Nothing Special   »   [go: up one dir, main page]

WO2015176663A1 - 显示装置 - Google Patents

显示装置 Download PDF

Info

Publication number
WO2015176663A1
WO2015176663A1 PCT/CN2015/079427 CN2015079427W WO2015176663A1 WO 2015176663 A1 WO2015176663 A1 WO 2015176663A1 CN 2015079427 W CN2015079427 W CN 2015079427W WO 2015176663 A1 WO2015176663 A1 WO 2015176663A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
transparent substrate
lens array
layer
display device
Prior art date
Application number
PCT/CN2015/079427
Other languages
English (en)
French (fr)
Inventor
李昆
罗伯森布莱恩
初大平
周炯
Original Assignee
华为技术有限公司
剑桥实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 剑桥实业有限公司 filed Critical 华为技术有限公司
Priority to EP15796351.3A priority Critical patent/EP3147702A4/en
Publication of WO2015176663A1 publication Critical patent/WO2015176663A1/zh
Priority to US15/331,220 priority patent/US20170038597A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices

Definitions

  • Embodiments of the present invention relate to the field of display technologies, and in particular, to a display device.
  • auto-stereoscopic displays are also known as naked-eye dual-view displays or naked-eye three-dimensional displays or binocular stereo disparity displays.
  • each microlens covers a plurality of pixels and produces a stereoscopic image on a central depth plane.
  • a stereoscopic image can be seen when the user's eyes are focused on the center depth plane.
  • the three-dimensional (3D) display technology can also be realized by utilizing the phase characteristics of the electrically tunable liquid crystal.
  • the electrically tunable liquid crystal can be closely attached to the screen of the existing user equipment, and the liquid crystal lens array is formed by utilizing the phase characteristics of the liquid crystal under power supply, so as to deflect the light beam emitted from the pixel of the display of the user equipment to the left and right.
  • the naked eye binocular parallax produces a three-dimensional effect in the observer's eye.
  • the display angle (for example, may be greater than 176 degrees), so that although the intensity and contrast of the display will be significantly reduced when the display angle reaches ⁇ 30 degrees, the light emitted by one pixel of the display may still cover more than one of the liquid crystal lens arrays.
  • crosstalk occurs between adjacent pixels, and crosstalk between adjacent pixels greatly reduces the resolution and display effect of the display.
  • Embodiments of the present invention provide a display device capable of reducing strings between pixels of a display device The effect of the disturbance phenomenon, thereby improving the resolution and display of the display.
  • a display device in a first aspect, includes: a display layer including a pixel array; and a first lens layer including a first lens array for deflecting light passing through the first lens array to different projection directions to achieve Stereoscopic parallax; the second lens layer includes a second lens array, wherein the second lens layer is disposed between the first lens layer and the display layer, and the second lens array is configured to project the light beam emitted from the pixel array onto the first lens array Or projected into the focal length of the first lens array.
  • the focal length of each of the second lenses in the second lens array is smaller than the distance between the first lens array and the second lens array.
  • a focal length of each second lens in the second lens array is greater than or equal to between the first lens array and the second lens array One-half of the distance; or, the focal length of each second lens in the second lens array is greater than or equal to a quarter of the distance between the first lens array and the display layer.
  • the first lens array is a liquid crystal lens array
  • the liquid crystal lens array includes a liquid crystal layer and are disposed on both sides of the liquid crystal layer A transparent electrode for controlling the liquid crystal layer to deflect light passing through the liquid crystal lens array to different projection directions.
  • the pixel array includes a plurality of pixels
  • the first lens array includes a plurality of first lenses
  • the second lens array includes The plurality of second lenses have a plurality of first lenses corresponding to the plurality of pixels, and the plurality of second lenses are in one-to-one correspondence with the plurality of pixels.
  • each of the plurality of pixels includes a plurality of sub-pixels.
  • the first lens layer further includes: a first transparent substrate disposed on the first lens array and the second lens layer
  • the display layer further includes: a second transparent substrate disposed between the second lens layer and the pixel array.
  • the second lens layer further includes a third transparent substrate, the third transparent substrate is disposed between the second lens array and the first transparent substrate, and the second The lens array is disposed on a side of the third transparent substrate opposite to the second lens layer, and the display device further includes: a first spacer element disposed between the first transparent substrate and the third transparent substrate for being transparent at the first Forming a gap between the substrate and the second lens layer; the second spacer element is disposed in the second Between the transparent substrate and the third transparent substrate, a gap is formed between the second transparent substrate and the second lens layer.
  • the first transparent substrate has a thickness of 300 micrometers
  • the second lens layer has a thickness of 225 micrometers
  • the second transparent substrate has a thickness of 100 micrometers.
  • the second lens array is disposed on a side of the first transparent substrate opposite to the second lens layer, and the display device further includes: a first spacer component Provided between the first transparent substrate and the second transparent substrate for forming a gap between the second transparent substrate and the second lens layer.
  • the first transparent substrate has a thickness of 300 micrometers
  • the second transparent substrate has a thickness of 300 micrometers
  • the second lens array is a cylindrical lens array.
  • the first transparent substrate has a thickness of 300 micrometers
  • the second lens layer has a thickness of 225 micrometers
  • the second transparent substrate has a thickness of 100 micrometers.
  • a terminal comprising: the display device according to the first aspect.
  • a second lens array may be disposed between the first lens array of the display device and the pixel array of the display device for projecting light emitted by the pixel array onto the first lens array, thereby reducing display The effect of crosstalk between pixels of the device, thereby improving the resolution and display of the display.
  • FIG. 1 is a schematic structural view of a display device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a display device according to another embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a display device according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a display device according to still another embodiment of the present invention.
  • Fig. 5 is a schematic structural view of a display device according to still another embodiment of the present invention.
  • stereoscopic imaging may refer to three-dimensional display or free stereoscopic display.
  • the technical solution of the present invention can be applied to various stereoscopic imaging displays, especially stereoscopic imaging displays using electrically tunable liquid crystal technology.
  • FIG. 1 is a schematic structural view of a display device 100 according to an embodiment of the present invention.
  • the display device 100 includes a display layer 130, a first lens layer 110, and a second lens layer 120.
  • Display layer 130 includes an array of pixels, which may include pixels 131, 132, 133, for example.
  • the first lens layer 110 includes a first lens array, for example, the first lens array may include first lenses 111, 112, 113 for deflecting light rays passing through the first lens array to different projection directions to achieve stereo disparity.
  • the second lens layer 120 includes a second lens array, and the second lens array includes second lenses 121, 122, 123, wherein the second lens layer 120 is disposed between the first lens layer 110 and the display layer 130, and the second lens array 121 A light beam for emitting the pixel array is projected onto the first lens array or projected into a focal length of the first lens array.
  • Display device 100 can be an autostereoscopic display or other type of 3D imaging device.
  • the display device may be a display device of a terminal (for example, a mobile terminal).
  • the first lens array is provided with a terminal capacitive touch screen and a front cover glass for projecting the light projected by the second lens toward the capacitive touch screen and the front cover. Glass to achieve stereo disparity so that the user of the terminal can see stereoscopic imaging.
  • the second lens array disposed between the first lens array and the pixel array functions as an optical relay, which is equivalent to shortening the distance between the first lens array and the pixel array, so that each pixel can be Imaging is on the optical plane of the corresponding first lens or even the corresponding first lens.
  • projecting a pixel into the focal length of the first lens corresponds to having an actual pixel within the EFL of the first lens. Because these projected pixels are very close to the first lens layer, crosstalk between adjacent pixel imaging on the first lens layer can be reduced. In other words, the second The presence of the lens layer reduces the distance of the pixels of the display layer from the first lens layer.
  • This is an optical relay (or transfer) process that transfers the pixels of the display layer to the first lens layer.
  • each of the first lenses will receive most of the light beams of its corresponding pixels, and will not receive or rarely receive the light beams of the adjacent pixels, thus ensuring the desired high-definition 3D visual experience.
  • the transfer of pixels at distances of a few hundred microns does not interfere with the 2D visual experience of the original display device.
  • the embodiment of the present invention can provide a second lens array between the first lens array of the display device and the pixel array of the display device for projecting the light emitted by the pixel array onto the first lens array, thereby reducing the display device.
  • the effect of crosstalk between pixels improves the resolution and display of the display.
  • such an optical relay (or transfer) design may allow for flexible configuration of the optical matching of the pixel plane and the EFL of the first lens array.
  • the size of these projected pixels can be well adjusted according to the capabilities of the first lens (eg, EFL), for example, a small pixel can be projected onto a small first lens to achieve a large steering angle.
  • FIG. 1 only shows a part of the display device, that is, only three pixels, three first lenses, and three second lenses are shown, and those skilled in the art should understand that the display device may include more Multi-pixel, first lens and second lens.
  • the pixel, the first lens and the second lens may have a one-to-one correspondence, but the embodiment of the present invention is not limited thereto, for example, a first lens or a second lens may correspond to a plurality of pixels, or One pixel includes a plurality of sub-pixels, and a plurality of second lenses may correspond to one first lens, or one second lens corresponds to a plurality of first lenses, and the like.
  • first lens or the second lens may be a prismatic lens.
