WO2015024903A1 - Verfahren zum herstellen eines stahlbauteils - Google Patents
Verfahren zum herstellen eines stahlbauteils Download PDFInfo
- Publication number
- WO2015024903A1 WO2015024903A1 PCT/EP2014/067571 EP2014067571W WO2015024903A1 WO 2015024903 A1 WO2015024903 A1 WO 2015024903A1 EP 2014067571 W EP2014067571 W EP 2014067571W WO 2015024903 A1 WO2015024903 A1 WO 2015024903A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flat
- flat steel
- product
- steel product
- steel
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
- C23C30/005—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/10—Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0068—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
Definitions
- the invention relates to a method for producing a steel component, which has a tensile strength Rm of more than 1200 MPa and an elongation at break A50 of at least 6%.
- Steel components produced according to the invention are distinguished by a very high strength in combination with good elongation properties and, as such, are particularly suitable as components for motor vehicle bodies.
- flat steel product steel sheets or steel strips produced therefrom by a rolling process as well as sinkers divided therefrom and the like are understood.
- Steel components of the type according to the invention are produced from such flat steel products by a shaping process.
- alloy contents are stated here only in “%”, this always means “% by weight”, unless expressly stated otherwise.
- the process envisages that a slab containing (in% by weight) 0.05-0.30% C, 0.03-1.0% Si, 1.5-3.5% Mn, up to 0.02% P, up to 0.005% S, up to 0.150% Al, up to 0.0200% N, and alternatively or in combination
- Hot rolling end temperature of at least 800 ° C, in particular 950 - 1050 ° C, is hot rolled to a hot strip.
- the cooling starts within 2 seconds after the end of the hot rolling.
- the hot strip thus obtained should have a fine bainitic structure with a bainite content of at least 90%, the mean grain size of which does not exceed 3.0 ⁇ m, the ratio of the length of the longest axis to the length of the shortest axis of the grains not exceeding 1, 5 and the length of the longest axis of the grains should be no more than 10 ⁇ .
- the remainder of the structure not occupied by bainite should consist of tempered martensite, which is very similar in its appearance and properties to bainite.
- Hot rolled strips produced and produced in this manner have tensile strengths of 850 - 1103 MPa at an elongation of 15 - 23%.
- the steel constituting the steel sheet contains, in addition to iron and unavoidable impurities (in% by weight) 0.30-0.73% C, up to 3.0% Si, up to 3.0% Al, wherein the sum of the Si and Al contents is at least 0.7%, 0.2-8.0% Cr, up to 10.0% Mn, the sum of the Cr and Mn contents being at least 1.0% , up to 0.1% P, up to 0.07% S and up to 0.010% N.
- iron and unavoidable impurities in% by weight
- Composite steel sheet is processed such that the martensite area ratio of the whole microstructure of the steel is in the range of 15-90% and the content of residual austenite of the texture is 10-50%. At least 50% of martensite should be considered as
- tempered martensite and the area fraction of annealed martensite be at least 10%. If present in the structure, at the same time the area ratio of polygonal ferrites present in the structure should be at most 10%.
- Steel pre-material such as a slab, is heated to 1000 - 1300 ° C and then rolled to a hot strip at a 870 - 950 ° C hot rolling end temperature.
- the resulting hot strip is then wound at a reel temperature of 350 - 720 ° C to form a coil.
- pickling followed by cold rolling takes place at degrees of deformation of 40-90%.
- the cold-rolled strip thus obtained is annealed for 15-1000 seconds at a temperature where it has a purely austenitic structure, and then at a cooling rate of at least 3 ° C / s cooled to a temperature beginning at a temperature below the martensite starting temperature and reaching a lower temperature of 150 ° C, to give tempered martensite
- the cold-rolled steel strip is for a period of 15 - 1000
- cold-rolled steel sheets achieved tensile strengths of more than 1600 MPa at an elongation of up to 27%.
- the object of the invention was to specify a method which makes it possible in a simple way to produce complex shaped components from flat steel products of the type described above.
