Products S.A. | Novel aerosol-generating substrate comprising matricaria species |
US11241042B2 (en) | 2012-09-25 | 2022-02-08 | Nicoventures Trading Limited | Heating smokeable material |
US11252992B2 (en) | 2015-10-30 | 2022-02-22 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
US11265970B2 (en) | 2017-10-31 | 2022-03-01 | Rai Strategic Holdings, Inc. | Aerosol delivery device having a resonant transmitter |
WO2022074157A1 (en) | 2020-10-07 | 2022-04-14 | Philip Morris Products S.A. | An aerosol-forming substrate |
WO2022122849A1 (en) | 2020-12-11 | 2022-06-16 | Philip Morris Products S.A. | An aerosol-generating system comprising an electrochemical sensor switch |
RU2774803C1 (en) * | 2019-01-14 | 2022-06-23 | Филип Моррис Продактс С.А. | Aerosol generating element with infrared heating |
WO2022178422A1 (en) * | 2021-02-22 | 2022-08-25 | Induction Food Systems, Inc. | Systems and methods for magnetic heat induction and exchange to mobile streams of matter |
US11452180B2 (en) | 2017-05-31 | 2022-09-20 | Philip Morris Products S.A. | Heating component in aerosol generating devices |
US11452313B2 (en) | 2015-10-30 | 2022-09-27 | Nicoventures Trading Limited | Apparatus for heating smokable material |
AU2019328516B2 (en) * | 2018-08-31 | 2022-12-08 | Nicoventures Trading Limited | Apparatus for an aerosol generating device |
WO2023285623A1 (en) | 2021-07-16 | 2023-01-19 | Philip Morris Products S.A. | Novel aerosol-generating substrate comprising cuminum species |
WO2023285597A1 (en) | 2021-07-16 | 2023-01-19 | Philip Morris Products S.A. | Novel aerosol-generating substrate comprising oreganum species |
WO2023001930A1 (en) | 2021-07-20 | 2023-01-26 | Philip Morris Products S.A. | Aerosol-generating article comprising a susceptor element and a wrapper with a metal layer |
WO2023001929A1 (en) | 2021-07-20 | 2023-01-26 | Philip Morris Products S.A. | Aerosol-generating article comprising a wrapper with a metal layer |
US11589614B2 (en) | 2015-08-31 | 2023-02-28 | Nicoventures Trading Limited | Cartridge for use with apparatus for heating smokable material |
US11632978B2 (en) | 2015-10-22 | 2023-04-25 | Philip Morris Products S.A. | Aerosol-generating article and method for manufacturing such aerosol-generating article; aerosol-generating device and system |
WO2023072802A1 (en) | 2021-10-25 | 2023-05-04 | Philip Morris Products S.A. | A testing equipment and method for testing a susceptor arrangement in simulated heating conditions |
US11659863B2 (en) | 2015-08-31 | 2023-05-30 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
US11672279B2 (en) | 2011-09-06 | 2023-06-13 | Nicoventures Trading Limited | Heating smokeable material |
WO2023104704A1 (en) | 2021-12-06 | 2023-06-15 | Philip Morris Products S.A. | Aerosol-generating article with novel aerosol-generating substrate |
WO2023104702A1 (en) | 2021-12-06 | 2023-06-15 | Philip Morris Products S.A. | Aerosol-generating article with novel aerosol-generating substrate |
WO2023104706A1 (en) | 2021-12-06 | 2023-06-15 | Philip Morris Products S.A. | Aerosol-generating article comprising hollow tubular substrate element |
WO2023104710A1 (en) | 2021-12-06 | 2023-06-15 | Philip Morris Products S.A. | Aerosol-generating article comprising hollow tubular substrate element with sealing element |
US11700874B2 (en) | 2017-12-29 | 2023-07-18 | Jt International S.A. | Inductively heatable consumable for aerosol generation |
US11805818B2 (en) | 2015-10-30 | 2023-11-07 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
US11825870B2 (en) | 2015-10-30 | 2023-11-28 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
US11832653B2 (en) | 2021-03-31 | 2023-12-05 | Japan Tobacco Inc. | Inductive heating apparatus and operation method thereof |
KR102614369B1 (en) | 2022-10-04 | 2023-12-15 | 주식회사 이엠텍 | Aerosol generator having seperable air heater |
US11856979B2 (en) | 2017-12-29 | 2024-01-02 | Jt International S.A. | Aerosol generating articles and methods for manufacturing the same |
WO2024003396A1 (en) | 2022-06-30 | 2024-01-04 | Philip Morris Products S.A. | Aerosol-generating device comprising airflow guiding element extending into heating chamber |
WO2024003194A1 (en) | 2022-06-30 | 2024-01-04 | Philip Morris Products S.A. | Aerosol-generating article comprising a perforated hollow tubular substrate element |
WO2024003397A1 (en) | 2022-06-30 | 2024-01-04 | Philip Morris Products S.A. | Aerosol-generating article comprising airflow guiding element extending into tubular substrate |
US11882867B2 (en) | 2018-02-26 | 2024-01-30 | Rai Strategic Holdings, Inc. | Heat conducting substrate for electrically heated aerosol delivery device |
KR20240016493A (en) | 2022-07-29 | 2024-02-06 | 주식회사 이엠텍 | Air heater installed in outside air introducing hole for aerosol generator |
US11896055B2 (en) | 2015-06-29 | 2024-02-13 | Nicoventures Trading Limited | Electronic aerosol provision systems |
KR20240021998A (en) | 2022-08-10 | 2024-02-20 | 주식회사 이엠텍 | Aerosol generator having auto conrolling structure for airflow path |
US11924930B2 (en) | 2015-08-31 | 2024-03-05 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
US11918052B2 (en) | 2021-03-31 | 2024-03-05 | Japan Tobacco Inc. | Inductive heating apparatus, control unit thereof, and operation method thereof |
KR20240041083A (en) | 2022-09-22 | 2024-03-29 | 주식회사 이엠텍 | Aerosol generator having seperable air heater |
US11956879B2 (en) | 2017-09-15 | 2024-04-09 | Nicoventures Trading Limited | Apparatus for heating smokable material |
US12070070B2 (en) | 2015-06-29 | 2024-08-27 | Nicoventures Trading Limited | Electronic vapor provision system |
US12082327B2 (en) | 2015-10-30 | 2024-09-03 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
Families Citing this family (195)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160345631A1 (en) | 2005-07-19 | 2016-12-01 | James Monsees | Portable devices for generating an inhalable vapor |
US10279934B2 (en) | 2013-03-15 | 2019-05-07 | Juul Labs, Inc. | Fillable vaporizer cartridge and method of filling |
US10159282B2 (en) | 2013-12-23 | 2018-12-25 | Juul Labs, Inc. | Cartridge for use with a vaporizer device |
USD825102S1 (en) | 2016-07-28 | 2018-08-07 | Juul Labs, Inc. | Vaporizer device with cartridge |
US10076139B2 (en) | 2013-12-23 | 2018-09-18 | Juul Labs, Inc. | Vaporizer apparatus |
DE202014011205U1 (en) | 2013-12-23 | 2018-09-13 | Juul Labs Uk Holdco Limited | Systems for an evaporation device |
USD842536S1 (en) | 2016-07-28 | 2019-03-05 | Juul Labs, Inc. | Vaporizer cartridge |
US20160366947A1 (en) | 2013-12-23 | 2016-12-22 | James Monsees | Vaporizer apparatus |
US10058129B2 (en) | 2013-12-23 | 2018-08-28 | Juul Labs, Inc. | Vaporization device systems and methods |
EP3110270B1 (en) * | 2014-02-28 | 2019-12-25 | Altria Client Services LLC | Electronic vaping device and components thereof |
CN106455707B (en) | 2014-03-21 | 2020-07-24 | 英美烟草(投资)有限公司 | Apparatus for heating smokable material and article of smokable material |
TWI692274B (en) | 2014-05-21 | 2020-04-21 | 瑞士商菲利浦莫里斯製品股份有限公司 | Inductive heating device for heating an aerosol-forming substrate and method of operating an inductive heating system |
CN115944117A (en) | 2014-05-21 | 2023-04-11 | 菲利普莫里斯生产公司 | Aerosol-generating article with internal susceptor |
AU2015261847B2 (en) * | 2014-05-21 | 2019-05-02 | Philip Morris Products S.A. | Aerosol-generating article with multi-material susceptor |
CN107427067B (en) | 2014-12-05 | 2020-10-23 | 尤尔实验室有限公司 | Corrective dose control |
WO2016118901A1 (en) * | 2015-01-22 | 2016-07-28 | Texas Tech University System | System and method for non-contact interaction with mobile devices |
PL3297466T3 (en) | 2015-05-19 | 2021-05-04 | Jt International Sa | An aerosol generating device and capsule |
GB201511358D0 (en) * | 2015-06-29 | 2015-08-12 | Nicoventures Holdings Ltd | Electronic aerosol provision systems |
US20170013702A1 (en) * | 2015-07-10 | 2017-01-12 | Moxtek, Inc. | Electron-Emitter Transformer and High Voltage Multiplier |
WO2017029270A1 (en) * | 2015-08-17 | 2017-02-23 | Philip Morris Products S.A. | Aerosol-generating system and aerosol-generating article for use in such a system |
US20170112194A1 (en) * | 2015-10-21 | 2017-04-27 | Rai Strategic Holdings, Inc. | Rechargeable lithium-ion capacitor for an aerosol delivery device |
CN108366629A (en) * | 2016-01-07 | 2018-08-03 | 菲利普莫里斯生产公司 | Apparatus for aerosol creation with sealed compartments |
SG11201806793TA (en) | 2016-02-11 | 2018-09-27 | Juul Labs Inc | Fillable vaporizer cartridge and method of filling |
BR112018016402B1 (en) | 2016-02-11 | 2023-12-19 | Juul Labs, Inc | SECURELY FIXED CARTRIDGES FOR VAPORIZER DEVICES |
US10757976B2 (en) | 2016-02-12 | 2020-09-01 | Altria Client Services Llc | Aerosol-generating system with puff detector |
EP3413733A1 (en) * | 2016-02-12 | 2018-12-19 | Philip Morris Products S.a.s. | Aerosol-generating system with puff detector |
