Nothing Special   »   [go: up one dir, main page]

WO2015141252A1 - 有機電界発光装置 - Google Patents

有機電界発光装置 Download PDF

Info

Publication number
WO2015141252A1
WO2015141252A1 PCT/JP2015/050733 JP2015050733W WO2015141252A1 WO 2015141252 A1 WO2015141252 A1 WO 2015141252A1 JP 2015050733 W JP2015050733 W JP 2015050733W WO 2015141252 A1 WO2015141252 A1 WO 2015141252A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic electroluminescent
barrier
organic
electroluminescent device
Prior art date
Application number
PCT/JP2015/050733
Other languages
English (en)
French (fr)
Inventor
勇也 元村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020167025382A priority Critical patent/KR20160122240A/ko
Priority to CN201580014189.2A priority patent/CN106105390B/zh
Publication of WO2015141252A1 publication Critical patent/WO2015141252A1/ja
Priority to US15/261,882 priority patent/US10014492B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/343Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate in the form of urethane links
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present invention relates to an organic electroluminescent device. More specifically, the present invention relates to an organic electroluminescent device in which an organic electroluminescent element is sealed using a gas barrier film.
  • Sealing of an organic electroluminescent element in many organic electroluminescent devices is performed by bonding a substrate provided with an organic electroluminescent element and a sealing member with an adhesive.
  • a substrate provided with an organic electroluminescent element and a sealing member As these substrates or sealing members, it has been proposed to use light and impact resistant gas barrier films (for example, Patent Document 1 or 2).
  • an organic electroluminescent device using a gas barrier film there is a problem that cracks are generated by applying stress to the inorganic layer, the barrier property is lowered, and the durability of the organic electroluminescent device is lowered.
  • an organic electroluminescent device configured to use a gas barrier film as a sealing member cracks are likely to occur in the inorganic layer in the gas barrier film due to the compressive stress of the adhesive in the manufacturing process, and in particular, between the substrate and the sealing member. This is remarkable when the space where the organic electroluminescent element exists is filled with an adhesive and sealed.
  • a stress relaxation layer as described in Patent Document 1.
  • an additional layer such as a stress relaxation layer
  • the light extraction efficiency from the organic electroluminescent element is lowered.
  • the influence is great when a gas barrier film is used in a sealing member of a top emission type device. It is an object of the present invention to provide an organic electroluminescence device having a configuration that can reduce the above-described crack problem and has good light extraction efficiency.
  • the present inventor has intensively studied and completed the present invention. That is, the present invention provides the following [1] to [11].
  • An organic electroluminescent device having a substrate, an organic electroluminescent element, and a gas barrier film in this order, wherein the organic electroluminescent element is sealed by bonding the substrate and the gas barrier film with an adhesive layer.
  • the organic electroluminescent element includes two electrodes and a light emitting layer disposed between the two electrodes
  • the gas barrier film includes a base film and a barrier layer including at least one inorganic layer.
  • the barrier layer is on the organic electroluminescent element side with respect to the base film, and has a barrier protective layer between the adhesive layer and the barrier layer, and the barrier protective layer comprises organic particles and a binder.
  • the adhesive layer is formed of an ultraviolet curable adhesive.
  • an organic electroluminescence device having a structure that can reduce problems such as cracks in an inorganic layer and has good light extraction efficiency is provided.
  • FIG. 3 is a diagram showing the arrangement of organic electroluminescent elements and adhesive layers when the organic electroluminescent devices of Examples 1 to 3 and Comparative Examples 1 and 2 are viewed from the normal direction of the layers. Examples 1 to 3 and Comparative Example 1 are represented by (11), and Comparative Example 2 is represented by (14).
  • the present invention relates to an organic electroluminescent device including a substrate, an organic electroluminescent element, and a gas barrier film.
  • a gas barrier film that has a function of blocking oxygen, moisture, nitrogen oxide, sulfur oxide, ozone, etc. in the atmosphere. It is possible to protect an organic electroluminescent element which can deteriorate over time even when used under normal temperature and normal pressure from deterioration.
  • the organic electroluminescent device of the present invention has a configuration in which an organic electroluminescent element is sealed by bonding a gas barrier film and a substrate with an adhesive layer.
  • the organic electroluminescent device has a structure including a portion having a substrate, an organic electroluminescent element, an adhesive layer, and a gas barrier film in this order in the thickness direction of the substrate.
  • an organic electroluminescent element is formed in the center of one surface of a substrate (in the present specification, the above-mentioned 1 of the substrate on which the organic electroluminescent element is formed).
  • An adhesive is applied to at least the periphery of the organic electroluminescent element on the surface of the substrate obtained in (1);
  • a gas barrier film with the adhesive can be made by adhering to the substrate. That is, for example, an organic electroluminescent device is formed in the center of the substrate surface, and then an adhesive is applied to the organic electroluminescent device so as to completely surround the organic electroluminescent device on the surface.
  • the gas barrier film can be adhered to the substrate from the surface side with an adhesive.
  • an adhesive layer formed of an adhesive exists on the entire surface between the organic electroluminescent element and the gas barrier film and extends to the periphery thereof.
  • an adhesive may be applied so as to cover the surface of the organic electroluminescent element and the periphery of the organic electroluminescent element, and the substrate and the gas barrier film may be bonded.
  • the organic electroluminescent device of the present invention includes a barrier protective layer between the gas barrier film and the adhesive layer.
  • the inventors' research has revealed that by providing a barrier protective layer, damage to the inorganic layer in the gas barrier film is reduced and adhesion is improved. Further, by using a barrier protective layer formed from a material containing organic particles and a binder described in detail below, light from an organic electroluminescent element provided on one surface side of the layer is directed in the direction of the other surface. It could be taken out and diffused efficiently. Therefore, for example, it was found that the light extraction efficiency is good when used as a top emission type organic electroluminescence device.
  • the barrier protective layer containing organic particles reduces the proportion of the unpolymerized part of the binder, and the barrier protective layer becomes a stronger film than when no organic particles are contained, It is thought that the barrier layer is no longer destroyed by scratching or bending. In addition, it is considered that the decrease of the unpolymerized portion reduces the penetration of the solvent from the unpolymerized portion and destroys the barrier property.
  • the light extraction efficiency can be confirmed by measuring the external quantum efficiency. The light extraction efficiency is obtained by measuring and comparing the external quantum efficiency of an organic EL element sealed with a sealing member having a barrier protective layer and an organic EL element sealed with a sealing member not having a barrier protective layer. Can be sought.
  • the barrier protective layer is formed from a barrier protective layer forming material containing organic particles and a binder.
  • the barrier protective layer forming material may be formed as a dispersion in which organic particles are dispersed in the following binder.
  • the barrier protective layer-forming material can be formed by mixing a binder and organic particles by stirring or the like, adding each of the following binder components and organic particles to a solvent, and mixing them.
  • the binder is a composition containing inorganic fine particles and a polyfunctional acrylic monomer.
  • the binder may contain other components as necessary.
  • fine particles means particles having a primary average particle diameter of 1 nm to 500 nm.
  • the inorganic fine particles include fine particles of ZrO 2 , TiO 2 , Al 2 O 3 , In 2 O 3 , ZnO, SnO 2 , Sb 2 O 3 , and the like. Of these, fine particles of TiO 2 , ZrO 2 , ZnO, and SnO 2 are more preferable. Particularly preferred TiO 2 fine particles (titanium oxide fine particles) will be described below.
  • the titanium oxide fine particles are not particularly limited, but it is preferable to use titanium oxide fine particles that have been subjected to photocatalytic inactivation treatment.
  • the titanium oxide fine particles subjected to the photocatalytic inactivation treatment include (1) titanium oxide fine particles whose surface is coated with at least one of alumina, silica, and zirconia, and (2) the titanium oxide fine particles coated in (1) above.
  • examples thereof include fine titanium oxide particles obtained by coating a resin on the coating surface.
  • the resin include polymethyl methacrylate (PMMA). Confirmation that the photocatalytic inactive titanium oxide fine particles do not have photocatalytic activity can be performed by, for example, a methylene blue method.
  • the titanium oxide fine particles in the photocatalyst-inactivated titanium oxide fine particles are not particularly limited and can be appropriately selected according to the purpose.
  • the crystal structure is mainly composed of rutile, a rutile / anatase mixed crystal, and anatase.
  • a rutile structure is a main component.
  • the titanium oxide fine particles may be compounded by adding a metal oxide other than titanium oxide.
  • a metal oxide that can be combined with titanium oxide fine particles at least one metal oxide selected from Sn, Zr, Si, Zn, and Al is preferable.
  • the amount of metal oxide added to titanium is preferably 1 mol% to 40 mol%, more preferably 2 mol% to 35 mol%, still more preferably 3 mol% to 30 mol%.
  • the primary average particle diameter of the inorganic fine particles is preferably 1 nm to 100 nm.
  • the primary average particle diameter of the titanium oxide fine particles is preferably 1 nm to 30 nm, more preferably 1 nm to 25 nm, and still more preferably 1 nm to 20 nm.
  • the primary average particle size exceeds 30 nm, the dispersion may become cloudy and sedimentation may occur.
  • the primary average particle size is less than 1 nm, the crystal structure is not clear and becomes an amorphous state. Will happen.
  • the primary average particle diameter can be measured by, for example, calculation from a half-value width of a diffraction pattern measured by an X-ray diffractometer or statistical calculation from a diameter of an electron microscope (TEM) photographed image. Is based on a value measured based on a statistical calculation from the diameter of an electron microscope (TEM) image.
  • the shape of the inorganic fine particle is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a rice granular shape, a spherical shape, a cubic shape, a spindle shape, or an indefinite shape is preferable. One kind of inorganic fine particles may be used alone, or two or more kinds may be used in combination.
  • the aggregate of inorganic fine particles is desirably not contained as much as possible, but when included, the average secondary particle diameter of the inorganic fine particles is preferably 20 nm to 200 nm.
  • the titanium oxide fine particles preferably have an average secondary particle size of 100 nm or less, more preferably 80 nm or less, and even more preferably 70 nm or less.
  • the secondary particle size is defined as the size of the aggregate when the primary particles are aggregated in a certain state (in the environment) with respect to the primary particle size defined as the particle size in a state where the fine particles are ideally dispersed. Is. In a dispersion containing general fine particles, it is often aggregated with a certain size.
  • examples of the method for measuring the average secondary particle diameter include dynamic light scattering, laser diffraction, and image imaging.
  • the value of the average secondary particle diameter defined in this specification is dynamic. It shall be based on the light scattering method.
  • a method for controlling the average secondary particle size addition of a dispersant can be mentioned. The dispersion state is controlled by the type and addition amount of the dispersant, and the average secondary particle size is adjusted.
  • the dispersant include amine-based, polycarboxylic acid alkyl ester-based, and polyether-based dispersants, and are not particularly limited. You may use the commercial item disperse
  • the inorganic fine particles have a refractive index of 2.2 or more and 3.0 or less, more preferably 2.2 or more and 2.8 or less, and further preferably 2.2 or more and 2.7 or less. If the refractive index is 2.2 or more, the refractive index of the barrier protective layer can be effectively increased, and if the refractive index is 3.0 or less, there is no inconvenience such as coloring of the inorganic fine particles. preferable.
  • a resin material having a known refractive index is doped with inorganic fine particles, and the resin material in which the inorganic fine particles are dispersed is applied onto a Si substrate or a quartz substrate to form a coating film.
  • the refractive index of the coating film is measured with an ellipsometer, and the refractive index of the inorganic fine particles can be calculated from the volume fraction of the resin material and the inorganic fine particles constituting the coating film.
  • the content of the inorganic fine particles calculated from the following formula is 10% by volume or more and 50% by volume or less, more preferably 20% by volume or more and 40% by volume or less, and more preferably 25% by volume with respect to the binder volume (excluding the solvent). % To 35% by volume is more preferable.
  • Formula: Content of inorganic fine particles (volume%) (mass of inorganic fine particles / specific gravity) / [(mass of inorganic fine particles / specific gravity) + (mass of polyfunctional acrylic monomer / specific gravity of polyfunctional acrylic monomer)]
  • the specific gravity of the titanium oxide fine particles is 4.
  • the “polyfunctional acrylic monomer” means a monomer having two or more (meth) acryloyl groups.
  • the polyfunctional acrylic monomer specifically, for example, compounds described in paragraphs 0024 to 0036 of JP2013-43382A or paragraphs 0036 to 0048 of JP2013-43384A can be used.
  • the polyfunctional acrylic monomer preferably has a fluorene skeleton.
  • Examples of the polyfunctional acrylic monomer having a fluorene skeleton include a compound represented by the formula (2) described in WO2013 / 047524.
  • the proportion of the polyfunctional acrylic monomer in the solid content of the binder is preferably 5 to 50% by mass, and more preferably 10 to 30% by mass.
  • the binder may be a thermoplastic resin or a combination of a reactive curable resin and a curing agent described in paragraphs ⁇ 0020> to ⁇ 0045> of JP2012-155177A, A polyfunctional monomer or polyfunctional oligomer may be contained.
  • the binder may contain a polymerization initiator.
  • the polymerization initiator include photopolymerization initiators described in paragraphs ⁇ 0046> to ⁇ 0058> of JP2012-155177A. Specific examples include Irgacure series (for example, Irgacure 651, Irgacure 754, Irgacure 184, Irgacure 2959, Irgacure 907, Irgacure 369, Irgacure 379, Irgacure 819, etc., commercially available from Ciba Specialty Chemicals.
  • Ezacur series e.g., Ezacure TZM, Ezacure TZT, commercially available from Lamberti
  • a polymerization initiator When a polymerization initiator is used, its content is preferably 0.1 mol% or more, more preferably 0.5 to 5 mol% of the total amount of compounds involved in the polymerization. By setting it as such a composition, the polymerization reaction via an active component production
  • the binder may contain a fluorinated surfactant.
  • fluorosurfactant examples include JP-A No. 2002-255922, JP-A No. 2003-114504, JP-A No. 2003-140288, JP-A No. 2003-149759, JP-A No. 2003-195454, and JP-A No. 2004-240187.
  • fluorine-based surfactants described in each of the above publications may be any of anionic, cationic, nonionic, and amphoteric (betaine), and is not particularly limited. Specific examples of the compounds include FS-1 to FS-29 anionic fluorine-based surfactants described in JP-A No.
  • the fluorosurfactant should just be 0.01 mass% or more with respect to the solid content total mass (mass after remove
  • the binder may be formed by dissolving the above components in a solvent.
  • the barrier protective layer forming material may be prepared as a dispersion in which the above components and organic particles are mixed in a solvent and the organic particles are dispersed in a binder.
  • the solvent include alcohols, ketones, esters, amides, ethers, ether esters, aliphatic hydrocarbons, halogenated hydrocarbons and the like.
  • alcohol for example, methanol, ethanol, propanol, butanol, benzyl alcohol, ethylene glycol, propylene glycol, ethylene glycol monoacetate, etc.
  • ketone for example, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methylcyclohexanone, etc.
  • ester for example, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, ethyl formate, propyl formate, butyl formate, ethyl lactate, etc.
  • aliphatic hydrocarbons eg, hexane, cyclohexane
  • halogenated hydrocarbons eg, methyl chloroform
  • aromatic Group hydrocarbons eg benzene, toluene, xylene, ethylbenzene, etc.
  • amides eg dimethyl
  • dioxane tetrahydrofuran, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, etc.
  • ether alcohols such as 1-methoxy-2-propanol, ethyl cellosolve, methyl carbinol and the like