- this object has been achieved in that for the production of high-strength and good
- the method according to the invention is suitable for producing a steel component which has a tensile strength Rm of more than 1200 MPa and an elongation at break A50 of at least 6%.
- the method according to the invention comprises the following steps: Providing a flat steel product which, in addition to iron and unavoidable impurities (in% by weight):
- V contains up to 0.5, the structure of the flat steel product comprising at least 10% by volume of retained austenite comprising globular retained austenite islands with a grain size of at least 1 ⁇ m,
- Forming temperature which is 150-400 ° C
- the invention is based on the recognition that a component which is made by forming a 150-400 ° C warm
- the extensibility of the inventively processed steel flat product increases significantly, so that without special effort and minimized risk of the formation of cracks can be prevented and component shapes can be generated, which have a particularly complex shape.
- the invention thus results from a pre-deformation at 150 - 400 ° C a significant increase in strength with unchanged extensibility of each component obtained. No cooling is required to cool down after forming. Thus, the cooling of the flat steel product can take place after forming in still air.
- the tensile strength could be regularly increased by about 80-120 MPa compared to the tensile strength of samples which also have a degree of deformation of 15%, but at Room temperature have been transformed.
- the elongation properties of the component obtained according to the invention correspond to the elongation properties of
- Automotive bodies is suitable.
- the reason for the increase in strength achieved by the procedure according to the invention is according to the findings of the invention is that in the structure of the present invention processed steel flat existing globular Restaustenit, which is characterized by a grain size of at least 1 ⁇ , under the load of the forming in accordance with the invention Temperature range of
- Residual austenite ensures the good residual strain achieved after forming. This effect can be used particularly reliably if the flat steel product for the inventive transformation to the component is heated to 200-400 ° C., in particular 200-300 ° C.
- the method according to the invention is particularly suitable for
- the metallic protective layer is at most slightly influenced by the invention taking place heating.
- the protective coating may be, for example, a conventional zinc, zinc alloy, aluminum or aluminum alloy, magnesium or aluminum alloy
- composition of a flat steel product processed according to the invention has been chosen taking into account the following aspects:
- the C content of the flat steel product according to the invention to at least 0.25 wt .-%, in particular at least 0.27 wt .-%, at least 0.28 wt .-% or at least 0.3 wt .-%, are set, wherein the be used by the comparably high carbon content effects particularly safe when the C content in the range of> 0.25 to 0.5 wt .-%, in particular 0.27 to 0.4 wt .-% or 0.28 - 0.4 wt .-%, is.
- the carbide formation in the bainite can be suppressed and, consequently, the residual austenite be stabilized by dissolved carbon.
- Si contributes to solid solution hardening.
- the Si content may be limited to 2.0 wt%.
- AI can partially replace the Si content in the steel processed according to the invention.
- a minimum content of 0.4 wt .-% AI can be provided. This is especially true if the addition of Al should set the hardness or tensile strength of the steel to a lower value in favor of improved ductility.
- Bainit avoirdadium with the optional additionally present levels of Cu, Cr and Ni also contribute to the formation of bainite.
- micro-alloying elements contribute to increasing the hardness by forming precipitates.
- the positive effects of Ti, V and Nb in the flat steel product processed according to the invention can then be achieved particularly effectively use, if their content is in each case in the range of 0.002 to 0.15 wt .-%, in particular 0.14 wt .-% does not exceed.
- a starting material for the process according to the invention are basically hot or cold rolled
- Patent application EP 12 17 83 30.2 the content of which is hereby expressly incorporated in the disclosure of the present
- Patent application is included.
- the hot-rolled flat steel products produced according to this patent application are characterized by an optimum combination of elongation properties and strength.
- This combination of properties can be achieved in a particularly reliable way that the structure of flat steel products processed according to the invention, in addition to optionally present proportions of up to 5% by volume of ferrite and up to 10% by volume of martensite, at least
- the retained austenite content being at least 10% by volume, at least a portion of the retained austenite being present in block form and the blocks of the retained austenite in block form being at least 98% medium
- a hot-rolled flat steel product obtained according to EP 12 17 83 30.2 has a structure dominated by two phases, one of which dominates
- Major components may contain low levels of martensite and ferrite, but their levels are too low to affect the properties of the hot rolled flat steel product.