GB201602831D0 (en) * | 2016-02-18 | 2016-04-06 | British American Tobacco Co | Flavour delivery device |
US20190037925A1 (en) * | 2016-02-23 | 2019-02-07 | Fontem Holdings 1 B.V. | High frequency polarization aerosol generator |
US10405582B2 (en) | 2016-03-10 | 2019-09-10 | Pax Labs, Inc. | Vaporization device with lip sensing |
US10321712B2 (en) * | 2016-03-29 | 2019-06-18 | Altria Client Services Llc | Electronic vaping device |
BR112018071418B1 (en) | 2016-04-20 | 2023-03-07 | Philip Morris Products S.A. | HYBRID AEROSOL GENERATOR ELEMENT FOR USE IN AN AEROSOL GENERATOR ARTICLE, HYBRID AEROSOL GENERATOR ARTICLE, AEROSOL GENERATOR SYSTEM AND METHOD FOR MANUFACTURING HYBRID AEROSOL GENERATOR ELEMENTS |
GB201607839D0 (en) * | 2016-05-05 | 2016-06-22 | Relco Induction Developments Ltd | Aerosol generating systems |
KR102509676B1 (en) * | 2016-05-31 | 2023-03-16 | 필립모리스 프로덕츠 에스.에이. | Fluid Permeable Heater Assemblies for Aerosol Generating Systems |
WO2017207582A1 (en) | 2016-05-31 | 2017-12-07 | Philip Morris Products S.A. | Refillable aerosol-generating article |
USD849996S1 (en) | 2016-06-16 | 2019-05-28 | Pax Labs, Inc. | Vaporizer cartridge |
USD836541S1 (en) | 2016-06-23 | 2018-12-25 | Pax Labs, Inc. | Charging device |
USD851830S1 (en) | 2016-06-23 | 2019-06-18 | Pax Labs, Inc. | Combined vaporizer tamp and pick tool |
PL3806583T3 (en) * | 2016-08-31 | 2024-01-15 | Philip Morris Products S.A. | Aerosol generating device with inductor |
GB2553773A (en) * | 2016-09-09 | 2018-03-21 | Rucker Simon | Vapour producing device with a removable container and a removable container for use with such a device |
CN109936984A (en) | 2016-12-29 | 2019-06-25 | 菲利普莫里斯生产公司 | The method and apparatus for generating the component of product for producing aerosol |
CN115153103A (en) | 2017-01-18 | 2022-10-11 | 韩国烟草人参公社 | Aerosol generating device |
CN108338414B (en) * | 2017-01-25 | 2022-05-27 | 贵州中烟工业有限责任公司 | Control method and control system of electric heating smoking system |
ES2910131T3 (en) * | 2017-01-25 | 2022-05-11 | Nicoventures Trading Ltd | Apparatus for heating smoking material |
JP6779290B2 (en) * | 2017-02-16 | 2020-11-04 | スミス テクノロジー カンパニー リミテッド | Method for detecting the number of inhalations of electronic cigarettes and electronic cigarettes |
GB201705206D0 (en) * | 2017-03-31 | 2017-05-17 | British American Tobacco Investments Ltd | Apparatus for a resonance circuit |
GB201705208D0 (en) * | 2017-03-31 | 2017-05-17 | British American Tobacco Investments Ltd | Temperature determination |
AU2018256433B2 (en) | 2017-04-17 | 2023-06-08 | Philip Morris Products S.A. | Devices, systems, and methods for sensing temperature in induction heating systems |
CN110602955A (en) | 2017-05-10 | 2019-12-20 | 菲利普莫里斯生产公司 | Aerosol-generating articles, devices and systems with optimized substrate use |
CN110800372B (en) * | 2017-06-28 | 2022-05-27 | 菲利普莫里斯生产公司 | Electrical heating assembly, aerosol-generating device and method for resistively heating an aerosol-forming substrate |
US11382358B2 (en) | 2017-08-09 | 2022-07-12 | Philip Morris Products S.A. | Aerosol-generating device with susceptor layer |
CN110944530B (en) | 2017-08-09 | 2023-09-29 | 菲利普莫里斯生产公司 | Aerosol generating system with non-circular inductor coil |
KR20230125344A (en) | 2017-08-09 | 2023-08-29 | 필립모리스 프로덕츠 에스.에이. | Aerosol generating system with multiple susceptors |
CN111031819B (en) | 2017-08-09 | 2023-07-18 | 菲利普莫里斯生产公司 | Aerosol generating device with removable susceptor |
RU2764425C2 (en) | 2017-08-09 | 2022-01-17 | Филип Моррис Продактс С.А. | Aerosol-generating system with multiple induction coils |
KR20230135104A (en) | 2017-08-09 | 2023-09-22 | 필립모리스 프로덕츠 에스.에이. | Aerosol-generating device having an inductor coil with reduced separation |
EP3664643B1 (en) | 2017-08-09 | 2021-09-29 | Philip Morris Products S.A. | Aerosol-generating device with flat inductor coil |
USD887632S1 (en) | 2017-09-14 | 2020-06-16 | Pax Labs, Inc. | Vaporizer cartridge |
TW201933937A (en) | 2017-09-22 | 2019-08-16 | 瑞士商傑太日煙國際股份有限公司 | Induction heatable cartridge for a vapour generating device |
GB201716732D0 (en) | 2017-10-12 | 2017-11-29 | British American Tobacco Investments Ltd | Vapour provision systems |
GB201716730D0 (en) | 2017-10-12 | 2017-11-29 | British American Tobacco Investments Ltd | Aerosol provision systems |
CN207444281U (en) * | 2017-10-27 | 2018-06-05 | 深圳市合元科技有限公司 | A kind of heating unit and low temperature bake smoking set |
TWI633921B (en) * | 2017-11-03 | 2018-09-01 | 台灣晶技股份有限公司 | Micro aerosol sensing device with self-cleaning function |
US10806181B2 (en) * | 2017-12-08 | 2020-10-20 | Rai Strategic Holdings, Inc. | Quasi-resonant flyback converter for an induction-based aerosol delivery device |
GB201721610D0 (en) | 2017-12-21 | 2018-02-07 | British American Tobacco Investments Ltd | Circuitry for an induction element for an aerosol generating device |
GB201721646D0 (en) * | 2017-12-21 | 2018-02-07 | British American Tobacco Investments Ltd | Aerosol provision device |
GB201721612D0 (en) | 2017-12-21 | 2018-02-07 | British American Tobacco Investments Ltd | Circuitry for a plurality of induction elements for an aerosol generating device |
CN108200675B (en) * | 2017-12-25 | 2021-01-15 | 盐城莱尔电热科技有限公司 | Insulating substrate with spiral heating electrode |
EP3731679B9 (en) * | 2017-12-29 | 2023-07-05 | JT International SA | Electrically operated aerosol generation system |
TW201931945A (en) * | 2017-12-29 | 2019-08-01 | 瑞士商傑太日煙國際股份有限公司 | Heating assembly for a vapour generating device |
TWI769355B (en) * | 2017-12-29 | 2022-07-01 | 瑞士商傑太日煙國際股份有限公司 | Induction heating assembly for a vapour generating device |
US11272741B2 (en) | 2018-01-03 | 2022-03-15 | Cqens Technologies Inc. | Heat-not-burn device and method |
US10750787B2 (en) | 2018-01-03 | 2020-08-25 | Cqens Technologies Inc. | Heat-not-burn device and method |
EA202091784A1 (en) * | 2018-01-26 | 2020-10-15 | Джапан Тобакко Инк. | AEROSOL DEVICE AND METHOD FOR MANUFACTURING AEROSOL DEVICE |
EP3744194A4 (en) * | 2018-01-26 | 2021-03-17 | Japan Tobacco Inc. | Aerosol generation device, and method and program for operating same |
CA3089502C (en) * | 2018-01-26 | 2022-11-29 | Japan Tobacco Inc. | Aerosol generation device, and method and program for operating same |
TWI744466B (en) * | 2018-01-26 | 2021-11-01 | 日商日本煙草產業股份有限公司 | Aerosol generating device, and method for manufacturing the same |
CN111970935A (en) * | 2018-03-26 | 2020-11-20 | 日本烟草产业株式会社 | Aerosol generating apparatus, control method, and program |
CN110403241B (en) * | 2018-04-28 | 2021-02-23 | 深圳御烟实业有限公司 | Aerosol-generating device and system |
KR102373331B1 (en) * | 2018-05-11 | 2022-03-11 | 주식회사 이엠텍 | Method for preventing over-heating and malfunction of fine particle generator |
US20190356047A1 (en) * | 2018-05-16 | 2019-11-21 | Intrepid Brands, LLC | Radio-frequency heating medium |
FR3081732B1 (en) | 2018-05-29 | 2020-09-11 | Deasyl Sa | THREE-DIMENSIONAL CRUSHER, ITS IMPLEMENTATION PROCESS AND ITS USES |
CN112312785A (en) | 2018-06-07 | 2021-02-02 | 尤尔实验室有限公司 | Cartridge for an evaporator device |
JP6792907B2 (en) * | 2018-06-22 | 2020-12-02 | 日本たばこ産業株式会社 | Aerosol generator and method and program to operate it |
KR102367432B1 (en) * | 2018-07-04 | 2022-02-24 | 주식회사 케이티앤지 | Aerosol generating apparatus and method for recognizing of puff of aerosol generating apparatus |
KR102330293B1 (en) * | 2018-07-09 | 2021-11-24 | 주식회사 케이티앤지 | An apparatus for generating aerosols |
KR102197837B1 (en) * | 2018-07-20 | 2021-01-04 | 주식회사 맵스 | Non-contacting heating apparatus for cigarette type electronic tabacco |
EA202190390A1 (en) * | 2018-07-26 | 2021-04-29 | ДжейТи ИНТЕРНЭШНЛ СА | SYSTEM AND DEVICE GENERATING AEROSOL |
JP2021528955A (en) * | 2018-07-26 | 2021-10-28 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | System for generating aerosols |
WO2020020950A1 (en) * | 2018-07-26 | 2020-01-30 | Philip Morris Products S.A. | Device for generating an aerosol |
US20200035118A1 (en) | 2018-07-27 | 2020-01-30 | Joseph Pandolfino | Methods and products to facilitate smokers switching to a tobacco heating product or e-cigarettes |
US10897925B2 (en) | 2018-07-27 | 2021-01-26 | Joseph Pandolfino | Articles and formulations for smoking products and vaporizers |
EP3831226A4 (en) * | 2018-07-31 | 2022-03-30 | Japan Tobacco Inc. | Information processing terminal, information processing method, information processing system, and program |
CN112638186B (en) | 2018-07-31 | 2024-03-19 | 菲利普莫里斯生产公司 | Inductively heatable aerosol-generating article comprising an aerosol-forming rod segment and method for manufacturing such an aerosol-forming rod segment |
GB201812497D0 (en) | 2018-07-31 | 2018-09-12 | Nicoventures Holdings Ltd | Aerosol generation |
EP3829360B1 (en) | 2018-08-02 | 2023-11-01 | Philip Morris Products S.A. | System comprising aerosol-generating device and adapter element |
