Nothing Special   »   [go: up one dir, main page]

WO2015166999A1 - 発光体及び放射線検出器 - Google Patents

発光体及び放射線検出器 Download PDF

Info

Publication number
WO2015166999A1
WO2015166999A1 PCT/JP2015/063032 JP2015063032W WO2015166999A1 WO 2015166999 A1 WO2015166999 A1 WO 2015166999A1 JP 2015063032 W JP2015063032 W JP 2015063032W WO 2015166999 A1 WO2015166999 A1 WO 2015166999A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
garnet
added
ppm
light emitter
Prior art date
Application number
PCT/JP2015/063032
Other languages
English (en)
French (fr)
Inventor
圭 鎌田
吉川 彰
有為 横田
俊介 黒澤
育宏 庄子
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to US15/305,563 priority Critical patent/US10174247B2/en
Priority to RU2016146155A priority patent/RU2670919C9/ru
Priority to CN201580022146.9A priority patent/CN106459758A/zh
Priority to JP2016516414A priority patent/JP6630879B2/ja
Priority to EP15785582.6A priority patent/EP3138891B1/en
Publication of WO2015166999A1 publication Critical patent/WO2015166999A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/54Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/55Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing beryllium, magnesium, alkali metals or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2012Measuring radiation intensity with scintillation detectors using stimulable phosphors, e.g. stimulable phosphor sheets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation
    • G01T3/06Measuring neutron radiation with scintillation detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/085Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors the device being sensitive to very short wavelength, e.g. X-ray, Gamma-rays