  • aromatic hydrocarbons and ketones are preferable, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone are more preferable, and toluene and xylene are particularly preferable.
  • the organic particles function as light diffusing particles that diffuse light.
  • the organic particles are not particularly limited as long as they are organic particles capable of diffusing light, and can be appropriately selected according to the purpose, and two or more kinds of particles may be used.
  • organic particles examples include polymethyl methacrylate particles, crosslinked polymethyl methacrylate particles, acrylic-styrene copolymer particles, melamine particles, polycarbonate particles, polystyrene particles, crosslinked polystyrene particles, polyvinyl chloride particles, benzoguanamine-melamine formaldehyde particles, and the like. Is mentioned.
  • the organic particles are preferable in view of solvent resistance and dispersibility in the binder, and crosslinked polymethyl methacrylate particles are particularly preferable. It can be confirmed that the organic particles are crosslinked resin particles by dispersing them in a solvent, for example, toluene and checking the difficulty of dissolution of the resin particles.
  • the refractive index of the organic particles needs to be different from the refractive index of the binder. If the refractive index of the light scattering particles is close to the refractive index of the binder, light scattering may not occur and the light extraction efficiency may be reduced.
  • the refractive index of the organic particles is measured with a precision spectrometer (GMR-1DA, Shimadzu Corporation) after measuring the refractive index of the refractive liquid using, for example, an automatic refractive index measuring device (KPR-2000, manufactured by Shimadzu Corporation). ) And can be measured by the Shribsky method.
  • (absolute value) between the refractive index A of the binder and the refractive index B of the organic particles may be 0.2 or more and 1.0 or less, and is 0.2 or more and 0.7 or less. Preferably, it is 0.2 or more and 0.6 or less.
  • the average particle size of the organic particles is preferably 0.5 ⁇ m to 10 ⁇ m, more preferably 0.5 ⁇ m to 6 ⁇ m, and even more preferably 1 to 3 ⁇ m. If the average particle size of the organic particles exceeds 10 ⁇ m, most of the light is forward scattered, and the ability to convert the angle of light by the organic particles may be reduced. On the other hand, when the average particle size of the organic particles is less than 0.5 ⁇ m, the average particle size of the organic particles becomes smaller than the wavelength of visible light, and the Mie scattering changes to the Rayleigh scattering region.
  • the average particle size of the organic particles can be measured, for example, by an apparatus using a dynamic light scattering method such as Nanotrack UPA-EX150 manufactured by Nikkiso Co., Ltd., or by image processing of an electron micrograph.
  • the proportion of the organic particles in the solid content of the binder is preferably 20 to 70% by volume, more preferably 40 to 60% by volume.
  • the barrier protective layer can be formed by curing a barrier protective layer forming material.
  • the barrier protective layer forming material may be cured after being applied to the surface of the gas barrier film.
  • the gas barrier film surface to which the barrier protective layer forming material is applied is preferably an inorganic layer.
  • the barrier protective layer may be dried after being formed by applying a barrier protective layer forming material, or may be heated before, during or after curing.
  • the coating can be performed by a known thin film forming method such as a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, a micro gravure coating method, and an extrusion coating method. It can. Among these, non-contact conveyance that does not come into contact with the underlying inorganic layer and coating by an extrusion coating method using a die coater or a slit coater are preferable.
  • the extrusion coating method when the barrier protective layer forming material is applied to the inorganic layer, only the liquid reservoir is in contact and the coating device is not in direct contact, so the inorganic layer is cracked or cracked due to physical contact. This is because it is difficult to cause damage.
  • the barrier protective layer forming material or the flattening layer forming material may be cured with light (for example, ultraviolet rays), an electron beam, or a heat beam, and is preferably cured with light.
  • the coating liquid is preferably cured while being heated at a temperature of 25 ° C. or higher (for example, 30 to 130 ° C.). By heating, the free movement of the polyfunctional acrylic monomer is promoted so that the film can be effectively cured, and the film can be formed without damaging the gas barrier film.
  • the light used for curing the coating solution may be any light having a wavelength in the vicinity of the wavelength (absorption wavelength) region where the photopolymerization initiator reacts.
  • the absorption wavelength is in the ultraviolet region
  • an ultrahigh pressure as a light source High pressure, medium pressure, and low pressure mercury lamps, chemical lamps, carbon arc lamps, metal halide lamps, xenon lamps, sunlight, and the like can be used.
  • Various available laser beams having wavelengths of 350 nm to 420 nm may be irradiated in a multi-beam form.
  • examples of the light source include a halogen lamp, a xenon lamp, and a high-pressure sodium lamp.
  • Various available laser beams having a wavelength of 750 nm to 1,400 nm may be irradiated in a multi-beam form. .
  • radical photopolymerization by light irradiation it can be carried out in air or in an inert gas, but in order to shorten the polymerization induction period of the radically polymerizable monomer or sufficiently increase the polymerization rate, etc.
  • An atmosphere with a low oxygen concentration is preferable.
  • the oxygen concentration range is preferably 0 to 1,000 ppm, more preferably 0 to 800 ppm, and still more preferably 0 to 600 ppm.
  • Irradiation intensity of ultraviolet irradiation is preferably from 0.1mW / cm 2 ⁇ 100mW / cm 2, irradiation amount of the coating film on the surface, 100mJ / cm 2 ⁇ 10,000mJ / cm 2 are preferred, 100 mJ / cm 2 to 5,000 mJ / cm 2 is more preferable, and 100 mJ / cm 2 to 1,000 mJ / cm 2 is particularly preferable.
  • the barrier protective layer When the light irradiation amount is less than 100 mJ / cm 2 , the barrier protective layer is not sufficiently cured, and may be dissolved when a planarizing layer is applied on the barrier protective layer, or may be collapsed during substrate cleaning. On the other hand, when the light irradiation amount exceeds 10,000 mJ / cm 2 , the polymerization of the barrier protective layer proceeds excessively, the surface is yellowed, the transmittance is lowered, and the light extraction efficiency may be lowered.
  • the gas barrier film is produced by a roll-to-roll process
  • the content of the organic particles in the barrier protective layer is preferably 30% by volume to 66% by volume, more preferably 40% by volume to 60% by volume, and particularly preferably 45% by volume to 55% by volume.
  • the average thickness of the barrier protective layer is preferably 0.5 to 15 ⁇ m, more preferably 1 to 7 ⁇ m, and particularly preferably 1.5 to 5 ⁇ m.
  • the average thickness of the barrier protective layer can be determined, for example, by cutting out a part of the barrier protective layer and measuring with a scanning electron microscope (S-3400N, manufactured by Hitachi High-Tech Co., Ltd.).
  • the refractive index of the binder in the barrier protective layer is preferably 1.7 to 2.2, more preferably 1.7 to 2.1, and still more preferably 1.7 to 2.0.
  • the refractive index of the binder in the barrier protective layer is preferably equal to or higher than the refractive index of the light emitting layer or electrode in the organic electroluminescent layer.
  • the barrier protective layer preferably has organic particles uniformly dispersed on the surface, and the height difference of the surface of the barrier protective layer is preferably 0.3 ⁇ m to 2 ⁇ m.
  • a planarization layer may be provided on the surface of the barrier protective layer on the organic electroluminescent element side.
  • the planarizing layer is a layer for planarizing the uneven shape on the surface of the barrier protective layer.
  • the uneven shape on the surface of the barrier protective layer is likely to occur due to the organic particles dispersed in the barrier protective layer.
  • the surface roughness (Ra) is preferably 3 nm or less in a 10 ⁇ m square (a square with one side of 10 ⁇ m). In this specification, the value of the surface roughness is measured with an intermolecular force microscope with a size of 10 ⁇ m square.
  • the planarizing layer is preferably a layer formed from a material that does not contain organic particles (binder composition) in the barrier protective layer forming material, and can be formed in the same manner as the barrier protective layer.
  • the planarization layer forming material may be the binder composition described above for the barrier protective layer forming material.
  • the polyfunctional acrylic monomer, polymerization initiator, surfactant, other additives, etc. of the barrier protective layer forming material and the flattening layer forming material may be common or different.
  • the average thickness of the planarizing layer is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 0.5 ⁇ m to 5 ⁇ m, more preferably 1 to 3 ⁇ m, and particularly preferably 1.5 to 2.5 ⁇ m. .
  • the total average thickness of the barrier protective layer and the planarizing layer may be 1 ⁇ m to 20 ⁇ m, preferably 2 ⁇ m to 15 ⁇ m, more preferably 3 ⁇ m to 14 ⁇ m, and particularly preferably 5 ⁇ m to 12 ⁇ m.
  • the refractive index of the planarizing layer is preferably 1.7 to 2.2, more preferably 1.7 to 2.1, and still more preferably 1.7 to 2.0.
  • the refractive index of the planarizing layer is preferably the same as the refractive index of the binder of the barrier protective layer or higher than the refractive index of the binder of the barrier protective layer.
  • the difference ( ⁇ n) between the refractive index of the binder of the barrier protective layer and the refractive index of the planarization layer is preferably 0.05 or less, and more preferably 0.02 or less.
  • the substrate for providing the organic electroluminescence device is not particularly limited in its shape, structure, size, material, etc., and can be appropriately selected according to the purpose.
  • the structure may be a single-layer structure or a laminated structure, and the size can be appropriately selected according to the size of the organic electroluminescence device to be produced.
  • the material of the substrate is not particularly limited and may be appropriately selected depending on the intended purpose.
  • inorganic materials such as yttria-stabilized zirconia (YSZ) and glass (such as alkali-free glass and soda lime glass), polyethylene terephthalate
  • polyester resins such as (PET) and polyethylene naphthalate (PEN), polycarbonate, polyimide resin (PI), polyethylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, and styrene-acrylonitrile copolymers. These may be used individually by 1 type and may use 2 or more types together.
  • a polyester resin is preferable, and polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are particularly preferable from the viewpoint of applicability with a roll.
  • a gas barrier film described later may be used as the substrate.
  • a gas barrier film it is preferable to form an organic electroluminescent element on the surface on the barrier layer side with respect to the base film.
  • the outermost surface on the side on which the organic electroluminescent element is formed is preferably an inorganic layer.
  • the substrate may be appropriately synthesized or a commercially available product may be used.
  • substrate According to the objective, it can select suitably, 10 micrometers or more are preferable and 50 micrometers or more are more preferable.
  • the gas barrier film has a base film and a barrier layer formed on the base film.
  • the barrier layer may be provided only on one side of the base film or may be provided on both sides, but is preferably provided only on one side.
  • the barrier layer includes at least one inorganic layer.
  • the barrier layer may be a barrier laminate including at least one inorganic layer and at least one organic layer.
  • the gas barrier film may have components other than the barrier layer and the base film (for example, a functional layer such as an easy adhesion layer or a slippery layer).
  • the functional layer may be placed on the barrier laminate, between the barrier layer and the base material, or on the side where the barrier layer on the base material is not placed (back surface).
  • the film thickness of the gas barrier film is preferably 20 ⁇ m to 200 ⁇ m, and more preferably 50 ⁇ m to 150 ⁇ m.
  • the gas barrier film usually uses a plastic film as a base film.
  • the plastic film to be used is not particularly limited in material, thickness and the like as long as it can hold the barrier laminate, and can be appropriately selected depending on the purpose of use and the like.
  • Specific examples of the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide resin.
  • Cellulose acylate resin Cellulose acylate resin, polyurethane resin, polyetheretherketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyethersulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring modified polycarbonate resin, alicyclic modification
  • thermoplastic resins such as polycarbonate resin, fluorene ring-modified polyester resin, and acryloyl compound.
  • the film thickness of the base film is preferably 10 ⁇ m to 250 ⁇ m, more preferably 20 ⁇ m to 130 ⁇ m.
  • the barrier layer may be composed of a single inorganic layer, or may be a barrier laminate including at least one inorganic layer and at least one organic layer.
  • the barrier layer is on the organic electroluminescent element side with respect to the base film, and the barrier protective layer is provided between the adhesive layer and the barrier layer. It is preferable that the barrier layer and the barrier protective layer are in direct contact. Moreover, it is preferable that the inorganic layer in the barrier layer is in direct contact with the barrier protective layer.
  • the total film thickness of the barrier layer, the barrier protective layer, and the smoothing layer is preferably 1.5 ⁇ m to 30 ⁇ m, and more preferably 2 ⁇ m to 25 ⁇ m.
  • the barrier laminate may be one in which two or more organic layers and two or more inorganic layers are alternately laminated.
  • the barrier laminate may be configured so that at least one inorganic layer does not have an organic layer on the outside thereof.
  • the number of layers constituting the barrier laminate is not particularly limited, but typically 2 to 30 layers are preferable, and 3 to 20 layers are more preferable. Moreover, you may include other structural layers other than an organic layer and an inorganic layer.
  • the film thickness of the barrier laminate is preferably 0.5 ⁇ m to 10 ⁇ m, and more preferably 1 ⁇ m to 5 ⁇ m.
  • the barrier laminate may include a so-called gradient material layer in which the organic region and the inorganic region are continuously changed in the film thickness direction in the composition constituting the barrier laminate without departing from the gist of the present invention.
  • a gradient material layer can be included between a specific organic layer and an inorganic layer formed directly on the surface of the organic layer.
  • graded material layers include a paper by Kim et al. “Journal of Vacuum Science and Technology A Vol. And a continuous layer in which the organic region and the inorganic region do not have an interface as disclosed in US Publication No. 2004-46497.
  • the organic layer and the organic region are described as “organic layer”, and the inorganic layer and the inorganic region are described as “inorganic layer”.
  • the inorganic layer constituting the barrier layer and the inorganic layer in the barrier laminate are usually thin film layers made of a metal compound.
  • the inorganic layer may be formed by any method as long as the target thin film can be formed. For example, there are physical vapor deposition methods (PVD) such as vapor deposition, sputtering, and ion plating, various chemical vapor deposition (CVD), and liquid phase growth methods such as plating and sol-gel methods.
  • PVD physical vapor deposition methods
  • CVD chemical vapor deposition
  • liquid phase growth methods such as plating and sol-gel methods.
  • the component contained in the inorganic layer is not particularly limited as long as it satisfies the above performance.
  • An oxide, nitride, carbide, oxynitride, oxycarbide, or the like containing at least one metal selected from Sn, Zn, Ti, Cu, Ce, or Ta can be preferably used.
  • a metal oxide, nitride, or oxynitride selected from Si, Al, In, Sn, Zn, and Ti is preferable, and a metal oxide, nitride, or oxynitride of Si or Al is particularly preferable.
  • These may contain other elements as secondary components.
  • it may be a nitride having a hydroxyl group.
  • an inorganic layer containing Si is particularly preferable. This is because it has higher transparency and better gas barrier properties.
  • an inorganic layer made of silicon nitride is particularly preferable.
  • the inorganic layer may contain suitable hydrogen, for example, when the metal oxide, nitride, or oxynitride contains hydrogen, but the hydrogen concentration in forward Rutherford scattering is preferably 30% or less.
  • the smoothness of the inorganic layer formed according to the present invention is preferably less than 3 nm, more preferably 1 nm or less, as an average roughness (Ra value) of 1 ⁇ m square.
  • the thickness of the inorganic layer is not particularly limited, it is usually in the range of 5 to 500 nm, preferably 10 to 200 nm, more preferably 15 to 50 nm per layer.
  • the inorganic layer may have a laminated structure including a plurality of sublayers. In this case, each sublayer may have the same composition or a different composition.
  • the organic layer can be preferably formed by curing a polymerizable composition containing a polymerizable compound.
  • the polymerizable compound is preferably a compound having an ethylenically unsaturated bond at the terminal or side chain and / or a compound having epoxy or oxetane at the terminal or side chain.