GB201814197D0 (en) * | 2018-08-31 | 2018-10-17 | Nicoventures Trading Ltd | Aerosol generating material characteristic determination |
GB201814202D0 (en) * | 2018-08-31 | 2018-10-17 | Nicoventures Trading Ltd | A resonant circuit for an aerosol generating system |
GB201814198D0 (en) | 2018-08-31 | 2018-10-17 | Nicoventures Trading Ltd | Apparatus for an aerosol generating device |
CN112839533A (en) * | 2018-09-19 | 2021-05-25 | 日本烟草产业株式会社 | Fragrance generation device, power supply unit, method for controlling fragrance generation device, and program |
PL3855953T3 (en) * | 2018-09-25 | 2023-05-02 | Philip Morris Products S.A. | Heating assembly and method for inductively heating an aerosol-forming substrate |
PL3855954T3 (en) | 2018-09-25 | 2023-02-20 | Philip Morris Products S.A. | Inductively heatable aerosol-generating article comprising an aerosol-forming substrate and a susceptor assembly |
EP4122339B1 (en) | 2018-09-25 | 2024-02-28 | Philip Morris Products S.A. | Inductive heating assembly for inductive heating of an aerosol-forming substrate |
CN209376679U (en) * | 2018-09-28 | 2019-09-13 | 深圳市合元科技有限公司 | Bake smoking set |
KR102167501B1 (en) * | 2018-10-26 | 2020-10-19 | 주식회사 이엠텍 | Electromagnetic wave heating type fine particle generator |
US11882438B2 (en) * | 2018-10-29 | 2024-01-23 | Zorday IP, LLC | Network-enabled electronic cigarette |
JP7411654B2 (en) | 2018-11-05 | 2024-01-11 | ジュール・ラブズ・インコーポレイテッド | Cartridges for vaporizer devices |
US12066654B2 (en) * | 2018-11-19 | 2024-08-20 | Rai Strategic Holdings, Inc. | Charging control for an aerosol delivery device |
KR102278589B1 (en) | 2018-12-06 | 2021-07-16 | 주식회사 케이티앤지 | Apparatus for generating aerosol using induction heating and method thereof |
KR102342331B1 (en) * | 2018-12-07 | 2021-12-22 | 주식회사 케이티앤지 | heater assembly for heating cigarette and aerosol generating device including thereof |
KR102199793B1 (en) * | 2018-12-11 | 2021-01-07 | 주식회사 케이티앤지 | Apparatus for generating aerosol |
KR102199796B1 (en) * | 2018-12-11 | 2021-01-07 | 주식회사 케이티앤지 | Apparatus and system for generating aerosol by induction heating |
KR102270185B1 (en) * | 2018-12-11 | 2021-06-28 | 주식회사 케이티앤지 | Apparatus for generating aerosol |
KR102209440B1 (en) * | 2018-12-28 | 2021-01-29 | 주식회사 이랜텍 | Inductively heatable vaporization device |
KR102212378B1 (en) * | 2019-01-03 | 2021-02-04 | 주식회사 케이티앤지 | Aerosol generating device conprising a voltage converter and method of controlling same |
CA3100998A1 (en) * | 2019-01-15 | 2020-07-23 | Kt&G Corporation | Aerosol generating system and method of operating the same |
KR20200098027A (en) | 2019-02-11 | 2020-08-20 | 주식회사 이엠텍 | Microparticle generator with induction heater |
KR102252031B1 (en) | 2019-02-11 | 2021-05-14 | 주식회사 이노아이티 | Liquid cartridge for microparticle generator with induction heater |
EP3930488B1 (en) | 2019-02-28 | 2024-11-13 | Philip Morris Products S.A. | Inductively heatable aerosol-forming rods and shaping device for usage in the manufacturing of such rods |
US20220132908A1 (en) | 2019-02-28 | 2022-05-05 | Philip Morris Products S.A. | Inductively heatable aerosol-generating article, method for manufacturing such an article and an apparatus for manufacturing a susceptor of such an article |
CN113473871A (en) | 2019-02-28 | 2021-10-01 | 菲利普莫里斯生产公司 | Inductively heatable aerosol-forming rod and forming device for producing such rod |
WO2020174027A1 (en) | 2019-02-28 | 2020-09-03 | Philip Morris Products S.A. | Inductively heatable aerosol-forming rods and shaping device for usage in the manufacturing of such rods |
US10986677B2 (en) | 2019-03-05 | 2021-04-20 | Dialog Semiconductor Korea Inc. | Method and apparatus for connecting to access point in WLAN network |
KR102253046B1 (en) * | 2019-03-05 | 2021-05-17 | 주식회사 케이티앤지 | Aerosol generating device and system, and manufacturing method of the aerosol generating device |
CN113557793A (en) * | 2019-03-11 | 2021-10-26 | 尼科创业贸易有限公司 | Apparatus for an aerosol generating device |
WO2020182759A1 (en) * | 2019-03-11 | 2020-09-17 | Nicoventures Trading Limited | Aerosol provision device |
GB201903249D0 (en) * | 2019-03-11 | 2019-04-24 | Nicoventures Trading Ltd | Aerosol provision device |
EP3937670A1 (en) * | 2019-03-11 | 2022-01-19 | Nicoventures Trading Limited | Aerosol provision device |
GB201903268D0 (en) * | 2019-03-11 | 2019-04-24 | Nicoventures Trading Ltd | Aerosol generation |
GB201903264D0 (en) * | 2019-03-11 | 2019-04-24 | Nicoventures Trading Ltd | Aerosol provision system |
KR102652571B1 (en) | 2019-04-29 | 2024-03-29 | 주식회사 이노아이티 | Complex heating aerosol generator |
CN113796160A (en) * | 2019-04-29 | 2021-12-14 | 音诺艾迪有限公司 | Composite heating type smoke generating device |
CN110101117A (en) * | 2019-04-30 | 2019-08-09 | 安徽中烟工业有限责任公司 | A kind of heating device using LC oscillating circuit |
CN110267378A (en) * | 2019-04-30 | 2019-09-20 | 安徽中烟工业有限责任公司 | A kind of magnetic grain soaking heating coil |
EP3979864A1 (en) | 2019-06-05 | 2022-04-13 | Philip Morris Products, S.A. | An aerosol-generating device having a heat conductive assembly |
KR102281296B1 (en) * | 2019-06-17 | 2021-07-23 | 주식회사 케이티앤지 | Aerosol generating device and operation method thereof |
GB201909377D0 (en) * | 2019-06-28 | 2019-08-14 | Nicoventures Trading Ltd | Apparatus for an aerosol generating device |
ES2893255T3 (en) * | 2019-07-04 | 2022-02-08 | Philip Morris Products Sa | Inductive heating arrangement comprising a temperature sensor |
KR102278595B1 (en) * | 2019-08-09 | 2021-07-16 | 주식회사 케이티앤지 | Aerosol generating device and operation method |
JP6667709B1 (en) * | 2019-10-24 | 2020-03-18 | 日本たばこ産業株式会社 | Power supply unit for aerosol inhaler |
JP6667708B1 (en) * | 2019-10-24 | 2020-03-18 | 日本たばこ産業株式会社 | Power supply unit for aerosol inhaler |
CN110808638A (en) * | 2019-10-28 | 2020-02-18 | 刘团芳 | High-frequency high-power output electromagnetic induction control circuit |
CN112741375B (en) * | 2019-10-31 | 2024-05-03 | 深圳市合元科技有限公司 | Aerosol generating device and control method |
CN112806610B (en) * | 2019-11-15 | 2024-05-03 | 深圳市合元科技有限公司 | Aerosol generating device and control method |
KR20210060071A (en) * | 2019-11-18 | 2021-05-26 | 주식회사 이엠텍 | Portable aerosol generating device |
KR102323793B1 (en) * | 2019-11-21 | 2021-11-09 | 주식회사 이노아이티 | Induction heating device using fan coil |
KR102354965B1 (en) * | 2020-02-13 | 2022-01-24 | 주식회사 케이티앤지 | Aerosol generating device and operation method thereof |
CA3168553A1 (en) * | 2020-02-28 | 2021-09-02 | Aurelien Guyard | Aerosol-generating article including novel substrate and upstream element |
CN113966875A (en) * | 2020-07-22 | 2022-01-25 | 深圳市合元科技有限公司 | Aerosol generator |
KR102487585B1 (en) * | 2020-07-27 | 2023-01-11 | 주식회사 케이티앤지 | Aerosol generating apparatus for optimizing current frequency of coil and method thereof |
CN213587421U (en) * | 2020-08-13 | 2021-07-02 | 深圳市合元科技有限公司 | Aerosol generator |
KR20230058484A (en) | 2020-09-01 | 2023-05-03 | 필립모리스 프로덕츠 에스.에이. | Aerosol generating device capable of operating in aerosol release mode and pause mode |
JP7401685B2 (en) | 2020-09-07 | 2023-12-19 | ケーティー アンド ジー コーポレイション | Aerosol generator |
GB202014599D0 (en) * | 2020-09-16 | 2020-10-28 | Nicoventures Trading Ltd | Aerosol provision device |
GB202014643D0 (en) * | 2020-09-17 | 2020-11-04 | Nicoventures Trading Ltd | Apparatus for an aerosol generating device |
CN112056634B (en) * | 2020-10-10 | 2023-03-14 | 云南中烟工业有限责任公司 | Method for controlling electric heating smoking set to heat cigarettes |
KR102523580B1 (en) * | 2020-12-09 | 2023-04-20 | 주식회사 케이티앤지 | Aerosol generating device and operation method thereof |
EP4037511A4 (en) * | 2020-12-09 | 2022-11-30 | KT&G Corporation | Aerosol generating device and method of operating the same |
KR20220082377A (en) | 2020-12-10 | 2022-06-17 | 주식회사 이엠텍 | Induction heater structure for microparticle generator |
US11789476B2 (en) | 2021-01-18 | 2023-10-17 | Altria Client Services Llc | Heat-not-burn (HNB) aerosol-generating devices including intra-draw heater control, and methods of controlling a heater |
CN114788580A (en) * | 2021-01-25 | 2022-07-26 | 深圳麦克韦尔科技有限公司 | Battery assembly, atomizer, electronic atomization device and identification method |
JPWO2022195770A1 (en) * | 2021-03-17 | 2022-09-22 | ||
JPWO2022195868A1 (en) | 2021-03-19 | 2022-09-22 | ||
JP7329157B2 (en) * | 2021-03-31 | 2023-08-17 | 日本たばこ産業株式会社 | INDUCTION HEATING DEVICE, ITS CONTROLLER AND ITS OPERATION METHOD |
JP7035248B1 (en) | 2021-03-31 | 2022-03-14 | 日本たばこ産業株式会社 | Induction heating device |
JP7335306B2 (en) * | 2021-03-31 | 2023-08-29 | 日本たばこ産業株式会社 | INDUCTION HEATING DEVICE, ITS CONTROLLER AND ITS OPERATION METHOD |
EP4321042A1 (en) * | 2021-04-09 | 2024-02-14 | Japan Tobacco, Inc. | Flavor inhaler and smoking system |
WO2022224318A1 (en) * | 2021-04-19 | 2022-10-27 | 日本たばこ産業株式会社 | Control device, base material, system, control method, and program |