Definitions

  • the present invention absorbs radiation such as gamma rays, X-rays, ⁇ rays, ⁇ rays, neutron rays and high energy photons and emits light containing cerium as an activator for rapidly converting to photons with lower energy. About the body.
  • the present invention also relates to a photon detector or a radiation detector using the light emitter.
  • Light emitters such as scintillators are used in photon detectors or radiation detectors that detect gamma rays, X-rays, ⁇ -rays, ⁇ -rays, neutron rays, etc., which detectors are positron emission nuclide tomography (PET) devices, It is widely applied to medical imaging devices such as X-ray CT, various radiation measuring devices for high energy physics, and resource exploration devices.
  • PET positron emission nuclide tomography
  • positron emission nuclide tomography PET
  • a relatively high-energy gamma ray (annihilation gamma ray: 511 eV) is detected by coincidence counting, so a scintillation detector with high sensitivity and high-speed response is used. It has been.
  • the detector characteristics are required to have high counting rate characteristics and high temporal resolution for removing accidental coincidence noise.
  • TOF-PET Time ⁇ offlight type PET
  • TOF-PET Time ⁇ offlight type PET
  • a high-speed response is required, and it is important that the scintillator used in the radiation detector has a short fluorescence lifetime.
  • scintillators suitable for these radiation detectors have high density and high atomic number (high photoelectric absorption ratio) in terms of detection efficiency, high light-emission requirements, and high light energy. Therefore, it is desired that the crystal has a short fluorescence lifetime (fluorescence decay time) or a highly transparent crystal.
  • fluorescence lifetime fluorescence decay time
  • price is also an important selection factor.
  • a scintillator having a garnet structure As a preferable scintillator applied to various radiation detectors, there is a scintillator having a garnet structure.
  • a Ce-added (Gd, Y, Lu) 3 (Al, Ga) 5 O 12 crystal that is a scintillator having a garnet structure using light emission from the 4f5d level of Ce 3+ has been reported (for example, a patent Reference 1 or non-patent reference 1).
  • Ce addition (Gd, Y, Lu) 3 (Al, Ga) 5 O 12 it has been confirmed that the scintillator characteristics such as density, light emission amount, and fluorescence lifetime change depending on the crystal composition.
  • Gd 3 Al 2 Ga 3 O 12 scintillator has characteristics of density 6.7g / cm 3 , light emission amount 45000photon / MeV, and self-radiation is sufficiently small, so it is not limited to application to PET device, Applications to medical imaging devices such as X-ray CT, various radiation measuring devices for high energy physics, and environmental radiation measuring devices are advancing. On the other hand, the scintillator has a problem that the fluorescence lifetime is as long as about 90 ns.
  • the conventional scintillator having a Ce-added garnet structure has a problem that the fluorescence lifetime is long, the transparency is low, and the light emission amount is small.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a light emitter that has a short fluorescence lifetime, a high transparency, and a large light emission amount, and a radiation detector using the light emitter. And thereby, it is suitable for a light emitter for a radiation detector such as gamma rays, X-rays, ⁇ rays, neutron rays, and provides a light emitter having a short fluorescence decay time and a high emission intensity, and a radiation detector using the light emitter. can do.
  • a radiation detector such as gamma rays, X-rays, ⁇ rays, neutron rays
  • the present invention has the following configurations. That is, the light emitter such as the scintillator or phosphor according to the first aspect of the present invention has the general formula Ce x RE 3-x M 5 + y O 12 + 3y / 2 (where 0.0001 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 0.5 or 0 ⁇ y ⁇ ⁇ 0.5, M is one or more selected from Al, Lu, Ga, Sc, and RE is one or two selected from La, Pr, Gd, Tb, Yb, Y, Lu
  • the garnet phosphor is obtained by co-adding at least one monovalent or divalent cation at a molar ratio of 7000 ppm or less with respect to the total cation. It is characterized by including.
  • the light emitter according to the second aspect of the present invention has a general formula Ce x RE 3-x M 5 + y O 12 + 3y / 2 (where 0.0001 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 0.5 or 0 ⁇ y ⁇ ⁇ 0.5, M Is one or more selected from Al, Lu, Ga and Sc, and RE is one or more selected from La, Pr, Gd, Tb, Yb, Y and Lu)
  • a garnet luminescent material in which Li is co-added at a molar ratio of 7000 ppm or less with respect to all cations is included in the luminescent material having a garnet structure.
  • the light emitter according to the second aspect of the present invention has the general formula Ce x RE 3-x Al 5 + y O 12 + 3y / 2 (where 0.0001 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 0.5 or 0 ⁇ y ⁇ ⁇ 0.5, and RE is one or more selected from Y and Lu), and a garnet in which Mg is co-added at a molar ratio of 7000 ppm or less with respect to all cations. It may be a light emitter characterized by including a light emitter.
  • the light emitter according to the second aspect of the present invention has a general formula Ce x Gd 3-x (Ga z Al 1-z ) 5 + y O 12 + 3y / 2 (where 0.0001 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 0.5 or 0 ⁇ Y ⁇ ⁇ 0.5, 0.49 ⁇ z ⁇ 0.7), and a garnet phosphor in which Li or Mg is co-added at a molar ratio of 7000 ppm or less with respect to all cations.
  • the light-emitting body characterized by including may be sufficient.
  • the phosphor according to the second aspect of the present invention is obtained by heat-treating a raw material at 1000 ° C. or more, has a light emission amount of 20000 photon / MeV or more, has a time resolution of 300 ps or less, and has a phosphorescence component of 0.5% or less. Yes, it may be made of a transparent body having a diffuse transmittance of 80% or more.
  • the raw material is a compound containing Ce, RE (eg, Gd), and M (eg, Ga, Al).
  • a light emitter such as a scintillator or a phosphor according to the third aspect of the present invention has a general formula Gd 3-xz Ce x RE z M 5 O 12 (where 0.0001 ⁇ x ⁇ 0.1, 0 ⁇ z ⁇ 3, M is one or more selected from Al, Lu, Ga, and Sc, and RE is one or more selected from La, Pr, Tb, Yb, Y, and Lu).
  • a garnet phosphor in which at least one monovalent or divalent cation is co-added at a molar ratio of 7000 ppm or less with respect to the total cation. .
  • a light emitter is a light emitter having a garnet structure using light emission from the 4f5d level of Ce 3+ , and has a general formula Gd 3-xz Ce x RE z M 5 + y O 12 + 3y / 2 (However, 0.0001 ⁇ x ⁇ 0.1, 0 ⁇ y ⁇ 0.5 or 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 3, M is one or more selected from Al, Lu, Ga, Sc, And RE is one or more selected from La, Pr, Tb, Yb, Y, and Lu), and at least one monovalent or divalent luminescent material having a garnet structure.
  • a luminescent material characterized in that it contains a garnet luminescent material in which the cation is co-added at a molar ratio of 7000 ppm or less with respect to the total cation.
  • the co-added divalent cation is preferably at least one selected from Mg and Ca, and most preferably Mg.
  • the light emitter according to the third aspect of the present invention may be a transparent body obtained by heat-treating the raw material at 1000 ° C. or higher and having a light emission amount of 40000 photon / MeV or higher and a time resolution of 240 ps or lower.
  • the raw material is a compound containing Gd, Ce, M (eg, Al, Ga), and a monovalent or divalent cation, and optionally also RE.
  • the phosphors according to the first to third aspects of the present invention may have a fluorescence wavelength of 200 to 600 nm emitted when excited by radiation such as gamma rays or high energy photons.
  • the light emitters using light emission from the Ce 3+ 4f5d level include monovalent alkali metal ions such as Li, Na, K, Rb and Cs, and Be, By co-adding at least one selected from divalent alkaline earth metal ions such as Mg, Ca, Sr, and Ba at a molar ratio of 7000 ppm or less with respect to the total cation, the phosphor without co-addition can be obtained.
  • the fluorescence decay time and emission rise time are shortened by 5% or more, and the emission intensity is increased by 5% or more. Therefore, the sampling time for fluorescence measurement can be shortened, and the high time resolution, that is, the sampling interval. Reduction can be expected. When high time resolution is realized, the number of samplings per unit time can be increased. Further, the energy resolution is improved by increasing the emission intensity. Also, radiation resistance is improved.
  • the cerium activated phosphors according to the first to third aspects of the present invention include Li and Mg, monovalent alkali metal ions such as Li, Na, K, Rb, and Cs, and 2 such as Be, Mg, Ca, Sr, and Ba. At least one selected from valent alkaline earth metal ions in a molar ratio of 1 ppm to 7000 ppm, preferably 5 ppm to 6000 ppm, more preferably 10 ppm to 5000 ppm, based on the total cation. It is desirable to contain it in a molar ratio of 20 ppm to 400 ppm.
  • the light emitters according to the first to third aspects of the present invention desirably have high transparency from the viewpoint of requiring high light emission amount, high time resolution, and high energy resolution.
  • it has a diffuse transmittance of 70% or more per cm at the emission wavelength, more preferably a diffuse transmittance of 85% or more per cm, and even more preferably 95% or more per cm.
  • the light emitters according to the first to third aspects of the present invention can improve the time resolution by co-adding monovalent or divalent cations such as Li and Mg.
  • monovalent or divalent cations such as Li and Mg.
  • the size is ⁇ 3 ⁇ 3 mm
  • a time resolution of 240 ps or less is obtained with the light emitter according to the second invention
  • 300 ps or less is obtained with the light emitter according to the third invention. It is done.
  • the light emission amount correlates with the integrated value of the voltage pulse signal.
  • the light emission amount increases as the light emission intensity increases, and the light emission amount decreases as the light emission rise time and the fluorescence lifetime become shorter.
  • LYSO is an existing PET scintillator, preferably 24000 photon / MeV or more, More preferably, it is 30000 photon / MeV or more, and still more preferably 40000 photon / MeV or more.
  • the scintillator crystal composed of the light emitters according to the first to third aspects of the present invention having such short-lived light emission is used as a scintillator for fast response radiation detection for TOF-PET, PET, SPECT, and CT. It is expected to be used, and is expected to be applied to various radiation measuring devices for high energy physics and environmental radiation measuring instruments.
  • the light emitter according to the present invention including the light emitters according to the first to fourth aspects of the present invention can be used as a starting material in the manufacturing method, and a general oxide material can be used as a scintillator crystal.
  • a high-purity raw material of 99.99% or higher (4N or higher).
  • these starting materials are weighed and mixed so as to have a target composition at the time of melt formation. Further, these raw materials are particularly preferably those containing as little impurities as possible (for example, 1 ppm or less) other than the target composition.
  • the manufacturing method of the light emitters according to the first to fourth aspects of the present invention it is preferable to grow crystals in an inert gas (eg, Ar, N 2 , He, etc.) atmosphere.
  • a mixed gas of an inert gas (for example, Ar, N 2 , He, etc.) and oxygen gas, carbon dioxide gas, or carbon monoxide gas may be used.
  • the partial pressure of oxygen is preferably 2% or less for the purpose of preventing oxidation of the crucible.
  • oxygen gas carbon dioxide gas, carbon monoxide gas, inert gas (eg, Ar, N 2 , He, etc.), and inert gas (eg, Ar, N) 2 , He, etc.) and oxygen gas, carbon dioxide gas, and carbon monoxide gas
  • inert gas eg, Ar, N 2 , He, etc.
  • inert gas eg, Ar, N 2 , He, etc.
  • inert gas eg, Ar, N 2 , He, etc.
  • oxygen gas, carbon dioxide gas, and carbon monoxide gas can be used.
  • the oxygen partial pressure is not limited to 2%, and any mixture ratio from 0% to 100% may be used.
  • the light emitters according to the first to fourth aspects of the present invention are preferably manufactured by heat treatment at a temperature of 1000 ° C. or higher.
  • the micro pull-down method which is a melt growth method in which heat treatment is performed at or above the melting point of the light emitter.
  • it is manufactured by liquid phase methods such as the chocolate ski method (pull-up method), Bridgman method, zone melting method (zone melt method), or edge-limited thin film supply crystal growth (EFG method), or heat treatment at 1000 ° C. or higher.
  • Flux method and solution method such as top seeded solution growth (TSSG) method, atmosphere sintering method, reaction sintering method, sintering method such as hot isostatic pressing method etc. It is.
  • the chocolate ski method or the Bridgman method is preferable in order to obtain a large crystal.
  • a sintering method such as an atmosphere sintering method, a reaction sintering method, a hot isostatic pressing method or the like, it is more preferable to perform heat treatment at a temperature of 1300 ° C. or higher and a melting point or lower.
  • crucible / afterheater used in these heat treatments those made of platinum, iridium, rhodium, rhenium, tungsten, molybdenum or alloys thereof can be used.
  • a condensing heater and a resistance heater can be used for heating.
  • the phosphor according to the fifth aspect of the present invention contains oxygen after manufacturing the phosphor according to the first to fourth aspects of the present invention for the purpose of shortening the fluorescence lifetime and reducing the long-lived fluorescence lifetime component.
  • the annealing is desirably performed at a temperature range of 1000 ° C. or more for 8 hours or more.
  • annealing for 12 hours or more in a temperature range of 1300 ° C. or more more preferably annealing for 12 hours or more in a temperature range of 1500 ° C. or more, and still more preferably annealing for 24 hours or more in a temperature range of 1600 ° C. or more. It is desirable to do.
  • mirror polishing by mechanical polishing is required to improve the light emission intensity, light emission amount, time resolution, and energy resolution of the light emitter.
  • the mechanical polishing method is complicated by a plurality of processes such as a rough polishing process and a mirror polishing process.
  • polishing a plurality of surfaces of a polyhedron it is generally necessary to polish one surface at a time, which is uneconomical.
  • it has been generally difficult to polish a complex surface that is not flat. Therefore, the light emitters according to the present invention including the light emitters according to the first to fifth aspects of the present invention are manufactured by the above manufacturing method for the purpose of increasing the light emission intensity and the light emission amount and improving the time resolution.
  • the surface has etch pits by dipping in an etching solution containing phosphoric acid such as orthophosphoric acid, and has a non-glossy surface having a normal incidence reflectance of 8% or less.
  • the vertical reflectance is preferably greater than 0 and 7% or less, more preferably the vertical reflectance is greater than 0 and 5% or less, and further preferably the vertical reflectance is 0.05 or more and 2% or less.
  • the etching solution may be used by mixing orthophosphoric acid with at least one of sulfuric acid, hydrochloric acid, or nitric acid.
  • the etchant is preferably heated to 100 ° C. or higher.
  • the light emitters according to the first to fifth aspects of the present invention are preferably single crystals.
  • a radiation detector according to the present invention includes a light emitter that emits light by absorbing radiation such as ⁇ -rays, X-rays, ⁇ -rays, and neutron rays and high-energy photons, and a light receiver that detects light emitted from the light emitter.
  • a detector, wherein the light emitter is a light emitter according to the first to fifth aspects of the present invention.
  • a light emitter that has a short fluorescence lifetime, a high transparency, and a large light emission amount, and a radiation detector using the light emitter.
  • a light emitter for radiation detectors such as gamma rays, X-rays, ⁇ rays, and neutron rays, a light emitter having high radiation resistance, a short fluorescence decay time and a high light emission intensity, and the light emitter.
  • a radiation detector can be provided.
  • the light emitter according to the embodiment of the present invention has a general formula Ce x RE 3-x M 5 + y O 12 + 3y / 2 (where 0.0001 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 0.5 or 0 ⁇ y ⁇ ⁇ 0.5, where M is Al And one or more selected from Lu, Ga, and Sc, and RE is one or more selected from La, Pr, Gd, Tb, Yb, Y, and Lu)
  • a garnet phosphor in which at least one or more monovalent or divalent cations are co-added at a molar ratio of 7000 ppm or less with respect to the total cations is included for a phosphor having a garnet structure.
  • the light emitter according to the embodiment of the present invention has a short fluorescence decay time, a short light emission rise time, a large light emission intensity, a high radiation resistance, a high light emission amount, and a small phosphorescence component.
  • the light emitter according to the first embodiment of the present invention is a light emitter having a garnet structure using light emission from the 4f5d level of Ce 3+ , and has the general formula Ce x RE 3-x M 5 + y O 12 + 3y / 2 (where 0.0001 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 0.5 or 0 ⁇ y ⁇ ⁇ 0.5, M is one or two selected from Al, Lu, Ga, Sc) And an RE having a garnet structure represented by the formula (1) or more, and RE is one or more selected from La, Pr, Gd, Tb, Yb, Y, and Lu). It contains a garnet phosphor co-doped with a molar ratio of 7000 ppm or less with respect to ions.
  • the light emitter according to the second embodiment of the present invention is a light emitter having a garnet structure using light emission from the 4f5d level of Ce 3+ , and has the general formula Ce x RE 3-x M 5 + y O 12 + 3y / 2 (However, 0.0001 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 0.5 or 0 ⁇ y ⁇ ⁇ 0.5, M is one or more selected from Al, Lu, Ga, Sc, and RE is La, Pr, 1 type or 2 types or more selected from Gd, Tb, Yb, Y, and Lu).