  • one prism type lens may include a plurality of first lenses or second lenses, and one prism type lens may correspond to one row of pixels or one column of pixels, the present invention The embodiment does not limit this.
  • the first lens or the second lens may also be other types of lenses, for example, a circular lens, and one lens may correspond to one pixel.
  • the focal length of the lens can generally be represented by an effective focal length (EFL), for example, the effective focal length can be the distance from the principal point to the point of focus of the lens.
  • ETL effective focal length
  • the focal length of each of the second lenses in the second lens array is less than or equal to the distance between the first lens array and the second lens array.
  • the focal length of each of the second lenses in the second lens array is greater than or equal to one-half the distance between the first lens array and the second lens array.
  • each second lens in the second lens array may also satisfy other conditions.
  • the focal length of each second lens in the second lens array may also be greater than or equal to the first lens array and the second lens.
  • the focal length of each of the second lenses in the second lens array may be greater than or equal to a quarter of the distance between the first lens array and the display layer.
  • the pixel array comprises a plurality of pixels
  • the first lens array comprises a plurality of first lenses
  • the second lens array comprises a plurality of second lenses, the plurality of first lenses being in one-to-one correspondence with the plurality of pixels,
  • the second lenses are in one-to-one correspondence with the plurality of pixels.
  • one lens covers only one pixel.
  • the pixel may be a monochrome pixel, a red pixel, a green pixel, or a blue pixel.
  • the embodiment according to the present invention is not limited thereto, and the pixel may also be a three primary color pixel.
  • the first lens array is a liquid crystal lens array comprising a liquid crystal layer and transparent electrodes disposed on both sides of the liquid crystal layer, the transparent electrodes for controlling the liquid crystal layer to deflect light rays passing through the liquid crystal lens array to different The direction of the projection.
  • the first lens array may also be composed of other crystalline materials capable of changing the refractive index when an electric field is applied, for example, may be composed of a strontium sulphate crystal.
  • the pixel array comprises a plurality of pixels
  • the first lens array comprises a plurality of first lenses
  • the second lens array comprises a plurality of second lenses
  • the plurality of first lenses and The plurality of pixels are in one-to-one correspondence
  • the plurality of second lenses are in one-to-one correspondence with the plurality of pixels.
  • the plurality of second lenses are microlens arrays composed of a plurality of microlenses.
  • the plurality of liquid crystal lenses may be a liquid crystal lens array composed of microlenses.
  • Each of the microlenses in the liquid crystal lens array receives only the outgoing light from the pixels corresponding to the microlens, and does not receive the outgoing light of the adjacent pixels, thus ensuring a high-definition 3D visual experience.
  • each of the plurality of pixels comprises a plurality of sub-pixels.
  • one lens can cover multiple sub-pixels.
  • the pixels may be three primary color pixels, and the three primary color pixels may include red sub-pixels, green sub-pixels, and blue sub-pixels.
  • the focal length of each liquid crystal lens in the liquid crystal lens array is less than or equal to 50 micrometers.
  • Such an optical relay (or transfer) design can allow for flexible configuration of the optical matching of the pixel plane and the range of the LC microlens array EFL.
  • FIG. 2 is a schematic structural view of a display device 200 according to another embodiment of the present invention.
  • the display device 200 is an example of the display device 100 of FIG.
  • the display device 200 includes a display layer 230, a first lens layer 210, and a second lens layer 220, which are similar to the display layer 130, the first lens layer 110, and the second lens layer 120 of FIG. 1, and are not described herein again.
  • the first lens layer 210 includes a first lens array, a fourth transparent substrate 214, and a first transparent substrate 215.
  • the first lens array is a liquid crystal lens array including a liquid crystal layer 218, a first transparent electrode 216, and a second transparent electrode 217.
  • the first transparent electrode 216 and the second transparent electrode 217 are disposed on both sides of the liquid crystal layer 218 for controlling the liquid crystal layer to deflect light passing through the liquid crystal lens array to different projection directions.
  • the first transparent substrate 215 is disposed between the first lens array and the second lens layer 220.
  • the fourth transparent substrate 214 may be a front panel or a touch screen of the terminal where the display device 200 is located.
  • the fourth transparent substrate 214 may be a capacitive touch screen and a front cover glass of the mobile terminal.
  • the first transparent electrode 216 may be disposed on the front panel or the touch screen, and the second transparent electrode 217 may be disposed on the first transparent substrate 215.
  • the first transparent electrode 216 and the second transparent electrode 217 may be a transparent conductive material such as Indium Tin Oxide (ITO), and the first transparent substrate may be a glass substrate, and the thickness may be between 100 mm and 300 mm. . Since the transparent substrate of the first lens layer in the existing terminal is 300 micrometers, the first transparent substrate of the embodiment is also set to 300 micrometers, which can reduce the modification of the existing terminal.
  • ITO Indium Tin Oxide
  • the second lens layer 220 includes a second lens array, and the second lens array may be a microlens array including a plurality of microlenses 221, 222, 223.
  • the second lens array is a cylindrical lens array.
  • the second lens layer 220 is disposed between the first lens layer 210 and the display layer 230, and the second lens array is configured to project a light beam emitted from the pixel array onto the first lens array.
  • the plurality of microlenses 221, 222, and 223 respectively project the light beams emitted from the plurality of pixels 231, 232, and 233 onto the liquid crystal array, and image the pixels 211, 212, and 213, respectively.
  • the plurality of microlenses 221, 222, and 223 may be independently disposed on the transparent substrate or may be integrally formed with the transparent substrate.
  • the microlens according to an embodiment of the present invention may be prepared by the following processes: 1) photolithography, 2) photoresist treatment, 3) reactive ion etching (RIE), 4) inkjet printing; 5) Main marking and embossing of laser processing.
  • the above preparation process is a conventional technical means and will not be described herein.
  • the microlens array of embodiments of the present invention may also employ existing commercial products.
  • a fused silica lens having a refractive index of 1.458 at 589 nm Since most existing microlens arrays are relatively thick, for example, having a thickness between 0.7 mm and 1.2 mm, structuring and polishing are required to have a thickness within the desired range (eg, about 200 microns).
  • the thick microlens array can be structured by ultrasonic grinding or sandblasting and further polished to the thickness, flatness and roughness required by embodiments of the present invention.
  • Embodiments in accordance with the present invention are not limited thereto, and chemical etching may be employed to maintain the thickness within a desired range.
  • the display layer can be used to display images in a time division manner, for example to display images for different projection directions, wherein different projection directions correspond to different viewing directions.
  • the first lens layer is for alternately deflecting light rays of images for different projection directions to different projection directions according to an applied electric field of time-varying change to present a stereoscopic image that can be seen by the naked eye.
  • the liquid crystal can change the refractive index after the application of the electric field, and the different electric fields can correspond to different refractive indices, that is, the liquid crystal is used to form an electrically tunable prism array in the electro-optic modulation layer.
  • the phase difference of the emitted light changes as the applied electric field changes.
  • the applied electric field is required to display the image of each direction with all the pixels in the time of the visual persistence, thereby improving the resolution of the autostereoscopic display.
  • a liquid crystal lens array may be disposed on a display screen of an existing terminal (for example, a mobile device) for controlling the direction in which the display layer emits a light beam (or beam) to continuously deflect the light beam to the left side and On the right, the user using the terminal gets stereo disparity.
  • the liquid crystal lens array can use an electrically controlled liquid crystal as a material to provide a linear phase gradient, which can repeatedly deflect the light beam emitted from each display pixel to two or more angles in the time domain, thereby forming The display mode of the naked eye 3D.
  • the pitch of each of the microlenses of the liquid crystal lens array may be set to be the same as the pixels of the display layer of the terminal, such that the terminal in the 3D display mode also has the resolution of the 2D display mode.
  • embodiments of the present invention add a layer of microlens array between the liquid crystal lens array and the pixels of the display layer to solve the problem of crosstalk and effective focal length between pixels.
  • the liquid crystal array lens array and the microlens array of the embodiments of the present invention can also be made into an independent structure and directly integrated on the display of the existing terminal.
  • each microlens of the first lens array receives only the outgoing light of the pixel corresponding thereto, and does not receive or rarely receives the outgoing light of the adjacent pixel, which can ensure HD 3D visual experience.
  • FIG. 3 is a schematic structural view of a display device 300 according to another embodiment of the present invention.
  • the display device 300 is an example of the display device 200 of FIG.
  • the display device 300 includes a display layer 330, a first lens layer 310, and a second lens layer 320, which are similar to the display layer 230, the first lens layer 210, and the second lens layer 220 of FIG. 2, and are not described herein again.
  • the display layer includes: a pixel array, a second transparent substrate 334, and a fifth transparent substrate 335.
  • the second transparent substrate 334 is disposed between the second lens layer 320 and the pixel array.
  • the pixel array includes pixels 331, 332, 333.
  • the first lens layer 310 includes a first lens array, a fourth transparent substrate 314, and a first transparent substrate 315.
  • the first lens array is a liquid crystal lens array including a liquid crystal layer 318, a first transparent electrode 316, and a second transparent electrode 317.
  • the first transparent electrode 316 and the second transparent electrode 317 are disposed on both sides of the liquid crystal layer 318 for controlling the liquid crystal layer to deflect light passing through the liquid crystal lens array to different projection directions.
  • the first transparent substrate 315 is disposed between the first lens array and the second lens layer 320.
  • the fourth transparent substrate 314 may be a front panel or a touch screen of the terminal where the display device 300 is located.