KR20220154465A (en) | 2021-05-13 | 2022-11-22 | 주식회사 이노아이티 | Induction heating heater having double heaters |
KR20220154464A (en) | 2021-05-13 | 2022-11-22 | 주식회사 이노아이티 | Induction heating heater having double heaters |
KR20220162472A (en) | 2021-06-01 | 2022-12-08 | 주식회사 케이티앤지 | Aerosol generating apparatus for detecting an insertion of an aerosol generating article and operation method thereof |
KR20220167981A (en) * | 2021-06-15 | 2022-12-22 | 주식회사 케이티앤지 | Aerosol generating apparatus for controlling power of a heater and operation method thereof |
KR20230008391A (en) | 2021-07-07 | 2023-01-16 | 주식회사 이노아이티 | Induction heating heater having a member used for both cigarette ejector and outer suscpetor |
KR20230008390A (en) | 2021-07-07 | 2023-01-16 | 주식회사 이노아이티 | Induction heater for microparticle generator |
KR20240015714A (en) | 2021-07-09 | 2024-02-05 | 니뽄 다바코 산교 가부시키가이샤 | Power unit of aerosol generating device |
CN117615684A (en) | 2021-07-09 | 2024-02-27 | 日本烟草产业株式会社 | Power supply unit for aerosol-generating device |
JP7569453B2 (en) | 2021-07-09 | 2024-10-17 | 日本たばこ産業株式会社 | Aerosol generator power supply unit |
KR20240032923A (en) * | 2021-07-12 | 2024-03-12 | 필립모리스 프로덕츠 에스.에이. | Aerosol-generating devices and systems including induction heating devices and methods of operating the same |
WO2023286116A1 (en) * | 2021-07-12 | 2023-01-19 | 日本たばこ産業株式会社 | Inhalation device, substrate, and control method |
WO2023026408A1 (en) * | 2021-08-25 | 2023-03-02 | 日本たばこ産業株式会社 | Inhalation device, substrate, and control method |
KR20230030983A (en) | 2021-08-26 | 2023-03-07 | 주식회사 이노아이티 | Aerosol generator with multiface heating structure |
CN115736387A (en) * | 2021-09-02 | 2023-03-07 | 深圳市合元科技有限公司 | Aerosol generating device and control method thereof |
CN117652075A (en) | 2021-09-29 | 2024-03-05 | 三星电子株式会社 | Wireless power transmitter including reduced-size inverter for reducing harmonics |
KR20230049516A (en) | 2021-10-05 | 2023-04-13 | 주식회사 이노아이티 | Cigarette with built-in susceptor film and aerosol generator therefor |
KR20230055307A (en) | 2021-10-18 | 2023-04-25 | 주식회사 이노아이티 | Heater frame integrated with coil guide |
KR102622606B1 (en) | 2021-12-22 | 2024-01-09 | 주식회사 이노아이티 | Coil winding structure of the aerosol generating apparatus |
CN114209096A (en) * | 2021-12-30 | 2022-03-22 | 深圳麦时科技有限公司 | Atomizing device and microwave heating assembly |
KR102688140B1 (en) | 2022-02-11 | 2024-07-25 | 주식회사 이노아이티 | Coil winding structure of the aerosol generating apparatus |
KR20230140233A (en) | 2022-03-29 | 2023-10-06 | 주식회사 실리콘마이터스 | Electromagnetic induction heating apparatus for heating an aerosol-forming article of an electronic cigarette |
KR102706698B1 (en) | 2022-04-28 | 2024-09-19 | 주식회사 이노아이티 | Induction heating aerosol generator |
WO2023219429A1 (en) * | 2022-05-13 | 2023-11-16 | Kt&G Corporation | Aerosol-generating device and operation method thereof |
KR20230160990A (en) | 2022-05-17 | 2023-11-27 | 주식회사 이엠텍 | Cigarette-type aerosol-generating product for induction heating |
KR20240047034A (en) | 2022-10-04 | 2024-04-12 | 주식회사 이엠텍 | Heating device structure of aerosol generator |
KR20240057162A (en) | 2022-10-24 | 2024-05-02 | 주식회사 실리콘마이터스 | Electromagnetic induction heating apparatus for heating an aerosol-forming article of an electronic cigarette and driving method thereof |
EP4415573A4 (en) * | 2022-12-30 | 2024-10-16 | Kt & G Corp | Aerosol generating device, aerosol generating system including the same, and method of manufacturing aerosol generating device |
WO2024147520A1 (en) * | 2023-01-02 | 2024-07-11 | 주식회사 케이티앤지 | Heater assembly for aerosol generating device, and aerosol generating device comprising same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5613505A (en) * | 1992-09-11 | 1997-03-25 | Philip Morris Incorporated | Inductive heating systems for smoking articles |
US20040004071A1 (en) * | 2002-04-30 | 2004-01-08 | Takayuki Ogasawara | Induction heating roller unit, fixing device and image forming apparatus |
CN101390659A (en) * | 2007-09-17 | 2009-03-25 | 北京格林世界科技发展有限公司 | Electronic cigarette |
WO2013060743A2 (en) * | 2011-10-25 | 2013-05-02 | Philip Morris Products S.A. | Aerosol generating device with heater assembly |
US20130277362A1 (en) * | 2012-04-19 | 2013-10-24 | International Rectifier Corporation | Power Converter with Over-Voltage Protection |
Family Cites Families (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US28533A (en) * | 1860-05-29 | chichester | ||
US4016530A (en) | 1975-06-02 | 1977-04-05 | Goll Jeffrey H | Broadband electroacoustic converter |
US4482246A (en) | 1982-09-20 | 1984-11-13 | Meyer Gerhard A | Inductively coupled plasma discharge in flowing non-argon gas at atmospheric pressure for spectrochemical analysis |
US4457011A (en) | 1982-09-30 | 1984-06-26 | Hoover Brian L | FM Broadcast band demodulator/stereo decoder |
US4607323A (en) * | 1984-04-17 | 1986-08-19 | Sokal Nathan O | Class E high-frequency high-efficiency dc/dc power converter |
GB2163630B (en) * | 1984-07-28 | 1988-02-24 | Blum Gmbh & Co E | Inductively heated apparatus for heating a substance |
US5729511A (en) * | 1991-02-15 | 1998-03-17 | Discovision Associates | Optical disc system having servo motor and servo error detection assembly operated relative to monitored quad sum signal |
US5505214A (en) * | 1991-03-11 | 1996-04-09 | Philip Morris Incorporated | Electrical smoking article and method for making same |
JP3347886B2 (en) | 1994-08-05 | 2002-11-20 | アピックヤマダ株式会社 | External lead bending equipment |
US5573613A (en) * | 1995-01-03 | 1996-11-12 | Lunden; C. David | Induction thermometry |
US5649554A (en) * | 1995-10-16 | 1997-07-22 | Philip Morris Incorporated | Electrical lighter with a rotatable tobacco supply |
WO1997048293A1 (en) | 1996-06-17 | 1997-12-24 | Japan Tobacco Inc. | Flavor producing article |
US6254940B1 (en) * | 1996-07-11 | 2001-07-03 | University Of Cincinnati | Electrically assisted synthesis of particles and film with precisely controlled characteristic |
EP0991170B1 (en) * | 1998-09-28 | 2003-11-26 | STMicroelectronics S.r.l. | Integrated protection from the effects of a short circuit of the output of a flyback converter |
US6320169B1 (en) * | 1999-09-07 | 2001-11-20 | Thermal Solutions, Inc. | Method and apparatus for magnetic induction heating using radio frequency identification of object to be heated |
US6455825B1 (en) | 2000-11-21 | 2002-09-24 | Sandia Corporation | Use of miniature magnetic sensors for real-time control of the induction heating process |
US6593807B2 (en) | 2000-12-21 | 2003-07-15 | William Harris Groves, Jr. | Digital amplifier with improved performance |
US6681998B2 (en) | 2000-12-22 | 2004-01-27 | Chrysalis Technologies Incorporated | Aerosol generator having inductive heater and method of use thereof |
US20050172976A1 (en) | 2002-10-31 | 2005-08-11 | Newman Deborah J. | Electrically heated cigarette including controlled-release flavoring |
GB2395437C (en) | 2002-11-20 | 2010-10-20 | Profile Respiratory Systems Ltd | Improved inhalation method and apparatus |
US6803550B2 (en) * | 2003-01-30 | 2004-10-12 | Philip Morris Usa Inc. | Inductive cleaning system for removing condensates from electronic smoking systems |
CN1549653A (en) * | 2003-05-20 | 2004-11-24 | 车王电子股份有限公司 | Self-controlling temperature protective heater |
US6934645B2 (en) * | 2003-09-25 | 2005-08-23 | Infineon Technologies Ag | Temperature sensor scheme |
US7323666B2 (en) * | 2003-12-08 | 2008-01-29 | Saint-Gobain Performance Plastics Corporation | Inductively heatable components |
US7326872B2 (en) | 2004-04-28 | 2008-02-05 | Applied Materials, Inc. | Multi-frequency dynamic dummy load and method for testing plasma reactor multi-frequency impedance match networks |
US7236053B2 (en) * | 2004-12-31 | 2007-06-26 | Cree, Inc. | High efficiency switch-mode power amplifier |
US7186958B1 (en) * | 2005-09-01 | 2007-03-06 | Zhao Wei, Llc | Inhaler |
US7459899B2 (en) * | 2005-11-21 | 2008-12-02 | Thermo Fisher Scientific Inc. | Inductively-coupled RF power source |
US20080035682A1 (en) | 2006-08-10 | 2008-02-14 | Calvin Thomas Coffey | Apparatus for particle synthesis |
CN100541208C (en) | 2006-08-30 | 2009-09-16 | 梅特勒-托利多仪器(上海)有限公司 | The measuring method of electrical conductivity of solution |
US7489531B2 (en) * | 2006-09-28 | 2009-02-10 | Osram Sylvania, Inc. | Inverter with improved overcurrent protection circuit, and power supply and electronic ballast therefor |
KR20080095139A (en) * | 2007-04-23 | 2008-10-28 | 익시스 코포레이션 | Induction heating circuit and heating coils thereof |
US7808220B2 (en) | 2007-07-11 | 2010-10-05 | Semtech Corporation | Method and apparatus for a charge pump DC-to-DC converter having parallel operating modes |
EP2100525A1 (en) * | 2008-03-14 | 2009-09-16 | Philip Morris Products S.A. | Electrically heated aerosol generating system and method |
EP2113178A1 (en) * | 2008-04-30 | 2009-11-04 | Philip Morris Products S.A. | An electrically heated smoking system having a liquid storage portion |