  • the light emitter according to the third embodiment of the present invention is a light emitter having a garnet structure using light emission from the 4f5d level of Ce 3+ , and has a general formula Gd 3-xz Ce x RE z M 5 O 12 (however, 0.0001 ⁇ x ⁇ 0.1, 0 ⁇ z ⁇ 3, M is one or more selected from Al, Lu, Ga, Sc, and RE is La, Pr, Tb, Yb, Y , And at least one monovalent or divalent cation with respect to the total cation of 7000 ppm. It contains a garnet phosphor co-added in the following molar ratio.
  • the light emitter according to the fourth embodiment of the present invention is a light emitter having a garnet structure using light emission from the 4f5d level of Ce 3+ , and has a general formula Gd 3-xz Ce x RE z M 5 + y O 12 + 3y / 2 (where 0.0001 ⁇ x ⁇ 0.1, 0 ⁇ y ⁇ 0.5 or 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 3, M is one or two selected from Al, Lu, Ga, Sc) And at least one kind of monovalent light-emitting substance having a garnet structure represented by RE or more, and RE is one or more selected from La, Pr, Tb, Yb, Y, and Lu). Or the garnet light-emitting body which co-added the bivalent cation with the molar ratio of 7000 ppm or less with respect to all the cations is included.
  • the light emitter according to the embodiment of the present invention is manufactured by, for example, a single crystal manufacturing method using a micro pulling method.
  • a micro pulling-down method will be shown as a method for manufacturing a light emitter according to an embodiment of the present invention, but the method is not limited to this.
  • the micro pulling method is performed using an atmosphere control type micro pulling apparatus using high frequency induction heating.
  • the micro-pulling device includes a crucible, a seed holder that holds the seed that is brought into contact with the melt flowing out from the pores provided at the bottom of the crucible, a moving mechanism that moves the seed holder downward, and a moving speed of the moving mechanism It consists of a single crystal manufacturing apparatus equipped with a control device and induction heating means for heating the crucible. According to such a single crystal manufacturing apparatus, a single crystal can be produced by forming a solid-liquid interface immediately below the crucible and moving the seed crystal downward.
  • the crucible is made of carbon, platinum, iridium, rhodium, rhenium, tungsten, molybdenum or an alloy thereof, and a heating element made of carbon, platinum, iridium, rhodium, rhenium, tungsten, molybdenum or an alloy thereof on the outer periphery of the crucible bottom.
  • the after heater which is is arrange
  • the crucible and after-heater can control the temperature and distribution of the solid-liquid boundary region of the melt drawn from the pores provided at the bottom of the crucible by adjusting the output of the induction heating means. It is possible.
  • the material of the chamber is SUS, and the window material is quartz.
  • the micro pull-down device is equipped with a rotary pump to enable atmosphere control, and the degree of vacuum can be reduced to 1 ⁇ 10 ⁇ 3 Torr or less before gas replacement.
  • Ar, N 2 , H 2 , O 2 gas, and the like can be introduced into the chamber at a flow rate precisely adjusted by an accompanying gas flow meter.
  • the raw materials weighed and mixed so as to have the target composition at the time of melt formation are put into a crucible, the inside of the furnace is evacuated to a high vacuum, and then Ar gas or a mixed gas of Ar gas and O 2 gas is introduced into the furnace By introducing into the furnace, the inside of the furnace is made an inert gas atmosphere or a low oxygen partial pressure atmosphere, and by gradually applying high frequency power to the induction heating means, the crucible is heated to completely melt the raw material in the crucible.
  • a raw material consists of a high purity raw material of 99.99% or more (4N or more), and a thing with few impurities other than the target composition as much as possible (for example, 1 ppm or less) is preferable.
  • the seed crystal After melting the raw material, the seed crystal is gradually raised at a predetermined speed, and its tip is brought into contact with the pores at the lower end of the crucible so as to be sufficiently adapted. Thereafter, the crystal is grown by lowering the pulling shaft of the seed holder while adjusting the melt temperature.
  • a seed crystal that is equivalent to the crystal growth target or that is similar in structure and composition, but is not limited thereto.
  • the crystal growth is completed when all of the prepared raw materials are crystallized and the melt is gone.
  • the radiation detector according to the embodiment of the present invention is configured by combining the light emitter and the light receiver according to the embodiment of the present invention made of a scintillator crystal.
  • the radiation detector according to the embodiment of the present invention can also be used as a radiation detector of a radiation inspection apparatus.
  • Examples of such a radiation inspection apparatus include a resource exploration detector, a high energy physics detector, an environmental radioactivity detector, a gamma camera, and a medical image processing apparatus.
  • Examples of medical image processing apparatuses are suitable for applications such as positron emission nuclide tomography (PET), X-ray CT, and SPECT.
  • PET positron emission nuclide tomography
  • X-ray CT X-ray CT
  • SPECT positron emission nuclide tomography
  • two-dimensional type PET, three-dimensional type PET, time-of-flight (TOF) type PET, and depth detection (DOI) type PET are preferable. Further, these may be used in combination.
  • the radiation detector according to the embodiment of the present invention has a position detection type photomultiplier tube (PS-PMT), a silicon photomultiplier (Si-PM) photodiode (PD), or an avalanche photodiode (PD) as a light receiver.
  • PS-PMT position detection type photomultiplier tube
  • Si-PM silicon photomultiplier
  • PD avalanche photodiode
  • APD avalanche photodiode
  • Ce or a monovalent or bivalent cation to be co-added is specified as either a concentration in the crystal or a concentration in the melt (preparation).
  • concentration at the time of preparation was about 1 to 100 with respect to the concentration 1 in the crystal.
  • the time resolution is measured as follows. First, the transparent illuminant of each example was processed and polished to a size of ⁇ 3 ⁇ 3 mm, and the two illuminants were respectively applied to two Si-PMs arranged facing each other at a distance of about 5 cm, respectively. Adhere using the Teflon (registered trademark) tape. Next, a 22 Na gamma ray source is installed at the center of two scintillator single crystals (light emitters), and a 511 keV gamma ray emitted simultaneously from the 22 Na gamma ray source by approximately 180 ° by ⁇ -ray decay is applied to each light emitter. Irradiate. The time resolution is measured by measuring the fluorescence of each illuminant by gamma ray irradiation by a coincidence measurement method using a digital oscilloscope.
  • This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent.
  • Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 520 nm.
  • the diffuse transmittance at 520 nm was 91% per 1 cm.
  • the single crystal had a diameter of about 3 mm and a length of about 15 mm, and was yellow and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 480 nm. The diffuse transmittance at 480 nm was 90% per 1 cm.
  • the single crystal had a diameter of about 3 mm and a length of about 15 mm, and was yellow and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 480 nm. The diffuse transmittance at 480 nm was 90% per 1 cm.
  • This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 520 nm. The diffuse transmittance at 520 nm was 92% per cm.
  • This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 520 nm. The diffuse transmittance at 520 nm was 91% per 1 cm.
  • This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent.
  • Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 520 nm.
  • the diffuse transmittance at 520 nm was 91% per 1 cm.
  • This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent.
  • Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 520 nm.
  • the diffuse transmittance at 520 nm was 90% per cm.
  • Example 1 Gd 2.985 Ce 0.015 Ga 3 Al 2 O 12 co-added with 300 ppm of Li was annealed in an argon atmosphere containing 3% of oxygen at a temperature range of 1700 ° C. for 24 hours. .
  • Example 6 Gd 2.985 Ce 0.015 Ga 3.15 Al 2.1 O 12.375 of Example 6 was annealed in an argon atmosphere containing 3% oxygen at a temperature range of 1700 ° C. for 24 hours.
  • Example 2 Lu 2.985 Ce 0.015 Al 5 O 12 co-added with 300 ppm of Li was annealed in the air at a temperature range of 1200 ° C. for 24 hours.
  • This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent.
  • Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 480 nm.
  • the diffuse transmittance at 480 nm was 90% per 1 cm.
  • This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent.
  • Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 480 nm.
  • the diffuse transmittance at 480 nm was 91% per cm.
  • a garnet-type scintillator single crystal having a composition of Lu 2.985 Ce 0.015 Al 4.8 O 11.7 to which 300 ppm of Mg was co-added was prepared by a micro- pulling- down method.
  • This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent.
  • Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 480 nm.
  • the diffuse transmittance at 480 nm was 90% per 1 cm.
  • the micro-pulling-down method to prepare the garnet scintillator single crystal of composition Y 2.985 Ce 0.015 Al 4.8 O 11.7 was added 300ppm both the Mg.
  • This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent.
  • Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 480 nm.
  • the diffuse transmittance at 480 nm was 91% per cm.
  • Table 1 shows the evaluation results of emission intensity, emission rise time, fluorescence lifetime, and time resolution of the crystals obtained in Examples 1 to 14 and Comparative Examples 1 to 5.
  • the scintillator single crystals of the example and the comparative example were processed and polished to a size of ⁇ 3 ⁇ 1 mm, and then adhered to a photomultiplier tube using an optical adhesive, and the upper surface was coated with Teflon (registered trademark) tape. It was covered and irradiated with 137 Cs gamma rays and evaluated by analyzing the photoelectric absorption peak of the obtained energy spectrum.
  • FIG. 1 shows Gd 2.985 Ce 0.015 Ga 3 Al 2 O 12 co-added with 1500 ppm of Li in Example 1, and the scintillator single crystal of Comparative Example 1 with the same composition and not co-added with Li Is processed and polished to ⁇ 3 x 1 mm size, then adhered to a photomultiplier tube using an optical adhesive, the upper surface is covered with Teflon (registered trademark) tape, and irradiated with 137 Cs gamma rays. Voltage pulse signal. The obtained voltage pulse signal was analyzed, and the emission intensity, the emission rise time, and the fluorescence lifetime were evaluated. As shown in FIG.
  • Example 1 Gd 2.985 Ce 0.015 Ga 3 Al 2 O 12 co-added with 1500 ppm of Li and two scintillator single crystals of Comparative Example 1 with the same composition and not co-added with Mg were used.
  • the time resolution was measured by the above coincidence measurement method.
  • Table 1 by adding 1500 ppm of Li, the time resolution was improved with respect to the crystals not co-added, and the time resolution was accelerated from 400 ps (Comparative Example 1) to 210 ps (Example 1). .
  • Examples 6 and 7 in which the value of y is 0 ⁇ y ⁇ 0.5 or 0 ⁇ y ⁇ 0.5 in the general formula Ce x RE 3-x M 5 + y O 12 + 3y / 2 and Gd 2 of Comparative Example 1 .985 Ce 0.015 Ga 3 Al 2 O 12 (y 0) was irradiated with X-rays under the conditions of CuK ⁇ , 40 mA and 40 mV, and the maximum emission intensity and the emission intensity after 1 ms were compared to obtain phosphorescence. When the content of the component was measured, the phosphorescent component decreased from 1.8% (Comparative Example 1) to 0.2% (Example 6) and 0.2% (Example 7).
  • Example 1 Gd 2.985 Ce 0.015 Ga 3 Al 2 O 12 co-added with 1500 ppm of Li, and the scintillator single crystal of Comparative Example 1 with the same composition but not co-added with Li 3 ⁇
  • X-ray generated under conditions of CuK ⁇ corresponding to 600 Gy, 40 mA, 40 mV was irradiated, and the rate of increase in absorption coefficient at 520 nm before and after X-ray irradiation was measured.
  • the increase rate of the absorption coefficient of the crystal without the crystal was 50%
  • the increase rate of the absorption coefficient of the crystal to which 1500 ppm of Li was added Example 1 was 1.0%. It was confirmed that radiation resistance was improved by co-adding Li.
  • Example 7 In the general formula Ce x RE 3-x M 5 + y O 12 + 3y / 2 , it was confirmed that the radiation resistance was improved by taking the value of y satisfying 0 ⁇ y ⁇ 0.5 or 0 ⁇ y ⁇ 0.5. .
  • Examples 12 and 14 in which the value of y is 0 ⁇ y ⁇ 0.5 or 0 ⁇ y ⁇ 0.5 in the general formula Ce x RE 3-x M 5 + y O 12 + 3y / 2 , and Mg is co-added, and Y 2.985 Ce 0.015 Al 5 O 12 (y 0) scintillator single crystal of Comparative Example 4 was processed and polished into a ⁇ 3 ⁇ 1 mm size, and then CuK ⁇ corresponding to 600 Gy, 40 mA, 40 mV.
  • Example 9 and Example 10 where annealing was performed in an atmosphere containing oxygen, the emission intensity increased compared to before annealing (Example 6 and Example 2 respectively). It was confirmed that the emission rise time and the fluorescence lifetime were shortened, and that the long-lived fluorescence lifetime component was reduced.
  • This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent.
  • Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 520 nm.
  • the diffuse transmittance at 520 nm was 91% per 1 cm.
  • the micro-pulling-down method to prepare the garnet scintillator single crystal of the composition of Gd 2.985 Ce 0.015 Ga 3 Al 2 O 12 to the Ca were each added 300,1500,3000ppm both.
  • the obtained single crystal had a diameter of about 3 mm and a length of about 15 mm, and was yellow and transparent.
  • Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 520 nm.
  • the diffuse transmittance at 520 nm was 91% per 1 cm.
  • the resulting single crystal had a diameter of about 3 mm and a length of about 15 mm and was transparent.
  • Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 520 nm.
  • the diffuse transmittance at 520 nm was 90% per 1 cm.
  • the micro-pulling-down method to prepare the garnet scintillator single crystal of the composition of Gd 2.985 Ce 0.015 Ga 3 Al 2 O 12 was added 300ppm both the Na.
  • the obtained single crystal had a diameter of about 3 mm and a length of about 15 mm, and was yellow and transparent.
  • Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 520 nm.
  • the diffuse transmittance at 520 nm was 92% per cm.
  • the micro-pulling-down method to prepare the garnet scintillator single crystal of the composition of Lu 2.885 Gd 0.1 Ce 0.015 Al 5 O 12 was added Mg respectively 300,1500,3000ppm both.
  • the single crystal had a diameter of about 3 mm and a length of about 15 mm, and was yellow and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 480 nm.
  • the diffuse transmittance at 480 nm was 89% per cm.
  • This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 520 nm. The diffuse transmittance at 520 nm was 92% per cm.
  • This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 520 nm. The diffuse transmittance at 520 nm was 91% per 1 cm.
  • Example 15 Gd 2.985 Ce 0.015 Ga 3 Al 2 O 12 co-added with 300 ppm of Mg was annealed in an argon atmosphere containing 3% of oxygen at a temperature range of 1600 ° C. for 24 hours. .
  • Example 19 Lu 2.885 Gd 0.1 Ce 0.015 Al 5 O 12 co-added with 300 ppm of Mg was annealed in the atmosphere at 1200 ° C. for 24 hours.
  • Example 15 Gd 2.985 Ce 0.015 Ga 3 Al 2 O 12 co-added with 300 ppm of Mg was annealed in an argon atmosphere containing 3% of hydrogen in a temperature range of 1000 ° C. for 24 hours. It was.
  • Table 2 shows the evaluation results of the emission intensity, emission amount, emission rise time, fluorescence lifetime, and time resolution of the crystals obtained in Examples 15 to 23 and Comparative Examples 6 to 9.
  • the scintillator single crystals of the example and the comparative example were processed and polished to a size of ⁇ 3 ⁇ 1 mm, and then adhered to a photomultiplier tube using an optical adhesive, and the upper surface was coated with Teflon (registered trademark) tape. It was covered and irradiated with 137 Cs gamma rays and evaluated by analyzing the photoelectric absorption peak of the obtained energy spectrum.
  • FIG. 2 shows Gd 2.985 Ce 0.015 Ga 3 Al 2 O 12 co-added with 1500 ppm of Mg in Example 15 and the scintillator single crystal of Comparative Example 6 with the same composition and not co-added with Mg Is processed and polished to ⁇ 3 x 1 mm size, then adhered to a photomultiplier tube using an optical adhesive, the upper surface is covered with Teflon (registered trademark) tape, and irradiated with 137 Cs gamma rays. Voltage pulse signal. The obtained voltage pulse signal was analyzed, and the emission intensity, the emission rise time, and the fluorescence lifetime were evaluated. As shown in FIG.
  • Example 15 Gd 2.985 Ce 0.015 Ga 3 Al 2 O 12 co-added with 1500 ppm of Mg and two scintillator single crystals of Comparative Example 6 with the same composition and not co-added with Mg were used.
  • the time resolution was measured by the above coincidence measurement method.
  • Table 2 by adding 1500 ppm of Mg, the time resolution was improved with respect to crystals not co-added, and the time resolution was shortened from 400 ps (Comparative Example 6) to 170 ps (Example 15). .
  • Example 20 in the general formula Gd 3 ⁇ x ⁇ z Ce x RE z M 5 + y O 12 + 3y / 2 , the value of y satisfies 0 ⁇ y ⁇ 0.5 or 0 ⁇ y ⁇ 0.5.
  • Example 22 and 23 annealed in an oxygen-containing atmosphere, the emission intensity increased compared to before annealing (Examples 15 and 19 respectively), and the emission rise time and fluorescence lifetime were increased. It was confirmed that the fluorescence lifetime component was reduced and the long-lived fluorescence lifetime component was reduced.
  • Example 15 Gd 2.985 Ce 0.015 Ga 3 Al 2 O 12 co-added with 300 ppm of Mg was cut into a size of ⁇ 3 ⁇ 3 mm 3 using a diamond outer peripheral cutting machine, and mechanical polishing was used. Mirror polishing was performed.
  • Example 15 Gd 2.985 Ce 0.015 Ga 3 Al 2 O 12 co-added with 300 ppm of Mg was cut into a size of ⁇ 3 ⁇ 3 mm 3 using a diamond outer peripheral cutting machine.
  • Table 3 shows the results of measuring the scintillator performance of the crystals of Example 24, Comparative Example 10 and Comparative Example 11 and evaluating the light emission intensity ratio, light emission amount, time resolution, and normal incidence reflectance.
  • the etched single crystal (Example 24) can have scintillator characteristics equivalent to or better than the single crystal obtained by the conventional machining method (Comparative Examples 10 and 11). confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Luminescent Compositions (AREA)
  • Measurement Of Radiation (AREA)