  • a compound having an ethylenically unsaturated bond at a terminal or a side chain is particularly preferable.
  • Examples of compounds having an ethylenically unsaturated bond at the terminal or side chain include (meth) acrylate compounds, acrylamide compounds, styrene compounds, maleic anhydride, etc., (meth) acrylate compounds are preferred, Particularly preferred are acrylate compounds.
  • (meth) acrylate compound As the (meth) acrylate compound, (meth) acrylate, urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate and the like are preferable.
  • styrene compound styrene, ⁇ -methylstyrene, 4-methylstyrene, divinylbenzene, 4-hydroxystyrene, 4-carboxystyrene and the like are preferable.
  • Specific examples of the (meth) acrylate compound include compounds described in paragraphs 0024 to 0036 of JP2013-43382A or paragraphs 0036 to 0048 of JP2013-43384A.
  • a polyfunctional acrylic monomer having a fluorene skeleton such as a compound represented by the formula (2) described in WO2013 / 047524 can also be used.
  • the polymerizable composition for forming the organic layer may contain a polymerization initiator.
  • a polymerization initiator When a polymerization initiator is used, its content is preferably 0.1 mol% or more, more preferably 0.5 to 5 mol% of the total amount of compounds involved in the polymerization. By setting it as such a composition, the polymerization reaction via an active component production
  • a polymerization initiator the polymerization initiator similar to said polymerization initiator which the binder of a barrier protective layer may contain is mentioned.
  • the polymerizable composition for forming the organic layer may contain a silane coupling agent.
  • Silane coupling agents include reactive groups such as methoxy, ethoxy, and acetoxy groups that bond to silicon, as well as epoxy groups, vinyl groups, amino groups, halogen groups, mercapto groups, and (meth) acryloyl groups. Those having a substituent having one or more selected reactive groups as a substituent bonded to the same silicon are preferable. It is particularly preferable that the silane coupling agent has a (meth) acryloyl group.
  • silane coupling agent examples include a silane coupling agent represented by the general formula (1) described in WO2013 / 146069 and a silane coupling agent represented by the general formula (I) described in WO2013 / 027786. Is mentioned.
  • the proportion of the silane coupling agent in the solid content of the polymerizable composition is preferably 0.1 to 30% by mass, more preferably 1 to 20% by mass.
  • the organic layer may be usually prepared by applying the polymerizable composition in a layer form on a support such as a base film or an inorganic layer.
  • a coating method a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, a slide coating method, or a hopper described in US Pat. No. 2,681,294 is used.
  • Extrusion coating methods also called die coating methods
  • the extrusion coating method can be preferably employed.
  • the polymerizable composition for forming the organic layer is applied to the surface of the inorganic layer, it is preferably performed by an extrusion coating method.
  • the applied polymerizable composition may then be dried.
  • the drying method is not particularly limited, but examples of the drying method include the methods described above for drying the light diffusion layer forming material coating film.
  • the polymerizable composition may be cured with light (for example, ultraviolet rays), an electron beam, or heat rays, and is preferably cured with light.
  • light for example, ultraviolet rays
  • an electron beam for example, an electron beam
  • heat rays for example, an electron beam
  • the light to be irradiated may be ultraviolet light from a high pressure mercury lamp or a low pressure mercury lamp.
  • the radiation energy is preferably 0.1 J / cm 2 or more, 0.5 J / cm 2 or more is more preferable.
  • the polymerizable compound is subject to polymerization inhibition by oxygen in the air, it is preferable to reduce the oxygen concentration or oxygen partial pressure during polymerization.
  • the oxygen concentration during polymerization is lowered by the nitrogen substitution method, the oxygen concentration is preferably 2% or less, and more preferably 0.5% or less.
  • the oxygen partial pressure during polymerization is reduced by the decompression method, the total pressure is preferably 1000 Pa or less, and more preferably 100 Pa or less. Further, it is particularly preferable to perform ultraviolet polymerization by irradiating energy of 0.5 J / cm 2 or more under a reduced pressure condition of 100 Pa or less.
  • the polymerization rate of the polymerizable compound in the organic layer after curing the polymerizable composition is preferably 20% by mass or more, more preferably 30% by mass or more, and particularly preferably 50% by mass or more.
  • the polymerization rate here means the ratio of the reacted polymerizable group among all the polymerizable groups (for example, acryloyl group and methacryloyl group) in the monomer mixture.
  • the polymerization rate can be quantified by an infrared absorption method.
  • the organic layer is preferably smooth and has high film hardness.
  • the smoothness of the organic layer is preferably less than 3 nm, more preferably less than 1 nm, as an average roughness (Ra value) of 1 ⁇ m square.
  • the surface of the organic layer is required to be free of foreign matters such as particles and protrusions. For this reason, it is preferable that the organic layer is formed in a clean room.
  • the degree of cleanness is preferably class 10000 or less, more preferably class 1000 or less.
  • the organic layer has a high hardness. It has been found that when the hardness of the organic layer is high, the inorganic layer is formed smoothly and as a result, the barrier ability is improved.
  • the hardness of the organic layer can be expressed as a microhardness based on the nanoindentation method.
  • the microhardness of the organic layer is preferably 100 N / mm or more, and more preferably 150 N / mm or more.
  • the film thickness of the organic layer is not particularly limited, but is preferably 50 nm to 5000 nm, more preferably 200 nm to 3500 nm from the viewpoint of brittleness and light transmittance.
  • the organic layer and the inorganic layer can be laminated by sequentially forming the organic layer and the inorganic layer in accordance with a desired layer structure.
  • the gas barrier film may have a functional layer.
  • the functional layer is described in detail in paragraph numbers 0036 to 0038 of JP-A-2006-289627.
  • Examples of functional layers other than these include matting agent layers, protective layers, solvent resistant layers, antistatic layers, smoothing layers, adhesion improving layers, light shielding layers, antireflection layers, hard coat layers, stress relaxation layers, antifogging layers. , Antifouling layers, printed layers and the like.
  • an easy-adhesive layer or a slippery layer is provided so as to be arranged between the base film and the organic layer (the organic layer closest to the base film in the barrier laminate). May be.
  • the layer formed using urethane, urethane acrylate, and acrylate as a material is mentioned.
  • grains to the material used for formation of said easy-adhesion layer is mentioned.
  • an adhesive having a refractive index of 1.55 or more is preferable, an adhesive having 1.6 or more is more preferable, and an adhesive having 1.7 or more is preferable. More preferred are agents.
  • the refractive index of the layer constituting the organic electroluminescent element is generally about 1.7 to 1.9, and it is preferable that the difference between the refractive index of the layer constituting the organic electroluminescent element and the refractive index of the adhesive layer is small. Because.
  • an ultraviolet curable adhesive (resin) is preferable, and examples of the adhesive include an ultraviolet curable epoxy resin and an ultraviolet curable acrylate resin.
  • an adhesive sheet or a tape may be used as the adhesive layer.
  • a thin adhesive sheet is preferable as the adhesive sheet.
  • An adhesive sheet widely known as OCA (Optical Clear Adhesive) is exemplified.
  • the organic electroluminescent device may include a reflective layer. By including the reflective layer, light from the organic electroluminescent element is efficiently emitted in a desired direction.
  • the reflective layer is preferably on the substrate side with respect to the organic electroluminescent element.
  • the reflective layer may be provided between the organic electroluminescent element and the substrate.
  • the reflection layer preferably has a reflectance of light having a wavelength of 380 to 780 nm of 85% or more, more preferably 90% or more, and further preferably 95% or more.
  • the reflective layer include vapor-deposited films such as Al and Ag, and plastic films with high reflectivity.
  • the highly reflective plastic film include Lumirror (Toray Industries, Inc.) plastic film.
  • the reflective layer may also serve as the reflective electrode of the organic electroluminescent element.
  • the organic electroluminescent element includes an electrode serving as a cathode and an electrode serving as an anode, and further includes a light emitting layer (hereinafter also referred to as “organic electroluminescent layer”) between the two electrodes.
  • one electrode disposed on the substrate side may be a reflective electrode that also serves as a reflective layer.
  • arranged to the contact bonding layer side is a transparent electrode.
  • the organic electroluminescent layer has at least a light emitting layer, and as a functional layer other than the light emitting layer, a hole transport layer, an electron transport layer, a hole block layer, an electron block layer, a hole injection layer, an electron injection layer, etc.
  • the layer which may contain each layer is meant.
  • the hole transport layer and the electron transport layer each preferably have a thickness of 500 nm or less from the viewpoint of charge transportability and cost.
  • the functional layers in the organic electroluminescent layer refer to paragraphs 0081 to 0122 of JP2012-155177A Can be referred to.
  • the distance between the reflective electrode and the light emitting layer is preferably 100 nm or more, and more preferably 200 nm or more.
  • the thickness of the hole transport layer is preferably 100 nm or more, and more preferably 200 nm or more.
  • the near field of excitons in the vertical direction of the layer mainly excites plasmons on the metal surface, the energy becomes heat and deactivates, and the light emission efficiency tends to decrease. It is because it can suppress.
  • Silicon nitride is deposited by plasma CVD on one side of a polyethylene terephthalate (PET) film (base film, manufactured by Toyobo Co., Ltd., A4300, thickness 100 ⁇ m) (the smoother side of both sides of the PET film) ( (50 nm)
  • PET polyethylene terephthalate
  • An inorganic layer was formed.
  • Silane gas flow rate 160 sccm: 0 ° C., standard state at 1 atm, the same applies hereinafter
  • ammonia gas flow rate 370 sccm
  • hydrogen gas flow rate 590 sccm
  • nitrogen gas flow rate 240 sccm
  • a high frequency power source having a frequency of 13.56 MHz was used as a power source.
  • a polymerizable composition having the following composition was applied so that the dry film thickness was 1000 nm to obtain a film.
  • the obtained film was cured by irradiation with ultraviolet rays (irradiation amount: 0.5 J / cm 2 ) in a nitrogen atmosphere having an oxygen content of 100 ppm or less to produce an organic layer.
  • silicon nitride was formed by the plasma CVD method in the same manner as described above to form an inorganic layer having a thickness of 50 nm to obtain a gas barrier film.
  • Polymerizable composition Polymerizable compound (acrylate 1) 50 g 1g of polymerization initiator (Lamberti Esacure KTO46) Silane coupling agent (Shin-Etsu Silicone KBM-5013) 5g 2-butanone 400g
  • barrier protective layer Adhere the base film side of the gas barrier film prepared above to glass, put it in a cleaning container, ultrasonically wash in neutral detergent, then ultrasonically wash in pure water, and heat dry at 120 ° C for 120 minutes. went. Thereafter, the surface (inorganic layer) of the gas barrier film was subjected to silane coupling treatment. A film is formed by applying the following barrier protective layer forming material on the surface of the gas barrier film subjected to the above surface treatment using a die coater, and ultraviolet rays are applied to the formed film with an irradiation amount of 0.5 J / cm 2. The film was cured by irradiation for 2 minutes to form a barrier protective layer.
  • a film is formed on the surface of the formed barrier protective layer by applying the following planarization layer forming material using a die coater, and the formed film is irradiated with ultraviolet rays at a dose of 0.5 J / cm. 2 and was cured by irradiating for 2 minutes so as to form a flattened layer, to obtain a gas barrier film with barrier protective layer.
  • Example 1 Glass (0.7 mm thickness, Corning Eagle XG) was used as a substrate (hereinafter also referred to as “glass substrate”), and Al was vacuum-deposited on the surface of the glass substrate to a thickness of 60 nm.
  • a reflective electrode (anode) also serving as a reflective layer was formed.
  • a MoO 3 layer is formed as a hole injection layer with a thickness of 2 nm on the formed reflective electrode surface by a vacuum deposition apparatus, and further, a hole transport layer with a thickness of 200 nm is sequentially formed on the surface of the MoO 3 layer.
  • ⁇ -NPD Bis [N- (1-naphthyl) -N-phenyl] benzoidine layer
  • a light-emitting layer having a thickness of 20 nm
  • the thickness is formed by depositing the electron transport layer of 20 nm (Alq 3 (a layer of Tris (8-hydroxy-quinolinato) aluminium)) and respectively to obtain an organic electroluminescent layer.
  • LiF was deposited to 0.5 nm
  • Al was deposited to a thickness of 1.5 nm
  • Ag was deposited to a thickness of 15 nm in this order to form a transparent electrode (cathode).
  • An element was obtained.
  • the barrier protective layer side of the gas barrier film becomes the organic electroluminescent element side.
  • Sealing was performed as described above to obtain an organic electroluminescent device of Example 1 having the configuration shown in FIGS. 1 (1) and 3 (11). Sealing is performed using a gas barrier film in which an adhesive (XNR5516 manufactured by Nagase ChemteX Corporation) is uniformly applied on the surface of the barrier protective layer of the gas barrier film with the barrier protective layer in a sufficient area to cover the entire surface of the organic electroluminescent element.
  • the organic electroluminescent element-attached substrate was brought into intimate contact with each other, and then the adhesive was cured by irradiating ultraviolet rays so that the integrated irradiation amount was 6.0 J / cm 2 .
  • Example 2 Glass (thickness 0.7 mm, Corning Eagle XG) was used as a substrate, and Ag was formed by vacuum deposition to form a reflective layer. An ITO film was formed by vacuum sputtering on the surface opposite to the surface of the glass substrate on which the reflective layer was formed to form an electrode (anode).
  • a MoO 3 layer hole injection layer having a thickness of 2 nm, an ⁇ -NPD layer (hole transport layer) having a thickness of 29 nm, and a light emitting layer having a thickness of 20 nm (in order)
  • the organic electroluminescent layer was obtained by vacuum deposition.
  • Example 2 LiF was deposited to 0.5 nm, Al was deposited to a thickness of 1.5 nm, and Ag was deposited to a thickness of 15 nm in this order to form a transparent electrode (cathode).
  • An element was obtained.
  • the obtained organic electroluminescence device was sealed in the same manner as in Example 1 using the above-mentioned gas barrier film with a barrier protective layer, and the organic electroluminescence of Example 2 having the configuration of FIGS. 1 (2) and 3 (11). Got the device.
  • Example 3 An organic electroluminescent element was formed on the inorganic layer side surface (silicon nitride surface) of the gas barrier film in the same procedure as in Example 1 except that a gas barrier film prepared in the same manner as described above was used instead of glass (Corning Eagle XG). Then, an organic electroluminescent device of Example 3 was produced.
  • Comparative Example 1 In Example 1, the film thickness of the ⁇ -NPD layer on the glass substrate was 29 nm, and instead of the gas barrier film with a barrier protective layer used for sealing the organic electroluminescent layer, the same procedure as in the production of the gas barrier film was performed.
  • the organic electric field of Comparative Example 1 having the structure shown in FIGS.
  • Example 2 (3) and 3 (11) is the same as that of Example 1 except that the gas barrier film (gas barrier film having no barrier protective layer) prepared in this manner is used.
  • a light emitting device was manufactured.
  • Comparative Example 2 In Example 1, the film thickness of the ⁇ -NPD layer on the glass substrate was 29 nm, and instead of the gas barrier film with a barrier protective layer used for sealing the organic electroluminescent layer, the same procedure as in the production of the gas barrier film was performed. Except that the gas barrier film (gas barrier film having no barrier protective layer) prepared in the above manner was used, and the gas barrier film and the organic electroluminescent device were not touched with each other, the adhesive was applied on the gas barrier film and sealed.
  • the organic electroluminescent device of Comparative Example 2 having the configuration shown in FIGS. 2 (4) and 3 (14) was prepared in the same procedure as in FIG.
  • the external quantum efficiency was measured using a spectroradiometer SR-3AR manufactured by Topcon Technohouse Corporation.
  • Adhesion The adhesion of the gas barrier film with a barrier protective layer of the example and the gas barrier film of the comparative example was evaluated by a cross cut test (JIS K5400). A cut of 90 ° with respect to the film surface was made with a cutter knife from the side opposite to the base film 3 of each gas barrier film at intervals of 1 mm, and 100 grids of 1 mm square were produced.
  • Mylar tape manufactured by Nitto Denko
  • evaluation was performed according to the following criteria by the number of cells remaining without peeling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