US7714649B1 (en) | 2008-06-02 | 2010-05-11 | Rockwell Collins, Inc. | High-efficiency linear amplifier using non linear circuits |
CN201683029U (en) | 2009-04-15 | 2010-12-29 | 中国科学院理化技术研究所 | Heating atomization electronic cigarette adopting capacitor for power supply |
US8851068B2 (en) * | 2009-04-21 | 2014-10-07 | Aj Marketing Llc | Personal inhalation devices |
CN201445686U (en) * | 2009-06-19 | 2010-05-05 | 李文博 | High-frequency induction atomizing device |
US8523429B2 (en) * | 2009-10-19 | 2013-09-03 | Tsi Technologies Llc | Eddy current thermometer |
EP2316286A1 (en) | 2009-10-29 | 2011-05-04 | Philip Morris Products S.A. | An electrically heated smoking system with improved heater |
US9259886B2 (en) * | 2009-12-15 | 2016-02-16 | The Boeing Company | Curing composites out-of-autoclave using induction heating with smart susceptors |
EP2340730A1 (en) * | 2009-12-30 | 2011-07-06 | Philip Morris Products S.A. | A shaped heater for an aerosol generating system |
US8822893B2 (en) * | 2010-07-22 | 2014-09-02 | Bernard C. Lasko | Common field magnetic susceptors |
PL2982255T3 (en) | 2010-08-24 | 2019-11-29 | Jt Int Sa | Inhalation device including substance usage controls |
US20120085745A1 (en) | 2010-10-08 | 2012-04-12 | Cambro Manufacturing Company | Dual Climate Cart and Tray for Accommodating Comestible Items and a Method of Operating the Same |
EP2460423A1 (en) * | 2010-12-03 | 2012-06-06 | Philip Morris Products S.A. | An electrically heated aerosol generating system having improved heater control |
EP2468117A1 (en) | 2010-12-24 | 2012-06-27 | Philip Morris Products S.A. | An aerosol generating system having means for determining depletion of a liquid substrate |
RU103281U1 (en) * | 2010-12-27 | 2011-04-10 | Общество с ограниченной ответственностью "ПромКапитал" | ELECTRONIC CIGARETTE |
US9820339B2 (en) * | 2011-09-29 | 2017-11-14 | The Boeing Company | Induction heating using induction coils in series-parallel circuits |
KR102010105B1 (en) | 2011-12-30 | 2019-08-12 | 필립모리스 프로덕츠 에스.에이. | Aerosol generating system with consumption monitoring and feedback |
EP2609820A1 (en) * | 2011-12-30 | 2013-07-03 | Philip Morris Products S.A. | Detection of aerosol-forming substrate in an aerosol generating device |
US9853602B2 (en) | 2012-04-11 | 2017-12-26 | James K. Waller, Jr. | Adaptive tracking rail audio amplifier |
CN103997377A (en) | 2013-02-16 | 2014-08-20 | 意法-爱立信有限公司 | Measuring method of received signal code power, device and user terminal |
CN203762288U (en) | 2013-12-30 | 2014-08-13 | 深圳市合元科技有限公司 | Atomization device applicable to solid tobacco materials and electronic cigarette |
CN103689812A (en) | 2013-12-30 | 2014-04-02 | 深圳市合元科技有限公司 | Smoke generator and electronic cigarette with same |
TWI660685B (en) | 2014-05-21 | 2019-06-01 | 瑞士商菲利浦莫里斯製品股份有限公司 | Electrically heated aerosol-generating system and cartridge for use in such a system |
TWI692274B (en) * | 2014-05-21 | 2020-04-21 | 瑞士商菲利浦莫里斯製品股份有限公司 | Inductive heating device for heating an aerosol-forming substrate and method of operating an inductive heating system |
TWI666992B (en) * | 2014-05-21 | 2019-08-01 | 瑞士商菲利浦莫里斯製品股份有限公司 | Aerosol-generating system and cartridge for usein the aerosol-generating system |
US10820630B2 (en) | 2015-11-06 | 2020-11-03 | Rai Strategic Holdings, Inc. | Aerosol delivery device including a wirelessly-heated atomizer and related method |
-
2015
- 2015-05-11 TW TW104114850A patent/TWI692274B/en active
- 2015-05-20 AR ARP150101571A patent/AR100541A1/en active IP Right Grant
- 2015-05-21 HU HUE15724272A patent/HUE039428T2/en unknown
- 2015-05-21 CN CN201580007754.2A patent/CN105992528B/en active Active
- 2015-05-21 CA CA2937066A patent/CA2937066C/en active Active
- 2015-05-21 KR KR1020167022040A patent/KR102062721B1/en active IP Right Grant
- 2015-05-21 MY MYPI2016702550A patent/MY182566A/en unknown
- 2015-05-21 AR ARP150101587A patent/AR100586A1/en active IP Right Grant
- 2015-05-21 MY MYPI2016702424A patent/MY181248A/en unknown
- 2015-05-21 UA UAA201609383A patent/UA118867C2/en unknown
- 2015-05-21 JP JP2016567520A patent/JP6623175B2/en active Active
- 2015-05-21 JP JP2016552513A patent/JP6452709B2/en active Active
- 2015-05-21 AU AU2015261878A patent/AU2015261878B2/en active Active
- 2015-05-21 WO PCT/EP2015/061202 patent/WO2015177257A1/en active Application Filing
- 2015-05-21 CN CN201580015503.9A patent/CN106163306B/en active Active
- 2015-05-21 DK DK15727324.4T patent/DK2967156T3/en active
- 2015-05-21 HU HUE20174413A patent/HUE062338T2/en unknown
- 2015-05-21 CN CN201910982720.5A patent/CN110522092B/en active Active
- 2015-05-21 KR KR1020197038771A patent/KR102282571B1/en active IP Right Grant
- 2015-05-21 WO PCT/EP2015/061200 patent/WO2015177255A1/en active Application Filing
- 2015-05-21 RS RS20180842A patent/RS57456B1/en unknown
- 2015-05-21 BR BR112016021509-5A patent/BR112016021509B1/en active IP Right Grant
- 2015-05-21 SG SG11201605885VA patent/SG11201605885VA/en unknown
- 2015-05-21 EP EP20174413.3A patent/EP3723452B1/en active Active
- 2015-05-21 RU RU2015151873A patent/RU2677111C2/en active
- 2015-05-21 SI SI201530311T patent/SI3145342T1/en unknown
- 2015-05-21 US US15/121,556 patent/US10674763B2/en active Active
- 2015-05-21 PL PL15727324T patent/PL2967156T3/en unknown
- 2015-05-21 EP EP15724989.7A patent/EP3145347B1/en active Active
- 2015-05-21 ES ES15724989T patent/ES2800056T3/en active Active
- 2015-05-21 UA UAA201608778A patent/UA120921C2/en unknown
- 2015-05-21 KR KR1020167026117A patent/KR102570990B1/en active IP Right Grant
- 2015-05-21 MX MX2016015142A patent/MX2016015142A/en active IP Right Grant
- 2015-05-21 SG SG11201605889WA patent/SG11201605889WA/en unknown
- 2015-05-21 CA CA2948729A patent/CA2948729C/en active Active
- 2015-05-21 MX MX2016015135A patent/MX2016015135A/en active IP Right Grant
- 2015-05-21 PT PT157273244T patent/PT2967156T/en unknown
- 2015-05-21 MX MX2016015134A patent/MX2016015134A/en active IP Right Grant
- 2015-05-21 KR KR1020157034844A patent/KR101678335B1/en active IP Right Grant
- 2015-05-21 RU RU2016149758A patent/RU2670951C9/en active
- 2015-05-21 LT LTEP15727324.4T patent/LT2967156T/en unknown
- 2015-05-21 PL PL15724272T patent/PL3145342T3/en unknown
- 2015-05-21 SG SG11201605739PA patent/SG11201605739PA/en unknown
- 2015-05-21 HU HUE15724989A patent/HUE050740T2/en unknown
- 2015-05-21 JP JP2015563026A patent/JP6080987B2/en active Active
- 2015-05-21 UA UAA201610215A patent/UA119979C2/en unknown
- 2015-05-21 DK DK15724272.8T patent/DK3145342T3/en active
- 2015-05-21 ES ES20174413T patent/ES2951903T3/en active Active
- 2015-05-21 TW TW104116173A patent/TWI662906B/en active
- 2015-05-21 CA CA2937068A patent/CA2937068C/en active Active
- 2015-05-21 BR BR112016020498-0A patent/BR112016020498B1/en active IP Right Grant
- 2015-05-21 LT LTEP15724272.8T patent/LT3145342T/en unknown
- 2015-05-21 ES ES15724272.8T patent/ES2682744T3/en active Active
- 2015-05-21 MY MYPI2016702521A patent/MY176353A/en unknown
- 2015-05-21 PL PL20174413.3T patent/PL3723452T3/en unknown
- 2015-05-21 RU RU2016138698A patent/RU2670060C2/en active
- 2015-05-21 EP EP23176783.1A patent/EP4255115A3/en active Pending
- 2015-05-21 RS RS20161107A patent/RS55484B1/en unknown
- 2015-05-21 ES ES15727324.4T patent/ES2610419T3/en active Active
- 2015-05-21 AU AU2015261880A patent/AU2015261880B2/en active Active
- 2015-05-21 TW TW104116171A patent/TWI662905B/en active
- 2015-05-21 WO PCT/EP2015/061201 patent/WO2015177256A1/en active Application Filing
- 2015-05-21 AU AU2015261879A patent/AU2015261879B2/en active Active
- 2015-05-21 EP EP15727324.4A patent/EP2967156B1/en active Active
- 2015-05-21 HU HUE15727324A patent/HUE031696T2/en unknown
- 2015-05-21 PT PT15724272T patent/PT3145342T/en unknown
- 2015-05-21 PL PL15724989T patent/PL3145347T3/en unknown
- 2015-05-21 EP EP15724272.8A patent/EP3145342B1/en active Active
- 2015-05-21 US US14/900,318 patent/US10028533B2/en active Active
- 2015-05-21 US US15/121,548 patent/US10477894B2/en active Active
- 2015-05-21 AR ARP150101588A patent/AR100861A1/en active IP Right Grant
- 2015-05-21 KR KR1020237028469A patent/KR20230128574A/en not_active Application Discontinuation
- 2015-05-21 CN CN201580000864.6A patent/CN105307524B/en active Active
-
2016
- 2016-06-23 PH PH12016501239A patent/PH12016501239B1/en unknown
- 2016-06-24 ZA ZA2016/04314A patent/ZA201604314B/en unknown
- 2016-06-26 IL IL246460A patent/IL246460B/en active IP Right Grant
- 2016-06-27 IL IL246486A patent/IL246486B/en active IP Right Grant
- 2016-06-27 ZA ZA2016/04349A patent/ZA201604349B/en unknown
- 2016-06-28 ZA ZA2016/04364A patent/ZA201604364B/en unknown
- 2016-06-29 PH PH12016501275A patent/PH12016501275A1/en unknown
- 2016-06-29 PH PH12016501276A patent/PH12016501276B1/en unknown
- 2016-11-14 IL IL248950A patent/IL248950B/en active IP Right Grant
-
2018
- 2018-12-11 JP JP2018231381A patent/JP6792606B2/en active Active