  • the first transparent electrode 316 may be disposed on the front panel or the touch screen, and the second transparent electrode 317 may be disposed on the first transparent substrate 315.
  • the first transparent electrode 316 and the second transparent electrode 317 may be transparent conductive materials such as ITO.
  • the first transparent substrate may be a glass substrate and may have a thickness of between 100 mm and 300 mm.
  • the second lens layer 320 includes a second lens array and a third transparent substrate 324.
  • the third transparent substrate 324 is disposed between the second lens array and the first transparent substrate 315, and the second lens array is disposed on a side of the third transparent substrate 324 opposite to the second lens layer 320.
  • the second lens array may be a microlens array including a plurality of microlenses 321, 322, 323.
  • the second lens layer 320 is disposed between the first lens layer 310 and the display layer 330, and the second lens array is configured to project a light beam emitted from the pixel array onto the first lens array.
  • the plurality of microlenses 321, 322, 323 respectively project the light beams emitted from the plurality of pixels 331, 332, and 333 onto the liquid crystal array, and are imaged as pixels 311, 312, and 313, respectively.
  • the pixels 331, 332, and 333 may be three primary color pixels of red, green, and blue, respectively.
  • the plurality of microlenses 321, 322, 323 may be independently disposed on the third transparent substrate 324 or may be integrated with the third transparent substrate 324.
  • the second lens array may also be a cylindrical lens array.
  • the display device 300 further includes: a first spacer element 340 and a second spacer element.
  • the first spacer element 340 is disposed between the first transparent substrate 315 and the third transparent substrate 324.
  • a gap is formed between the first transparent substrate 315 and the second lens layer 320.
  • the second spacer element 350 is disposed between the second transparent substrate 334 and the third transparent substrate 324 for forming a gap between the second transparent substrate 334 and the second lens layer 320.
  • the first spacer element 340 and the second spacer element are optical glue or spacers.
  • the size of the spacer ball or the thickness of the optical glue may be a few microns. It can be air in the gap.
  • the microlens pass produces focusing ability.
  • other media for example, a gas having a refractive index of about 1
  • a gas having a refractive index of about 1 may be filled in the void.
  • the thickness of the first transparent substrate 315 may be 300 microns
  • the thickness of the second lens layer 320 may be 225 microns
  • the thickness of the second transparent substrate 334 may be 100 microns. Since the transparent substrate of the display layer and the first lens layer in the existing terminal is 300 micrometers, the thickness of the first transparent substrate of the embodiment is set to 300 micrometers, and the thickness of the second lens layer 320 is set to 225 micrometers. And setting the thickness of the second transparent substrate 334 to 100 ⁇ m can reduce the modification of the existing terminal without significantly increasing the thickness of the terminal.
  • FIG. 4 is a schematic structural view of a display device 400 according to still another embodiment of the present invention.
  • the display device 400 is an example of the display device 200 of FIG.
  • the display device 400 includes a display layer 430, a first lens layer 410, and a second lens layer 420, which are similar to the display layer 230, the first lens layer 210, and the second lens layer 220 of FIG. 2, and are not described herein again.
  • the display layer includes: a pixel array, a second transparent substrate 434, and a fifth transparent substrate 435.
  • the second transparent substrate 434 is disposed between the second lens layer 420 and the pixel array.
  • the pixel array includes pixels 431, 432, 433.
  • the first lens layer 410 includes a first lens array, a fourth transparent substrate 414, and a first transparent substrate 415.
  • the first lens array is a liquid crystal lens array including a liquid crystal layer 418, a first transparent electrode 416, and a second transparent electrode 417.
  • the first transparent electrode 416 and the second transparent electrode 417 are disposed on both sides of the liquid crystal layer 418 for controlling the liquid crystal layer to deflect light passing through the liquid crystal lens array to different projection directions.
  • the first transparent substrate 415 is disposed between the first lens array and the second lens layer 420.
  • the fourth transparent substrate 414 may be a front panel or a touch screen of the terminal where the display device 400 is located.
  • the first transparent electrode 416 may be disposed on the front panel or the touch screen, and the second transparent electrode 417 may be disposed on the first transparent substrate 415.
  • the first transparent electrode 416 and the second transparent electrode 417 may be transparent conductive materials such as ITO.
  • the first transparent substrate may be a glass substrate and may have a thickness of between 100 mm and 300 mm.
  • the second lens layer 420 includes a second lens array and a third transparent substrate 424.
  • the third transparent substrate 424 is disposed between the second lens array and the first transparent substrate 415, and the second lens array is disposed on a side of the third transparent substrate 424 opposite to the second lens layer 420.
  • the second lens array may be a microlens array comprising a plurality of microlenses 421, 422.
  • the second lens layer 420 is disposed between the first lens layer 410 and the display layer 430, and the second lens array is configured to project a light beam emitted from the pixel array onto the first lens array.
  • the microlens 421 projects a light beam emitted from the plurality of pixels 431, 432, and 433 onto the liquid crystal array, and is imaged as pixels 411, 412, and 413, respectively.
  • the pixels 431, 432, and 433 may be three primary color pixels of red, green, and blue, respectively.
  • the plurality of microlenses 421, 422, and 423 may be independently disposed on the third transparent substrate 424 or may be integrally formed with the third transparent substrate 424.
  • the second lens array may also be a cylindrical lens array. Different from the embodiment of FIG. 3, each second lens corresponds to a plurality of pixels. Since this technical solution reduces the number of second lenses, the manufacturing process is made simpler.
  • the display device 400 further includes: a first spacer element 440 and a second spacer element.
  • the first spacer element 440 is disposed between the first transparent substrate 415 and the third transparent substrate 424 for forming a gap between the first transparent substrate 415 and the second lens layer 420.
  • the second spacer element 450 is disposed between the second transparent substrate 434 and the third transparent substrate 424 for forming a gap between the second transparent substrate 434 and the second lens layer 420.
  • the first spacer element 440 and the second spacer element may be optically glued or spaced apart.
  • a polymeric substrate or spacer ball can be used to bond the transparent substrates together.
  • the diameter of the spacer ball or the thickness of the polymer spacer can be a few microns. It should be understood that the void may be air or other gases.
  • FIG. 5 is a schematic structural diagram of a display device 500 according to still another embodiment of the present invention.
  • the display device 500 is an example of the display device 200 of FIG. 2.
  • the display device 500 includes a display layer 530, a first lens layer 510, and a second lens layer 520, and the display layer 230, the first lens layer 210, and the second lens layer of FIG. 220 is similar and will not be described here.
  • the display layer 530 includes: a pixel array, a second transparent substrate 534, and a fifth transparent substrate 535.
  • the second transparent substrate 534 is disposed between the second lens layer 520 and the pixel array.
  • the pixel array includes pixels 531, 532, 533.
  • the first lens layer 510 includes a first lens array, a fourth transparent substrate 514, and a first transparent substrate 515.
  • the first lens array is a liquid crystal lens array including a liquid crystal layer 518, a first transparent electrode 516, and a second transparent electrode 517.
  • the first transparent electrode 516 and the second transparent electrode 517 are disposed on both sides of the liquid crystal layer 518 for controlling the liquid crystal layer to deflect the light passing through the liquid crystal lens array to Different projection directions.
  • the first transparent substrate 515 is disposed between the first lens array and the second lens layer 520.
  • the fourth transparent substrate 514 may be a front panel or a touch screen of the terminal where the display device 500 is located.
  • the first transparent electrode 516 may be disposed on the front panel or the touch screen, and the second transparent electrode 517 may be disposed on the first transparent substrate 515.
  • the first transparent electrode 516 and the second transparent electrode 517 may be transparent conductive materials such as ITO.
  • the first transparent substrate may be a glass substrate and may have a thickness of between 100 mm and 300 mm.
  • the second lens layer 520 includes a second lens array.
  • the second lens array is disposed on a side of the first transparent substrate 515 opposite to the second lens layer 520.
  • the second lens array may be a microlens array including a plurality of microlenses 521, 522, 523.
  • the second lens layer 520 is disposed between the first lens layer 510 and the display layer 530, and the second lens array is configured to project a light beam emitted from the pixel array onto the first lens array.
  • the microlenses 521, 522, 523 project the light beams emitted from the plurality of pixels 531, 532, and 533 onto the liquid crystal array, and are imaged as pixels 511, 512, and 513, respectively.
  • the pixels 531, 532, and 533 may be three primary color pixels of red, green, and blue, respectively.
  • the difference from the embodiment of Fig. 3 is that the second lens is directly disposed (e.g., printed) on the first transparent substrate.
  • the production process of the solution is simple and does not significantly increase the thickness of the existing terminal.
  • the display device 500 further includes a first spacer member 540 disposed between the first transparent substrate 515 and the second transparent substrate 534 for forming a gap between the second transparent substrate 534 and the second lens layer 520.
  • the first spacer element 540 is used to form a gap between the second transparent substrate 534 and the second lens array.
  • the thickness of the first transparent substrate 515 may be 300 micrometers
  • the thickness of the second transparent substrate 534 may be 300 micrometers. Since the transparent substrate of the display layer and the first lens layer in the existing terminal are both 300 micrometers, the thickness of the first transparent substrate and the second transparent substrate of the embodiment is also set to 300 micrometers, which can reduce the existing terminal. Transformation.
  • the thickness of the second transparent substrate 534 may also be 100 microns.
  • Another embodiment of the present invention provides a terminal comprising: the display device as described in the embodiments of FIGS. 1 to 5.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示装置(100),包括含有像素阵列的显示层(130),第一透镜层(110)和第二透镜层(120)。第二透镜层(120)设置于第一透镜层(110)和显示层(130)之间。第一透镜层(110)包括第一透镜阵列,用于将通过第一透镜阵列的光线偏转至不同的投射方向,以实现立体视差。第二透镜层(120)包括第二透镜阵列,第二透镜阵列用于将像素阵列射出的光束投射到第一透镜阵列上。这种显示装置(100)的结构能够减轻显示装置(100)的像素(131,132,133)间的串扰现象的影响,从而提高了显示装置(100)的分辨率和显示效果。