有機電界発光装置は、基板、有機電界発光素子、およびガスバリアフィルムをこの順で有し、上記基板と上記ガスバリアフィルムとが接着層により接着することにより上記有機電界発光素子が封止されている有機電界発光装置であって、上記ガスバリアフィルムは、基材フィルムと少なくとも一層の無機層を含むバリア層とを含み、上記バリア層は上記基材フィルムに対して上記有機電界発光素子側にあり、上記接着層と上記バリア層との間にバリア保護層を有し、上記バリア保護層は有機粒子とバインダーとを含むバリア保護層形成材料から形成された層であり、上記バインダーは、無機微粒子と多官能アクリルモノマーとを含有する。

Description

有機電界発光装置
 本発明は、有機電界発光装置に関する。より詳しくは、本発明はガスバリアフィルムを用いて有機電界発光素子が封止された有機電界発光装置に関する。
 多くの有機電界発光装置における有機電界発光素子の封止は、有機電界発光素子を設けた基板と封止部材とを接着剤により貼合することにより行われている。これらの基板または封止部材として、軽量で、耐衝撃性のあるガスバリアフィルムを用いることが提案されている(例えば特許文献1または2)。
特開2012-109255号公報 特開2005-251500号公報
 ガスバリアフィルムを用いる有機電界発光装置においては、無機層に応力が加わることによりクラックが生じ、バリア性が低下して有機電界発光装置の耐久性が低下するという問題があった。例えば、封止部材としてガスバリアフィルムを用いる構成の有機電界発光装置では、製造工程において接着剤の圧縮応力によりガスバリアフィルム中の無機層にクラックが生じやすく、特に、基板と封止部材との間の有機電界発光素子が存在する空間に接着剤を充填して封止する場合には顕著である。圧縮応力による無機層のクラック防止のためには、例えば、特許文献1に記載があるように応力緩和層を用いることが考えられる。しかし、応力緩和層などの追加の層を設けることによっては、有機電界発光素子からの光取り出し効率が低下する。特に、トップエミッション型の装置の封止部材においてガスバリアフィルムを用いる場合に影響が大きい。
 本発明は、上記クラックの問題を低減できるとともに、光取り出し効率が良好な構成を有する有機電界発光装置を提供することを課題とする。
 本発明者は上記課題の解決のため、鋭意検討を重ね、本発明を完成させた。
 すなわち、本発明は 以下の[1]~[11]を提供するものである。
[1]基板、有機電界発光素子、およびガスバリアフィルムをこの順で有し、上記基板と上記ガスバリアフィルムとが接着層により接着することにより上記有機電界発光素子が封止されている有機電界発光装置であって、上記有機電界発光素子は、2つの電極と上記2つの電極の間に配置された発光層とを含み、上記ガスバリアフィルムは、基材フィルムと少なくとも一層の無機層を含むバリア層とを含み、上記バリア層は上記基材フィルムに対して上記有機電界発光素子側にあり、上記接着層と上記バリア層との間にバリア保護層を有し、上記バリア保護層は有機粒子とバインダーとを含むバリア保護層形成材料から形成された層であり、上記バインダーは、無機微粒子と多官能アクリルモノマーとを含有する有機電界発光装置。
[2]上記発光層よりも上記基板側に反射層を含む[1]に記載の有機電界発光装置。
[3]上記反射層を上記2つの電極のうちの1つの電極として上記基板と上記発光層との間に含む[2]に記載の有機電界発光装置。
[4]上記反射層と上記発光層との距離が100nm以上である[3]に記載の有機電界発光装置。
[5]上記反射層を上記有機電界発光素子に対して上記基板の外側に含む[2]に記載の有機電界発光装置。
[6]上記無機微粒子が酸化チタン微粒子である[1]~[5]のいずれか一項に記載の有機電界発光装置。
[7]上記接着層が紫外線硬化性の接着剤から形成されている[1]~[6]のいずれか一項に記載の有機電界発光装置。
[8]上記接着層が屈折率1.55以上である[1]~[7]のいずれか一項に記載の有機電界発光装置。
[9]上記有機電界発光素子と上記バリア保護層との間に上記接着層を有する[1]~[8]のいずれか一項に記載の有機電界発光装置。
[10]上記有機電界発光素子の上記バリア保護層と対向する側の全面に上記接着層を有する[9]に記載の有機電界発光装置。
[11]上記バリア保護層と上記接着層との間に平坦化層を有する[1]~[10]のいずれか一項に記載の有機電界発光装置。
[12]上記バリア層が無機層および有機層を含むバリア性積層体からなる[1]~[11]のいずれか一項に記載の有機電界発光装置。
 本発明により、無機層のクラック等の問題を低減できるとともに光取り出し効率が良好な構成を有する有機電界発光装置が提供される。
バリア保護層を有する本発明の有機電界発光装置の例の概略断面図である。 バリア保護層を有しない有機電界発光装置の例の概略断面図である。 実施例1~3および比較例1、2の有機電界発光装置を層の法線方向から見たときの有機電界発光素子および接着層の配置を示す図である。実施例1~3および比較例1が(11)、比較例2が(14)で表される。
 以下において、本発明の内容について詳細に説明する。
 なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。本明細書において、「(メタ)アクリレート」との記載は、「アクリレートおよびメタクリレートのいずれか一方または双方」の意味を表す。「(メタ)アクリロイル基」等も同様である。
<有機電界発光装置>
 本発明は、基板、有機電界発光素子、およびガスバリアフィルムを含む有機電界発光装置に関する。大気中の酸素、水分、窒素酸化物、硫黄酸化物、オゾン等を遮断する機能を有するガスバリアフィルムを用いて、基板とともに有機電界発光素子を封止(密閉)することにより、水や酸素等により常温常圧下における使用によっても経年劣化しうる有機電界発光素子を劣化から保護することができる。本発明の有機電界発光装置は、ガスバリアフィルムと基板とが接着層により接着して有機電界発光素子を封止している構成を有する。
 有機電界発光装置は、基板、有機電界発光素子、接着層およびガスバリアフィルムを基板の厚み方向でこの順に有する部位を含む構造を有する。
 有機電界発光素子は、一般的には、例えば、(1)基板の1つの面の中央に有機電界発光素子を形成する(本明細書において有機電界発光素子が形成されている基板の上記の1つの面を「表面」ということがある);(2)(1)により得られた基板の表面の、有機電界発光素子の少なくとも周辺に接着剤を塗布する;(3)上記接着剤によりガスバリアフィルムを基板と接着させることにより作製できる。すなわち、例えば、基板表面の中央に有機電界発光素子を形成し、次に上記表面の有機電界発光素子の外側に有機電界発光素子を完全に取り囲むように接着剤を塗布し、最後に基板に対して上記表面側からガスバリアフィルムを接着剤により基板に接着させることができる。
 本発明の有機電界発光装置では、接着剤から形成される接着層が有機電界発光素子とガスバリアフィルムとの間の全面に存在し、その周辺にまで亘っていることが好ましい。この構成の有機電界発光装置の作製の際は、例えば、接着剤を上記の有機電界発光素子の表面と有機電界発光素子周辺と覆うように塗布し、基板とガスバリアフィルムとを接着させればよい。
<バリア保護層>
 本発明の有機電界発光装置は、上記ガスバリアフィルムと上記接着層との間にバリア保護層を含む。本発明者らの研究により、バリア保護層を設けることにより、ガスバリアフィルム中の無機層の損傷が低減され、また密着性も向上することが明らかになった。また、以下に詳細に説明する有機粒子とバインダーとを含む材料から形成されるバリア保護層を使用することにより層の一方の面側に設けられる有機電界発光素子からの光を他方の面方向に効率良く取り出しかつ拡散させることができた。そのため、例えば、トップエミッション型の有機電界発光装置として用いる場合にも、光取り出し効率が良いことが分かった。
 いずれの理論に拘泥するものではないが、有機粒子を含むバリア保護層により、バインダーの未重合部の割合が減少し、有機粒子を含まない場合に比べてバリア保護層がより強固な膜となり、引っ掻きや曲げなどによってバリア層が破壊されることがなくなったと考えられる。また、未重合部の減少により未重合部から溶剤が浸入しバリア性を破壊されることが減ったと考えられる。
 なお、光取り出し効率は、外部量子効率の測定により確認することができる。光取り出し効率は、バリア保護層を有する封止部材で封止した有機EL素子とバリア保護層を有さない封止部材で封止した有機EL素子の外部量子効率を測定し、比較することによって求めることができる。
(バリア保護層形成材料)
 バリア保護層は有機粒子とバインダーとを含むバリア保護層形成材料から形成される。バリア保護層形成材料は下記バインダーに有機粒子を分散させた分散液として形成されていればよい。バリア保護層形成材料はバインダーと有機粒子とを攪拌などにより混合すること、下記バインダー各成分と有機粒子とを溶媒に添加し混合することなどにより形成することができる。
(バインダー)
 バインダーは、無機微粒子と多官能アクリルモノマーとを含む組成物である。バインダーは必要に応じてその他の成分を含有していてもよい。
(無機微粒子)
無機微粒子の添加により、バリア保護層の屈折率を上げることができる。なお、バリア保護層は、具体的には、屈折率がガラス基板(n(屈折率)=1.5程度))または(メタ)
アクリレートの重合により形成されるポリマー層(n=1.6程度)よりも高くなるように調整されていればよい。本明細書において、微粒子というとき、一次平均粒径が、1nm~500nmの粒子を意味する。
 無機微粒子としては、例えばZrO、TiO、Al、In、ZnO、SnO、Sb、の微粒子などが挙げられる。これらの中でも、TiO、ZrO、ZnO、SnOの微粒子がより好ましい。特に好ましいTiO微粒子(酸化チタン微粒子)について以下説明する。
 酸化チタン微粒子としては、特に限定されないが、光触媒不活性処理した酸化チタン微粒子を用いることが好ましい。光触媒不活性処理した酸化チタン微粒子としては、(1)酸化チタン微粒子表面をアルミナ、シリカ、及びジルコニアの少なくとも1種で被覆した酸化チタン微粒子、(2)上記(1)の被覆した酸化チタン微粒子の被覆表面に樹脂を被覆してなる酸化チタン微粒子などが挙げられる。上記樹脂としては、例えばポリメタクリル酸メチル(PMMA)などが挙げられる。
 光触媒不活性処理した酸化チタン微粒子が、光触媒活性を有さないことの確認は、例えばメチレンブルー法により行うことができる。
 光触媒不活性処理した酸化チタン微粒子における酸化チタン微粒子としては、特に制限はなく、目的に応じて適宜選択することができ、結晶構造は、ルチル、ルチル/アナターゼの混晶、アナターゼが主成分であることが好ましく、特にルチル構造が主成分であることが好ましい。
 酸化チタン微粒子は、酸化チタン以外の金属酸化物を添加して複合化されたものであってもよい。
 酸化チタン微粒子に複合化させることができる金属酸化物の例としては、Sn、Zr、Si、Zn、及びAlから選択される少なくとも1種の金属酸化物が好ましい。チタンに対する金属酸化物の添加量は、1モル%~40モル%が好ましく、2モル%~35モル%がより好ましく、3モル%~30モル%が更に好ましい。
 無機微粒子の一次平均粒径は、1nm~100nmが好ましい。酸化チタン微粒子を用いる場合、酸化チタン微粒子の一次平均粒径は、1nm~30nmが好ましく、1nm~25nmがより好ましく、1nm~20nmが更に好ましい。一次平均粒径が、30nmを超えると、分散液が白濁し、沈降が起きることがあり、1nm未満であると、結晶構造がはっきりせずアモルファスに近い状態となり、経時でゲル化などの変化が起こるようになる。
 一次平均粒径は、例えば、X線回折装置で測定された回折パターンの半値幅からの計算や電子顕微鏡(TEM)撮影像の直径からの統計計算などにより測定することができるが、本明細書においては、電子顕微鏡(TEM)撮影像の直径からの統計計算に基づき測定された値を基準とするものとする。
 無機微粒子の形状は、特に制限はなく、目的に応じて適宜選択することができるが、例えば、米粒状、球形状、立方体状、紡錘形状、又は不定形状が好ましい。無機微粒子は、1種を単独で用いてもよいが、2種類以上を併用して用いることもできる。
 無機微粒子の凝集体は可能な限り含まれないことが望ましいが、含まれる場合は無機微粒子の平均二次粒子径は、20nm~200nmが好ましい。酸化チタン微粒子を用いる場合、酸化チタン微粒子は、平均二次粒子径が100nm以下であることが好ましく、80nm以下であることがより好ましく、70nm以下であることがさらに好ましい。
 二次粒子径は、微粒子が理想的に分散した状態の粒子径と定義される一次粒径に対し、その一次粒子がある状態(環境中)で凝集した際の凝集体の大きさとして定義されるものである。一般的な微粒子を含む分散体中では、ある程度の大きさを持って凝集している場合が多い。また、平均二次粒子径の測定方法としては、動的光散乱法、レーザー回折法、画像イメージング法が挙げられるが、本明細書において定義される、平均二次粒子径の値は、動的光散乱法に基づくものとする。
 平均二次粒子径を制御する方法として、分散剤の添加が挙げられる。分散剤の種類・添加量にて、分散状態を制御し、平均二次粒子径を調整する。
 分散剤としては アミン系、ポリカルボン酸アルキルエステル系、ポリエーテル系の分散剤が挙げられ、特に限定されない。所望の平均二次粒子径に分散した市販品を用いてもよい。
 無機微粒子は、屈折率が2.2以上3.0以下であり、2.2以上2.8以下がより好ましく、2.2以上2.7以下が更に好ましい。屈折率が、2.2以上であれば、バリア保護層の屈折率を効果的に高めることができ、屈折率が、3.0以下であれば、無機微粒子が着色するなどの不都合がないので好ましい。
 ここで、酸化チタン微粒子のように屈折率が高く(1.8以上)、平均一次粒径が1~100nm程度の微粒子の屈折率を測定することは困難であるが、次のようにして屈折率を測定することができる。屈折率が既知の樹脂材料に無機微粒子をドープし、無機微粒子が分散された樹脂材料を、Si基板、又は石英基板上に塗布し、塗布膜を形成する。塗布膜の屈折率をエリプソメーターで測定し、塗布膜を構成する樹脂材料と無機微粒子の体積分率から、無機微粒子の屈折率が算出できる。
 以下の式から算出される無機微粒子の含有量は、バインダーの体積(溶媒を除く)に対し、10体積%以上50体積%以下であり、20体積%以上40体積%以下がより好ましく、25体積%以上35体積%以下が更に好ましい。
式:無機微粒子の含有率(体積%)=(無機微粒子の質量/比重)/[(無機微粒子の質量/比重)+(多官能アクリルモノマーの質量/多官能アクリルモノマーの比重)]
 なお、酸化チタン微粒子の比重は4である。
(多官能アクリルモノマー)
 本明細書において、「多官能アクリルモノマー」とは、(メタ)アクリロイル基を2つ以上有するモノマーを意味する。多官能アクリルモノマーとして、具体的には、例えば特開2013-43382号公報の段落0024~0036または特開2013-43384号公報の段落0036~0048に記載の化合物を用いることができる。多官能アクリルモノマーはフルオレン骨格を有することが好ましい。
 フルオレン骨格を有する多官能アクリルモノマーとしては、WO2013/047524に記載の式(2)で表される式の化合物が挙げられる。
 多官能アクリルモノマーの、バインダーの固形分(揮発分が揮発した後の残分)中に占める割合は、5~50質量%が好ましく、10~30質量%がより好ましい。
 バインダーは添加剤として、多官能アクリルモノマー以外に、特開2012-155177号公報の段落<0020>~<0045>に記載の熱可塑性樹脂、反応性硬化性樹脂と硬化剤との組み合わせ、他の多官能モノマーや多官能オリゴマーなどを含んでいてもよい。
(重合開始剤)
 バインダーは、重合開始剤を含有していてもよい。
 重合開始剤の例としては、特開2012-155177号公報の段落<0046>~<0058>に記載の光重合開始剤などが挙げられる。具体的な例としてはチバ・スペシャルティー・ケミカルズ社から市販されているイルガキュア(Irgacure)シリーズ(例えば、イルガキュア651、イルガキュア754、イルガキュア184、イルガキュア2959、イルガキュア907、イルガキュア369、イルガキュア379、イルガキュア819など)、ダロキュア(Darocur)シリーズ(例えば、ダロキュアTPO、ダロキュア1173など)、クオンタキュア(Quantacure)PDO、ランベルティ(Lamberti)社から市販されているエザキュア(Ezacure)シリーズ(例えば、エザキュアTZM、エザキュアTZT、エザキュアKTO46など)等が挙げられる。重合開始剤を用いる場合、その含量は、重合に関与する化合物の合計量の0.1モル%以上であることが好ましく、0.5~5モル%であることがより好ましい。このような組成とすることにより、活性成分生成反応を経由する重合反応を適切に制御することができる。
(フッ素系界面活性剤)
 バインダーは、フッ素系界面活性剤を含有していてもよい。
 フッ素系界面活性剤の例としては、特開2002-255921号、特開2003-114504、 特開2003-140288号、特開2003-149759号、特開2003-195454号、特開2004-240187号の各公報に記載のフッ素系界面活性剤が挙げられる。界面活性剤としては、アニオン性、カチオン性、ノニオン性、両性(ベタイン性)のいずれであってもよく、特に限定されない。
 具体的な化合物としては、特開2002-255921号公報記載のFS-1~FS-29のアニオン性フッ素系界面活性剤、特開2003-114504号公報に記載のFS-1~FS-71のカチオン性および両性フッ素系界面活性剤、特開2003-140288号公報に記載のFS-1~FS-38のアニオン性フッ素系界面活性剤、特開2003-149759号公報に記載のFS-1~FS-39のカチオン性フッ素系界面活性剤、特開2003-195454号公報のFS-1~FS-32のアニオン性、カチオン性およびノニオン性フッ素系界面活性剤を挙げることができる。