Abstract

【課題】蛍光寿命が短く、透明度が高く、かつ発光量が大きい発光体及び、その発光体を用いた放射線検出器を提供する。ガンマ線、X線、α線、中性子線といった放射線検出器用の発光体に好適であり、放射線耐性が高く、蛍光減衰時間が短くかつ発光強度の大きい発光体及び、その発光体を用いた放射線検出器を提供する。 【解決手段】Ce3+の4f5d準位からの発光を用いたガーネット構造を持つ発光体であり、一般式CeRE3-x5+y12+3y/2(ただし、0.0001≦x≦0.3、0≦y≦0.5あるいは0≦y≦-0.5、MはAl、Lu、Ga、Scから選ばれた1種又は2種以上、及びREはLa、Pr、Gd、Tb、Yb、Y、Luから選ばれた1種または2種以上である)で表されるガーネット構造を有する発光体に対し、少なくとも1種類以上の1価または2価の陽イオンを、全陽イオンに対し、7000ppm以下のモル比で共添加したガーネット発光体を含む。

Description

発光体及び放射線検出器
 本発明は、ガンマ線、X線、α線、β線、中性子線等の放射線や高エネルギーのフォトンを吸収し、よりエネルギーの小さいフォトンに急速に変換するための賦活剤として、セリウムを含有する発光体に関する。また、本発明は、当該発光体を用いた光子検出器あるいは放射線検出器にも関する。
 シンチレータ等の発光体は、ガンマ線、X線、α線、β線、中性子線等を検出するフォトン検出器あるいは放射線検出器に用いられ、当該検出器は陽電子放出核種断層撮影装置(PET)装置やX線CT等の医療画像装置、高エネルギー物理用の各種放射線計測装置、資源探査装置などに幅広く応用されている。
 例えば、陽電子放出核種断層撮影装置(PET)装置においては、比較的エネルギーの高いガンマ線(消滅ガンマ線:511eV)が同時計数により検出されるため、感度が高くかつ高速応答が得られるシンチレーション検出器が採用されてきた。検出器特性には、高計数率特性や偶発同時計数ノイズ除去のための高い時間分解能が要求される。
 さらに、近年ではTime of flight型PET(TOF-PET)と呼ばれる、消滅ガンマ線が放射線検出器までに到達する時間差を計測することで、位置検出精度を向上させたPETも登場している。TOF-PETに用いられる放射線検出器では、特に高速応答がもとめられ、放射線検出器に用いられるシンチレータは、蛍光寿命が短いことが重要である。
 一般に、これらの放射線検出器に適するシンチレータとしては、検出効率の点から密度が高く原子番号が大きいこと(光電吸収比が高いこと)、高速応答の必要性や高エネルギー分解能の点から、発光量が多く、蛍光寿命(蛍光減衰時間)の短いことや透明性の高い結晶であることが望まれる。近年のシステムでは、多層化・高分解能化のため、多量のシンチレータを細長い形状(例えばPETでは5×30mm程度)で稠密に並べる必要から、取り扱い易さ、加工性、大型結晶作製が可能なこと、さらには価格も重要な選定要因となっている。加えて、シンチレータの発光波長が、光検出器の検出感度の高い波長域と一致することも重要である。
 最近では、各種放射線検出器へ応用される好ましいシンチレータとして、ガーネット構造をもつシンチレータがある。例えば、Ce3+の4f5d準位からの発光を用いたガーネット構造を持つシンチレータである、Ce添加(Gd、Y、Lu)(Al、Ga)12結晶が報告されている(例えば、特許文献1または非特許文献1参照)。Ce添加(Gd、Y、Lu)(Al、Ga)12では、結晶組成により、密度、発光量、蛍光寿命といったシンチレータ特性が変化することが確認されており、その中でも特に、Ce添加GdAlGa12シンチレータは、密度6.7g/cm3、発光量が45000photon/MeVの特性を有し、自己放射能が十分に少ないことから、PET装置への応用のみにとどまらず、X線CT等の医療画像装置、高エネルギー物理用の各種放射線計測装置、環境放射線測定器への応用が進んでいる。一方、当該シンチレータでは、蛍光寿命が90ns程度と長いのが問題となる。
 また、Gd、Al、Gaを含み、原子個数比でGa/(Gd+Ga+Al+Ce)が0.2~0.3であるシンチレータが報告されている(例えば、特許文献2参照)。しかしながら、Ce賦活ガーネットシンチレータ中で最も性能に優れるCe添加Gd(Al、Ga)12シンチレータでは、原子個数比でGa/(Gd+Ga+Al+Ce)が0.3以下の場合、融液成長による単結晶成長が不可能なため、透明度が高い大型結晶が必要となるPET装置や高エネルギー物理用途へ用いることが難しい(例えば、非特許文献2参照)。
 ガーネット型シンチレータでは、8配位、6配位、4配位の3つのサイトをとる結晶構造が知られており、例えばCe添加(Gd、Y、Lu)(Al、Ga)12ガーネットシンチレータでは、Ce、Gd、Y、Luといった希土類元素は8配位のサイト、Al、Gaは6配位、4配位のサイトを占有することが知られている。しかし、Ce賦活ガーネット型シンチレータでは、希土類元素が6配位、4配位のサイトの一部に置換されたり、Al、Gaが8配位のサイトを一部置換したりする、アンチサイト現象が起こり、バンドギャップ間にアンチサイト由来の欠陥準位が生成され、Ce3+4f5d発光が、欠陥準位により阻害され、発光量が低下し、長寿命発光成分が発生することが知られている(例えば、非特許文献3参照)。
国際公開WO2012/105202号 国際公開WO2006/068130号
Kamada K, Yanagida T, Pejchal J, Nikl N, Endo T, Tsutumi K, Fujimoto Y, Fukabori A and Yoshikawa A., "Composition Engineering in Cerium-Doped (Lu,Gd)3(Ga,Al)5O12 Single-Crystal Scintillators", Crystal Growth and Design, 2011, 11, 4484 Kei Kamada, Shunsuke Kurosawa, Petr Prusa, Martin Nikl, Vladimir V. Kochurikhin, Takanori Endo, Kousuke Tsutumi, Hiroki Sato, Yuui Yokota, Kazumasa Sugiyama, Akira Yoshikawa, "Cz grown 2-in. size Ce:Gd3(Al,Ga)5O12 single crystal; relationship between Al, Ga site occupancy and scintillation properties", Optical Materials, October 2014, Volume 36, Issue 12, Pages 1942-1945 M. Nikl, E. Mihokova, J. Pejchal, A. Vedda, Yu. Zorenko, and K. Nejezchleb, "The antisite LuAl defect-related trap in Lu3Al5O12:Ce single crystal", physica status solidi (b), November 2005, Volume 242, Issue 14, Pages R119-R121
 上記のように、従来のCe添加のガーネット構造を有するシンチレータでは、蛍光寿命が長い、透明度が低い、発光量が小さいという課題があった。
 本発明は、斯かる問題点に鑑みてなされたものであり、蛍光寿命が短く、透明度が高く、かつ発光量が大きい発光体及び、その発光体を用いた放射線検出器を提供することを目的とする。これにより、ガンマ線、X線、α線、中性子線といった放射線検出器用の発光体に好適であり、蛍光減衰時間が短くかつ発光強度の大きい発光体及び、その発光体を用いた放射線検出器を提供することができる。
 本発明は、上記課題を解決すべく、以下に掲げる構成とした。
 すなわち、第1の本発明に係るシンチレータ、蛍光体等の発光体は、一般式CeRE3-x5+y12+3y/2(ただし、0.0001≦x≦0.3、0≦y≦0.5あるいは0≦y≦-0.5、MはAl、Lu、Ga、Scから選ばれた1種又は2種以上、及びREはLa、Pr、Gd、Tb、Yb、Y、Luから選ばれた1種または2種以上である)で表されるガーネット構造を有する発光体に対し、少なくとも1種類以上の1価または2価の陽イオンを、全陽イオンに対し、7000ppm以下のモル比で共添加したガーネット発光体を含むことを特徴とする。
 また、第2の本発明に係る発光体は、一般式CeRE3-x5+y12+3y/2(ただし、0.0001≦x≦0.3、0≦y≦0.5あるいは0≦y≦-0.5、MはAl、Lu、Ga、Scから選ばれた1種又は2種以上、及びREはLa、Pr、Gd、Tb、Yb、Y、Luから選ばれた1種または2種以上である)で表されるガーネット構造を有する発光体に対し、Liを、全陽イオンに対し、7000ppm以下のモル比で共添加したガーネット発光体を含むことを特徴とする。
 また、第2の本発明に係る発光体は、一般式CeRE3-xAl5+y12+3y/2(ただし、0.0001≦x≦0.3、0<y≦0.5あるいは0<y≦-0.5、及びREはY、Luから選ばれた1種または2種以上である)で表されるガーネット構造を有する発光体に対し、Mgを、全陽イオンに対し、7000ppm以下のモル比で共添加したガーネット発光体を含むことを特徴とする発光体であってもよい。
 また、第2の本発明に係る発光体は、一般式CeGd3-x(GaAl1-z5+y12+3y/2(ただし、0.0001≦x≦0.3、0<y≦0.5あるいは0<y≦-0.5、0.49≦z≦0.7である)で表されるガーネット構造を有する発光体に対し、LiあるいはMgを、全陽イオンに対し、7000ppm以下のモル比で共添加したガーネット発光体を含むことを特徴とする発光体であってもよい。
 また、第2の本発明に係る発光体は、原料を1000℃以上で熱処理することで得られ、20000photon/MeV以上の発光量かつ300ps以下の時間分解能を有し、燐光成分が0.5%以下であり、拡散透過率80%以上の透明体から成っていてもよい。原料は、Ce、RE(例えば、Gd)、およびM(例えば、Ga、Al)を含む化合物である。
 また、第3の本発明に係るシンチレータ、蛍光体等の発光体は、一般式Gd3-x-zCeRE12(ただし、0.0001≦x≦0.1、0≦z<3、MはAl、Lu、Ga、Scから選ばれた1種又は2種以上、及びREはLa、Pr、Tb、Yb、Y、Luから選ばれた1種または2種以上である)で表されるガーネット構造を有する発光体に対し、少なくとも1種類以上の1価または2価の陽イオンを、全陽イオンに対し、7000ppm以下のモル比で共添加したガーネット発光体を含むことを特徴とする。
 また、第3の本発明に係る発光体は、Ce3+の4f5d準位からの発光を用いたガーネット構造を持つ発光体であり、一般式Gd3-x-zCeRE5+y12+3y/2(ただし、0.0001≦x≦0.1、0<y<0.5あるいは0<y<-0.5、0≦z<3、MはAl、Lu、Ga、Scから選ばれた1種又は2種以上、及びREはLa、Pr、Tb、Yb、Y、Luから選ばれた1種または2種以上である)で表されるガーネット構造を有する発光体に対し、少なくとも1種類以上の1価または2価の陽イオンを、全陽イオンに対し、7000ppm以下のモル比で共添加したガーネット発光体を含むことを特徴とする発光体であってもよい。
 第3の本発明に係る発光体は、前記共添加する2価の陽イオンが、MgおよびCaから選ばれる少なくとも1種以上であることが好ましく、Mgがもっとも好ましい。
 また、第3の本発明に係る発光体は、原料を1000℃以上で熱処理することで得られ、40000photon/MeV以上の発光量かつ240ps以下の時間分解能を有する透明体から成っていてもよい。原料は、Gd、Ce、M(例えば、Al、Ga)、および、1価または2価の陽イオンを含み、場合によってはREも含む化合物である。
 第1乃至第3の本発明に係る発光体は、ガンマ線等の放射線や高エネルギーフォトンにより励起されて発する蛍光波長が200~600nmであってもよい。
 第1乃至第3の本発明に係る、Ce3+の4f5d準位からの発光を用いる発光体は、LiやMgなど、Li、Na、K、Rb、Csといった1価のアルカリ金属イオンおよびBe、Mg、Ca、Sr、Baといった2価のアルカリ土類金属イオンから選ばれた少なくとも1種類以上を、全陽イオンに対し7000ppm以下のモル比で共添加することにより、共添加無しの発光体に対し蛍光減衰時間および発光の立ち上がり時間がそれぞれ5%以上短寿命・高速化し、発光強度が5%以上増加することから、蛍光測定のためのサンプリング時間が短くて済み、高時間分解能、すなわちサンプリング間隔の低減が期待出来る。高時間分解能が実現されると、単位時間でのサンプリング数を増加させることが可能になる。また、発光強度が増加することによりエネルギー分解能が向上する。また、放射線耐性も向上する。
 第1乃至第3の本発明に係るセリウム賦活の発光体は、LiやMgなど、Li、Na、K、Rb、Csといった1価のアルカリ金属イオンおよびBe、Mg、Ca、Sr、Baといった2価のアルカリ土類金属イオンから選ばれた少なくとも1種類以上を、全陽イオンに対し、1ppm以上7000ppm以下のモル比、好ましくは、5ppm以上6000ppm以下のモル比、より好ましくは、10ppm以上5000ppm以下のモル比、さらにより好ましくは20ppm以上400ppm以下で含有することが望ましい。
 第1乃至第3の本発明に係る発光体は、高い発光量、高い時間分解能、高いエネルギー分解能が要求される観点から、高い透明性を有することが望ましい。好ましくは、発光波長において1cmあたり70%以上の拡散透過率、より好ましくは1cmあたり85%以上の拡散透過率、さらにより好ましくは1cmあたり95%以上の拡散透過率を有することが望ましい。
 第1乃至第3の本発明に係る発光体は、LiやMgなどの、1価あるいは2価の陽イオンを共添加することで、時間分解能を向上することができる。φ3×3mmサイズとしたとき、511keVのガンマ線照射によるコインシデンス測定法によれば、第2の本発明に係る発光体で240ps以下、第3の本発明に係る発光体で300ps以下の時間分解能が得られる。なお、一般に、発光体のサイズが大きくなればなるほど、光検出器に到達するまでの光路長が長くなり、時間分解能は劣化することが知られている。
 一般に、発光量は、電圧パルス信号の積分値と相関があり、発光強度が高くなるほど発光量が高くなり、発光の立ち上がり時間および蛍光寿命が短くなるほど発光量は低くなる。第1乃至第3の本発明に係る発光体は、例えば、PET装置に発光体を用いる場合、既存のPET用シンチレータであるLYSOより高い発光量であることが望ましく、好ましくは24000photon/MeV以上、より好ましくは30000photon/MeV以上、さらにより好ましくは40000photon/MeV以上であることが望ましい。
 このような短寿命の発光を有する、第1乃至第3の本発明に係る発光体から成るシンチレータ結晶は、TOF-PET、PET、SPECT、CT用の高速応答の放射線検出のためのシンチレータとしての利用が期待され、高エネルギー物理用の各種放射線計測装置、環境放射線測定器への応用も期待される。
 第4の本発明に係るシンチレータ、蛍光体等の発光体は、一般式CeRE3-x5+y12+3y/2(ただし、0.0001≦x≦0.3、0<y≦0.5あるいは0<y≦-0.5、MはAl、Lu、Ga、Scから選ばれた1種又は2種以上、及びREはLa、Pr、Gd、Tb、Yb、Y、Luから選ばれた1種または2種以上である)で表されるガーネット構造を有することを特徴とする。この場合、y=0や1の蛍光体に比べ、短い蛍光減衰時間、短い発光の立ち上がり時間、大きい発光強度、高い放射線耐性、高い発光量、少ない燐光成分を兼ね備えている。
 第1乃至第4の本発明に係る発光体を含む本発明に係る発光体は、その製造方法において、出発原料として、一般的な酸化物原料が使用可能であるが、シンチレータ用結晶として使用する場合、99.99%以上(4N以上)の高純度原料を用いることが特に好ましい。製造の際には、これらの出発原料を、融液形成時に目的組成となるように秤量、混合したものを用いる。さらに、これらの原料は、目的とする組成以外の不純物が極力少ない(例えば1ppm以下)ものが特に好ましい。
 第1乃至第4の本発明に係る発光体は、その製造方法において、結晶の育成を、不活性ガス(例えば、Ar、N、He等)雰囲気下で行うことが好ましい。不活性ガス(例えば、Ar、N、He等)と酸素ガスや炭酸ガス、一酸化炭素ガスとの混合ガスを使用してもよい。ただし、この混合ガスを用いて結晶の育成を行う場合、坩堝の酸化を防ぐ目的で、酸素の分圧は2%以下であることが好ましい。なお、結晶育成後のアニールなどの後工程においては、酸素ガス、炭酸ガス、一酸化炭素ガス、不活性ガス(例えば、Ar、N、He等)、および不活性ガス(例えば、Ar、N、He等)と酸素ガス、炭酸ガス、一酸化炭素ガスとの混合ガスを用いることができる。混合ガスを用いる場合、酸素分圧は2%という制限は受けず、0%から100%までいずれの混合比のものを使用してもよい。