-
2019
- 2019-11-18 US US16/686,340 patent/US20200077715A1/en active Pending
- 2019-11-25 JP JP2019212190A patent/JP6905569B2/en active Active
-
2020
- 2020-06-05 US US16/893,517 patent/US11483902B2/en active Active
- 2020-11-06 JP JP2020185649A patent/JP7025512B2/en active Active
-
2022
- 2022-08-30 US US17/898,915 patent/US11844168B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5613505A (en) * | 1992-09-11 | 1997-03-25 | Philip Morris Incorporated | Inductive heating systems for smoking articles |
US20040004071A1 (en) * | 2002-04-30 | 2004-01-08 | Takayuki Ogasawara | Induction heating roller unit, fixing device and image forming apparatus |
CN101390659A (en) * | 2007-09-17 | 2009-03-25 | 北京格林世界科技发展有限公司 | Electronic cigarette |
WO2013060743A2 (en) * | 2011-10-25 | 2013-05-02 | Philip Morris Products S.A. | Aerosol generating device with heater assembly |
US20130277362A1 (en) * | 2012-04-19 | 2013-10-24 | International Rectifier Corporation | Power Converter with Over-Voltage Protection |
Cited By (175)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12041968B2 (en) | 2011-09-06 | 2024-07-23 | Nicoventures Trading Limited | Heating smokeable material |
US11672279B2 (en) | 2011-09-06 | 2023-06-13 | Nicoventures Trading Limited | Heating smokeable material |
US11241042B2 (en) | 2012-09-25 | 2022-02-08 | Nicoventures Trading Limited | Heating smokeable material |
AU2019240608B2 (en) * | 2014-06-27 | 2021-03-25 | Jt International Sa | Electronic vapour inhalers |
GB2533080A (en) * | 2014-11-11 | 2016-06-15 | Relco Induction Dev Ltd | Electronic vapour inhalers |
US10856575B2 (en) | 2014-11-11 | 2020-12-08 | Jt International Sa | Cartridge for an electronic vapour inhaler |
US11758947B2 (en) | 2014-11-11 | 2023-09-19 | Jt International S.A. | Electronic vapour inhalers with temperature control |
US20170311648A1 (en) * | 2014-11-11 | 2017-11-02 | Jt International Sa | Electronic Vapour Inhalers |
US20230380509A1 (en) * | 2014-11-11 | 2023-11-30 | Jt International S.A. | Electronic Vapour Inhalers with Temperature Control |
US11744292B2 (en) | 2014-11-11 | 2023-09-05 | Jt International Sa | Electronic vapour inhaler including a control arrangement that recognizes an inserted cartridge or capsule |
US20210076746A1 (en) * | 2014-11-11 | 2021-03-18 | Jt International S.A. | Electronic Vapour Inhalers |
US20210037887A1 (en) * | 2014-11-11 | 2021-02-11 | Jt International Sa | Cartridge for an Electronic Vapour Inhaler |
GB2533080B (en) * | 2014-11-11 | 2017-08-02 | Jt Int Sa | Electronic vapour inhalers |
US11896055B2 (en) | 2015-06-29 | 2024-02-13 | Nicoventures Trading Limited | Electronic aerosol provision systems |
US11185110B2 (en) | 2015-06-29 | 2021-11-30 | Nicoventures Trading Limited | Electronic vapor provision system |
US12070070B2 (en) | 2015-06-29 | 2024-08-27 | Nicoventures Trading Limited | Electronic vapor provision system |
US11882877B2 (en) | 2015-06-29 | 2024-01-30 | Nicoventures Trading Limited | Electronic vapor provision system |
US11924930B2 (en) | 2015-08-31 | 2024-03-05 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
EP3804537A3 (en) * | 2015-08-31 | 2021-06-02 | British American Tobacco (Investments) Limited | Article for use with apparatus for heating smokable material |
AU2016313704B2 (en) * | 2015-08-31 | 2019-01-24 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
WO2017036955A3 (en) * | 2015-08-31 | 2017-05-04 | British American Tobacco (Investments) Limited | Apparatus for heating smokable material |
EP3804536A3 (en) * | 2015-08-31 | 2021-06-02 | British American Tobacco (Investments) Limited | Article for use with apparatus for heating smokable material |
EP3925455A1 (en) * | 2015-08-31 | 2021-12-22 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
WO2017036954A1 (en) * | 2015-08-31 | 2017-03-09 | British American Tobacco (Investments) Limited | Article for use with apparatus for heating smokable material |
US11064725B2 (en) | 2015-08-31 | 2021-07-20 | British American Tobacco (Investments) Limited | Material for use with apparatus for heating smokable material |
US11659863B2 (en) | 2015-08-31 | 2023-05-30 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
US11589614B2 (en) | 2015-08-31 | 2023-02-28 | Nicoventures Trading Limited | Cartridge for use with apparatus for heating smokable material |
GB2543329B (en) * | 2015-10-15 | 2018-06-06 | Jt Int Sa | A method for operating an electronic vapour inhaler |
GB2543329A (en) * | 2015-10-15 | 2017-04-19 | Relco Induction Dev Ltd | A method for operating an electronic vapour inhaler |
US10582726B2 (en) | 2015-10-21 | 2020-03-10 | Rai Strategic Holdings, Inc. | Induction charging for an aerosol delivery device |
US11632978B2 (en) | 2015-10-22 | 2023-04-25 | Philip Morris Products S.A. | Aerosol-generating article and method for manufacturing such aerosol-generating article; aerosol-generating device and system |
US12016393B2 (en) | 2015-10-30 | 2024-06-25 | Nicoventures Trading Limited | Apparatus for heating smokable material |
US11452313B2 (en) | 2015-10-30 | 2022-09-27 | Nicoventures Trading Limited | Apparatus for heating smokable material |
US12082606B2 (en) | 2015-10-30 | 2024-09-10 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
US11805818B2 (en) | 2015-10-30 | 2023-11-07 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
US12082327B2 (en) | 2015-10-30 | 2024-09-03 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
US11825870B2 (en) | 2015-10-30 | 2023-11-28 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
US11252992B2 (en) | 2015-10-30 | 2022-02-22 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
US12011043B2 (en) | 2015-11-06 | 2024-06-18 | Rai Strategic Holdings, Inc. | Aerosol delivery device including a wirelessly-heated atomizer and related method |
US10820630B2 (en) | 2015-11-06 | 2020-11-03 | Rai Strategic Holdings, Inc. | Aerosol delivery device including a wirelessly-heated atomizer and related method |
US10104912B2 (en) | 2016-01-20 | 2018-10-23 | Rai Strategic Holdings, Inc. | Control for an induction-based aerosol delivery device |
RU2724178C2 (en) * | 2016-02-01 | 2020-06-22 | Филип Моррис Продактс С.А. | Aerosol-generating device having a plurality of power sources |
WO2017133870A1 (en) * | 2016-02-01 | 2017-08-10 | Philip Morris Products S.A. | Aerosol-generating device having multiple power supplies |
EP3410876B1 (en) | 2016-02-01 | 2020-04-01 | Philip Morris Products S.a.s. | Aerosol-generating device having multiple power supplies |
WO2017153443A1 (en) * | 2016-03-09 | 2017-09-14 | Philip Morris Products S.A. | Aerosol-generating article |
US11083213B2 (en) | 2016-03-09 | 2021-08-10 | Philip Morris Products S.A. | Aerosol-generating article |
EP3799525A1 (en) * | 2016-06-29 | 2021-03-31 | Nicoventures Trading Limited | Apparatus for heating smokable material |
CN109414067A (en) * | 2016-06-29 | 2019-03-01 | 英美烟草(投资)有限公司 | For heating the device of smokeable material |
AU2017289114B2 (en) * | 2016-06-29 | 2020-04-30 | Nicoventures Trading Limited | Apparatus for heating smokable material |
WO2018002083A1 (en) * | 2016-06-29 | 2018-01-04 | British American Tobacco (Investments) Limited | Apparatus for heating smokable material |
US11457664B2 (en) | 2016-06-29 | 2022-10-04 | Nicoventures Trading Limited | Apparatus for heating smokable material |
EP3800966A1 (en) * | 2016-06-29 | 2021-04-07 | Nicoventures Trading Limited | Apparatus for heating smokable material |
RU2737382C2 (en) * | 2016-06-29 | 2020-11-27 | Никовенчерс Трейдинг Лимитед | Device for smoking material heating |
EP3799526A3 (en) * | 2016-06-29 | 2021-06-23 | Nicoventures Trading Limited | Apparatus for heating smokable material |
WO2018002086A1 (en) * | 2016-06-29 | 2018-01-04 | British American Tobacco (Investments) Limited | Apparatus for heating smokable material |
RU2738625C2 (en) * | 2016-06-29 | 2020-12-15 | Никовенчерс Трейдинг Лимитед | Device for smoking material heating |
US11588350B2 (en) | 2016-11-15 | 2023-02-21 | Rai Strategic Holdings, Inc. | Induction-based aerosol delivery device |
US12027879B2 (en) | 2016-11-15 | 2024-07-02 | Rai Strategic Holdings, Inc. | Induction-based aerosol delivery device |
US10524508B2 (en) | 2016-11-15 | 2020-01-07 | Rai Strategic Holdings, Inc. | Induction-based aerosol delivery device |
WO2018096000A1 (en) | 2016-11-22 | 2018-05-31 | Philip Morris Products S.A. | Inductive heating device, aerosol-generating system comprising an inductive heating device and method of operating the same |
US11212881B2 (en) | 2016-11-22 | 2021-12-28 | Philip Morris Products S.A. | Inductive heating device, aerosol-generating system comprising an inductive heating device and method of operating the same |
KR102565100B1 (en) * | 2016-11-22 | 2023-08-10 | 필립모리스 프로덕츠 에스.에이. | Induction heating device, aerosol-generating system comprising an induction heating device, and method of operation thereof |