 フッ素系界面活性剤はバリア保護層形成材料の固形分全質量(溶媒を除いた後の質量)に対し、0.01質量%以上含まれていればよい。
(溶媒)
 バインダーは上記各成分を溶媒に溶解し、形成したものであればよい。上記各成分と有機粒子とを溶媒に混合してバインダー中に有機粒子が分散した分散液としてバリア保護層形成材料を調製してもよい。溶媒としては、特に制限はなく、目的に応じて適宜選択することができる。
 溶媒の例としては、アルコール類、ケトン類、エステル類、アミド類、エーテル類、エーテルエステル類、脂肪族炭化水素類、ハロゲン化炭化水素類などが挙げられる。具体的には、アルコール(例えばメタノール、エタノール、プロパノール、ブタノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、エチレングリコールモノアセテート等)、ケトン(例えばメチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン等)、エステル(例えば酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル、乳酸エチル等)、脂肪族炭化水素(例えばヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例えばメチルクロロホルム等)、芳香族炭化水素(例えばベンゼン、トルエン、キシレン、エチルベンゼン等)、アミド(例えばジメチルホルムアミド、ジメチルアセトアミド、n-メチルピロリドン等)、エーテル(例えばジオキサン、テトラハイドロフラン、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル等)、エーテルアルコール(例えば1-メトキシ-2-プロパノール、エチルセルソルブ、メチルカルビノール等)が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、芳香族炭化水素、ケトン類が好ましく、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンがより好ましく、トルエン、キシレンが特に好ましい。
(有機粒子)
 バリア保護層において、有機粒子は、光を拡散する光拡散粒子として機能する。有機粒子としては、光を拡散可能な有機粒子であれば特に制限はなく、目的に応じて適宜選択することができ、2種以上の粒子を用いてもよい。
 有機粒子としては、例えばポリメチルメタクリレート粒子、架橋ポリメチルメタクリレート粒子、アクリル-スチレン共重合体粒子、メラミン粒子、ポリカーボネート粒子、ポリスチレン粒子、架橋ポリスチレン粒子、ポリ塩化ビニル粒子、ベンゾグアナミン-メラミンホルムアルデヒド粒子、などが挙げられる。
 これらの中でも、有機粒子としては、耐溶剤性とバインダー中の分散性の点で架橋状態の樹脂粒子が好ましく、架橋ポリメチルメタクリレート粒子が特に好ましい。
 有機粒子が、架橋状態の樹脂粒子であることは、溶剤、例えばトルエン中に分散させ、樹脂粒子の溶け難さを見ることで確認することができる。
 有機粒子の屈折率は、バインダーの屈折率と異なる必要がある。光散乱粒子の屈折率がバインダーの屈折率に近いと光散乱が起こらず光取り出し効率が低下することがある。
 有機粒子の屈折率は、例えば自動屈折率測定器(KPR-2000、株式会社島津製作所製)を用い、屈折液の屈折率を測定してから、精密分光計(GMR-1DA、株式会社島津製作所製)で、シュリブスキー法により測定することができる。
 バインダーの屈折率Aと有機粒子の屈折率Bとの屈折率差|A-B|(絶対値)は、0.2以上1.0以下であればよく、0.2以上0.7以下が好ましく、0.2以上0.6以下が更に好ましい。
 有機粒子の平均粒径は、0.5μm~10μmが好ましく、0.5μm~6μmがより好ましく、1~3μmが更に好ましい。有機粒子の平均粒径が、10μmを超えると、光の大部分が前方散乱になり、有機粒子による光の角度を変換する能力が低下してしまうことがある。一方、有機粒子の平均粒径が、0.5μm未満であると、有機粒子の平均粒径は、可視光の波長より小さくなり、ミー散乱がレイリー散乱の領域に変化し、それにより、有機粒子の散乱効率の波長依存性が大きくなり、有機電界発光素子の色度が大きく変わったり、後方散乱が強くなったりするので、光取り出し効率が低下することがあると予想される。
 有機粒子の平均粒径は、例えば日機装株式会社製ナノトラックUPA-EX150等の動的光散乱法を利用した装置や、電子顕微鏡写真の画像処理により測定することができる。
 有機粒子の、バインダーの固形分(揮発分が揮発した後の残分)中に占める割合は、20~70体積%が好ましく、40~60体積%がより好ましい。
(バリア保護層の形成方法)
 バリア保護層は、バリア保護層形成材料を、硬化することにより形成することができる。バリア保護層形成材料は、ガスバリアフィルム表面に塗布されたあと硬化されればよい。バリア保護層形成材料を塗布するガスバリアフィルム表面は無機層であることが好ましい。さらに必要に応じて、バリア保護層は、バリア保護層形成材料を塗布して形成された後乾燥されてもよく、硬化前、硬化時もしくは硬化後の加熱を行ってもよい。
 塗布は、例えばディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、マイクログラビアコート法、エクストルージョンコート法等の公知の薄膜形成方法で行うことができる。このうち、下地無機層に接触しないような、非接触搬送と、ダイコーターもしくはスリットコーターを用いたエクストルージョンコート法による塗布が好ましい。エクストルージョンコート法においては、無機層に対しバリア保護層形成材料を塗布する際、液溜りのみが接触し、塗布装置が直接接することはないため、物理的な接触による無機層のクラックやヒビなどの損傷が生じにくいからである。
 バリア保護層形成材料または平坦化層形成材料(塗布液)は、光(例えば、紫外線)、電子線、または熱線にて、硬化させればよく、光によって硬化させることが好ましい。特に、塗布液を25℃以上の温度(例えば、30~130℃)をかけて加熱しながら、硬化させることが好ましい。加熱により、多官能アクリルモノマーの自由運動を促進させることで効果的に硬化させ、かつ、ガスバリアフィルムにダメージを与えずに成膜することができる。
 塗布液の硬化に用いられる光は、光重合開始剤の反応する波長(吸収波長)領域付近の波長を有する光であればいずれでもよく、吸収波長が紫外領域の場合、光源として、超高圧、高圧、中圧、低圧の各水銀灯、ケミカルランプ、カーボンアーク灯、メタルハライド灯、キセノン灯、太陽光等を用いることができる。波長350nm~420nmの入手可能な各種レーザー光をマルチビーム化して照射してもよい。また、吸収波長が赤外領域の場合、光源としてはハロゲンランプ、キセノンランプ、高圧ナトリウムランプが挙げられ、波長750nm~1,400nmの入手可能な各種レーザー光をマルチビーム化して照射してもよい。
 光照射による光ラジカル重合の場合は、空気又は不活性気体中で行うことができるが、ラジカル重合性モノマーの重合の誘導期を短くするか、又は重合率を十分に高める等のために、できるだけ酸素濃度を低くした雰囲気とすることが好ましい。酸素濃度範囲は0~1,000ppmが好ましく、0~800ppmがより好ましく、0~600ppmが更に好ましい。照射する紫外線の照射強度は、0.1mW/cm~100mW/cmが好ましく、塗布膜表面上への光照射量は、100mJ/cm~10,000mJ/cmが好ましく、100mJ/cm~5,000mJ/cmがより好ましく、100mJ/cm~1,000mJ/cmが特に好ましい。
 光照射量が、100mJ/cm未満であると、バリア保護層が十分に硬化せず、バリア保護層上に平坦化層を塗布する際に溶解、また、基板洗浄時に崩壊することがある。一方、光照射量が、10,000mJ/cmを超えると、バリア保護層の重合が進み過ぎ表面が黄変し、透過率が低下し、光取り出し効率が低下することがある。
 ガスバリアフィルムがロールツーロール工程により作製される場合は、ガスバリアフィルム側から加熱できるように、バックアップロール側がガスバリアフィルムとなるようにバックアップロールに製造中のフィルムを巻くことが好ましい。また、光照射は、ガスバリアフィルム側から30℃以上100℃未満の温度で加熱しながら行うことも好ましい。
(バリア保護層の物性等)
 バリア保護層における有機粒子の含有量は、30体積%以上66体積%以下が好ましく、40体積%以上60体積%以下がより好ましく、45体積%以上55体積%以下が特に好ましい。
 バリア保護層の平均厚みは、0.5~15μmが好ましく、1~7μmがより好ましく、1.5~5μmが特に好ましい。バリア保護層の平均厚みは、例えばバリア保護層の一部を切り取り、走査型電子顕微鏡(S-3400N、日立ハイテク株式会社製)で測定して、求めることができる。
 バリア保護層中のバインダーの屈折率は、1.7~2.2が好ましく、1.7~2.1がより好ましく、1.7~2.0が更に好ましい。 また、バリア保護層中のバインダーの屈折率は、有機電界発光層中の発光層や電極の屈折率と同等またはそれらの屈折率よりも高いことが好ましい。
 バリア保護層は表面に有機粒子が均一に分散していることが好ましく、バリア保護層の表面の高低差が0.3μm~2μmであることが好ましい。
(平坦化層)
 バリア保護層の有機電界発光素子側の表面には平坦化層が設けられていてもよい。平坦化層はバリア保護層表面の凸凹形状を平坦化するための層である。バリア保護層表面の凸凹形状はバリア保護層中に有機粒子が分散されていることなどに起因して生じやすい。バリア保護層表面に形成された平坦化層の表面では、表面粗さ(Ra)が10μm角(1辺が10μmの正方形)中で3nm以下となることが好ましい。なお、本明細書において、表面粗さの値は分子間力顕微鏡にて10μm角の大きさで測定したものとする。
 平坦化層としては、バリア保護層形成材料において有機粒子を含まない組成(バインダーの組成)の材料から形成された層であることが好ましく、バリア保護層と同様にして形成することができる。平坦化層形成材料はバリア保護層形成材料について上記したバインダーの組成であればよい。バリア保護層形成材料および平坦化層形成材料の多官能アクリルモノマー、重合開始剤、界面活性剤、その他の添加剤等は共通していてもよく、異なっていてもよい。
 平坦化層の平均厚みは、特に制限はなく、目的に応じて適宜選択することができるが、0.5μ~5μmが好ましく、1~3μmがより好ましく、1.5~2.5μmが特に好ましい。
 バリア保護層と平坦化層の合計平均厚みは、1μm~20μmであればよく、2μm~15μmが好ましく、3μm~14μmがより好ましく、5μm~12μmが特に好ましい。
 平坦化層の屈折率は、1.7~2.2が好ましく、1.7~2.1がより好ましく、1.7~2.0が更に好ましい。
 平坦化層の屈折率は、バリア保護層のバインダーの屈折率と同じであるか、またはバリア保護層のバインダーの屈折率よりも高いことが好ましい。バリア保護層のバインダーの屈折率と平坦化層の屈折率の差(Δn)は0.05以下であることが好ましく、0.02以下であることがより好ましい。
<基板>
 有機電界発光素子を設けるための基板としては、その形状、構造、大きさ、材料等については、特に制限はなく、目的に応じて適宜選択することができ、形状としては、例えば平板状などが挙げられ、構造としては、単層構造であってもよいし、積層構造であってもよく、大きさは、作製する有機電界発光装置の大きさ等に応じて適宜選択することができる。
 基板の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、イットリア安定化ジルコニア(YSZ)、ガラス(無アルカリガラス、ソーダライムガラス等)等の無機材料、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリカーボネート、ポリイミド樹脂(PI)、ポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、スチレン-アクリロニトリル共重合体などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、ポリエステル樹脂が好ましく、ロールでの塗布適性の観点からポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)が特に好ましい。
 基板としては、後述のガスバリアフィルムを用いてもよい。ガスバリアフィルムが基板として用いられる場合は、基材フィルムに対し、バリア層側の表面に有機電界発光素子を形成することが好ましい。有機電界発光素子を形成する側の最表面は無機層であることが好ましい。
 基板は、適宜合成したものであってもよいし、市販品を使用してもよい。
 基板の厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、10μm以上が好ましく、50μm以上がより好ましい。
<ガスバリアフィルム>
 ガスバリアフィルムは、基材フィルムと、該基材フィルム上に形成されたバリア層とを有する。ガスバリアフィルムにおいて、バリア層は、基材フィルムの片面にのみ設けられていてもよいし、両面に設けられていてもよいが、片面のみに設けられていることが好ましい。
 バリア層は少なくとも1層の無機層を含む。バリア層は少なくとも1層の無機層および少なくとも1層の有機層を含むバリア性積層体であってもよい。
 ガスバリアフィルムはバリア層および基材フィルム以外の構成成分(例えば、易接着層、または易滑性層等の機能性層)を有していてもよい。機能性層はバリア性積層体の上、バリア層と基材との間、基材上のバリア層が設置されていない側(裏面)のいずれに設置してもよい。
 ガスバリアフィルムの膜厚は20μm~200μmであることが好ましく、50μm~150μmであることがより好ましい。
(基材フィルム)
 ガスバリアフィルムは、通常、基材フィルムとして、プラスチックフィルムを用いる。用いられるプラスチックフィルムは、バリア性積層体を保持できるフィルムであれば材質、厚み等に特に制限はなく、使用目的等に応じて適宜選択することができる。プラスチックフィルムとしては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂が挙げられる。
 基材フィルムの膜厚は10μm~250μmであることが好ましく、20μm~130μmであることがより好ましい。
(バリア層)
 バリア層は一層の無機層からなるものであってもよく、少なくとも1層の無機層および少なくとも1層の有機層を含むバリア性積層体であってもよい。
 有機電界発光装置において、バリア層は基材フィルムに対して有機電界発光素子側にあり、接着層とバリア層との間にバリア保護層がある構成となる。バリア層とバリア保護層とが直接接していることが好ましい。またバリア層中の無機層がバリア保護層と直接接していることが好ましい。
 バリア層とバリア保護層と平滑化層との合計膜厚は1.5μm~30μmであることが好ましく、2μm~25μmであることがより好ましい。
(バリア性積層体)
 バリア性積層体は、2層以上の有機層と2層以上の無機層とが交互に積層しているものであってもよい。バリア性積層体は、少なくとも1つの無機層がその外側に有機層を有しないように構成されていればよい。
 バリア性積層体を構成する層数に関しては特に制限はないが、典型的には2層~30層が好ましく、3層~20層がさらに好ましい。また、有機層および無機層以外の他の構成層を含んでいてもよい。バリア性積層体の膜厚は0.5μm~10μmであることが好ましく、1μm~5μmであることがより好ましい。
 バリア性積層体は、本発明の趣旨を逸脱しない範囲において、バリア性積層体を構成する組成が膜厚方向に有機領域と無機領域が連続的に変化するいわゆる傾斜材料層を含んでいてもよい。特に、特定の有機層とこの有機層の表面に直接形成される無機層との間に傾斜材料層を含みうる。傾斜材料層の例としては、キムらによる論文「Journal of Vacuum Science and Technology A Vol. 23 p971-977(2005 American Vacuum Society) ジャーナル オブ バキューム サイエンス アンド テクノロジー A 第23巻 971頁~977ページ(2005年刊、アメリカ真空学会)」に記載の材料や、米国公開特許2004-46497号明細書に開示してあるように有機領域と無機領域が界面を持たない連続的な層等が挙げられる。以降、簡略化のため、有機層と有機領域は「有機層」として、無機層と無機領域は「無機層」として記述する。
(無機層)
 バリア層を構成する無機層、およびバリア性積層体中の無機層は、通常、金属化合物からなる薄膜の層である。無機層の形成方法は、目的の薄膜を形成できる方法であればいかなる方法でもよい。例えば、蒸着法、スパッタリング法、イオンプレーティング法等の物理的気相成長法(PVD)、種々の化学的気相成長法(CVD)、めっきやゾルゲル法等の液相成長法がある。無機層に含まれる成分は、上記性能を満たすものであれば特に限定されないが、例えば、金属酸化物、金属窒化物、金属炭化物、金属酸化窒化物または金属酸化炭化物であり、Si、Al、In、Sn、Zn、Ti、Cu、Ce、またはTaから選ばれる1種以上の金属を含む酸化物、窒化物、炭化物、酸化窒化物、酸化炭化物などを好ましく用いることができる。これらの中でも、Si、Al、In、Sn、Zn、Tiから選ばれる金属の酸化物、窒化物もしくは酸化窒化物が好ましく、特にSiまたはAlの金属酸化物、窒化物もしくは酸化窒化物が好ましい。これらは、副次的な成分として他の元素を含有していてもよい。例えば、水酸基を有する窒化物等となっていてもよい。
 無機層としては、特に、Siを含む無機層が好ましい。より透明性が高く、かつ、より優れたガスバリア性を有しているからである。その中でも特に、窒化ケイ素からなる無機層が好ましい。
 無機層は、例えば、金属の酸化物、窒化物もしくは酸窒化物が水素を含むことにより、適水素を含んでいてもよいが、前方ラザフォード散乱における水素濃度が30%以下であることが好ましい。 
