Nothing Special   »   [go: up one dir, main page]

WO2015156586A1 - 적혈구계 세포의 인 비트로 확장 - Google Patents

적혈구계 세포의 인 비트로 확장 Download PDF

Info

Publication number
WO2015156586A1
WO2015156586A1 PCT/KR2015/003483 KR2015003483W WO2015156586A1 WO 2015156586 A1 WO2015156586 A1 WO 2015156586A1 KR 2015003483 W KR2015003483 W KR 2015003483W WO 2015156586 A1 WO2015156586 A1 WO 2015156586A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
culture
cell
erythroid
erythroid cells
Prior art date
Application number
PCT/KR2015/003483
Other languages
English (en)
French (fr)
Inventor
백은정
이은미
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to CN201580027397.6A priority Critical patent/CN106414722B/zh
Priority to US15/302,647 priority patent/US10273455B2/en
Priority to EP15777380.5A priority patent/EP3130668B1/en
Publication of WO2015156586A1 publication Critical patent/WO2015156586A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0641Erythrocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/125Stem cell factor [SCF], c-kit ligand [KL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/14Erythropoietin [EPO]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2303Interleukin-3 (IL-3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/39Steroid hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • C12N2502/1311Osteocytes, osteoblasts, odontoblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • C12N2502/1323Adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • C12N2502/1352Mesenchymal stem cells
    • C12N2502/1358Bone marrow mesenchymal stem cells (BM-MSC)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2521/00Culture process characterised by the use of hydrostatic pressure, flow or shear forces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2531/00Microcarriers