- retained austenite Structure constituents of retained austenite the ratio of length / width, d. H. longest extent / thickness, 1 to 5. In contrast, retained austenite is called "film-like"
- Retained austenite accumulations the ratio length / width is greater than 5 and the width of the respective microstructure constituents in retained austenite is less than 1 ⁇ ⁇ . filmy
- a method for producing a hot-rolled flat steel product suitable as a starting material for the method according to the invention comprises the following steps:
- Hot rolling end temperature of at least 880 ° C
- composition of the cold-rolled steel flat product preferably consists of at least 20% by volume of bainite, 10% to 35% by volume of retained austenite and the remainder of martensite. It goes without saying that in the structure of the flat steel product technically unavoidable traces of other structural constituents can be present. Such a thing for the
- suitable cold-rolled flat steel product accordingly has a three-phase structure, the dominant constituent of which is bainite and which, moreover, consists of retained austenite and the remainder of martensite.
- the bainite content is at least 50% by volume, in particular at least
- Marten content is at least 10% by volume.
- the C content of the retained austenite is typically more than 1.0% by weight.
- Flat steel product includes the following steps:
- a precursor in the form of a slab, thin slab or a cast strip which, in addition to iron and unavoidable impurities (in% by weight) C: 0.10-0.60%, Si: 0.4-2.5%, Al: up to 3.0%, Mn: 0.4 - 3.0%, Ni: up to 1.0%, Cu: up to 2.0%, Mo: up to 0.4%, Cr: up to 2%, Co: up to 1.5%, Ti: up to 0.2%, Nb: up to 0.2%, V: up to 0.5%;
- Hot rolling end temperature of at least 830 ° C; - Coiling of the obtained hot strip at a
- Reel temperature which is between the hot rolling end temperature and 560 ° C;
- Holding temperature range is the upper limit of 470 ° C and whose lower limit is higher than that
- Martensite start temperature MS from which martensite is produced in the microbeam structure
- martensite can be prepared according to the method described in the article "Thermodynamic Exatrapolation and
- the invention is based on
- Fig. 1 is a diagram in which four hot rolled
- Fig. 2 is an illustration of a structural sample of the component
- 3a, 3b are illustrations of a structural sample of
- FIGS. 4a, 4b are illustrations of a structural sample of the
- Composition has been melted.
- the molten steel has been cast in a conventional way to slabs, which subsequently on as well
- the heated slabs are in one too
- the hot strips W1-W4 emerging from the hot rolling scale each had a hot rolling end temperature ET, from which they started with a cooling rate KR to one
- Reel temperature HT accelerated have been cooled. At this reel temperature HT, the hot strips W1 - W4 have been wound into coils.
- Martensite start temperature MS was set. The calculation of the martensite start temperature MS was carried out according to the article "Thermodynamic Exatrapolation and Martensite-Start Temperature of Substituted Alloyed Steels" by H.
- Coiler temperature HT and martensite start temperature MS are given in Table 2.
- Table 3 also shows the mechanical properties tensile strength Rm, yield strength Rp, elongation at break A80, quality Rm * A80 and the residual austenite content RA determined for the individual hot strips W1-W4.
- Samples of the steel flat products obtained in the form of the hot strips W1-W4 are then heated to a forming temperature UT lying in the range of 200-250 ° C. and converted to one component each with a degree of deformation of up to 15%.
- the elongation at break A50 of the samples was> 30%, so that it was also possible to image complex shaped elements without the risk of crack formation in the temperature range of the forming process according to the invention.
- Components have been reshaped. Also on the so shaped Components, the elongation at break A50 and the tensile strength Rm has been determined.
- FIG. 2 shows a section of a structural sample which has been removed from the component at room temperature, which has been formed from the hot strip W2 consisting of the steel S1 in the manner according to the invention at temperatures of 200-250 ° C.