 本発明により形成される無機層の平滑性は、1μm角の平均粗さ(Ra値)として3nm未満であることが好ましく、1nm以下がより好ましい。
 無機層の厚みに関しては特に限定されないが、1層に付き、通常、5~500nmの範囲内であり、好ましくは10~200nm、さらに好ましくは15~50nmである。無機層は複数のサブレイヤーから成る積層構造であってもよい。この場合、各サブレイヤーが同じ組成であっても異なる組成であってもよい。
(有機層)
 有機層は、好ましくは、重合性化合物を含む重合性組成物の硬化により形成することができる。
(重合性化合物)
 上記重合性化合物は、エチレン性不飽和結合を末端または側鎖に有する化合物、および/または、エポキシまたはオキセタンを末端または側鎖に有する化合物であることが好ましい。重合性化合物としては、エチレン性不飽和結合を末端または側鎖に有する化合物が特に好ましい。エチレン性不飽和結合を末端または側鎖に有する化合物の例としては、(メタ)アクリレート系化合物、アクリルアミド系化合物、スチレン系化合物、無水マレイン酸等が挙げられ、(メタ)アクリレート系化合物が好ましく、特にアクリレート系化合物が好ましい。
 (メタ)アクリレート系化合物としては、(メタ)アクリレート、ウレタン(メタ)アクリレートやポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート等が好ましい。
 スチレン系化合物としては、スチレン、α-メチルスチレン、4-メチルスチレン、ジビニルベンゼン、4-ヒドロキシスチレン、4-カルボキシスチレン等が好ましい。
 (メタ)アクリレート系化合物として具体的には、例えば特開2013-43382号公報の段落0024~0036または特開2013-43384号公報の段落0036~0048に記載の化合物を用いることができる。また、WO2013/047524に記載の式(2)で表される式の化合物などのフルオレン骨格を有する多官能アクリルモノマーを用いることもできる。
(重合開始剤)
 有機層形成のための重合性組成物は、重合開始剤を含んでいてもよい。重合開始剤を用いる場合、その含量は、重合に関与する化合物の合計量の0.1モル%以上であることが好ましく、0.5~5モル%であることがより好ましい。このような組成とすることにより、活性成分生成反応を経由する重合反応を適切に制御することができる。重合開始剤の例としてはバリア保護層のバインダーが含有してもよい上記の重合開始剤と同様の重合開始剤が挙げられる。
(シランカップリング剤)
 有機層形成のための重合性組成物は、シランカップリング剤を含んでいてもよい。シランカップリング剤としては、ケイ素に結合するメトキシ基、エトキシ基、アセトキシ基等の加水分解可能な反応基とともに、エポキシ基、ビニル基、アミノ基、ハロゲン基、メルカプト基、(メタ)アクリロイル基から選択される1つ以上の反応性基を有する置換基を同じケイ素に結合する置換基として有するものが好ましい。シランカップリング剤は、(メタ)アクリロイル基を有していること特に好ましい。シランカップリング剤の具体例としては、WO2013/146069に記載の一般式(1)で表されるシランカップリング剤およびWO2013/027786に記載の一般式(I)で表されるシランカップリング剤などが挙げられる。
 シランカップリング剤の、重合性組成物の固形分(揮発分が揮発した後の残分)中に占める割合は、0.1~30質量%が好ましく、1~20質量%がより好ましい。
(有機層の作製方法)
 有機層は、通常、基材フィルムまたは無機層等の支持体の上に、上記重合性組成物を層状に塗布して作製すればよい。塗布方法としては、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、スライドコート法、或いは、米国特許第2681294号明細書に記載のホッパ-を使用するエクストル-ジョンコート法(ダイコート法とも呼ばれる)が例示され、この中でもエクストル-ジョンコート法が好ましく採用できる。
 無機層の表面に有機層形成のための重合性組成物を塗布する際は、エクストルージョンコート法により行なうことが好ましい。
 塗布された重合性組成物は、次いで、乾燥してもよい。乾燥方法は特に限定されないが、乾燥方法の例として、光拡散層形成材料塗布膜の乾燥について上述した方法が挙げられる。
 重合性組成物は、光(例えば、紫外線)、電子線、または熱線にて、硬化させればよく、光によって硬化させることが好ましい。特に、重合性組成物を25℃以上の温度(例えば、30~130℃)をかけて加熱しながら、硬化させることが好ましい。加熱により、重合性組成物の自由運動を促進させることで効果的に硬化させ、かつ、基材フィルム等にダメージを与えずに成膜することができる。
 照射する光は、高圧水銀灯もしくは低圧水銀灯による紫外線であればよい。照射エネルギーは0.1J/cm以上が好ましく、0.5J/cm以上がより好ましい。重合性化合物は空気中の酸素によって重合阻害を受けるため、重合時の酸素濃度もしくは酸素分圧を低くすることが好ましい。窒素置換法によって重合時の酸素濃度を低下させる場合、酸素濃度は2%以下が好ましく、0.5%以下がより好ましい。減圧法により重合時の酸素分圧を低下させる場合、全圧が1000Pa以下であることが好ましく、100Pa以下であることがより好ましい。また、100Pa以下の減圧条件下で0.5J/cm以上のエネルギーを照射して紫外線重合を行うことが特に好ましい。
 重合性組成物を硬化した後の有機層中における重合性化合物の重合率は20質量%以上であることが好ましく、30質量%以上がより好ましく、50質量%以上が特に好ましい。ここでいう重合率とはモノマー混合物中の全ての重合性基(例えば、アクリロイル基およびメタクリロイル基)のうち、反応した重合性基の比率を意味する。重合率は赤外線吸収法によって定量することができる。
 有機層は、平滑で、膜硬度が高いことが好ましい。有機層の平滑性は1μm角の平均粗さ(Ra値)として3nm未満であることが好ましく、1nm未満であることがより好ましい。
 有機層の表面にはパーティクル等の異物、突起が無いことが要求される。このため、有機層の成膜はクリーンルーム内で行われることが好ましい。クリーン度はクラス10000以下が好ましく、クラス1000以下がより好ましい。
 有機層の硬度は高いことが好ましい。有機層の硬度が高いと、無機層が平滑に成膜されその結果としてバリア能が向上することがわかっている。有機層の硬度はナノインデンテーション法に基づく微小硬度として表すことができる。有機層の微小硬度は100N/mm以上であることが好ましく、150N/mm以上であることがより好ましい。
 有機層の膜厚については特に限定はないが、脆性や光透過率の観点から、50nm~5000nmが好ましく、200nm~3500nmがより好ましい。
(有機層と無機層の積層)
 有機層と無機層の積層は、所望の層構成に応じて有機層と無機層を順次繰り返し製膜することにより行うことができる。
(機能層)
 ガスバリアフィルムは、機能層を有していてもよい。機能層については、特開2006-289627号公報の段落番号0036~0038に詳しく記載されている。これら以外の機能層の例としてはマット剤層、保護層、耐溶剤層、帯電防止層、平滑化層、密着改良層、遮光層、反射防止層、ハードコート層、応力緩和層、防曇層、防汚層、被印刷層等が挙げられる。
 ガスバリアフィルムにおいて、基材フィルムと、有機層(バリア性積層体において最も基材フィルム側にある有機層)との間に配される構成となるように、易接着層または易滑性層を設けてもよい。
 易接着層の例としては、ウレタンやウレタンアクリレート、アクリレートを材料として形成された層が挙げられる。また易滑性層の例としては、上記の易接着層の形成に用いられる材料にフィラーや粒子を添加して形成した層が挙げられる。
<接着層>
 接着層形成のための接着剤としては、形成される接着層の屈折率が1.55以上である接着剤が好ましく、1.6以上である接着剤がより好ましく、1.7以上である接着剤がさらに好ましい。有機電界発光素子を構成する層の屈折率は、一般に1.7~1.9程度であり、有機電界発光素子を構成する層の屈折率と接着層の屈折率との差が小さいことが好ましいからである。有機電界発光装置を構成する各層の間の屈折率の差を小さくすることにより、発光層からの光と発光層からの光が反射電極または反射層で反射した光とが有機電界発光装置内にとどまることなく、光をバリア保護層まで到達させることができる。バリア保護層には微粒子が含まれるため光が散乱され効率よく、光を取り出すことができる。
 接着剤としては、紫外線硬化性の接着剤(樹脂)が好ましく、接着剤の例としては、紫外線硬化性エポキシ樹脂、紫外線硬化性アクリレート樹脂等が挙げられる。例えばナガセケムテックス社XNR5516などが挙げられる。
 また、接着層としては接着シートまたはテープを用いてもよい。接着シートとしては、薄い接着シートが好ましい。広くOCA(Optical Clear Adhesive)して知られる接着シートが例示される。
<反射層>
 有機電界発光装置は反射層を含んでいてもよい。反射層を含むことにより、有機電界発光素子からの光が所望の方向に効率良く出射される。反射層は、有機電界発光素子よりも基板側にあることが好ましい。例えば、反射層は、有機電界発光素子と基板との間に設けてもよい。具体的には、後述する発光層よりも基板側に反射層を含むことが好ましい。また、反射層は有機電界発光素子に対して基板の外側に設けてもよい。すなわち、反射層は、基板の有機電界発光素子を形成する側の面とは反対側の面に形成されてもよい。
 反射層は、380~780nmの波長の光の反射率が85%以上であることが好ましく、90%以上がより好ましく、95%以上であることがさらに好ましい。有機電界発光素子から放出された光のうちバリア保護層中の微粒子で散乱された後外部に取り出されなかった光は、反射層で反射される。この過程を複数回繰り返した後、空気中へ取出されるため、反射層の反射率が高ければ高いほど外部量子効率が向上する。
 反射層としては、AlやAgなどの蒸着膜、高反射率のプラスチックフィルムなどが挙げられる。高反射率のプラスチックフィルムとしては、例えばルミラー(東レ社)のプラスチックフィルムなどが挙げられる。反射層が有機電界発光素子の反射電極を兼ねてもよい。
<有機電界発光素子>
 有機電界発光素子は、陰極となる電極と陽極となる電極とを含み、さらに2つの電極の間に発光層(以下、「有機電界発光層」ともいう。)を含む構成を有する。有機電界発光装置において、基板側に配される一方の電極は反射層を兼ねる反射電極であってもよい。また、接着層側に配される他方の電極は透明電極であることが好ましい。有機電界発光層は、少なくとも発光層を有し、さらに発光層以外の機能層として、正孔輸送層、電子輸送層、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層等の各層を含んでいてもよい層を意味する。正孔輸送層および電子輸送層は、電荷輸送性とコストの観点からそれぞれ膜厚500nm以下であることが好ましい。
 有機電界発光層、有機電界発光層中の各機能層、各電極の作製材料や構成、積層順、および有機電界発光装置の構成については、特開2012-155177号公報の段落0081~0122の記載を参照することができる。
 有機電界発光素子の1つの電極が反射電極である場合は、反射電極と発光層との距離が100nm以上であることが好ましく、200nm以上であることがより好ましい。例えば正孔輸送層の膜厚が100nm以上であることが好ましく、200nm以上であることがより好ましい。反射電極と発光層との距離が100nm以上であると、主に層の垂直方向の励起子の近接場が金属表面にプラズモンを励起し、エネルギーが熱となり失活して発光効率が減少する傾向を抑えることができるからである。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
[ガスバリアフィルムの作製]
  ポリエチレンテレフタレート(PET)フィルム(基材フィルム、東洋紡社製、A4300、厚さ100μm)の片面(PETフィルムの両面のうち、より平滑な面)上に、プラズマCVD法により窒化ケイ素を成膜し(50nm)無機層を形成した。原料ガスとして、シランガス(流量160sccm:0℃、1気圧の標準状態、以下同じ)、アンモニアガス(流量370sccm)、水素ガス(流量590sccm)、および窒素ガス(流量240sccm)を用いた。電源としては、周波数13.56MHzの高周波電源を用いた。この無機層表面上に、下記組成の重合性組成物を乾燥膜厚が1000nmとなるように塗布して膜を得た。得られた膜に、酸素含有量100ppm以下の窒素雰囲気下で紫外線を照射(照射量0.5J/cm)して硬化させ、有機層を作製した。その有機層表面に、窒化ケイ素を上記と同様にプラズマCVD法で成膜して、膜厚50nmの無機層を形成し、ガスバリアフィルムを得た。
(重合性組成物)
  重合性化合物(アクリレート1) 50g
  重合開始剤(Lamberti社 Esacure KTO46) 1g
  シランカップリング剤(信越シリコーン社製KBM-5013) 5g
  2-ブタノン 400g
Figure JPOXMLDOC01-appb-C000001
[バリア保護層の作製]
 上記で作製したガスバリアフィルムの基材フィルム側をガラスと接着し、洗浄容器に入れ、中性洗剤中で超音波洗浄した後、純水中で超音波洗浄し、120℃で120分間加熱乾燥を行った。その後、ガスバリアフィルムの表面(無機層)をシランカップリング処理した。
上記の表面処理をしたガスバリアフィルム表面に下記のバリア保護層形成材料を、ダイコーターを用いて塗布することにより膜を形成し、形成された膜に、紫外線を、照射量0.5J/cmとなるように2分間照射して硬化させ、バリア保護層を形成した。次いで、形成されたバリア保護層の表面に、下記の平坦化層形成材料を、ダイコーターを用いて塗布することにより膜を形成し、形成された膜に、紫外線を照射量0.5J/cmとなるように2分間照射して硬化させ、平坦化層を形成し、バリア保護層付きガスバリアフィルムを得た。
(バリア保護層形成材料)
  アクリレート(多官能アクリレートモノマー、EA-200 大阪ガスケミカル社) 35体積%
  酸化チタン粒子(屈折率n=2.7、平均粒径15nm) 15体積%
  PMMA粒子(MX-150 綜研化学社) 50vol%  重合開始剤(イルガキュア819 BASF社) アクリレートに対して2質量%
(平坦化層形成材料)
  アクリレート(多官能アクリレートモノマー、EA-200 大阪ガスケミカル社) 70体積%
  酸化チタン粒子(屈折率n=2.7、平均粒径15nm) 30体積%
  重合開始剤(イルガキュア819 BASF社) アクリレートに対して2質量%
[有機電界発光装置の作製]
(実施例1)
 ガラス(厚さ0.7mm、コーニング社イーグルXG)を基板(以下、「ガラス基板」ともいう。)として用い、このガラス基板表面に、Alを60nmの膜厚になるように真空蒸着して、反射層を兼ねる反射電極(陽極)を形成した。形成された反射電極表面に、真空蒸着装置により、MoO層を正孔注入層として2nmの膜厚で形成し、さらに、MoO層の表面に、順に、膜厚が200nmの正孔輸送層(α-NPD:Bis[N-(1-naphthyl)-N-phenyl]benzidineの層)と、膜厚が20nmの発光層(CBP (4,4’-Bis(carbazol-9-yl)biphenyl)をホスト材料として5%のIr(ppy)(Tris(2-phenylpyridinato)iridium)をドープした層)と、膜厚が10nmの正孔ブロック層(BAlq(Bis-(2-methyl-8- quinolinolato)-4-(phenyl-phenolate)-aluminium(III))の層)と、膜厚が20nmの電子輸送層(Alq (Tris(8-hydroxy-quinolinato)aluminium)の層)とをそれぞれ蒸着して形成し、有機電界発光層を得た。
 続けて、得られた有機電界発光層の表面にLiFを0.5nm、Alを1.5nm、Agを15nmの膜厚でこの順に蒸着して透明電極(陰極)を成膜し、有機電界発光素子を得た。
 得られた有機電界発光素子付き基板の有機電界発光素子を設けた面側に、窒素雰囲気下で上記バリア保護層付ガスバリアフィルムを用いて、ガスバリアフィルムのバリア保護層側が有機電界発光素子側となるようにして封止を行い、図1(1)かつ図3(11)に示す構成を有する実施例1の有機電界発光装置を得た。封止は、有機電界発光素子全面を覆うのに十分な面積で上記バリア保護層付ガスバリアフィルムのバリア保護層表面に接着剤(ナガセケムテックス社製XNR5516)を均一に塗布したガスバリアフィルムを用いて、上記有機電界発光素子付き基板と密着させ、その後、紫外線を積算照射量が6.0J/cmとなるように照射し接着剤を硬化させた。
(実施例2)
 ガラス(厚さ0.7mm、コーニング社イーグルXG)を基板として用い、真空蒸着にてAgを成膜して反射層を形成した。
 ガラス基板の反射層を形成した側の面とは反対面に真空スパッタにてITO膜を成膜して電極(陽極)を形成した。さらに、ITO膜表面に、順に、膜厚が2nmのMoO層(正孔注入層)と、膜厚が29nmのα-NPD層(正孔輸送層)と、膜厚が20nmの発光層(CBPをホスト材料として5%のIr(ppy)をドープした層)と、膜厚が10nmのBAlq層(正孔ブロック層)と、膜厚が20nmのAlq層(電子輸送層)とを、それぞれ真空蒸着して形成し、有機電界発光層を得た。
 続けて、得られた有機電界発光層の表面にLiFを0.5nm、Alを1.5nm、Agを15nmの膜厚でこの順に蒸着して透明電極(陰極)を成膜し、有機電界発光素子を得た。
 得られた有機電界発光素子を、上記バリア保護層付ガスバリアフィルムを用いて実施例1と同様に封止し、図1(2)かつ図3(11)の構成の実施例2の有機電界発光装置を得た。
(実施例3)
 ガラス(コーニング社イーグルXG)の代わりに上記と同様に作製したガスバリアフィルムを用いること以外は、実施例1と同様の手順でガスバリアフィルムの無機層側表面(窒化ケイ素表面)に有機電界発光素子を形成し、実施例3の有機電界発光装置を作製した。