Definitions

  • the present invention was made by the task no. HI 10C17400200 under the support of the Ministry of Health and Welfare of the Republic of Korea.
  • the present invention is made by the task number HI 12C0202 under the support of the Ministry of Health and Welfare, the research management professional organization of the task is Korea Health Industry Development Institute,
  • red blood cell preparations In Korea, about 2.1 million units of red blood cell preparations are used annually, which, if you calculate that there are 2X10 12 cells per unit, requires about 4X10 18 or more cells. In the United States alone, at least 3X10 19 cells are required to replace annual red blood transfusions (15- ⁇ units of 2X10 12 cells each).
  • well-studied animal cells such as CHO cells
  • the largest bioreactor can run cells up to 20,000 L in volume up to 5X10 7 cells AnL. At this concentration, the current state-of-the-art technology requires 30,000 batch cultures to produce the required red blood cells [2].
  • the animal cell culture method designed in the culture conditions such as conventional static culture, suspension culture, fixed bed reactor, airlift reactor (air lift reactor) It is not practical in astronomical numbers of cells and the erythrocyte cultures that require the same amount of media and space.
  • the most efficient cultivation method in space is to cultivate cells in a packing form, but culturing red cells for erythrocyte production has not been reported.
  • the research team found that erythroid cells were found to undergo physical contact with mature erythroid progenitor cells in terms of cellular maturity, denucleation rate, cell viability and myelodysplasia.
  • red blood cells adhere to each other in three dimensions to make a space called erythrobl as t i c i s l and mature and proliferate.
  • these hematopoietic spaces in the bone marrow are partitioned within a thin bony t rabecul ae to prevent cell crushing.
  • the stacking scale suitable for culturing erythroid cells was identified by focusing on the environment in the bone marrow, and the pore size and biocompatibility (bi ocompat i bl e) capable of supporting the culture of the porous structure Appropriate pore size and material suitability were checked.
  • the present inventors made diligent research efforts to develop an in vitro expansion method of erythroid cells. As a result, in culturing erythroid cells in three-dimensional stacked packing in a porous structure, it was found that in vitro expansion of erythroid cells can be achieved and the effect is very excellent, thereby completing the present invention. Accordingly, it is an object of the present invention to provide an in vitro expansion method of erythroid cells comprising the step of culturing three-dimensional stacked packing of erythroid cells using a porous structure.
  • the present invention provides a method for in vitro expansion of erythroid cells comprising the step of culturing the three-dimensional stacked packing of erythroid cells using a porous structure.
  • the present inventors earnestly tried to develop a method for expanding erythroid cells in an in vitro environment. As a result, it was found that the erythroid cells can be expanded in vitro most efficiently by the method of three-dimensional lamination packing culture of erythroid cells using the porous structure.
  • Erythrocyte cell 1 herein includes cells that are in the process of maturation from erythroid progenitor cells, which can be obtained from a variety of sources, such as peripheral blood, umbilical cord blood, or bone marrow.
  • CD34 + cells as cells can be isolated according to various cell isolation methods known in the art, such as immunomagnetic-bead separation methods using CD34 + antibodies, and in accordance with a preferred embodiment of the invention CD34 + cells are derived from umbilical cord blood.
  • Erythrocyte progenitor cells differentiate into mature erythrocytes through erythropoiesis, which consists of the following steps: (a) proerythroblast from hematopoiet ic stem ceU; (B) differentiating from wholeoblasts to basophilic erythroblasts; (c) Differentiation from basic erythrocytes to polychromatophilic erythroblasts; (d) differentiation from polybasic erythrocytes to orthochromatic erythroblasts; (e) polybasic erythrocytes differentiation into polychromatic erythrocyte); And (f) differentiating from polyinflammatory red blood cells to erythrocytes.
  • the present invention preferably includes cells in the erythrocyte stage (d, e, f stage) of maturation.
  • erythroid progenitor cell refers to all cells involved in the erythrocyte formation process except for mature red blood cells.
  • the term "three-dimensional lamination packing culture” refers to culturing the erythroid cells by sinking and stacking the erythroid cells using a culture vessel of a height capable of sufficiently stacking red blood cells, specifically, for example, a leucine.
  • porous construct herein is meant a construct for aiding cell culture, comprising a plurality of pores on the order of several micrometers to several millimeters.
  • the porous structure of the present invention is not particularly limited in shape and size, and may be appropriately selected according to the embodiment and scale of the present invention.
  • the porous structure of the present invention may be made from a material comprising polyethylene, silica, cellulose, DEAE-dextran, glass, polystyrene polar, acrylamide or collagen, but is not limited thereto and has a negative effect on cell culture. It is possible to select and use the material that does not give the appropriate amount.
  • the porous structure of the present invention is a "microcarrier" or "scaffold" structure.
  • the microcarrier of the present invention refers to a porous support structure for cell culture having a diameter of about 100 ym to several micrometers, and includes pores of about 30 to 500 ym. It is possible to adjust the culture scale by using for culturing the cells.
  • the scaffold of the present invention is a support structure for cell culture containing pores of about tens to hundreds of ⁇ , and unlike microcarriers using a plurality of unit structures, the diameter and height are adjusted to the culture scale. It means an integrated structure.
  • the scaffold of the present invention may have a pore size of approximately 10 ym to 1 mm 3, preferably 30 ⁇ to 600 ⁇ , more preferably 30 ym to 500 ym, more preferably 50 ⁇ to 500 ym, even more Preferably, it may be about 50 ym to 400 um.
  • the scaffold of the invention does not have any particular limitation on the material, and can freely use a material selected from metal, ceramic, synthetic polymer and / or natural polymer, and specifically, for example, collagen, silk, alginate, etc. , PE (polyethylene), PLA (poly (lactic acid)), PGA (poly (glycol ic acid)), PLA and PGA copolymers, PTFE (polytetrafluoroethylene),
  • Polyvinyl chloride PVC
  • polydimethylsi loxane PDMS
  • PCL Polycaprolactone
  • PU polyurethane
  • alumina hydroxyapatite
  • nickel titanium
  • cobalt-chromium alloy and / or stainless steel
  • Examples of commercially available scaffolds are Honeycomb (KOKEN, Tokyo, Japan) or Biomerix 3D (Biomerix, Fremont, CA).
  • the "porous structure" of the present invention is not only a structure in which the structure itself contains porosity, but also the structure itself does not contain voids, in the form of aggregation of the small units constituting the structure, a gap (gap) between the small units occurs And a structure in which the gap can serve as a void of the porous structure.
  • the macroporous structure contains pores in the subunits of the structure itself, but the gap between the subunits can play the same role as the pores, thereby exerting a lamination packing culture effect of similar erythroid cells.
  • an unlimited number of beads of a size sufficient to generate a gap of 30 ym to 1500 ⁇ may be used, and the microcarrier disk used in an embodiment of the present invention may be used. It is available.
  • the porous structure of the present invention comprises pores having a size of 30-1500 ⁇ . It is understood that 'comprising' pores having a distribution size of 30-1500 um implies that pores of size outside that range are not excluded, and pore sizes of 30-1500 ⁇ are intended to expand the erythroid cells of the present invention.
  • the pore size distribution of the pores of the porous microcarrier is preferred, and there may be pores of a size partially out of this range.
  • the pores may all be pores formed of the same or similar size, and pores of various sizes within the range of 30-1500 ⁇ may be common.
  • the lower limit of the pore size is such that the erythroid cells are introduced into the pores and thus It means the minimum size for configuring the stacking environment, the upper limit of the pore size is set to provide an environment similar to the bone marrow environment.
  • the pore size distribution preferably has a size distribution of 30-1000 ⁇ , more preferably 30-700 ym, even more preferably 30-500 ⁇ and most preferably 50-500 um. In the case of having the most desirable pore size distribution, the excellent culture effect by the three-dimensional lamination packing of erythroid cells is maximized.
  • the porous structure of the present invention is a macroporous microcarrier.
  • microcarrier means a support structure for cell culture having a size of about 100 ⁇ to several mm .
  • the microcarrier of the present invention comprises a plurality of pores, the diameter of the pores comprising Macroporous, mesoporous, and microporous microcarriers can be classified into macroporous structures, which have an average pore diameter of approximately 50 ⁇ or more, or about 2-50 ym for mesoporous structures.
  • the microporous microcarrier of the present invention refers to a microcarrier including a plurality of pores having an average diameter of about 50 ⁇ m or more. The use of macroporous carriers for bit extension has been found to be effective.
  • the pore size of the macroporous carrier is large enough to allow the erythroid cells to be cultured in a three-dimensional stacked packing, and is stacked on an excessively large scale so that the cell's pressing, gas or nutrient exchange is prevented.
  • the gas or nutrient exchange efficiency is maximized by the fluidity of the microcarrier itself of the present invention.
  • gas or nutrient exchange can be performed smoothly by the fluidity of the structure itself while maintaining a three-dimensional stacked packing culture environment of erythroid cells.
  • the expansion unit floor area can erythroid cells by providing an appropriate pore structure of the microcarrier Since the cell stacking scale can be maintained, there is an advantage of easily expanding the culture scale of erythroid cells.
  • the medium used for the culturing of the present invention may include components commonly used for culturing animal cells.
  • the basal medium constituting the medium of the present invention is conventional medium in the art, such as Eagle's MEM [Eagle's minimum essensial medium, Eagle, H. Science 130: 142 (1959)], a-MEM [Stanner, CP. et al., NAT. New Biol. 230: 52 (1971)], Iscove's MEM [Iscove, N. et al., J. Exp. Med. 147: 923 (1978), 199 medium [Morgan et al., Proc. Soc. Exp. BioMed.
  • the medium used in the present invention is a system for promoting the proliferation and differentiation of erythroid progenitor cells (SCF), IL-1, IL-3, IL-4, IL-5, IL-11, GM-CSF (gr group consisting of anu 1 ocy te inacr ophage to co 1 ony stimulating factor (MF), macrophage colony-st imating factor (CSF), gr anu 1 ocy te to co 1 ony stimulating factor (G-CSF), and EPCKerythropoiet in And at least one component selected from.
  • SCF erythroid progenitor cells
  • IL-1 IL-1
  • IL-3 IL-3
  • IL-4 IL-5
  • IL-11 GM-CSF
  • GM-CSF gar group consisting of anu 1 ocy te inacr ophage to co 1 ony stimulating factor (MF), macrophage colony-st imating factor (CSF), gr anu
  • the medium used in the present invention comprises hydrocortisone, SCF, IL-3 and EP0 in the step of differentiating from progenitor cells to basophilic blast cells; SCF, IL-3 and in differentiation from basophilic erythrocytes to polybasic blasts EPO; Comprises EP0 in the step of differentiating from multibasic erythrocytes to spermatogenic erythrocytes; In the case of the K-denuclear stage, which differentiates from polynemic erythrocytes (ie reticulocytes) in inflammatory red cells, does not contain cytokines.
  • culturing the erythroid cells of the present invention is carried out in a medium to which shear stress is applied by continuous f (low).
  • Continuous flow means that the agitation or exchange of the medium takes place at regular or irregular intervals or continuously.
  • the continuous flow for culturing erythroid cells is formed by agitation.
  • the agitation may specifically be, for example, agitation through a magnetic stirrer, and may be accomplished in a spinner flask.
  • the flow is formed by stirring. More specifically the flow is formed by stirring at 1-50 rpm. Specifically the flow is formed by stirring at 1—40 rpm, more specifically 5—35 rpm, even more specifically 5-30 rpm. If the stirring is performed at a higher rpm, the shear force applied to the cultured cells is so large that the stacked structure between the cells is collapsed and the three-dimensional contact effect between the cells is reduced.
  • the culture is made in a filter included inside the medium to prevent the release of red blood cells from the porous one microcarrier by continuous flow. The filter minimizes the change in the three-dimensional stacked packing culture environment due to the shear force received by the microcarrier and erythroid cells, and enables the smooth flow of the medium, thereby helping to effectively expand the cells.
  • the filter of the present invention is characterized in that the mesh (Mesh) size of 1-8 ym.
  • the mesh size of the filter of the present invention is 1-5 ⁇ ⁇ , more specifically 2-5 ⁇ ⁇ , more specifically 3-4 ym.
  • erythroid cells which are nearing completion of the maturation process, preferably including entering the final maturation stage.
  • red blood cell enucleat ion processes occur.
  • Erythrocytes that enter the final stage of maturation differ greatly from those of hematopoietic stem cells in terms of their characteristics and growth environment.
  • the superior culture effect by 3D layered packing culture in porous microstructures is differentiated into hematopoietic cells from the hematopoietic stem cells. Cells, and even cells that have entered the final stage of maturation.
  • erythroid cell 3D lamination packing culture when the lamination scale is increased to an appropriate level or more, there is a problem in that cell culture efficiency is decreased due to cell depression, gas or nutrient exchange efficiency, and the like.
  • the inventors first introduced porous microcarriers into 3D stacked packing cultures of erythroid cells, thereby stacking cells that can be smoothly cultured through pores of the microcarriers while densely culturing erythroid cells above an appropriate level of lamination. The effect of maintaining the scale was exerted.
  • the 3D cultured erythroid cells of the present invention is DLC KDeleted in Liver Cancer 1), ICAM-4 (Intercel lular Adhesion Molecule-4) and VLA-4 (Very Late Antigen-4) Expresses one or more adhesion related genes. 0 1 such adhesion-increasing activity by the signal exchange between the cells by the relevant gene can increase the production rate of erythroid cells.
  • the DLC 1, ICAM-4 and / or VLA-4 proteins may be artificially added to the medium.
  • the step of culturing the three-dimensional stacked packing of the erythroid cells of the present invention is mesenchymal stem cells, osteoblast endothelial cells (endothelial cells), monocytes (macrophage) And at least one selected from the group consisting of histiocytes and co-culture with erythroid cells.
  • Mesenchymal stem cells, osteoblasts, endothelial cells (endothelial cells), monocytes of the present invention, Macrophage and histocytes are the components of the bone marrow, and have been used to make the culture environment of the erythroid cells of the present invention similar to the environment in the bone marrow.
  • two or more components are selected from mesenchymal stem cells, osteoblasts, endothelial cells, monocytes, macrophages and histiocytes, there is no particular limitation on the mixing ratio, but preferably Can be mixed in proportions similar to the environment in the body.
  • the erythroid cells may be mixed at a cell number ratio of 1:10 to 2: 1.
  • the mixing ratio is a ratio for creating an environment similar to the environment in the body, but includes a range in which the content of erythroid cells is appropriately increased according to the object of the present invention for culturing erythroid cells.
  • the present invention provides a method for in vitro expansion of erythroid cells comprising the step of culturing the three-dimensional stacked packing of erythroid cells using a porous structure.
  • the microcarrier while easily expanding the dense culture scale of erythroid cells, the microcarrier can maintain a lamination scale through which cell culture can be carried out smoothly.
  • 1 is a 2D plate culture, 2D high concentration culture, macroporous microcarrier type Cytoline 1 stacked cell culture, erythroid cell stack culture using Cytopore, biomatrix 3D, erythroid cell stack culture using Honeycomb, Spinner flasks, stirrers, and cylindrical spin filters made for medium circulation conditions are shown.
  • FIG. 2A shows the results obtained by Wright-Giemsa staining after 1 day and 2 days of 2D plate stacking and 3D cell stack culture of polyinflammatory / stable erythrocytes.
  • Asterisks indicate denucleated final mature erythrocytes, and arrows indicate electrostatic erythrocytes (X200).
  • 2B shows the result of comparing the cell maturation and erythrocyte production rate under each condition with respect to A of FIG. 2.
  • FIG. 3 shows the results observed after two days of cultivation of basal erythrocyte cells in 2D plate, 3D high concentration packing culture by varying the culture concentration.
  • FIG. 3A shows Wright-Giemsa staining results of infectious erythrocytes, the red asterisk is the final mature erythrocyte cell, the blue arrow is the infectious erythrocyte, the blue arrow is myeloid cell, and the white asteris is denuclearization cell (x200 , The asterisk indicates dysplasia cells.