Description

显示装置
本申请要求于2014年5月22日提交中国专利局、申请号为201410219413.9、发明名称为“显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及显示技术领域,更具体地,涉及一种显示装置。
背景技术
目前,自由立体(auto-stereoscopic)显示器也称为裸眼双视显示器或裸眼三维显示器或双目立体视差显示器。
在一种现有的自由立体显示器中,每个微透镜覆盖多个像素,并在中心深度平面(central depth plane)上产生立体图像。用户的双眼聚焦在中心深度平面上时可以看到立体图像。
另外,还可以利用电可调液晶的相位特性来实现三维(Three Dimension,3D)显示技术。例如,可以将电可调液晶紧贴在现有的用户设备屏幕上方,利用液晶在通电情况下的相位特性,形成液晶透镜阵列,以将用户设备的显示器的像素射出的光束向左右偏转来实现裸眼双目视差,从而在观察者眼中产生立体的效果。
通常,液晶透镜阵列的光学平面与用户设备的显示器的像素之间至少存在几百微米的光学距离,这个较大的距离主要是由于厚的液晶透镜阵列的玻璃基板产生的,而显示器有比较大的显示角度(例如,可能大于176度),这样,尽管显示器的强度和对比度在显示角度达到±30度时会显著减弱,显示器的一个像素射出的光线可能还是会覆盖到液晶透镜阵列中一个以上的液晶透镜中,从而在相邻像素之间会产生串扰(crosstalk)现象,而相邻像素之间的串扰会极大降低显示器的分辨率和显示效果。
发明内容
本发明的实施例提供了一种显示装置,能够减轻显示装置的像素间的串 扰现象的影响,从而提高显示器的分辨率和显示效果。
第一方面,提供了一种显示装置,包括:显示层,包括像素阵列;第一透镜层,包括第一透镜阵列,用于将通过第一透镜阵列的光线偏转至不同的投射方向,以实现立体视差;第二透镜层,包括第二透镜阵列,其中第二透镜层设置在第一透镜层与显示层之间,第二透镜阵列用于将像素阵列射出的光束投射到第一透镜阵列上或者投射到第一透镜阵列的焦距内。
结合第一方面,在第一种可能的实现方式中,在第二透镜阵列中的每个第二透镜的焦距小于第一透镜阵列与第二透镜阵列之间的距离。
结合第一方面或第一种可能的实现方式,在第二种可能的实现方式中,第二透镜阵列中的每个第二透镜的焦距大于或等于第一透镜阵列与第二透镜阵列之间的距离的二分之一;或者,第二透镜阵列中的每个第二透镜的焦距大于或等于第一透镜阵列与显示层之间的距离的四分之一。
结合第一方面或第一方面的上述任一可能的实现方式,在第三种可能的实现方式中,第一透镜阵列为液晶透镜阵列,液晶透镜阵列包括液晶层和设置在液晶层两侧的透明电极,透明电极用于控制液晶层将通过液晶透镜阵列的光线偏转至不同的投射方向。
结合第一方面或第一方面的上述任一可能的实现方式,在第四种可能的实现方式中,像素阵列包括多个像素,第一透镜阵列包括多个第一透镜,第二透镜阵列包括多个第二透镜,多个第一透镜与多个像素一一对应,多个第二透镜与多个像素一一对应。
结合第四种可能的实现方式,在第五种可能的实现方式中,多个像素中的每个像素包括多个子像素。
结合第一方面或第一方面的上述任一可能的实现方式,在第六种可能的实现方式中,第一透镜层还包括:第一透明基板,设置在第一透镜阵列与第二透镜层之间,显示层还包括:第二透明基板,设置在第二透镜层与像素阵列之间。
结合第六种可能的实现方式,在第七种可能的实现方式中,第二透镜层还包括第三透明基板,第三透明基板设置在第二透镜阵列与第一透明基板之间,第二透镜阵列设置在第三透明基板的与第二透镜层相对的一侧上,显示装置还包括:第一间隔元件,设置在第一透明基板和第三透明基板之间,用于在第一透明基板与第二透镜层之间形成空隙;第二间隔元件,设置在第二 透明基板和第三透明基板之间,用于在第二透明基板与第二透镜层之间形成空隙。
结合第七种可能的实现方式,在第八种可能的实现方式中,第一透明基板的厚度为300微米,第二透镜层的厚度为225微米,第二透明基板的厚度为100微米。
结合第六种可能的实现方式,在第九种可能的实现方式中,第二透镜阵列设置在第一透明基板的与第二透镜层相对的一侧上,显示装置还包括:第一间隔元件,设置在第一透明基板和第二透明基板之间,用于在第二透明基板与第二透镜层之间形成空隙。
结合第九种可能的实现方式,在第十一种可能的实现方式中,第一透明基板的厚度为300微米,第二透明基板的厚度为300微米。
结合第六种可能的实现方式,在第十二种可能的实现方式中,第二透镜阵列为柱透镜阵列。
结合第十二种可能的实现方式,在第十三种可能的实现方式中,第一透明基板的厚度为300微米,第二透镜层的厚度为225微米,第二透明基板的厚度为100微米。
第二方面,提供一种终端,包括:如第一方面所述的显示装置。
在上述技术方案中,可以通过在显示装置的第一透镜阵列与显示装置的像素阵列之间设置第二透镜阵列,用于将像素阵列发射的光投射到第一透镜阵列上,这样能够减轻显示装置的像素间的串扰现象的影响,从而提高了显示器的分辨率和显示效果。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的一个实施例的显示装置的结构示意图。
图2是本发明的另一实施例的显示装置的结构示意图。
图3是本发明的另一实施例的显示装置的结构示意图。
图4是本发明的又一实施例的显示装置的结构示意图。
图5是本发明的又一实施例的显示装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,在本发明的实施例中,立体成像可以指三维显示或自由立体显示。本发明的技术方案可以应用于各种立体成像显示器,尤其是采用电可调液晶技术的立体成像显示器。
图1是本发明的一个实施例的显示装置100的结构示意图。显示装置100包括显示层130、第一透镜层110和第二透镜层120。
显示层130包括像素阵列,例如,该像素阵列可以包括像素131、132、133。第一透镜层110包括第一透镜阵列,例如,第一透镜阵列可以包括第一透镜111、112、113,用于将通过第一透镜阵列的光线偏转至不同的投射方向,以实现立体视差。第二透镜层120包括第二透镜阵列,第二透镜阵列包括第二透镜121、122、123,其中第二透镜层120设置在第一透镜层110与显示层130之间,第二透镜阵列121用于将像素阵列射出的光束投射到第一透镜阵列上或者投射到所述第一透镜阵列的焦距内。
显示装置100可以是自由立体显示器,也可以是其它类型的3D成像装置。显示装置可以为终端(例如,移动终端)的显示装置,例如,第一透镜阵列上设置有终端电容式触摸屏和前盖玻璃,用于将第二透镜投射的光线投射向电容式触摸屏和前盖玻璃,以实现立体视差,以便终端的用户能够看到立体成像。
换句话说,设置在第一透镜阵列与像素阵列之间的第二透镜阵列起到了光中继的作用,相当于缩短了第一透镜阵列与像素阵列之间的距离,这样能够将每个像素成像在对应的第一透镜附近甚至是对应的第一透镜的光学平面上。
根据本发明的实施例,将像素投射到第一透镜的焦距内相当于在第一透镜的EFL之内有一个实际像素。因为这些投射过来的像素非常靠近第一透镜层,因此能够减小第一透镜层上相邻像素成像之间的串扰。换句话说,第二 透镜层的存在减少了显示层的像素到第一透镜层的距离。这是一个光学中继(或传递)过程,即将显示层的像素转移到了第一透镜层。这样,每个第一透镜都会接收到与其对应的像素的绝大部分光束,而不会接收到或很少接收到相邻像素的光束,这样就能够保证期望的高清3D的视觉体验。而且,像素在几百微米距离的转移不会对原显示装置的2D视觉体验造成干扰。