(比較例1)
 実施例1において、ガラス基板上のα-NPD層の膜厚を29nmとし、有機電界発光層の封止のために用いたバリア保護層付ガスバリアフィルムに代えて上記のガスバリアフィルムの作製と同様にして作製したガスバリアフィルム(バリア保護層を有さないガスバリアフィルム)を用いた以外は、実施例1と同様の手順で図2(3)かつ図3(11)の構成の比較例1の有機電界発光装置を作製した。
(比較例2)
 実施例1において、ガラス基板上のα-NPD層の膜厚を29nmとし、有機電界発光層の封止のために用いたバリア保護層付ガスバリアフィルムに代えて上記のガスバリアフィルムの作製と同様にして作製したガスバリアフィルム(バリア保護層を有さないガスバリアフィルム)を用い、ガスバリアフィルムと有機電界発光素子とが触れないように、ガスバリアフィルム上に接着剤を塗布して封止した以外は実施例1と同様の手順で、図2(4)かつ図3(14)の構成の比較例2の有機電界発光装置を作製した。
[有機電界発光装置の評価]
 得られた有機電界発光素子装置の評価を以下のとおり行った。
(バリア性能)
 バリア性能は有機電界発光素子の耐久性で評価した。高温高湿環境下(60℃90%)にて100時間放置した有機電界発光素子の、初期の発光面積に対するダークスポットが生じた総面積を有機電界発光素子の耐久性の指標として以下の基準で評価した。
A:3%未満
B:3%以上、40%未満
C:40%以上または点灯しないもの
(外部量子効率)
 外部量子効率は、株式会社トプコンテクノハウス社の分光放射計SR-3ARを用いて測定した。
(密着性)
 実施例のバリア保護層付ガスバリアフィルム、および、比較例のガスバリアフィルムの密着性を、碁盤目試験(JIS K5400)により評価した。各ガスバリアフィルムの、基材フィルム3とは反対側からカッターナイフで膜面に対して90°の切り込みを1mm間隔で入れ、1mm四方の碁盤目を100個作製した。この上にマイラーテープ(日東電工製)を貼り付け、テープ剥離試験機を使用してテープをはがした。バリア保護層1および基材フィルム2上の100個の碁盤目のうち、剥離せず残存したマスの数によって以下の基準で評価を行った。
A:残存したマスの数が95マス以上
B:残存したマスの数が80~94マス
C:残存したマスの数が50~79マス
D:残存したマスの数が49マス以下
結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
1 バリア保護層
2 バリア層
3 基材フィルム
4 接着層
5 基板
6 有機電界発光素子
7 反射層
10 ガスバリアフィルム