  • 3B shows the result of comparing the degree of cell maturation and erythrocyte production in relation to A of FIG. 3.
  • Figure 4a shows a microscopic photograph of the microtopes Cytopore and Cytoline 1 (left) and cultured with cells (middle) and incubated in a lob (6.5 mm diameter in the upper part of the upper part) (right) ).
  • the left side of b of FIG. 4 shows the spin filter having a cylindrical shape (6.5 mm in diameter and 15 I ⁇ in height), and the right side shows the erythroid cells in a 12 well medium at a concentration of 10 7 cells / ml using a cylindrical spin filter. Indicates that it is grown in.
  • Figure 5 shows the erythroid cells that survived when cultured for 1 day, 2 days, 3 days using Cytopore.
  • FIG. 6 shows cells that survived the case of lamination culture using Cytoline 1.
  • FIG. 7 shows the cell maturation stages after 1 and 2 days of culture using Cytoline 1.
  • FIG. 8 compares up to one day after lamination for other cord blood-derived case 2 that proceeded simultaneously, and it was confirmed that the cell maturation increased significantly to 39% in the control group and 94.1% in the experimental group II. It was confirmed that the contact between cells increased and cell maturation progressed more effectively in the 3D stacked culture with Cytoline 1 (see FIGS. 8 and 9).
  • FIG. 10A shows the result of immersing red blood cells in a spinner flask and then rotating them at RPM 25 without microcarrier compared with 2D folate culture.
  • FIG. 10B shows the cell maturation stage according to the incubation period. Indicates.
  • FIG. 11 shows the results of culturing cells using Cytopore in a spinner pool.
  • FIG. 13 shows the result of Wright-Giemsa staining by culturing cells under flow conditions of PM 0 and RPM 25 using Cytoline 1 and a filter. Red asterisks indicate denucleated red blood cells, blue arrows for electrostatic erythrocytes, black stars for dead cells, and black arrows for polyinflammatory erythrocytes (X200).
  • FIG. 14 shows the cell maturation stage under the conditions of FIG. 13;
  • FIG. 15 shows a comparison of red blood cell production effects with cord blood cases different from FIG. 13.
  • FIG. 16 to 18 show the results of observing cells by 2D high concentration and 3D high concentration packing cultures of erythroid cells, and specifically, FIG. 16 shows the results of cell Wright-Giemsa staining, and the red asterisk indicates the final mature erythrocyte cells denuclearized, black. Asterisks indicate dead cells, black arrows indicate immature erythroid cells, and all other cells are infectious erythroid cells (X200).
  • FIG. 17 shows the cell maturation stage under the conditions of FIG. 16.
  • Figure 18 shows the results of the culture experiment of erythroid cells using a porous material of various materials and various pore sizes. Left is porous The population of mature erythroid cells harvested after culturing the cells in the construct (pe ll et) is shown and the right side shows the cell viability.
  • FIG. 19 shows the results of Wr ight-Gi emsa staining of erythroid cells in 2D high concentration and 3D stacked packing cultures. Red asterisks indicate denucleated red blood cells; Magnification is 200X; Scale bar is 50 ⁇ .
  • FIG. 21 shows erythrocyte production markers (ICAM-4, GATA-l, Hb-beta, Hb-gaVIIa) and adhesion-related signals (DLC 1 ′ ICAM-4) to qPCR during 3D stacked packing culture (3 days). The confirmed result is shown.
  • IAM-4 erythrocyte production markers
  • GATA-l GATA-l
  • Hb-beta Hb-gaVIIa
  • DLC 1 ′ ICAM-4 adhesion-related signals
  • Fig. 22 is a graph showing that the results of in vitro function of red blood cells can be obtained similar to those of peripheral blood of healthy donors.
  • MSC and osteoblasts which are adherent cells, was first put in a porous structure and waited for attachment, and after 3 hours, additional red blood cell cells were added (upper row 3h; experiment A group). The cells were added at the same time and co-cultured for 192 hours (lower mix; experiment B group), and then the composition of the cells was analyzed.
  • FIG. 25 shows the maturation and final erythrocytes of erythroid cells by inducing three-dimensional interaction in the porous structure through co-culture of bone marrow cells and erythroid cells including macrophages and mononuclear leukocytes in the 3D porous structure for 72 hours.
  • the result which confirmed the effect on cell production experimentally is shown.
  • the left side shows the microscopic observation of the inside of the construct after 48 hours of incubation.
  • the right side shows the result of staining of the cells after 48 hours and 72 hours of incubation (black arrows are immature erythroid cells; red arrows are mature erythroid cells).
  • White asterisks represent macrophages; remaining cells represent monocytes).
  • CD34 + cells were isolated from cord blood of healthy donors using immunomagnet ic microbead select ion method and EasySep CD34 separation kit (StemCeU Technologies). Some CD34 + cells were used for cultivation immediately after isolation, and then frozen and stored for thawing. These cells were cultured in the absence of stroma and serum for 17 days [3, 4].
  • cytokines were added for differentiation and proliferation of CD34 + cells. From day 0 to day 7, cells were treated with 1 ⁇ hydrocortisone (Sigma), 100 ng / ml stem cell factor (SCF; R & D Systems), 10 ng / ml interleukin (IL) -3 (R & D Systems), and 6 IU / Cultured in media supplemented with ml erythropoietin (EP0; Calbiochem). Basic erythrocytes (basophi 1 erythroblast) were cultured in medium to which 50 ng / ml SCF, 10 ng / ml IL-3 and 3 IU / ml EP0 were added from 7 to 13 days.
  • SCF stem cell factor
  • IL interleukin
  • EP0 ml erythropoietin
  • Example 3 2D plate culture, 3D stacked cell culture
  • Example 5 2D plate culture, 3D 100 ⁇ l, 200 ⁇ laminated culture
  • the used ribs were ones having a size that allows the cells of Experimental Groups I and II to be stacked up to form a 3D stacking environment.
  • the cultures were the same, cultured for 24 and 48 hours, cell number and viability, and cell maturation stages were analyzed using Wright-Giemsa staining.
  • Example 6 2D, 3D Stack Culture in Porous Structure
  • the first material used is CytoporeCGE healthcare, made of 100% cellulose, with an average pore size of 30 ⁇ , density 1.03 g / ml, particle diameter 200-280 urn, effective surface area (1.1 m 2 / g, volume 40 ml / g).
  • the second material Cytoline KGE healthcare, is made of polyethylene and silica and has a pore size of 1-400 urn, density of 1.32 g / ml, sedimentation rate of 120-220 cm / min, length of 1.7-2.5 cm, thickness of 0.4—1.1 cm, surface area 0.3 m 2 / g or more similar to the space within the bone marrow skeleton.
  • the control for the 3D experimental group was the same as the 2D plate conditions above.
  • Experimental group I put Cytopore into the tube, and experimental group II put Cytoline 1 (see Fig. 4), and then put in a multi-inflammatory / saline erythrocytes and laminated to lxlO 7 cells / ml and cultured. Cultures were reached until the final maturation stage, cultured for 24 and 48 hours, cell number and viability, and cell maturation stages were analyzed using Wright-Giemsa staining.
  • Example 7 3D Lamination in a Spinner Flask
  • Cytoore or Cytoline 1 was incubated in the spinner flask to determine the conditions under which the cells were not pressed and the medium exchanged smoothly even in a large volume of cell stack for scale-up culture in consideration of the bone marrow situation.
  • the conditions of the control group were the same as above, and the experimental group was incubated with lxlO 7 cell / ml in a spinner flask. In 24 hours, control and experimental groups were analyzed for the maturation stage of cells using Wright-Giemsa staining.
  • Example 9 3D incubation in a spin filter with Cytoline 1 in a spinner flask (medium exchange)
  • Cytoline 1 was chosen as a more suitable porous structure for 3D lamination for in vitro bone marrow environment reproduction. Since the erythroid cells are not adherent cells, they are found to be fixed even when they enter the porous microcarrier, and some of them move out of the carrier and run in suspension. In this case, since the cells are not in contact with each other, the carriers and the cells are confined in a spin filter made of cylindrical cylinders while being stacked and grown in pores and smoothly exchanged with the culture medium. In general, the 8 ⁇ filter used in bioreactors has a large pore diameter, allowing the erythroid cells belonging to the smallest cells to easily escape.
  • filter mesh Cells were incubated in a small spin filter with a mesh size of 3 ⁇ and the culture medium exchanged slowly.
  • the control group is the same as above, and experimental group I was incubated in a stationary state (RPM 0) with CytoHne 1 by confining the cells at a concentration of lxlO 7 cells / ml with a spin filter.
  • Experimental group II was incubated with shaking at RPM 25. Every 24 hours, the maturation stages of control and experimental cells were analyzed.
  • Example 10 2D high concentration culture, 3D stacked culture using Cytoline 1ol
  • the present inventors have previously announced that even in 2D plates, cell viability and cell maturation are better when the cells are cultured in such a way that the cells are in contact with each other at the bottom of the plate rather than the normal cell concentration.
  • the present inventors compared to the high concentration culture in the 2D full rate, the contact degree in the 3D culture is more compared to make a good red blood cell production and lamination of the medium exchange when there is no problem.
  • the cultures were the same and the control group was incubated at high density with lxlO 6 cells / ml in 2D folate 24-well.
  • 3D porous structures can It has numerous pores for stimulation. It can reproduce the porosity of bone in bone marrow in the body and can reduce cell damage. Pore size and shape and material composition for selection of suitable structures Experimented to determine the applicability. The pore size (iim) and the material of each material are listed in Table 1. Controls were incubated at lxlO 6 cells / mL concentration as 2D plate cultures in 6-wells.
  • Hematopoietic stem cells isolated from umbilical cord blood were differentiated in erythrocyte culture medium for 13-17 days and the cells were stacked at high concentration when basophil / polyinflammatory erythrocytes became 50% or more.
  • the control group was cultured in a plate, and the experimental group was stacked on the tube at a concentration of 2xl0 7 cells / ml to observe the maturation degree and viability of red blood cells at 1 and 2 days (see FIG. 2A).
  • erythroid cells were incubated with close contact between cells, similar to erythroid islands in bone marrow (see FIG. 2A).
  • the 3D high concentration laminated cell culture was more effective in cell maturation by increasing the contact between cells by reproducing the bone marrow environment in vivo than the 2D folate cell culture.
  • the 2D plate culture control group and the experimental group I, II were compared with the 2D plate culture control group.
  • Experimental group I was cultured by stacking the cells in a narrow tube that can constitute a 3D stacking environment at lxlO 7 cells / ml concentration
  • experimental group II was cultured by stacking 2xl0 7 cells / ml.
  • the erythrocytes in the maturation stage were compared with the control group in Cytopore and Cytoline l (see FIG. 4).
  • Cytopore showed lower viability of erythroid cells than control group. This was thought to be because the void space is too small to cause cell contact and media circulation, as shown in FIG. 4 (see FIG. 5).
  • Cytoline 1 showed efficient cell maturation during lamination (see FIG. 6), and after 1 and 2 days, erythrocytes were observed in the control group (38.3%, 15.6%). 67.5%, 14.1%). In addition, erythrocytes after denucleation were significantly increased when stacked in each case 1 and case 2 of Cytoline 1 (26.9%, 80.0%) than in control group (6.1%, 7.2%). (26.9%, 4.0%), (2.8%, 0.0%) (see FIG. 7). In the case of other cord blood-derived case 2 which proceeded at the same time, it was compared up to 1 day after lamination, and it was confirmed that the cell maturation increased significantly to 39% in the control group and 94.1% in the experimental group II.
  • Erythrocyte production was also more effective in spinner flasks in the control group (0.0%, 2.7%, 5.8%, 3.4%) and in experimental group I (6.5%, 9.0%, 26.0%, 59.3%). Therefore, it was found that spinner flask culture in Cytoline 1 was also effective for cell maturation and red blood cell production. However, due to shear stress, the cell viability was lower than that of the control group and the erythrocyte morphology was not maintained well. Therefore, it was found that it is suitable to culture in the pores from the shear stress of the medium (see FIG. 10A).
  • Cytopore and Cytoline 1 were incubated in 3D stacked spinner flasks to reduce cell compression and shear forces in large volumes.
  • Cytopore in the spinner flask, It was again confirmed that the mature erythroid cells did not increase and thus were not suitable for erythroid cell culture (see FIG. 11).
  • the final mature erythrocyte cells were observed in the experimental group than the control group (0% ⁇ 2.3%, 4.2%) at 1 ⁇ 2, 3 days of culture (12.2%, 32.3%, 90.6%) increased the number of denucleated erythrocytes, thus maintaining the effect of lamination in Cytol ine 1 and being less affected by shear flow, which is effective for the production of red blood cells.
  • the microcarrier and the cells are confined in a spin filter (3 ym) to allow the culture medium to be gradually exchanged while maintaining the lamination effect. It was. Experimental group I was confined with a spin filter and incubated with Cytol ine 1, considering shear stress, RPM 0, and experimental group II shaking at RPM 25 to facilitate medium exchange. After 1 and 2 days of cultivation, the control group showed spermatogenic erythrocytes (51.4%, 64.2%), experimental group I (66.4%, 70.0%), and experimental group II (63.2%, 59.4%).
  • Denuclear erythrocytes (15.0%, 25.6%), (25.5%, 32.3%) were increased in experimental groups I and II, respectively, than in control group (8.6%, 10.7%), and denuclear red blood cells were higher in control group II than in control group II.
  • the experimental groups I and II decreased to 5.7%, 1.0%, and 2.0% at 1 day of culture, respectively (FIGS. Cell debris was not observed in the spin filter. That is, while maintaining the lamination effect using the porous structure, while reducing the shear force caused by the medium flow using a spin filter It was confirmed that inducing smooth exchange was most effective for cell maturation and red blood cell production.
  • the control group was incubated at a high concentration with 2D folate culture, Experimental group I put Cytoline 1 into the tube, and 3D stacked culture.
  • Experimental group II cultured the cells with Cytoline 1 in a spin filter. After 1 and 2 days of culture, the control group showed spermatogenic erythrocytes (60.03 ⁇ 4, 66.7%), and experimental group I (45.1%, 56.5%) and experimental group II (31.7%, 44.3%). It was confirmed that the conditions of the experimental group proceeded more effectively in cell maturation in 3D lamination culture (Col: 16 to 18).
  • GATA-1 mRNA expression was increased 9.1 times in erythroid cells cultured in Biomerix 3D at day 2, and Hb-beta mRNA expression was 313.0 times in Biomerix 3D and 298.2 times in Honeycomb scaffold at day 3 of culture. Was increased. Expression of Hb-gamma mRNA was also increased by 203.3-fold in the Biomerix 3D scaffold at day 3 of culture. Therefore, the mature erythroid cells were stacked and cultured in the porous structure, thereby increasing the contact between the cells and confirming that the cell adhesion and cell maturation were very effectively enhanced.
  • FIG. 24 is a result of co-culture of mesenchymal stem cells (MSC) and osteoblasts and mature erythroid cells, which are intracellular bone marrow cells, in a porous structure.
  • MSC mesenchymal stem cells
  • osteoblasts mature erythroid cells, which are intracellular bone marrow cells, in a porous structure.
  • Experimental group B was cocultured for 192 hours after the three kinds of cells were added at the same time.
  • the percentage of CD51 + CD90 + representing MSC was increased by 3.1% in 3D culture compared to 2D culture, and CD45 + CD71 + representing immature erythroid cells increased by 16.0% after 192 hours.
  • CD45-CD71 + representing mature erythrocyte cells
  • the percentage of CD51 + CD90 + cells which are MSC-expressing cell markers after 192 hours, was about 0.7% lower in 3D culture than in 2D culture, but CD45 + CD71 + representing immature erythroid cells. It was confirmed that the 21.4% is effective in maintaining and proliferating erythroid cells in the 3D porous structure.
  • red blood cells are in close contact with each other in three dimensions to form a space called erythroblast ic island (erythroblast ic island) to mature and proliferate.
  • Erythrocyte blasts in the bone marrow are an important space in which immature erythroid cells interact closely with macrophages (Histiocytes) to mature.
  • macrophages Histiocytes
  • Bone marrow mononuclear cells were placed in a 3D stainless steel porous structure at a concentration of lxlO 8 cells / mL and wrapped with a 3 U m spin filter and incubated for 72 hours (experimental group). .
  • the conditions of the 2D control and the culture medium and medium exchange conditions were the same as above. Microscopic observation of cells in close contact with the porous structures at 24 hour intervals to form a 3D stack (see Figure 25, left). In addition, maturation of erythroid cells due to steric interaction between cells in the porous structure at the same time interval was confirmed by Wright-Giemsa staining (see FIG. 25, right). At 48 hours of incubation, immature erythroid cells were noticeably observed in the 3D experimental group compared to the 2D control group (black arrows are immature erythroid cells, and the remaining cells represent monocytes and macrophages).
  • Timmins NE Nielsen LK. Blood cell manufacture: current methods and future challenges. Trends in Biotechnology 2009; 27: 415-