本发明实施例可以通过在显示装置的第一透镜阵列与显示装置的像素阵列之间设置第二透镜阵列,用于将像素阵列发射的光投射到第一透镜阵列上,这样能够减轻显示装置的像素间的串扰现象的影响,从而提高了显示器的分辨率和显示效果。
另外,这样的光学中继(或传递)的设计可以允许灵活地配置像素平面和第一透镜阵列的EFL的光学匹配。例如,这些投射的像素的大小可以很好得根据第一透镜的能力(例如,EFL)来调节,比如,小的像素投射到小的第一透镜上可以获得大的转向角度。
为了方便描述,图1仅示出了显示装置的一部分,即仅示出了三个像素、三个第一透镜和三个第二透镜,本领域技术人员应理解的是,显示装置可以包括更多像素、第一透镜和第二透镜。
还应理解,像素、第一透镜和第二透镜可以是一一对应的,但本发明的实施例并不限于此,例如,也可以是一个第一透镜或第二透镜对应多个像素,或者一个像素包括多个子像素,也可以是多个第二透镜对应一个第一透镜,或者一个第二透镜对应多个第一透镜,等等。
还应理解,第一透镜或第二透镜可以是棱柱型透镜,例如,一个棱柱型透镜可以包括多个第一透镜或第二透镜,一个棱柱型透镜可以对应一行像素或一列像素,本发明的实施例对此不作限定,第一透镜或第二透镜也可以是其它类型的透镜,例如,圆型透镜,一个透镜可以对应一个像素。
还应理解,透镜的焦距通常可以用有效焦距(effective focal length,EFL)来表示,例如,有效焦距可以是透镜的主点(principal point)到焦点(Point of focus)的距离。
根据本发明的实施例,第二透镜阵列中的每个第二透镜的焦距小于或等于第一透镜阵列与第二透镜阵列之间的距离。
根据本发明的实施例,第二透镜阵列中的每个第二透镜的焦距大于或等于第一透镜阵列与第二透镜阵列之间的距离的二分之一。
应理解,第二透镜阵列中的每个第二透镜的焦距也可以满足其它条件,例如,第二透镜阵列中的每个第二透镜的焦距也可以大于或等于第一透镜阵列与第二透镜阵列之间的距离的三分之一或四分之一,只要第二透镜阵列能够将像素阵列射出的光束投射到第一透镜阵列上即可。
可替代地,作为一另实施例,第二透镜阵列中的每个第二透镜的焦距可以大于或等于第一透镜阵列与所述显示层之间的距离的四分之一。
根据本发明的实施例,像素阵列包括多个像素,第一透镜阵列包括多个第一透镜,第二透镜阵列包括多个第二透镜,多个第一透镜与多个像素一一对应,多个第二透镜与多个像素一一对应。
换句话说,一个透镜只覆盖一个像素。例如,像素可以是单色像素,红色像素、绿色像素或蓝色像素,根据本发明的实施例并不限于此,像素也可以是三原色像素。
根据本发明的实施例,第一透镜阵列为液晶透镜阵列,液晶透镜阵列包括液晶层和设置在液晶层两侧的透明电极,透明电极用于控制液晶层将通过液晶透镜阵列的光线偏转至不同的投射方向。
可替代地,第一透镜阵列也可以由施加电场时能够改变折射率的其它晶体材料构成,例如,可以由锂酸铌晶体构成。
根据本发明的实施例,所述像素阵列包括多个像素,所述第一透镜阵列包括多个第一透镜,所述第二透镜阵列包括多个第二透镜,所述多个第一透镜与所述多个像素一一对应,所述多个第二透镜与所述多个像素一一对应。
例如,多个第二透镜为多个微透镜组成的微透镜阵列。多个液晶透镜可以是由微透镜构成的液晶透镜阵列。液晶透镜阵列中的每个微透镜只会接收到与该微透镜相对应的像素发来的出射光,不会接收到相邻像素的出射光,这样能够保证高清的3D的视觉体验。
根据本发明的实施例,多个像素中的每个像素包括多个子像素。
换句话说,一个透镜可以覆盖多个子像素。例如,像素可以是三原色像素,该三原色像素可以包括红色子像素、绿色子像素和蓝色子像素。
根据本发明的实施例,液晶透镜阵列中的每个液晶透镜的焦距小于或等于50微米。
这样的光学中继(或传递)的设计可以允许像素平面和LC微透镜阵列EFL的范围的光学匹配灵活地进行配置。
下面结合具体例子,更加详细地描述本发明的实施例。
图2是本发明的另一实施例的显示装置200的结构示意图。显示装置200是图1显示装置100的例子。显示装置200包括显示层230、第一透镜层210和第二透镜层220,与图1的显示层130、第一透镜层110和第二透镜层120类似,在此不再赘述。
在本实施例中,第一透镜层210包括:第一透镜阵列、第四透明基板214和第一透明基板215。第一透镜阵列为液晶透镜阵列,液晶透镜阵列包括液晶层218、第一透明电极216和第二透明电极217。第一透明电极216和第二透明电极217设置在液晶层218两侧,用于控制液晶层将通过液晶透镜阵列的光线偏转至不同的投射方向。
第一透明基板215设置在第一透镜阵列与第二透镜层220之间。第四透明基板214可以是显示装置200所在终端的前面板或触摸屏。例如,当显示装置为移动终端的显示装置时,第四透明基板214可以为移动终端的电容式触摸屏和前盖玻璃。第一透明电极216可以设置在前面板或触摸屏上,第二透明电极217可以设置在第一透明基板215上。第一透明电极216和第二透明电极217可以为诸如铟锡氧化物(Indium Tin Oxide,ITO)之类的透明导电材料,第一透明基板可以为玻璃基板,其厚度可以在100mm至300mm之间。由于已有终端中第一透镜层的透明基板均为300微米,因此,将本实施例的第一透明基板也设置为300微米,可以减少对已有终端的改造。
第二透镜层220包括第二透镜阵列,第二透镜阵列可以为微透镜阵列,包括多个微透镜(Microlens)221、222、223。例如,第二透镜阵列为柱透镜阵列。第二透镜层220设置在第一透镜层210与显示层230之间,第二透镜阵列用于将像素阵列射出的光束投射到第一透镜阵列上。例如,多个微透镜221、222、223分别将多个像素231、232和233发出的光束投射在液晶阵列上,分别成像为像素211、212、213。多个微透镜221、222、223可以是独立的设置在透明基板上,也可以和透明基板是一个整体。
根据本发明的实施例的微透镜可以采用下面的工艺来制备:1)光刻,2)光抗蚀剂处理;3)反应离子蚀刻(Reactive Ion Etching,RIE);4)喷墨打印;和5)激光加工的主标记和压印。上述制备工艺为常规技术手段,在此不再赘述。
可替代地,本发明的实施例的微透镜阵列也可以采用已有的商业产品, 例如,在589nm下的折射率为1.458的熔融石英(fused silica)透镜。由于大部分已有的微透镜阵列比较厚,例如,其厚度在0.7mm至1.2mm之间,因此需要进行结构化和抛光处理,使其厚度在需要的范围之内(例如,大约200微米)。例如,可以对厚的微透镜阵列通过超声波研磨或喷砂进行结构化处理,并且进一步抛光至本发明的实施例所需的厚度、平整度和粗糙度。根据本发明的实施例不限于此,也可以采用化学蚀刻的方法使其厚度保持在需要的范围之内。
根据本发明的实施例,显示层可以用于按照时分方式显示图像,例如,显示针对不同投射方向的图像,其中不同投射方向对应于不同观察方向。第一透镜层用于根据所施加的时分变化的电场,将针对不同投射方向的图像的光线交替地偏转至不同的投射方向,以呈现裸眼能够看到的立体图像。
根据本发明的实施例,液晶在施加电场后能够改变折射率,不同的电场可以对应于不同的折射率,即采用液晶在电光调制层形成电可调的棱镜阵列。当光线通过施加了电场的液晶时,出射光的相位差会随着外加电场的变化而变化。