 第1乃至第4の本発明に係る発光体は、原料を1000℃以上の熱処理により製造することが望ましく、例えば、発光体の融点以上の熱処理を行う融液成長法であるマイクロ引き下げ法の他に、チョコラルスキー法(引き上げ法)、ブリッジマン法、帯溶融法(ゾーンメルト法)、又は縁部限定薄膜供給結晶成長(EFG法)等の液相法や、1000℃以上の熱処理により製造されるフラックス法やトップシーディッドソルーショングロース(TSSG)法等の溶液成長法、雰囲気焼結法、反応焼結法、熱間等方加圧式焼結法等の焼結法など、特に制限なく採用可能である。しかし、歩留まりを向上させ、相対的には加工ロスを軽減させる目的で、大型結晶を得るためには、チョコラルスキー法又はブリッジマン法が好ましい。また、雰囲気焼結法、反応焼結法、熱間等方加圧式焼結法等の焼結法を用いる場合には、1300℃以上融点以下の温度で熱処理することがより好ましい。
 一方、シンチレータ用結晶として小型の結晶のみを使用するのであれば、後加工の必要が無いかあるいは少ないことから、ゾーンメルト法、EFG法、マイクロ引き下げ法、チョコラルスキー法といった液相法や雰囲気焼結法、反応焼結法、熱間等方加圧式焼結法等の焼結法が好ましい。
 また、これらの熱処理で使用する坩堝・アフターヒータとしては、白金、イリジウム、ロジウム、レニウム、タングステン、モリブデンまたはこれらの合金から成るものを使用することができる。また、加熱には、高周波発振機のみならず、集光加熱器や抵抗加熱機を使用することができる。
 第5の本発明に係る発光体は、蛍光寿命を短寿命化し、長寿命の蛍光寿命成分を低減する目的のため、第1乃至第4の本発明に係る発光体を製造後、酸素を含む雰囲気中、アルゴン、窒素等の不活性ガス雰囲気中、アルゴン、窒素等の不活性ガスに対し酸素を含む雰囲気中、または空気中で、1000℃以上でアニールを行うことにより製造されることを特徴とする。アニールは、1000℃以上の温度域で8時間以上行うことが望ましい。好ましくは、1300℃以上の温度域で12時間以上のアニール、より好ましくは1500℃以上の温度域で12時間以上のアニール、さらにより好ましくは1600℃以上の温度域で24時間以上のアニール、を行うことが望ましい。
 一般に、発光体の発光強度、発光量、時間分解能、エネルギー分解能を向上するためには、機械的研磨による鏡面研磨が必要である。機械的研磨方法は、粗研磨工程、鏡面研磨工程等の複数の工程からなり、複雑である。特に多面体の複数の表面を研磨する場合は、一般に1面ずつ研磨する必要があり、非経済的であった。また、平面でない複雑な表面を研磨することは、一般に困難であった。そこで、第1乃至第5の本発明に係る発光体を含む本発明に係る発光体は、発光強度および発光量を増加させ、時間分解能を向上する目的のため、上記の製造法により発光体を作製した後、オルトリン酸等のリン酸を含むエッチング液に浸すことによるエッチング処理によって、表面にエッチピットを有し、かつ垂直入射反射率8%以下の光沢性のない表面を有することが望ましい。好ましくは垂直反射率が0より大きく7%以下、より好ましくは垂直反射率が0より大きく5%以下、さらに好ましくは垂直反射率が0.05以上2%以下であることが望ましい。なお、エッチング液は、オルトリン酸に、硫酸、塩酸あるいは硝酸の少なくとも1種類を混合させて用いても良い。エッチング液は、100℃以上加熱することが望ましい。このエッチング処理により、機械的研磨による鏡面研磨法に比べ、発光強度、発光量、時間分解能、エネルギー分解能を向上することができる。
 第1乃至第5の本発明に係る発光体は、単結晶であることが好ましい。
 本発明に係る放射線検出器は、γ線、X線、α線、中性子線といった放射線や高エネルギーフォトンを吸収して発光する発光体と、前記発光体の発光を検出する受光器とを有する放射線検出器であって、前記発光体は、第1乃至第5の本発明に係る発光体であることを特徴とする。
 本発明により、蛍光寿命が短く、透明度が高く、かつ発光量が大きい発光体及び、その発光体を用いた放射線検出器を提供することができる。これにより、ガンマ線、X線、α線、中性子線といった放射線検出器用の発光体に好適であり、放射線耐性が高く、蛍光減衰時間が短くかつ発光強度の大きい発光体及び、その発光体を用いた放射線検出器を提供することができる。
本発明の実施の形態の発光体であるLiを1500ppm共添加したGd2.985Ce0.0015GaAl12、およびLiを共添加していない結晶に対し、137Csガンマ線を照射したときの、デジタルオシロスコープにより得られた電圧パルス信号を示すグラフである。 本発明の実施の形態の発光体であるMgを1500ppm共添加したGd2.985Ce0.0015GaAl12、およびMgを共添加していない結晶に対し、137Csガンマ線を照射したときの、デジタルオシロスコープにより得られた電圧パルス信号を示すグラフである。 本発明の実施の形態の発光体であるMgを300ppm共添加したGd2.985Ce0.0015GaAl12の(a)エッチング処理後の結晶表面の光学顕微鏡写真(b)エッチング処理前の結晶表面の光学顕微鏡写真である。
 以下、本発明の実施の形態について説明する。
 本発明の実施の形態の発光体は、一般式CeRE3-x5+y12+3y/2(ただし、0.0001≦x≦0.3、0≦y≦0.5あるいは0≦y≦-0.5、MはAl、Lu、Ga、Scから選ばれた1種又は2種以上、及びREはLa、Pr、Gd、Tb、Yb、Y、Luから選ばれた1種または2種以上である)で表されるガーネット構造を有する発光体に対し、少なくとも1種類以上の1価または2価の陽イオンを、全陽イオンに対し、7000ppm以下のモル比で共添加したガーネット発光体を含んでいる。
 本発明の実施の形態の発光体は、短い蛍光減衰時間、短い発光の立ち上がり時間、大きい発光強度、高い放射線耐性、高い発光量、少ない燐光成分を兼ね備えている。
 本発明の実施の形態の発光体のうち、第1の本発明の実施の形態の発光体は、Ce3+の4f5d準位からの発光を用いたガーネット構造を持つ発光体であり、一般式CeRE3-x5+y12+3y/2(ただし、0.0001≦x≦0.3、0≦y≦0.5あるいは0≦y≦-0.5、MはAl、Lu、Ga、Scから選ばれた1種又は2種以上、及びREはLa、Pr、Gd、Tb、Yb、Y、Luから選ばれた1種または2種以上である)で表されるガーネット構造を有する発光体に対し、Liを、全陽イオンに対し、7000ppm以下のモル比で共添加したガーネット発光体を含んでいる。
 また、第2の本発明の実施の形態の発光体は、Ce3+の4f5d準位からの発光を用いたガーネット構造を持つ発光体であり、一般式CeRE3-x5+y12+3y/2(ただし、0.0001≦x≦0.3、0<y≦0.5あるいは0<y≦-0.5、MはAl、Lu、Ga、Scから選ばれた1種又は2種以上、及びREはLa、Pr、Gd、Tb、Yb、Y、Luから選ばれた1種または2種以上である)で表されるガーネット構造を有している。この場合、特に、y=0や1の蛍光体に比べ、短い蛍光減衰時間、短い発光の立ち上がり時間、大きい発光強度、高い放射線耐性、高い発光量、少ない燐光成分を兼ね備えている。
 また、第3の本発明の実施の形態の発光体は、Ce3+の4f5d準位からの発光を用いたガーネット構造を持つ発光体であり、一般式Gd3-x-zCeRE12(ただし、0.0001≦x≦0.1、0≦z<3、MはAl、Lu、Ga、Scから選ばれた1種又は2種以上、及びREはLa、Pr、Tb、Yb、Y、Luから選ばれた1種または2種以上である)で表されるガーネット構造を有する発光体に対し、少なくとも1種類以上の1価または2価の陽イオンを、全陽イオンに対し、7000ppm以下のモル比で共添加したガーネット発光体を含んでいる。
 また、第4の本発明の実施の形態の発光体は、Ce3+の4f5d準位からの発光を用いたガーネット構造を持つ発光体であり、一般式Gd3-x-zCeRE5+y12+3y/2(ただし、0.0001≦x≦0.1、0<y<0.5あるいは0<y<-0.5、0≦z<3、MはAl、Lu、Ga、Scから選ばれた1種又は2種以上、及びREはLa、Pr、Tb、Yb、Y、Luから選ばれた1種または2種以上である)で表されるガーネット構造を有する発光体に対し、少なくとも1種類以上の1価または2価の陽イオンを、全陽イオンに対し、7000ppm以下のモル比で共添加したガーネット発光体を含んでいる。
 本発明の実施の形態の発光体は、例えば、マイクロ引き下げ法を用いた単結晶製造法により製造される。なお、以下に、本発明の実施の形態の発光体の製造方法として、マイクロ引き下げ法を示すが、これに限定されるものではない。
 マイクロ引き下げ法については、高周波誘導加熱による雰囲気制御型マイクロ引き下げ装置を用いて行う。マイクロ引き下げ装置は、坩堝と、坩堝底部に設けた細孔から流出する融液に接触させる種を保持する種保持具と、種保持具を下方に移動させる移動機構と、該移動機構の移動速度制御装置と、坩堝を加熱する誘導加熱手段とを具備した単結晶製造装置から成っている。このような単結晶製造装置によれば、坩堝直下に固液界面を形成し、下方向に種結晶を移動させることで、単結晶を作製可能である。
 当該坩堝は、カーボン、白金、イリジウム、ロジウム、レニウム、タングステン、モリブデンまたはこれらの合金から成り、坩堝底部外周に、カーボン、白金、イリジウム、ロジウム、レニウム、タングステン、モリブデンまたはこれらの合金からなる発熱体であるアフターヒータが配置されている。坩堝及びアフターヒータは、誘導加熱手段の出力調整により、発熱量の調整を可能とすることによって、坩堝底部に設けた細孔から引き出される融液の固液境界領域の温度およびその分布の制御を可能となっている。
 チャンバーの材質はSUS、窓材は石英である。マイクロ引き下げ装置は、雰囲気制御を可能にするため、ローターリポンプが具備されており、ガス置換前において、真空度を1×10-3Torr以下にすることができるようになっている。また、チャンバーへは、付随するガスフローメータにより精密に調整された流量で、Ar、N、H、Oガス等を導入できるようになっている。
 この装置を用いて、融液形成時に目的組成となるように秤量、混合した原料を坩堝に入れ、炉内を高真空排気した後、ArガスもしくはArガスとOガスとの混合ガスを炉内に導入することにより、炉内を不活性ガス雰囲気もしくは低酸素分圧雰囲気とし、誘導加熱手段に高周波電力を徐々に印加することにより坩堝を加熱して、坩堝内の原料を完全に融解する。なお、原料は、99.99%以上(4N以上)の高純度原料から成り、目的とする組成以外の不純物が極力少ない(例えば1ppm以下)ものが好ましい。
 原料を融解した後、種結晶を所定の速度で徐々に上昇させて、その先端を坩堝下端の細孔に接触させて充分になじませる。その後、融液温度を調整しつつ、種保持具の引き下げ軸を下降させることにより結晶を成長させる。なお、種結晶としては、結晶成長対象物と同等ないしは、構造・組成ともに近いものを使用することが好ましいが、これに限定されるものではない。また、種結晶として、方位の明確なものを使用することが好ましい。
 準備した原料が全て結晶化し、融液が無くなった時点で結晶成長終了とする。なお、組成を均一に保つ目的および長尺化の目的で、原料の連続チャージ用機器を取り入れてもよい。
 本発明の実施の形態の放射線検出器は、シンチレータ結晶から成る本発明の実施の形態の発光体と受光器とを組み合わせて構成されている。本発明の実施の形態の放射線検出器は、放射線検査装置の放射線検出器としても使用可能である。
 このような放射線検査装置としては、資源探査用検出器、高エネルギー物理用検出器、環境放射能検出器、ガンマカメラや医用画像処理装置等が挙げられる。医用画像処理装置の例としては、陽電子放出核種断層撮影装置(PET)、X線CT、SPECTなどの用途に好適である。また、PETの態様としては、二次元型PET、三次元型PET、タイム・オブ・フライト(TOF)型PET、深さ検出(DOI)型PETが好ましい。さらに、これらを組み合わせて使用しても構わない。
 本発明の実施の形態の放射線検出器は、受光器として、位置検出型光電子増倍管(PS-PMT)、シリコンフォトマルチプライヤー(Si-PM)フォトダイオード(PD)、またはアバランシェ-フォトダイオード(APD)などを使用することができる。
 以下に、本発明の実施の形態の発光体の実施例について、図面を参照して詳細に説明するが、本発明はこれに限定されるわけではない。なお、以下の実施例では、Ceや共添加する1価あるいは2価の陽イオンの特定に、結晶中における濃度と、融液(仕込み)における濃度とのいずれかの記載となっているが、各実施例において、結晶中の濃度1に対して仕込み時の濃度1~100程度となるような関係があった。
 また、各実施例では、以下のようにして時間分解能を測定している。まず、各実施例の透明な発光体をφ3×3mmサイズに加工・研磨し、その発光体2個を、約5cmの距離を離して対向に配置されたSi-PM2個に、それぞれ光学接着剤を用いて接着し、接着面以外をテフロン(登録商標)テープで覆う。次に、22Naガンマ線源をシンチレータ単結晶(発光体)2個の中心に設置し、22Naガンマ線源からβ線崩壊により約180°対向して同時放出される511keVのガンマ線を、各発光体に照射する。ガンマ線照射による各発光体の蛍光を、デジタルオシロスコープを用いたコインシデンス測定法で測定することにより、時間分解能を測定する。
 マイクロ引下げ法により、Liをそれぞれ300、1500、3000ppm共添加したGd2.985Ce0.015GaAl12の組成のガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は、1cmあたり91%であった。
 マイクロ引下げ法により、Liをそれぞれ300、1500、3000ppm共添加したLu2.985Ce0.015Al12の組成のガーネット型シンチレータ単結晶を作製した。この単結晶は、約3mmの直径および約15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、480nm付近の波長に確認された。480nmでの拡散透過率は、1cmあたり90%であった。
 マイクロ引下げ法により、Liをそれぞれ300、1500、3000ppm共添加したY2.985Ce0.015Al12の組成のガーネット型シンチレータ単結晶を作製した。この単結晶は、約3mmの直径および約15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、480nm付近の波長に確認された。480nmでの拡散透過率は、1cmあたり90%であった。
[比較例1]
 マイクロ引下げ法により、共添加しないGd2.985Ce0.015GaAl12の組成のガーネット型シンチレータ単結晶を作製した。得られた単結晶は、約3mmの直径および約15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は、1cmあたり92%であった。
[比較例2]
 マイクロ引下げ法により、Liをそれぞれ20000ppm共添加したGd2.985Ce0.015GaAl12の組成のガーネット型シンチレータ単結晶を作製した。得られた単結晶は、約3mmの直径および約15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は、1cmあたり70%であった。共添加しない比較例1の結晶に比べ、発光強度が40%低下した。
[比較例3]
 マイクロ引下げ法により、共添加しないLu2.985Ce0.015Al12の組成のガーネット型シンチレータ単結晶を作製した。この単結晶は、約3mmの直径および約15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、480nm付近の波長に確認された。480nmでの拡散透過率は、1cmあたり90%であった。
[比較例4]
 マイクロ引下げ法により、共添加しないY2.985Ce0.015Al12の組成のガーネット型シンチレータ単結晶を作製した。この単結晶は、約3mmの直径および約15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、480nm付近の波長に確認された。480nmでの拡散透過率は、1cmあたり90%であった。
 マイクロ引下げ法により、Liを300ppm共添加したGd2.985Ce0.015Ga3.15Al2.112.375の組成のガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は、1cmあたり92%であった。
 マイクロ引下げ法により、Liを300ppm共添加したGd2.985Ce0.015Ga2.85Al1.911.625の組成のガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は、1cmあたり91%であった。
 マイクロ引下げ法により、Gd2.985Ce0.015Ga3.15Al2.112.375の組成のガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は、1cmあたり91%であった。
 マイクロ引下げ法により、Gd2.985Ce0.015Ga2.85Al1.911.625の組成のガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は、1cmあたり90%であった。
 実施例1のうち、Liを300ppm共添加したGd2.985Ce0.015GaAl12を、酸素を3%含むアルゴン雰囲気中、1700℃の温度域で、24時間アニールを行った。
 実施例6の、Gd2.985Ce0.015Ga3.15Al2.112.375を、酸素を3%含むアルゴン雰囲気中、1700℃の温度域で、24時間アニールを行った。
 実施例2のうち、Liを300ppm共添加したLu2.985Ce0.015Al12を、大気中、1200℃の温度域で、24時間アニールを行った。