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Dispersion Chemistry (AREA)

Abstract

본 발명은 다공성 구조체를 이용하여 적혈구계 세포를 3차원 적층 패킹(packing) 배양하는 단계를 포함하는 적혈구계 세포의 인 비트로 확장 방법에 관한 것이다. 본 발명의 조성물을 사용함으로써 가장 효율적으로 적혈구계 세포를 인 비트로 확장할 수 있다.

Description

【명세서】
【발명의 명칭】
적혈구계 세포의 인 비트로 확장 【기술분야】
본 발명은 대한민국 보건복지부의 지원 하에서 과제반호 HI 10C17400200에 의해 이루어진 것으로세 상기 과제의 연구관리전문기관은 한국보건산업진홍원, 연구사업명은
"보건의료기술연구개발사업 /보건의료기술연구개발사업 /보건의료기술연구개 발사업" , 연구과제명은 "줄기세포로부터 적혈구전구세포로의 효율적 분화 및 기전 연구" , 주관기관은 연세대학교 산학협력단, 연구기간은 2013. 04. 01 2014. 03. 31 이다.
또한 본 발명은 대한민국 보건복지부의 지원 하에서 과제번호 HI 12C0202 에 의해 이루어진 것으로서, 상기 과제의 연구관리전문기관은 한국보건산업진흥원, 연구사업명은
"보건의료기술연구개발사업 /보건의료기술연구개발사업 /보건의료기술연구개 발사업" , 연구과제명은 "줄기세포 분화 및 성숙 유도를 통한 골수형성이상증후군 치료제의 개발" , 주관기관은 한양대학교 산학협력단, 연구기간은 2013. 08. 01 ~ 2014. 7. 31이다.
- 본 특허출원은 2014 년 4 월 7 일에 대한민국 특허청에 제출된 대한민국 특허.출원 제 10-2014-0041320 호에 대하여 우선권을 주장하며, 상기 특허출원의 개시 사항은 본 명세서에 참조로서 삽입된다. 본 발명은 작혈구계 세포를 인 비트로 환경에서 확장하는 방법에 관한 것이다ᅳ
【배경기술】
인구의 급속한 노령화와 의료적 수요의 증가로 인하여 수혈용 혈액의 공급이 부족해진 반면 혈액제제의 사용량은 증가하였다. 또한 광우병, 신종플루, 말라리아, 에이즈 등 질병의 창궐로 인해 감염으로부터 안전한 혈액에 대한 요구도 증가하였다. 이로 인해 국내는 물론 전 세계적으로 수혈에 필요한 혈액의 부족으로 환자 수술 및 치료에 큰 차질을 빚고 있다. 향후 혈액 부족은 더욱 심각해져서, 2030 년에는 국내 혈액필요량의 55.5%가 부족할 것이라고 예측되고 있다 (한국보건사회연구원 자료, 2005 년). 게다가 수혈로 인하여 발생될 수 있는 수혈전파감염은 수혈자에게 심각한 문제를 야기하며 이를 사전에 발견하기 위한 검사 및 시스템에 막대한 비용이 쓰이고 있지만 감염을 완벽히 검출해 낼 수' 없다 [1] . 이러한 요인들로 인하여 체외에서 생산된 안전한 적혈구의 개발 필요성이 증가하였다.
우리나라에서는 연간 약 210 만 유닛 (unit)의 적혈구 제제가 사용되며 이는 한 unit 당 2X1012 세포가 있다고 계산하면 약 4X1018 이상의 세포가 필요하다. 미국에서만 연간 적혈구 수혈을 대치하기 위해서는 최소한 3X1019 세포가 필요하다고 한다 (15-ιτιΠΠοη units of 2X1012 cells each). CHO 세포같이 잘 연구된 동물세포의 배양을 위해서는 가장 큰 바이오리액터 (bioreactor)가 20,000 L 부피에 최대 5X107 세포 AnL 농도의 세포로 운영할 수 있다. 이 농도라면 필요한 적혈구 생산을 위해 현 최고 기술로는 이론상 30,000 회분 (batch) 배양이 필요하다고 한다 [2] . 즉, 기존의 정치 배양 (static culture), 현탁 배양 (suspension culture), 고정층 반웅기 (fixed bed reactor), 공기리프트 반응기 (airlift reactor)와 같은 배양 조건 (cultivation condi t ion)에서 고안된 동물세포배양법이라면 천문학적인 숫자의 세포와 그에 버금가는 배지와 공간이 필요한 적혈구 배양에서는 현실적으로 적용이 불가능하다. 공간면에서 가장 효율적인 배양법은 세포끼리 서로 뭉쳐있는 (packing) 형태로 배양하는 것이지만, 아직 적혈구 생산을 위해 적아세포를 이런 방법을 배양해 보고된 바가 없다. 본 연구팀은 적혈구 생산 효율을 높이기 위하여 성숙된 적혈구 전구 세포 (erythroid progenitor cell)를 물리적으로 접촉하게 만든 세포 고밀도 조건에서 적혈구계 세포가 세포성숙, 탈핵률, 세포생존도 및 세포이형성 (myelodysplasia) 면에서 더 좋은 효과를 보임을 매개된 부착- 관련 신호 (adhesion-related signal)와 함께 증명한 바 있다 [3] . 또한 이를 3D 로 확장해 적혈구계 세포를 류브에 적층하여 배양하는 방법도 적혈구 생산에 효과적임을 보여준 바 있다. 다른 이전 연구들에서도 2D 플레이트 배양이나 3D 생물반응기 (bi oreactor )에서 전체 배지 볼륨당 세포의 농도를 높이는 시도가 있었지만, 3D 에서 세포를 적층시켜 직접적인 접촉을 유도한 것이 최초로 시도된 것이다.
골수 내에서는 적혈구 세포들끼리 서로 입체적으로 밀착하여 적혈구 모세포섬 (erythrobl as t i c i s l and)이란 공간을 만들어 성숙 및 증식하게 된다. 또한, 골수 내 이런 조혈공간이 얇은 뻐 골격 기등 (bony t rabecul ae) 내에서 구획되어 세포가 눌리는 것을 막게 된다. 본 발명에서는 이런 골수 내 환경에 착안하여 적혈구계 세포들끼리 배양하기 적절한 적층규모를 확인하였고, 이를 지지할수 있는 공극의 크기와 생체 적합한 (bi ocompat i bl e) 다양한 재질 내에서 배양하여 다공성 구조체의 적절한 공극의 규모 및 재질의 적합성을 확인하였다. 또한 3차원 적층 패킹 배양으로 인한 세포의 괴사를 줄이고 신선한 배지 공급을 위해 스핀 필터내에 세포를 적층함으로 세포 배양동안 배지의 교환 및 공급을 원활이 하여, 적혈구의 대량생산올 위한 최적화에 성공하였다. 이는 보고된 바 없는 방법으로서, 배양 공간과 배지량을 최소화 하여 인간 골수내에서와 같이 적혈구를 생산하기 위한 획기적인 방법이다. 본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
【발명의 내용】
【해결하고자 하는 과제】
본 발명자들은 적혈구계 세포의 인 비트로 확장 방법을 개발하고자 예의 연구 노력하였다. 그 결과 다공성 구조체 내에 적혈구계 세포를 3차원 적층 패킹 (packi ng) 배양하는 경우, 적혈구계 세포의 인 비트로 확장이 달성될 수 있고 그 효과가 매우 우수함을 규명함으로써, 본 발명을 완성하게 되었다. 따라서, 본 발명의 목적은 다공성 구조체를 이용하여 적혈구계 세포를 3 차원 적층 패킹 (packing) 배양하는 단계를 포함하는 적혈구계 세포의 인 비트로 확장 방법을 제공하는데 있다. 본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
【과제 해결 수단】
본 발명의 일 양태에 따르면, 본 발명은 다공성 구조체를 이용하여 적혈구계 세포를 3 차원 적층 패킹 (packing) 배양하는 단계를 포함하는 적혈구계 세포의 인 비트로 확장 방법을 제공한다. 본 발명자들은 인 비트로 환경에서 적혈구계 세포를 확장하는 방법을 개발하고자 예의 연구 노력하였다. 그 결과 다공성 구조체를 이용하여 적혈구계 세포를 3 차원 적층 패킹 배양하는 방법을 통해 , 가장 효율적으로 적혈구계 세포를 인 비트로 확장할 수 있음을 규명하였다.
본 명세서 상의 "적혈구계 세포1 '는 적혈구 전구세포 (erythroid progenitor cell)로부터의 성숙과정에 있는 세포들을 포함하며, 적혈구 전구세포는 다양한 소스, 예컨대 말초혈액, 제대혈 또는 골수로부터 얻을 수 있다. 적혈구 전구세포로서의 CD34+세포는 당업계에 공지된 다양한 세포 분리 방법, 예컨대 CD34+항체를 이용하는 면역자기 -비드 분리방법에 따라 분리할 수 있고, 본 발명의 바람직한 구현예에 따르면 CD34+세포는 제대혈로부터 유래된 세포일 수 있다. 적혈구 전구세포는 다음과 같은 단계로 이루어진 적혈구 형성 과정 (erythropoiesis)를 거쳐 성숙한 적혈구 (erythrocyte)로 분화한다: (a) 조혈모세포 (hematopoiet ic stem ceU)에서 전적아세포 (proerythroblast)로 분화하는 단계; (b) 전적아세포에서 호염기성 적아세포 (basophilic erythroblast )로 분화하는 단계; (c) 호염기성 적아세포에서 다염기성 적아세포 (polychromatophilic erythroblast)로 분화하는단계; (d) 다염기성 적아세포에서 정염성 적아세포 (orthochromatic erythroblast )로 분화하는 단계; (e) 정염성 적아세포에서 다염성 적혈구 (polychromatic erythrocyte)로 분화하는 단계; 및 (f) 다염성 적혈구에서 적혈구 (erythrocyte)로 분화하는 단계. 본 발명은 성숙단계의 적혈구 (erythrocyte) 단계 (d, e, f 단계)에 있는 세포들을 포함하는 것이 바람직하다.
본 명세서 상에서 "적혈구 전구세포 (erythroid progenitor cell)' '는 성숙이 끝난 적혈구를 제외한 적혈구 형성 과정에 포함된 모든 세포를 의미한다ᅳ
본 명세서 상에서 "3 차원 적층 패킹 (packing) 배양"이란 적혈구계 세포를 충분히 적층 가능한 높이의 배양용기, 구체적으로 예를 들면 류브를 사용하여 적혈구계 세포를 가라앉혀 적층되도록 하여 배양하는 것을 말한다. 본 명세서 상의 "다공성 구조체 "는 수 마이크로미터 단위 내지 수 밀리미터 단위 크기의 공극을 다수 포함하는, 세포 배양을 돕기 위한 구조체를 의미한다. 본 발명의 다공성 구조체는 그 형태 및 크기에 특별한 제한이 없으며, 발명의 실시 형태 및 규모에 따라 적절히 선택 가능하다. 본 발명의 다공성 구조체는 폴리에틸렌, 실리카, 셀를로오스, DEAE- 덱스트란, 유리, 폴리스티렌 폴라스틱, 아크릴아마이드 또는 콜라겐을 포함하는 물질로부터 만들어 질 수 있지만, 이에 제한되는 것은 아니며, 세포 배양에 부정적인 영향을 주지 않는 소재를 적절히 선택하여 활용 가능하다. 구체적으로 예를 들면, 본 발명의 다공성 구조체는 "마이크로캐리어" 또는 "스캐폴드" 구조체이다. 본 발명의 마이크로캐리어는 대략 100 ym 내지 수 隱 정도 직경을 갖는 세포 배양을 위한 .다공성 지지 구조체를 의미하고, 대략 30—500 ym 정도의 공극을 포함한다ᅳ 다수의 마이크로캐리어 단위체의 집합을 적혈구계 세포의 배양에 이용함으로써 배양 규모를 조절하는 것이 가능하다. 구체적으로 예를 들면, 본 발명의 일 실시예에서 이용한 Cytopore, Cytoline 1 을 들 수 있다. 또한 본 발명의 스캐폴드는 대략 수십에서 수백 μηι 크기의 공극을 포함하는 세포 배양을 위한 지지 구조체로서 , 다수의 단위 구조체의 집합을 이용하는 마이크로캐리어와는 달리, 배양 규모에 맞추어 직경과 높이가 조절된 일체형의 구조체를 의미한다. 본 발명의 스캐폴드는 공극 사이즈가 대략 10 ym 내지 1 麵 정도일 수 있고, 바람직하게는 30 μηι 내지 600 μηι, 더 바람직하게는 30 ym 내지 500 ym, 더욱 바람직하게는 50 μηι 내지 500 ym, 더욱 더 바람직하게는 50 ym 내지 400 um 정도 일 수 있다. 본 발명의 스캐폴드는 소재에 대한 특별한 제한이 없고, 금속, 세라믹, 합성고분자 및 /또는 천연고분자에서 선정한 소재를 자유롭게 이용가능하며, 구체적으로 예를 들면, 콜라겐, 실크 (Silk), 알지네이트 (Alginate), PE(polyethylene) , PLA(poly( lact ic acid)) , PGA(poly(glycol ic acid)) , PLA 및 PGA 공중합체, PTFE(polytetrafluoroethylene),
PVC(polyvinyl chloride) , PDMS(polydimethylsi loxane) ,
PCL(polycaprolactone) , PU(polyurethane) , 알루미나 (alumina), 수산화아파타이트 (hydroxyapatite), 니켈, 티타늄, 코발트 -크롬 합금 및 /또는 스테인레스 스틸을 이용할 수 있다. 상업적으로 이용 가능한 스캐폴드의 예로써 Honeycomb (KOKEN, Tokyo, Japan) 또는 Biomerix 3D (Biomerix, Fremont , CA 있다.
한편, 본 발명의 "다공성 구조체" 는 구조체 자체가 다공성을 내포하는 구성 뿐만 아니라 구조체 자체가 공극을 내포하지는 않지만, 구조체를 구성하는 소 단위체의 집합 형태에 있어서, 소 단위체 간의 갭 (gap)이 발생되고, 상기 갭이 다공성 구조체의 공극과 같은 역할을 하는 것이 가능한 구조체를 포함한다. 이는 매크로 다공성 구조체가 구조체의 소 단위체 자체에 공극을 내포하는 특성과 상반되지만, 소 단위체 간의 갭이 상기 공극과 같은 역할을 하여 유사한 적혈구계 세포의 적층 패킹 배양 효과를 발휘할 수 있다. 구체적으로 예를 들면 30 ym 내지 1500 μηι 의 갭이 생기기에 충분한 크기의, 소재의 제한이 없는 비드 (beads)를 이용할 수 있고, 본 발명의 일 실시예에서 이용한 마이크로캐리어 디스크 (micro carrier disk)를 이용할 수 있다.
본 발명의 일 구현예에 있어서, 본 발명의 다공성 구조체는 30-1500 μιιι 크기 분포를 갖는 공극을 포함한다. 30-1500 um 크기 분포를 갖는 공극을 '포함한다'는 것은 해당 범위를 벗어나는 크기의 공극이 배제되지 않음을 내포하는 것으로 이해되며, 30-1500 μπι 의 공극 크기는 본 발명의 적혈구계 세포의 확장에 바람직한 다공성 마이크로캐리어의 공극의 크기 분포를 나타내고, 부분적으로 해당 범위를 벗어나는 크기의 공극이 존재할 수 있다. 상기 공극은 모두 동일 또는 유사 크기로 형성된 공극일 수 있으며, 30-1500 μηι 범위 내의 다양한 크기의 공극이 흔재되어 있을 수 있다. 상기 공극 크기의 하한은 적혈구계 세포가 공극 내부로 유입되어 3D 적층환경을 구성하기 위한 최소한의 크기를 의미하며, 상기 공극 크기의 상한은 골수 환경과 유사 환경을 제공하기 위하여 설정된 것이다. 상기 공극의 크기분포는 바람직하게 30—1000 μ ηι , 더 바람직하게 30-700 y m , 더욱 더 바람직하게는 30-500 μ πι , 가장 바람직하게는 50-500 u m 크기분포를 갖는다. 가장 바람직한 공극 크기분포를 갖는 경우, 적혈구계세포의 3차원 적층 패킹에 의한 우수한 배양효과가 극대화 된다. 본 발명의 일 구현예에 있어서, 본 발명의 다공성 구조체는 매크로다공성 (macroporous ) 마이크로캐리어이다. 본 명세서에서의 용어 "마이크로캐리어' '는 대략 100 μ ιη 내지 수 mm 정도 크기를 갖는 세포 배양을 위한 지지 구조체를 의미한다. 본 발명의 마이크로 캐리어는 다수의 공극을 포함하며, 포함하는 공극의 직경에 따라, 매크로다공성 (macroporous ) , 메조다공성 (niesoporous ) , 마이크로다공성 마이크로캐리어로 구분할 수 있다. 매크로다공성 구조체는 공극의 평균 직경이 대략 50 μ ηι 이상이고, 메조다공성의 경우에는 대략 2-50 y m , 그리고 마이크로다공성의 경우에는 대략 2 μ ηι 이하인 것을 말한다. 본 발명의 매크로다공성 마이크로캐리어는 평균 직경이 대략 50 u m 이상인 다수의 공극을 포함하는 마이크로캐리어를 의미한다. 본 발명자들은 적혈구계 세포의 인 비트로 확장을 위하여 매크로다공성 캐리어를 이용함이 효과적이라는 결과를 도출하였다. 매크로다공성 캐리어를 적혈구계 세포 배양에 이용하는 경우, 매크로다공성 캐리어의 공극의 크기가 적혈구계 세포가 3 차원 적층 패킹 배양되기에 충분한 정도로 크고 , 지나치게 큰 규모로 적층되어 세포의 눌림, 기체 또는 영양 교환이 원활하게 이루어지지 못하는 현상 등이 발생하는 것을 예방할 수 있다는 것을 밝혀내었다. 상기 기체 또는 영양 교환 효율은 본 발명의 마이크로캐리어 자체의 유동성에 의해 극대화 된다. 유동성이 없이 고정된 대규모 구조체에 배양하는 경우에 비하여 마이크로캐리어를 이용하는 경우, 적혈구계 세포의 3 차원 적층 패킹 배양 환경을 유지하면서도, 구조체 자체의 유동성에 의해 기체 또는 영양 교환이 원활하게 이루어질 수 있다. 또한, 적혈구계 세포의 3 차원 적층 패킹 배양에 있어서, 배양 규모를 확장하여 단위 바닥면적당 적혈구계 세포 수를 확장하는 경우에도 마이크로 캐리어의 공극 구조 제공을 통해 적정한 세포 적층 규모를 유지할 수 있어, 적혈구계 세포의 배양 규모를 손쉽게 확장할 수 있는 장점이 있다.