- the residual austenite RAf formed by the transformation in the temperature range mentioned above from the previously globulitic retained austenite islands.
- Fig. 3a, 3b are in each case 20000-fold magnification sections of a structural sample of steel from the Sl
- the inventive method thus allows the production of a complex shaped steel component with a tensile strength Rm> 1200 MPa and a
- a flat steel product which, in addition to iron and unavoidable impurities (in% by weight) C: 0.10-0.60%, Si: 0.4-2.5%, Al: up to 3.0% Mn: 0.4 - 3.0%, Ni: up to 1%, Cu: up to 2.0%, Mo: up to 0.4%, Cr: up to 2%, Co: up to 1.5 %, Ti: up to 0.2%, Nb: up to 0.2%, V: up to 0.5%, the structure of the
- Grain size of at least 1 ⁇ comprises.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/913,592 US10301700B2 (en) | 2013-08-22 | 2014-08-18 | Method for producing a steel component |
CN201480046408.0A CN105518175B (zh) | 2013-08-22 | 2014-08-18 | 用于制造钢构件的方法 |
KR1020167006903A KR20160047495A (ko) | 2013-08-22 | 2014-08-18 | 강 부품의 제조 방법 |
JP2016535447A JP6606075B2 (ja) | 2013-08-22 | 2014-08-18 | 鋼部品を製造する方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13181374.3 | 2013-08-22 | ||
EP13181374.3A EP2840159B8 (de) | 2013-08-22 | 2013-08-22 | Verfahren zum Herstellen eines Stahlbauteils |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015024903A1 true WO2015024903A1 (de) | 2015-02-26 |
Family
ID=49028953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2014/067571 WO2015024903A1 (de) | 2013-08-22 | 2014-08-18 | Verfahren zum herstellen eines stahlbauteils |
Country Status (7)
Country | Link |
---|---|
US (1) | US10301700B2 (de) |
EP (1) | EP2840159B8 (de) |
JP (2) | JP6606075B2 (de) |
KR (1) | KR20160047495A (de) |
CN (1) | CN105518175B (de) |
ES (1) | ES2636780T3 (de) |
WO (1) | WO2015024903A1 (de) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017109539A1 (en) * | 2015-12-21 | 2017-06-29 | Arcelormittal | Method for producing a high strength steel sheet having improved strength and formability, and obtained high strength steel sheet |
DE102016104800A1 (de) * | 2016-03-15 | 2017-09-21 | Salzgitter Flachstahl Gmbh | Verfahren zur Herstellung eines warmumgeformten Stahlbauteils und ein warmumgeformtes Stahlbauteil |
CN106823880A (zh) * | 2016-12-14 | 2017-06-13 | 苏州纽东精密制造科技有限公司 | 一种高强度耐腐蚀的高速搅拌器 |
UA126731C2 (uk) * | 2018-11-30 | 2023-01-11 | Арселорміттал | Холоднокатаний відпалений сталевий лист із високим ступенем роздачі отвору та спосіб його виготовлення |
US11502402B2 (en) | 2019-03-15 | 2022-11-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated patch antenna having insulating substrate with antenna cavity and high-K dielectric |
WO2021213647A1 (de) * | 2020-04-22 | 2021-10-28 | Thyssenkrupp Steel Europe Ag | Warmgewalztes stahlflachprodukt und verfahren zu seiner herstellung |
CN113217603B (zh) * | 2021-04-30 | 2023-02-24 | 四川固锐德科技有限公司 | 用于重载车主减系统的圆柱轮及其制备方法 |
CN114774651A (zh) * | 2022-04-18 | 2022-07-22 | 营口中车型钢新材料有限公司 | 一种铁路承重用YZ25SiMnMoV扁钢的热处理设计 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005097725A (ja) * | 2003-09-05 | 2005-04-14 | Nippon Steel Corp | 耐水素脆化特性に優れたホットプレス用鋼板、自動車用部材及びその製造方法 |