[比較例5]
 実施例4の、Liを300ppm共添加したGd2.985Ce0.015Ga3.15Al2.112.375を、水素を3%含むアルゴン雰囲気中で、1000℃の温度域で、48時間アニールを行った。
 マイクロ引下げ法により、Mgを300ppm共添加したLu2.985Ce0.015Al5。212.3の組成のガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、480nm付近の波長に確認された。480nmでの拡散透過率は、1cmあたり90%であった。
 マイクロ引下げ法により、Mgを300ppm共添加したY2.985Ce0.015Al5.212.3の組成のガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、480nm付近の波長に確認された。480nmでの拡散透過率は、1cmあたり91%であった。
 マイクロ引下げ法により、Mgを300ppm共添加したLu2.985Ce0.015Al4.811.7の組成のガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、480nm付近の波長に確認された。480nmでの拡散透過率は、1cmあたり90%であった。
 マイクロ引下げ法により、Mgを300ppm共添加したY2.985Ce0.015Al4.811.7の組成のガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、480nm付近の波長に確認された。480nmでの拡散透過率は、1cmあたり91%であった。
 実施例1~14および比較例1~5で得られた結晶の、発光強度、発光の立ち上がり時間、蛍光寿命、時間分解能の評価結果を、表1に示す。発光量については、実施例および比較例のシンチレータ単結晶を、φ3×1mmサイズに加工・研磨した後、光学接着剤を用いて光電子増倍管に接着し、上面をテフロン(登録商標)テープで覆い、そこに137Csガンマ線を照射し、得られたエネルギースペクトルの光電吸収ピークを解析することで評価した。
Figure JPOXMLDOC01-appb-T000001
 図1は、実施例1のうち、Liを1500ppm共添加したGd2.985Ce0.015GaAl12、および、同じ組成でLiを共添加していない比較例1のシンチレータ単結晶を、φ3×1mmサイズに加工・研磨した後、光学接着剤を用いて光電子増倍管に接着し、上面をテフロン(登録商標)テープで覆い、137Csガンマ線を照射し、デジタルオシロスコープにより得られた電圧パルス信号である。得られた電圧パルス信号を解析し、発光強度、発光の立ち上がり時間、蛍光寿命を評価した。図1および表1に示すように、Liを1500ppm添加することで、共添加していない結晶(比較例1)に対し、発光強度が21%増加し、立ち上がり時間は、2.3ns(共添加無し)から1.8ns(1500ppm共添加)と、22%早くなった。また、蛍光寿命は、64ns(共添加無し)から43ns(1500ppm共添加)と、33%早くなり、かつ共添加無しで存在する長寿命の蛍光寿命成分が低減した。また、CuKα、40mA、40mVの条件でX線を照射し、最大発光強度と1ms後の発光強度との比較を行い、燐光成分の含有量を測定したところ、1%(共添加無し)から0.1%(1500ppm共添加)と、燐光成分が減少した。
 実施例1のうち、Liを1500ppm共添加したGd2.985Ce0.015GaAl12、および、同じ組成でMgを共添加していない比較例1のシンチレータ単結晶2個を用いて、上記のコインシデンス測定法により、時間分解能の測定を行った。表1に示すように、Liを1500ppm添加することで、共添加していない結晶に対し、時間分解能が向上し、時間分解能は400ps(比較例1)から210ps(実施例1)と早くなった。
 また、表1に示すように、実施例1~3と、比較例1、3、4とを比べると、Liを共添加することで、発光強度が増加し、発光の立ち上がり時間および蛍光寿命が短くなり、かつ長寿命の蛍光寿命成分が低減することが確認された。
 一般式CeRE3-x5+y12+3y/2においてyの値が0<y<0.5あるいは0<y<-0.5をとる実施例6,7および、比較例1のGd2.985Ce0.015GaAl12(y=0)に対し、CuKα、40mA、40mVの条件でX線を照射し、最大発光強度と1ms後の発光強度との比較を行い、燐光成分の含有量を測定したところ、1.8%(比較例1)から0.2%(実施例6)、0.2%(実施例7)と、燐光成分が減少した。一般式CeRE3-x5+y12+3y/2においてyの値が0<y<0.5あるいは0<y<-0.5をとることで、燐光成分が減少することが確認された。
 実施例1のうち、Liを1500ppm共添加したGd2.985Ce0.015GaAl12、および、同じ組成でLiを共添加していない比較例1のシンチレータ単結晶を、φ3×1mmサイズに加工・研磨した後、600Gyに相当するCuKα、40mA、40mVの条件で発生したX線を照射し、X線照射前後の520nmにおける吸収係数の増加率を測定したところ、共添加していない結晶(比較例1)の吸収係数の増加率は50%であり、Liを1500ppm添加した結晶(実施例1)の吸収係数の増加率は1.0%であった。Liを共添加することで、放射線耐性が向上することが確認された。
 一般式CeRE3-x5+y12+3y/2においてyの値が0<y<0.5あるいは0<y<-0.5をとる実施例6,7および、比較例1のGd2.985Ce0.015GaAl12(y=0)のシンチレータ単結晶を、φ3×1mmサイズに加工・研磨した後、600Gyに相当するCuKα、40mA、40mVの条件で発生したX線を照射し、X線照射前後の520nmにおける吸収係数の増加率を測定したところ、吸収係数の増加率は、50%(比較例1)から1.2%(実施例6)、1.5%(実施例7)と減少した。一般式CeRE3-x5+y12+3y/2においてyの値が0<y<0.5あるいは0<y<-0.5をとることで、放射線耐性が向上することが確認された。
 一般式CeRE3-x5+y12+3y/2においてyの値が0<y<0.5あるいは0<y<-0.5をとりかつMgを共添加した実施例12、14および、比較例4のY2.985Ce0.015Al12(y=0)のシンチレータ単結晶を、φ3×1mmサイズに加工・研磨した後、600Gyに相当するCuKα、40mA、40mVの条件で発生したX線を照射し、X線照射前後の520nmにおける吸収係数の増加率を測定したところ、吸収係数の増加率は、55%(比較例4)から0.5%(実施例6)、0.8%(実施例7)と減少した。一般式CeRE3-x5+y12+3y/2においてyの値が0<y<0.5あるいは0<y<-0.5をとることで、放射線耐性が向上することが確認された。
 一般式CeRE3-x5+y12+3y/2においてyの値が0<y<0.5あるいは0<y<-0.5をとりかつMgを共添加した実施例11、13および、比較例3のLu2.985Ce0.015Al12(y=0)のシンチレータ単結晶を、φ3×1mmサイズに加工・研磨した後、600Gyに相当するCuKα、40mA、40mVの条件で発生したX線を照射し、X線照射前後の520nmにおける吸収係数の増加率を測定したところ、吸収係数の増加率は、55%(比較例4)から0.8%(実施例6)、0.9%(実施例7)と減少した。一般式CeLu3-x5+y12+3y/2においてyの値が0<y<0.5あるいは0<y<-0.5をとることで、放射線耐性が向上することが確認された。
 さらに、表1に示すように、一般式CeRE3-x5+y12+3y/2においてyの値が0<y<0.5あるいは0<y<-0.5をとる実施例6,7において、y=0である比較例1と比較し、発光量、時間分解能、発光強度が向上し、蛍光寿命が短寿命化し、かつ長寿命成分が低減することが確認された。これは、一般式CeRE3-x5+y12+3y/2においてyの値を0<y<0.5あるいは0<y<-0.5とすることで、希土類元素が6配位サイト、あるいはAl、Gaが8配位サイトに一部置換されるアンチサイト現象が低減し、アンチサイト由来の欠陥準位も低減することで、Ce3+4f5d発光が、促進されるためと考えられる。さらに欠陥準位が低減することで放射線を照射した際の欠陥準位に関連する吸収が低減し、放射線耐性が向上したと考えられる。
 また、表1に示すように、酸素を含む雰囲気中でアニールをした実施例9および実施例10では、アニールを行う前(それぞれ実施例6および実施例2)に比べて、発光強度が増加し、発光の立ち上がり時間および蛍光寿命が短くなり、かつ長寿命の蛍光寿命成分が低減するのが確認された。
 マイクロ引下げ法により、Mgをそれぞれ300、1500、3000ppm共添加したGd2.985Ce0.015GaAl12の組成のガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は1cmあたり91%であった。
 マイクロ引下げ法により、Caをそれぞれ300、1500、3000ppm共添加したGd2.985Ce0.015GaAl12の組成のガーネット型シンチレータ単結晶を作製した。得られた単結晶は、約3mmの直径および約15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は1cmあたり91%であった。
 マイクロ引下げ法により、Kを300ppm共添加したGd2.985Ce0.015GaAl12の組成のガーネット型シンチレータ単結晶を作製した。得られた単結晶は、約3mmの直径および約15mmの長さを有し、透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は1cmあたり90%であった。
 マイクロ引下げ法により、Naを300ppm共添加したGd2.985Ce0.015GaAl12の組成のガーネット型シンチレータ単結晶を作製した。得られた単結晶は、約3mmの直径および約15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は1cmあたり92%であった。
 マイクロ引下げ法により、Mgをそれぞれ300、1500、3000ppm共添加したLu2.885Gd0.1Ce0.015Al12の組成のガーネット型シンチレータ単結晶を作製した。この単結晶は、約3mmの直径および約15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、480nm付近の波長に確認された。480nmでの拡散透過率は1cmあたり89%であった。
[比較例6]
 マイクロ引下げ法により、共添加しないGd2.985Ce0.015GaAl12の組成のガーネット型シンチレータ単結晶を作製した。得られた単結晶は、約3mmの直径および約15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は1cmあたり92%であった。
[比較例7]
 マイクロ引下げ法により、Caをそれぞれ7500ppm共添加したGd2.985Ce0.015GaAl12の組成のガーネット型シンチレータ単結晶を作製した。得られた単結晶は、約3mmの直径および約15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は1cmあたり92%であった。共添加しない比較例1の結晶に比べ、発光強度が40%低下した。
[比較例8]
 マイクロ引下げ法により、共添加しないLu2.885Gd0.1Ce0.015Al12の組成のガーネット型シンチレータ単結晶を作製した。この単結晶は、約3mmの直径および約15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、480nm付近の波長に確認された。480nmでの拡散透過率は1cmあたり90%であった。
 マイクロ引下げ法により、Mgを300ppm共添加したGd2.985Ce0.015Ga3.15Al2。112.375の組成のガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は1cmあたり92%であった。
 マイクロ引下げ法により、Mgを300ppm共添加したGd2.985Ce0.015Ga2.85Al1.911.625の組成のガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は1cmあたり91%であった。
 実施例15のうち、Mgを300ppm共添加したGd2.985Ce0.015GaAl12を、酸素を3%含むアルゴン雰囲気中、1600℃の温度域で、24時間アニールを行った。
 実施例19のうち、Mgを300ppm共添加したLu2.885Gd0.1Ce0.015Al12を、大気中、1200℃の温度域で、24時間アニールを行った。
[比較例9]
 実施例15のうち、Mgを300ppm共添加したGd2.985Ce0.015GaAl12を、水素を3%含むアルゴン雰囲気中で、1000℃の温度域で、24時間アニールを行った。
 実施例15~23および比較例6~9で得られた結晶の、発光強度、発光量、発光の立ち上がり時間、蛍光寿命、時間分解能の評価結果を、表2に示す。発光量については、実施例および比較例のシンチレータ単結晶を、φ3×1mmサイズに加工・研磨した後、光学接着剤を用いて光電子増倍管に接着し、上面をテフロン(登録商標)テープで覆い、そこに137Csガンマ線を照射し、得られたエネルギースペクトルの光電吸収ピークを解析することで評価した。
Figure JPOXMLDOC01-appb-T000002
 図2は、実施例15のうち、Mgを1500ppm共添加したGd2.985Ce0.015GaAl12、および、同じ組成でMgを共添加していない比較例6のシンチレータ単結晶を、φ3×1mmサイズに加工・研磨した後、光学接着剤を用いて光電子増倍管に接着し、上面をテフロン(登録商標)テープで覆い、137Csガンマ線を照射し、デジタルオシロスコープにより得られた電圧パルス信号である。得られた電圧パルス信号を解析し、発光強度、発光の立ち上がり時間、蛍光寿命を評価した。図2および表2に示すように、Mgを1500ppm添加することで、共添加していない結晶(比較例6)に対し、発光強度が30%増加し、立ち上がり時間は2.3ns(共添加無し)から1.8ns(1500ppm共添加)と22%短くなった。また、蛍光寿命は60ns(共添加無し)から39ns(1500ppm共添加)と35%短くなり、かつ共添加無しで存在する長寿命の蛍光寿命成分が低減した。
 実施例15のうち、Mgを1500ppm共添加したGd2.985Ce0.015GaAl12、および、同じ組成でMgを共添加していない比較例6のシンチレータ単結晶2個を用いて、上記のコインシデンス測定法により、時間分解能の測定を行った。表2に示すように、Mgを1500ppm添加することで、共添加していない結晶に対し、時間分解能が向上し、時間分解能は400ps(比較例6)から170ps(実施例15)と短くなった。
 また、表2に示すように、実施例15、17と、比較例6、8とを比べると、1価のアルカリ金属イオンまたは2価のアルカリ土類金属イオンを共添加することで、発光強度が増加し、発光の立ち上がり時間および蛍光寿命が短くなり、かつ長寿命の蛍光寿命成分が低減するのが確認された。
 さらに、表2に示すように、一般式Gd3-x-zCeRE5+y12+3y/2において、yの値が0<y<0.5あるいは0<y<-0.5をとる実施例20および実施例21において、y=0である実施例15と比較し、発光量、時間分解能、発光強度が向上し、蛍光寿命が短寿命化し、かつ長寿命成分が低減するのが確認された。また、酸素を含む雰囲気中でアニールをした実施例22および実施例23では、アニールを行う前(それぞれ実施例15および実施例19)に比べて発光強度が増加し、発光の立ち上がり時間および蛍光寿命が短くなり、かつ長寿命の蛍光寿命成分が低減するのが確認された。
 先ず、市販のオルトリン酸(HPO)に硫酸(HSO)を5~95%(容量)の範囲で混合し、200℃まで加熱した。この加熱により、オルトリン酸は主にピロリン酸(H)に変化したものと思われる。その後、その加熱後の液体の温度を150~350℃の範囲の適当な温度として、エッチング液とした。実施例15のうち、Mgを300ppm共添加したGd2.985Ce0.015GaAl12を、ダイヤモンド外周歯切断機を用いてφ3×3mmのサイズに切断し、上記のエッチング液に浸して、エッチング処理を行った。図3に、エッチング前およびエッチング後の鏡面の光学顕微鏡写真を示す。図3に示すように、エッチング処理によって表面にエッチピットが出現し、かつ光沢性のない表面が得られたことが確認された。
[比較例10]
 実施例15のうち、Mgを300ppm共添加したGd2.985Ce0.015GaAl12を、ダイヤモンド外周歯切断機を用いてφ3×3mmのサイズに切断し、機械研磨法による鏡面研磨を行った。
[比較例11]
 実施例15のうち、Mgを300ppm共添加したGd2.985Ce0.015GaAl12を、ダイヤモンド外周歯切断機を用いてφ3×3mmのサイズに切断した。
 実施例24、比較例10および比較例11の結晶についてシンチレータ性能の測定を行い、発光強度比、発光量、時間分解能、垂直入射反射率を評価した結果を、表3に示す。表3に示すように、エッチング処理を行った単結晶(実施例24)は、従来の機械加工方法で得られた単結晶(比較例10、11)と同等以上のシンチレータ特性が得られることが確認された。
Figure JPOXMLDOC01-appb-T000003
 