본 발명의 배양에 이용되는 배지는 동물세포의 배양에 통상적으로 이용되는 성분을 포함할 수 있다. 본 발명의 배지를 이루는 기본배지는 당업계의 통상적인 배지, 예컨대 Eagle's MEM[Eagle's minimum essensial medium, Eagle, H. Science 130: 142(1959)] , a -MEM[Stanner , CP. et al., NAT. New Biol. 230 :52(1971)] , Iscove's MEM[Iscove, N. et al., J. Exp. Med. 147:923(1978)] , 199 medium [Morgan et al ., Proc. Soc. Exp. BioMed. , 73:1(1950)] , CMRL 1066, RPMI 1640[Moore et al ., J. A er. Med. Assoc. 199:519(1967)], F12[Ham, Pro. Natl. Acad. Sci. USA 53:288(1965)], F10[Ham, R.G. Exp. Cell Res. 29:515(1963)], DMEM[Dulbecco' s modification of Eagle's medium, Dulbecco, R. et al . , virology 8:396(1959)], DMEM 및 F12 의 흔합물 [Barnes, D. et al . , Anal. Biochem. 102:225(1980)] , Way-mouth's MB752/l[Waymouth, C. J. Natl. Cancer Inst. 22:1003(1959)] , 이스코브 변형 둘베코 배지 (Iscove's modified Dulbecco 's medium), 이스코브 변형 피셔 배지 또는 이스코브 변형 이글 배지, McCoy's 5A [McCoy, T. A. , et al , Pro. soc. Exp. Bio. Med. 100:115(1959)]., MCDB 의 시리즈 [Ham, R.G et al . , In Vitro 14:11(1978)], AIM-V 배지 , 및 이의 변형배지를 포함한다. 배지의 상세한 설명은 R. Ian Freshney, Culture of Animal Cel Is, A Manual of Basic Technique, Alan R. Liss, Inc. , New York 에서 알 수 있으며 , 상기 내용은 본 명세서에 참조로 포함된다.
본 발명에서 이용되는 배지는 적혈구 전구세포의 증식 및 분화를 촉진시키기 위해 SCF(stem cell factor), IL-1, IL-3, IL-4, IL-5, IL-11, GM-CSF ( gr anu 1 ocy t e inacr ophage~co 1 ony stimulating factor) , M— CSF(Macrophage Colony-St imulat ing Factor) , G-CSF ( gr anu 1 ocy t e~co 1 ony stimulating factor) 및 EPCKerythropoiet in)로 구성된 군으로부터 선택되는 최소 하나의 성분을 추가적으로 포함한다. 보다 바람직하게는, 본 발명에서 이용되는 배지는 전적아세포에서 호염기성 적아세포로 분화시키는 단계에서 하이드로코티손, SCF, IL-3 및 EP0 를 포함하며; 호염기성 적아세포에서 다염기성 적아세포로 분화시키는 단계에서 SCF, IL-3 및 EPO 를 포함하고; 다염기성 적아세포에서 정염성 적아세포로 분화시키는 단계에서 EP0 를 포함하며; 정염성 적아세포에서 다염성 적혈구 (즉ᅳ 망상적혈구)로 분화시키는 단겨 K즉 탈핵 단계)에서는 사이토카인을 포함하지 않는다.
본 발명의 일 구현예에 있어서, 본 발명의 적혈구계 세포의 배양은 지속적인 유동 ( f low)에 의한 전단 응력이 인가되는 배지 내에서 이루어진다. 본 명세서에서의 "지속적인 유동"은 규칙적이거나 불규칙적인 주기로, 또는 연속적으로 배지에 대한 교반 또는 교환이 이루어지는 것을 의미한다. 이를 통해 적층 패킹된 배양 세포층의 내부로 산소를 비롯한 필수생장요소들이 원활히 공급되어 세포 확장을 돕는다.
본 발명의 일 구체예에 있어서, 적혈구계 세포의 배양을 위한 지속적인 유동은 교반에 의해 형성된다. 상기 교반은 구체적으로 예를 들어, 자석 교반기를 통한 교반일 수 있으며, 스피너 플라스크 내에서 이루어질 수 있다.
본 발명의 일 구체예에 있어서, 상기 유동은 교반에 의해 형성된다. 더욱 구체적으로 상기 유동은 1-50 rpm 의 교반에 의해 형성된다. 구체적으로 상기 유동은 1—40 rpm , 더 구체적으로 5—35 rpm , 보다 더 구체적으로 5-30 rpm 의 교반에 의해 형성된다 . 더욱 높은 rpm 으로 교반이 이루어지는 경우에는 배양 세포에 가해지는 전단 웅력이 너무 커져 세포들 간의 적층 구조가 무너지고 세포들 간의 3차원 접촉 효과가 감소하게 된다. 본 발명의 일 구현예에 있어서, 상기 배양은 지속적인 유동에 의한 다공성一마이크로캐리어로부터의 적혈구의 이탈을 방지하기 위하여 배지 내부에 포함되는 필터 내에서 이루어진다. 상기 필터는 마이크로캐리어와 적혈구계 세포가 받는 전단웅력에 의한 3 차원 적층 패킹 배양 환경에 대한 변화를 최소화시키고, 배지의 원활한 유동을 가능하게 하여 , 효과적인 세포 확장에 도움을 준다.
본 발명의 일 구체예에 있어서, 본 발명의 필터는 메쉬 (Mesh) 크기가 1-8 y m 인 것을 특징으로 한다. 구체적으로 본 발명의 필터의 메쉬 크기는 1-5 μ ηι , 더 구체적으로 2-5 μ ιη , 보다 더 구체적으로 3-4 y m 이다. 적혈구의 평균 직경에 비하여 작은 메쉬 크기를 갖는 필터를 이용함으로써, 적혈구가 마이크로구조체의 공극으로부터 이탈하여 배지 내에서 부유하는 것을 방지하면서도, 배지의 유동 (flow)에 의한 효과를 배가시킬 수 있다. 본 발명의 일 구현예에 있어서, . 본 발명의 적혈구계 세포는 조혈모세포에서 벗어나 적혈구 계열로 분화된. 세포이며, 특히 성숙과정이 거의 완료되어가고 있는 적혈구계 세포로서 , 바람직하게는 최종 성숙 (terminal maturation) 단계에 진입한 것을 포함한다. 이러한 최종 성숙 (terminal maturation) 단계 말에 적혈구의 탈핵 (enucleat ion) 과정이 이루어진다. 최종 성숙 단계에 진입한 적혈구계 세포는 조혈모세포와는 세포의 특성 및 성장 환경에서 큰 차이를 보인다ᅳ 다공성 마이크로구조체 내에서의 3D 적층 패킹 배양에 의한 우수한 배양 효과는 조혈모세포에서 벗어나 적혈구 계열로 분화된 세포, 더 나아가 최종 성숙 단계에 진입한 세포에 대하여 발휘된다. 적혈구계 세포 3D 적층 패킹 배양에 있어서, 적층 규모를 적정 수준 이상 증가시키는 경우, 세포 눌림, 기체 또는 영양 교환 효율 저하 등이 발생하여 세포 배양 효율이 감소하는 문제가 있었다. 그러나 본 발명자들은 다공성 마이크로캐리어를 적혈구계 세포의 3D 적층 패킹 배양에 최초로 도입함으로써, 적정 수준의 적층 규모 이상으로 적혈구계 세포를 밀집 배양하면서도, 마이크로캐리어의 공극을 통해 원활히 세포 배양이 이루어질 수 있는 적층 규모를 유지할 수 있는 효과가 발휘될 수 있도록 하였다.
본 발명의 일 구현예에 있어서, 본 발명의 3D 배양된 적혈구계 세포는 DLC KDeleted in Liver Cancer 1), ICAM-4( Intercel lular Adhesion Molecule-4) 및 VLA-4(Very Late Antigen-4) 중 하나 이상의 접착 관련 유전자를 발현한다. 01러한 접착 -관련 유전자 발현에 의해 세포간 신호교환 활성이 증가함으로써 적혈구계 세포의 생산율이 높아질 수 있다. 상기 DLC 1, ICAM-4 및 /또는 VLA-4 단백질은 배지에 인위적으로 첨가시킬 수도 있다. 본 발명의 일 구현예에 있어서, 본발명의 적혈구계 세포를 3 차원 적층 패킹 (packing) 배양하는 단계는 중간엽줄기세포, 골아세포 내피 세포 (endothelial cell), 단구 (monocyte), 대식세포 (macrophage) 및 조직구 (histiocyte)로 구성된 군으로부터 선택되는 어느 하나 이상을 적혈구계 세포와 흔합하여 공배양하는 것이다. 본 발명의 중간엽줄기세포, 골아세포, 내피 세포 (endothelial cell), 단구 (monocyte), 대식세포 (macrophage) 및 조직구 (hist iocyte)는 골수의 성분을 이루는 세포들로서, 본 발명의 적혈구계 세포의 배양 환경을 골수 내 환경과 유사하게 하기 위해 이용되었고, 본 발명자들은 골수의 성분을 이루는 세포들과 적혈구계 세포를 공배양 하는 경우, 적혈구계 세포의 성숙이 원활이 일어나도록 한다는 결과를 도출하였다. 중간엽줄기세포, 골아세포, 내피 세포 (endothelial cell), 단구 (monocyte), 대식세포 (macrophage) 및 조직구 (histiocyte)로부터 2 이상의 성분이 선택되는 경우, 흔합 비율에 특별한 제한은 없지만, 바람직하게는 체내 환경과 유사한 비율로 흔합할 수 있다.
본 발명의 일 구체예에 있어서, 본 발명의 중간엽즐기세포 골아세포, 내피 세포 (endothelial cell), 단구 (monocyte) , 대식세포 (macrophage) 및 조직구 (histiocyte)로 구성된 군으로부터 선택되는 어느 하나 이상과 상기 적혈구계 세포는 1:10 내지 2:1 의 세포 수 비율로 흔합할 수 있다. 상기 흔합비는 체내 환경과 유사한 환경을 조성하기 위한 비율이지만, 적혈구계 세포의 배양을 위한 본 발명의 목적에 따라 적혈구계 세포의 함량을 적절하게 높인 범위를 포함한다.
【발명의 효과】
본 발명의 특징 및 이점을 요약하면 다음과 같다:
(a) 본 발명은 다공성 구조체를 이용하여 적혈구계 세포를 3 차원 적층 패킹 (packing) 배양하는 단계를 포함하는 적혈구계 세포의 인 비트로 확장 방법을 제공한다. 、
(b) 본 발명에 따르면 적혈구 전구세포로부터 적혈구의 인 비트로 생산성을 크게 향상시킬 수 있다.
(c) 본 발명에 따르면 적혈구계 세포의 밀집 배양 규모를 손쉽게 확장하면서도, 마이크로캐리어의 공극을 통해 원활히 세포 배양이 이루어질 수 있는 적층 규모를 유지할 수 있는 효과를 발휘한다.
(d) 본 발명에 따르면 임상-등급의 적혈구를 인 비트로 배양 방법으로 얻을 수 있다. 【도면의 간단한 설명】
도 1 은 2D 플레이트 배양, 2D 고농도 배양, 매크로다공성 마이크로캐리어 유형의 Cytoline 1 을 이용한 적혈구계 세포 적층 패킹 배양, Cytopore 를 이용한 적혈구계 세포 적층 배양, Biomatrix 3D, Honeycomb 를 이용한 적혈구계 세포의 적층배양, 배지 순환 조건을 위한 스피너 플라스크, 교반기 및 원통형으로 제작한 스핀 필터를 나타낸다.
도 2 의 A 는 다염성 /정염성 적아세포를 2D 플레이트, 3D 세포 적층 배양하고 1 일, 2 일 후 Wright-Giemsa 염색하여 관찰한 결과를 나타낸다. 별표시는 탈핵된 최종 성숙 적혈구 세포를 나타내며, 화살표는 정염성 적아세포 (X200)를 나타낸다.
도 2 의 B 는 도 2 의 A 와 관련하여 각 조건에서의 세포 성숙 및 적혈구 생산비율을 비교한 결과를 나타낸다.
도 3 은 정염성 적아세포 세포를 2D 플레이트, 3D 고농도 패킹 배양시 배양 농도를 달리하여 1 일 2 일 배양 후 관찰한 결과를 나타낸다. 도 3 의 A 는 정염성 적아세포의 Wright-Giemsa 염색 결과를 나타내며, 적색 별표는 탈핵된 최종 성숙 적혈구 세포, 청색 화살표는 정염성 적아세포, 혹색 화살표는 골수성 세포, 백색 별표는 탈핵 진행중인 세포 (x200), 혹색 별표는 세포내 형성이상증 (dysplasia)세포를 나타낸다. 도 3의 B는 도 3의 A와 관련하여 세포 성숙 정도 및 적혈구 생산율을 비교한 결과를 나타낸다. 도 4 의 a 는 다공성 마이크로캐리어인 Cytopore 와 Cytoline 1 을 SEM 으로 찍은 사진 (좌측)과 세포를 넣어 배양한 것 (가운데), 류브 (위쪽 넓은 부분의 직경이 6.5 麵)에 넣어 배양하는 모습 (우측)을 나타낸다. 도 4 의 b 의 좌측 도는 스핀필터를 원통형으로 만든 것 (직경 6.5 mm, 높이 15 I画)이고, 우측 도는 원통형 스핀필터를 이용하여, 적혈구계 세포를 107 세포 /ml 농도로 12웰 안의 배지에 넣어서 키운 것을 나타낸다.
도 5 는 Cytopore 을 사용하여 1 일, 2 일, 3 일간 배양한 경우 생존한 적혈구계 세포를 나타낸다.
도 6 은 Cytoline 1 을 사용하여 적층 배양 한 경우에 생존한 세포를 나타낸다. 도 7은 Cytoline 1을 사용하여 배양 1일, 2일 후 세포 성숙 단계를 나타낸다.
도 8 은 동시에 진행한 다른 제대혈 유래 케이스 2 의 경우 적층 후 1 일까지 비교하였는데, 정염성 적아세포는 대조군에서 39%, 실험군 II 에서 94.1%로 세포 성숙이 매우 크게 증가함을 확인하였다. Cytoline 1 을 넣고 3D 적층 배양 시 세포간의 접촉이 증가하며, 세포 성숙이 더 효과적으로 진행됨을 확인 하였다 (참조: 도 8, 9).
도 10 의 A 는 적아세포를 스피너 플라스크에 넣어 가라앉힌 후 마이크로캐리어 없이 RPM 25 로 돌리면서 배양한 것을 2D 폴레이트 배양한 것과 비교한 결과를 나타낸다ᅳ 도 10 의 B 는 배양 기간에 따른 세포 성숙 단계를 나타낸다.
도 11 은 스피너 풀라스크 내에서 Cytopore 를 이용하여 세포를 배양한 결과를 나타낸다.
도 12 는 스피너 플라스크 내에서 Cytoline 1 을 이용하여 3D 배양한 경우의 세포성숙 단계를 비교한 것을 나타낸다.
도 13 은 Cytoline 1 및 필터를 이용하여 PM 0 및 RPM 25 의 유동 (flow) 조건에서 세포를 배양하여 Wright-Giemsa 염색한 결과를 나타낸다. 빨간별표는 탈핵된 적혈구 세포, 파란 화살표는 정염성 적아세포, 검은 별표는 죽은 세포, 검은 화살표는 다염성 적아세포 (X200)를 나타낸다. 도 14는 도 13의 조건에서의 세포 성숙 단계를 나타낸다,
도 15 는 도 13 과 다른 제대혈 케이스로 적혈구 생성 효과를 비교한 것을 나타낸다.
도 16 내지 18 은 적혈구계 세포를 2D 고농도, 3D 고농도 패킹 배양하여 세포를 관찰한 결과를 나타내고, 구체적으로 도 16 은 세포 Wright-Giemsa 염색 결과를 나타내며, 빨간 별표는 탈핵된 최종 성숙 적혈구 세포, 검은 별표는 죽은 세포, 검은 화살표는 미성숙 적혈구 세포 (i画 ature erythroid cell), 나머지 모든 세포는 정염성 적아세포 세포 (X200)를 나타낸다.
도 17은 도 16의 조건에서 세포 성숙 단계를 나타낸다.
도 18 은 다양한 재질 및 다양한 공극 사이즈의 다공성 구조체를 이용한 적혈구계 세포의 배양 실험 결과를 나타낸다. 좌측은 다공성 구조체내에서 세포를 배양한 후 수거한 성숙된 적혈구계 세포의 군집 (pe l l et )을 나타내며 , 우측은 세포 생존률을 나타낸다.
도 19 는 적혈구계 세포를 2D 고농도, 3D 적층 패킹 배양한 세포의 Wr ight-Gi emsa 염색 결과를 나타낸다. 빨간 별표는 탈핵된 적혈구를 나타내고; 배율은 200X ; 스케일 바는 50 μ ηι 이다.
도 20 은 다양한 다공성 구조체 상에서 적혈구계 세포 배양시 세포의 성숙 정도를 비교한 그래프를 나타낸다.
도 21 은 3D 적층 패킹 배양 (3 일간) 동안 적혈구 생성 마커 ( ICAM-4 , GATA-l , Hb-beta , Hb-ga讓 a)와 접착 -관련 신호 (DLC 1ᅳ ICAM-4)를 qPCR 로 확인한 결과를 나타낸다.
도 22 는 체외에서 생산한 적혈구의 기능 검사에서 건강한 공여자의 말초혈과 유사한 결과를 얻을 수 있음을 나타내는 그래프이다.
도 23 은 적혈구계 세포의 3D 적층 패킹 배양에 이용 가능한 다양한 구조체들의 모습을 나타낸다.
도 24 는 부착세포인 MSC 와 골아세포 (osteobl ast )를 먼저 다공성 구조체에 넣고 부착되기를 기다렸다가, 3 시간 후 적혈구계 세포를 추가로 넣어 실험한 군 (윗줄 3h ; 실험 A군)이며, 위 세 종류의 세포를 동시에 넣은 후 192 시간 동안 공배양 (아래줄 mix ;실험 B 군) 한 후 세포의 구성을 분석한 결과를 나타낸다.
도 25 는 3D 다공성 구조체 내에서 대식세포와 단핵 백혈구 세포를 포함하는 골수 세포와 적혈구계 세포를 72 시간 동안 공배양하는 것을 통해 다공성 구조체 내에서 입체적 상호작용을 유발하여 적혈구계 세포의 성숙 및 최종 적혈구 세포의 생산에 미치는 효과를 실험으로 확인한 결과를 나타낸다. 좌측은 48 시간 배양하여 구조체 내부의 모습올 현미경으로 관찰한 사진이며, 우측은 48 시간, 72 시간 배양하여 세포를 염색한 결과이다 (검은색 화살표는 미성숙 적혈구계 세포; 빨간 화살표는 성숙 적혈구계 세포 ; 흰 별표는 대식세포 ; 나머지세포는 단핵세포를 나타낸다) . 【발명을 실시하기 위한 구체적인 내용】