US20060060269A1 (en) * | 2003-03-26 | 2006-03-23 | Chuo Hatsujo Kabushiki Kaisha | Process for producing high-strength spring |
WO2011111330A1 (ja) * | 2010-03-09 | 2011-09-15 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2012063620A1 (ja) * | 2010-11-11 | 2012-05-18 | 日本発條株式会社 | 高強度ばね用鋼、高強度ばねの製造方法及び高強度ばね |
US20120211128A1 (en) * | 2005-09-21 | 2012-08-23 | Arcelormittal France | Method for making a steel part of multiphase microstructure |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01159317A (ja) | 1987-12-17 | 1989-06-22 | Nippon Steel Corp | 強度延性バランスの優れた高強度熱延鋼板の製造方法 |
US6190469B1 (en) | 1996-11-05 | 2001-02-20 | Pohang Iron & Steel Co., Ltd. | Method for manufacturing high strength and high formability hot-rolled transformation induced plasticity steel containing copper |
FR2796966B1 (fr) | 1999-07-30 | 2001-09-21 | Ugine Sa | Procede de fabrication de bandes minces en acier de type "trip" et bandes minces ainsi obtenues |
US6364968B1 (en) | 2000-06-02 | 2002-04-02 | Kawasaki Steel Corporation | High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same |
FR2834722B1 (fr) | 2002-01-14 | 2004-12-24 | Usinor | Procede de fabrication d'un produit siderurgique en acier au carbone riche en cuivre, et produit siderurgique ainsi obtenu |
JP3921136B2 (ja) | 2002-06-18 | 2007-05-30 | 新日本製鐵株式会社 | バーリング加工性に優れた高強度高延性溶融亜鉛めっき鋼板とその製造方法 |
US20050150580A1 (en) | 2004-01-09 | 2005-07-14 | Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd.) | Ultra-high strength steel sheet having excellent hydrogen embrittlement resistance, and method for manufacturing the same |
EP1559798B1 (de) | 2004-01-28 | 2016-11-02 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Hochfestes kaltgewalztes Stahlblech mit niedrigem Streckgrenzenverhältnis und Verfahren zu seiner Herstellung |
EP1749895A1 (de) | 2005-08-04 | 2007-02-07 | ARCELOR France | Herstellungsprozess von Stahlblechen mit hoher Festigkeit und exzellenter Dehnung und hergestellte Produkte |
WO2007077933A1 (ja) | 2005-12-28 | 2007-07-12 | Kabushiki Kaisha Kobe Seiko Sho | 超高強度薄鋼板 |
EP1832667A1 (de) * | 2006-03-07 | 2007-09-12 | ARCELOR France | Herstellungsverfahren von Stahlblechen mit hoher Festigkeit, Duktilität sowie Zähigkeit und so hergestellte Bleche. |
JP5030200B2 (ja) | 2006-06-05 | 2012-09-19 | 株式会社神戸製鋼所 | 伸び、伸びフランジ性および溶接性に優れた高強度鋼板 |
JP4164537B2 (ja) | 2006-12-11 | 2008-10-15 | 株式会社神戸製鋼所 | 高強度薄鋼板 |
EP1990431A1 (de) | 2007-05-11 | 2008-11-12 | ArcelorMittal France | Verfahren zur Herstellung von kalt gewalzten und geglühten Stahlblechen mit sehr hoher Festigkeit und so hergestellte Bleche |
DE102007031711A1 (de) * | 2007-07-06 | 2009-01-08 | Rolls-Royce Deutschland Ltd & Co Kg | Gehäusedeckbandsegment-Aufhängung |
KR101067896B1 (ko) * | 2007-12-06 | 2011-09-27 | 주식회사 포스코 | 강도 및 연성이 우수한 고탄소 강판 및 그 제조 방법 |
JP5365217B2 (ja) | 2008-01-31 | 2013-12-11 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP5402007B2 (ja) | 2008-02-08 | 2014-01-29 | Jfeスチール株式会社 | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP5365112B2 (ja) | 2008-09-10 | 2013-12-11 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP5418047B2 (ja) | 2008-09-10 | 2014-02-19 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP2010065272A (ja) | 2008-09-10 | 2010-03-25 | Jfe Steel Corp | 高強度鋼板およびその製造方法 |