Claims (14)

  1.  一般式CeRE3-x5+y12+3y/2(ただし、0.0001≦x≦0.3、0≦y≦0.5あるいは0≦y≦-0.5、MはAl、Lu、Ga、Scから選ばれた1種又は2種以上、及びREはLa、Pr、Gd、Tb、Yb、Y、Luから選ばれた1種または2種以上である)で表されるガーネット構造を有する発光体に対し、少なくとも1種類以上の1価または2価の陽イオンを、全陽イオンに対し、7000ppm以下のモル比で共添加したガーネット発光体を含むことを特徴とする発光体。
  2.  一般式CeRE3-x5+y12+3y/2(ただし、0.0001≦x≦0.3、0≦y≦0.5あるいは0≦y≦-0.5、MはAl、Lu、Ga、Scから選ばれた1種又は2種以上、及びREはLa、Pr、Gd、Tb、Yb、Y、Luから選ばれた1種または2種以上である)で表されるガーネット構造を有する発光体に対し、Liを、全陽イオンに対し、7000ppm以下のモル比で共添加したガーネット発光体を含むことを特徴とする発光体。
  3.  一般式CeRE3-xAl5+y12+3y/2(ただし、0.0001≦x≦0.3、0<y≦0.5あるいは0<y≦-0.5、及びREはY、Luから選ばれた1種または2種以上である)で表されるガーネット構造を有する発光体に対し、Mgを、全陽イオンに対し、7000ppm以下のモル比で共添加したガーネット発光体を含むことを特徴とする発光体。
  4.  一般式CeGd3-x(GaAl1-z5+y12+3y/2(ただし、0.0001≦x≦0.3、0<y≦0.5あるいは0<y≦-0.5、0.49≦z≦0.7である)で表されるガーネット構造を有する発光体に対し、LiあるいはMgを、全陽イオンに対し、7000ppm以下のモル比で共添加したガーネット発光体を含むことを特徴とする発光体。
  5.  原料を1000℃以上で熱処理することで得られ、20000photon/MeV以上の発光量かつ300ps以下の時間分解能を有し、燐光成分が0.5%以下であり、拡散透過率80%以上の透明体から成ることを特徴とする請求項1乃至4のいずれか1項に記載の発光体。
  6.  一般式Gd3-x-zCeRE12(ただし、0.0001≦x≦0.1、0≦z<3、MはAl、Lu、Ga、Scから選ばれた1種又は2種以上、及びREはLa、Pr、Tb、Yb、Y、Luから選ばれた1種または2種以上である)で表されるガーネット構造を有する発光体に対し、少なくとも1種類以上の1価または2価の陽イオンを、全陽イオンに対し、7000ppm以下のモル比で共添加したガーネット発光体を含むことを特徴とする発光体。
  7.  一般式Gd3-x-zCeRE5+y12+3y/2(ただし、0.0001≦x≦0.1、0<y<0.5あるいは0<y<-0.5、0≦z<3、MはAl、Lu、Ga、Scから選ばれた1種又は2種以上、及びREはLa、Pr、Tb、Yb、Y、Luから選ばれた1種または2種以上である)で表されるガーネット構造を有する発光体に対し、少なくとも1種類以上の1価または2価の陽イオンを、全陽イオンに対し、7000ppm以下のモル比で共添加したガーネット発光体を含むことを特徴とする発光体。
  8.  前記陽イオンとして、Mgを共添加したことを特徴とする請求項6または7記載の発光体。
  9.  原料を1000℃以上で熱処理することで得られ、40000photon/MeV以上の発光量かつ240ps以下の時間分解能を有する透明体から成ることを特徴とする請求項6乃至8のいずれか1項に記載の発光体。
  10.  一般式CeRE3-x5+y12+3y/2(ただし、0.0001≦x≦0.3、0<y≦0.5あるいは0<y≦-0.5、MはAl、Lu、Ga、Scから選ばれた1種又は2種以上、及びREはLa、Pr、Gd、Tb、Yb、Y、Luから選ばれた1種または2種以上である)で表されるガーネット構造を有することを特徴とする発光体。
  11.  請求項1乃至10のいずれか1項に記載の発光体を製造後、酸素を含む雰囲気中または不活性ガス雰囲気中で、1000℃以上でアニールを行うことにより製造されることを特徴とする発光体。
  12.  リン酸を含むエッチング液に浸すことによるエッチング処理によって、表面にエッチピットを有し、かつ垂直入射反射率8.5%以下の光沢性のない表面を有することを特徴とする請求項1乃至11のいずれか1項に記載の発光体。
  13.  単結晶であることを特徴とする請求項1乃至12のいずれか1項に記載の発光体。
  14.  γ線、X線、α線、中性子線といった放射線や高エネルギーフォトンを吸収して発光する発光体と、前記発光体の発光を検出する受光器とを有する放射線検出器であって、
     前記発光体は、請求項1乃至13のいずれか1項に記載の発光体であることを特徴とする放射線検出器。
     
PCT/JP2015/063032 2014-05-01 2015-04-30 発光体及び放射線検出器 WO2015166999A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/305,563 US10174247B2 (en) 2014-05-01 2015-04-30 Illuminant and radiation detector
RU2016146155A RU2670919C9 (ru) 2014-05-01 2015-04-30 Люминофор и детектор излучения
CN201580022146.9A CN106459758A (zh) 2014-05-01 2015-04-30 发光体及辐射探测器
JP2016516414A JP6630879B2 (ja) 2014-05-01 2015-04-30 発光体及び放射線検出器
EP15785582.6A EP3138891B1 (en) 2014-05-01 2015-04-30 Illuminant and radiation detector

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-094377 2014-05-01
JP2014094377 2014-05-01
JP2014-225932 2014-11-06
JP2014225932 2014-11-06
JP2015079858 2015-04-09
JP2015-079858 2015-04-09

Publications (1)

Publication Number Publication Date
WO2015166999A1 true WO2015166999A1 (ja) 2015-11-05

Family

ID=54358721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063032 WO2015166999A1 (ja) 2014-05-01 2015-04-30 発光体及び放射線検出器

Country Status (6)