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다. 실시예
실험방법
실시예 1: 세포배양 및 계수
면역자성 마이크로비드 분리법 (immunomagnet ic microbead select ion method) 및 EasySep CD34 분리키트 (StemCeU Technologies)를 사용하여 건강한 기증자의 제대혈로부터 CD34+ 세포를 분리하였다. CD34+ 세포들은 일부는 분리 후 바로 배양에 이용되고, 냉동상태로 보관하다가 해동하여 사용되기도 하였다. 이 세포들은 17 일 동안 기질 및 혈청이 없는 조건에서 배양하였다 [3, 4].
여러 가지 사이토카인을 CD34+ 세포의 분화 및 증식을 위해 첨가하였다. 0 일에서 7 일까지, 세포들을 1 ίΐΜ 하이드로코르티손 (Sigma), 100 ng/ml 줄기세포인자 (SCF; R&D Systems), 10 ng/ml 인터루킨 (IL)-3(R&D Systems), 그리고 6 IU/ml 에리쓰로포이에틴 (EP0; Calbiochem)으로 보층된 배지에서 배양하였다. 7 일에서 13 일까지 50 ng/ml SCF, 10 ng/ml IL-3 및 3 IU/ml EP0 를 첨가한 배지에서 염기성 적아세포 (basophi 1 ic erythroblast)를 배양하였다. 13 일부터 17 일까지는 2 IU/ml EP0 를 첨가하였다 [3, 4] . 17 일경 다염성 적아세포 (polychromatic. erythroblast)와 정염성 적아세포 (orthochromatic erythroblast )가 50% 이상이 되었을 때 3D 비교실험에 들어갔다. 배양 17 일 때, 3D 배양시는 2 IU/ml EP0, 5% 제대혈 플라즈마 유래 혈청 (cord blood pl sma derived serum)을 첨가하였다 [5]. 배지는 2 일마다 교체하였다. 세포들을 C02 인큐베이터 (Sanyo)에서 37 °C, 5% C02의 조건으로 배양하였다. 트리판 블루 염색으로 생존한 세포의 수를 계산하였고 세포손상여부 (cell integrity) 및 성숙정도를 Wright- Giemsa 염색 (Sigma-Aldrich) 후 각 군마다 맹검법 (blinded manner)으로 (세포를 계수하는 연구자는 세포 배양조건이 무엇인지 모르게 함) 두 숙련된 연구자가 최소 400개의 세포들을 계수하여 분석하였다. 실시예 2: 적혈구 세포의 영상화
세포를 세포원심분리기 (Cellspin, Hanil Science Industrial)를 이용해 슬라이드에 도말 후 Wright-Giemsa 염색 (Sigma-Aldr ich) 후 성숙 단계 마다 세포 성숙단계 및 세포이형성증 (myelodysplasia)과 세포손상여부 등을 분석하였다. 실시예 3: 2D plate 배양, 3D 적층 세포 배양
배양 15-17 일경, 후반 성숙단계 (terminal maturation)에 이른 적혈구계 세포 (다염성 -/정염성 -적아세포)를 도 1 에 나타낸 바와 같이 각 조건으로' 나누어 배양하였다. 대조군은 6-well 에 2D 플레이트 배양으로서 IxlO6세포 /mL 농도로 배양하였다. 실험군은 튜브에 2xl07 세포 /niL로 세포를 넣어 자연적으로 적층되게 한 후 튜브를 세워서 배양하였다. 대조군과 실험군 모두 기본 배지는 플라즈마 -유래 혈청 5%를 첨가하여 배양하였다 [5]. 24 시간과 48. 시간 동안 배양하예 세포수와 생존율을 확인하고, Wright- Giemsa 염색법을 사용하여 세포의 성숙 단계를 분석하였다. 실시예 4: 3D 배양시기 결정
적층 배양을 시작하기에 적절한 적아세포의 성숙시기를 알기 위해 염기성 적아세포가 50% 이상 남아 있을 때 (배양 13 일경)와 다염성 /정염성 적아세포가 50% 이상일 때 적층배양에 들어갔다. 실시예 5: 2D 플레이트 배양, 3D 100 μ 1, 200 μΐ 적층 배양
세포수가 증가하면 영양소가 세포 적층 부분 안으로 확산해 가기 어렵거나 C02 나 락테이트 같은 독성 대사물질 (toxic metabolite)이 바깥쪽으로 빠져나오기 어려을 수 있다. 따라서, 다염성 /정염성 적아세포를 적층 배양시 적절한 적층 규모를 확인하기 위해 각 조건에서 적혈구의 생성률과 탈핵률 ( enucleation rate)을 비교하였다. 대조군은 6-well 에 IxlO6 세포 /mL 로 배양하고, 실험군 I 은 IxlO7 세포 Anl 의 세포를 류브에 넣어 세포를 가라앉혀 적층시킨 후 배양하고, 실험군 II 는 2xl07 세포 /2 ml 의 세포를 넣어 2 배 부피의 세포 적층 규모로 배양 한다. 사용한 류브는 상기 실험군 I 및 II 의 세포가 층분히 쌓여 3D 적층 환경을 구성할 수 있는 정도의 크기를 갖는 것을 사용하였다. 배양액은 동일하며, 24 시간과 48 시간 동안 배양하여, 세포수와 생존율을 확인하고, Wright-Giemsa 염색법을 사용하여 세포의 성숙 단계를 분석하였다. 실시예 6: 다공성 구조체 내에서의 2D, 3D 적층 배양
다염성 /정염성 적아세포의 적층규모를 키우기 위해 입체적으로 골수내 골격 (bony trabeculae) 환경을 재현하고자 하였다. 골수내 골격 공간과 비슷한 직경 및 공간으로 이투어진 재질 중 인체에 적용 가능한 재질을 찾아 비교하였다. 첫번째 사용 재질은 100% 셀를로오스로 만들어진 CytoporeCGE healthcare)이며 평균 공극 크기 30 μηι, 밀도 1.03 g/ml, 입자직경 200-280 urn, 유효 표면 영역 (1.1 m2/g, 부피 40 ml/g 의 다공성 캐리어였다. 두번째 재질 Cytoline KGE healthcare)은 폴리에틸렌과 실리카로 만들어졌으며 공극의 크기 1-400 urn, 밀도 1.32 g/ml, 침강 속도 120-220 cm/분, 길이 1.7-2.5 cm, 두께 0.4—1.1 cm, 표면 영역 0.3 m2/g 이상으로 골수 골격 내 공간과 유사하였다.
3D 실험군에 대한 대조군은 위의 2D 플레이트 조건과 같았다. 실험군 I 은 튜브에 Cytopore 를 넣고, 실험군 II 는 Cytoline 1 을 넣은 후 (참조: 도 4), 여기에 다염성 /정염성 적아세포를 넣고 lxlO7 세포 /ml 로 적층하여 배양하였다. 최종 성숙단계에 이를 때까지 배양하며, 24 시간과 48 시간 동안 배양하여, 세포수와 생존율을 확인하고, Wright-Giemsa 염색법을 사용하여 세포의 성숙 단계를 분석하였다. 실시예 7: 스피너 플라스크 내의 3D 적층
우선 성숙단계의 세포가 3D 적층상황에서 세포가 눌리지 않고 약한 유동 (flow)의 전단 웅력 (shear stress)에 견디는지 확인하기 위해 실험하였다. 대조군은 위와 동일시하며,, 실험군은 Cytoline 1 에 l.OxlO7 cell/ml 로 넣은 후 스피너 플라스크에 넣어 배양하였다. 일반적으로 층전층 바이오리액터 (packed bed bioreactor )에서 세포들은 움직일 수 없게 고정화 (i隱 obilized)되지만, 본 실험에서 적아세포는 부착세포 (adherent cell)가 아닌 부유세포에 가까우므로 공극 공간 안에 들어가 있었다 하더라도 일부는 배지 유동 (media flow)에 의해 마이크로캐리어 밖으로 나와 배지에 부유 (floating)하게 된다.
적아세포는 유체의 유동에 의한 전단 응력에 매우 약하다는 것을 여러 RPM 조건에서 확인 실험을 하였다. 따라서, 바이오리액터를 돌리는 최저속도인 RPM 25로 전단 웅력을 최소화하여 최종 성숙 단계까지 배양하여, 24 시간 단위로 대조군과 실험군 각각을 트리판 불루로 염색하여 살아 있는 세포의 수를 확인 하고, Wright-Giemsa 염색법을 사용하여 세포의 성숙 단계를 분석하였다. 실시예 8: 스피너 플라스크에서의 Cytopore 및 Cytoline 1 을 이용한 3D 적층
골수 내 상황을 고려한 스케일-업 배양을 위해 큰 부피의 대량의 세포 적층에도 아래 세포가 눌리지 않고 배지가 원활히 교환되는 조건을 알아보고자 스피너 플라스크에 Cytopore 혹은 Cytoline 1 을 넣고 배양 하였다. 대조군의 조건은 위와 동일하며, 실험군은 스피너 플라스크에 lxlO7 cell /ml 로 넣고 배양하였다. 24 시간 단위로 대조군과 실험군 각각을 Wright-Giemsa 염색법을 사용하여 세포의 성숙 단계를 분석하였다. 실시예 9: 스피너 플라스크에서의, Cytoline 1 을 이용한 스핀 필터 내의 3D 배양 (배지 교환)
In vitro 골수내 환경 재현을 위한 더 적합한 3D 적층배양용 다공성 구조체로 Cytoline 1 을 선택하였다. 적혈구계 세포가 부착 세포가 아니기 때문에 다공성 마이크로캐리어 안에 들어가도 고정되어 있지 않고, 일부가 캐리어 밖으로 나와 현탁액 (suspension) 상태로 돌아다니는 것을 발견하였다. 이 경우 세포의 상호간 접촉이 되지 않으므로, 공극 내에서 적층하여 키우면서도 배지의 교환이 원활하도톡 원통형으로 만든 스핀 필터 안에 캐리어와 세포를 가두고 배양기 가운데 고정시켜 배양하였다. 일반적으로 바이오리액터에 사용되는 8 μηι 필터는 공극 직경이 넓어 , 가장 작은 세포에 속하는 적혈구계 세포가 쉽게 빠져나왔다. 따라서 필터 메쉬 크기 (mesh size)가 3 μηι로 작은 스핀 필터에 가두어 놓고 배양액이 서서히 교환되게 세포를 배양하였다. 대조군은 위와 동일하며, 실험군 I 은 스핀 필터로 세포를 lxlO7 세포 /ml 농도로 가두어 놓고 CytoHne 1 과 함께 정지상태에서 (RPM 0) 배양하였다. 실험군 II 는 RPM 25 로 흔들어주며 (shaking) 배양하였다. 24시간마다 대조군과 실험군 세포의 성숙 단계를 분석하였다. 실시예 10: 2D 고농도 배양, Cytoline 1올 이용한 3D 적층 배양
위 실험들을 통해, 2D 플레이트 배양보다 3D 적층 세포 배양시 세포 생존율이나 세포 성숙도가 높음을 확인하였다. 다공성 구조체를 사용하여 3D 적층 배양의 세포생존율이 낮으나, 세포 성숙도가 월등히 높음을 확인 할 수 있었다. 이는 in vitro 골수 환경의 재현의 결과라 할 수 있으며, 높은 농도의 조건에서 최종 성숙단계인 적혈구 세포의 생성을 위한 획기적인 방법이라 할 수 있다.
본 발명자들은 이전에 2D 플레이트에서도 일반적인 세포 농도보다 플레이트 바닥에 세포가 서로 접촉할 수 있을 만큼 세포를 많이 넣어 배양하면 세포 생존율이나 세포 성숙이 더 잘됨을 발표한 바 있다. 본 발명자들은 이러한 2D 풀레이트에서 고농도 배양과 비교해 3D 배양시 접촉정도가 더 많아져 적혈구 생성이 잘 되는지와 적층 시 배지교환 등에 문제가 없는지 알기 위해 비교실험을 하였다. 배양액은 동일하며 대조군은 2D 폴레이트 24-웰에 lxlO6 세포 /ml 를 넣어 고밀도로 배양하였다. 실험군 -'
I 은류브에 lxlO7 세포 /ml 를 넣어 Cytoline 1 과 배양하였다. 또한 실험군
II 는 스핀 필터 안에 1x10? 세포 /ml 의 세포를 Cytoline 1 과 함께 배양하였다. 24 시간 단위로 대조군과 실험군 각각을 트리판 블루로 염색하여 살아 있는 세포의 수를 확인 하고, Wright-Giemsa 염색법을 사용하여 세포의 성숙 단계를 분석하였다. 실시예 11: 다공성 구조체의 선정을 위한추가 실험
적혈구 세포의 최종 성숙 (terminal maturation) 단계에 이른 세포를 3D 다공성 구조체 (매크로다공성 마이크로캐리어, 스캐폴드)에 고밀도 적층 배양하여 배양 효과를 확인하였다. 3D 다공성 구조체는 세포의 상호작용을 자극하기 위한 수많은 다공을 갖고 .있으며, 체내 골수 내 골격의 다공성을 재현할 수 있고, 세포의 손상을 줄일 수 있는 재질로서 적합한 구조체의 선별을 위해 공극 크기 (pore size)와 골격의 모양 및 재질성분을 다양하게 하여 실험해 적용 가능성 여부를 확인 하였다. 각 재질의 공극 크기 ( iim)와 재질은 표 1 에 기재하였다. 대조군은 6-웰에 2D 플레이트 배양으로서 lxlO6 세포 /mL 농도로 배양하였다.
【표 1】
Figure imgf000021_0001
성숙 단계에 이른 적혈구계 세포를 lxlO7 세포 AnL 의 농도로 각각의 다공성 구조체에 넣어 스핀 필터 안에 넣고 3 일간 배양 하였다. 신선한 배지를 전체 배지의 반을 매일 교환해 주었으며, 세포의 상태를 Wright- Giemsa 염색을 통해 확인 하였다. 실시예 12: 배양 세포의 산소 운반능 측정
3D 스캐폴드에서 적층 패킹 배양하여 생산된 최종 적혈구를 Hemox analyzer (TCS Scientific)를 사용하여 산소 평형 커브 (Oxygen equi 11 ibr ium curves)를 정상인의 말초혈액을 대조군으로 하여 비교 측정하였다. 실시예 13: 적혈구계 세포 3D 배양을 위한 구조체 선정을 위한 추가실험
적혈구 세포의 배양에 적합한 공극 크기와 재질을 결정하기 위해 다양한 3D 구조체를 이용하여 세포 적층 실험을 진행하였다ᅳ 세포 내 골격 구조를 재현하기 위한 500 μηι 이내의 공극 구조와 골수 구성 세포들을 지지해 줄 수 있기에 층분한 강도를 가지고 있는 재질, 그리고, 세포들의 배양 후 수거에 용이한 구조를 가지고 있는 구조체를 선정하기 위해 3D- 프린트된 스캐폴드, 마이크로캐리어, 공극이 없는 디스크 유형, 금속 재질 (Ni, Stainless steel)로 나누어 실험을 진행하였다. 대조군과 실험군의 세포의 농도와 배양 배지의 조건은 앞의 실험 조건과 동일하다. 표 2는 다양한 3D 구조체의 사양을 나타낸다.
【표 2】
Figure imgf000022_0001
실시예 14: 골수 성분 세포들과의 공배양 효과의 확인
인체의 조혈과정이 활발히 일어나고 있는 골수내 공간을 모방한 3D 구조체내에 골수 성분의 세포들과 적혈구계 세포를 공 배양함으로 실제 골수내 적혈구 모세포섬 (erythroid island)을 재현하여 세포의 성숙이 원활이 일어나도록 하였다. 중간엽줄기세포 (Mesenchymal stem cells, MSC), 골아세포 (Osteoblast), 성숙한 적혈구계세포를 일정한 비율을 유지하며 (MSC: 골아세포 : 성숙 적혈구계세포 =2: 1:10), 192 시간 동안 공배양하여 2D 플레이트 배양과 비교하였다. 세 종류의 세포를 공배양하기 적합한 기본 배지 조건으로 Stem line II 와 Dulbecco Modified Eagle Medium low glucose 배지를 9:1 의 비율로 흔합하여 사용하였으며, 배지 교환은 전체 배지양의 일부만 매일 교환 하였다. 이후 유동 세포분석기 (flow cytometry)로 세포의 개체군 (populat ion) (골수 세포에 대한 CD45, 적혈구계 세포에 대한 CD71, MSC 에 대한 CD51 및 CD90)을 확인 하였다. 배양의 최적의 조건 확립을 위해 실험에 다양성을 두어, 구성 세포들을 모두 동시에 배양하거나 혹은 MSC와 골모세포 (osteoblast)를 먼저 배양한 후 3 시간 뒤 적혈구계 세포를 공배양하는 조건으로 나누어 진행 하였다. 실험 결과
1. 호염기성 /다염성 적아세포의 적층 효과 (2D plate 배양, 3D 세포 적층 배양)
제대혈에서 분리한 조혈모세포를 적아세포의 배양용 배지에 13- 17 일간 분화시켜 호염기성 /다염성 적아세포가 50% 이상이 될 때 세포를 고농도로 적층하였다. 대조군은 플레이트에서 배양하였으며, 실험군은 2xl07 세포 /ml 농도로 튜브에 적층하여 1 일, 2 일 때 적혈구세포의 성숙 정도 및 생존도를 관찰하였다 (참조: 도 2A). 2D 플레이트에서와는 달리 3D 튜브법에서는 적혈구계 세포들이 골수내 적혈구 모세포섬 (erythroid island)과 유사하게 세포 간에 밀접한 접촉을 유지하며 배양되었다 (참조: 도 2A). 배양 1 일, 2 일 후 대조군은 정염성 적아세포가 38.5%, 57.8% 관찰되었지만, 3D 적층한 실험군에서는 50.9%, 49.6%가 관찰되었다 (참조: 도 2B). 탈핵한 적혈구는 대조군 (13.7%, 7.5%)보다 3D 적층배양에서 적혈구가 증가하였다 (20.6^ 25.2%). 2 일에 정염성 적아세포 비율이 대조군보다 실험군에서 감소한 이유는 탈핵이 더 많이 되어 적혈구가 되었기 때문으로 보인다. 또한, 배양환경이 좋지 않아 핵이 제대로 분열돠지 못하고 ^개지거나 한 세포질 내에 여러 개의- 핵이 남아 있는 세포이형성증 (myelodysplasia)이 1 일과 2 일에 대조군 (5.1%, 6.1¾>)과 실험군 (2.3%, 3.1%)에서 각각 감소하였다. 따라서, 3D 적충배양에서 감소하여 배양 환경이 세포 성숙과 적혈구 생산에 더 적합함을 확인할 수 있었다. 2. 정염성 적아세포 세포 적층 규모