JP5504636B2 (ja) | 2009-02-04 | 2014-05-28 | Jfeスチール株式会社 | 高強度熱延鋼板およびその製造方法 |
JP5412182B2 (ja) | 2009-05-29 | 2014-02-12 | 株式会社神戸製鋼所 | 耐水素脆化特性に優れた高強度鋼板 |
JP5327106B2 (ja) | 2010-03-09 | 2013-10-30 | Jfeスチール株式会社 | プレス部材およびその製造方法 |
JP5671359B2 (ja) * | 2010-03-24 | 2015-02-18 | 株式会社神戸製鋼所 | 温間加工性に優れた高強度鋼板 |
JP5672946B2 (ja) * | 2010-10-22 | 2015-02-18 | Jfeスチール株式会社 | 成形性および強度上昇能に優れた温間成形用薄鋼板およびそれを用いた温間成形方法 |
JP5662902B2 (ja) * | 2010-11-18 | 2015-02-04 | 株式会社神戸製鋼所 | 成形性に優れた高強度鋼板、温間加工方法、および温間加工された自動車部品 |
JP2012240095A (ja) * | 2011-05-20 | 2012-12-10 | Kobe Steel Ltd | 高強度鋼板の温間成形方法 |
WO2012161323A1 (ja) | 2011-05-26 | 2012-11-29 | 新日鐵住金株式会社 | 機械構造用鋼部品およびその製造方法 |
US20130023635A1 (en) * | 2011-07-18 | 2013-01-24 | Nifant Ev Ilya E | Catalysts based on heterocyclic-8-anilinoquinoline ligands |
EP2848715B1 (de) | 2013-09-13 | 2018-10-31 | ThyssenKrupp Steel Europe AG | Verfahren zum herstellen eines mit einem metallischen, vor korrosion schützenden überzug versehenen stahlbauteils |
-
2013
- 2013-08-22 EP EP13181374.3A patent/EP2840159B8/de active Active
- 2013-08-22 ES ES13181374.3T patent/ES2636780T3/es active Active
-
2014
- 2014-08-18 KR KR1020167006903A patent/KR20160047495A/ko not_active Application Discontinuation
- 2014-08-18 CN CN201480046408.0A patent/CN105518175B/zh not_active Expired - Fee Related
- 2014-08-18 WO PCT/EP2014/067571 patent/WO2015024903A1/de active Application Filing
- 2014-08-18 JP JP2016535447A patent/JP6606075B2/ja not_active Expired - Fee Related
- 2014-08-18 US US14/913,592 patent/US10301700B2/en not_active Expired - Fee Related
-
2019
- 2019-04-04 JP JP2019072123A patent/JP2019151932A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060060269A1 (en) * | 2003-03-26 | 2006-03-23 | Chuo Hatsujo Kabushiki Kaisha | Process for producing high-strength spring |
JP2005097725A (ja) * | 2003-09-05 | 2005-04-14 | Nippon Steel Corp | 耐水素脆化特性に優れたホットプレス用鋼板、自動車用部材及びその製造方法 |
US20120211128A1 (en) * | 2005-09-21 | 2012-08-23 | Arcelormittal France | Method for making a steel part of multiphase microstructure |
WO2011111330A1 (ja) * | 2010-03-09 | 2011-09-15 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2012063620A1 (ja) * | 2010-11-11 | 2012-05-18 | 日本発條株式会社 | 高強度ばね用鋼、高強度ばねの製造方法及び高強度ばね |
US20130240093A1 (en) * | 2010-11-11 | 2013-09-19 | Nhk Spring Co., Ltd. | Steel for high-strength spring, method for producing same, and high-strength spring |
Also Published As
Publication number | Publication date |
---|---|
JP6606075B2 (ja) | 2019-11-13 |
EP2840159B1 (de) | 2017-05-10 |
JP2019151932A (ja) | 2019-09-12 |
CN105518175A (zh) | 2016-04-20 |
CN105518175B (zh) | 2017-07-11 |
KR20160047495A (ko) | 2016-05-02 |
US20160201157A1 (en) | 2016-07-14 |
EP2840159B8 (de) | 2017-07-19 |
JP2016530403A (ja) | 2016-09-29 |
EP2840159A1 (de) | 2015-02-25 |
US10301700B2 (en) | 2019-05-28 |
ES2636780T3 (es) | 2017-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2855718B1 (de) | Stahlflachprodukt und verfahren zur herstellung eines stahlflachprodukts | |
EP2690183B1 (de) | Warmgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung | |
EP2809819B1 (de) | Höchstfester mehrphasenstahl mit verbesserten eigenschaften bei herstellung und verarbeitung | |
DE69516336T2 (de) | Verfahren zur herstellung eines stahlbleches mit hoher korrosionsbeständigkeit | |
EP2840159B1 (de) | Verfahren zum Herstellen eines Stahlbauteils | |
EP2439291B1 (de) | Mehrphasenstahl, aus einem solchen Mehrphasenstahl hergestelltes kaltgewalztes Flachprodukt und Verfahren zu dessen Herstellung | |
WO2018108653A1 (de) | Warmgewalztes stahlflachprodukt und verfahren zu seiner herstellung | |
EP2836614B1 (de) | Hochfester mehrphasenstahl und verfahren zur herstellung eines bandes aus diesem stahl | |
WO2012156428A1 (de) | Hochfestes stahlflachprodukt und verfahren zu dessen herstellung | |
EP2690184B1 (de) | Kaltgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung | |
EP2383353A2 (de) | Höherfester, Mn-haltiger Stahl, Stahlflachprodukt aus einem solchen Stahl und Verfahren zu dessen Herstellung | |
WO2012095232A1 (de) | Verfahren zum herstellen eines warmgewalzten stahlflachprodukts | |
EP3655560A1 (de) | Stahlflachprodukt mit guter alterungsbeständigkeit und verfahren zu seiner herstellung | |
DE69708832T2 (de) | Kaltgewalztes Stahlblech und sein Herstellungsverfahren | |
WO2008052919A1 (de) | Verfahren zum herstellen von stahl-flachprodukten aus einem mit bor mikrolegierten mehrphasenstahl | |
WO2015144530A1 (de) | Kaltgewalztes stahlflachprodukt und verfahren zu seiner herstellung | |
DE60315129T2 (de) | Verfahren zur herstellung eines eisenhüttenprodukts aus unlegiertem stahl mit hohem kupfergehalt und danach erhaltenes eisenhüttenprodukt | |
WO2012045595A1 (de) | Mehrphasenstahl, aus einem solchen mehrphasenstahl hergestelltes kaltgewalztes flachprodukt und verfahren zu dessen herstellung | |
WO2012110165A1 (de) | Aus einem komplexphasenstahl hergestelltes warmgewalztes stahlflachprodukt und verfahren zu dessen herstellung | |
WO2015117934A1 (de) | Hochfestes stahlflachprodukt mit bainitisch-martensitischem gefüge und verfahren zur herstellung eines solchen stahlflachprodukts | |
WO2008052918A1 (de) | Verfahren zum herstellen von stahl-flachprodukten aus einem ein martensitisches gefüge bildenden stahl | |
WO2014125016A1 (de) | Kaltgewalztes stahlflachprodukt für tiefziehanwendungen und verfahren zu seiner herstellung | |
WO2008052921A1 (de) | Verfahren zum herstellen von stahl-flachprodukten aus einem mit silizium legierten mehrphasenstahl | |
EP4392584A1 (de) | Kaltgewalztes stahlflachprodukt und verfahren zu seiner herstellung | |
WO2002048410A1 (de) | Verfahren zum herstellen von warmband oder -blech aus einem mikrolegierten stahl |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14753060 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016535447 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14913592 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016003351 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20167006903 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14753060 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 112016003351 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160217 |