Claims (12)

  1. 基板、有機電界発光素子、およびガスバリアフィルムをこの順で有し、前記基板と前記ガスバリアフィルムとが接着層により接着することにより前記有機電界発光素子が封止されている有機電界発光装置であって、
    前記有機電界発光素子は、2つの電極と前記2つの電極の間に配置された発光層とを含み、
    前記ガスバリアフィルムは、基材フィルムと少なくとも一層の無機層を含むバリア層とを含み、前記バリア層は前記基材フィルムに対して前記有機電界発光素子側にあり、
    前記接着層と前記バリア層との間にバリア保護層を有し、
    前記バリア保護層は有機粒子とバインダーとを含むバリア保護層形成材料から形成された層であり、
    前記バインダーは、無機微粒子と多官能アクリルモノマーとを含有する有機電界発光装置。
  2. 前記発光層よりも前記基板側に反射層を含む請求項1に記載の有機電界発光装置。
  3. 前記反射層を前記2つの電極のうちの1つの電極として前記基板と前記発光層との間に含む請求項2に記載の有機電界発光装置。
  4. 前記反射層と前記発光層との距離が100nm以上である請求項3に記載の有機電界発光装置。
  5. 前記反射層を前記有機電界発光素子に対して前記基板の外側に含む請求項2に記載の有機電界発光装置。
  6. 前記無機微粒子が酸化チタン微粒子である請求項1~5のいずれか一項に記載の有機電界発光装置。
  7. 前記接着層が紫外線硬化性の接着剤から形成されている請求項1~6のいずれか一項に記載の有機電界発光装置。
  8. 前記接着層が屈折率1.55以上である請求項1~7のいずれか一項に記載の有機電界発光装置。
  9. 前記有機電界発光素子と前記バリア保護層との間に前記接着層を有する請求項1~8のいずれか一項に記載の有機電界発光装置。
  10. 前記有機電界発光素子の前記バリア保護層と対向する側の全面に前記接着層を有する請求項9に記載の有機電界発光装置。
  11. 前記バリア保護層と前記接着層との間に平坦化層を有する請求項1~10のいずれか一項に記載の有機電界発光装置。
  12. 前記バリア層が無機層および有機層を含むバリア性積層体からなる請求項1~11のいずれか一項に記載の有機電界発光装置。
PCT/JP2015/050733 2014-03-19 2015-01-14 有機電界発光装置 WO2015141252A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167025382A KR20160122240A (ko) 2014-03-19 2015-01-14 유기 전계 발광 장치
CN201580014189.2A CN106105390B (zh) 2014-03-19 2015-01-14 有机电场发光装置
US15/261,882 US10014492B2 (en) 2014-03-19 2016-09-10 Organic electroluminescent device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-056288 2014-03-19
JP2014056288A JP2015179604A (ja) 2014-03-19 2014-03-19 有機電界発光装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/261,882 Continuation US10014492B2 (en) 2014-03-19 2016-09-10 Organic electroluminescent device

Publications (1)

Publication Number Publication Date
WO2015141252A1 true WO2015141252A1 (ja) 2015-09-24

Family

ID=54144232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050733 WO2015141252A1 (ja) 2014-03-19 2015-01-14 有機電界発光装置

Country Status (5)

Country Link
US (1) US10014492B2 (ja)
JP (1) JP2015179604A (ja)
KR (1) KR20160122240A (ja)
CN (1) CN106105390B (ja)
WO (1) WO2015141252A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6856661B2 (ja) * 2016-11-07 2021-04-07 富士フイルム株式会社 機能性フィルムおよび有機el素子
EP3351852B1 (en) * 2017-01-24 2019-10-30 OSRAM GmbH A lighting device and corresponding manufacturing method
CN106816462B (zh) * 2017-03-28 2019-08-02 上海天马有机发光显示技术有限公司 有机发光二极管显示装置及制造方法
US10651421B2 (en) 2018-08-03 2020-05-12 Wuhan China Star Optoelectronics Semiconductor Display Technology Co. Ltd. Display panel and encapsulation component
CN109065755B (zh) * 2018-08-03 2019-12-31 武汉华星光电半导体显示技术有限公司 显示面板及封装构件
US11744107B2 (en) * 2020-06-09 2023-08-29 Samsung Display Co., Ltd. Display device including light-blocking layer directly attached to supporting member for improved visibility

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313586A (ja) * 2001-04-10 2002-10-25 Matsushita Electric Ind Co Ltd 有機電界発光素子
JP2010114026A (ja) * 2008-11-10 2010-05-20 Konica Minolta Opto Inc El素子およびそれを用いるel表示装置
JP2010198735A (ja) * 2009-02-20 2010-09-09 Fujifilm Corp 光学部材及び該光学部材を備えた有機エレクトロルミネッセンス表示装置
JP2012020516A (ja) * 2010-07-15 2012-02-02 Fujifilm Corp バリア性積層体、ガスバリアフィルムおよびこれらを用いたデバイス、ならびに、バリア性積層体の製造方法
JP2012109255A (ja) * 2005-03-10 2012-06-07 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス用樹脂フィルム基板、および有機エレクトロルミネッセンスデバイス
JP2013115008A (ja) * 2011-11-30 2013-06-10 Fujifilm Corp 光拡散性転写材料、光拡散層の形成方法、有機電界発光装置、及び有機電界発光装置の製造方法
WO2013179339A1 (ja) * 2012-05-30 2013-12-05 株式会社 日立製作所 有機発光素子、光源装置およびそれらの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4537093B2 (ja) 2004-03-03 2010-09-01 富士フイルム株式会社 画像表示素子用基板および有機エレクトロルミネッセンス素子
EP2445029A1 (en) * 2010-10-25 2012-04-25 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Multilayered protective layer, organic opto-electric device and method of manufacturing the same
JP2012209215A (ja) * 2011-03-30 2012-10-25 Seiko Epson Corp 有機el装置の製造方法、電子機器
JP2013077460A (ja) * 2011-09-30 2013-04-25 Toppan Printing Co Ltd 有機elパネルの製造方法、有機elパネル及び有機elディスプレイ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313586A (ja) * 2001-04-10 2002-10-25 Matsushita Electric Ind Co Ltd 有機電界発光素子
JP2012109255A (ja) * 2005-03-10 2012-06-07 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス用樹脂フィルム基板、および有機エレクトロルミネッセンスデバイス
JP2010114026A (ja) * 2008-11-10 2010-05-20 Konica Minolta Opto Inc El素子およびそれを用いるel表示装置
JP2010198735A (ja) * 2009-02-20 2010-09-09 Fujifilm Corp 光学部材及び該光学部材を備えた有機エレクトロルミネッセンス表示装置
JP2012020516A (ja) * 2010-07-15 2012-02-02 Fujifilm Corp バリア性積層体、ガスバリアフィルムおよびこれらを用いたデバイス、ならびに、バリア性積層体の製造方法
JP2013115008A (ja) * 2011-11-30 2013-06-10 Fujifilm Corp 光拡散性転写材料、光拡散層の形成方法、有機電界発光装置、及び有機電界発光装置の製造方法
WO2013179339A1 (ja) * 2012-05-30 2013-12-05 株式会社 日立製作所 有機発光素子、光源装置およびそれらの製造方法

Also Published As

Publication number Publication date
US20160380233A1 (en) 2016-12-29
CN106105390B (zh) 2018-08-24
US10014492B2 (en) 2018-07-03
CN106105390A (zh) 2016-11-09
KR20160122240A (ko) 2016-10-21
JP2015179604A (ja) 2015-10-08

Similar Documents

Publication Publication Date Title
US10014492B2 (en) Organic electroluminescent device
JP6426705B2 (ja) 機能性積層フィルム、機能性積層フィルムの製造方法、および機能性積層フィルムを含む有機電界発光装置
JP6387625B2 (ja) ガスバリアフィルムの製造方法
TW201204552A (en) Laminated film and method for manufacturing the same and electronic device
KR20150037743A (ko) 적층체, 적층체의 제조 방법, 전극, el 소자, 면 발광체 및 태양 전지
WO2014129479A1 (ja) バリア性積層体およびガスバリアフィルム
US20160172625A1 (en) Barrier laminate, gas barrier film, and device
WO2016043141A1 (ja) ガスバリア性フィルム
WO2015199164A1 (ja) 有機電子装置用封止部材
JP7185101B2 (ja) 防汚層付き光学フィルム
JP6185867B2 (ja) 機能性積層材料、機能性積層材料の製造方法、および機能性積層材料を含む有機電界発光装置
TW202306757A (zh) 光學積層體及圖像顯示裝置
KR102287519B1 (ko) 전자 디바이스 및 유기 일렉트로루미네센스 소자
WO2018221018A1 (ja) 有機エレクトロルミネッセンス積層体
WO2019021616A1 (ja) ガスバリア積層体および電子デバイス
JP6343250B2 (ja) ガスバリアフィルム、有機電子装置、有機電界発光装置用基板、有機電界発光装置
JP7122108B2 (ja) 電離放射線硬化性樹脂組成物、及びこれを用いたガスバリア層の保護膜、並びに、これらを用いた積層ガスバリア性フィルム
JP6457371B2 (ja) ガスバリアフィルム、有機電子装置、有機電界発光装置用基板、有機電界発光装置
WO2024090539A1 (ja) 反射防止フィルム
WO2024075804A1 (ja) 反射防止フィルムおよび反射防止フィルムの製造方法
JP2015189155A (ja) 機能性積層材料、機能性積層材料の製造方法、および機能性積層材料を含む有機電界発光装置、ならびに重合性組成物
JP2013226758A (ja) ガスバリア性フィルムの製造方法
TW202306761A (zh) 積層體及其製造方法、與圖像顯示裝置
JP2018198180A (ja) 有機エレクトロルミネッセンス素子
JP6578689B2 (ja) ガスバリア性フィルムおよび該ガスバリア性フィルムを用いた電子デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167025382

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765549

Country of ref document: EP

Kind code of ref document: A1