위의 실험에서 2D 폴레이트 세포 배양보다 3D 고농도 적층 세포 배양이 in vivo 골수 환경의 재현으로 세포간의 접촉을 증가시켜 세포 성숙에 효과적임을 확인 하였다. 3D 고농도 적층 배양시 최적의 세포 적층규모를 찾기 위해 성숙 단계에 이른 적아세포를 2D 플레이트 배양 대조군과 실험군 I, II 를 비교하였다. 실험군 I 은 세포를 lxlO7 세포 /ml 농도로 3D 적층 환경을 구성할 수 있는 좁은 튜브에 넣어 쌓아 배양하고, 실험군 II 는 2xl07 세포 /ml 로 쌓아 배양하였다. 배양 1 일, 2 일 후 정염성 적아세포는 대조군에서 40.7%, 22.6%가 관찰되었으며, 실험군 I 에서는 43.3%, 23.1%, 실험군 II 에서는 36.0%, 18.2%로 관찰되었다. 실험군 I 의 조건이 3D 적층 ᅳ 배양시 세포 성숙이 더 효과적으로 진행됨을 확인하였다 (참조: 도 3A, 3B). 탈핵 효과로 인한, 최종 성숙 적혈구 세포는 배양 1, 2 일에 대조군 (16.1%, 22.6%)보다 실험군 I, II 가 각각 (23.8%, 46.1%), (23.0%, 30.1¾>)로 적층시 탈핵된 적혈구가 더 증가하였다. 그리고 실험군 I 이 II 보다 적층에 대한 효과가 증대됨을 확인 하였다. 또한, 세포이형성증이 2 일 때 대조군과 실험군 I, II 에서 각각 3.8%, 2.7%, 2.6%로 적층시 더 감소하였다. 세포 생존도는 실험군 I, II 가 대조군에 비해 1 일 때 4.6%, 5.4% 증가하였고, 2 일 때 5.7%, 5.9% 더 증가하였다 (참조: 도 3B).
3. 다공성 구조체에서 3D 적층 배양
성숙 단계에 이른 세포를 in vitro 골수내 골격 환경을 재현하여 세포를 배양하기 위해, 성숙 단계에 이른 적아세포를 대조군과 Cytopore 및 Cytoline l에서 배양한 것을 비교하였다 (참조: 도 4) .
Cytopore 의 경우 배양 1 일, 2 일, 3 일 관찰 결과 대조군보다 적혈구계 세포의 생존율이 낮았다. 이는 도 4 에 나타낸 것과 같이 공극의 공간이 세포접촉과 배지 순환을 유발하기에 너무 작기 때문으로 생각되었다 (참조: 도 5).
Cytoline 1 의 경우 적층배양시 세포 성숙이 효율적이어시 (참조: 도 6), 1 일, 2 일 후 정염성 적아세포가 대조군에서는 (38.3%, 15.6%)가 관찰되었으몌 Cytoline 1 케이스 1 에서는 (67.5%, 14.1%)로 관찰되었다. 또한 탈핵 후 적혈구는 대조군 (6.1%, 7.2%)보다 Cytoline 1 의 케이스 1, 케이스 2 각각 (26.9%, 80.0%)로 적층 시 적혈구가 매우 증가하였다ᅳ 또한, 세포이형성증이 대조군과 Cytoline 1 에서 각각 (26.9%, 4.0%), (2.8%, 0.0%)로 감소하였다 (참조: 도 7). 동시에 진행한 다른 제대혈 유래 케이스 2 의 경우 적층 후 1 일까지 비교하였는데, 정염성 적아세포는 대조군에서 39%, 실험군 II 에서 94.1%로 세포 성숙이 매우 크게 증가함을 확인하였다. Cytoline 1 을 넣고 3D 적층 배양 시 세포간의 ¾촉이 증가하며, 세포 성숙이 더 효과적으로 진행됨을 확인 하였다 (참조: 도 8, 9). 세포 생존율은 대조군의 경우 살아있는 세포는 적혈구계 세포가 아니라 다른 계열 세포이므로 의미가 없어 비교하지 않았다.
4. 적아세포의 스피너 플라스크에서 공극 없이 배양효과 비교
스피너 풀라스크에서 성숙 단계에 이른 다염성 /정염성 적아세포가 약한 유동의 전단 웅력 (유체역학적 손상)에 견디는지 확인하기 위해 실험하였다 (참조: 도 10A). 스터링 (Stirring) RPM 25 로 전단 웅력을 최소화하여 4 일까지 배양하였고, 이 속도에서 세포는 거의 뜨지 않고 바닥에서 가라앉아 있었다. 대조군은 정염성 적아세포가 24 시간마다 (9.1%, 5.9%, 46.2%, 41.6%)가 관찰되었으며, 실험군 I 에서는 (35.0%, 12.8%, 36.0%, 12.8%)가 관찰 되었다 (참조: 도 10B). 또한 적혈구 생성율도 대조군에서 (0.0%, 2.7%, 5.8%, 3.4%), 실험군 I 에서 (6.5%, 9.0%, 26.0%, 59.3%)로 스피너 플라스크에서 더 효과가 좋았다. 따라서, Cytoline 1 에 넣어 스피너 플라스크 배양도 세포성숙 및 적혈구 생성에 효과적임을 알 수 있었다. 그러나, 전단 응력으로 인해 세포 생존율이 대조군보다 낮고 적혈구의 형태를 잘 유지하고 있지 않아 배지의 전단 응력으로부터 공극 안에서 배양하는 것이 적합함을 알 수 있었다 (참조 : 도 10A).
5. 스피너 플라스크에서 Cytopore에 배양
큰 부피에서 세포 눌림과 전단 웅력을 줄이기 위해 3D 적층 스피너 플라스크 배양시 Cytopore, Cytoline 1 을 각각 넣어 배양하였다. Cytopore 의 경우 스피너 플라스크 내에서도 앞선 실험 결과와 마찬가지로 성숙한 적혈구계 세포가 증가하지 않아 적혈구계 세포 배양에 적합하지 않음을 재차 확인하였다 (참조: 도 11) .
6. 스피너 플라스크에서 Cytol ine 1 에 배양
대조군은 정염성 적아세포 ( 11.8%, 3.9%, 34.7%)가 관찰되었으며, 실험군은 (34.1%, 9.7%, 3. 관찰되었다. Cytol ine 1 을 넣고 3D 적층 스피너 플라스크 배양 시 세포간의 접촉이 증가하며, 세포 성숙이 더 효과적으로 진행됨을 확인하였다 (참조: 도 12) . 탈핵 효과로 인한, 최종 성숙 적혈구 세포는 배양 1ᅳ 2 , 3 일에 각각 대조군 (0%ᅳ 2.3%, 4.2%)보다 실험군에서 ( 12.2%, 32.3%, 90.6%) 탈핵된 적혈구가 증가하였다. 따라서 Cytol ine 1 내에서 적층 효과를 유지하면서 전단 유동에 영향을 덜 받아 최종 단계인 적혈구 세포의 생산에 효과적임을 확인할 수 있었다.
7. 스피너 플라스크 내에서 스핀필터 및 Cytol ine 1 을 이용한 3D 배양 및 교반 속도 (shaking RPM)에 따른 효과 비교
세포가 마이크로캐리어 밖으로 빠져나와 적층되지 않고 배지 유동에 의한 전단 웅력을 받는 것을 방지하기 위해, 스핀 필터 (3 y m)에 마이크로캐리어와 세포를 가두어 적층효과를 그대로 유지하면서 배양액이 서서히 교환되게 실험을 진행 하였다. 실험군 I 은 스핀 필터로 세포를 가두고 Cytol ine 1 과 함께 배양하며 전단 응력을 고려하여, RPM 0 으로 하고, 실험군 I I 는 RPM 25 로 흔들어주며 (shaking) 배지교환이 보다 원활하게 하였다. 배양 1 일, 2 일 후 대조군은 정염성 적아세포 (51.4%, 64.2%)가 관찰되었으며, 실험군 I 에서는 (66.4%, 70.0%) , 실험군 I I 에서는 (63.2%, 59.4%)관찰되었다. 탈핵 적혈구는 대조군 (8.6%, 10.7%)보다 실험군 I , I I 에서 각각 ( 15.0%, 25.6%) , (25.5%, 32.3%)로 대조군 보다 탈핵된 적혈구가 증가하였고, 대조군 I I 에서 더 높았다. 또한, 세포이형성증아 대조군에 비해 실험군 I, I I 에서 각각 배양 1 일에 5.7%, 1.0%, 2.0%로 감소하였다 (도 13 내지 15) . 스핀 필터에 세포 찌꺼기가 끼는 현상은 관찰되지 않았다. 즉, 다공성 구조체를 이용해 적층효과를 유지하면서, 스핀 필터를 이용해 배지 유동에 의한 전단 웅력을 줄이면서도 배양액의 원활한 교환을 유도한 것이 세포의 성숙 및 적혈구 세포 생산에 가장 효과적임을 확인하였다.
8. 2D고 농도, Cytoline 1을 이용한 3D적층 배양
본 발명자들은 실험결과를 재차 입증하기 위해, 결과가 좋았던 실험을 재현하였다. 대조군은 2D 폴레이트 배양으로 고농도로 배양하며, 실험군 I 은 튜브에 Cytoline 1 을 넣어 3D 적층 배양하며, 실험군 II 는 스핀 필터 안에 Cytoline 1 과 함께 세포를 3D 적층 배양 했다. 배양 1 일, 2 일 후 대조군은 정염성 적아세포 (60.0¾, 66.7%)가 관찰되었으며, 실험군 I 에서는 (45.1%, 56.5%), 실험군 II 에서는 (31.7%, 44.3%)관찰되었다. 실험군의 조건이 3D 적층 배양 시 세포성숙에 더 효과적으로 진행됨을 확인하였다 (조: 도 16 내지 18). 탈핵 효과로 인한, 최종 성숙 적혈구 세포는 대조군 (7.2%, 24.2%)보다 실험군 I, II 가 각각 (22. , 43.5%), (24.4%, 50.4%)로 대조군보다 탈핵된 적혈구가 증가하였다. 그리고 실험군에서 세포간 '접촉이 증가하였으며, 따라서 적층에 대한 효과가 증대됨을 확인하였다. 또한, 세포이형성증이 대조군과 실험군 I, II 에서 각각 (2.0%, 1.0%), (4.2%, 0.0%), (0.0%, 1.7%)로 감소하였다 (참조: 도 16 내지 18). 9. 다공성 구조체의 선정
3 일간 배양되는 동안 적혈구로의 성숙이 대조군보다 3D 다공성 구조체에서 더 진행되었고, 헤모글로빈이 축적되어 세포 펠릿이 더 붉은색을 나타냄을 확인하였다. 또한 1 일 배양시에는 Cytoline 1 이 다른 스캐폴드보다 눈에 띄게 붉은색의 세포 펠렛 (pellet)을 나타내었으나, 배양일이 경과하면서 Bioemrix 3D, Honeycomb 스캐폴드에서도 배양된 세포의 펠렛이 붉은색을 띄는 것을 확인 하였다. 구조체에 따라 세포의 성숙 속도가 다를 수 있기는 하지만 모든 3D 적층 패킹 배양 환경에서 적혈구 생산이 효율적이고 적합함을 확인하였다. 도 19 는 세포 염색 사진 (좌측), 도 20 은 세포 성숙 정도를 나타낸다. 특히, Biomerix 3D, Honeycomb 스캐폴드에 배양된 세포의 경우 배양일이 지날수록 세포의 생존율 (참조: 도 18, 우측)도 대조군보다 증가하였으며, 배양 4 일째에 Biomerix 3D 의 세포 염색 (참조: 도 19)에서 탈핵된 적혈구의 수가 더 증가됨을 확인 할 수 있었다.
고밀도 적층 배양 (3 일 동안) 세포와 배양 전 (Oh) 세포를 비교하여 세포 신호전달을 확인 하였다. 적아세포 접착 -관련 마커 (erythroblast adhesion-rela ed markers)인 DLC-l(delet ion in liver cancer— 1)과 ICAM- 4( intercel lular adhesion molecule— 4) , 전사인자 (transcript ion factor) GATA-1 과 적혈구 세포 성숙 마커 (erythroid cell maturation markers)인 Hb-beta와 Hb-ga隱 a의 mRNA 발현을 확인 하였다 (참조: 도 21). 배양 1일에 DLC-1 의 mRNA 발현량은 Oh 대조군보다 Biomerix 3D 에서 253.2 배 증가 하였으며, ICAM-4 의 mRNA 발현량은 104.9 배 증가 되었다. GATA-1 mRNA 발현률은, 배양 2 일경, Biomerix 3D 에서 배양한 적혈구계 세포에서 9.1 배 증가 하였으며, Hb-beta 의 mRNA 발현률은, 배양 3 일째, Biomerix 3D 에서 313.0 배, Honeycomb 스캐폴드에서 298.2 배로 크게 증가 되었다. Hb-gamma mRNA 발현률 또한 배양 3 일째, Biomerix 3D 스캐폴드에서 203.3 배 증가 되는 것을 확인 하였다. 따라서 성숙된 적혈구계 세포가 다공성 구조체 내에서 적층되어 배양됨으로 세포간의 접촉이 증가 하여 세포 접착력 (cell adhesion), 세포 성숙을 매우 효과적으로 증진 시키는 것을 확인 하였다.
10. 배양 세포의 산소 운반능 측정
도 22 의 좌측 도는 세포 펠릿이 배양한 성숙한 적혈구이다. 배양한 성숙 적혈구 세포의 02 운반 능력이 대조군과 유사함을 확인하였다 (p50=20.8, P50=25.8; 생산한 적혈구, 대조군) (참조: 도 22).
11. 골수 성분 세포들과의 공배양 효과의 확인
적혈구계 세포를 골수 성분 세포들과 공배양한 결과 두 조건의 세포 개체군 (population)이 달랐으며, 구성된 모든 세포를 동시에 3D 구조체에 넣어 배양하는 것이 적혈구계 세포의 분화에 더 도움이 된다는 것을 확인하였다 (참조: 도 24).
도 24 는 다공성 구조체에 골수 내 세포인 중간엽줄기세포 (mesenchymal stem cells, MSC) 및 골아세포 (osteoblasts)와 성숙된 적혈구계 세포를 공배양한 결과이다. 실험 A 군에서는 부착세포인 MSC 와 골아세포를 먼저 다공성 구조체에 넣고 부착되기를 기다렸다가, 3시간 후 적혈구계 세포를 추가로 넣어 배양하였으며 , 실험 B군에서는 상기 세종류 세포를 동시에 넣은 후 192 시간 동안 공배양하였다. 동시에 배양된 실험 B 군의 경우는 192 시간、후 MSC 를 나타내는 CD51+CD90+의 퍼센트가 2D 배양보다 3D 배양에서 3.1%증가되어 유지 되었고, 미성숙 적혈구계 세포를 나타내는 CD45+CD71+는 16.0% 증가 되었으며, 성숙한 적혈구 세포를 나타내는 CD45-CD71+도 대조군과 비슷하였다. 적혈구계 세포를 부착세포보다 나중에 넣은 실험 A 군의 경우 192 시간 후 MSC 를 나타내는 세포 마커인 CD51+CD90+ 세포의 퍼센트가 2D 배양보다 3D 배양에서 0.7%정도 낮았으나 미성숙 적혈구계 세포를 나타내는 CD45+CD71+가 21.4% 높아 적혈구계 세포를 3D 다공성 구조체 내에서 유지, 증식 시키는데 효과적임을 확인 하였다. 또한 골수 내에서는 적혈구 세포들끼리 서로 입체적으로 밀착하여 적혈구 모세포섬 (erythroblast ic island)이란 공간을 만들어 성숙 및 증식하게 된다. 골수 내에서 적혈구 모세포섬은 미성숙 적혈구계 세포가 성숙되기 위해 대식세포 (Histiocytes)와 긴밀하게 상호작용하는 중요한 공간이다. 마찬가지로, 3D 다공성 구조체내에도 대식세포와 단핵 백혈구를 세포를 포함하는 골수 세포와의 공배양을 통해 적혈구계 세포의 성숙 및 최종 적혈구 세포의 생산을 극대화 시킬수 있는지를 실험으로 확인 하였다. 3D 스테인리스 강 (Stainless steel) 다공성 구조체에 골수 단핵세포 (Bone marrow mononuclear cells, BM MNC)를 lxlO8 세포 /mL 의 농도로 세포를 넣고 3 Um 의 스핀필터로 감싸 72 시간 동안 배양하였다 (실험군). 2D 대조군의 조건과 배양 배지 및 배지 교환 조건은 위와 동일하였다. 24 시간 간격으로 다공성 구조체내에서 세포들이 밀착되어 3D 적층을 형성하는 모습을 현미경으로 관찰하였다 (참조: 도 25, 좌측). 또한 동일한 시간 간격으로 다공성 구조체 내에서 세포간의 입체적 상호작용으로 인한 적혈구계 세포의 성숙을 Wright-Giemsa 염색을 통해 확인 하였다 (참조: 도 25, 우측). 배양 48 시간에는 2D 대조군에 비해 3D 실험군에서 미성숙 적혈구계 세포가 눈에 띄게 관찰되었다 (검은색 화살표는 미성숙 적혈구계 세포이고, 나머지 세포는 단핵세포 및 대식세포를 나타낸다). 배양 72 시간에도 대조군 보다 실험군에서 성숙 적혈구계 세포와 대식세포의 모습이 관찰되는 것을 확인 할 수 있었다 (검은색 화살표는 미성숙 적혈구계 세포; 빨간 화살표는 성숙 적혈구 세포; 흰 별표는 대식세포를 나타낸다). 이는 3D 다공성 구조체 내에서도 골수 세포들 끼리 입체적 상호작용이 적혈구계 세포의 성숙에 중요한 역할을 함을 보여준다-. 이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다. 참고문헌
1. Lowe K. Blood substitutes: from chemistry to clinic, Journal of materials chemistry 2006; 16: 4189-4196.
2. Timmins NE, Nielsen LK. Blood cell manufacture: current methods and future challenges. Trends in Biotechnology 2009; 27: 415-
422.
3. Choi HS, Lee EM, Kim HO et al . Autonomous control of terminal erythropoiesis via physical interact ions among erythroid cells. Stem Cell Res 2013; 10: 442-453.
4. im HO, Baek EJ . Red blood cell en ineering in stroma and serum/plasma-free conditions and long term storage. Tissue Eng Part A 2012; 18: 117-126.
5. Baek E.J. , Kim H.S. , Kim J.H. et al. Stromaᅳ free mass product ion of clinical grade red blood eel Is by using poloxamer 188 as a RBC survival enhancer . Transfusion 2009.