另外,为了使得显示装置呈现出来的立体图像的分辨率为全部像素,所施加的电场要满足在视觉暂留的时间内用全部像素显示每个方向的图像,从而提高了自由立体显示的分辨率。
根据本发明的实施例,可以在已有终端(例如,移动设备)的显示屏幕上设置一层液晶透镜阵列,用来控制显示层射出光束(或波束)的方向,使光束连续偏转至左边和右边,从而让使用终端的用户获得立体视差。液晶透镜阵列可以使用电控液晶作为材料,来提供一种线性的相位梯度,这样可以在时域上重复地将从每个显示像素中射出的光束偏转向两个或者更多的角度,从而形成裸眼3D的显示模式。液晶透镜阵列的每个微透镜的间距可以设置成与终端的显示层的像素相同,这样,3D显示模式下的终端也具有2D显示模式的分辨率。另外,本发明的实施例在液晶透镜阵列与显示层的像素之间再添加一层微透镜阵列,用来解决像素之间的串扰和有效焦距的问题。本发明实施例的液晶阵透镜阵列和微透镜阵列也可以制成独立的结构,直接集成到已有终端的显示器上方。
根据本发明的实施例,第一透镜阵列的每个微透镜只会接收到与其相对应的像素的出射光,不会或者很少接收到相邻像素的出射光,这样能够保证 高清3D的视觉体验。
图3是本发明的另一实施例的显示装置300的结构示意图。显示装置300是图2显示装置200的例子。显示装置300包括显示层330、第一透镜层310和第二透镜层320,与图2的显示层230、第一透镜层210和第二透镜层220类似,在此不再赘述。
在本实施例中,显示层包括:像素阵列、第二透明基板334和第五透明基板335。第二透明基板334设置在第二透镜层320与像素阵列之间。像素阵列包括像素331、332、333。
第一透镜层310包括:第一透镜阵列、第四透明基板314和第一透明基板315。第一透镜阵列为液晶透镜阵列,液晶透镜阵列包括液晶层318、第一透明电极316和第二透明电极317。第一透明电极316和第二透明电极317设置在液晶层318两侧,用于控制液晶层将通过液晶透镜阵列的光线偏转至不同的投射方向。
第一透明基板315设置在第一透镜阵列与第二透镜层320之间。第四透明基板314可以是显示装置300所在终端的前面板或触摸屏。第一透明电极316可以设置在前面板或触摸屏上,第二透明电极317可以设置在第一透明基板315上。第一透明电极316和第二透明电极317可以为诸如ITO之类的透明导电材料。第一透明基板可以为玻璃基板,其厚度可以在100mm至300mm之间。
第二透镜层320包括第二透镜阵列和第三透明基板324。第三透明基板324设置在第二透镜阵列与第一透明基板315之间,第二透镜阵列设置在第三透明基板324的与第二透镜层320相对的一侧上。第二透镜阵列可以为微透镜阵列,包括多个微透镜321、322、323。第二透镜层320设置在第一透镜层310与显示层330之间,第二透镜阵列用于将像素阵列射出的光束投射到第一透镜阵列上。例如,多个微透镜321、322、323分别将多个像素331、332和333发出的光束投射在液晶阵列上,分别成像为像素311、312、313。例如,像素331、332和333可以分别为红、绿、蓝三原色像素。多个微透镜321、322、323可以是独立的设置在第三透明基板324上,也可以与第三透明基板324是一个整体。可替代地,第二透镜阵列也可以为柱透镜阵列。
在本实施例中,显示装置300还包括:第一间隔元件340和第二间隔元件。第一间隔元件340设置在第一透明基板315和第三透明基板324之间, 用于在第一透明基板315与第二透镜层320之间形成空隙。第二间隔元件350设置在第二透明基板334和第三透明基板324之间,用于在第二透明基板334与第二透镜层320之间形成空隙。例如,第一间隔元件340和第二间隔元件光学胶或间隔球(spacers)。间隔球的大小或者光学胶的厚度可以是几微米。空隙中可以是空气。由于微透镜阵列的折射率与空气的折射率不同,从而使得微透镜通产生聚焦能力。可替代地,空隙中也可以填充其它其他介质(例如,折射率为1左右的气体)。
在实施例中,第一透明基板的315厚度可以为300微米,第二透镜层320的厚度可以为225微米,第二透明基板334的厚度可以为100微米。由于已有终端中显示层和第一透镜层的透明基板均为300微米,因此,将本实施例的第一透明基板的厚度设置为300微米,将第二透镜层320的厚度设置为225微米,并将第二透明基板334的厚度设置为100微米,可以减少对已有终端的改造,并且不会显著增加终端的厚度。
图4是本发明的又一实施例的显示装置400的结构示意图。显示装置400是图2显示装置200的例子。显示装置400包括显示层430、第一透镜层410和第二透镜层420,与图2的显示层230、第一透镜层210和第二透镜层220类似,在此不再赘述。
在本实施例中,显示层包括:像素阵列、第二透明基板434和第五透明基板435。第二透明基板434设置在第二透镜层420与像素阵列之间。像素阵列包括像素431、432、433。
第一透镜层410包括:第一透镜阵列、第四透明基板414和第一透明基板415。第一透镜阵列为液晶透镜阵列,液晶透镜阵列包括液晶层418、第一透明电极416和第二透明电极417。第一透明电极416和第二透明电极417设置在液晶层418两侧,用于控制液晶层将通过液晶透镜阵列的光线偏转至不同的投射方向。
第一透明基板415设置在第一透镜阵列与第二透镜层420之间。第四透明基板414可以是显示装置400所在终端的前面板或触摸屏。第一透明电极416可以设置在前面板或触摸屏上,第二透明电极417可以设置在第一透明基板415上。第一透明电极416和第二透明电极417可以为诸如ITO之类的透明导电材料。第一透明基板可以为玻璃基板,其厚度可以在100mm至300mm之间。
第二透镜层420包括第二透镜阵列和第三透明基板424。第三透明基板424设置在第二透镜阵列与第一透明基板415之间,第二透镜阵列设置在第三透明基板424的与第二透镜层420相对的一侧上。第二透镜阵列可以为微透镜阵列,包括多个微透镜421、422。第二透镜层420设置在第一透镜层410与显示层430之间,第二透镜阵列用于将像素阵列射出的光束投射到第一透镜阵列上。例如,微透镜421将多个像素431、432和433发出的光束投射在液晶阵列上,分别成像为像素411、412、413。例如,像素431、432和433可以分别为红、绿、蓝三原色像素。多个微透镜421、422、423可以是独立的设置在第三透明基板424上,也可以与第三透明基板424是一个整体。。可替代地,第二透镜阵列也可以为柱透镜阵列。与图3的实施例不同的是每个第二透镜对应多个像素。由于这种技术方案减少了第二透镜的数量,从而使得制造工艺更加简单。
在本实施例中,显示装置400还包括:第一间隔元件440和第二间隔元件。第一间隔元件440设置在第一透明基板415和第三透明基板424之间,用于在第一透明基板415与第二透镜层420之间形成空隙。第二间隔元件450设置在第二透明基板434和第三透明基板424之间,用于在第二透明基板434与第二透镜层420之间形成空隙。第一间隔元件440和第二间隔元件可以光学胶或间隔球。例如,可以采用聚合物垫片或间隔球将透明基板粘合在一起。间隔球的直径或者聚合物垫片的厚度可以是几微米。应理解,空隙中可以是空气,也可以是其它气体。