KR20190084952A (en) * | 2016-11-22 | 2019-07-17 | 필립모리스 프로덕츠 에스.에이. | An induction heating apparatus, an aerosol generating system including an induction heating apparatus, and a method of operating the same |
US12022577B2 (en) | 2017-05-31 | 2024-06-25 | Philip Morris Products, S.A. | Heating component in aerosol generating devices |
US11452180B2 (en) | 2017-05-31 | 2022-09-20 | Philip Morris Products S.A. | Heating component in aerosol generating devices |
RU2765702C2 (en) * | 2017-06-28 | 2022-02-02 | Филип Моррис Продактс С.А. | Hookah device with preheating of air without burning |
US11224253B2 (en) | 2017-06-28 | 2022-01-18 | Philip Morris Products S.A. | Shisha cartridge having a plurality of chambers |
US11330840B2 (en) | 2017-06-28 | 2022-05-17 | Philip Morris Products S.A. | Shisha device with air preheat without combustion |
WO2019003117A1 (en) | 2017-06-28 | 2019-01-03 | Philip Morris Products S.A. | Shisha cartridge having a plurality of chambers |
WO2019003116A1 (en) | 2017-06-28 | 2019-01-03 | Philip Morris Products S.A. | Shisha device with air preheat without combustion |
WO2019002613A1 (en) | 2017-06-30 | 2019-01-03 | Philip Morris Products S.A. | Inductive heating device, aerosol-generating system comprising an inductive heating device and method of operating the same |
EP3646669B1 (en) | 2017-06-30 | 2021-07-28 | Philip Morris Products S.A. | Aerosol-generating device and aerosol-generating system with inductive heating system with efficient power control |
WO2019002377A1 (en) * | 2017-06-30 | 2019-01-03 | Philip Morris Products S.A. | Aerosol-generating device and aerosol-generating system with inductive heating system with efficient power control |
CN110771258B (en) * | 2017-06-30 | 2022-05-27 | 菲利普莫里斯生产公司 | Aerosol-generating device and aerosol-generating system |
TWI760513B (en) * | 2017-06-30 | 2022-04-11 | 瑞士商菲利浦莫里斯製品股份有限公司 | Aerosol-generating device and aerosol-generating system with inductive heating system with efficient power control |
RU2761068C2 (en) * | 2017-06-30 | 2021-12-03 | Филип Моррис Продактс С.А. | Aerosol generating device and aerosol generating system with induction heating system with effective power control |
US11277884B2 (en) | 2017-06-30 | 2022-03-15 | Philip Morris Products S.A. | Aerosol-generating device and aerosol-generating system with inductive heating system with efficient power control |
US11240884B2 (en) | 2017-06-30 | 2022-02-01 | Philip Morris Products S.A. | Inductive heating device, aerosol-generating system comprising an inductive heating device and method of operating the same |
CN110771258A (en) * | 2017-06-30 | 2020-02-07 | 菲利普莫里斯生产公司 | Aerosol-generating device and aerosol-generating system with active power controlled induction heating system |
WO2019016737A1 (en) | 2017-07-19 | 2019-01-24 | Philip Morris Products S.A. | Shisha device for enhanced aerosol characteristics |
US11564412B2 (en) | 2017-07-19 | 2023-01-31 | Philip Morris Products S.A. | Shisha device for enhanced aerosol characteristics |
WO2019016740A1 (en) | 2017-07-21 | 2019-01-24 | Philip Morris Products S.A. | Aerosol generating device with spiral movement for heating |
US11478590B2 (en) | 2017-07-21 | 2022-10-25 | Philip Morris Products S.A. | Aerosol generating device with spiral movement for heating |
WO2019021119A1 (en) | 2017-07-25 | 2019-01-31 | Philip Morris Products S.A. | Heat transfer adaptor for aerosol generating device |
US11606846B2 (en) | 2017-08-09 | 2023-03-14 | Philip Morris Products S.A. | Aerosol generating device with induction heater with side opening |
WO2019030166A1 (en) | 2017-08-09 | 2019-02-14 | Philip Morris Products S.A. | Aerosol-generating device with induction heater with side opening |
WO2019030172A1 (en) | 2017-08-09 | 2019-02-14 | Philip Morris Products S.A. | Aerosol-generating device with induction heater and movable components |
EP4008200B1 (en) | 2017-08-09 | 2023-05-03 | Philip Morris Products S.A. | Aerosol-generating device with modular induction heater |
WO2019030170A1 (en) | 2017-08-09 | 2019-02-14 | Philip Morris Products S.A. | Aerosol-generating device with modular induction heater |
WO2019030168A1 (en) | 2017-08-09 | 2019-02-14 | Philip Morris Products S.A. | Aerosol-generating device with an induction heater with a conical induction coil |
EP3942951A1 (en) | 2017-08-09 | 2022-01-26 | Philip Morris Products, S.A. | Aerosol-generating device with detachably insertable heating compartment |
WO2019030167A1 (en) | 2017-08-09 | 2019-02-14 | Philip Morris Products S.A. | Aerosol-generating device with detachably insertable heating compartment |
RU2737443C1 (en) * | 2017-08-09 | 2020-11-30 | Филип Моррис Продактс С.А. | Aerosol-generating device with induction heater with side opening |
KR102385504B1 (en) | 2017-08-09 | 2022-04-12 | 필립모리스 프로덕츠 에스.에이. | Aerosol-generating device having an induction heater having a side opening |
EP4223162A1 (en) | 2017-08-09 | 2023-08-09 | Philip Morris Products S.A. | Aerosol-generating device with modular induction heater |
EP4008200A1 (en) | 2017-08-09 | 2022-06-08 | Philip Morris Products S.A. | Aerosol-generating device with modular induction heater |
KR20200024311A (en) * | 2017-08-09 | 2020-03-06 | 필립모리스 프로덕츠 에스.에이. | Aerosol-generating device with induction heater with side openings |
EA039588B1 (en) * | 2017-09-06 | 2022-02-14 | ДжейТи ИНТЕРНЕШНЛ СА | Induction heating assembly for a vapour generating device |
US11516894B2 (en) | 2017-09-06 | 2022-11-29 | Jt International Sa | Induction heating assembly for a vapour generating device |
WO2019048379A1 (en) * | 2017-09-06 | 2019-03-14 | Jt International Sa | Induction heating assembly for a vapour generating device |
CN111052858A (en) * | 2017-09-06 | 2020-04-21 | Jt国际公司 | Induction heating assembly for a steam generating device |
US11956879B2 (en) | 2017-09-15 | 2024-04-09 | Nicoventures Trading Limited | Apparatus for heating smokable material |
WO2019064119A1 (en) | 2017-09-27 | 2019-04-04 | Philip Morris Products S.A. | Heat diffuser for aerosol generating device |
WO2019069160A1 (en) | 2017-10-06 | 2019-04-11 | Philip Morris Products S.A. | Shisha device with aerosol condensation |
US11602163B2 (en) | 2017-10-06 | 2023-03-14 | Philip Morris Products S.A. | Shisha device with aerosol condensation |
US11265970B2 (en) | 2017-10-31 | 2022-03-01 | Rai Strategic Holdings, Inc. | Aerosol delivery device having a resonant transmitter |
US11553562B2 (en) | 2017-10-31 | 2023-01-10 | Rai Strategic Holdings, Inc. | Aerosol delivery device having a resonant transmitter |
US12120777B2 (en) | 2017-10-31 | 2024-10-15 | Rai Strategic Holdings, Inc. | Aerosol delivery device having a resonant transmitter |
US11856979B2 (en) | 2017-12-29 | 2024-01-02 | Jt International S.A. | Aerosol generating articles and methods for manufacturing the same |
US11700874B2 (en) | 2017-12-29 | 2023-07-18 | Jt International S.A. | Inductively heatable consumable for aerosol generation |
US11918038B2 (en) | 2018-01-15 | 2024-03-05 | Philip Morris Products S.A. | Shisha device with active cooling for enhanced aerosol characteristics |
WO2019138325A1 (en) | 2018-01-15 | 2019-07-18 | Philip Morris Products S.A. | Shisha device with active cooling for enhanced aerosol characteristics |
US11882867B2 (en) | 2018-02-26 | 2024-01-30 | Rai Strategic Holdings, Inc. | Heat conducting substrate for electrically heated aerosol delivery device |
WO2019207511A1 (en) | 2018-04-25 | 2019-10-31 | Philip Morris Products S.A. | Ventilation for shisha device |
US11800894B2 (en) | 2018-04-25 | 2023-10-31 | Philip Morris Products S.A. | Ventilation for shisha device |
US12022862B2 (en) | 2018-06-05 | 2024-07-02 | Philip Morris Products S.A. | Device for heating aerosol-forming substrate with air preheat |
WO2019234582A1 (en) | 2018-06-05 | 2019-12-12 | Philip Morris Products S.A. | Device for heating aerosol-forming substrate with air preheat |
RU2785333C2 (en) * | 2018-07-05 | 2022-12-06 | Филип Моррис Продактс С.А. | Inductively heated aerosol generating system with ambient temperature sensor |
US12011045B2 (en) | 2018-07-05 | 2024-06-18 | Philip Morris Products S.A. | Inductively heated aerosol-generating system with ambient temperature sensor |
WO2020008008A1 (en) | 2018-07-05 | 2020-01-09 | Philip Morris Products S.A. | Inductively heated aerosol-generating system with ambient temperature sensor |
AU2019328516B2 (en) * | 2018-08-31 | 2022-12-08 | Nicoventures Trading Limited | Apparatus for an aerosol generating device |
US12102134B2 (en) | 2018-08-31 | 2024-10-01 | Nicoventures Trading Limited | Apparatus for an aerosol generating device |
RU2800769C2 (en) * | 2018-08-31 | 2023-07-28 | Никовенчерс Трейдинг Лимитед | Appliance for an aerosol generation apparatus |
WO2020074494A1 (en) | 2018-10-08 | 2020-04-16 | Philip Morris Products S.A. | Novel clove-containing aerosol-generating substrate |
WO2020130752A1 (en) | 2018-12-21 | 2020-06-25 | 주식회사 이엠텍 | Fine particle generation apparatus having induction heater |