Claims

【특허청구범위】
【청구항 1】
다공성 구조체를 이용하여 적혈구계 세포를 3차원 적층
패킹 (packi ng) 배양하는 단계를 포함하는 적혈구계 세포의 인 비트로 확장 방법 .
【청구항 2】
제 1 항에 있어서, 상기 다공성 구조체는 30-500 u rn 크기 분포를 갖는 공극을 포함하는 것을 특징으로 하는 방법.
【청구항 3】 '
제 1 항에 있어서, 상기 배양은 지속적인 유동 ( f l ow)에 의한 전단 응력이 인가되는 배지 내에서 이루어지는 것을 특징으로 하는 방법.
【청구항 4】
제 3 항에 있어서, 상기 유동은 교반에 의해 형성되는 것을 특징으로 하는 방법 .
【청구항 5]
제 4 항에 있어서, 상기 유동은 1-50 rpm의 교반에 의해 형성되는 것을 특징으로 하는 방법 .
【청구항 6】
제 3 항에 있어서, 상기 배양은 지속적인 유동에 의한 다공성 구조체로부터의 적혈구의 이탈을 방지하기 위하여. 배지 내부에 포함되는 필터 내에서 이루어지는 것을 특징으로 하는 방법 .
【청구항 7】
제 6 항에 있어서, 상기 필터는 메쉬 (Mesh) 크기가 1-8 μ ηι인 것을 특징으로 하는 방법 .
【청구항 8】
제 1 항에 있어서, 상기 적혈구계 세포는 최종 성숙 (terminal maturation) 단계에 진입한 세포인 것을 특징으로 하는 방법.
【청구항 9】
제 1 항에 있어서, 상기 3D 배양된 적혈구계 세포는 DLC 1 (Deleted in Liver Cancer 1), I CAM-4( Intercel hilar Adhesion Molecule— 4) 및 VLA— 4(Very Late Antigen-4) 중 하나 이상의 접착 관련 유전자를 발현하는 것을 특징으로 하는 방법 .
【청구항 10】
제 1 항에 있어서 , 상기 적혈구계 세포를 3차원 적층 패킹 (packing) 배양하는 단계는 중간엽줄기세포, 골아세포, 내피 세포 (endothelial cell), 단구 (monocyte), 대식세포 (macrophage) 및 조직구 (hi st iocyte)로 구성된 군으로부터 선택되는 어느 하나 이상올 적혈구계 세포와 흔합하여
공배양하는 것을 특징으로 하는 방법.
【청구항 11】
제 10 항에 있어서, 상기 적혈구계 세포를 3차원 적층
패킹 (packing) 배양하는 단계는 중간엽즐기세포, 골아세포, 내피
세포 (endothel ial cell), 단구 (nxmocyte) , 대식세포 (macrophage) 및 조직구 (histiocyte)를 적혈구계 세포와 흔합하여 공배양하는 것을 특징으로 하는 방법 . 【청구항 12】
제 10 항에 있어서, 상기 중간엽줄기세포, 골아세포, 내피
세포 (endothel ial cell), 단구 (monocyte) , 대식세포 (macrophage) 및 조직구 (histiocyte)로 구성된 군으로부터 선택되는 어느 하나 이상과 상기 적혈구계 세포는 1:10 내지 2:1의 세포 수 비율로 흔합되는 것올 특징으로 하는 방법 .
PCT/KR2015/003483 2014-04-07 2015-04-07 적혈구계 세포의 인 비트로 확장 WO2015156586A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580027397.6A CN106414722B (zh) 2014-04-07 2015-04-07 红系细胞的体外扩增
US15/302,647 US10273455B2 (en) 2014-04-07 2015-04-07 In vitro expansion of erythroid cells
EP15777380.5A EP3130668B1 (en) 2014-04-07 2015-04-07 In-vitro expansion of erythroid cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0041320 2014-04-07
KR20140041320 2014-04-07

Publications (1)

Publication Number Publication Date
WO2015156586A1 true WO2015156586A1 (ko) 2015-10-15

Family

ID=54288098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003483 WO2015156586A1 (ko) 2014-04-07 2015-04-07 적혈구계 세포의 인 비트로 확장

Country Status (5)

Country Link
US (1) US10273455B2 (ko)
EP (1) EP3130668B1 (ko)
KR (1) KR101845588B1 (ko)
CN (1) CN106414722B (ko)
WO (1) WO2015156586A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108883133A (zh) * 2015-12-22 2018-11-23 善威生物私人有限公司 使用红细胞的治疗方法
US11243218B2 (en) 2015-10-07 2022-02-08 Sangui Bio Pty Ltd. Blood preparation and profiling
US11693006B2 (en) 2016-12-20 2023-07-04 Sangui Bio Pty. Ltd Blood profiling with protease inhibitors
KR20230129316A (ko) * 2020-08-21 2023-09-08 한양대학교 산학협력단 적혈구의 체외 생산 방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102196527B1 (ko) * 2017-12-21 2020-12-31 한양대학교 산학협력단 적혈구계 세포 배양 중 적혈구를 수거하기 위한 시스템 및 방법
GB201818045D0 (en) 2018-11-05 2018-12-19 Nhs Blood & Transplant Method for producing erythroid cells
CN111358810B (zh) * 2020-02-28 2020-12-29 广州市天河诺亚生物工程有限公司 一种用于辅助贫血治疗的复合物及其制备方法
US20230226218A1 (en) 2020-05-11 2023-07-20 Erytech Pharma Red Cell Extracellular Vesicles (RCEVs) Containing Cargoes and Methods of Use and Production Thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6361998B1 (en) * 1998-06-25 2002-03-26 Hemosol Inc. Efficient culture of stem cells for the production of hemoglobin
KR20130055313A (ko) * 2011-11-18 2013-05-28 한양대학교 산학협력단 고밀도 배양을 이용한 적혈구계 세포의 인 비트로 확장방법
KR20130137574A (ko) * 2013-11-14 2013-12-17 한양대학교 산학협력단 적혈구계 세포의 인 비트로 확장방법
WO2014013255A1 (en) * 2012-07-20 2014-01-23 The Common Services Agency Erythroid production

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7247477B2 (en) * 2002-04-16 2007-07-24 Technion Research & Development Foundation Ltd. Methods for the in-vitro identification, isolation and differentiation of vasculogenic progenitor cells
CN1238495C (zh) * 2003-12-31 2006-01-25 中国人民解放军军事医学科学院生物工程研究所 动物细胞多孔微载体固定化高效培养方法及其培养基
CN100529062C (zh) * 2004-04-09 2009-08-19 华东理工大学 三维立体培养和诱导骨髓间充质干细胞成软骨细胞的方法
JP5419076B2 (ja) 2008-05-15 2014-02-19 旭化成メディカル株式会社 血小板の誘導方法
EP2324109B1 (en) * 2008-09-03 2016-10-26 Mesoblast, Inc. Expansion of haemopoietic precursors
WO2010107392A1 (en) * 2009-03-20 2010-09-23 Agency For Science, Technology And Research Culture of pluripotent and multipotent cells on microcarriers
US9284531B2 (en) * 2009-06-18 2016-03-15 Takara Bio Europe Ab Differentiation of human pluripotent stem cells into cells expressing mature hepatocyte markers by 2D and bioreactor culture
JP2012080874A (ja) * 2010-09-15 2012-04-26 National Institute Of Advanced Industrial Science & Technology 擬微小重力環境下での三次元組織構築方法
KR101438533B1 (ko) * 2012-03-30 2014-09-17 한양대학교 산학협력단 적혈구계 세포의 인 비트로 확장방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6361998B1 (en) * 1998-06-25 2002-03-26 Hemosol Inc. Efficient culture of stem cells for the production of hemoglobin
KR20130055313A (ko) * 2011-11-18 2013-05-28 한양대학교 산학협력단 고밀도 배양을 이용한 적혈구계 세포의 인 비트로 확장방법
WO2014013255A1 (en) * 2012-07-20 2014-01-23 The Common Services Agency Erythroid production
KR20130137574A (ko) * 2013-11-14 2013-12-17 한양대학교 산학협력단 적혈구계 세포의 인 비트로 확장방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TIMMINS, N. E. ET AL.: "Blood cell manufacture: current methods and future challenges", TRENDS IN BIOTECHNOLOGY, vol. 27, no. 7, 6 June 2009 (2009-06-06), pages 415 - 422, XP055136498 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11243218B2 (en) 2015-10-07 2022-02-08 Sangui Bio Pty Ltd. Blood preparation and profiling
CN108883133A (zh) * 2015-12-22 2018-11-23 善威生物私人有限公司 使用红细胞的治疗方法
EP3393482A4 (en) * 2015-12-22 2019-08-21 Sangui Bio Pty. Ltd THERAPEUTIC PROCEDURES USING ERYTHROCYTES
US11693006B2 (en) 2016-12-20 2023-07-04 Sangui Bio Pty. Ltd Blood profiling with protease inhibitors
KR20230129316A (ko) * 2020-08-21 2023-09-08 한양대학교 산학협력단 적혈구의 체외 생산 방법
KR102685578B1 (ko) * 2020-08-21 2024-07-17 한양대학교 산학협력단 적혈구의 체외 생산 방법

Also Published As

Publication number Publication date
US20170037373A1 (en) 2017-02-09
EP3130668A4 (en) 2017-08-16
CN106414722B (zh) 2020-01-03
KR20150116797A (ko) 2015-10-16
EP3130668A1 (en) 2017-02-15
EP3130668B1 (en) 2019-07-17
KR101845588B1 (ko) 2018-04-05
US10273455B2 (en) 2019-04-30
CN106414722A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
WO2015156586A1 (ko) 적혈구계 세포의 인 비트로 확장
Sullenbarger et al. Prolonged continuous in vitro human platelet production using three-dimensional scaffolds
JP4523169B2 (ja) 造血幹細胞および/または前駆細胞を維持および増加するための方法および装置
US9574178B2 (en) Megakaryocyte and platelet production from stem cells
Bagley et al. Extended culture of multipotent hematopoietic progenitors without cytokine augmentation in a novel three-dimensional device
Mortera-Blanco et al. Long-term cytokine-free expansion of cord blood mononuclear cells in three-dimensional scaffolds
AU2012262139B2 (en) Methods and uses for ex vivo tissue culture systems
US20100233130A1 (en) Method and Apparatus for Maintenance and Expansion of Hematopoietic Stem Cells From Mononuclear Cells
US8278101B2 (en) Stem cell bioprocessing and cell expansion
US20210032596A1 (en) Method of producing erythrocytes
Pörtner et al. An overview on bioreactor design, prototyping and process control for reproducible three-dimensional tissue culture
Fujimoto et al. Microencapsulated feeder cells as a source of soluble factors for expansion of CD34+ hematopoietic stem cells
CN109536444B (zh) 一种适用于恶性实体瘤肿瘤浸润t淋巴细胞的分离诱导方法
PT106225B (pt) Processo de expansão ex vivo de células estaminais em biorreactor
CN107864627A (zh) 包含粘附基质细胞的方法和组合物
CN115927164B (zh) 一种血管化肿瘤类器官的培养方法及应用
Hashemi et al. Comparison of the ex vivo expansion of UCB-derived CD34+ in 3D DBM/MBA scaffolds with USSC as a feeder layer
Chitteti et al. In vitro construction of 2D and 3D simulations of the murine hematopoietic niche
JP2008237136A (ja) ヒト造血細胞の培養方法
TWI780516B (zh) 胞毒t細胞培養方法
CN111849862B (zh) 一种鱼类高脂存储肝细胞分离和培养方法
WO2023278285A9 (en) Stackable plates for culturing tissue models
Narum Studies Utilizing Decellularized Human Amniotic Membrane and SW-620 Cells as a Prelude to 3D in Vitro Cultures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15777380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15302647

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015777380

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015777380

Country of ref document: EP