图5是本发明的又一实施例的显示装置500的结构示意图。显示装置500是图2显示装置200的例子,显示装置500包括显示层530、第一透镜层510和第二透镜层520,与图2的显示层230、第一透镜层210和第二透镜层220类似,在此不再赘述。
在本实施例中,显示层530包括:像素阵列、第二透明基板534和第五透明基板535。第二透明基板534设置在第二透镜层520与像素阵列之间。像素阵列包括像素531、532、533。
第一透镜层510包括:第一透镜阵列、第四透明基板514和第一透明基板515。第一透镜阵列为液晶透镜阵列,液晶透镜阵列包括液晶层518、第一透明电极516和第二透明电极517。第一透明电极516和第二透明电极517设置在液晶层518两侧,用于控制液晶层将通过液晶透镜阵列的光线偏转至 不同的投射方向。
第一透明基板515设置在第一透镜阵列与第二透镜层520之间。第四透明基板514可以是显示装置500所在终端的前面板或触摸屏。第一透明电极516可以设置在前面板或触摸屏上,第二透明电极517可以设置在第一透明基板515上。第一透明电极516和第二透明电极517可以为诸如ITO之类的透明导电材料。第一透明基板可以为玻璃基板,其厚度可以在100mm至300mm之间。
第二透镜层520包括第二透镜阵列。第二透镜阵列设置在第一透明基板515的与第二透镜层520相对的一侧上。第二透镜阵列可以为微透镜阵列,包括多个微透镜521、522、523。第二透镜层520设置在第一透镜层510与显示层530之间,第二透镜阵列用于将像素阵列射出的光束投射到第一透镜阵列上。例如,微透镜521、522、523将多个像素531、532和533发出的光束投射在液晶阵列上,分别成像为像素511、512、513。例如,像素531、532和533可以分别为红、绿、蓝三原色像素。与图3的实施例不同的是第二透镜直接设置(例如,打印)在第一透明基板上。该方案的制作工艺简单,而且不会显著增加已有终端的厚度。
显示装置500还包括:第一间隔元件540,设置在第一透明基板515和第二透明基板534之间,用于在第二透明基板534与第二透镜层520之间形成空隙。换句话说,第一间隔元件540用于在第二透明基板534与第二透镜阵列之间形成空隙。
在本实施例中,第一透明基板515的厚度可以为300微米,第二透明基板534的厚度可以为300微米。由于已有终端中显示层和第一透镜层的透明基板均为300微米,因此,将本实施例的第一透明基板和第二透明基板的厚度也设置为300微米,可以减少对已有终端的改造。
可替代地,第二透明基板534的厚度也可以为100微米。
本发明的另一实施例提供了一种终端,包括:如图1至图5的实施例所述的显示装置。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种显示装置,其特征在于,包括:
    显示层,包括像素阵列;
    第一透镜层,包括第一透镜阵列,用于将通过所述第一透镜阵列的光线偏转至不同的投射方向,以实现立体视差;
    第二透镜层,包括第二透镜阵列,其中所述第二透镜层设置在所述第一透镜层与所述显示层之间,所述第二透镜阵列用于将所述像素阵列射出的光束投射到所述第一透镜阵列上或者投射到所述第一透镜阵列的焦距内。
  2. 根据权利要求1所述的显示装置,其特征在于,所述第二透镜阵列中的每个第二透镜的焦距小于所述第一透镜阵列与所述第二透镜阵列之间的距离。
  3. 根据权利要求1或2所述的显示装置,其特征在于,所述第二透镜阵列中的每个第二透镜的焦距大于或等于所述第一透镜阵列与所述第二透镜阵列之间的距离的二分之一;
    或者,
    所述第二透镜阵列中的每个第二透镜的焦距大于或等于所述第一透镜阵列与所述显示层之间的距离的四分之一。
  4. 根据权利要求1至3中的任一项所述的显示装置,其特征在于,所述第一透镜阵列为液晶透镜阵列,所述液晶透镜阵列包括液晶层和设置在所述液晶层两侧的透明电极,所述透明电极用于控制所述液晶层将通过所述液晶透镜阵列的光线偏转至不同的投射方向。
  5. 根据权利要求1至4中的任一项所述的显示装置,其特征在于,所述像素阵列包括多个像素,所述第一透镜阵列包括多个第一透镜,所述第二透镜阵列包括多个第二透镜,所述多个第一透镜与所述多个像素一一对应,所述多个第二透镜与所述多个像素一一对应。
  6. 根据权利要求5所述的显示装置,其特征在于,所述多个像素中的每个像素包括多个子像素。
  7. 根据权利要求1至6中的任一项所述的显示装置,其特征在于,所述第一透镜层还包括:第一透明基板,设置在所述第一透镜阵列与所述第二透镜层之间,所述显示层还包括:第二透明基板,设置在所述第二透镜层与所述像素阵列之间。
  8. 根据权利要求7所述的显示装置,其特征在于,所述第二透镜层还包括第三透明基板,所述第三透明基板设置在所述第二透镜阵列与所述第一透明基板之间,所述第二透镜阵列设置在所述第三透明基板的与所述第二透镜层相对的一侧上,所述显示装置还包括:
    第一间隔元件,设置在所述第一透明基板和所述第三透明基板之间,用于在所述第一透明基板与所述第二透镜层之间形成空隙;
    第二间隔元件,设置在所述第二透明基板和所述第三透明基板之间,用于在所述第二透明基板与所述第二透镜层之间形成空隙。
  9. 根据权利要求8所述的显示装置,其特征在于,所述第一透明基板的厚度为300微米,所述第二透镜层的厚度为225微米,所述第二透明基板的厚度为100微米。
  10. 根据权利要求7所述的显示装置,其特征在于,所述第二透镜阵列设置在所述第一透明基板的与所述第二透镜层相对的一侧上,所述显示装置还包括:
    第一间隔元件,设置在所述第一透明基板和第二透明基板之间,用于在所述第二透明基板与所述第二透镜层之间形成空隙。
  11. 根据权利要求10所述的显示装置,其特征在于,所述第一透明基板的厚度为300微米,所述第二透明基板的厚度为300微米。
  12. 根据权利要求7所述的显示装置,其特征在于,所述第二透镜阵列为柱透镜阵列。
  13. 根据权利要求12所述的显示装置,其特征在于,所述第一透明基板的厚度为300微米,所述第二透镜层的厚度为225微米,所述第二透明基板的厚度为100微米。
  14. 一种终端,其特征在于,包括:如权利要求1至13中的任一项所述的显示装置。
PCT/CN2015/079427 2014-05-22 2015-05-21 显示装置 WO2015176663A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15796351.3A EP3147702A4 (en) 2014-05-22 2015-05-21 Display device
US15/331,220 US20170038597A1 (en) 2014-05-22 2016-10-21 Display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410219413.9 2014-05-22
CN201410219413.9A CN105093541A (zh) 2014-05-22 2014-05-22 显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/331,220 Continuation US20170038597A1 (en) 2014-05-22 2016-10-21 Display apparatus