Country Link
US (1) US10174247B2 (ja)
EP (1) EP3138891B1 (ja)
JP (1) JP6630879B2 (ja)
CN (1) CN106459758A (ja)
RU (1) RU2670919C9 (ja)
WO (1) WO2015166999A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017105993A (ja) * 2015-12-01 2017-06-15 シーメンス メディカル ソリューションズ ユーエスエー インコーポレイテッドSiemens Medical Solutions USA,Inc. ガドリニウム−ガリウム ガーネット シンチレータにおけるガリウム含有量を制御する方法
WO2017175763A1 (ja) * 2016-04-06 2017-10-12 株式会社 東芝 シンチレータアレイ
JP2019515856A (ja) * 2016-03-08 2019-06-13 ローレンス リバモア ナショナル セキュリティー, エルエルシー 陽電子放出断層撮影のための透明セラミックガーネットシンチレーター検出器
WO2019181618A1 (ja) * 2018-03-23 2019-09-26 Tdk株式会社 蛍光体および光源装置
KR20200020668A (ko) * 2018-02-07 2020-02-26 유니버시티 오브 테네시 리서치 파운데이션 단가 이온으로 코도핑된 가넷 신틸레이터
JP2020090629A (ja) * 2018-12-06 2020-06-11 パナソニックIpマネジメント株式会社 蛍光体およびそれを使用した半導体発光装置
JP2021046462A (ja) * 2019-09-17 2021-03-25 株式会社東芝 放射線検出材料及び放射線検出装置
JP2021059686A (ja) * 2019-10-09 2021-04-15 パナソニックIpマネジメント株式会社 蛍光体およびそれを使用した半導体発光装置
JP2021172669A (ja) * 2020-04-17 2021-11-01 パナソニックIpマネジメント株式会社 蛍光体およびそれを使用した発光装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014000521B4 (de) 2013-01-23 2023-05-11 University Of Tennessee Research Foundation Vorrichtung umfassend einen szintillator vom granat-typ und einen photodetektor sowie verfahren umfassend die verwendung dieser vorrichtung
DE102017008868A1 (de) * 2017-09-21 2019-03-21 Giesecke+Devrient Currency Technology Gmbh Optischer Speicherleuchtstoff, Verfahren zum Prüfen eines Echtheitsmerkmals, Vorrichtung zum Durchführen eines Verfahrens, Echtheitsmerkmal und Wertdokument
CN109686798B (zh) * 2018-12-24 2021-02-02 电子科技大学 一种应用于中远红外光电探测的磁性铁氧体/Bi复合薄膜
US11326099B2 (en) * 2019-10-30 2022-05-10 GE Precision Healthcare LLC Ceramic scintillator based on cubic garnet compositions for positron emission tomography (PET)
CN111908910B (zh) * 2020-08-18 2022-04-22 新沂市锡沂高新材料产业技术研究院有限公司 一种暖白光照明用高显指透明陶瓷及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454092A (en) * 1987-06-08 1989-03-01 Gen Electric Solid scintillator and its treatment
JPH0741760A (ja) * 1993-07-30 1995-02-10 Hitachi Metals Ltd セラミックスシンチレータ材料
JPH09110600A (ja) * 1995-10-11 1997-04-28 Hitachi Chem Co Ltd 希土類珪酸塩単結晶の加工方法及びシンチレータ
JPH10293180A (ja) * 1997-04-21 1998-11-04 Hitachi Chem Co Ltd シンチレ−タ及びその製造法
JP2006321974A (ja) * 2005-04-18 2006-11-30 Mitsubishi Chemicals Corp 蛍光体、及びそれを用いた発光装置、並びに画像表示装置、照明装置
JP2007515527A (ja) * 2003-12-22 2007-06-14 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング 蛍光体及びかかる蛍光体を有する光源
JP2013028667A (ja) * 2011-07-27 2013-02-07 Panasonic Corp イットリウムアルミニウムガーネットタイプの蛍光体とこれを用いた発光装置
WO2013025713A1 (en) * 2011-08-16 2013-02-21 Nitto Denko Corporation Phosphor compositions and methods of making the same
JP2013043960A (ja) * 2011-08-26 2013-03-04 Furukawa Co Ltd シンチレータ用ガーネット型結晶およびこれを用いる放射線検出器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6045721A (en) * 1997-12-23 2000-04-04 Patent-Treuhand-Gesellschaft Fur Elekrische Gluhlampen Mbh Barium magnesium aluminate phosphor
KR20030078122A (ko) * 2002-03-28 2003-10-08 대주전자재료 주식회사 리튬을 포함하는 야그계 황색형광체 및 이의 제조방법
KR101267284B1 (ko) 2004-10-15 2013-08-07 미쓰비시 가가꾸 가부시키가이샤 형광체, 및 그것을 사용한 발광 장치, 그리고 화상 표시장치, 조명 장치
CN101084290B (zh) 2004-12-21 2012-07-18 日立金属株式会社 荧光材料以及其制造方法,使用荧光材料的放射线检测器,与x射线ct装置
CN1733865A (zh) * 2005-09-02 2006-02-15 中国科学院上海光学精密机械研究所 石榴石型黄光荧光材料Y3Al5O12:Ce,Li的制备方法
JP4993284B2 (ja) * 2007-03-23 2012-08-08 国立大学法人東北大学 シンチレータ用単結晶の製造方法およびシンチレータ用単結晶
US8999281B2 (en) * 2007-06-01 2015-04-07 Hitachi Chemical Company, Ltd. Scintillator single crystal, heat treatment method for production of scintillator single crystal, and method for production of scintillator single crystal
CN101503622A (zh) * 2009-03-17 2009-08-12 罗维鸿 白光二极管、增效转光粉、荧光粉及荧光粉的制备方法
KR101423249B1 (ko) 2009-07-28 2014-07-24 드미트리 유리예비치 소코로프 고체 백색 광원들을 위한 무기 발광물질
CN101962547B (zh) * 2010-10-19 2013-05-29 四川大学 一种白光led用黄色荧光粉及其制备方法
JP5952746B2 (ja) 2011-01-31 2016-07-13 古河機械金属株式会社 シンチレータ用ガーネット型単結晶、及びこれを用いた放射線検出器
CN102220131A (zh) 2011-04-02 2011-10-19 重庆文理学院 一种白光led用球形、增红荧光粉及其制备方法
RU2506301C2 (ru) * 2012-04-11 2014-02-10 Анатолий Васильевич Вишняков Люминесцирующий материал для твердотельных источников белого света
US9145517B2 (en) * 2012-04-17 2015-09-29 General Electric Company Rare earth garnet scintillator and method of making same
US20140134437A1 (en) * 2012-11-12 2014-05-15 Mikhail Alexandrovich Arkhipov Single crystal luminophor material for white light-emitting diodes

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454092A (en) * 1987-06-08 1989-03-01 Gen Electric Solid scintillator and its treatment
JPH0741760A (ja) * 1993-07-30 1995-02-10 Hitachi Metals Ltd セラミックスシンチレータ材料
JPH09110600A (ja) * 1995-10-11 1997-04-28 Hitachi Chem Co Ltd 希土類珪酸塩単結晶の加工方法及びシンチレータ
JPH10293180A (ja) * 1997-04-21 1998-11-04 Hitachi Chem Co Ltd シンチレ−タ及びその製造法
JP2007515527A (ja) * 2003-12-22 2007-06-14 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング 蛍光体及びかかる蛍光体を有する光源
JP2006321974A (ja) * 2005-04-18 2006-11-30 Mitsubishi Chemicals Corp 蛍光体、及びそれを用いた発光装置、並びに画像表示装置、照明装置
JP2013028667A (ja) * 2011-07-27 2013-02-07 Panasonic Corp イットリウムアルミニウムガーネットタイプの蛍光体とこれを用いた発光装置
WO2013025713A1 (en) * 2011-08-16 2013-02-21 Nitto Denko Corporation Phosphor compositions and methods of making the same
JP2013043960A (ja) * 2011-08-26 2013-03-04 Furukawa Co Ltd シンチレータ用ガーネット型結晶およびこれを用いる放射線検出器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3138891A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017105993A (ja) * 2015-12-01 2017-06-15 シーメンス メディカル ソリューションズ ユーエスエー インコーポレイテッドSiemens Medical Solutions USA,Inc. ガドリニウム−ガリウム ガーネット シンチレータにおけるガリウム含有量を制御する方法
JP2021176962A (ja) * 2016-03-08 2021-11-11 ローレンス・リバモア・ナショナル・セキュリティー・エルエルシー 陽電子放出断層撮影のための透明セラミックガーネットシンチレーター検出器
JP2019515856A (ja) * 2016-03-08 2019-06-13 ローレンス リバモア ナショナル セキュリティー, エルエルシー 陽電子放出断層撮影のための透明セラミックガーネットシンチレーター検出器
JP7269994B2 (ja) 2016-03-08 2023-05-09 ローレンス・リバモア・ナショナル・セキュリティー・エルエルシー 陽電子放出断層撮影のための透明セラミックガーネットシンチレーター検出器
WO2017175763A1 (ja) * 2016-04-06 2017-10-12 株式会社 東芝 シンチレータアレイ
JPWO2017175763A1 (ja) * 2016-04-06 2019-02-14 株式会社東芝 シンチレータアレイ
KR20200020668A (ko) * 2018-02-07 2020-02-26 유니버시티 오브 테네시 리서치 파운데이션 단가 이온으로 코도핑된 가넷 신틸레이터
JP2020527611A (ja) * 2018-02-07 2020-09-10 ユニバーシティ オブ テネシー リサーチ ファウンデーション 一価イオンが共ドープされたガーネットシンチレータ
KR102409343B1 (ko) * 2018-02-07 2022-06-14 유니버시티 오브 테네시 리서치 파운데이션 단가 이온으로 코도핑된 가넷 신틸레이터
US11230667B2 (en) 2018-02-07 2022-01-25 University Of Tennessee Research Foundation Garnet scintillator co-doped with monovalent ion
WO2019181618A1 (ja) * 2018-03-23 2019-09-26 Tdk株式会社 蛍光体および光源装置
JPWO2019181618A1 (ja) * 2018-03-23 2021-03-25 Tdk株式会社 蛍光体および光源装置
US11634630B2 (en) 2018-03-23 2023-04-25 Tdk Corporation Phosphor and light source device
JP2020090629A (ja) * 2018-12-06 2020-06-11 パナソニックIpマネジメント株式会社 蛍光体およびそれを使用した半導体発光装置
JP2021046462A (ja) * 2019-09-17 2021-03-25 株式会社東芝 放射線検出材料及び放射線検出装置
JP2021059686A (ja) * 2019-10-09 2021-04-15 パナソニックIpマネジメント株式会社 蛍光体およびそれを使用した半導体発光装置
JP2021172669A (ja) * 2020-04-17 2021-11-01 パナソニックIpマネジメント株式会社 蛍光体およびそれを使用した発光装置
JP7345141B2 (ja) 2020-04-17 2023-09-15 パナソニックIpマネジメント株式会社 蛍光体およびそれを使用した発光装置

Also Published As

Publication number Publication date
EP3138891B1 (en) 2019-06-26
JP6630879B2 (ja) 2020-01-15
JPWO2015166999A1 (ja) 2017-04-20
US20170044433A1 (en) 2017-02-16
EP3138891A4 (en) 2017-04-12
RU2016146155A3 (ja) 2018-06-01
RU2016146155A (ru) 2018-06-01
RU2670919C2 (ru) 2018-10-25
EP3138891A1 (en) 2017-03-08
RU2670919C9 (ru) 2018-12-12
US10174247B2 (en) 2019-01-08
CN106459758A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6630879B2 (ja) 発光体及び放射線検出器
JP5389328B2 (ja) Prを含むシンチレータ用単結晶及びその製造方法並びに放射線検出器及び検査装置
JP5952746B2 (ja) シンチレータ用ガーネット型単結晶、及びこれを用いた放射線検出器
JP4393511B2 (ja) 希土類フッ化物固溶体材料(多結晶及び/又は単結晶)、及びその製造方法並びに放射線検出器及び検査装置
US6437336B1 (en) Scintillator crystals and their applications and manufacturing process
JP5674385B2 (ja) シンチレータ用ガーネット型結晶およびこれを用いる放射線検出器
JP2012180399A (ja) シンチレータ用ガーネット型結晶、及び、これを用いる放射線検出器
JP5548629B2 (ja) シンチレータ用ガーネット型結晶およびこれを用いる放射線検出器
JP2020527611A (ja) 一価イオンが共ドープされたガーネットシンチレータ
JP2013002882A (ja) 放射線検出器
JP4702767B2 (ja) 放射線検出用Lu3Al5O12結晶材料の製造方法及び放射線検出用(ZxLu1−x)3Al5O12結晶材料の製造方法
JP6078223B2 (ja) シンチレータ用ガーネット型単結晶およびこれを用いる放射線検出器
JP2017036160A (ja) 結晶材料、結晶製造法、放射線検出器、非破壊検査装置、および撮像装置
JP6188024B2 (ja) 発光体及び放射線検出器
WO2019168169A1 (ja) 蛍光体
WO2012137738A1 (ja) シンチレーター、放射線検出装置および放射線検出方法
JP2007045869A (ja) 低吸湿性ハロゲン置換フッ化物シンチレータ材料、及び放射線検出器及び検査装置
JP2013043960A (ja) シンチレータ用ガーネット型結晶およびこれを用いる放射線検出器
JP2006233185A (ja) 放射線検出用金属ハロゲン化物及びその製造方法並びにシンチレータ及び放射線検出器
JP2013040274A (ja) シンチレータ用ガーネット型結晶およびこれを用いる放射線検出器
JP2017132689A (ja) 結晶材料、結晶製造方法、放射線検出器、非破壊検査装置および撮像装置
KR20180052974A (ko) 섬광체 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016516414

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15305563

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015785582

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015785582

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016146155

Country of ref document: RU

Kind code of ref document: A