KR20200078410A (en) | 2018-12-21 | 2020-07-01 | 주식회사 이엠텍 | Microparticle generating device with induction heater |
US12029249B2 (en) | 2019-01-14 | 2024-07-09 | Philip Morris Products S.A. | Radiation heated aerosol-generating system, cartridge, aerosol-generating element and method therefor |
WO2020148214A1 (en) | 2019-01-14 | 2020-07-23 | Philip Morris Products S.A. | Radiation heated aerosol-generating system, cartridge, aerosol-generating element and method therefor |
WO2020148213A1 (en) | 2019-01-14 | 2020-07-23 | Philip Morris Products S.A. | Infrared heated aerosol-generating element |
RU2774803C1 (en) * | 2019-01-14 | 2022-06-23 | Филип Моррис Продактс С.А. | Aerosol generating element with infrared heating |
WO2020207733A1 (en) | 2019-04-08 | 2020-10-15 | Philip Morris Products S.A. | Aerosol-generating substrate comprising an aerosol-generating film |
US12011028B2 (en) | 2019-04-08 | 2024-06-18 | Philip Morris Products S.A. | Aerosol-generating article comprising an aerosol-generating film |
WO2020207732A1 (en) | 2019-04-08 | 2020-10-15 | Philip Morris Products S.A. | Aerosol-generating article comprising an aerosol-generating film |
EP4403049A2 (en) | 2019-04-08 | 2024-07-24 | Philip Morris Products S.A. | Aerosol-generating substrate comprising an aerosol-generating film |
US12082612B2 (en) | 2019-05-16 | 2024-09-10 | Philip Morris Products S.A. | Device assembly method and device manufactured according to such method |
WO2020229465A1 (en) | 2019-05-16 | 2020-11-19 | Philip Morris Products S.A. | Device assembly method and device manufactured according to such method |
RU2817583C2 (en) * | 2019-05-24 | 2024-04-16 | Филип Моррис Продактс С.А. | New aerosol generating substrate |
WO2020239597A1 (en) | 2019-05-24 | 2020-12-03 | Philip Morris Products S.A. | Novel aerosol-generating substrate |
EP4233590A2 (en) | 2019-06-12 | 2023-08-30 | Philip Morris Products S.A. | Aerosol-generating article comprising three dimensional code |
WO2020249600A1 (en) | 2019-06-12 | 2020-12-17 | Philip Morris Products S.A. | Aerosol-generating article comprising three dimensional code |
EP3800965A1 (en) * | 2019-09-27 | 2021-04-07 | Tuanfang Liu | Electromagnetic induction heater |
EP4282285A2 (en) | 2019-10-21 | 2023-11-29 | Philip Morris Products S.A. | Novel aerosol-generating substrate comprising illicium species |
WO2021078691A1 (en) | 2019-10-21 | 2021-04-29 | Philip Morris Products S.A. | Novel aerosol-generating substrate comprising zingiber species |
WO2021078683A1 (en) | 2019-10-21 | 2021-04-29 | Philip Morris Products S.A. | Novel aerosol-generating substrate comprising illicium species |
WO2021110684A1 (en) | 2019-12-02 | 2021-06-10 | Philip Morris Products S.A. | Shisha device with trough |
WO2021170670A1 (en) | 2020-02-28 | 2021-09-02 | Philip Morris Products S.A. | Novel aerosol-generating substrate |
WO2021170655A1 (en) | 2020-02-28 | 2021-09-02 | Philip Morris Products S.A. | Novel aerosol-generating substrate comprising rosmarinus species |
KR20210158581A (en) | 2020-06-24 | 2021-12-31 | 주식회사 이엠텍 | Microparticle generating device with insulation structure |
WO2022002872A1 (en) | 2020-06-30 | 2022-01-06 | Philip Morris Products S.A. | Novel aerosol-generating substrate comprising matricaria species |
WO2022002875A1 (en) | 2020-06-30 | 2022-01-06 | Philip Morris Products S.A. | Novel aerosol-generating substrate comprising anethum species |
WO2022002879A1 (en) | 2020-06-30 | 2022-01-06 | Philip Morris Products S.A. | Novel aerosol-generating substrate comprising thymus species |
EP4427604A2 (en) | 2020-10-07 | 2024-09-11 | Philip Morris Products S.A. | An aerosol-forming substrate |
WO2022074157A1 (en) | 2020-10-07 | 2022-04-14 | Philip Morris Products S.A. | An aerosol-forming substrate |
WO2022122849A1 (en) | 2020-12-11 | 2022-06-16 | Philip Morris Products S.A. | An aerosol-generating system comprising an electrochemical sensor switch |
GB2618294A (en) * | 2021-02-22 | 2023-11-01 | Induction Food Systems Inc | Systems and methods for magnetic heat induction and exchange to mobile streams of matter |
WO2022178422A1 (en) * | 2021-02-22 | 2022-08-25 | Induction Food Systems, Inc. | Systems and methods for magnetic heat induction and exchange to mobile streams of matter |
US11918052B2 (en) | 2021-03-31 | 2024-03-05 | Japan Tobacco Inc. | Inductive heating apparatus, control unit thereof, and operation method thereof |
US12089657B2 (en) | 2021-03-31 | 2024-09-17 | Japan Tobacco Inc. | Inductive heating apparatus, control unit thereof, and operation method thereof |
US11832653B2 (en) | 2021-03-31 | 2023-12-05 | Japan Tobacco Inc. | Inductive heating apparatus and operation method thereof |
WO2023285597A1 (en) | 2021-07-16 | 2023-01-19 | Philip Morris Products S.A. | Novel aerosol-generating substrate comprising oreganum species |
WO2023285623A1 (en) | 2021-07-16 | 2023-01-19 | Philip Morris Products S.A. | Novel aerosol-generating substrate comprising cuminum species |
WO2023001929A1 (en) | 2021-07-20 | 2023-01-26 | Philip Morris Products S.A. | Aerosol-generating article comprising a wrapper with a metal layer |
WO2023001930A1 (en) | 2021-07-20 | 2023-01-26 | Philip Morris Products S.A. | Aerosol-generating article comprising a susceptor element and a wrapper with a metal layer |
WO2023072802A1 (en) | 2021-10-25 | 2023-05-04 | Philip Morris Products S.A. | A testing equipment and method for testing a susceptor arrangement in simulated heating conditions |
WO2023104704A1 (en) | 2021-12-06 | 2023-06-15 | Philip Morris Products S.A. | Aerosol-generating article with novel aerosol-generating substrate |
WO2023104702A1 (en) | 2021-12-06 | 2023-06-15 | Philip Morris Products S.A. | Aerosol-generating article with novel aerosol-generating substrate |
WO2023104706A1 (en) | 2021-12-06 | 2023-06-15 | Philip Morris Products S.A. | Aerosol-generating article comprising hollow tubular substrate element |
WO2023104710A1 (en) | 2021-12-06 | 2023-06-15 | Philip Morris Products S.A. | Aerosol-generating article comprising hollow tubular substrate element with sealing element |
WO2024003397A1 (en) | 2022-06-30 | 2024-01-04 | Philip Morris Products S.A. | Aerosol-generating article comprising airflow guiding element extending into tubular substrate |
WO2024003194A1 (en) | 2022-06-30 | 2024-01-04 | Philip Morris Products S.A. | Aerosol-generating article comprising a perforated hollow tubular substrate element |
WO2024003396A1 (en) | 2022-06-30 | 2024-01-04 | Philip Morris Products S.A. | Aerosol-generating device comprising airflow guiding element extending into heating chamber |
KR20240016493A (en) | 2022-07-29 | 2024-02-06 | 주식회사 이엠텍 | Air heater installed in outside air introducing hole for aerosol generator |
KR20240021998A (en) | 2022-08-10 | 2024-02-20 | 주식회사 이엠텍 | Aerosol generator having auto conrolling structure for airflow path |
KR20240041083A (en) | 2022-09-22 | 2024-03-29 | 주식회사 이엠텍 | Aerosol generator having seperable air heater |
KR102614369B1 (en) | 2022-10-04 | 2023-12-15 | 주식회사 이엠텍 | Aerosol generator having seperable air heater |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200077715A1 (en) | Inductive heating device for heating an aerosol-forming substrate | |
WO2017085242A1 (en) | Inductive heating device for heating an aerosol-forming substrate | |
RU2778747C2 (en) | Induction heating device for heating the aerosol-forming substrate | |
BR112016018362B1 (en) | INDUCTIVE HEATING DEVICE FOR HEATING AN AEROSOL-FORMING SUBSTRATE, INDUCTIVE HEATING SYSTEM, KIT AND METHOD OF OPERATION OF AN INDUCTIVE HEATING SYSTEM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15724989 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 12016501239 Country of ref document: PH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 246460 Country of ref document: IL |
|
ENP | Entry into the national phase |
Ref document number: 2937066 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2015261878 Country of ref document: AU Date of ref document: 20150521 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20167022040 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2016552513 Country of ref document: JP Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016018362 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15121548 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: A201608778 Country of ref document: UA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/015134 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016/1129.1 Country of ref document: KZ |
|
REEP | Request for entry into the european phase |
Ref document number: 2015724989 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015724989 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016149758 Country of ref document: RU Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112016018362 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160809 |