Publications (1)

Publication Number Publication Date
WO2015176663A1 true WO2015176663A1 (zh) 2015-11-26

Family

ID=54553435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079427 WO2015176663A1 (zh) 2014-05-22 2015-05-21 显示装置

Country Status (4)

Country Link
US (1) US20170038597A1 (zh)
EP (1) EP3147702A4 (zh)
CN (1) CN105093541A (zh)
WO (1) WO2015176663A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180203231A1 (en) * 2017-01-13 2018-07-19 Microsoft Technology Licensing, Llc Lenslet near-eye display device
CN107884940A (zh) * 2017-11-28 2018-04-06 腾讯科技(深圳)有限公司 显示模组、头戴式显示设备及图像立体显示方法
CN108469684B (zh) * 2018-05-22 2024-04-30 成都工业学院 一种透明显示器及一种显示系统
CN109031655B (zh) * 2018-08-23 2022-07-08 京东方科技集团股份有限公司 透镜组件、显示装置
JP2022520807A (ja) * 2019-02-18 2022-04-01 アールエヌブイテック リミテッド 高解像度3dディスプレイ
CN109934138B (zh) * 2019-02-28 2021-08-03 广州国显科技有限公司 显示装置及移动终端
US11516374B2 (en) * 2019-06-05 2022-11-29 Synaptics Incorporated Under-display image sensor
US11153513B2 (en) 2019-08-19 2021-10-19 Synaptics Incorporated Light source for camera
US11076080B2 (en) 2019-12-05 2021-07-27 Synaptics Incorporated Under-display image sensor for eye tracking
WO2022039889A1 (en) 2020-08-19 2022-02-24 OLEDWorks LLC Pixel circuit for crosstalk reduction
TWI808373B (zh) * 2021-01-20 2023-07-11 幻景啟動股份有限公司 浮空三維影像顯示系統
CN115202064B (zh) * 2021-04-12 2023-10-03 幻景启动股份有限公司 立体影像显示设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080079805A1 (en) * 2006-09-29 2008-04-03 Ayako Takagi Stereoscopic image display apparatus and stereoscopic image producing method
CN103186008A (zh) * 2011-12-30 2013-07-03 上海天马微电子有限公司 电控液晶透镜面板及3d/2d可切换显示装置
CN103345068A (zh) * 2013-07-10 2013-10-09 京东方科技集团股份有限公司 一种立体显示装置
CN103676171A (zh) * 2013-12-19 2014-03-26 京东方科技集团股份有限公司 3d显示装置
CN103777396A (zh) * 2014-02-17 2014-05-07 宁波维真显示科技有限公司 用于液晶显示屏的2d/3d图像切换显示装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2307058A (en) * 1995-11-13 1997-05-14 Thomson Multimedia Sa Stereoscopic display with lens,prism and barrier arrays
JP3229824B2 (ja) * 1995-11-15 2001-11-19 三洋電機株式会社 立体映像表示装置
US6859240B1 (en) * 2000-01-27 2005-02-22 Mems Optical Inc. Autostereoscopic display
WO2003019952A1 (en) * 2001-08-21 2003-03-06 Koninklijke Philips Electronics N.V. Autostereoscopic display with observer tracking
JP4934975B2 (ja) * 2005-03-17 2012-05-23 エプソンイメージングデバイス株式会社 画像表示装置
US7690829B2 (en) * 2005-03-29 2010-04-06 Konica Minolta Holdings, Inc. Surface light emitter and display apparatus
US7813042B2 (en) * 2005-09-12 2010-10-12 Sharp Kabushiki Kaisha Multiple-view directional display
JP5173830B2 (ja) * 2005-12-14 2013-04-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 表示装置及び方法
KR101350475B1 (ko) * 2007-04-12 2014-01-15 삼성전자주식회사 고효율 2차원/3차원 겸용 영상 표시장치
WO2009098622A2 (en) * 2008-02-08 2009-08-13 Koninklijke Philips Electronics N.V. Autostereoscopic display device
GB2457691A (en) * 2008-02-21 2009-08-26 Sharp Kk Display with regions simultaneously operable in different viewing modes
KR101310377B1 (ko) * 2008-10-17 2013-09-23 엘지디스플레이 주식회사 영상표시장치
US20120162763A1 (en) * 2010-12-28 2012-06-28 Lg Display Co., Ltd. Image display device
KR101832266B1 (ko) * 2011-03-31 2018-02-27 삼성전자주식회사 입체 영상 표시 장치
KR101921172B1 (ko) * 2011-05-18 2018-11-23 삼성디스플레이 주식회사 표시장치 및 이의 제조 방법
CN102830568B (zh) * 2011-06-15 2016-08-17 三星显示有限公司 液晶透镜及包括该液晶透镜的显示装置
CN103048842A (zh) * 2012-12-10 2013-04-17 京东方科技集团股份有限公司 一种液晶透镜及3d显示装置
CN104199193A (zh) * 2014-07-31 2014-12-10 京东方科技集团股份有限公司 一种2d和3d显示可切换的显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080079805A1 (en) * 2006-09-29 2008-04-03 Ayako Takagi Stereoscopic image display apparatus and stereoscopic image producing method
CN103186008A (zh) * 2011-12-30 2013-07-03 上海天马微电子有限公司 电控液晶透镜面板及3d/2d可切换显示装置
CN103345068A (zh) * 2013-07-10 2013-10-09 京东方科技集团股份有限公司 一种立体显示装置
CN103676171A (zh) * 2013-12-19 2014-03-26 京东方科技集团股份有限公司 3d显示装置
CN103777396A (zh) * 2014-02-17 2014-05-07 宁波维真显示科技有限公司 用于液晶显示屏的2d/3d图像切换显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3147702A4 *

Also Published As

Publication number Publication date
CN105093541A (zh) 2015-11-25
EP3147702A4 (en) 2017-05-17
EP3147702A1 (en) 2017-03-29
US20170038597A1 (en) 2017-02-09

Similar Documents

Publication Publication Date Title
WO2015176663A1 (zh) 显示装置
US8319828B2 (en) Highly efficient 2D-3D switchable display device
JP4725654B2 (ja) レンズアレイデバイスおよび画像表示装置
KR100440956B1 (ko) 2d/3d 겸용 디스플레이
KR101832266B1 (ko) 입체 영상 표시 장치
US7760430B2 (en) 2D-3D switchable autostereoscopic display apparatus
US8786683B2 (en) Stereoscopic display unit
TWI417575B (zh) 電驅動液晶透鏡及使用其之立體顯示器
TWI472802B (zh) 顯示裝置
JP2007226231A (ja) 立体画像変換パネル及びそれを有する立体画像表示装置
US8836873B2 (en) Display devices and methods of manufacturing the same
WO2014190741A1 (zh) 显示装置及其显示模式的切换方法
US9383488B2 (en) Color filter substrate, manufacturing method therefor and 3D display device
US20150185488A1 (en) Double-layered liquid crystal lens and 3d display apparatus
WO2019127964A1 (zh) 集成成像显示系统
JP2013045087A (ja) 3次元映像表示装置
US20140152925A1 (en) Liquid crystal lens module and 3d display device
US20210088808A1 (en) Multi-view display device
US8872988B2 (en) Image display apparatus and methods for displaying images
US10056437B2 (en) Stereoscopic imaging apparatus and user terminal
US9030614B2 (en) Liquid crystal optical element and stereoscopic image display device
TWI477816B (zh) 裸眼式立體顯示裝置及其液晶透鏡
TWI432782B (zh) 立體顯示器以及用於立體顯示器之切換面板
US9575326B2 (en) Stereoscopic image display apparatus
US9658483B2 (en) Liquid crystal lens and display including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796351

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015796351

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015796351

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE