WO2015099127A1 - Fgfrゲートキーパー変異遺伝子およびそれを標的とする医薬 - Google Patents
Fgfrゲートキーパー変異遺伝子およびそれを標的とする医薬 Download PDFInfo
- Publication number
- WO2015099127A1 WO2015099127A1 PCT/JP2014/084521 JP2014084521W WO2015099127A1 WO 2015099127 A1 WO2015099127 A1 WO 2015099127A1 JP 2014084521 W JP2014084521 W JP 2014084521W WO 2015099127 A1 WO2015099127 A1 WO 2015099127A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkyl
- cancer
- group
- mutant polypeptide
- amino
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4164—1,3-Diazoles
- A61K31/4184—1,3-Diazoles condensed with carbocyclic rings, e.g. benzimidazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/71—Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2863—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/10—Protein-tyrosine kinases (2.7.10)
- C12Y207/10001—Receptor protein-tyrosine kinase (2.7.10.1)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57484—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
- G01N33/57492—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds localized on the membrane of tumor or cancer cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/106—Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/90—Enzymes; Proenzymes
- G01N2333/91—Transferases (2.)
- G01N2333/912—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- G01N2333/91205—Phosphotransferases in general
Definitions
- the present invention relates to a mutant polypeptide containing a novel gatekeeper mutation, a polynucleotide encoding the polypeptide, a vector containing the polynucleotide, a cell containing the vector, an antibody that specifically binds to the polypeptide, and fragments thereof , Oligonucleotide primer or oligonucleotide probe that hybridizes to the polynucleotide, oligonucleotide that suppresses expression of the polypeptide, pharmaceutical composition comprising the antibody or the oligonucleotide, method for detecting the mutant polypeptide or the polynucleotide And a detection kit, a test method for the presence or absence of resistance to an FGFR inhibitor based on the presence or absence of the mutant polypeptide or the polynucleotide, a method for selecting a cancer patient to which an FGFR inhibitor is applied, and FGFR inhibitory activity
- Compound youth A pharmaceutical composition for treating cancer, a compound having
- cancer a disease that occurs in all organs and tissues, is refractory and deadly, and is extremely troublesome, but recent statistics also show that one in two lives a lifetime. Cancer is diagnosed at one time, and 1 in 4 males and 1 in 6 females die from cancer, a very serious disease.
- Fibroblast growth factor receptor is a kinase belonging to the receptor tyrosine kinase family, and FGFR1, FGFR2, FGFR3, and FGFR4 constitute the FGFR family.
- the ligand is fibroblast growth factor (FGF), and 22 structurally similar proteins make up the family.
- Non-patent Document 1 Signals transmitted through FGFR flow to the MAPK pathway and PI3K / AKT pathway. This signal transduction is involved in cell proliferation, angiogenesis, cell migration, invasion, metastasis, etc. It is reported that it is activated by overexpression, gene over-amplification, mutation, and translocation (Non-patent Document 1).
- FGFR3 is known to be overexpressed in multiple myeloma gene translocation (Non-Patent Document 2), bladder cancer gene mutation (Non-Patent Document 3), ovarian cancer, non-small cell lung cancer, and hepatocellular carcinoma. ing.
- Non-patent Documents 4 and 5 the relationship between FGFR and cancer has been suggested, and the development of compounds having an activity of inhibiting FGFR as anticancer agents has been attempted.
- GK gatekeeper
- the present inventors have found a novel gatekeeper mutation of the FGFR gene, and further confirmed that a specific FGFR inhibitor has an inhibitory activity on FGFR having the mutation equivalent to FGFR having no mutation. I found it. That is, the present invention provides a novel antitumor drug having high anticancer activity against cancers having FGFR that has acquired resistance by acquiring the mutation relative to other FGFR inhibitors. With the goal.
- the present inventors have analyzed the crystal structure of FGFR and energetically studied mutant genes that can be various FGFR gatekeeper mutations.
- a novel GK mutation for example, mutation V564F in SEQ ID NO: 1
- a mutation similar to the GK mutation for example, mutation V562L in SEQ ID NO: 1
- FGFR having the mutation is a known FGFR inhibitor such as AZD4547.
- the present invention was completed by finding that the compound was resistant to the agent and sensitive to the compound A.
- the present invention specifically relates to the following FGFR mutant polypeptide containing a novel gatekeeper mutation, a polynucleotide encoding the mutant polypeptide, a vector containing the polynucleotide, and a cell containing the vector
- the present invention relates to a method for selecting a patient to which the pharmaceutical composition is applied, the pharmaceutical composition for use in the treatment of cancer in a patient expressing the mutant polypeptide, and the like.
- a pharmaceutical composition for treating cancer comprising a compound represented by the following formula (I) or a pharmaceutically acceptable salt thereof as an active ingredient,
- FGFR polypeptide in the partial amino acid sequence described in SEQ ID NO: 53 or 54, substitution of valine, which is the seventh amino acid from the N-terminal side, with phenylalanine and / or the fifth amino acid from the N-terminal side
- a pharmaceutical composition for treating cancer characterized in that it is used to be administered to a patient that expresses an FGFR mutant polypeptide containing a substitution of valine for leucine or has a polynucleotide encoding the mutant polypeptide.
- R1 to R4 each independently represent the following group;
- R1 is hydrogen, hydroxy, halogen, cyano, nitro, C1-4 haloalkyl, C1-6 alkyl, C2-6 alkenyl, C2-6 alkynyl, C3-7 cycloalkyl, C6-10 aryl C1-4 alkyl, —OR5 , —NR6R7, — (CR8R9) nZ1, —C (O) NR12R13, —SR14, —SOR15, —SO2R16, —NR17SO2R18, COOH, substituted with one or more groups independently selected from the group P C6-10 aryl, 5- to 10-membered heteroaryl or 3- to 10-membered heterocyclyl optionally substituted with one or more groups independently selected from group Q, —COR19, —COOR20, —OC ( O) R21, -NR22C (O) R23, -NR24C (S) R25,
- R20 represents C1-4 alkyl, C3-7 cycloalkyl, C1-4 haloalkyl, C6-10 aryl, 5-10 membered heteroaryl or 3-10 membered heterocyclyl
- R21 represents C1-4 alkyl, C3-7 cycloalkyl, C1-4 haloalkyl, C6-10 aryl, 5-10 membered heteroaryl or 3-10 membered heterocyclyl
- R22 represents hydrogen, C1-4 alkyl or C1-4 haloalkyl
- R23 represents hydrogen, C1-4 alkyl, C3-7 cycloalkyl, C1-4 haloalkyl, C6-10 aryl, 5-10 membered heteroaryl or 3-10 membered heterocyclyl
- R24 represents hydrogen, C1-4 alkyl or C1-4 haloalkyl
- R25 represents C1-4 alkyl, C3-7 cycloalkyl, C1-4 haloalkyl, C1-4 haloalkyl, C
- the pharmaceutical composition according to [1] comprising a compound represented by the following formula or a pharmaceutically acceptable salt thereof as an active ingredient: .
- a pair of oligonucleotide primers or oligonucleotide probes for detecting or amplifying the polynucleotide comprising an oligonucleotide that specifically hybridizes to the polynucleotide encoding the mutant polypeptide according to [3].
- oligonucleotide according to [9], wherein the oligonucleotide is an siRNA that cleaves an mRNA polynucleotide.
- An FGFR mutation comprising a step of detecting the mutant polypeptide in a sample isolated from a subject using an antibody or antigen-binding fragment thereof that specifically binds to the mutant polypeptide according to [3] A method for detecting a polypeptide.
- oligonucleotide primers or oligonucleotide probes for detecting or amplifying the polynucleotide including an oligonucleotide that specifically hybridizes to the polynucleotide encoding the mutant polypeptide according to [3]
- a method for detecting a polynucleotide encoding an FGFR mutant polypeptide comprising a step of detecting a polynucleotide encoding the mutant polypeptide in a sample isolated from a subject.
- [13] comprising a pair of oligonucleotide primers or oligonucleotide probes for detection or amplification of the polynucleotide, comprising an oligonucleotide that specifically hybridizes to the polynucleotide encoding the mutant polypeptide of [3]
- a kit for detecting a polynucleotide encoding an FGFR mutant polypeptide comprising an antibody or antigen-binding fragment thereof that specifically binds to the mutant polypeptide according to [3].
- the cancer is bladder cancer, brain tumor, head and neck squamous cell carcinoma, lung cancer, lung adenocarcinoma, lung squamous cell carcinoma, skin melanoma, endometrial cancer, breast cancer, prostate cancer, colon cancer, esophageal cancer, stomach cancer, [15] The method according to [15], wherein the cancer is bile duct cancer, biliary tract cancer or liver cancer.
- [17] A method for selecting a patient to which the pharmaceutical composition according to [1] or [2] is applied, comprising the following steps: (A) determining the presence or absence of the mutant polypeptide according to [3] in a sample isolated from a subject; (B) A step of selecting a subject in which the presence of the mutant polypeptide is confirmed as a patient to which the pharmaceutical composition is applied.
- a method for selecting a patient to which the pharmaceutical composition of [1] or [2] is applied comprising the following steps: (A) determining a presence or absence of a polynucleotide encoding the mutant polypeptide according to [3] in a sample isolated from a subject; (B) A step of selecting a subject in which the presence of a polynucleotide encoding the mutant polypeptide is confirmed as a patient to which the pharmaceutical composition is applied.
- the cancer is bladder cancer, brain tumor, head and neck squamous cell carcinoma, lung cancer, lung adenocarcinoma, lung squamous cell carcinoma, skin melanoma, endometrial cancer, breast cancer, prostate cancer, colon cancer, esophageal cancer, stomach cancer, [18] The method according to [18], wherein the cancer is bile duct cancer, biliary tract cancer or liver cancer. [20] As defined in [1] or [2] for use in the treatment of cancer in a patient expressing the mutant polypeptide of [3] or having a polynucleotide encoding the mutant polypeptide A compound or a pharmaceutically acceptable salt thereof.
- the cancer is bladder cancer, brain tumor, head and neck squamous cell carcinoma, lung cancer, lung adenocarcinoma, lung squamous cell carcinoma, skin melanoma, endometrial cancer, breast cancer, prostate cancer, colon cancer, esophageal cancer, stomach cancer, [20]
- the compound or a pharmaceutically acceptable salt thereof according to [20] which is cholangiocarcinoma, biliary tract cancer or liver cancer.
- the seventh amino acid sequence from the N-terminal side of the partial amino acid sequence described in SEQ ID NO: 53 or 54 in the FGFR polypeptide, which contains a compound represented by the following formula or a pharmaceutically acceptable salt thereof as an active ingredient A pharmaceutical composition for the treatment of cancer expressed by an FGFR mutant polypeptide comprising a substitution of valine with phenylalanine and / or a substitution of valine with leucine which is the fifth amino acid from the N-terminal side: .
- a pharmaceutical composition for treating cancer comprising, as an active ingredient, a substance that inhibits the function or expression of an FGFR mutant polypeptide comprising the substitution of the amino acid valine for leucine.
- a pharmaceutical composition for treating or preventing cancer for administration to a patient that expresses the mutant polypeptide according to [3] or has a polynucleotide encoding the mutant polypeptide [1] Or a pharmaceutically acceptable salt thereof.
- a method for detecting resistance to an FGFR inhibitor selected from the group consisting of PD173074, AZD4547, BGJ398, and AZD2171 comprising the following steps: (A) a step of determining the presence or absence of the mutant polypeptide according to [3] or a polynucleotide encoding the mutant polypeptide in a sample isolated from a subject; (B) A step of determining that the subject in which the presence of the mutant polypeptide or the polynucleotide is confirmed has resistance to the FGFR inhibitor.
- a method for predicting the response of a cancer patient to treatment with an FGFR inhibitor selected from the group consisting of PD173074, AZD4547, BGJ398, and AZD2171 comprising the following steps: (A) a step of determining the presence or absence of the mutant polypeptide according to [3] or a polynucleotide encoding the mutant polypeptide in a sample isolated from a patient; (B) A step of determining that a patient in which the presence of the mutant polypeptide or the polynucleotide is confirmed has low sensitivity to the FGFR inhibitor.
- [29] The antibody or antigen-binding fragment thereof according to [7] or [8] for predicting the response of a cancer patient to treatment with an FGFR inhibitor selected from the group consisting of PD173074, AZD4547, BGJ398, and AZD2171 Use of the described oligonucleotide primers or oligonucleotide probes.
- a kit for predicting the effect of an FGFR inhibitor in cancer treatment comprising the antibody or antigen-binding fragment thereof according to [7], or the oligonucleotide primer or oligonucleotide probe according to [8].
- [31] The kit according to [30], wherein the FGFR inhibitor is selected from the group consisting of PD173074, AZD4547, BGJ398, and AZD2171.
- FIG. 2 is a graph showing the effects of compounds A and C on tyrosine phosphorylation of FGFR in cells expressing wild type FGFR2, FGFR2 V564F mutant or FGFR2 V562L mutant.
- 2 is a graph showing the inhibitory effect of compounds A, B and C on the growth of cells expressing wild type FGFR2, FGFR2 V564F mutant or FGFR2 V562L mutant.
- 2 is a graph showing the inhibitory effect of compounds A, B, C, D and E on the growth of cells expressing TEL-fused wild type FGFR2 or TEL-fused FGFR2 V564F mutant.
- 2 is a graph showing the inhibitory effect of compounds A and C on tumor growth in mice bearing tumor cells expressing TEL-fused wild-type FGFR2 or TEL-fused FGFR2 V564F mutants.
- 2 is a graph showing the inhibitory effect of compound A or C on tumor phosphorylation in mice bearing tumor cells expressing TEL-fused wild-type FGFR2 or TEL-fused FGFR2RV564F mutants.
- the present invention is an invention as exemplarily described in the above [1] to [31], and includes a novel FGFR mutant polypeptide containing a gatekeeper mutation, a polynucleotide encoding the mutant polypeptide, Vector containing polynucleotide, cell containing the vector, antibody and fragment thereof specifically binding to the mutant polypeptide, oligonucleotide primer or oligonucleotide probe hybridizing to the polynucleotide, inhibiting expression of the mutant polypeptide Oligonucleotide, method for detecting the mutant polypeptide or polynucleotide, kit for detection, pharmaceutical composition for cancer treatment characterized by being used to be administered to a patient expressing the mutant polypeptide, the mutation Administering the pharmaceutical composition to a patient expressing the polypeptide A method for treating or preventing cancer, a method for selecting a patient to which the pharmaceutical composition is applied, a compound having FGFR inhibitory activity for use in the treatment or prevention of cancer in a patient expressing the mutant
- FGFR in the present invention is a fibroblast growth factor receptor (FGFR), which is a kinase belonging to the receptor tyrosine kinase family, and includes the FGFR family by FGFR1, FGFR2, FGFR3, and FGFR4. Means any FGFR belonging to (Cytokine & Growth Factor Reviews, 2005, 16: 139-149).
- FGFR fibroblast growth factor receptor
- the FGFR of the present invention means any FGFR, preferably FGFR of mammals (human, mouse, rat, guinea pig, rabbit, sheep, monkey, goat, donkey, cow, horse, pig, etc.) Further, human FGFR is more preferable, and human FGFR2, human FGFR1, and FGFR3 are particularly preferable, and many isoforms are known.
- “Human FGFR2” in the present invention is a human FGFR2 wild-type polypeptide (GenBank Accession No.) having the amino acid sequence set forth in SEQ ID NOs: 1, 2, 37, 38, 39, 40, 41, 42, 43, or 44. .: NP_000132.3, NP_075259.4, NP_001138385.1, NP_001138386.1, NP_001138387.1, NP_001138388.1, NP_001138389.1, NP_001138390.1, NP_001138391.1, NP_001138391.1), or the wild type polypeptide In which one or more (preferably 1 to 10, particularly preferably 1 to 5) amino acids are substituted, deleted or inserted.
- “Human FGFR1” in the present invention is a human FGFR1 wild-type polypeptide (GenBank Accession No .: NP — 001167538.1 each consisting of the amino acid sequence set forth in SEQ ID NO: 21, 45, 46, 47, 48, 49, or 50). , NP_001167534.1, NP_001167535.1, NP_001167536.1, NP_001167537.1, NP_075594.1, NP_075598.2), or one or more (preferably 1 to 10, particularly preferably 1 to 5) of the wild-type polypeptide ) Amino acid substitution, deletion or insertion.
- human FGFR3 is a human FGFR3 wild-type polypeptide (GenBank Accession No .: NP_000133.1, NP_001156685.1, NP_075254.1, respectively) consisting of the amino acid sequence set forth in SEQ ID NO: 22, 51, or 52. ) Or a mutant polypeptide in which one or more (preferably 1 to 10, particularly preferably 1 to 5) amino acids are substituted, deleted or inserted in the wild-type polypeptide.
- the mutant polypeptide also includes a polypeptide having 70% or more homology with the amino acid sequence of the wild-type polypeptide, preferably a polypeptide having 80% or more homology, more preferably 90% or more homology. More preferably, a polypeptide having a homology of 95% or more is included.
- the “mutant polypeptide” refers to the substitution of valine, which is the seventh amino acid from the N-terminal side, with phenylalanine in the partial amino acid sequence described in SEQ ID NO: 53 or 54 in the FGFR polypeptide, and / or FGFR mutant polypeptide containing a substitution of valine, the fifth amino acid from the N-terminal side, with leucine, which is also referred to as a polypeptide containing the mutation of the present invention.
- the mutant polypeptide of the present invention is an FGFR mutant polypeptide having at least one of the two types of mutations
- the mutation is introduced into the amino acid sequence of the wild-type FGFR polypeptide consisting of the above-mentioned full-length amino acid sequence. It is not limited to FGFR mutant polypeptide consisting of the amino acid sequence that is, including those peptide fragments containing the mutation, and fusion polypeptides of those FGFR mutant polypeptides or peptide fragments and other peptides, Other than the position of the mutation, one or more (preferably 1 to 10, particularly preferably 1 to 5) amino acids may be substituted, deleted, added or inserted.
- TEL also known as ETV6, Cancer Research, 2001, 61: 8371-8374 and Blood, 2005, 105 (5): 2115-2123
- polypeptide a wild-type polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 33, or one or more amino acids are substituted, deleted, added or inserted in the wild-type polypeptide
- BAIA2P2L1 polypeptide wild-type polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 31 or one or more amino acids in the wild-type polypeptide are substituted, deleted, added, or Inserted mutant polypeptide or peptide fragment thereof
- TACC3 polypeptide SEQ ID NO: A wild-type polypeptide having the amino acid sequence described in No.
- the mutant polypeptide of the present invention includes an FGFR mutant polypeptide selected from the following (1) to (20), or a peptide fragment of (1) to (20) containing the mutation, or (1 ) Means a fusion polypeptide of the FGFR mutant polypeptide of (20) to (20) or a peptide fragment thereof and another peptide: (1) an FGFR2 mutant polypeptide comprising at least the mutation V564F and / or V562L in the amino acid sequence (SEQ ID NO: 1) of the wild-type FGFR2 polypeptide described above, (2) an FGFR2 mutant polypeptide comprising at least the mutant V565F and / or V563L in the amino acid sequence (SEQ ID NO: 2) of the wild-type FGFR2 polypeptide described above, (3) FGFR2 mutant polypeptide containing at least mutation V565F and / or V563L in the amino acid sequence (SEQ ID NO: 37) of the above wild type FGFR2 polypeptide, or (4) amino
- an FGFR2 mutant polypeptide comprising at least the mutant V475F and / or V473L in the amino acid sequence (SEQ ID NO: 39) of the wild-type FGFR2 polypeptide described above
- an FGFR2 mutant polypeptide comprising at least the mutant V449F and / or V447L in the amino acid sequence (SEQ ID NO: 40) of the wild-type FGFR2 polypeptide described above
- an FGFR2 mutant polypeptide comprising at least the mutation V448F and / or V446L in the amino acid sequence (SEQ ID NO: 41) of the wild-type FGFR2 polypeptide described above
- an FGFR2 mutant polypeptide comprising at least the mutation V447F and / or V445L in the amino acid sequence (SEQ ID NO: 42) of the wild-type FGFR2 polypeptide described above
- an FGFR2 mutant polypeptide comprising at least the mutation V476F and / or
- the FGFR mutant polypeptide of the present invention includes an FGFR2 mutant polypeptide comprising the amino acid sequence represented by SEQ ID NO: 9, 10, 29, or 30, and an FGFR1 mutation comprising the amino acid sequence represented by SEQ ID NO: 25 or 26. And a TEL-fused FGFR2 mutant polypeptide comprising the amino acid sequence shown in SEQ ID NO: 35 or 36, and a FGFR3 mutant polypeptide comprising the amino acid sequence shown in SEQ ID NO: 27 or 28.
- the FGFR mutant polypeptide of the present invention has a biological activity comparable to or stronger than that of the wild-type FGFR polypeptide (eg, tyrosine phosphorylation activity, cell proliferation activity, angiogenesis activity of the FGFR intracellular domain, Cell migration activity, cell invasion activity, cell metastasis activity, preferably cell proliferation activity).
- a biological activity comparable to or stronger than that of the wild-type FGFR polypeptide eg, tyrosine phosphorylation activity, cell proliferation activity, angiogenesis activity of the FGFR intracellular domain, Cell migration activity, cell invasion activity, cell metastasis activity, preferably cell proliferation activity.
- the polynucleotide of the present invention includes any polynucleotide that encodes the above-mentioned FGFR mutant polypeptide of the present invention and can encode the FGFR mutant polypeptide of the present invention, and includes either genomic DNA or cDNA. Is also included. Genomic DNA includes exons and introns. The cDNA may include a nucleic acid sequence derived from a part of an intron sequence and encoding an amino acid sequence. In addition, the polynucleotide includes a degenerate polynucleotide composed of any codon as long as it is a codon encoding the same amino acid.
- polynucleotide in the present invention includes a polynucleotide encoding a mutant polypeptide derived from a mammal, and a preferred embodiment includes a polynucleotide encoding a mutant polypeptide derived from a human.
- the polynucleotide of the present invention may be obtained by any method.
- complementary DNA cDNA prepared from mRNA
- DNA prepared from genomic DNA DNA obtained by chemical synthesis
- DNA obtained by PCR amplification using RNA or DNA as a template DNA obtained by PCR amplification using RNA or DNA as a template, and appropriate combinations of these methods All DNAs constructed in this way are also included.
- the polynucleotide encoding the mutant polypeptide of the present invention is a method of cloning cDNA from mRNA encoding the mutant polypeptide of the present invention according to a conventional method, a method of isolating and splicing genomic DNA, a method of chemical synthesis, etc. It can be obtained by.
- the mutant polypeptide of the present invention can be cloned from any tissue or cell that expresses and produces the mutant polypeptide of the present invention according to a conventional method.
- An mRNA encoding the peptide is prepared.
- it can be performed by subjecting total RNA prepared by a method such as the guanidine thiocyanate method, the hot phenol method, or the AGPC method to affinity chromatography using oligo (dT) cellulose, poly U-sepharose, or the like.
- a known method such as using reverse transcriptase (Mol. Cell. Biol., Vol. 2, p. 161, 1982; Mol. Cell. Biol., Vol. 3, p. .280, 1983; Gene, Vol. 25, p.263, 1983), etc., synthesize cDNA strand, convert cDNA to double-stranded cDNA, and incorporate this cDNA into plasmid vector, phage vector, cosmid vector, etc.
- a cDNA library is prepared by transforming E. coli or transfecting E. coli after in vitro packaging.
- the present invention also relates to a vector (recombinant vector) containing a polynucleotide encoding the above-described mutant polypeptide of the present invention.
- the vector of the present invention is not particularly limited as long as it can be replicated and maintained in various prokaryotic and / or eukaryotic hosts, and includes plasmid vectors and phage vectors.
- cloning vectors examples include pUC19, ⁇ gt10, ⁇ gt11, and the like.
- a vector having a promoter capable of expressing the polynucleotide is preferable.
- a polynucleotide encoding the mutant polypeptide of the present invention can be conveniently linked by a conventional method to a recombination vector (plasmid DNA and bacteriophage DNA) available in the art. Can be prepared.
- Examples of the recombination vector used include plasmids derived from E. coli (pBR322, pBR325, pUC12, pUC13, pUC19, etc.), plasmids derived from yeast (pSH19, pSH15, etc.), plasmids derived from Bacillus subtilis (pUB110, pTP5, pC194, Etc.).
- phages include bacteriophages such as ⁇ phage, and animal and insect viruses (pVL1393, manufactured by Invitrogen) such as retroviruses, vaccinia viruses, nuclear polyhedrosis viruses, and lentiviruses.
- bacteriophages such as ⁇ phage
- pVL1393 animal and insect viruses
- retroviruses such as retroviruses, vaccinia viruses, nuclear polyhedrosis viruses, and lentiviruses.
- An expression vector is useful for the purpose of expressing a polynucleotide encoding the mutant polypeptide of the present invention to produce the mutant polypeptide of the present invention.
- the expression vector is not particularly limited as long as it has a function of expressing a polynucleotide encoding the mutant polypeptide of the present invention in various prokaryotic and / or eukaryotic host cells and producing these polypeptides. Not.
- Examples include pMAL C2, pEF-BOS (Nucleic Acid Research, Vol.18, 1990, p.5322, etc.) or pME18S (experimental medicine separate volume "Gene Engineering Handbook", 1992 etc.).
- the mutant polypeptide of the present invention can also be produced as a fusion protein with another protein.
- the cDNA encoding the mutant polypeptide of the present invention is subcloned into, for example, the plasmid pGEX4T1 (Pharmacia), and E. coli DH5 ⁇ is transformed. Then, it can be prepared by culturing the transformant.
- HA influenza agglutinin
- immunoglobulin constant region ⁇ -galactosidase
- MBP maltose binding protein
- FLAG Hopp, T. P.
- 6 ⁇ His consisting of 6 His (histidine) residues, 10 ⁇ His, influenza agglutinin (HA), human c-myc fragment, VSV-GP fragment, p18HIV fragment, T7-tag, HSV-tag, E-tag, SV40T antigen fragment, lck tag, ⁇ -tubulin fragment, B-tag And a fusion with a known peptide such as a Protein C fragment, Stag, StrepTag, HaloTag or the like.
- HA influenza agglutinin
- HSV-GP fragment p18HIV fragment
- T7-tag HSV-tag
- E-tag E-tag
- SV40T antigen fragment lck tag
- ⁇ -tubulin fragment B-tag
- a fusion with a known peptide such as a Protein C fragment, Stag, StrepTag, HaloTag or the like.
- the vector of the present invention uses a bacterium, particularly Escherichia coli, as the host cell, the vector contains at least a promoter-operator region, a start codon, a polynucleotide encoding the mutant polypeptide of the present invention, a stop codon, a terminator region, and a replicable. Preferably it contains units.
- the expression vector preferably contains at least a promoter, a start codon, a polynucleotide encoding the mutant polypeptide of the present invention, and a stop codon.
- the vector also comprises a signal peptide-encoding DNA, an enhancer sequence, 5 ′ and 3 ′ untranslated regions of the gene encoding the protein of the present invention, splicing junction, polyadenylation site, selectable marker region or replication. Possible units may be included.
- it may contain a marker gene (gene amplification gene, drug resistance gene, etc.) that makes it possible to select a host amplified and transformed.
- a marker gene gene amplification gene, drug resistance gene, etc.
- Examples include dihydrofolate reductase (DHFR) gene, thymidine kinase gene, neomycin resistance gene, glutamate synthase gene, adenosine deaminase gene, ornithine decarboxylase gene, hygromycin-B-phosphotransferase gene, aspartate transcarbamylase gene, etc. be able to.
- DHFR dihydrofolate reductase
- thymidine kinase gene thymidine kinase gene
- neomycin resistance gene glutamate synthase gene
- glutamate synthase gene adenosine deaminase gene
- ornithine decarboxylase gene hygromycin-B-phosphotransferase gene
- aspartate transcarbamylase gene etc.
- the promoter-operator region for expressing the mutant polypeptide of the present invention in bacteria can contain a promoter, an operator, and a Shine-Dalgarno (SD) sequence (for example, AAGG).
- SD Shine-Dalgarno
- examples include those containing Trp promoter, lac promoter, recA promoter, ⁇ PL promoter, lpp promoter, tac promoter and the like.
- Examples of the promoter for expressing the mutant polypeptide of the present invention in yeast include PH05 promoter, PGK promoter, GAP promoter, and ADH promoter.
- the host is Bacillus, SL01 promoter, SP02 promoter, penP promoter and the like can be mentioned.
- SV40-derived promoters when the host is a eukaryotic cell such as a mammalian cell, SV40-derived promoters, retrovirus promoters, heat shock promoters, and the like can be mentioned.
- SV40 is a retrovirus.
- an enhancer is an effective method for expression.
- a suitable start codon is exemplified by methionine codon (ATG).
- methionine codon examples include commonly used stop codons (eg, TAG, TGA, TAA).
- As the terminator region a commonly used natural or synthetic terminator can be used.
- a replicable unit refers to a DNA that has the ability to replicate its entire DNA sequence in a host cell, a natural plasmid, an artificially modified plasmid (a DNA fragment prepared from a natural plasmid) and Synthetic plasmids and the like are included.
- Suitable plasmids include plasmid pBR322 or an artificial modification thereof (DNA fragment obtained by treating pBR322 with an appropriate restriction enzyme) in E.Ecoli, yeast 2 ⁇ plasmid or yeast chromosomal DNA in yeast,
- Examples of mammalian cells include plasmid pRSVneo ATCC 37198, plasmid pSV2dhfr ATCC 37145, plasmid pdBPV-MMTneo ATCC 37224, plasmid pSV2neo ATCC 37149, and the like.
- polyadenylation site and splicing junction site those commonly used by those skilled in the art, such as those derived from SV40, respectively, can be used.
- the expression vector of the present invention is prepared by linking at least the above-mentioned promoter, start codon, polynucleotide encoding the mutant polypeptide of the present invention, stop codon and terminator region continuously and circularly to appropriate replicable units. can do.
- an appropriate DNA fragment for example, a linker, other restriction enzyme cleavage sites, etc.
- a conventional method such as digestion with a restriction enzyme or ligation using T4 DNA ligase, if desired.
- the present invention also relates to a recombinant cell transformed with the above-described vector of the present invention, and the recombinant cell of the present invention can be prepared by introducing the above-described expression vector into a host cell.
- the host cell used in the present invention is not particularly limited as long as it is compatible with the above-described expression vector and can be transformed, and is a natural cell or artificially established usually used in the technical field of the present invention.
- Examples include various cells such as recombinant cells (eg, bacteria (genus Escherichia, Bacillus), yeast (genus Saccharomyces, Pichia, etc.), animal cells or insect cells.
- E. coli or animal cells such as E. coli (DH5 ⁇ , TB1, HB101, etc.), mouse-derived cells (COP, L, C127, Sp2 / 0, NS-1 or NIH3T3, etc.), rat-derived cells (PC12, PC12h, etc.) ), Hamster-derived cells (BHK, CHO, etc.), monkey-derived cells (COS1, COS3, COS7, CV1, Velo, etc.) and human-derived cells (Hela, diploid fibroblast-derived cells, myeloma cells, HepG2, etc. And the like.
- E. coli DH5 ⁇ , TB1, HB101, etc.
- mouse-derived cells COP, L, C127, Sp2 / 0, NS-1 or NIH3T3, etc.
- rat-derived cells PC12, PC12h, etc.
- Hamster-derived cells BHK, CHO, etc.
- monkey-derived cells COS1, COS3, COS7, CV1, Velo, etc
- Introduction (transformation (transfection)) of an expression vector into a host cell can be performed according to a conventional method ([E. coli, Bacillus subtilis etc.): Proc. Natl. Acad. Sci. USA., Vol. 69, p.2110, 1972; Mol. Gen. Genet., Vol.168, p.111, 1979; J. Mol.Biol., Vol.56, p.209, 1971; [In the case of Saccharomyces cerevisiae]: Proc Natl. Acad. Sci. USA., Vol.75, p.1927, 1978; J.
- the mutant polypeptide of the present invention is produced by culturing a transformed recombinant cell (hereinafter used to include inclusion bodies) containing an expression vector prepared as described above in a nutrient medium according to a conventional method. can do.
- the mutant polypeptide of the present invention can be produced by culturing recombinant cells as described above, particularly animal cells, and secreting them into the culture supernatant.
- the obtained culture is filtered or centrifuged to obtain a culture filtrate (supernatant), and the mutation of the present invention is performed according to a conventional method generally used for purifying and isolating natural or synthetic proteins from the culture filtrate.
- the polypeptide is purified and isolated.
- Isolation and purification methods include, for example, methods using solubility such as salting out, solvent precipitation, dialysis, ultrafiltration, gel filtration, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and other methods utilizing molecular weight differences, Methods using charges such as ion exchange chromatography and hydroxylapatite chromatography, methods using specific affinity such as affinity chromatography, methods using hydrophobic differences such as reversed-phase high-performance liquid chromatography, isoelectricity Examples thereof include a method using a difference in isoelectric point such as point electrophoresis.
- the mutant polypeptide of the present invention is present in the periplasm or cytoplasm of a cultured recombinant cell (such as Escherichia coli)
- the culture is subjected to a conventional method such as filtration or centrifugation to collect the cells or cells.
- a membrane containing the protein of the present invention by a method such as centrifugation or filtration after suspending in a suitable buffer solution, for example, disrupting cell walls and / or cell membranes such as cells by a method such as ultrasound, lysozyme and freeze-thawing. Get the fraction.
- the membrane fraction is solubilized using a surfactant such as Triton-X100 to obtain a crude solution.
- the crude solution can be isolated and purified by using a conventional method as exemplified above.
- the present invention also relates to any oligonucleotide that hybridizes to the polynucleotide (cDNA or genomic DNA) encoding the above-described mutant polypeptide of the present invention.
- the oligonucleotide of the present invention has a base sequence complementary to an arbitrary partial base sequence of the cDNA or genomic DNA, and comprises a sense primer and an antisense primer in the polymerase chain reaction (PCR).
- PCR polymerase chain reaction
- Any part or all of the base sequence of the polynucleotide encoding the mutant polypeptide of the present invention can be amplified by PCR using the pair of oligonucleotide primers.
- the oligonucleotide primer of the present invention includes an oligonucleotide having any base length complementary to the base sequence of the polynucleotide of the present invention, preferably at least 12 consecutive bases, preferably 12 to 50 bases, More preferred is an oligonucleotide having a sequence of 12 to 20 bases.
- the oligonucleotide of the present invention is also useful as a probe in DNA hybridization or RNA hybridization procedures.
- Examples of the purpose of using the DNA as a probe include a continuous partial base sequence of 15 bases or more that hybridizes to the polynucleotide of the present invention, preferably a continuous partial base sequence of 50 bases or more, more preferably continuous.
- the present invention also relates to an oligonucleotide that binds to an mRNA polynucleotide encoding the mutant polypeptide of the present invention and has an activity of inhibiting translation of the mRNA into a protein.
- siRNA that binds to and cleaves mRNA polynucleotide encoding the mutant polypeptide of the present invention.
- This oligonucleotide is an oligonucleotide that binds to and inhibits the expression of the mRNA encoding the mutant polypeptide of the present invention, and means, for example, an antisense oligonucleotide, a ribozyme, or a siRNA (short interfering RNA). After binding to the mRNA, they inhibit translation of the mRNA into a protein.
- Antisense oligonucleotide means an oligonucleotide that specifically hybridizes with genomic DNA and / or mRNA and inhibits the expression of the protein by inhibiting its transcription and / or translation.
- Binding to the target polynucleotide may be due to general base pair complementarity or, for example, due to specific interactions in the main groove of the double helix in the case of binding to a DNA duplex But you can.
- Antisense oligonucleotide target sites also include the 5 ′ end of the mRNA, eg, the 5 ′ untranslated sequence up to and including the AUG start codon or the 3 ′ untranslated sequence of the mRNA or the sequence of the coding region.
- Examples of the purpose of use as an antisense oligonucleotide in the present invention include a continuous partial base sequence of 5 to 100 bases, preferably a continuous partial base sequence of 5 to 70 bases, more preferably a continuous 5 to 50 bases.
- the antisense oligonucleotide of the present invention has increased blood half-life (stability) when administered into a patient's body, increased permeability of intracellular membranes, or digestive organs when administered orally. It is possible to chemically modify a part of the oligonucleotide for the purpose of increasing the degradation resistance or increasing the absorption of the oligonucleotide. Examples of the chemical modification include chemical modifications such as phosphate bond, ribose, nucleobase, sugar moiety, 3 ′ and / or 5 ′ end in the oligonucleotide structure.
- Phosphate bond modifications include one or more of these bonds, phosphodiester bonds (D-oligos), phosphorothioate bonds, phosphorodithioate bonds (S-oligos), methylphosphonate bonds (MP-oligos), phosphoramidos. Mention may be made of any of the date bonds, non-phosphate bonds and methylphosphonothioate bonds or combinations thereof. Examples of the modification of ribose include a change to 2′-fluororibose or 2′-O-methylribose. Nucleobase modifications include changes to 5-propynyluracil or 2-aminoadenine.
- Ribozyme means an oligonucleotide having catalytic activity to cleave mRNA. Ribozymes generally exhibit endonuclease, ligase or polymerase activity and include various types of trans-acting ribozymes, such as hammerhead and hairpin type ribozymes.
- siRNA means a double-stranded oligonucleotide capable of performing RNA interference (eg, Bass, 2001, Nature, 411, 428-429; Elbashir et al., 2001, Nature, 411, 494-498 ).
- siRNA cleaves mRNA in a sequence-specific manner, and as a result, translation of mRNA into protein is inhibited.
- Examples of siRNA include double-stranded RNA having a length of 20 to 25 base pairs including a sequence complementary to a target polynucleotide sequence.
- the siRNA of the present invention also includes oligonucleotides including chemically modified nucleotides and non-nucleotides.
- the present invention also relates to an antibody or antigen-binding fragment thereof that binds to the above-described mutant polypeptide of the present invention.
- the antibody of the present invention is not limited in its origin, shape, function, etc., and any antibody may be used.
- the antibody of the present invention may be a monoclonal antibody or a polyclonal antibody, but is preferably a monoclonal antibody.
- the antibody of the present invention may be any animal-derived antibody such as a human antibody, a mouse antibody, or a rat antibody. Alternatively, a recombinant antibody such as a chimeric antibody or a humanized antibody may be used.
- Preferred antibodies of the present invention include chimeric antibodies, human antibodies or humanized antibodies.
- the humanized antibody of the present invention can be prepared using methods known to those skilled in the art.
- the variable region of an antibody is usually composed of three complementarity determining regions (CDRs) sandwiched between four frames (FR).
- CDRs are regions that substantially determine the binding specificity of an antibody.
- the amino acid sequence of CDR is rich in diversity.
- the amino acid sequence constituting FR often shows high homology among antibodies having different binding specificities. Therefore, it is generally said that the binding specificity of one antibody can be transplanted to another antibody by CDR grafting.
- a humanized antibody is also referred to as a reshaped human antibody, which is a non-human mammal, for example, a mouse antibody CDR grafted to the complementarity determining region of a human antibody, and its general gene Recombination techniques are also known (see European Patent Application Publication Nos. EP 125023 and WO 96/02576).
- the CDR when the CDR is derived from a mouse antibody, a DNA sequence designed to link the CDR of the mouse antibody and the framework region (FR) of the human antibody is used for both CDR and FR.
- the oligonucleotide is synthesized by PCR using several oligonucleotides prepared so as to have a portion overlapping with the terminal region (see the method described in WO98 / 13388).
- the obtained DNA is obtained by ligating with DNA encoding a human antibody constant region, then incorporating it into an expression vector, introducing it into a host and producing it (European Patent Application Publication No. EP 239400, International Patent Application Publication) No. WO 96/02576).
- the framework region of the human antibody to be linked to the CDR is selected such that the complementarity determining region forms a favorable antigen binding site.
- the amino acid of the framework region in the variable region of the antibody may be substituted, deleted, added, and / or inserted so that the complementarity determining region of the reshaped human antibody forms an appropriate antigen-binding site.
- amino acid sequence mutations can be introduced into FRs by applying the PCR method used for transplantation of mouse CDRs into human FRs.
- partial nucleotide sequence mutations can be introduced into primers that anneal to the FR.
- a nucleotide sequence mutation is introduced into the FR synthesized by such a primer.
- a mutant FR sequence having a desired property can be selected by measuring and evaluating the antigen-binding activity of a mutant antibody substituted with an amino acid by the above method (Sato, K. etal., Cancer Res. (1993) 53, 851-856).
- a human antibody As a constant region of a humanized antibody, a human antibody is usually used.
- the constant region of the human antibody used is not particularly limited.
- the constant region of human IgG1, the constant region of human IgG2, the constant region of human IgG3, the constant region of human IgG4, human IgM, IgA , IgE, IgD constant regions, and the like can be used.
- a human ⁇ chain constant region, a human ⁇ chain constant region, or the like can be used.
- the constant region derived from a human antibody may have a naturally derived sequence, or a constant having a sequence in which one or more amino acids are modified (substitution, deletion, addition and / or insertion) in the naturally occurring sequence. It may be an area.
- amino acids in the variable region eg, CDR, FR
- constant region e.g., CDR, FR
- the humanized antibody also includes a humanized antibody having such amino acid substitution.
- the origin of CDR in the humanized antibody is not particularly limited and may be derived from any animal.
- sequences of mouse antibody, rat antibody, rabbit antibody, camel antibody and the like can be used, but the CDR sequence of mouse antibody is preferable. Since humanized antibodies have reduced immunogenicity in the human body, they are useful when administered to humans for therapeutic purposes.
- Chimeric antibodies are non-human mammals, for example, antibodies consisting of mouse antibody heavy and light chain variable regions and human antibody heavy and light chain constant regions. Chimeric antibodies can be produced using known methods.
- the antibody gene can be cloned from a hybridoma, incorporated into an appropriate vector, and introduced into a host (for example, Carl, A. K. Borrebaeck, James, W. Larrick, THERAPEUTIC MONOCLONAL ANTIBODIES, “Published” in “the” United “Kingdom” by “MACMILLAN” PUBLISHERS “LTD,” 1990).
- cDNA of the variable region (V region) of the antibody is synthesized from the hybridoma mRNA using reverse transcriptase.
- DNA encoding the V region of the target antibody is obtained, it is ligated with DNA encoding the desired human antibody constant region (C region) and incorporated into an expression vector.
- DNA encoding the V region of the antibody may be incorporated into an expression vector containing DNA of the human antibody C region. It is incorporated into an expression vector so as to be expressed under the control of an expression control region such as an enhancer or promoter.
- host cells can be transformed with this expression vector to express the chimeric antibody.
- human antibodies can also be obtained by methods known to those skilled in the art.
- human lymphocytes are sensitized with a desired antigen or cells expressing the desired antigen in vitro, and the sensitized lymphocytes are fused with human myeloma cells, such as U266, to have a desired human antibody having an antigen-binding activity.
- a desired human antibody can be obtained by immunizing a transgenic animal having all repertoires of human antibody genes with a desired antigen (International Patent Application Publication Nos. WO 93/12227, WO 92/03918, WO 94/02602, WO 94/25585, WO 96/34096, WO 96/33735).
- B cells expressing antibodies with antigen-binding activity can be isolated from human lymphocyte pools using Flow cytometry or cell arrays, etc., and the antibody genes of selected B cells can be analyzed to bind to the antigen.
- DNA sequence of human antibody can be determined (Jin, A. et al., Nature Medicine (2009) 15, 1088-92, Scheid, JF et al., Nature (2009) 458, 636-640, Wrammert, J. et al., Nature (2008) 453, 667-672, Tiller, T. et al, Journal of Immunological Methods (2008) 329, 112-124). If the DNA sequence of an antibody that binds to an antigen is clarified, a suitable expression vector having the sequence can be prepared to obtain a human antibody.
- variable region of a human antibody is expressed as a single chain antibody (scFv) on the surface of the phage by the phage display method, and a phage that binds to the antigen can be selected.
- scFv single chain antibody
- the DNA sequence encoding the variable region of the human antibody that binds to the antigen can be determined. If the DNA sequence of scFv that binds to the antigen is clarified, an appropriate expression vector having the sequence can be prepared and a human antibody can be obtained.
- the antibody of the present invention includes not only a bivalent antibody typified by IgG, but also a monovalent antibody or a multivalent antibody typified by IgM.
- the antibodies of the present invention also include bispecific antibodies that can bind to different antigens.
- the antibody of the present invention includes not only the full-length molecule of an antibody but also any antigen-binding fragment such as a low molecular weight antibody.
- the antibody of the present invention includes a modified antibody to which a cytotoxic substance or the like is bound.
- the sugar chain of the antibody of the antibody of the present invention may be modified.
- the low molecular weight antibody (minibody) included in the antigen-binding fragment of the present invention is an antibody containing an antibody fragment in which a part of a full-length antibody (whole antigen, such as whole IgG) is deleted, It does not specifically limit as long as it has the binding activity to a peptide.
- the low molecular weight antibody is not particularly limited as long as it contains a part of the full-length antibody, but preferably contains an antigen binding site.
- the antigen binding site is usually the CDR of the antibody, preferably the 6 CDRs of the antibody. Accordingly, preferred examples of the antigen binding site include six CDRs of an antibody and variable regions (heavy chain variable region and / or light chain variable region).
- the low molecular weight antibody in the present invention preferably has a smaller molecular weight than the full-length antibody.
- it may form a multimer such as a dimer, trimer or tetramer, and the molecular weight is larger than that of the full-length antibody. There is also.
- antigen-binding fragment of the present invention include, for example, Fab, Fab ′, F (ab ′) 2, and Fv.
- Specific examples of the low molecular weight antibody include, for example, Fab, Fab ′, F (ab ′) 2, Fv, scFv (single chain Fv), Diabody, sc (Fv) 2 (single chain (Fv) 2) And so on. Multimers of these antibodies (eg, dimer, trimer, tetramer, polymer) are also included in the low molecular weight antibody of the present invention.
- An antigen-binding fragment can be obtained, for example, by treating an antibody with an enzyme to generate an antibody fragment.
- enzymes that produce antibody fragments include, for example, papain, pepsin, and plasmin.
- genes encoding these antibody fragments can be constructed, introduced into an expression vector, and then expressed in an appropriate host cell (for example, Co, MS et al., J. Immunol. (1994) 152). , 2968-2976, Better, M. & Horwitz, A. H. Methods in Enzymology (1989) 178, 476-496, Plueckthun, A. & Skerra, A.
- the digestive enzyme cleaves a specific position of the antibody fragment to give an antibody fragment having a specific structure as follows. If a genetic engineering technique is used for such an enzymatically obtained antibody fragment, any part of the antibody can be deleted.
- the antibody fragments obtained when the above digestive enzymes are used are as follows. Papain digestion: F (ab) 2 or Fab Pepsin digestion: F (ab ') 2 or Fab' Plasmin digestion: Facb
- the low molecular weight antibody in the present invention can include an antibody fragment lacking any region as long as it has binding activity to the mutant polypeptide of the present invention.
- Diabody refers to a bivalent antibody fragment constructed by gene fusion (Holliger Pet et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993), EP 404,097, WO93 / 11161 etc.).
- Diabodies are dimers composed of two polypeptide chains. Usually, in the polypeptide chain constituting the dimer, VL and VH are connected by a linker in the same chain. The linker in the diabody is generally so short that VL and VH cannot bind to each other. Specifically, the amino acid residues constituting the linker are, for example, about 5 residues. Therefore, VL and VH encoded on the same polypeptide chain cannot form a single chain variable region fragment but form a dimer with another single chain variable region fragment. As a result, the diabody has two antigen binding sites.
- the scFv antibody is an antibody in which a heavy chain variable region ([VH]) and a light chain variable region ([VL]) are combined with a linker or the like to form a single chain polypeptide (Huston, J. S. et al. , Proc. Natl. Acad. Sci. USA 1988 (1988) 85, 5879-5883, Plickthun ⁇ The Pharmacology of Monoclonal Antibodies '' Vol. 113, Resenburg and Moore, Springer )).
- the H chain V region and L chain V region in scFv may be derived from any of the antibodies described herein.
- any single chain peptide consisting of about 3 to 25 residues can be used as a linker.
- V regions of both strands can be linked by, for example, the PCR method as described above.
- the DNA encoding the desired partial amino acid sequence is used as a template.
- the DNAs encoding the V regions of the H chain and L chain are each amplified by PCR using a pair of primers having sequences corresponding to the sequences at both ends of the DNA to be amplified.
- DNA encoding a peptide linker portion is prepared.
- DNA encoding a peptide linker can also be synthesized using PCR.
- a base sequence that can be linked to the amplification product of each V region synthesized separately is added to the 5 ′ side of the primer to be used.
- PCR reaction is performed using each DNA of [H chain V region DNA]-[peptide linker DNA]-[L chain V region DNA] and assembly PCR primers.
- the primer for assembly PCR consists of a combination of a primer that anneals to the 5 ′ side of [H chain V region DNA] and a primer that anneals to the 3 ′ side of [L chain V region DNA]. That is, the assembly PCR primer is a primer set that can amplify DNA encoding the full-length sequence of scFv to be synthesized. On the other hand, a base sequence that can be linked to each V region DNA is added to [peptide linker DNA]. As a result, these DNAs are ligated, and the full length of scFv is finally produced as an amplification product by the primers for assembly PCR.
- an expression vector containing them and a recombinant cell transformed with the expression vector can be obtained according to a conventional method. Further, the scFv can be obtained by culturing the resulting recombinant cells and expressing the DNA encoding the scFv.
- the order of the heavy chain variable region and the light chain variable region to be combined is not particularly limited, and may be arranged in any order, and examples thereof include the following arrangements.
- Sc (Fv) 2 is a low molecular weight antibody in which two VHs and two VLs are combined with a linker or the like to form a single chain (Hudson et al., J Immunol. Methods Methods 1999; 231: 177-189).
- sc (Fv) 2 can be prepared, for example, by linking scFv with a linker.
- VHs and two VLs are arranged in the order of VH, VL, VH, and VL ([VH] linker [VL] linker [VH] linker [VL]) starting from the N-terminal side of the single-chain polypeptide.
- the order of the two VHs and the two VLs is not particularly limited to the above arrangement, and may be arranged in any order. For example, the following arrangements can also be mentioned.
- the amino acid sequence of the heavy chain variable region or light chain variable region in the low molecular antibody may be substituted, deleted, added and / or inserted. Furthermore, when the heavy chain variable region and the light chain variable region are associated, a part may be deleted or another polypeptide may be added as long as it has antigen binding activity.
- the variable region may be chimerized or humanized.
- the linker that binds the variable region of the antibody is any peptide linker that can be introduced by genetic engineering, or a synthetic compound linker, for example, a linker disclosed in Protein Engineering, 9 (3), 299-305, 1996 Can be used.
- a preferred linker in the present invention is a peptide linker.
- the length of the peptide linker is not particularly limited, and can be appropriately selected by those skilled in the art according to the purpose, but is usually 1 to 100 amino acids, preferably 3 to 50 amino acids, more preferably 5 to 30 amino acids, Particularly preferred is 12 to 18 amino acids (for example, 15 amino acids).
- Examples of the amino acid sequence of the peptide linker include the following sequences.
- n which determines the length of the above peptide linker is usually 1 to 5, preferably 1 to 3, more preferably 1 or 2.
- Synthetic compound linkers are commonly used for cross-linking peptides such as N-hydroxysuccinimide (NHS), disuccinimidyl suberate (DSS), bis (sulfosuccinimidyl) Suberate (BS3), dithiobis (succinimidyl propionate) (DSP), dithiobis (sulfosuccinimidyl propionate) (DTSSP), ethylene glycol bis (succinimidyl succinate) (EGS), ethylene Glycol bis (sulfosuccinimidyl succinate) (sulfo-EGS), disuccinimidyl tartrate (DST), disulfosuccinimidyl tartrate (sulfo-DST), bis [2- (succinimideoxycarbonyloxy ) Ethyl] sulfone (BSOCOES), bis [2- (sulfosuccinimidooxycarbonyloxy
- the antibody of the present invention also includes an antibody in which one or more amino acid residues are added to the amino acid sequence of the antibody of the present invention. Also included are fusion proteins in which these antibodies are fused with other peptides or proteins.
- a polynucleotide encoding an antibody of the present invention and a polynucleotide encoding another peptide or polypeptide are linked so that the frames coincide with each other, introduced into an expression vector, and expressed in a host. Any technique known to those skilled in the art can be used.
- Other peptides or polypeptides to be subjected to fusion with the antibody of the present invention include, for example, FLAG (Hopp, T. P.
- polypeptides to be subjected to fusion with the antibody of the present invention examples include GST (glutathione-S-transferase), HA (influenza agglutinin), immunoglobulin constant region, ⁇ -galactosidase, MBP (maltose). Binding protein) and the like. Preparing a fusion polypeptide by fusing a commercially available polynucleotide encoding the peptide or polypeptide with a polynucleotide encoding the antibody of the present invention and expressing the fusion polynucleotide prepared thereby. Can do.
- the antibody of the present invention may be a conjugated antibody bound to various molecules such as polyethylene glycol (PEG), hyaluronic acid and other high molecular weight substances, radioactive substances, fluorescent substances, luminescent substances, enzymes, and toxins.
- PEG polyethylene glycol
- hyaluronic acid and other high molecular weight substances
- radioactive substances such as radioactive substances, fluorescent substances, luminescent substances, enzymes, and toxins.
- the antibody used in the present invention may be a bispecific antibody.
- Bispecific antibodies refer to antibodies that have variable regions that recognize different epitopes within the same antibody molecule.
- the bispecific antibody may be a bispecific antibody that recognizes different epitopes of the mutant polypeptide molecule of the present invention, or one antigen binding site recognizes the mutant polypeptide of the present invention.
- the other antigen-binding site may be a bispecific antibody that recognizes another substance.
- bispecific antibodies can be produced by combining two types of antibodies with different recognition antigens.
- the antibody to be bound may be a 1 ⁇ 2 molecule each having an H chain and an L chain, or may be a 1 ⁇ 4 molecule consisting only of an H chain.
- bispecific antibody-producing fused cells can be prepared by fusing hybridomas that produce different monoclonal antibodies.
- bispecific antibodies can be produced by genetic engineering techniques.
- the antibody of the present invention may differ in amino acid sequence, molecular weight, isoelectric point, presence / absence of sugar chain, form, etc., depending on the antibody-producing cell, host or purification method described below. However, as long as the obtained antibody has a function equivalent to the antibody of the present invention, it is included in the present invention. For example, when the antibody of the present invention is expressed in prokaryotic cells such as E. coli, a methionine residue is added to the N-terminus of the original antibody amino acid sequence. The antibody of the present invention also includes such an antibody.
- the antibody of the present invention may be an antibody having a modified sugar chain.
- Methods for altering antibody sugar chains are known to those skilled in the art, for example, methods for improving ADCC activity by modifying antibody glycosylation, methods for regulating ADCC activity by the presence or absence of fucose in the antibody sugar chain, Methods for preparing antibodies having sugar chains that do not contain ⁇ -1,6 core fucose by producing antibodies in YB2 / 0 cells, methods for adding sugar chains having bisecting GlcNAc, etc. are known (WO 99/54342, WO 00/61739, WO 02/31140, WO 02/79255, etc.).
- the antibody of the present invention can be prepared by a known method using the mutant polypeptide of the present invention (derived from a mammal such as a human or a mouse) or a fragment peptide thereof as an immunogen. That is, a desired antigen or a cell expressing the desired antigen is used as a sensitizing antigen, and this is used to immunize a non-human mammal according to a normal immunization method.
- An immune cell obtained from an immunized animal is fused with a known parent cell by an ordinary cell fusion method, a monoclonal antibody-producing cell (hybridoma) is selected by an ordinary screening method, and the cell is cultured to obtain a monoclonal antibody.
- Antibodies can be made.
- non-human mammals to be immunized examples include mice, rats, rabbits, sheep, monkeys, goats, donkeys, cows, horses, and pigs.
- the antigen can be prepared using a polynucleotide encoding the mutant polypeptide of the present invention according to a known method, for example, a method using a baculovirus (WO98 / 46777 etc.).
- Hybridoma can be prepared according to, for example, the method of Milstein et al. (Kohler. G. Milstein, C., Methods Enzymol. (1981) 73: 3-46).
- immunization may be performed by binding to an immunogenic macromolecule such as albumin.
- an antibody that binds to the mutant polypeptide of the present invention includes a monoclonal antibody that binds to the mutant polypeptide of the present invention.
- the immunogen for producing a monoclonal antibody having binding activity for the mutant polypeptide of the present invention is not particularly limited as long as an antibody having binding activity for the mutant polypeptide of the present invention can be produced.
- the measurement of the binding activity of the antibody to the mutant polypeptide of the present invention can be performed by methods known to those skilled in the art.
- DNA immunization refers to immunization by administering a vector DNA constructed in such a manner that a gene encoding an antigen protein can be expressed in an immunized animal, and expressing the immunizing antigen in the body of the immunized animal. It is a method of giving a stimulus.
- DNA immunization can be expected to have the following advantages. -Maintains the structure of membrane proteins and can provide immune stimulation-No need to purify immune antigens
- a polynucleotide encoding the mutant polypeptide of the present invention is administered to an immunized animal.
- the polynucleotide encoding the mutant polypeptide of the present invention can be synthesized by a known method such as PCR according to the method described above.
- the obtained DNA (polynucleotide) is inserted into an appropriate expression vector and administered to an immunized animal.
- the expression vector any vector as described above (for example, a commercially available expression vector such as pcDNA3.1) can be used.
- a method of administering the vector to a living body a generally used method can be used.
- DNA immunization can be performed by implanting gold particles adsorbed with an expression vector into cells with a gene gun. Performing boosting with the mutant polypeptide-expressing cells of the present invention after DNA immunization is a preferred method for obtaining monoclonal antibodies.
- immune cells are collected from the mammal and subjected to cell fusion.
- spleen cells can be used.
- Mammalian myeloma cells are used as cells to be fused with the above immune cells.
- the myeloma cell is preferably provided with an appropriate selection marker for screening.
- a selectable marker refers to a trait that can (or cannot) survive under certain culture conditions.
- Known selection markers include hypoxanthine-guanine-phosphoribosyltransferase deficiency (hereinafter abbreviated as HGPRT deficiency) or thymidine kinase deficiency (hereinafter abbreviated as TK deficiency).
- HGPRT deficiency hypoxanthine-guanine-phosphoribosyltransferase deficiency
- TK deficiency thymidine kinase deficiency
- Cells having HGPRT or TK deficiency have hypoxanthine-aminopterin-thymidine sensitivity (hereinafter abbreviated as HAT sensitivity).
- HGPRT-deficient or TK-deficient cells can be selected in a medium containing 6 thioguanine, 8 azaguanine (hereinafter abbreviated as 8AG), or 5 'bromodeoxyuridine, respectively.
- 8AG 8 azaguanine
- Normal cells die because they incorporate these pyrimidine analogs into the DNA, but cells deficient in these enzymes cannot survive these pyrimidine analogs and can survive in selective media.
- a selectable marker called G418 resistance confers resistance to 2-deoxystreptamine antibiotics (gentamicin analogs) with a neomycin resistance gene.
- gentamicin analogs gentamicin analogs
- immune cells and myeloma cells according to known methods such as the method of Kohler and Milstein et al. (Kohler. Ler G. and Milstein, C., Methods Enzymol. (1981) 73, 3-46) And cell fusion.
- cell fusion can be carried out in a normal nutrient culture medium in the presence of a cell fusion promoter.
- a cell fusion promoter for example, polyethylene glycol (PEG), Sendai virus (HVJ) or the like can be used.
- an auxiliary agent such as dimethyl sulfoxide can be added as desired in order to increase the fusion efficiency.
- the usage ratio of immune cells and myeloma cells can be set arbitrarily.
- the number of immune cells is preferably 1 to 10 times that of myeloma cells.
- the culture solution used for cell fusion for example, RPMI1640 culture solution suitable for growth of myeloma cell line, MEM culture solution, and other normal culture solutions used for this type of cell culture can be used.
- serum supplements such as fetal calf serum (FCS) can be added to the culture medium.
- a predetermined amount of immune cells and myeloma cells are mixed well in a culture solution, and a target PEG (hybridoma) is formed by mixing a PEG solution preheated to about 37 ° C.
- a target PEG hybrida
- PEG having an average molecular weight of about 1000 to 6000 can be usually added at a concentration of 30 to 60% (w / v).
- cell fusion agents and the like that are undesirable for the growth of hybridomas are removed by sequentially adding the appropriate culture medium listed above, and then centrifuging to remove the supernatant.
- the hybridoma obtained in this manner can be selected by using a selective culture solution corresponding to the selection marker possessed by the myeloma used for cell fusion.
- a selective culture solution corresponding to the selection marker possessed by the myeloma used for cell fusion.
- cells having HGPRT or TK deficiency can be selected by culturing in a HAT culture solution (a culture solution containing hypoxanthine, aminopterin and thymidine). That is, when HAT-sensitive myeloma cells are used for cell fusion, cells that have succeeded in cell fusion with normal cells can be selectively proliferated in the HAT culture solution.
- the culture using the HAT culture solution is continued for a time sufficient for cells other than the target hybridoma (non-fusion cells) to die.
- the target hybridoma can be selected by culturing for several days to several weeks. Subsequently, by carrying out the usual limiting dilution method, screening and single cloning of the hybridoma producing the target antibody can be performed.
- Screening and single cloning of the target antibody can be suitably performed by a screening method based on a known antigen-antibody reaction.
- the antigen is bound to a carrier such as beads made of polystyrene or the like, or a commercially available 96-well microtiter plate, and reacted with the culture supernatant of the hybridoma.
- a secondary antibody labeled with an enzyme is reacted. If the culture supernatant contains an antibody of interest that reacts with the sensitizing antigen, the secondary antibody binds to the carrier via this antibody.
- By detecting the secondary antibody that finally binds to the carrier it can be determined whether the antibody of interest is present in the culture supernatant. It becomes possible to clone a hybridoma producing a desired antibody having the ability to bind to an antigen by a limiting dilution method or the like.
- a target antibody can be obtained by sensitizing human lymphocytes with an antigen.
- human lymphocytes are first sensitized with the mutant polypeptide of the present invention in vitro.
- the immunized lymphocytes are then fused with an appropriate fusion partner.
- the fusion partner for example, a myeloma cell derived from human and having a permanent division ability can be used (see Japanese Patent Publication No. 1-59878).
- the antibody obtained by this method is a human antibody having binding activity to the mutant polypeptide of the present invention.
- the base sequence and amino acid sequence encoding the antibody that binds to the mutant polypeptide of the present invention obtained by the above-described method and the like can be obtained by methods known to those skilled in the art.
- a polynucleotide encoding an antibody is constructed based on the sequence of an antibody that recognizes the mutant polypeptide of the present invention, introduced into an expression vector, and then expressed in an appropriate host cell (for example, Co, M. S. et al., J. Immunol. (1994) 152, 2968-2976; Better, M. and Horwitz, A. H., Methods Enzymol. (1989) 178, 476-496; Pluckthun , A.
- vectors examples include M13 vectors, pUC vectors, pBR322, pBluescript, and pCR-Script.
- pGEM-T for the purpose of subcloning and excision of cDNA
- An expression vector is particularly useful when a vector is used for the purpose of producing the antibody of the present invention.
- the host is E. coli such as JM109, DH5 ⁇ , HB101, XL1-Blue, etc.
- promoters that can be expressed efficiently in E.
- coli such as the lacZ promoter (Ward et al., Nature (1989) 341, 544-546; FASEB J. (1992) 6, 2422-2427), araB promoter (Better et al. , (Science) (1988) (240), (1041-1043), or T7 promoter is essential.
- lacZ promoter Ward et al., Nature (1989) 341, 544-546; FASEB J. (1992) 6, 2422-2427
- araB promoter Better et al. , (Science) (1988) (240), (1041-1043
- T7 promoter is essential.
- examples of such vectors include pGEX-5X-1 (Pharmacia), “QIAexpress system” (Qiagen), pEGFP, or pET (in this case, the host expresses T7 RNA polymerase BL21). are preferred).
- the vector may also contain a signal sequence for antibody secretion.
- a signal sequence for antibody secretion a pelB signal sequence (Lei, S. P. et al J. Bacteriol. (1987) 169, 4379) may be used when the periplasm of E. coli is produced.
- Introduction of a vector into a host cell can be performed using, for example, a calcium chloride method or an electroporation method.
- vectors for producing the antibody of the present invention include mammalian-derived expression vectors (for example, pcDNA3 (manufactured by Invitrogen)), pEF-BOS® (Nucleic® Acids.® Res. 1990, 18).
- insect cell-derived expression vectors eg “Bac-to-BAC baculovirus expression system” (manufactured by Gibco BRL), pBacPAK8), plant-derived expression vectors (eg pMH1, pMH2) Animal virus-derived expression vectors (for example, pHSV, pMV, pAdexLcw), retrovirus-derived expression vectors (for example, pZIPneo), yeast-derived expression vectors (for example, “Pichia® Expression® Kit” (manufactured by Invitrogen), pNV11, SP-Q01), and an expression vector derived from Bacillus subtilis (for example, pPL608, pKTH50).
- Bacillus subtilis for example, pPL608, pKTH50.
- promoters necessary for expression in cells such as the SV40 promoter (Mulligan et al., Nature (1979) 277, 108), It is essential to have the MMLV-LTR promoter, EF1 ⁇ promoter (Mizushima et al., Nucleic Acids Res. (1990) 18, 5322), CMV promoter, etc., and genes for selecting transformation into cells (for example, More preferably, it has a drug resistance gene that can be discriminated by a drug (neomycin, G418, etc.). Examples of such a vector include pMAM, pDR2, pBK-RSV, pBK-CMV, pOPRSV, and pOP13.
- a vector having a DHFR gene complementary to the CHO cell lacking the nucleic acid synthesis pathway for example, , PSV2-dhfr ("Molecular Cloning 2nd edition” Cold Spring Harbor Laboratory Press, (1989))
- MTX methotrexate
- a method of transforming with a vector having SV40 replication origin (such as pcD) using COS cells having a gene expressing SV40 ⁇ ⁇ T antigen on the chromosome can be mentioned.
- the expression vectors are selectable markers: aminoglycoside transferase (APH) gene, thymidine kinase (TK) gene, E. coli xanthine guanine phosphoribosyltransferase (Ecogpt) gene, dihydrofolate reductase ( dhfr) gene and the like.
- APH aminoglycoside transferase
- TK thymidine kinase
- Ecogpt E. coli xanthine guanine phosphoribosyltransferase
- dhfr dihydrofolate reductase
- the antibody of the present invention thus obtained can be isolated from the inside of the host cell or outside the cell (medium etc.) and purified as a substantially pure and homogeneous antibody. Separation and purification of antibodies may be carried out using separation and purification methods used in normal antibody purification, and are not limited in any way. For example, chromatography column, filter, ultrafiltration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing, dialysis, recrystallization, etc. are appropriately selected, When combined, antibodies can be separated and purified.
- chromatography examples include affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, adsorption chromatography, etc. (Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996). These chromatography can be performed using liquid phase chromatography, for example, liquid phase chromatography such as HPLC and FPLC.
- liquid phase chromatography such as HPLC and FPLC.
- the column used for affinity chromatography include a protein A column and a protein G column. Examples of the column using protein A include Hyper D, POROS, Sepharose F (GE Amersham Biosciences), and the like.
- the present invention also encompasses antibodies highly purified using these purification methods.
- Measurement of the binding activity of the obtained antibody to the mutant polypeptide of the present invention can be carried out by methods known to those skilled in the art.
- ELISA enzyme-linked immunosorbent assay
- EIA enzyme immunoassay
- RIA radioimmunoassay
- fluorescent antibody method can be used as a method for measuring the antigen-binding activity of an antibody.
- an enzyme immunoassay a sample containing an antibody, for example, a culture supernatant of an antibody-producing cell or a purified antibody is added to a plate coated with an antigen.
- “Cancer” in the present invention is generally used to represent a malignant neoplasm, which may be metastatic or non-metastatic.
- carcinomas arising from epithelial tissues such as the digestive tract and skin include brain tumor, skin cancer, cervical head cancer, esophageal cancer, lung cancer, stomach cancer, duodenal cancer, breast cancer, prostate cancer, cervical cancer, Examples are endometrial cancer, pancreatic cancer, liver cancer, colon cancer, colon cancer, bladder cancer, and ovarian cancer.
- Non-limiting examples of sarcomas arising from non-epithelial tissues (stroma) such as muscle include osteosarcoma, chondrosarcoma, rhabdomyosarcoma, leiomyosarcoma, liposarcoma, and angiosarcoma. .
- hematopoietic-derived blood cancers include malignant lymphomas, including Hodgkin's lymphoma and non-Hodgkin's lymphoma, acute (acute myelocytic leukemia), or chronic myelocytic leukemia (chronic myelocytic) leukemia), and leukemias including acute (acute lymphatic leukemia) or chronic ⁇ ⁇ ⁇ lymphatic leukemia, as well as multiple myeloma.
- the cancer in the present invention includes any newly generated pathological tissue tumor (neoplasm).
- the neoplasm results in the formation of a tumor, which is partly characterized by angiogenesis.
- Neoplasm is benign such as hemangioma, glioma, teratoma, or malignant such as carcinoma, sarcoma, glioma, astrocytoma, neuroblastoma, retinoblastoma sell.
- Preferred examples of the cancer in the present invention include bladder cancer, brain tumor, squamous cell carcinoma of the head and neck, lung cancer, lung adenocarcinoma, lung squamous cell carcinoma, cutaneous melanoma, endometrial cancer, breast cancer, prostate cancer, colon cancer, esophagus
- Examples include cancer, stomach cancer, bile duct cancer, biliary tract cancer, and liver cancer.
- cancer tissue means a tissue containing at least one cancer cell.
- all cell types that contribute to the formation of tumor cells and tumor cells containing endothelial cells such as cancer tissue containing cancer cells and blood vessels.
- a tumor refers to a tumor tissue nest (a foci of tumor tissue).
- tumor is generally used to mean a benign or malignant neoplasm.
- the present invention relates to a pharmaceutical composition
- a pharmaceutical composition comprising the above-described antibody of the present invention or an antigen-binding fragment thereof, or an oligonucleotide, or a compound of the present invention.
- the pharmaceutical composition usually refers to a drug for treatment or prevention of a disease, or examination / diagnosis.
- the pharmaceutical composition of the present invention can be formulated using methods known to those skilled in the art. For example, it can be used parenterally in the form of sterile solutions with water or other pharmaceutically acceptable liquids, or in the form of suspension injections.
- a pharmacologically acceptable carrier or medium specifically, sterile water or physiological saline, vegetable oil, emulsifier, suspension, surfactant, stabilizer, flavoring agent, excipient, vehicle, preservative Or in combination with binders and the like as appropriate, and can be formulated by mixing in unit dosage forms generally required for accepted pharmaceutical practice.
- the amount of the active ingredient in these preparations is set so as to obtain an appropriate volume within the indicated range.
- Sterile compositions for injection can be formulated according to normal pharmaceutical practice using a vehicle such as distilled water for injection.
- a vehicle such as distilled water for injection.
- aqueous solution for injection include isotonic solutions containing physiological saline, glucose and other adjuvants (for example, D-sorbitol, D-mannose, D-mannitol, sodium chloride).
- An appropriate solubilizer such as alcohol (ethanol, etc.), polyalcohol (propylene glycol, polyethylene glycol, etc.), nonionic surfactant (polysorbate 80 TM , HCO-50, etc.) can be used in combination.
- oily liquid examples include sesame oil and soybean oil, and benzyl benzoate and / or benzyl alcohol can be used in combination as a solubilizing agent. It can also be formulated with buffers (eg, phosphate buffer and sodium acetate buffer), soothing agents (eg, procaine hydrochloride), stabilizers (eg, benzyl alcohol and phenol), and antioxidants.
- buffers eg, phosphate buffer and sodium acetate buffer
- soothing agents eg, procaine hydrochloride
- stabilizers eg, benzyl alcohol and phenol
- antioxidants antioxidants.
- the prepared injection solution is usually filled into an appropriate ampoule.
- the pharmaceutical composition of the present invention is preferably administered by parenteral administration.
- parenteral administration for example, an injection, nasal administration, pulmonary administration, or transdermal administration composition is administered.
- it can be administered systemically or locally by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, and the like.
- the administration method can be appropriately selected depending on the age and symptoms of the patient.
- the dose of the pharmaceutical composition containing the antigen-binding molecule can be set, for example, in the range of 0.0001 mg to 1000 mg per kg of body weight per time. Alternatively, for example, a dose of 0.001 to 100000 mg per patient can be set, but the present invention is not necessarily limited to these values.
- the dose and administration method vary depending on the patient's weight, age, symptoms, etc., but those skilled in the art can set an appropriate dose and administration method in consideration of these conditions.
- amino acids included in the amino acid sequences described in the present invention may be modified after translation (for example, modification to pyroglutamic acid by pyroglutamylation of N-terminal glutamine is a modification well known to those skilled in the art). However, even if such an amino acid is post-translationally modified, it is naturally included in the amino acid sequence described in the present invention.
- the present invention also relates to the aforementioned mutant polypeptide of the present invention and a method for detecting the polynucleotide encoding the mutant polypeptide in a sample of a subject (including cancer patients and healthy persons).
- the presence or absence of the mutant polypeptide of the present invention in the sample of the subject is, for example, a subject (a cancer patient, a person who may be suffering from cancer, a person who is at risk of suffering from cancer, a healthy person, but a human.
- the above-mentioned mutant poly (polysaccharide) of the present invention is added to a sample (various body fluid (blood, serum, urine, saliva, ascites, pleural effusion, etc.) containing tumor tissue, normal tissue, cancer cells or normal cells) collected from It can be tested and determined by utilizing an antigen-antibody reaction by contacting an antibody that binds to a peptide or an antigen-binding fragment thereof. Detection of an antigen (that is, the mutant polypeptide of the present invention) by this antigen-antibody reaction can be performed using, for example, a conventional immunoassay.
- the immunoassay in the present invention refers to a sample (tumor tissue, normal tissue, cancer cell or normal) based on the principle of reaction between an antigen (that is, the mutant polypeptide of the present invention) and an antibody or antigen-binding fragment thereof that binds to the antigen.
- the principles of various methods as described in, for example, enzyme immunoassay (3rd edition, edited by Koji Ishikawa et al., Published by Medical School, 1987) can be applied. That is, the various methods can be performed using one or more antibodies that bind to the target antigen for capturing (capturing, trapping) the target antigen in the sample to be detected.
- Suitable principles include, for example, one-antibody solid phase method, two-antibody liquid phase method, two-antibody solid phase method, sandwich method, and one-pot method as described in JP-B-2-39747. Can be mentioned.
- EMIT method Enzyme multiplied immunoassay technique
- enzyme channeling assay Enzyme channeling immunoassay
- enzyme activity modifying substance labeled immunoassay Enzyme modulator mediated enzyme immunoassay, EMMIA
- enzyme inhibitor labeling Also included are an immunoassay, an immunoenzymometric assay, an enzyme enhanced immunoassay, a proximal linkage immunoassay, and the like. In the present invention, any principle of such an immunoassay can be appropriately selected and used depending on the purpose of the test.
- sandwich method using a labeled antibody labeled with an enzyme or biotin or a bead and labeled with an enzyme such as peroxidase or biotin
- an enzyme such as peroxidase or biotin
- the antibody or antigen-binding fragment thereof that binds to the mutant polypeptide of the present invention used in the immunoassay of the present invention can provide a detectable signal either alone or by reacting with another substance. It may be labeled with.
- labeling substance examples include enzymes, fluorescent substances, chemiluminescent substances, biotin, avidin, and radioisotopes, and more specifically, peroxidase (for example, horseradish peroxidase), alkaline phosphatase, ⁇ -D-galactosidase.
- enzymes for example, horseradish peroxidase
- chemiluminescent substances for example, biotin, avidin, and radioisotopes
- peroxidase for example, horseradish peroxidase
- alkaline phosphatase alkaline phosphatase
- ⁇ -D-galactosidase examples include enzymes, fluorescent substances, chemiluminescent substances, biotin, avidin, and radioisotopes, and more specifically, peroxidase (for example, horseradish peroxidase), alkaline phosphatase, ⁇ -D-galactosidase.
- Glucose oxidase glucose-6-phosphate dehydrogenase, alcohol dehydrogenase, malate dehydrogenase, penicillinase, catalase, apoglucose oxidase, urease, luciferase or acetylcholinesterase, fluorescein isothiocyanate, phycobili Fluorescent materials such as proteins, rare earth metal chelates, dansyl chloride or tetramethylrhodamine isothiocyanate, radioactive isotopes such as 3 H, 14 C, 125 I or 131 I, Otin, avidin, or chemiluminescent material.
- the radioisotope and the fluorescent substance can provide a detectable signal alone.
- the substrate in the case of an enzyme, at least a substrate is required, and various substrates are used depending on the method for measuring enzyme activity (colorimetric method, fluorescence method, bioluminescence method, chemiluminescence method, etc.).
- colorimetric method, fluorescence method, bioluminescence method, chemiluminescence method, etc. for example, in the case of peroxidase, hydrogen peroxide is used as a substrate.
- biotin at least avidin or enzyme-modified avidin is generally reacted, but not limited thereto.
- Various color-developing substances depending on the substrate are used as necessary.
- the presence or absence of the polynucleotide encoding the mutant polypeptide of the present invention in the sample of the subject is, for example, a subject (a cancer patient, a person who may have cancer, a person at risk of having cancer, or a healthy subject).
- Humans but not limited to humans
- mRNAs contained in samples tumor tissues, normal tissues, cancer cells or various body fluids containing normal cells (blood, serum, urine, saliva, ascites, pleural effusion, etc.)
- the various oligonucleotides of the present invention described above are obtained using various gene analysis methods using cDNA, genomic DNA, etc.
- Such gene analysis methods include, for example, Northern blotting, polymerase chain reaction (PCR), Southern blotting, LCR (Ligase chain reaction), SDA (Strand displacement amplification), NASBA (Nucleic acid sequence-based amplification), ICAN (Isothermal and Examples include chimeric primer-initiated amplification nucleic acids), LAMP (Loop-mediated isothermal amplification) methods, TMA methods (Gen-Probe's TMA systems), microarrays, and next-generation sequencing methods.
- hybridization of the oligonucleotide of the present invention to a polynucleotide encoding the mutant polypeptide of the present invention derived from the sample is used.
- examples of such conditions include 6M urea, 0.4% SDS, 0.5 x SSC, 37 ° C conditions, or hybridization conditions with stringency equivalent thereto.
- conditions with higher stringency for example, 6M urea, 0.4% SDS, 0.1 x SSC, 42 ° C can also be applied.
- the present invention also relates to a detection kit used for detecting the above-described mutant polypeptide of the present invention and a polynucleotide encoding the mutant polypeptide in the samples of the above-described subjects (including cancer patients and healthy individuals).
- the detection kit of the present invention includes an antibody or antigen-binding fragment thereof that binds to the above-described mutant polypeptide of the present invention (including antibodies or antigen-binding fragments thereof labeled with the various labeling substances described above).
- various detection reagents enzymes, substrates, etc.
- experimental operation instructions can be included depending on the purpose of carrying out the various immunoassays described above.
- the detection kit of the present invention hybridizes to mRNA derived from the polynucleotide encoding the mutant polypeptide of the present invention described above, cDNA prepared using the mRNA as a template, genomic DNA, etc. Including various oligonucleotides of the present invention (a pair of oligonucleotide primers, oligonucleotide probes, etc.), and various reagents (enzymes, other oligonucleotides, nucleic acids, Reaction solution, etc.) and experimental operating instructions.
- various oligonucleotides of the present invention a pair of oligonucleotide primers, oligonucleotide probes, etc.
- various reagents enzymes, other oligonucleotides, nucleic acids, Reaction solution, etc.
- the present invention also relates to the presence or absence of resistance to various FGFR inhibitors based on the presence or absence of the mutant polypeptide of the present invention or a polynucleotide encoding the mutant polypeptide in a sample isolated from a subject. It relates to a method of testing for predicting a subject's response to treatment or predicting the effect of an FGFR inhibitor in treating cancer.
- the method of the present invention is from a subject (a cancer patient, a person who may be suffering from cancer, a person who is at risk of suffering from cancer, a healthy person, but is not limited to humans).
- a subject a cancer patient, a person who may be suffering from cancer, a person who is at risk of suffering from cancer, a healthy person, but is not limited to humans.
- the presence or absence of the mutant polypeptide of the present invention in the collected samples tumor tissue, normal tissue, cancer cells or various body fluids containing normal cells (blood, serum, urine, saliva, etc.)
- FGFR Methods that test for predicting a subject's response to treatment with an inhibitor or predicting the effect of an FGFR inhibitor in treating cancer.
- the method of the present invention further includes a sample collected from a subject (a cancer patient, a person who may have cancer, a person at risk of having cancer, or a healthy person, but not limited to a human).
- a subject a cancer patient, a person who may have cancer, a person at risk of having cancer, or a healthy person, but not limited to a human.
- the presence or absence of the polynucleotide encoding the mutated polypeptide of the present invention in various body fluids (tumor tissue, normal tissue, cancer cells or various body fluids (blood, serum, urine, saliva, etc.) containing normal cells) Based on the criteria of having resistance against various FGFR inhibitors when a polynucleotide encoding the mutant polypeptide is detected and tested using a detection method and detection kit for a polynucleotide encoding the polypeptide.
- the present invention also provides an anticancer agent comprising a compound having an FGFR inhibitory activity (hereinafter referred to as “an anti-cancer agent”) based on the presence or absence of the mutant polypeptide of the present invention or a polynucleotide encoding the mutant polypeptide in a sample isolated from a subject. Relates to a method of selecting patients to which (as described) applies.
- an anti-cancer agent comprising a compound having an FGFR inhibitory activity
- a sample tumor tissue, normal tissue, cancer cell or normal
- a subject a cancer patient or a person who may have cancer, not limited to a human
- the presence or absence of the mutant polypeptide of the present invention in various body fluids including cells (blood, serum, urine, saliva, etc.) is tested and determined using the method for detecting the mutant polypeptide of the present invention and the detection kit described above. If the mutant polypeptide is detected, the subject is selected as a patient to which an anticancer agent containing a compound having an FGFR inhibitory activity (or a pharmaceutical composition for cancer treatment: as described below) is applied. The method of doing is mentioned.
- the compound having the FGFR inhibitory activity is preferably a compound of the general formula (I).
- the method of the present invention further includes a sample (tumor tissue, normal tissue, cancer cell or normal cell) collected from a subject (a cancer patient or a person who may be suffering from cancer; not limited to a human). Presence or absence of the polynucleotide encoding the mutant polypeptide of the present invention in various body fluids (blood, serum, urine, saliva, etc.), the detection method and kit for detecting the polynucleotide encoding the mutant polypeptide of the present invention described above When a polynucleotide encoding the mutant polypeptide is detected, an anticancer agent containing a compound having FGFR inhibitory activity (as described below) is applied to the subject. The method of selecting as a patient is mentioned.
- the compound having the FGFR inhibitory activity is preferably a compound of the general formula (I).
- FGFR inhibitor or “compound having FGFR inhibitory activity” in the present invention is used interchangeably, and FGFR in the present invention described above, that is, a fibroblast which is a kinase belonging to the receptor tyrosine kinase family.
- FGFR growth factor receptor
- FGFR growth factor receptor
- FGFR2 a growth factor receptor
- FGFR2 cDNA sequence: SEQ ID NO: 3, 4 / GenBank Accession respectively
- No . Compounds having the activity of inhibiting the activity of NM_000141.4 and NM_022970.3, respectively.
- the FGFR inhibitor in the present invention includes any FGFR inhibitor as long as the compound has an activity of inhibiting the activity of FGFR.
- the antibodies having the activity of inhibiting the activity of FGFR included as FGFR inhibitors in the present invention include antibodies identified by the following development codes (RG7444, FP-1039, AV370, PRO-001).
- Examples of the low molecular weight compound having an activity of inhibiting the activity of FGFR included as an FGFR inhibitor in the present invention include (1) compounds disclosed in the following patent documents or non-patent documents (Cancer Research, 2012, 72: 2045-2056; J. Med. Chem., 2011, 54: 7066-7083; International Publication No.
- WO2011 / 016528 (2) Compound identified by the following general name or development code: AZD-4547 (described later) Compound C in Table 1), BGJ-398 (Compound D in Table 1 described later), LY-2874455, cediranib (AZD2171; Compound E in Table 1 described later), PD173074 (Compound B in Table 1 described later), reorafenib , Ponatinib, orantinib, nintedanib, masitinib, lenvatinib, dovitinib (TKI258), brivanib, volasertib, golvatinib, ENMD-2076, E-3810, XL-999, XL-228, ARQ087, Tivozanib, motesanib, reorafenib, and (3)
- the compounds shown below are included, but not limited thereto.
- R 1 to R 4 each independently represents the following group;
- R 1 is hydrogen, hydroxy, halogen, cyano, nitro, C 1-4 haloalkyl, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-7 cycloalkyl, C 6-10 aryl C 1-4 alkyl, —OR 5 , —NR 6 R 7 , — (CR 8 R 9 ) n Z 1 , —C (O) NR 12 R 13 , —SR 14 , —SOR 15 , —SO 2 R 16 , —NR 17 SO 2 R 18 , COOH, C 6-10 aryl optionally substituted with one or more groups independently selected from group P, one or more independently selected from group Q 5- to 10-membered heteroaryl or 3- to 10-membered heterocyclyl optionally substituted by the group: —COR 19 , —COOR 20 , —OC (O) R 21 , —NR 22 C (O
- R 20 represents C 1-4 alkyl, C 3-7 cycloalkyl, C 1-4 haloalkyl, C 6-10 aryl, 5-10 membered heteroaryl or 3-10 membered heterocyclyl
- R 21 represents C 1-4 alkyl, C 3-7 cycloalkyl, C 1-4 haloalkyl, C 6-10 aryl, 5-10 membered heteroaryl or 3-10 membered heterocyclyl
- R 22 represents hydrogen, C 1-4 alkyl or C 1-4 haloalkyl
- R 23 represents hydrogen, C 1-4 alkyl, C 3-7 cycloalkyl, C 1-4 haloalkyl, C 6-10 aryl, 5-10 membered heteroaryl or 3-10 membered heterocyclyl
- R 24 represents hydrogen, C 1-4 alkyl or C 1-4 haloalkyl
- R 25 represents C 1-4 alkyl, C 3-7 cycloalkyl
- Alkyl in the present specification is a monovalent group derived by removing an arbitrary hydrogen atom from an aliphatic hydrocarbon, does not contain a heteroatom or an unsaturated carbon-carbon bond in the skeleton, It has a subset of hydrocarbyl or hydrocarbon group structures containing hydrogen and carbon atoms. Alkyl groups include linear and branched structures. The alkyl group is preferably an alkyl group having 1 to 6 carbon atoms (C 1-6 , hereinafter “C pq ” means p to q carbon atoms), C 1 Examples thereof include a -5 alkyl group, a C 1-4 alkyl group, and a C 1-3 alkyl group.
- alkyl examples include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, isopentyl group, 2 , 3-dimethylpropyl group, 3,3-dimethylbutyl group, hexyl group and the like.
- alkenyl is a monovalent hydrocarbon group having at least one double bond (two adjacent SP2 carbon atoms), and includes straight-chain or branched-chain ones. Depending on the arrangement of the double bonds and substituents (if any), the geometry of the double bonds can take the enthaneuve (E) or tsuzanmen (Z), or cis or trans configurations. Preferred examples of the alkenyl group include a C 2-6 alkenyl group.
- alkenyl examples include vinyl, allyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl (including cis and trans), 3-butenyl, and pentenyl groups. Hexenyl group and the like.
- alkynyl is a monovalent hydrocarbon group having at least one triple bond (two adjacent SP carbon atoms), and includes straight-chain or branched-chain ones. Preferably, a C 2-6 alkynyl group is used.
- alkynyl examples include ethynyl group, 1-propynyl group, propargyl group, 3-butynyl group, pentynyl group, hexynyl group and the like.
- Alkenyl or alkynyl can have one or more double bonds or triple bonds, respectively.
- Cycloalkyl in the present specification means a saturated or partially saturated cyclic monovalent aliphatic hydrocarbon group, and includes a monocyclic ring, a bicyclic ring, and a spiro ring.
- Preferred examples of the cycloalkyl include a C 3-7 cycloalkyl group.
- Specific examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
- Cycloalkylalkyl in the present specification means a group in which any hydrogen atom in the above-mentioned definition “alkyl” is substituted with the above-mentioned definition “cycloalkyl”.
- Preferred examples of the cycloalkylalkyl include C 3-7 cycloalkyl C 1-3 alkyl, and specific examples include a cyclopropylmethyl group and a cyclopropylethyl group.
- heteroatom means a nitrogen atom (N), an oxygen atom (O), or a sulfur atom (S).
- Halogen in the present specification means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
- haloalkyl is the same or different, preferably 1-9, more preferably 1-5, a group in which the “halogen atom” is bonded to the “alkyl”. Specifically, for example, chloromethyl group, dichloromethyl group, trichloromethyl group, fluoromethyl group, difluoromethyl group, perfluoroalkyl group (for example, trifluoromethyl group, —CF 2 CF 3 etc.), 2, 2, Examples include 2-trifluoroethyl group.
- alkoxy means an oxy group to which the above-defined “alkyl” is bonded, and preferably includes a C 1-4 alkoxy group, a C 1-3 alkoxy group and the like. Specific examples of alkoxy include methoxy group, ethoxy group, 1-propoxy group, 2-propoxy group, n-butoxy group, i-butoxy group, sec-butoxy group, tert-butoxy group and the like.
- haloalkoxy is the same or different, preferably 1-9, more preferably 1-5, a group in which the “halogen atom” is bonded to the “alkoxy”. Specific examples include a chloromethoxy group, a trichloromethoxy group, a trifluoromethoxy group, and the like.
- aryl means a monovalent aromatic hydrocarbon ring, preferably C 6-10 aryl and the like.
- aryl include phenyl group, naphthyl group (for example, 1-naphthyl group, 2-naphthyl group) and the like.
- alicyclic ring means a monovalent non-aromatic hydrocarbon ring.
- the alicyclic ring may have an unsaturated bond in the ring or may be a polycyclic group having two or more rings. Carbon atoms constituting the ring may be oxidized to form carbonyl.
- the number of atoms constituting the alicyclic ring is preferably 3 to 10 (3 to 10-membered alicyclic ring).
- Examples of the alicyclic ring include a cycloalkyl ring, a cycloalkenyl ring, and a cycloalkynyl ring.
- heteroaryl means an aromatic monovalent heterocyclic group containing preferably 1 to 5 heteroatoms in the atoms constituting the ring. Heteroaryl may be partially saturated and may be monocyclic or fused (eg, bicyclic heteroaryl fused with a benzene ring or monoheteroaryl ring). The number of atoms constituting the ring is preferably 5 to 10 (5 to 10 membered heteroaryl).
- heteroaryl examples include furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, Pyridyl group, pyrimidyl group, pyridazinyl group, pyrazinyl group, triazinyl group, benzofuranyl group, benzothienyl group, benzothiadiazolyl group, benzothiazolyl group, benzoxazolyl group, benzooxadiazolyl group, benzimidazolyl group, indolyl group, isoindolyl Group, azaindolyl group, indazolyl group, quinolyl group, isoquinolyl group, cinnolinyl group, quinazolinyl group, quinoxalin
- heterocyclyl means a non-aromatic monovalent heterocyclic group containing preferably 1 to 5 heteroatoms in the atoms constituting the ring.
- the heterocyclyl may have a double or triple bond in the ring, the carbon atom may be oxidized to form a carbonyl, and may be a single ring or a condensed ring.
- the number of atoms constituting the ring is preferably 3 to 10 (3 to 10 membered heterocyclyl).
- heterocyclyl examples include oxetanyl group, dihydrofuryl group, tetrahydrofuryl group, dihydropyranyl group, tetrahydropyranyl group, tetrahydropyridyl group, morpholinyl group, thiomorpholinyl group, pyrrolidinyl group, piperidinyl group, piperazinyl group, Pyrazolidinyl group, imidazolinyl group, imidazolidinyl group, oxazolidinyl group, isoxazolidinyl group, thiazolidinyl group, isothiazolidinyl group, thiadiazolidinyl group, azetidinyl group, oxazolidone group, benzodioxanyl group, benzoxazolyl Group, dioxolanyl group, dioxanyl group and the like.
- arylalkyl means a group in which any hydrogen atom in the above-mentioned definition “alkyl” is substituted with the above-mentioned definition “aryl”.
- Preferred examples of the arylalkyl include C 6-10 aryl C 1-4 alkyl, C 6-10 aryl C 1-3 alkyl, and the like. Specific examples include a benzyl group, a phenethyl group, and a naphthylmethyl group.
- heteroarylalkyl means a group in which any hydrogen atom in the above-mentioned definition “alkyl” is substituted with the above-mentioned definition “heteroaryl”.
- the heteroarylalkyl is preferably a 5- to 10-membered heteroaryl C 1-3 alkyl, and specifically includes, for example, a pyrrolylmethyl group, an imidazolylmethyl group, a thienylmethyl group, a pyridylmethyl group, a pyrimidylmethyl group, a quinolylmethyl group, and the like. Group, pyridylethyl group and the like.
- Heterocyclylalkyl in the present specification means a group in which any hydrogen atom in the above-mentioned definition “alkyl” is substituted with the above-mentioned definition “heterocyclyl”.
- Preferred examples of the heterocyclylalkyl include 3- to 10-membered heterocyclyl C 1-3 alkyl. Specific examples include morpholinylmethyl group, morpholinylethyl group, thiomorpholinylmethyl group, pyrrolidinyl. Examples include a methyl group, piperidinylmethyl group, piperazinylmethyl group, piperazinylethyl group, oxetanylmethyl group and the like.
- “Monohydroxyalkyl” in the present specification means a group in which any one hydrogen atom in the above-mentioned definition “alkyl” is substituted with one hydroxyl group.
- the monohydroxyalkyl is preferably C 1-6 monohydroxyalkyl, C 2-6 monohydroxyalkyl, and the like. Specifically, for example, hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group Etc. are included in this.
- dihydroxyalkyl means a group in which any two hydrogen atoms in the above-mentioned definition “alkyl” are substituted with two hydroxyl groups.
- dihydroxyalkyl include C 1-6 dihydroxyalkyl, C 2-6 dihydroxyalkyl, and the like. Specifically, for example, 1,2-dihydroxyethyl group, 1,2-dihydroxypropyl group, 1,3 This includes dihydroxypropyl groups and the like.
- Trihydroxyalkyl in the present specification means a group in which any three hydrogen atoms in the above-mentioned definition “alkyl” are substituted with three hydroxyl groups.
- Preferred examples of trihydroxyalkyl include C 1-6 trihydroxyalkyl and C 2-6 trihydroxyalkyl.
- alkoxyalkyl means a group in which any hydrogen atom in the above-defined “alkyl” is substituted with “alkoxy” as defined above.
- the alkoxyalkyl preferably includes C 1-3 alkoxy C 1-4 alkyl, C 1-3 alkoxy C 2-4 alkyl and the like, and specifically includes, for example, methoxyethyl and the like.
- alkoxyalkoxyalkyl in the present specification means a group in which any hydrogen atom in the terminal alkyl in the above-mentioned definition “alkoxyalkyl” is substituted with “alkoxy” as defined above.
- Preferred examples of the alkoxyalkoxyalkyl include C 1-3 alkoxy C 1-4 alkoxy C 1-4 alkyl, C 1-3 alkoxy C 2-4 alkoxy C 2-4 alkyl, and the like.
- aminoalkyl means a group in which any hydrogen atom in the above-mentioned definition “alkyl” is substituted with an amino group.
- Preferred examples of the aminoalkyl group include C 1-4 aminoalkyl and C 2-4 aminoalkyl.
- alkylamino means an amino group in which one “alkyl” as defined above is bonded.
- Preferred examples of alkylamino include C 1-4 alkylamino.
- dialkylamino means an amino group in which two “alkyl” defined above are bonded, and the alkyl may be the same or different.
- Preferred examples of the dialkylamino include di (C 1-4 alkyl) amino.
- alkylaminoalkyl means a group in which any hydrogen atom in “alkyl” as defined above is substituted with “alkylamino” as defined above.
- alkylamino alkyl preferably, C 1-4 alkylamino C 1-4 alkyl, such as C 1-4 alkylamino C 2-4 alkyl.
- dialkylaminoalkyl means a group in which any hydrogen atom in “alkyl” as defined above is substituted with “dialkylamino” as defined above.
- Preferred examples of the dialkylaminoalkyl include di (C 1-4 alkyl) amino C 1-4 alkyl, di (C 1-4 alkyl) amino C 2-4 alkyl and the like.
- heterocyclylamino means an amino group in which one “heterocyclyl” defined above is bonded.
- the heterocyclylamino is preferably a 3- to 10-membered heterocyclylamino.
- cyanoalkyl in the present specification means a group in which any hydrogen atom in the above-defined “alkyl” is substituted with a cyano group.
- Preferred examples of cyanoalkyl include cyano (C 1-3 alkyl).
- alkylsulfonyl means a sulfonyl group to which the above-defined “alkyl” is bound (ie, alkyl-SO 2 —).
- Preferred examples of the alkylsulfonyl include C 1-3 alkylsulfonyl, and specific examples thereof include methylsulfonyl, ethylsulfonyl, n-propylsulfonyl, i-propylsulfonyl and the like.
- alkylsulfonylalkyl means a group in which any hydrogen atom in the above-defined “alkyl” is substituted with “alkylsulfonyl” as defined above.
- alkylsulfonyl alkyl preferably, C 1-3 alkylsulfonyl C 1-4 alkyl, such as C 1-3 alkylsulfonyl C 2-4 alkyl.
- the compounds represented by the formula (I) are preferably as follows.
- R 1 is preferably hydrogen, hydroxy, halogen, cyano, nitro, C 1-4 haloalkyl, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-7 cycloalkyl, C 6-10 aryl C 1-4 alkyl, —OR 5 , —NR 6 R 7 , — (CR 8 R 9 ) n Z 1 , —C (O) NR 12 R 13 , —SR 14 , —SOR 15 , — SO 2 R 16 , —NR 17 SO 2 R 18 , COOH, C 6-10 aryl optionally substituted with one or more groups independently selected from the P group, independently selected from the Q group 5- to 10-membered heteroaryl or 3- to 10-membered heterocyclyl optionally substituted with one or more groups, —COR 19 , —COOR 20 , —OC (O) R 21 , —NR 22 C (O) R 23 , —NR 24 C
- R 1 is more preferably hydrogen, hydroxy, halogen, cyano, C 1-4 haloalkyl, C 1-6 alkyl, C 2-6 alkynyl, C 3-7 cycloalkyl, C 6-10 aryl C 1- 4 alkyl, —OR 5 , —NR 6 R 7 , — (CR 8 R 9 ) n Z 1 , —C (O) NR 12 R 13 , —SR 14 , —SO 2 R 16 , —NR 17 SO 2 R 18 , COOH, C 6-10 aryl optionally substituted with one or more groups independently selected from group P, or substituted with one or more groups independently selected from group Q It may be 5 to 10 membered heteroaryl or 3 to 10 membered heterocyclyl.
- 5- to 10-membered heteroaryl examples include imidazolyl, thienyl, pyridyl, pyridazinyl and pyrazolyl groups, and specific examples of the 3- to 10-membered heterocyclyl include morpholinyl and tetrahydropyridyl groups.
- a piperidinyl group is particularly preferred.
- R 2 is preferably hydrogen, hydroxy, halogen, cyano, nitro, C 1-4 haloalkyl, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-7 cycloalkyl, C 6-10 aryl C 1-4 alkyl, —OR 5 , —NR 6 R 7 , — (CR 8 R 9 ) n Z 1 , —C (O) NR 12 R 13 , —SR 14 , —SOR 15 , — SO 2 R 16 , —NR 17 SO 2 R 18 , COOH, C 6-10 aryl optionally substituted with one or more groups independently selected from the P group, independently selected from the Q group 5- to 10-membered heteroaryl or 3- to 10-membered heterocyclyl optionally substituted with one or more groups, —COR 19 , —COOR 20 , —OC (O) R 21 , —NR 22 C (O) R 23 , —NR 24 C (
- R 2 may be more preferably substituted with one or more groups independently selected from hydrogen, halogen, C 1-4 haloalkyl, C 1-6 alkyl, —OR 5 , P group.
- the 5- to 10-membered heteroaryl here is particularly preferably a pyridyl group.
- R 1 and said R 2 are preferably taken together with the atoms to which they are attached to form a 3-10 membered heterocyclyl or 5-10 membered heteroaryl.
- the heterocyclyl or the heteroaryl may have a halogen atom as a substituent.
- a dioxolanyl group and a dioxanyl group are particularly preferable.
- R 3 is preferably hydrogen, C 1-5 alkyl, C 6-10 aryl C 1-6 alkyl or C 1-4 haloalkyl, more preferably hydrogen, C 1-4 alkyl, C 6- 10 aryl C 1-4 alkyl or C 1-3 perfluoroalkyl, particularly preferably C 1 alkyl.
- R 4 is preferably hydrogen, halogen, C 1-3 alkyl, C 1-4 haloalkyl, hydroxy, cyano, nitro, C 1-4 alkoxy, — (CH 2 ) n Z 1 , —NR 6 R 7.
- R 4 is more preferably hydrogen, halogen, C 1-3 alkyl, C 1-3 perfluoroalkyl, cyano, methanesulfonyl, hydroxyl, alkoxy or amino, and particularly preferably hydrogen or halogen.
- the A ring is preferably a 5- to 10-membered heteroaryl ring or a C 6-10 aryl ring, and more preferably benzene, indole, azaindole, benzofuran, benzothiophene, benzothiazole, quinoline or pyrrole. Particularly preferred is indole or pyrrole.
- R 5 is preferably C 1-5 alkyl, C 3-7 cycloalkyl, C 3-7 cycloalkyl C 1-3 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-4 haloalkyl.
- R 5 is more preferably C 1-5 alkyl, C 3-7 cycloalkyl C 1-3 alkyl, C 1-4 haloalkyl, C 1-3 alkoxy C 1-4 alkyl, C 6-10 aryl, C 6-10 aryl C 1-3 alkyl, 3-10 membered heterocyclyl optionally substituted with one or more groups independently selected from group Q, C 1-3 alkyl, 3-10 membered heterocyclyl .
- 3- to 10-membered heterocyclylalkyl specifically, piperazinylethyl group, oxetanylmethyl group, and morpholinylethyl group are particularly preferable, and as the 3- to 10-membered heterocyclyl, specifically, oxetanyl group, tetrahydro A pyranyl group is particularly preferred.
- R 6 and R 7 may be the same or different and are each hydrogen, C 1-4 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-4 haloalkyl, C 1- 3 alkoxy C 2-4 alkyl, C 6-10 aryl C 1-3 alkyl, 3-10 membered heterocyclyl C 1-3 alkyl, 5-10 membered heteroaryl C 1-3 alkyl, C 1-6 monohydroxyalkyl, C 1-6 dihydroxyalkyl, C 1-6 trihydroxyalkyl, 3-10 membered heterocyclyl, C 1-4 aminoalkyl, C 1-4 alkylamino C 1-4 alkyl, di (C 1-4 alkyl) amino C 1-4 alkyl, or cyano (C 1-3 alkyl).
- each of R 6 and R 7 is independently hydrogen, C 1-3 alkoxy C 1-4 alkyl, 3 to 10-membered heterocyclyl C 1-3 alkyl, or 5 to 10-membered heteroaryl C 1. -3 alkyl, or C 1-6 dihydroxyalkyl.
- the 3- to 10-membered heterocyclylalkyl is particularly preferably a morpholinylethyl group
- the 5- to 10-membered heteroarylalkyl is particularly preferably a pyridylethyl group.
- R 6 and R 7 can preferably be taken together with the nitrogen atom to which they are attached to form a 3-10 membered heterocyclyl or 5-10 membered heteroaryl.
- N represents an integer of 1 to 3, preferably n is 1.
- R 8 and R 9 may be the same or different, and each is hydrogen, C 1-4 alkyl or halogen, and more preferably hydrogen.
- R 8 and R 9 can preferably be combined with the carbon atom to which they are attached to form an alicyclic ring.
- Z 1 is preferably hydrogen, NR 10 R 11 , —OH, or 3 to 10 membered heterocyclyl or 5 to 10 member optionally substituted with one or more groups independently selected from group Q Heteroaryl, more preferably NR 10 R 11 or —OH, or 3- to 10-membered heterocyclyl optionally substituted with one or more groups independently selected from Group Q.
- the 3- to 10-membered heterocyclyl here is particularly preferably a pyrrolidinyl group, a piperazinyl group, a piperidinyl group, or a morpholinyl group.
- the R 10 and the R 11 may be the same or different, and C 1-4 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-4 haloalkyl, C 1-3 alkoxyC are preferable.
- the R 10 and the R 11 can preferably be combined with the nitrogen atom to which they are attached to form a 3-10 membered heterocyclyl or 5-10 membered heteroaryl.
- R 12 and R 13 may be the same or different and are each hydrogen, C 1-4 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-4 haloalkyl, C 1-3 Alkoxy C 1-4 alkyl, C 6-10 aryl, 5-10 membered heteroaryl, 3-10 membered heterocyclyl, C 6-10 aryl C 1-4 alkyl, 3-10 membered heterocyclyl C 1-3 alkyl, 5- 10-membered heteroaryl C 1-3 alkyl, cyano (C 1-3 alkyl), C 1-3 alkylsulfonyl C 1-4 alkyl, or 3- to 10-membered alicyclic ring, more preferably hydrogen, C 1-4 alkyl, C 1-4 haloalkyl.
- R 12 and R 13 may preferably be substituted with one or more groups independently selected from group Q together with the nitrogen atom to which they are bonded.
- 10-membered heterocyclyl or 5- to 10-membered heteroaryl can be formed.
- Particularly preferred is a 3- to 10-membered heterocyclylalkyl, specifically a piperazinyl group, a morpholinyl group, a pyrrolidinyl group or a piperidinyl group.
- R 14 is preferably substituted with one or more groups independently selected from C 1-4 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-4 haloalkyl, group P.
- Said R 15 is preferably substituted with one or more groups independently selected from C 1-4 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-4 haloalkyl, group P. Or an optionally substituted C 6-10 aryl, or a 5-10 membered heteroaryl or 3-10 membered heterocyclyl optionally substituted with one or more groups independently selected from group Q.
- Said R 16 is preferably substituted with one or more groups independently selected from C 1-4 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-4 haloalkyl, group P.
- C 6-10 aryl, or 5-10 membered heteroaryl or 3-10 membered heterocyclyl optionally substituted with one or more groups independently selected from group Q, more preferably C 1-4 alkyl.
- R 17 is preferably hydrogen or C 1-4 alkyl, more preferably hydrogen.
- R 18 is preferably substituted with one or more groups independently selected from C 1-4 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-4 haloalkyl, group P.
- C 6-10 aryl, or 5- to 10-membered heteroaryl or 3- to 10-membered heterocyclyl optionally substituted with one or more groups independently selected from group Q, more preferably C 1-4 alkyl.
- Said R 19 is preferably one or more groups independently selected from hydrogen, C 1-4 alkyl, C 3-7 cycloalkyl, C 1-4 haloalkyl, C 6-10 aryl, or Q group 5- to 10-membered heteroaryl or 3- to 10-membered heterocyclyl optionally substituted with hydrogen, more preferably hydrogen or one or more groups independently selected from group Q 5- to 10-membered heteroaryl or 3- to 10-membered heterocyclyl.
- the 3- to 10-membered heterocyclyl here is more preferably a piperazinyl group, a morpholinyl group, a pyrrolidinyl group, or a piperidinyl group.
- Said R 20 is preferably C 1-4 alkyl, C 3-7 cycloalkyl, C 1-4 haloalkyl, C 6-10 aryl, 5-10 membered heteroaryl or 3-10 membered heterocyclyl.
- R 21 is preferably C 1-4 alkyl, C 3-7 cycloalkyl, C 1-4 haloalkyl, C 6-10 aryl, 5-10 membered heteroaryl or 3-10 membered heterocyclyl.
- Said R 22 is preferably hydrogen, C 1-4 alkyl or C 1-4 haloalkyl.
- Said R 23 is preferably hydrogen, C 1-4 alkyl, C 3-7 cycloalkyl, C 1-4 haloalkyl, C 6-10 aryl, 5-10 membered heteroaryl or 3-10 membered heterocyclyl.
- Said R 24 is preferably hydrogen, C 1-4 alkyl or C 1-4 haloalkyl.
- R 25 is preferably C 1-4 alkyl, C 3-7 cycloalkyl, C 1-4 haloalkyl, C 6-10 aryl, 5-10 membered heteroaryl or 3-10 membered heterocyclyl.
- R 26 and R 27 may be the same or different and are each hydrogen, C 1-4 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-4 haloalkyl, C 1-3 Alkoxy C 1-4 alkyl, C 6-10 aryl, 5-10 membered heteroaryl, 3-10 membered heterocyclyl, C 6-10 aryl C 1-4 alkyl, 3-10 membered heterocyclyl C 1-3 alkyl, 5- 10-membered heteroaryl C 1-3 alkyl, cyano (C 1-3 alkyl), C 1-3 alkylsulfonyl C 1-4 alkyl, or a 3-10 membered alicyclic ring.
- R 26 and R 27 can preferably be joined together with the nitrogen atom to which they are attached to form a 3-10 membered heterocyclyl or 5-10 membered heteroaryl.
- R 28 and R 29 may be the same or different and are each hydrogen, C 1-4 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-4 haloalkyl, C 1-3 Alkoxy C 1-4 alkyl, C 6-10 aryl, 5-10 membered heteroaryl, 3-10 membered heterocyclyl, C 6-10 aryl C 1-4 alkyl, 3-10 membered heterocyclyl C 1-3 alkyl, 5- 10-membered heteroaryl C 1-3 alkyl, cyano (C 1-3 alkyl), C 1-3 alkylsulfonyl C 1-4 alkyl, or a 3-10 membered alicyclic ring.
- R 28 and R 29 can preferably be joined together with the nitrogen atom to which they are attached to form a 3-10 membered heterocyclyl or 5-10 membered heteroaryl.
- Said R 30 is preferably C 1-4 alkyl, C 3-7 cycloalkyl, C 1-4 haloalkyl, C 6-10 aryl, 5-10 membered heteroaryl or 3-10 membered heterocyclyl.
- R 31 is preferably C 1-4 alkyl, C 3-7 cycloalkyl, C 1-4 haloalkyl, C 6-10 aryl, 5-10 membered heteroaryl or 3-10 membered heterocyclyl.
- Said R 32 is preferably C 1-4 alkyl or C 6-10 aryl.
- the substituent included in the P group is preferably halogen, C 1-4 alkyl, C 1-4 haloalkyl, —OH, C 1-3 alkoxy, C 1-3 haloalkoxy, 3 to 10-membered heterocyclylamino, —SO 2 R, —CN, —NO 2 , or 3 to 10 membered heterocyclyl, more preferably halogen, C 1-4 haloalkyl, C 1-3 alkoxy, C 1-3 haloalkoxy, or 3 to 10 Heterocyclyl.
- the 3- to 10-membered heterocyclyl here is particularly preferably a morpholinyl group.
- the substituent contained in the Q group is preferably halogen, C 1-4 alkyl, C 1-4 haloalkyl, —OH, C 1-3 alkoxy, C 1-6 monohydroxyalkyl, C 1-6 dihydroxyalkyl. Or substituted with C 1-6 trihydroxyalkyl, 3-10 membered heterocyclylamino, —SO 2 R, —CN, —NO 2 , C 3-7 cycloalkyl, —COR 19 , or C 1-4 alkyl.
- 3-10 membered heterocyclyl more preferably halogen, C 1-4 alkyl, C 1-4 haloalkyl, —OH, C 1-3 alkoxy, C 1-6 monohydroxyalkyl, —SO 2 R 16 , C 3-7 cycloalkyl, -COR 19 or C 1-4 3 alkyl optionally substituted 1-10 membered heterocyclyl der, .
- the 3- to 10-membered heterocyclyl here is more preferably a piperazinyl group, a piperidinyl group, or a morpholinyl group.
- examples include compounds in which A in the above formula (I) is indole, R 3 is methyl, and R 4 is hydrogen, for example, compounds shown in Table 1.
- the above compound can be produced, for example, according to the production method described in International Publication WO2011 / 016528.
- the compound having the FGFR inhibitory activity in the present invention includes not only a free form but also a pharmaceutically acceptable salt.
- salts include inorganic acid salts, organic acid salts, inorganic base salts, organic base salts, acidic or basic amino acid salts, and the like.
- inorganic acid salts include hydrochloride, hydrobromide, sulfate, nitrate, phosphate and the like
- organic acid salts include, for example, acetate, succinate and fumarate.
- Acid salts maleates, tartrate, citrate, lactate, malate, stearate, benzoate, methanesulfonate, p-toluenesulfonate, and the like.
- a particularly preferred salt in the present invention is malate.
- the inorganic base salt include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt and magnesium salt, aluminum salt and ammonium salt.
- organic base salts examples thereof include diethylamine salt, diethanolamine salt, meglumine salt, N, N-dibenzylethylenediamine salt and the like.
- Preferred examples of the acidic amino acid salt include aspartate and glutamate, and preferred examples of the basic amino acid salt include arginine salt, lysine salt and ornithine salt.
- the compound having FGFR inhibitory activity in the present invention also includes hydrates. Furthermore, the compound having FGFR inhibitory activity in the present invention may absorb a certain other solvent and become a solvate, and such a solvate is also included.
- the compounds having FGFR inhibitory activity in the present invention also include all structurally occurring isomers (geometric isomers, optical isomers, stereoisomers, tautomers, etc.) and isomer mixtures.
- the compound having FGFR inhibitory activity in the present invention also includes any crystal polymorph.
- the compound having FGFR inhibitory activity in the present invention also includes its prodrug.
- a prodrug is a derivative of a compound of the present invention that has a group that can be chemically or metabolically decomposed and is restored to the original compound after administration to a living body and exhibits its original medicinal properties. No complexes and salts.
- the compounds having FGFR inhibitory activity in the present invention include those in which one or more atoms in the molecule are replaced with isotopes.
- the isotope means atoms having the same atomic number (number of protons) but different mass numbers (sum of the number of protons and neutrons).
- Examples of atoms to be substituted for isotopes contained in the compound of the present invention include hydrogen atoms, carbon atoms, nitrogen atoms, oxygen atoms, phosphorus atoms, sulfur atoms, fluorine atoms, chlorine atoms, and the like.
- the body includes 2 H, 3 H, 13 C, 14 C, 15 N, 17 O, 18 O, 31 P, 32 P, 35 S, 18 F, 36 Cl, and the like.
- radioactive isotopes such as 3 H and 14 C that decay by emitting radiation are useful in the tissue distribution test of drugs or compounds.
- Stable isotopes are safe to use because they do not decay, their abundance is almost unchanged, and they do not emit radiation.
- the isotope substitute of the compound of the present invention can be converted according to a conventional method by replacing the reagent used in the synthesis with a reagent containing the corresponding isotope.
- the “anticancer agent” or “pharmaceutical composition for cancer treatment” containing the FGFR inhibitor in the present invention is used interchangeably, and is composed of a compound having the above-mentioned FGFR inhibitory activity and a pharmaceutically acceptable carrier. Means a therapeutic composition.
- the compound having FGFR inhibitory activity in the present invention is prepared by a conventional method using tablets, powders, fine granules, granules, coated tablets, capsules, syrups, troches, inhalants, suppositories, injections, ointments. And ophthalmic ointments, eye drops, nasal drops, ear drops, poultices, lotions and the like. Excipients, binders, lubricants, colorants, flavoring agents, and if necessary stabilizers, emulsifiers, absorption promoters, surfactants, pH adjusters, preservatives, Antioxidants and the like can be used. In general, ingredients that are used as raw materials for pharmaceutical preparations are blended to prepare a preparation by a conventional method.
- the compound according to the present invention or a pharmacologically acceptable salt and excipient thereof in order to produce an oral preparation, the compound according to the present invention or a pharmacologically acceptable salt and excipient thereof, and optionally a binder, a disintegrant, a lubricant, a coloring agent, a flavoring agent.
- a binder a disintegrant, a lubricant, a coloring agent, a flavoring agent.
- these components include animal and vegetable oils such as soybean oil, beef tallow, and synthetic glycerides; hydrocarbons such as liquid paraffin, squalane and solid paraffin; ester oils such as octyldodecyl myristate and isopropyl myristate; cetostearyl alcohol and behenyl alcohol Higher alcohols; silicone resins; silicone oils; surfactants such as polyoxyethylene fatty acid esters, sorbitan fatty acid esters, glycerin fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene hydrogenated castor oil, polyoxyethylene polyoxypropylene block copolymers Water-soluble such as hydroxyethylcellulose, polyacrylic acid, carboxyvinyl polymer, polyethylene glycol, polyvinylpyrrolidone, methylcellulose Molecules; lower alcohols such as ethanol and isopropanol; polyhydric alcohols such as glycerin, propylene glycol, di
- binder examples include polyvinyl alcohol, polyvinyl ether, methylcellulose, ethylcellulose, gum arabic, tragacanth, gelatin, shellac, hydroxypropylmethylcellulose, hydroxypropylcellulose, polyvinylpyrrolidone, polypropylene glycol, polyoxyethylene block polymer, meglumine and the like. It is done.
- disintegrant examples include starch, agar, gelatin powder, crystalline cellulose, calcium carbonate, sodium bicarbonate, calcium citrate, dextrin, pectin, carboxymethylcellulose / calcium and the like.
- lubricant examples include magnesium stearate, talc, polyethylene glycol, silica, hydrogenated vegetable oil, and the like.
- coloring agents those permitted to be added to pharmaceuticals are used.
- flavoring agents cocoa powder, mint brain, fragrance powder, mint oil, dragon brain, cinnamon powder, and the like are used.
- these tablets and granules may be coated with sugar coating and other coatings as necessary.
- a liquid preparation such as a syrup or an injectable preparation
- a compound according to the present invention or a pharmacologically acceptable salt thereof, a pH adjuster, a solubilizer, an isotonic agent, etc. are necessary. Add a solubilizing agent, stabilizer, etc. accordingly, and formulate it by a conventional method.
- the method for producing the external preparation is not limited and can be produced by a conventional method. That is, as a base material used for formulation, various raw materials usually used for pharmaceuticals, quasi drugs, cosmetics, and the like can be used. Specific examples of base materials to be used include animal and vegetable oils, mineral oils, ester oils, waxes, higher alcohols, fatty acids, silicone oils, surfactants, phospholipids, alcohols, polyhydric alcohols, Examples include raw materials such as water-soluble polymers, clay minerals, and purified water. If necessary, pH adjusters, antioxidants, chelating agents, antiseptic / antifungal agents, coloring agents, fragrances, etc. may be added. However, the base material of the external preparation according to the present invention is not limited thereto.
- the addition amount of the said base raw material is an amount used as the density
- the anticancer agent for administering the compound having FGFR inhibitory activity in the present invention to a patient is not particularly limited, and may be administered orally or parenterally by a commonly used method.
- a commonly used method for example, tablets, powders, granules, capsules, syrups, troches, inhalants, suppositories, injections, ointments, eye ointments, eye drops, nasal drops, ear drops, poultices, lotions, etc. It can be formulated and administered as an agent.
- the dose of the FGFR inhibitor contained in the anticancer agent or cancer therapeutic pharmaceutical composition in the present invention is appropriately determined according to the degree of symptoms, age, sex, body weight, type of administration / salt, specific type of disease, etc. You can choose.
- the dose varies significantly depending on the type of disease, the degree of symptoms, the patient's age, gender difference, sensitivity to drugs, etc., but is usually about 0.03-1000 mg, preferably 0.1-500 mg per day as an adult. Preferably, 0.1-100 mg is administered in 1 to several times a day. In the case of an injection, it is usually about 1 ⁇ g / kg to 3000 ⁇ g / kg, preferably about 3 ⁇ g / kg to 1000 ⁇ g / kg.
- the present invention is also characterized in that the compound having the FGFR inhibitory activity described above is used so as to be administered to a patient that expresses the mutant polypeptide of the present invention or has a polynucleotide encoding the mutant polypeptide. And a pharmaceutical composition for treating cancer containing the compound.
- the present invention further provides treatment or prevention of cancer comprising administering an effective amount of the above-mentioned compound having FGFR inhibitory activity or a pharmaceutically acceptable salt thereof to a patient that expresses the mutant polypeptide or has the polynucleotide.
- the present invention relates to a compound having FGFR inhibitory activity or a pharmaceutically acceptable salt thereof for use in the treatment or prevention of a patient expressing a peptide or having the polynucleotide.
- the mutant polypeptide of the present invention as a biomarker before the patient is administered with the above-described anticancer agent containing the FGFR inhibitor, the patient expresses the mutant polypeptide, Or, it is tested whether or not it has a polynucleotide encoding the mutant polypeptide, and the FGFR inhibitor is included only when the mutant polypeptide is expressed or has the polynucleotide encoding the mutant polypeptide
- the anticancer agent is used for administration to the patient. As a result, it is possible to prevent the occurrence of side effects in the treatment with the drug and to control the treatment mode so that the best treatment effect can be obtained, and personalized medicine (personalized medicine) becomes possible.
- test of whether the patient expresses the mutant polypeptide of the present invention or has a polynucleotide encoding the mutant polypeptide can be performed using the method of the present invention described above.
- the present invention also relates to a method for identifying a compound having FGFR inhibitory activity.
- Specific examples of the method for identifying a compound having FGFR inhibitory activity of the present invention include a method comprising the following steps. (A) culturing cells expressing the above-described mutant polypeptide of the present invention in the presence and absence of the test compound, respectively, and determining the level of cell proliferation; (B) comparing the level of cell proliferation when the cells are cultured in the presence of the test compound with the level of cell proliferation when the cells are cultured in the absence of the test compound; and (c) When the level of cell proliferation when the cells are cultured in the presence of the test compound is lower than the level of cell proliferation when the cells are cultured in the absence of the test compound, the test compound is A step of determining that it has FGFR inhibitory activity.
- the cells used in this method may be primary cultured cells, established cells or recombinant cells as long as they express the mutant polypeptide of the present invention.
- Examples of the recombinant cell include a recombinant cell into which a vector containing a polynucleotide encoding the above-described mutant polypeptide of the present invention has been introduced.
- the primary cultured cells include cells collected from cancer patients, and the established cells include cancer cell lines established from cancer cells collected from cancer patients.
- the cancer in the present invention includes any cancer as described above.
- the method for identifying a compound having FGFR inhibitory activity of the present invention further includes a method comprising the following steps.
- A a step of administering a test compound to a non-human mammal transplanted with a cell expressing the above-described mutant polypeptide of the present invention and determining the level of proliferation of the cell;
- B comparing the level of cell proliferation determined in step (a) with the level of cell proliferation of the cells determined in a non-human mammal transplanted with the cells not receiving the test compound And
- the cells used in this method may be primary cultured cells, established cells, or recombinant cells as long as they express the mutant polypeptide of the present invention.
- Examples of the recombinant cell include a recombinant cell into which a vector containing a polynucleotide encoding the above-described mutant polypeptide of the present invention has been introduced.
- the primary cultured cells include cells collected from cancer patients, and the established cells include cancer cell lines established from cancer cells collected from cancer patients.
- the cancer in the present invention includes any cancer as described above.
- the level of cell proliferation is determined by a conventional method using, for example, a colorimetric method for measuring an enzyme activity for reducing a dye (MTT, XTT, MTS, WST, etc.) to a formazan dye (purple). Can be tested.
- a colorimetric method for measuring an enzyme activity for reducing a dye MTT, XTT, MTS, WST, etc.
- a formazan dye purple
- the level of cell proliferation can also be determined by measuring the size or weight of a tumor formed as a result of cell proliferation.
- the method for identifying a compound having FGFR inhibitory activity of the present invention also includes an embodiment using a reporter gene assay.
- Reporter genes include genes encoding any commonly used fluorescent protein.
- green fluorescent protein GFP derived from Aequorea coerulescens, luciferase derived from Renilla, RCFPs derived from reef coral (Reef Coral® Fluorescent Proteins), fruit fluorescent proteins, and modifications thereof.
- the reporter gene assay in the present invention can be performed, for example, as follows. Transcription of the gene encoding the mutant polypeptide of the present invention and the gene encoding the reporter protein into the mRNA of the gene encoding the reporter protein depending on the transcription signal of the mutant polypeptide-encoding polynucleotide to mRNA A gene recombinant cell is produced by transforming a cell generally used in the production of a recombinant protein with an expression vector inserted so that the above occurs. A test compound is brought into contact with the obtained transformed cells. By indirectly measuring the level of the mutant polypeptide expressed depending on the action of the compound by measuring the amount of fluorescence emitted by the reporter protein expressed simultaneously with the expression of the mutant polypeptide. Analyze whether the compound affects the expression of the mutant polypeptide (eg, US Pat. No. 5,436,128 and US Pat. No. 5,401,629, etc.).
- the identification of the compound using this assay can be performed manually, but the so-called high throughput screening (Tissue culture engineering, Vol. 23, No. 23) is performed automatically using a machine (robot). .13, p.521-524; U.S. Pat. No. 5,670,113) can be carried out more quickly and easily.
- Example 1 Examination of FGFR2 V564F mutant and V562L mutant (1) Evaluation of phosphorylation inhibitory action by FGFR inhibitor Polynucleotide encoding FGFR2 V564F mutant (SEQ ID NO: 9) (SEQ ID NO: 6) And a polynucleotide (SEQ ID NO: 7) encoding FGFR2 V562L mutant (SEQ ID NO: 10) from the ORF polynucleotide (SEQ ID NO: 5) of wild-type FGFR2 (SEQ ID NO: 8) using the PCR method. -Produced by Directed Mutagenesis method.
- a polynucleotide encoding a wild-type FGFR2 ORF polynucleotide, FGFR2 V564F mutant, or FGFR2 V562L mutant was subcloned into a pCXND3 vector (Kakekenken) to prepare each polypeptide expression vector.
- Each of the prepared vectors was introduced into human colon adenocarcinoma cell HCT 116 (ATCC) using transfection reagent FuGENE (registered trademark) HD (Promega), wild type FGFR2 polypeptide (SEQ ID NO: 8), FGFR2 V564F mutant polypeptide (SEQ ID NO: 9) and FGFR2 V562L mutant polypeptide (SEQ ID NO: 10) were each transiently expressed.
- Compound A or compound C was allowed to act on each cell in the presence of 0.1% DMSO, and then cell lysate of each cell was collected using Cell lysis buffer (Cell Signaling Technology).
- the cell growth inhibitory activity of each compound against the strain that stably expresses the FGFR2 V564F mutant polypeptide or the FGFR2 V562L mutant polypeptide is stable against the wild type FGFR2 polypeptide.
- the cell growth inhibitory activity against the expressing strain it was confirmed that Compound B and Compound C were significantly attenuated while Compound A hardly changed.
- Example 2 Examination on TEL fusion FGFR2 V564F mutant (1) Evaluation of in vitro cell growth inhibitory effect of FGFR inhibitor Polynucleotide encoding the dimerization domain of wild-type TEL (SEQ ID NO: 33) And a polynucleotide encoding the intracellular domain of wild-type FGFR2 (SEQ ID NO: 1) are fused by the Site-Directed Mutagenesis method using the PCR method, and a TEL-fused wild-type FGFR2 (SEQ ID NO: 34) is encoded. A nucleotide (SEQ ID NO: 11) was prepared.
- a polynucleotide (SEQ ID NO: 12) encoding a TEL-fused FGFR2 V564F mutant (SEQ ID NO: 35) was prepared by a site-directed mutation method using the PCR method using a polynucleotide encoding TEL-fused wild-type FGFR2 as a template. did. Polynucleotides encoding TEL-fused wild-type FGFR2 and TEL-fused FGFR2 V564F mutants were subcloned into the pCXND3 vector (Kaketsuken) to prepare each polypeptide expression vector.
- TEL-fused wild-type FGFR2 or TEL-fused FGFR2 V564F mutant polypeptide expression vectors were introduced into IL-3-dependent mouse pro-B cells Ba / F3 by electroporation and used as a selection marker in the absence of IL-3.
- G-418 was added and cultured to establish Ba / F3 strains that stably express TEL-fused wild-type FGFR2 polypeptide or TEL-fused FGFR2 V564F mutant polypeptide and can proliferate independently of IL-3. did.
- each compound (compound A, B, C, or E) diluted 18-fold in increments of 4 with 50 ⁇ M as the maximum concentration, diluted 18-fold in increments of 4 with 10 ⁇ M as the maximum concentration
- Each compound (compound D) or DMSO (used as a control) was added and cultured for 4 days. Cell proliferation after 4 days was measured by WST-8 (Dojindo Laboratories). The cell growth inhibitory activity of each compound for each cell is expressed as 450 nM absorbance value in the well where the cells were cultured with each concentration added, and 450 nM absorbance value when the cells were cultured with DMSO added as C. (1-T / C) x 100 (%).
- the cell growth inhibitory activity of each compound against the strain that stably expresses the TEL-fused FGFR2 V564F mutant polypeptide is the cell against the strain that stably expresses the TEL-fused wild-type FGFR2 polypeptide.
- the compounds B, C, D and E were significantly attenuated while the compound A hardly changed.
- mutant FGFR polypeptide of the present invention exhibits resistance to known FGFR inhibitors such as AZD4547 and is sensitive to a specific compound
- the mutant polypeptide can be used for cancer caused by various FGFR inhibitors.
- it is possible to determine the appropriateness of application of various FGFR inhibitors for each individual patient, and to prevent the occurrence of side effects in treatment with conventional FGFR inhibitors. It is possible to control the treatment mode so that a therapeutic effect is obtained, and personalized medicine is possible.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Analytical Chemistry (AREA)
- Oncology (AREA)
- Hematology (AREA)
- Pathology (AREA)
- Urology & Nephrology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Hospice & Palliative Care (AREA)
- Food Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Epidemiology (AREA)
- Toxicology (AREA)
- Plant Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
Abstract
Description
即ち、本発明は、他のFGFR阻害剤に対して、当該変異を獲得することにより耐性を獲得したFGFRを有する癌に対しても高い抗癌作用を有する、新たな抗腫瘍薬を提供することを目的とする。
〔1〕下記式(I)で示される化合物またはその薬学的に許容される塩を有効成分として含む癌治療用医薬組成物であって、
FGFRポリペプチドにおける、配列番号53もしくは54に記載される部分アミノ酸配列のうち、N末端側から7番目のアミノ酸であるバリンのフェニルアラニンへの置換、および/もしくはN末端側から5番目のアミノ酸であるバリンのロイシンへの置換を含むFGFR変異ポリペプチドを発現するか、あるいは該変異ポリペプチドをコードするポリヌクレオチドを有する患者に投与されるように用いられることを特徴とする、癌治療用医薬組成物:
R1は、水素、ヒドロキシ、ハロゲン、シアノ、ニトロ、C1-4ハロアルキル、C1-6アルキル、C2-6アルケニル、C2-6アルキニル、C3-7シクロアルキル、C6-10アリールC1-4アルキル、-OR5、-NR6R7、-(CR8R9)nZ1、-C(O)NR12R13、-SR14、-SOR15、-SO2R16、-NR17SO2R18、COOH、P群から独立して選択される1または複数の基で置換されていてもよいC6-10アリール、Q群から独立して選択される1または複数の基で置換されていてもよい5~10員ヘテロアリールもしくは3~10員ヘテロシクリル、-COR19、-COOR20、-OC(O)R21、-NR22C(O)R23、-NR24C(S)R25、-C(S)NR26R27、-SO2NR28R29、-OSO2R30、-SO3R31または-Si(R32)3を示し;
R2は、水素、ヒドロキシ、ハロゲン、シアノ、ニトロ、C1-4ハロアルキル、C1-6アルキル、C2-6アルケニル、C2-6アルキニル、C3-7シクロアルキル、C6-10アリールC1-4アルキル、-OR5、-NR6R7、-(CR8R9)nZ1、-C(O)NR12R13、-SR14、-SOR15、-SO2R16、-NR17SO2R18、COOH、P群から独立して選択される1または複数の基で置換されていてもよいC6-10アリール、Q群から独立して選択される1または複数の基で置換されていてもよい5~10員ヘテロアリールもしくは3~10員ヘテロシクリル、-COR19、-COOR20、-OC(O)R21、-NR22C(O)R23、-NR24C(S)R25、-C(S)NR26R27、-SO2NR28R29、-OSO2R30、-SO3R31または-Si(R32)3を示し;
またはR1およびR2は、それらが結合している原子と一緒になって、3~10員ヘテロシクリルまたは5~10員ヘテロアリールを形成し、ここで該ヘテロシクリルまたは該ヘテロアリールは、ハロゲンで置換されていてもよく;
R3はメチルを示し;
R4は水素を示し;
Aはインドールであり;
R5はC1-5アルキル、C3-7シクロアルキル、C3-7シクロアルキルC1-3アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、C1-3アルコキシC1-4アルキル、C1-3アルコキシC1-4アルコキシC1-4アルキル、C1-4アミノアルキル、C1-4アルキルアミノC1-4アルキル、ジ(C1-4アルキル)アミノC1-4アルキル、C6-10アリール、C6-10アリールC1-3アルキル、Q群から独立して選択される1または複数の基で置換されていてもよい3~10員ヘテロシクリルC1-3アルキル、3~10員ヘテロシクリル、5~10員ヘテロアリール、5~10員ヘテロアリールC1-3アルキル、C1-6モノヒドロキシアルキル、C1-6ジヒドロキシアルキルまたはC1-6トリヒドロキシアルキルを示し;
R6およびR7は、同一でも異なってもよく、それぞれ、水素、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、C1-3アルコキシC1-4アルキル、C6-10アリールC1-3アルキル、3~10員ヘテロシクリルC1-3アルキル、5~10員ヘテロアリールC1-3アルキル、C1-6モノヒドロキシアルキル、C1-6ジヒドロキシアルキル、C1-6トリヒドロキシアルキル、3~10員ヘテロシクリル、C1-4アミノアルキル、C1-4アルキルアミノC1-4アルキル、ジ(C1-4アルキル)アミノC1-4アルキルまたはシアノ(C1-3アルキル)を示すか、またはR6およびR7は、それらが結合している窒素原子と一緒になって3~10員ヘテロシクリルまたは5~10員ヘテロアリールを形成し;
nは1~3を示し;
R8およびR9は、同一でも異なってもよく、それぞれ水素、C1-4アルキルまたはハロゲンを示すか、またはR8およびR9は、それらが結合している炭素原子と一緒になって脂環式環を形成してもよく;
Z1は、水素、NR10R11、-OH、またはQ群から独立して選択される1または複数の基で置換されていてもよい3~10員ヘテロシクリルもしくは5~10員ヘテロアリールを示し;
R10およびR11は、同一でも異なってもよく、それぞれC1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、C1-3アルコキシC1-4アルキル、シアノ(C1-3アルキル)またはC1-3アルキルスルホニルC1-4アルキルを示すか、またはR10およびR11は、それらが結合している窒素原子と一緒になって3~10員ヘテロシクリルまたは5~10員ヘテロアリールを形成してもよく;
R12およびR13は同一でも異なってもよく、それぞれ水素、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、C1-3アルコキシC1-4アルキル、C6-10アリール、5~10員ヘテロアリール、3~10員ヘテロシクリル、C6-10アリールC1-4アルキル、3~10員ヘテロシクリルC1-3アルキル、5~10員ヘテロアリールC1-3アルキル、シアノ(C1-3アルキル)、C1-3アルキルスルホニルC1-4アルキル、3~10員脂環式環、5~10員ヘテロアリールまたは3~10員ヘテロシクリルを示すか、またはR12およびR13は、それらが結合している窒素原子と一緒になって、Q群から独立して選択される1または複数の基で置換されていてもよい3~10員ヘテロシクリルもしくは5~10員ヘテロアリールを形成してもよく;
R14は、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、P群から独立して選択される1または複数の基で置換されていてもよいC6-10アリール、またはQ群から独立して選択される1または複数の基で置換されていてもよい5~10員ヘテロアリールもしくは3~10員ヘテロシクリルを示し;
R15は、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、P群から独立して選択される1または複数の基で置換されていてもよいC6-10アリール、またはQ群から独立して選択される1または複数の基で置換されていてもよい5~10員ヘテロアリールもしくは3~10員ヘテロシクリルを示し;
R16は、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、P群から独立して選択される1または複数の基で置換されていてもよいC6-10アリール、またはQ群から独立して選択される1または複数の基で置換されていてもよい5~10員ヘテロアリールもしくは3~10員ヘテロシクリルを示し;
R17は、水素またはC1-4アルキルを示し;
R18は、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、P群から独立して選択される1または複数の基で置換されていてもよいC6-10アリール、またはQ群から独立して選択される1または複数の基で置換されていてもよい5~10員ヘテロアリールもしくは3~10員ヘテロシクリルを示し;
R19は、水素、C1-4アルキル、C3-7シクロアルキル、C1-4ハロアルキル、C6-10アリール、またはQ群から独立して選択される1または複数の基で置換されていてもよい5~10員ヘテロアリールもしくは3~10員ヘテロシクリルを示し;
R20は、C1-4アルキル、C3-7シクロアルキル、C1-4ハロアルキル、C6-10アリール、5~10員ヘテロアリールまたは3~10員ヘテロシクリルを示し;
R21は、C1-4アルキル、C3-7シクロアルキル、C1-4ハロアルキル、C6-10アリール、5~10員ヘテロアリールまたは3~10員ヘテロシクリルを示し;
R22は、水素、C1-4アルキルまたはC1-4ハロアルキルを示し;
R23は、水素、C1-4アルキル、C3-7シクロアルキル、C1-4ハロアルキル、C6-10アリール、5~10員ヘテロアリールまたは3~10員ヘテロシクリルを示し;
R24は、水素、C1-4アルキルまたはC1-4ハロアルキルを示し;
R25は、C1-4アルキル、C3-7シクロアルキル、C1-4ハロアルキル、C6-10アリール、5~10員ヘテロアリールまたは3~10員ヘテロシクリルを示し;
R26およびR27は、同一でも異なってもよく、それぞれ水素、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、C1-3アルコキシルC1-4アルキル、C6-10アリール、5~10員ヘテロアリール、3~10員ヘテロシクリル、C6-10アリールC1-4アルキル、3~10員ヘテロシクリルC1-3アルキル、5~10員ヘテロアリールC1-3アルキル、シアノ(C1-3アルキル)、C1-3アルキルスルホニルC1-4アルキル、または3~10員脂環式環を示すか、またはR26およびR27は、それらが結合している窒素原子と一緒になって3~10員ヘテロシクリルまたは5~10員ヘテロアリールを形成してもよく;
R28およびR29は、同一でも異なってもよく、それぞれ水素、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、C1-3アルコキシルC1-4アルキル、C6-10アリール、5~10員ヘテロアリール、3~10員ヘテロシクリル、C6-10アリールC1-4アルキル、3~10員ヘテロシクリルC1-3アルキル、5~10員ヘテロアリールC1-3アルキル、シアノ(C1-3アルキル)、C1-3アルキルスルホニルC1-4アルキル、または3~10員脂環式環を示すか、またはR28およびR29は、それらが結合している窒素原子と一緒になって3~10員ヘテロシクリルまたは5~10員ヘテロアリールを形成してもよく;
R30は、C1-4アルキル、C3-7シクロアルキル、C1-4ハロアルキル、C6-10アリール、5~10員ヘテロアリールまたは3~10員ヘテロシクリルを示し;
R31は、C1-4アルキル、C3-7シクロアルキル、C1-4ハロアルキル、C6-10アリール、5~10員ヘテロアリールまたは3~10員ヘテロシクリルを示し;
R32は、C1-4アルキルまたはC6-10アリールを示し;
<P群>
ハロゲン、C1-4アルキル、C1-4ハロアルキル、-OH、C1-3アルコキシ、C1-3ハロアルコキシ、3~10員ヘテロシクリルアミノ、-SO2R16、-CN、-NO2、および3~10員ヘテロシクリル。
<Q群>
ハロゲン、C1-4アルキル、C1-4ハロアルキル、-OH、C1-3アルコキシ、C1-6モノヒドロキシアルキル、C1-6ジヒドロキシアルキルまたはC1-6トリヒドロキシアルキル、3~10員ヘテロシクリルアミン、-SO2R16、-CN、-NO2、C3-7シクロアルキル、-COR19、およびC1-4アルキルで置換されていてもよい3~10員ヘテロシクリル。
〔2〕下記式で示される化合物またはその薬学的に許容される塩を有効成分として含む、〔1〕記載の医薬組成物:
。
〔3〕FGFRポリペプチドにおける、配列番号53もしくは54に記載される部分アミノ酸配列のうち、N末端側から7番目のアミノ酸であるバリンのフェニルアラニンへの置換、および/もしくはN末端側から5番目のアミノ酸であるバリンのロイシンへの置換を含むFGFR変異ポリペプチド。
〔4〕〔3〕記載の変異ポリペプチドをコードするポリヌクレオチド。
〔5〕〔4〕記載のポリヌクレオチドを含むベクター。
〔6〕〔5〕記載のベクターを含む組み換え細胞。
〔7〕〔3〕記載の変異ポリペプチドに特異的に結合する抗体またはその抗原結合断片。
〔8〕〔3〕記載の変異ポリペプチドをコードするポリヌクレオチドに特異的にハイブリダイズするオリゴヌクレオチドを含む、該ポリヌクレオチドの検出または増幅のための一対のオリゴヌクレオチドプライマーまたはオリゴヌクレオチドプローブ。
〔9〕〔3〕記載の変異ポリペプチドをコードするmRNAポリヌクレオチドに結合し、該mRNAポリヌクレオチドのタンパク質への翻訳を阻害する活性を有するオリゴヌクレオチド。
〔10〕該オリゴヌクレオチドが、mRNAポリヌクレオチドを切断するsiRNAである、〔9〕記載のオリゴヌクレオチド。
〔11〕〔3〕記載の変異ポリペプチドに特異的に結合する抗体またはその抗原結合断片を用いて、被験者から単離された試料中において、該変異ポリペプチドを検出する工程を含む、FGFR変異ポリペプチドの検出方法。
〔12〕〔3〕記載の変異ポリペプチドをコードするポリヌクレオチドに特異的にハイブリダイズするオリゴヌクレオチドを含む、該ポリヌクレオチドの検出または増幅のための一対のオリゴヌクレオチドプライマーまたはオリゴヌクレオチドプローブを用いて、被験者から単離された試料中において、該変異ポリペプチドをコードするポリヌクレオチドを検出する工程を含む、FGFR変異ポリペプチドをコードするポリヌクレオチドの検出方法。
〔13〕〔3〕記載の変異ポリペプチドをコードするポリヌクレオチドに特異的にハイブリダイズするオリゴヌクレオチドを含む、該ポリヌクレオチドの検出または増幅のための一対のオリゴヌクレオチドプライマーまたはオリゴヌクレオチドプローブを含む、FGFR変異ポリペプチドをコードするポリヌクレオチドの検出用キット。
〔14〕〔3〕記載の変異ポリペプチドに特異的に結合する抗体またはその抗原結合断片を含む、FGFR変異ポリペプチドの検出用キット。
〔15〕被験者から単離された試料中において、〔3〕記載の変異ポリペプチドまたは該変異ポリペプチドをコードするポリヌクレオチドの存否を決定し、該変異ポリペプチドまたは該ポリヌクレオチドが検出された場合に、〔1〕または〔2〕記載の医薬組成物を当該被験者に投与して、癌を治療する方法。
〔16〕該癌が、膀胱癌、脳腫瘍、頭頸部扁平上皮癌、肺癌、肺腺癌、肺扁平上皮癌、皮膚黒色腫、子宮体癌、乳癌、前立腺癌、大腸癌、食道癌、胃癌、胆管癌、胆道癌または肝癌である、〔15〕記載の方法。
〔17〕以下の工程を含む、〔1〕または〔2〕記載の医薬組成物が適用される患者を選択する方法:
(a) 被験者から単離された試料中において、〔3〕記載の変異ポリペプチドの存否を決定する工程;
(b) 該変異ポリペプチドの存在が確認された被験者を該医薬組成物が適用される患者として選択する工程。
〔18〕以下の工程を含む、〔1〕または〔2〕記載の医薬組成物が適用される患者を選択する方法:
(a) 被験者から単離された試料中において、〔3〕記載の変異ポリペプチドをコードするポリヌクレオチドの存否を決定する工程;
(b) 該変異ポリペプチドをコードするポリヌクレオチドの存在が確認された被験者を該医薬組成物が適用される患者として選択する工程。
〔19〕該癌が、膀胱癌、脳腫瘍、頭頸部扁平上皮癌、肺癌、肺腺癌、肺扁平上皮癌、皮膚黒色腫、子宮体癌、乳癌、前立腺癌、大腸癌、食道癌、胃癌、胆管癌、胆道癌または肝癌である、〔18〕記載の方法。
〔20〕〔3〕記載の変異ポリペプチドを発現するか、または該変異ポリペプチドをコードするポリヌクレオチドを有する患者における癌の治療において使用するための、〔1〕または〔2〕で定義される化合物またはその薬学的に許容される塩。
〔21〕前記癌が、膀胱癌、脳腫瘍、頭頸部扁平上皮癌、肺癌、肺腺癌、肺扁平上皮癌、皮膚黒色腫、子宮体癌、乳癌、前立腺癌、大腸癌、食道癌、胃癌、胆管癌、胆道癌または肝癌である、〔20〕記載の化合物またはその薬学的に許容される塩。
〔22〕下記式で示される化合物またはその薬学的に許容される塩を有効成分として含む、FGFRポリペプチドにおける、配列番号53もしくは54に記載される部分アミノ酸配列のうち、N末端側から7番目のアミノ酸であるバリンのフェニルアラニンへの置換、および/もしくはN末端側から5番目のアミノ酸であるバリンのロイシンへの置換を含むFGFR変異ポリペプチドの発現する癌の治療用医薬組成物:
。
〔23〕FGFRポリペプチドにおける、配列番号53もしくは54に記載される部分アミノ酸配列のうち、N末端側から7番目のアミノ酸であるバリンのフェニルアラニンへの置換、および/もしくはN末端側から5番目のアミノ酸であるバリンのロイシンへの置換を含むFGFR変異ポリペプチドの機能を阻害するか発現を阻害する物質を有効成分として含有する癌治療用医薬組成物。
〔24〕〔3〕記載の変異ポリペプチドを発現するか、または該変異ポリペプチドをコードするポリヌクレオチドを有する患者に投与するための癌治療または予防用の医薬組成物の製造における、前記〔1〕または〔2〕で定義される化合物またはその薬学的に許容される塩の使用。
〔25〕以下の工程を含む、PD173074、AZD4547、BGJ398、およびAZD2171からなる群より選択されるFGFR阻害剤に対する耐性を検出する方法:
(a) 被験者から単離された試料中において、〔3〕記載の変異ポリペプチドまたは該変異ポリペプチドをコードするポリヌクレオチドの存否を決定する工程;
(b) 該変異ポリペプチドまたは該ポリヌクレオチドの存在が確認された被験者を、該FGFR阻害剤に対する耐性を有すると判定する工程。
〔25〕PD173074、AZD4547、BGJ398、およびAZD2171からなる群より選択されるFGFR阻害剤に対する耐性の検出において使用するための、〔7〕記載の抗体もしくはその抗原結合断片、または〔8〕記載のオリゴヌクレオチドプライマーまたはオリゴヌクレオチドプローブ。
〔26〕PD173074、AZD4547、BGJ398、およびAZD2171からなる群より選択されるFGFR阻害剤に対する耐性を検出するための、〔7〕記載の抗体もしくはその抗原結合断片、または〔8〕記載のオリゴヌクレオチドプライマーまたはオリゴヌクレオチドプローブの使用。
〔27〕以下の工程を含む、PD173074、AZD4547、BGJ398、およびAZD2171からなる群より選択されるFGFR阻害剤による治療に対する癌患者の応答を予測する方法:
(a) 患者から単離された試料中において、〔3〕記載の変異ポリペプチドまたは該変異ポリペプチドをコードするポリヌクレオチドの存否を決定する工程;
(b) 該変異ポリペプチドまたは該ポリヌクレオチドの存在が確認された患者を、該FGFR阻害剤に対する感受性が低いと判定する工程。
〔28〕PD173074、AZD4547、BGJ398、およびAZD2171からなる群より選択されるFGFR阻害剤による治療に対する癌患者の応答の予測において使用するための、〔7〕記載の抗体もしくはその抗原結合断片、または〔8〕記載のオリゴヌクレオチドプライマーまたはオリゴヌクレオチドプローブ。
〔29〕PD173074、AZD4547、BGJ398、およびAZD2171からなる群より選択されるFGFR阻害剤による治療に対する癌患者の応答を予測するための、〔7〕記載の抗体もしくはその抗原結合断片、または〔8〕記載のオリゴヌクレオチドプライマーまたはオリゴヌクレオチドプローブの使用。
〔30〕〔7〕記載の抗体もしくはその抗原結合断片、または〔8〕記載のオリゴヌクレオチドプライマーまたはオリゴヌクレオチドプローブを含む、癌治療におけるFGFR阻害剤の効果を予測するためのキット。
〔31〕前記FGFR阻害剤がPD173074、AZD4547、BGJ398、およびAZD2171からなる群より選択される、〔30〕記載のキット。
本発明における「ヒトFGFR1」は、配列番号21、45、46、47、48、49、もしくは50に記載されるアミノ酸配列からなるヒトFGFR1の野生型ポリペプチド(GenBank Accession No.:それぞれNP_001167538.1、NP_001167534.1、NP_001167535.1、NP_001167536.1、NP_001167537.1、NP_075594.1、NP_075598.2)、または該野生型ポリペプチドにおいて1若しくは複数(好ましくは1乃至10個、特に好ましくは1乃至5個)のアミノ酸が置換、欠失若しくは挿入されている変異ポリペプチドである。
本発明における「ヒトFGFR3」は、配列番号22、51、もしくは52に記載されるアミノ酸配列からなるヒトFGFR3の野生型ポリペプチド(GenBank Accession No.:それぞれNP_000133.1、NP_001156685.1、NP_075254.1)、または該野生型ポリペプチドにおいて1若しくは複数(好ましくは1乃至10個、特に好ましくは1乃至5個)のアミノ酸が置換、欠失若しくは挿入されている変異ポリペプチドである。
ここで、本発明の変異ポリペプチドは、上記2種類の変異のうち少なくとも一方を有するFGFR変異ポリペプチドであれば、上述の全長アミノ酸配列からなる野生型FGFRポリペプチドのアミノ酸配列に当該変異が導入されているアミノ酸配列からなるFGFR変異ポリペプチドに限定されることはなく、当該変異を含むそれらのペプチド断片、およびそれらのFGFR変異ポリペプチドまたはペプチド断片と他のペプチドとの融合ポリペプチドも含み、当該変異の位置以外において1もしくは複数(好ましくは1乃至10個、特に好ましくは1乃至5個)のアミノ酸が置換、欠失、付加もしくは挿入されていてもよい。
(1)上述の野生型FGFR2ポリペプチドのアミノ酸配列(配列番号1)のうち少なくとも変異V564Fおよび/もしくはV562Lを含むFGFR2変異ポリペプチド、
(2)上述の野生型FGFR2ポリペプチドのアミノ酸配列(配列番号2)のうち少なくとも変異V565Fおよび/もしくはV563Lを含むFGFR2変異ポリペプチド、
(3)上述の野生型FGFR2ポリペプチドのアミノ酸配列(配列番号37)のうち少なくとも変異V565Fおよび/もしくはV563Lを含むFGFR2変異ポリペプチド、もしくは
(4)上述の野生型FGFR2ポリペプチドのアミノ酸配列(配列番号38)のうち少なくとも変異V452Fおよび/もしくはV450Lを含むFGFR2変異ポリペプチド、
(5)上述の野生型FGFR2ポリペプチドのアミノ酸配列(配列番号39)のうち少なくとも変異V475Fおよび/もしくはV473Lを含むFGFR2変異ポリペプチド、
(6)上述の野生型FGFR2ポリペプチドのアミノ酸配列(配列番号40)のうち少なくとも変異V449Fおよび/もしくはV447Lを含むFGFR2変異ポリペプチド、
(7)上述の野生型FGFR2ポリペプチドのアミノ酸配列(配列番号41)のうち少なくとも変異V448Fおよび/もしくはV446Lを含むFGFR2変異ポリペプチド、
(8)上述の野生型FGFR2ポリペプチドのアミノ酸配列(配列番号42)のうち少なくとも変異V447Fおよび/もしくはV445Lを含むFGFR2変異ポリペプチド、
(9)上述の野生型FGFR2ポリペプチドのアミノ酸配列(配列番号43)のうち少なくとも変異V476Fおよび/もしくはV474Lを含むFGFR2変異ポリペプチド、
(10)上述の野生型FGFR2ポリペプチドのアミノ酸配列(配列番号44)のうち少なくとも変異V475Fおよび/もしくはV473Lを含むFGFR2変異ポリペプチド、
(11)上述の野生型FGFR1ポリペプチドのアミノ酸配列(配列番号21)のうち少なくとも変異V559Fおよび/もしくはV557Lを含むFGFR1変異ポリペプチド、
(12)上述の野生型FGFR1ポリペプチドのアミノ酸配列(配列番号45)のうち少なくとも変異V559Fおよび/もしくはV557Lを含むFGFR1変異ポリペプチド、
(13)上述の野生型FGFR1ポリペプチドのアミノ酸配列(配列番号46)のうち少なくとも変異V551Fおよび/もしくはV549Lを含むFGFR1変異ポリペプチド、
(14)上述の野生型FGFR1ポリペプチドのアミノ酸配列(配列番号47)のうち少なくとも変異V559Fおよび/もしくはV557Lを含むFGFR1変異ポリペプチド、
(15)上述の野生型FGFR1ポリペプチドのアミノ酸配列(配列番号48)のうち少なくとも変異V472Fおよび/もしくはV470Lを含むFGFR1変異ポリペプチド、
(16)上述の野生型FGFR1ポリペプチドのアミノ酸配列(配列番号49)のうち少なくとも変異V470Fおよび/もしくはV468Lを含むFGFR1変異ポリペプチド、
(17)上述の野生型FGFR1ポリペプチドのアミノ酸配列(配列番号50)のうち少なくとも変異V561Fおよび/もしくはV559Lを含むFGFR1変異ポリペプチド、
(18)上述の野生型FGFR3ポリペプチドのアミノ酸配列(配列番号22)のうち少なくとも変異V555Fおよび/もしくはV553Lを含むFGFR3変異ポリペプチド、
(19)上述の野生型FGFR3ポリペプチドのアミノ酸配列(配列番号51)のうち少なくとも変異V557Fおよび/もしくはV555Lを含むFGFR3変異ポリペプチド、もしくは
(20)上述の野生型FGFR3ポリペプチドのアミノ酸配列(配列番号52)のうち少なくとも変異V443Fおよび/もしくはV441Lを含むFGFR3変異ポリペプチド。
また、該ポリヌクレオチドは、同一のアミノ酸をコードするコドンであればどのようなコドンから構成される縮重ポリヌクレオチドをも含む。
本発明はまた、上述の本発明の変異ポリペプチドをコードするポリヌクレオチドを含有するベクター(組み換えベクター)に関する。
宿主がバチルス属菌の場合は、SL01プロモーター、SP02プロモーター、penPプロモーターなどが挙げられる。
本発明の変異ポリペプチドは、上述のような組み換え細胞、特に動物細胞を培養し、培養上清中に分泌させることにより製造することができる。
単離、精製方法としては、例えば塩析、溶媒沈澱法等の溶解度を利用する方法、透析、限外濾過、ゲル濾過、ドデシル硫酸ナトリウム-ポリアクリルアミドゲル電気泳動など分子量の差を利用する方法、イオン交換クロマトグラフィーやヒドロキシルアパタイトクロマトグラフィーなどの荷電を利用する方法、アフィニティークロマトグラフィーなどの特異的親和性を利用する方法、逆相高速液体クロマトグラフィーなどの疎水性の差を利用する方法、等電点電気泳動などの等電点の差を利用する方法などが挙げられる。
本発明の抗体は、その由来、形状、機能などで限定されず、如何なる抗体でもよい。本発明の抗体はモノクローナル抗体でもポリクローナル抗体でもよいが、モノクローナル抗体であることが好ましい。本発明の抗体はヒト抗体、マウス抗体、ラット抗体など、如何なる動物由来の抗体でもよい。また、キメラ(chimeric)抗体やヒト化(humanized)抗体などの組換え抗体でもよい。本発明の好ましい抗体としては、キメラ抗体、ヒト抗体またはヒト化抗体を挙げることができる。
使用されるヒト抗体の定常領域は特に限定されず、例えば重鎖定常領域の場合、ヒトIgG1の定常領域、ヒトIgG2の定常領域、ヒトIgG3の定常領域、ヒトIgG4の定常領域、ヒトIgM、IgA、IgE、IgDの定常領域などを用いることができる。又、軽鎖定常領域の場合、ヒトκ鎖定常領域、ヒトλ鎖定常領域などを使用することができる。さらに、ヒト抗体由来の定常領域は天然由来の配列を有するものでもよいし、天然由来の配列において1又は複数のアミノ酸が改変(置換、欠失、付加および/または挿入)された配列を有する定常領域でもよい。
ヒト化抗体はヒト体内における免疫原性が低下しているため、治療目的などでヒトに投与する場合に有用である。
本発明の抗体には、抗体の全長分子に限らず、低分子化抗体等の任意の抗原結合断片が包含される。
さらに、本発明の抗体には細胞傷害性物質などが結合した修飾抗体も含まれる。さらに、本発明の抗体は抗体の糖鎖が改変されていてもよい。
上述の消化酵素を用いた場合に得られる抗体断片は以下のとおりである。
パパイン消化:F(ab)2またはFab
ペプシン消化:F(ab')2またはFab'
プラスミン消化:Facb
本発明における低分子化抗体は、本発明の変異ポリペプチドへの結合活性を有する限り、任意の領域を欠失した抗体断片を含むことができる。
抗体のH鎖またはH鎖V領域をコードするDNA配列、および
抗体のL鎖またはL鎖V領域をコードするDNA配列
結合される重鎖可変領域と軽鎖可変領域の順序は特に限定されず、どのような順序で並べられていてもよく、例えば、以下のような配置を挙げることができる。
[VH]リンカー[VL]
[VL]リンカー[VH]
[VL]リンカー[VH]リンカー[VH]リンカー[VL]
[VH]リンカー[VL]リンカー[VL]リンカー[VH]
[VH]リンカー[VH]リンカー[VL]リンカー[VL]
[VL]リンカー[VL]リンカー[VH]リンカー[VH]
[VL]リンカー[VH]リンカー[VL]リンカー[VH]
ペプチドリンカーのアミノ酸配列としては、例えば、以下のような配列を挙げることができる。
Ser
Gly・Ser
Gly・Gly・Ser
Ser・Gly・Gly
Gly・Gly・Gly・Ser(配列番号:13)
Ser・Gly・Gly・Gly(配列番号:14)
Gly・Gly・Gly・Gly・Ser(配列番号:15)
Ser・Gly・Gly・Gly・Gly(配列番号:16)
Gly・Gly・Gly・Gly・Gly・Ser(配列番号:17)
Ser・Gly・Gly・Gly・Gly・Gly(配列番号:18)
Gly・Gly・Gly・Gly・Gly・Gly・Ser(配列番号:19)
Ser・Gly・Gly・Gly・Gly・Gly・Gly(配列番号:20)
(Gly・Gly・Gly・Gly・Ser(配列番号:15))n
(Ser・Gly・Gly・Gly・Gly(配列番号:16))n
[nは1以上の整数である]等を挙げることができる。
4つの抗体可変領域を結合する場合には、通常、3つのリンカーが必要となる。複数のリンカーは、同じでもよいし、異なるリンカーを用いることもできる。
また、本発明の変異ポリペプチドに対する抗体の結合活性の測定は当業者に公知の方法により行うことができる。
-膜蛋白質の構造を維持して免疫刺激を与えることができる
-免疫抗原を精製する必要が無い
本発明における癌の好適な例としては、膀胱癌、脳腫瘍、頭頸部扁平上皮癌、肺癌、肺腺癌、肺扁平上皮癌、皮膚黒色腫、子宮体癌、乳癌、前立腺癌、大腸癌、食道癌、胃癌、胆管癌、胆道癌または肝癌等が挙げられる。
本発明において医薬組成物とは、通常、疾患の治療もしくは予防、あるいは検査・診断のための薬剤をいう。
この抗原抗体反応による抗原(即ち、本発明の変異ポリペプチド)の検出は、例えば、慣用されているイムノアッセイを用いて行うことができる。
本発明においては、このようなイムノアッセイのいずれかの原理を、試験の目的に応じて適宜選択して用いることができる。
ここで、放射性同位体及び蛍光物質は、単独で検出可能なシグナルをもたらすことができる。
本発明におけるFGFR阻害剤には、その化合物がFGFRの活性を阻害する活性を有する限り任意のFGFR阻害剤が包含される。
R1は、水素、ヒドロキシ、ハロゲン、シアノ、ニトロ、C1-4ハロアルキル、C1-6アルキル、C2-6アルケニル、C2-6アルキニル、C3-7シクロアルキル、C6-10アリールC1-4アルキル、-OR5、-NR6R7、-(CR8R9)nZ1、-C(O)NR12R13、-SR14、-SOR15、-SO2R16、-NR17SO2R18、COOH、P群から独立して選択される1または複数の基で置換されていてもよいC6-10アリール、Q群から独立して選択される1または複数の基で置換されていてもよい5~10員ヘテロアリールもしくは3~10員ヘテロシクリル、-COR19、-COOR20、-OC(O)R21、-NR22C(O)R23、-NR24C(S)R25、-C(S)NR26R27、-SO2NR28R29、-OSO2R30、-SO3R31または-Si(R32)3を示し;
R2は、水素、ヒドロキシ、ハロゲン、シアノ、ニトロ、C1-4ハロアルキル、C1-6アルキル、C2-6アルケニル、C2-6アルキニル、C3-7シクロアルキル、C6-10アリールC1-4アルキル、-OR5、-NR6R7、-(CR8R9)nZ1、-C(O)NR12R13、-SR14、-SOR15、-SO2R16、-NR17SO2R18、COOH、P群から独立して選択される1または複数の基で置換されていてもよいC6-10アリール、Q群から独立して選択される1または複数の基で置換されていてもよい5~10員ヘテロアリールもしくは3~10員ヘテロシクリル、-COR19、-COOR20、-OC(O)R21、-NR22C(O)R23、-NR24C(S)R25、-C(S)NR26R27、-SO2NR28R29、-OSO2R30、-SO3R31または-Si(R32)3を示し;
またはR1およびR2は、それらが結合している原子と一緒になって、3~10員ヘテロシクリルまたは5~10員ヘテロアリールを形成し、ここで該ヘテロシクリルまたは該ヘテロアリールは、ハロゲンで置換されていてもよく;
R3はメチルを示し;
R4は水素を示し;
Aはインドールであり;
R5はC1-5アルキル、C3-7シクロアルキル、C3-7シクロアルキルC1-3アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、C1-3アルコキシC1-4アルキル、C1-3アルコキシC1-4アルコキシC1-4アルキル、C1-4アミノアルキル、C1-4アルキルアミノC1-4アルキル、ジ(C1-4アルキル)アミノC1-4アルキル、C6-10アリール、C6-10アリールC1-3アルキル、Q群から独立して選択される1または複数の基で置換されていてもよい3~10員ヘテロシクリルC1-3アルキル、3~10員ヘテロシクリル、5~10員ヘテロアリール、5~10員ヘテロアリールC1-3アルキル、C1-6モノヒドロキシアルキル、C1-6ジヒドロキシアルキルまたはC1-6トリヒドロキシアルキルを示し;
R6およびR7は、同一でも異なってもよく、それぞれ、水素、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、C1-3アルコキシC1-4アルキル、C6-10アリールC1-3アルキル、3~10員ヘテロシクリルC1-3アルキル、5~10員ヘテロアリールC1-3アルキル、C1-6モノヒドロキシアルキル、C1-6ジヒドロキシアルキル、C1-6トリヒドロキシアルキル、3~10員ヘテロシクリル、C1-4アミノアルキル、C1-4アルキルアミノC1-4アルキル、ジ(C1-4アルキル)アミノC1-4アルキルまたはシアノ(C1-3アルキル)を示すか、またはR6およびR7は、それらが結合している窒素原子と一緒になって3~10員ヘテロシクリルまたは5~10員ヘテロアリールを形成し;
nは1~3を示し;
R8およびR9は、同一でも異なってもよく、それぞれ水素、C1-4アルキルまたはハロゲンを示すか、またはR8およびR9は、それらが結合している炭素原子と一緒になって脂環式環を形成してもよく;
Z1は、水素、NR10R11、-OH、またはQ群から独立して選択される1または複数の基で置換されていてもよい3~10員ヘテロシクリルもしくは5~10員ヘテロアリールを示し;
R10およびR11は、同一でも異なってもよく、それぞれC1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、C1-3アルコキシC1-4アルキル、シアノ(C1-3アルキル)またはC1-3アルキルスルホニルC1-4アルキルを示すか、またはR10およびR11は、それらが結合している窒素原子と一緒になって3~10員ヘテロシクリルまたは5~10員ヘテロアリールを形成してもよく;
R12およびR13は同一でも異なってもよく、それぞれ水素、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、C1-3アルコキシC1-4アルキル、C6-10アリール、5~10員ヘテロアリール、3~10員ヘテロシクリル、C6-10アリールC1-4アルキル、3~10員ヘテロシクリルC1-3アルキル、5~10員ヘテロアリールC1-3アルキル、シアノ(C1-3アルキル)、C1-3アルキルスルホニルC1-4アルキル、3~10員脂環式環、5~10員ヘテロアリールまたは3~10員ヘテロシクリルを示すか、またはR12およびR13は、それらが結合している窒素原子と一緒になって、Q群から独立して選択される1または複数の基で置換されていてもよい3~10員ヘテロシクリルもしくは5~10員ヘテロアリールを形成してもよく;
R14は、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、P群から独立して選択される1または複数の基で置換されていてもよいC6-10アリール、またはQ群から独立して選択される1または複数の基で置換されていてもよい5~10員ヘテロアリールもしくは3~10員ヘテロシクリルを示し;
R15は、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、P群から独立して選択される1または複数の基で置換されていてもよいC6-10アリール、またはQ群から独立して選択される1または複数の基で置換されていてもよい5~10員ヘテロアリールもしくは3~10員ヘテロシクリルを示し;
R16は、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、P群から独立して選択される1または複数の基で置換されていてもよいC6-10アリール、またはQ群から独立して選択される1または複数の基で置換されていてもよい5~10員ヘテロアリールもしくは3~10員ヘテロシクリルを示し;
R17は、水素またはC1-4アルキルを示し;
R18は、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、P群から独立して選択される1または複数の基で置換されていてもよいC6-10アリール、またはQ群から独立して選択される1または複数の基で置換されていてもよい5~10員ヘテロアリールもしくは3~10員ヘテロシクリルを示し;
R19は、水素、C1-4アルキル、C3-7シクロアルキル、C1-4ハロアルキル、C6-10アリール、またはQ群から独立して選択される1または複数の基で置換されていてもよい5~10員ヘテロアリールもしくは3~10員ヘテロシクリルを示し;
R20は、C1-4アルキル、C3-7シクロアルキル、C1-4ハロアルキル、C6-10アリール、5~10員ヘテロアリールまたは3~10員ヘテロシクリルを示し;
R21は、C1-4アルキル、C3-7シクロアルキル、C1-4ハロアルキル、C6-10アリール、5~10員ヘテロアリールまたは3~10員ヘテロシクリルを示し;
R22は、水素、C1-4アルキルまたはC1-4ハロアルキルを示し;
R23は、水素、C1-4アルキル、C3-7シクロアルキル、C1-4ハロアルキル、C6-10アリール、5~10員ヘテロアリールまたは3~10員ヘテロシクリルを示し;
R24は、水素、C1-4アルキルまたはC1-4ハロアルキルを示し;
R25は、C1-4アルキル、C3-7シクロアルキル、C1-4ハロアルキル、C6-10アリール、5~10員ヘテロアリールまたは3~10員ヘテロシクリルを示し;
R26およびR27は、同一でも異なってもよく、それぞれ水素、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、C1-3アルコキシルC1-4アルキル、C6-10アリール、5~10員ヘテロアリール、3~10員ヘテロシクリル、C6-10アリールC1-4アルキル、3~10員ヘテロシクリルC1-3アルキル、5~10員ヘテロアリールC1-3アルキル、シアノ(C1-3アルキル)、C1-3アルキルスルホニルC1-4アルキル、または3~10員脂環式環を示すか、またはR26およびR27は、それらが結合している窒素原子と一緒になって3~10員ヘテロシクリルまたは5~10員ヘテロアリールを形成してもよく;
R28およびR29は、同一でも異なってもよく、それぞれ水素、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、C1-3アルコキシルC1-4アルキル、C6-10アリール、5~10員ヘテロアリール、3~10員ヘテロシクリル、C6-10アリールC1-4アルキル、3~10員ヘテロシクリルC1-3アルキル、5~10員ヘテロアリールC1-3アルキル、シアノ(C1-3アルキル)、C1-3アルキルスルホニルC1-4アルキル、または3~10員脂環式環を示すか、またはR28およびR29は、それらが結合している窒素原子と一緒になって3~10員ヘテロシクリルまたは5~10員ヘテロアリールを形成してもよく;
R30は、C1-4アルキル、C3-7シクロアルキル、C1-4ハロアルキル、C6-10アリール、5~10員ヘテロアリールまたは3~10員ヘテロシクリルを示し;
R31は、C1-4アルキル、C3-7シクロアルキル、C1-4ハロアルキル、C6-10アリール、5~10員ヘテロアリールまたは3~10員ヘテロシクリルを示し;
R32は、C1-4アルキルまたはC6-10アリールを示し;
<P群>
ハロゲン、C1-4アルキル、C1-4ハロアルキル、-OH、C1-3アルコキシ、C1-3ハロアルコキシ、3~10員ヘテロシクリルアミノ、-SO2R16、-CN、-NO2、および3~10員ヘテロシクリル。
<Q群>
ハロゲン、C1-4アルキル、C1-4ハロアルキル、-OH、C1-3アルコキシ、C1-6モノヒドロキシアルキル、C1-6ジヒドロキシアルキルまたはC1-6トリヒドロキシアルキル、3~10員ヘテロシクリルアミン、-SO2R16、-CN、-NO2、C3-7シクロアルキル、-COR19、およびC1-4アルキルで置換されていてもよい3~10員ヘテロシクリル。
具体的には、たとえば、クロロメチル基、ジクロロメチル基、トリクロロメチル基、フルオロメチル基、ジフルオロメチル基、ペルフルオロアルキル基(例えば、トリフルオロメチル基、-CF2CF3など)、2,2,2-トリフルオロエチル基などが挙げられる。
本明細書における「ハロアルコキシ」は、同一又は異なる、好ましくは1~9個、さらに好ましくは1~5個の前記「ハロゲン原子」が前記「アルコキシ」に結合した基を示す。
具体的には、たとえば、クロロメトキシ基、トリクロロメトキシ基、トリフルオロメトキシ基などが挙げられる
(1) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(1H-インドール-2-イル)-メタノン;
(2) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-ピロリジン-1-イルメチル-1H-インドール-2-イル)-メタノン;
(3) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(4-ヒドロキシ-ピペリジン-1-イルメチル)-1H-インドール-2-イル]-メタノン;
(4) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(1H-ピロロ[3,2-c]ピリジン-2-イル)-メタノン;
(5) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-ピペラジン-1-イルメチル-1H-インドール-2-イル)-メタノン;
(6) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(2-モルホリン-4-イル-エトキシ)-1H-インドール-2-イル]-メタノン;
(7) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(テトラヒドロ-ピラン-4-イルオキシ)-1H-インドール-2-イル]-メタノン;
(8) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4-クロロ-1H-インドール-2-イル)-メタノン;
(9) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-ブロモ-1H-インドール-2-イル)-メタノン;
(10) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4-ヨード-1H-インドール-2-イル)-メタノン;
(11) 2-[5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-カルボニル]-1H-インドール-5-カルボニトリル;
(12) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-ブロモ-5-フルオロ-1H-インドール-2-イル)-メタノン;
(13) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-エチニル-1H-インドール-2-イル)-メタノン;
(14) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(2-フルオロ-フェニル)-1H-インドール-2-イル]-メタノン;
(15) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(3-フルオロ-フェニル)-1H-インドール-2-イル]-メタノン;
(16) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(4-フルオロ-フェニル)-1H-インドール-2-イル]-メタノン;
(17) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(2-クロロ-フェニル)-1H-インドール-2-イル]-メタノン;
(18) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(3-クロロ-フェニル)-1H-インドール-2-イル]-メタノン;
(19) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(4-クロロ-フェニル)-1H-インドール-2-イル]-メタノン;
(20) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(2-トリフルオロメチル-フェニル)-1H-インドール-2-イル]-メタノン;
(21) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(3-トリフルオロメチル-フェニル)-1H-インドール-2-イル]-メタノン;
(22) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(4-トリフルオロメチル-フェニル)-1H-インドール-2-イル]-メタノン;
(23) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4-ブロモ-1H-インドール-2-イル)-メタノン;
(24) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(3-フルオロ-ピリジン-2-イル)-1H-インドール-2-イル]-メタノン;
(25) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-メチル-1H-インドール-2-イル)-メタノン;
(26) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(4,4-ジフルオロ-ピペリジン-1-カルボニル)-1H-インドール-2-イル]-メタノン;
(27) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(3,3-ジフルオロ-ピペリジン-1-カルボニル)-1H-インドール-2-イル]-メタノン;
(28) 2-[5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-カルボニル]-1H-インドール-5-カルボン酸(2,2,2-トリフルオロ-エチル)-アミド;
(29) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(5-トリフルオロメチル-ピリジン-2-イル)-1H-インドール-2-イル]-メタノン;
(30) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(6-トリフルオロメチル-ピリジン-2-イル)-1H-インドール-2-イル]-メタノン;
(31) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(5-クロロ-ピリジン-2-イル)-1H-インドール-2-イル]-メタノン;
(32) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(4-メチル-ピリジン-2-イル)-1H-インドール-2-イル]-メタノン;
(33) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(3-クロロ-4-フルオロ-フェニル)-1H-インドール-2-イル]-メタノン;
(34) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(3-トリフルオロメチル-ピリジン-2-イル)-1H-インドール-2-イル]-メタノン;
(35) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(4-トリフルオロメチル-ピリジン-2-イル)-1H-インドール-2-イル]-メタノン;
(36) [5-アミノ-1-(6-フルオロ-2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(1H-インドール-2-イル)-メタノン;
(37) 2-[5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-カルボニル]-1H-インドール-6-カルボン酸;
(38) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-ヒドロキシメチル-1H-インドール-2-イル)-メタノン;
(39) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-{6-[2-(4-メチル-ピペラジン-1-イル)-エトキシ]-1H-インドール-2-イル}-メタノン;
(40) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(3-メチル-オキセタン-3-イルメトキシ)-1H-インドール-2-イル]-メタノン;
(41) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(3-フルオロ-ピペリジン-1-イルメチル)-1H-インドール-2-イル]-メタノン;
(42) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-{[ビス-(2-メトキシ-エチル)-アミノ]-メチル}-1H-インドール-2-イル)-メタノン;
(43) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-{6-[(メチル-プロパ-2-イニル-アミノ)-メチル]-1H-インドール-2-イル}-メタノン;
(44) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(3,3-ジフルオロ-ピロリジン-1-イルメチル)-1H-インドール-2-イル]-メタノン;
(45) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(2,5-ジメチル-ピロリジン-1-イルメチル)-1H-インドール-2-イル]-メタノン;
(46) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(3,3-ジフルオロ-ピペリジン-1-イルメチル)-1H-インドール-2-イル]-メタノン;
(47) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-((S)-3-メチル-モルホリン-4-イルメチル)-1H-インドール-2-イル]-メタノン;
(48) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-ブロモ-1H-インドール-2-イル)-メタノン;
(49) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-ヨード-1H-インドール-2-イル)-メタノン;
(50) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(1H-ピロロ[3,2-b]ピリジン-2-イル)-メタノン;
(51) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-ブロモ-6-トリフルオロメチル-1H-インドール-2-イル)-メタノン;
(52) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-ヨード-1H-インドール-2-イル)-メタノン;
(53) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4-メチル-1H-インドール-2-イル)-メタノン;
(54) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4-イソプロピル-1H-インドール-2-イル)-メタノン;
(55) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(2-フルオロ-フェニル)-1H-インドール-2-イル]-メタノン;
(56) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-ベンジル-1H-インドール-2-イル)-メタノン;
(57) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(2-トリフルオロメチル-フェニル)-1H-インドール-2-イル]-メタノン;
(58) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(3-フルオロ-フェニル)-1H-インドール-2-イル]-メタノン;
(59) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(3-トリフルオロメチル-フェニル)-1H-インドール-2-イル]-メタノン;
(60) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4-エチニル-1H-インドール-2-イル)-メタノン;
(61) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5H-[1,3]ジオキソロ[4,5-f]インドール-6-イル)-メタノン;
(62) [5-アミノ-1-(7-フルオロ-2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(1H-インドール-2-イル)-メタノン;
(63) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(4-トリフルオロメチル-フェニル)-1H-インドール-2-イル]-メタノン;
(64) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-ブトキシ-1H-インドール-2-イル)-メタノン;
(65) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(1-メチル-ピペリジン-4-イル)-1H-インドール-2-イル]-メタノン;
(66) N-{2-[5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-カルボニル]-1H-インドール-6-イル}-メタンスルホンアミド;
(67) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(6-モルホリン-4-イル-ピリジン-3-イル)-1H-インドール-2-イル]-メタノン;
(68) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-ブチル-1H-インドール-2-イル)-メタノン;
(69) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(1-メチル-1H-ピラゾール-4-イル)-1H-インドール-2-イル]-メタノン;
(70) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(5-メトキシ-ピリジン-3-イル)-1H-インドール-2-イル]-メタノン;
(71) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(2-メトキシ-ピリジン-3-イル)-1H-インドール-2-イル]-メタノン;
(72) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-シクロプロピル-1H-インドール-2-イル)-メタノン;
(73) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(2-メトキシ-フェニル)-1H-インドール-2-イル]-メタノン;
(74) 5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-フェニル-1H-インドール-2-イル)-メタノン;
(75) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(5-メタンスルホニル-ピリジン-3-イル)-1H-インドール-2-イル]-メタノン;
(76) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-イソプロピル-1H-インドール-2-イル)-メタノン;
(77) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-ピリジン-2-イル-1H-インドール-2-イル)-メタノン;
(78) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-シクロプロピル-1H-インドール-2-イル)-メタノン;
(79) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-ピリダジン-3-イル-1H-インドール-2-イル)-メタノン;
(80) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-イソプロポキシ-1H-インドール-2-イル)-メタノン;
(81) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(2-メトキシ-エトキシ)-1H-インドール-2-イル]-メタノン;
(82) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-シクロプロピルメトキシ-1H-インドール-2-イル)-メタノン;
(83) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(2,2-ジフルオロ-5H-[1,3]ジオキソロ[4,5-f]インドール-6-イル)-メタノン;
(84) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(3-クロロ-ピリジン-2-イル)-1H-インドール-2-イル]-メタノン;
(85) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(5-フルオロ-ピリジン-2-イル)-1H-インドール-2-イル]-メタノン;
(86) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(6-モルホリン-4-イル-ピリダジン-3-イル)-1H-インドール-2-イル]-メタノン;
(87) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-クロロ-6-シクロプロピルメトキシ-1H-インドール-2-イル)-メタノン;
(88) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(2,4-ジフルオロ-フェニル)-1H-インドール-2-イル]-メタノン;
(89) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-ピリダジン-4-イル-1H-インドール-2-イル)-メタノン;
(90) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(3-フルオロ-1H-インドール-2-イル)-メタノン;
(91) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(1-イソプロピル-ピペリジン-4-イル)-6-トリフルオロメチル-1H-インドール-2-イル]-メタノン;
(92) 2-[5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-カルボニル]-1H-インドール-6-カルボニトリル;
(93) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(1,2,3,6-テトラヒドロ-ピリジン-4-イル)-1H-インドール-2-イル]-メタノン;
(94) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-ピペリジン-4-イル-1H-インドール-2-イル)-メタノン;
(95) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-((R)-3-フルオロ-ピロリジン-1-イルメチル)-1H-インドール-2-イル]-メタノン;
(96) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-フルオロ-5-ピペリジン-4-イル-1H-インドール-2-イル)-メタノン;
(97) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-フルオロ-5-(1-メチル-ピペリジン-4-イル)-1H-インドール-2-イル]-メタノン;
(98) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(1-イソプロピル-ピペリジン-4-イル)-1H-インドール-2-イル]-メタノン;
(99) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-フルオロ-5-(1-イソプロピル-ピペリジン-4-イル)-1H-インドール-2-イル]-メタノン;
(100) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-ピリジン-3-イル-1H-インドール-2-イル)-メタノン;
(101) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(6-モルホリン-4-イル-ピリジン-3-イル)-1H-インドール-2-イル]-メタノン;
(102) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-ピリジン-3-イル-1H-インドール-2-イル)-メタノン;
(103) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(6-ピペラジン-1-イル-ピリジン-3-イル)-1H-インドール-2-イル]-メタノン;
(104) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(6-ヒドロキシ-ピリジン-3-イル)-1H-インドール-2-イル]-メタノン;
(105) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-フルオロ-5-(4-メチル-ピペラジン-1-イルメチル)-1H-インドール-2-イル]-メタノン;
(106) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-フルオロ-5-ピロリジン-1-イルメチル-1H-インドール-2-イル)-メタノン;
(107) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(1-メチル-ピペリジン-4-イル)-1H-インドール-2-イル]-メタノン;
(108) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(4-モルホリン-4-イル-フェニル)-1H-インドール-2-イル]-メタノン;
(109) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(3,4,5,6-テトラヒドロ-2H-[1,2']ビピリジン-5'-イル)-1H-インドール-2-イル]-メタノン;
(110) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(6-ピペラジン-1-イル-ピリジン-3-イル)-1H-インドール-2-イル]-メタノン;
(111) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(6-メトキシ-ピリジン-3-イル)-1H-インドール-2-イル]-メタノン;
(112) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-((S)-3-メチル-モルホリン-4-イルメチル)-1H-インドール-2-イル]-メタノン;
(113) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-((R)-3-フルオロ-ピロリジン-1-イルメチル)-1H-インドール-2-イル]-メタノン;
(114) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(2,5-ジメチル-ピロリジン-1-イルメチル)-1H-インドール-2-イル]-メタノン;
(115) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(3-フルオロ-ピペリジン-1-イルメチル)-1H-インドール-2-イル]-メタノン;
(116) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(3,3-ジフルオロ-ピペリジン-1-イルメチル)-1H-インドール-2-イル]-メタノン;
(117) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-{6-[2-(4-メチル-ピペラジン-1-イル)-ピリジン-4-イル]-1H-インドール-2-イル}-メタノン;
(118) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-ピリジン-4-イル-1H-インドール-2-イル)-メタノン;
(119) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(4-フルオロ-ピペリジン-1-イルメチル)-1H-インドール-2-イル]-メタノン;
(120) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(4,4-ジフルオロ-ピペリジン-1-イルメチル)-1H-インドール-2-イル]-メタノン;
(121) [5-アミノ-1-(2-ジフルオロメチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(1-メチル-ピペリジン-4-イル)-1H-インドール-2-イル]-メタノン;
(122) [5-アミノ-1-(2-ジフルオロメチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(1H-インドール-2-イル)-メタノン;
(123) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(3,3-ジフルオロ-ピロリジン-1-イルメチル)-1H-インドール-2-イル]-メタノン;
(124) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(1-シクロペンチル-ピペリジン-4-イル)-1H-インドール-2-イル]-メタノン;
(125) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(1-シクロヘキシル-ピペリジン-4-イル)-1H-インドール-2-イル]-メタノン;
(126) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4-ブロモ-1H-ピロール-2-イル)-メタノン;
(127) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(1H-ピロール-2-イル)-メタノン;
(128) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4-フェニル-1H-ピロール-2-イル)-メタノン;
(129) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[4-(3-クロロ-フェニル)-1H-ピロール-2-イル]-メタノン;
(130) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[4-(4-フルオロ-フェニル)-1H-ピロール-2-イル]-メタノン;
(131) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[4-(3-フルオロ-フェニル)-1H-ピロール-2-イル]-メタノン;
(132) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-モルホリン-4-イルメチル-1H-インドール-2-イル)-メタノン;
(133) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[4-(2-モルホリン-4-イル-エチルアミノ)-1H-インドール-2-イル]-メタノン;
(134) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(4-メチル-ピペラジン-1-カルボニル)-1H-インドール-2-イル]-メタノン;
(135) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(2-モルホリン-4-イル-エチルアミノ)-1H-インドール-2-イル]-メタノン;
(136) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(ピペラジン-1-カルボニル)-1H-インドール-2-イル]-メタノン;
(137) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[4-(2-メトキシ-エチルアミノ)-1H-インドール-2-イル]-メタノン;
(138) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[4-(2-ヒドロキシ-1-ヒドロキシメチル-エチルアミノ)-1H-インドール-2-イル]-メタノン;
(139) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[4-(2-ピリジン-4-イル-エチルアミノ)-1H-インドール-2-イル]-メタノン;
(140) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(2-メトキシ-エチルアミノ)-1H-インドール-2-イル]-メタノン;
(141) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-モルホリン-4-イル-1H-インドール-2-イル)-メタノン;
(142) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4-モルホリン-4-イル-1H-インドール-2-イル)-メタノン;
(143) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4-モルホリン-4-イルメチル-1H-インドール-2-イル)-メタノン;
(144) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-モルホリン-4-イルメチル-1H-インドール-2-イル)-メタノン;
(145) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(モルホリン-4-カルボニル)-1H-インドール-2-イル]-メタノン;
(146) [5-アミノ-1-(2-イソプロピル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(1H-インドール-2-イル)-メタノン;
(147) [5-アミノ-1-(2-プロピル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(1H-インドール-2-イル)-メタノン;
(148) [5-アミノ-1-(1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(1H-インドール-2-イル)-メタノン;
(149) [5-アミノ-1-(2-トリフルオロメチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(1H-インドール-2-イル)-メタノン;
(150) [5-アミノ-1-(2-エチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(1H-インドール-2-イル)-メタノン;
(151) [5-アミノ-1-(2-ベンジル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(1H-インドール-2-イル)-メタノン;
(152) 1-(4-{2-[5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-カルボニル]-1H-インドール-5-イルメチル}-ピペラジン-1-イル)-エタノン;
(153) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(4-メタンスルホニル-ピペラジン-1-イルメチル)-1H-インドール-2-イル]-メタノン;
(154) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-ピペラジン-1-イルメチル-1H-インドール-2-イル)-メタノン;
(155) 1-(4-{2-[5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-カルボニル]-1H-インドール-6-イルメチル}-ピペラジン-1-イル)-エタノン;
(156) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(4-メチル-ピペラジン-1-イルメチル)-1H-インドール-2-イル]-メタノン;
(157) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(4-メチル-ピペラジン-1-イルメチル)-1H-インドール-2-イル]-メタノン;
(158) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-ピロリジン-1-イルメチル-1H-インドール-2-イル)-メタノン;
(159) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4-フルオロ-1H-インドール-2-イル)-メタノン;
(160) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-フルオロ-1H-インドール-2-イル)-メタノン;
(161) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-フルオロ-1H-インドール-2-イル)-メタノン;
(162) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(1H-ピロロ[2,3-b]ピリジン-2-イル)-メタノン;
(163) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-フルオロ-6-モルホリン-4-イルメチル-1H-インドール-2-イル)-メタノン;
(164) 2-[5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-カルボニル]-1H-インドール-5-カルボン酸;
(165) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-メトキシ-1H-インドール-2-イル)-メタノン;
(166) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4,6-ジメトキシ-1H-インドール-2-イル)-メタノン;
(167) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4-メトキシ-1H-インドール-2-イル)-メタノン;
(168) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-メトキシ-1H-インドール-2-イル)-メタノン;
(169) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4,6-ジメチル-1H-インドール-2-イル)-メタノン;
(170) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-tert-ブチル-1H-インドール-2-イル)-メタノン;
(171) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-イソプロピル-1H-インドール-2-イル)-メタノン;
(172) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-ベンジルオキシ-1H-インドール-2-イル)-メタノン;
(173) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4-ベンジルオキシ-1H-インドール-2-イル)-メタノン;
(174) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5,6-ジメトキシ-1H-インドール-2-イル)-メタノン;
(175) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-tert-ブチル-1H-インドール-2-イル)-メタノン;
(176) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-フルオロ-4-トリフルオロメチル-1H-インドール-2-イル)-メタノン;
(177) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-フェノキシ-1H-インドール-2-イル)-メタノン;
(178) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-メチルスルファニル-1H-インドール-2-イル)-メタノン;
(179) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4-tert-ブチル-1H-インドール-2-イル)-メタノン;
(180) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-メチル-1H-インドール-2-イル)-メタノン;
(181) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-エチル-1H-インドール-2-イル)-メタノン;
(182) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-フルオロ-6-トリフルオロメチル-1H-インドール-2-イル)-メタノン;
(183) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-フルオロ-5-メトキシ-1H-インドール-2-イル)-メタノン;
(184) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-クロロ-5-メトキシ-1H-インドール-2-イル)-メタノン;
(185) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-クロロ-6-メトキシ-1H-インドール-2-イル)-メタノン;
(186) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-イソプロポキシ-1H-インドール-2-イル)-メタノン;
(187) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-ベンジルオキシ-1H-インドール-2-イル)-メタノン;
(188) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4-イソプロポキシ-1H-インドール-2-イル)-メタノン;
(189) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(2,3-ジヒドロ-6H-[1,4]ジオキシノ[2,3-f]インドール-7-イル)-メタノン;
(190) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4,6-ジ-tert-ブチル-1H-インドール-2-イル)-メタノン;
(191) 2-[5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-カルボニル]-1H-インドール-4-カルボニトリル;
(192) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-イミダゾール-1-イル-1H-インドール-2-イル)-メタノン;
(193) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-トリフルオロメチルスルファニル-1H-インドール-2-イル)-メタノン;
(194) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-メチルスルファニル-1H-インドール-2-イル)-メタノン;
(195) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-メタンスルホニル-1H-インドール-2-イル)-メタノン;
(196) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(4,4-ジフルオロ-ピペリジン-1-イルメチル)1H-インドール-2-イル]-メタノン;
(197) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(4-フルオロ-ピペリジン-1-イルメチル)-1H-インドール-2-イル]-メタノン;
(198) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(オキセタン-3-イルオキシ)-1H-インドール-2-イル]-メタノン;
(199) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-ヒドロキシ-1H-インドール-2-イル)-メタノン;
(200) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-メタンスルホニル-1H-インドール-2-イル)-メタノン;
(201) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4,5-ジブロモ-1H-ピロール-2-イル)-メタノン;
(202) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4,5-ジフェニル-1H-ピロール-2-イル)-メタノン;
(203) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4,5-ジ-ピリジン-3-イル-1H-ピロール-2-イル)-メタノン;
(204) [5-アミノ-1-(2-メチル-3H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-クロロ-1H-インドール-2-イル)-メタノン;
(205) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-クロロ-1H-インドール-2-イル)-メタノン;
(206) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(1H-インドール-3-イル)-メタノン;
(207) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(1H-インドール-6-イル)-メタノン;
(208) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-ブロモ-6-フルオロ-1H-インドール-2-イル)-メタノン;
(209) [5-アミノ-1-(2-エチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-ブロモ-6-フルオロ-1H-インドール-2-イル)-メタノン;
(210) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-トリフルオロメチル-1H-インドール-2-イル)-メタノン;
(211) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-トリフルオロメトキシ-1H-インドール-2-イル)-メタノンv
(212) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4,6-ジクロロ-1H-インドール-2-イル)-メタノン;
(213) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-ブロモ-4-フルオロ-1H-インドール-2-イル)-メタノン;
(214) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-トリフルオロメトキシ-1H-インドール-2-イル)-メタノン;
(215) [5-アミノ-1-(2-エチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-トリフルオロメトキシ-1H-インドール-2-イル)-メタノン;
(216) [5-アミノ-1-(2-エチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5-トリフルオロメチル-1H-インドール-2-イル)-メタノン;
(217) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(5,6-ジクロロ-1H-インドール-2-イル)-メタノン;
(218) [5-アミノ-1-(2-エチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-ブロモ-5-フルオロ-1H-インドール-2-イル)-メタノン;
(219) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4,5-ジクロロ-1H-インドール-2-イル)-メタノン;
(220) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4,6-ジフルオロ-1H-インドール-2-イル)-メタノン;
(221) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(3-クロロ-ピリジン-4-イル)-1H-インドール-2-イル]-メタノン;
(222) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(6-メチル-ピリジン-3-イル)-1H-インドール-2-イル]-メタノン;
(223) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(5-フルオロ-ピリジン-3-イル)-1H-インドール-2-イル]-メタノン;
(224) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(2-トリフルオロメチル-ピリジン-3-イル)-1H-インドール-2-イル]-メタノン;
(225) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(5-クロロ-2-メトキシ-ピリジン-3-イル)-1H-インドール-2-イル]-メタノン;
(226) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(5-クロロ-ピリジン-3-イル)-1H-インドール-2-イル]-メタノン;
(227) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-チオフェン-3-イル-1H-インドール-2-イル)-メタノン;
(228) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(4-クロロ-ピリジン-3-イル)-1H-インドール-2-イル]-メタノン;
(229) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(6-チオフェン-2-イル-1H-インドール-2-イル)-メタノン;
(230) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(3-フルオロ-ピリジン-4-イル)-1H-インドール-2-イル]-メタノン;
(231) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[6-(2-トリフルオロメチル-ピリジン-4-イル)-1H-インドール-2-イル]-メタノン;
(232) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(3,3-ジフルオロ-ピロリジン-1-カルボニル)-1H-インドール-2-イル]-メタノン;
(233) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(2,6-ジメチル-モルホリン-4-カルボニル)-1H-インドール-2-イル]-メタノン;
(234) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-([1,4']ビピペリジニル-1'-カルボニル)-1H-インドール-2-イル]-メタノン;
(235) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-{5-[4-(2,2,2-トリフルオロ-エチル)-ピペラジン-1-カルボニル]-1H-インドール-2-イル}-メタノン;
(236) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-{5-[4-(2-ヒドロキシ-エチル)-ピペラジン-1-カルボニル]-1H-インドール-2-イル}-メタノン;
(237) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-(3,3,4,4-テトラフルオロ-ピロリジン-1-カルボニル)-1H-インドール-2-イル]-メタノン;
(238) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-((R)-3-フルオロ-ピロリジン-1-カルボニル)-1H-インドール-2-イル]-メタノン;
(239) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[5-((S)-3-フルオロ-ピロリジン-1-カルボニル)-1H-インドール-2-イル]-メタノン;
(240) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[4-(4-メトキシ-フェニル)-1H-ピロール-2-イル]-メタノン;
(241) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[4-(3-メトキシ-フェニル)-1H-ピロール-2-イル]-メタノン;
(242) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[4,5-ビス-(3-フルオロ-フェニル)-1H-ピロール-2-イル]-メタノン;
(243) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[4,5-ビス-(4-メトキシ-フェニル)-1H-ピロール-2-イル]-メタノン;
(244) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[4-(2,4-ジフルオロ-フェニル)-1H-ピロール-2-イル]-メタノン;
(245) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[4-(4-トリフルオロメトキシ-フェニル)-1H-ピロール-2-イル]-メタノン;
(246) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-[4,5-ビス-(3-メトキシ-フェニル)-1H-ピロール-2-イル]-メタノン;
(247) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-ベンゾフラン-2-イル-メタノン;
(248) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-ベンゾ[b]チオフェン-2-イル-メタノン;
(249) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-ベンゾチアゾール-2-イル-メタノン;
(250) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(4-フルオロ-フェニル)-メタノン;
(251) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-(3-クロロ-フェニル)-メタノン;
(252) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-キノリン-3-イル-メタノン;
(253) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-キノリン-7-イル-メタノン;および
(254) [5-アミノ-1-(2-メチル-1H-ベンゾイミダゾール-5-イル)-1H-ピラゾール-4-イル]-キノリン-6-イル-メタノン。
このような「塩」としては、例えば、無機酸塩、有機酸塩、無機塩基塩、有機塩基塩、酸性または塩基性アミノ酸塩などが挙げられる。
本発明におけるFGFR阻害活性を有する化合物にはまた、任意の結晶多形が包含される。
賦形剤としては、例えば乳糖、コーンスターチ、白糖、ブドウ糖、マンニトール、ソルビット、結晶セルロース、二酸化ケイ素などが挙げられる。
滑沢剤としては、例えばステアリン酸マグネシウム、タルク、ポリエチレングリコール、シリカ、硬化植物油等が挙げられる。
着色剤としては医薬品に添加することが許可されているものが、矯味矯臭剤としては、ココア末、ハッカ脳、芳香散、ハッカ油、竜脳、桂皮末等が用いられる。
本発明はさらに、上述のFGFR阻害活性を有する化合物若しくはその薬学的に許容される塩の有効量を該変異ポリペプチドを発現または該ポリヌクレオチドを有する患者に投与することを含む癌の治療または予防方法、該変異ポリペプチドを発現または該ポリヌクレオチドを有する患者に投与するための癌治療用医薬組成物の製造におけるFGFR阻害活性を有する化合物若しくはその薬学的に許容される塩の使用、該変異ポリペプチドを発現または該ポリヌクレオチドを有する患者の治療または予防における使用のためのFGFR阻害活性を有する化合物若しくはその薬学的に許容される塩、等に関する。
本発明のFGFR阻害活性を有する化合物を同定する方法は、具体的には、以下の工程を含む方法が挙げられる。
(a) 被検化合物の存在下および非存在下で、上述した本発明の変異ポリペプチドを発現する細胞をそれぞれ培養し、細胞増殖のレベルを決定する工程;
(b) 被検化合物の存在下で該細胞を培養した場合の細胞増殖のレベルを、被検化合物の非存在下で該細胞を培養した場合の細胞増殖のレベルと比較する工程;および
(c) 被検化合物の存在下で該細胞を培養した場合の細胞増殖のレベルが、被検化合物の非存在下で該細胞を培養した場合の細胞増殖のレベルより低い場合は、該被検化合物がFGFR阻害活性を有すると判定する工程。
また、該初代培養細胞は、癌患者から採取された細胞が挙げられ、該株化された細胞は、癌患者から採取された癌細胞から樹立された癌細胞株が挙げられる。
また、本発明における癌には、上述したとおりの任意の癌が包含される。
(a) 上述した本発明の変異ポリペプチドを発現する細胞を移植された非ヒト哺乳動物に、被検化合物を投与し、該細胞の増殖のレベルを決定する工程;
(b) 工程(a)で決定された細胞増殖のレベルを、該被検化合物の投与を受けていない該細胞を移植された非ヒト哺乳動物において決定された該細胞の細胞増殖のレベルと比較する工程;および
(c) 工程(a)で決定された細胞増殖のレベルが、該被検化合物の投与を受けていない該細胞を移植された非ヒト哺乳動物において決定された該細胞の細胞増殖のレベルより低い場合は、該被検化合物がFGFR阻害活性を有すると判定する工程。
また、本発明における癌には、上述したとおりの任意の癌が包含される。
本発明の変異ポリペプチドをコードするポリヌクレオチドとレポーター蛋白をコードする遺伝子を、該変異ポリペプチドコーディングポリヌクレオチドのmRNAへの転写のシグナルに依存して該レポータータンパクをコードする遺伝子のmRNAへの転写が起こるように挿入した発現ベクターで、遺伝子組換えタンパクの製造で一般的に使用される細胞を形質転換して遺伝子組換え細胞を作製する。得られた形質転換細胞に、被験化合物を接触させる。該化合物の作用に依存して発現される該変異ポリペプチドのレベルを、該変異ポリペプチドの発現と同時に発現される該レポータータンパクが発する蛍光の量を測定することにより間接的に測定することにより、該化合物が、該変異ポリペプチドの発現に影響を与えるか否かを分析する(例えば、米国特許第5,436,128号及び米国特許第5,401,629号、等)。
また、特に断りがない場合は、それぞれの試験工程は、公知の方法に従って実施可能である。
また、市販の試薬やキット等を用いる場合には市販品の指示書に従って実施可能である。
なお、本明細書において引用された全ての先行技術文献は、参照として本明細書に組み入れられる。
(1)FGFR阻害剤によるリン酸化抑性作用の評価
FGFR2 V564F変異体(配列番号:9)をコードするポリヌクレオチド(配列番号:6)およびFGFR2 V562L変異体(配列番号:10)をコードするポリヌクレオチド(配列番号:7)を、野生型FGFR2(配列番号:8)のORFポリヌクレオチド(配列番号:5)からPCR法を用いたSite-Directed Mutagenesis法により作製した。野生型FGFR2 ORFポリヌクレオチド、FGFR2 V564F変異体またはFGFR2 V562L変異体をコードするポリヌクレオチドを、pCXND3ベクター(化血研)にサブクローニングし、各ポリペプチド発現用ベクターを作製した。作製した各ベクターを、ヒト結腸腺癌細胞HCT 116(ATCC)に、トランスフェクション試薬FuGENE(登録商標) HD(Promega社)を用いて導入し、野生型FGFR2ポリペプチド(配列番号:8)、FGFR2 V564F変異ポリペプチド(配列番号:9)およびFGFR2 V562L変異ポリペプチド(配列番号:10)をそれぞれ一過性に発現させた。それぞれの細胞に対して、DMSO 0.1%存在下にて化合物Aまたは化合物Cを作用させた後、Cell lysis buffer(Cell Signaling Technology社)を用いて各細胞の細胞溶解物を回収した。各細胞溶解物をPhospho-FGF Receptor (Tyr653/654) Antibody(Cell Signaling Technology社)またはFGFR-2 Antibody (Sigma社)を用いてウェスタンブロッティング法で解析したところ、図1に示すように、FGFR2 V564F変異ポリペプチドおよびFGFR2 V562L変異ポリペプチドに対する各化合物のリン酸化抑性効果は、野生型FGFR2ポリペプチドに対するリン酸化抑性効果に比べ、化合物Cでは大幅に減弱した一方、化合物Aではあまり減弱しないことが確認された。
実施例1(1)で作製した野生型FGFR2、FGFR2 V564F変異体またはV562L変異体の各ポリペプチド発現ベクターを、IL-3依存性マウスプロ B 細胞Ba/F3(理研)に電気穿孔法 によって導入し、IL-3非存在下で、セレクションマーカーであるG-418(Life technology社)、ならびにFGF1(Sigma社)およびheparin(Sigma社)を添加した条件下にて培養した後、野生型FGFR2ポリペプチド、FGFR2 V564F変異ポリペプチドまたはFGFR2 V562L変異ポリペプチドを安定的に発現しIL-3非依存的な増殖が可能なBa/F3株をそれぞれ樹立した。96ウェルプレートに蒔いた各株に対し、20 μMを最大濃度として4倍ずつ9段階希釈した各化合物(化合物A、BもしくはC)、またはDMSO(コントロールとして使用)を添加した状態で4日間培養した。4日間経過後の細胞増殖をWST-8(同仁化学研究所)により計測した。各細胞に対する各化合物の細胞増殖阻害活性は、各濃度の化合物を添加し細胞を培養したウェルの450nMの吸光度の値をT、DMSOを添加し細胞を培養した際の450nMの吸光度の値をCとした時の(1-T/C) x 100 (%)で算出し、IC50は最小二乗法によって算出した。その結果、図2および表2に示すように、FGFR2 V564F変異ポリペプチドまたはFGFR2 V562L変異ポリペプチドを安定的に発現する株に対する各化合物の細胞増殖阻害活性は、野生型FGFR2ポリペプチドを安定的に発現する株に対する細胞増殖阻害活性に比べ、化合物Bおよび化合物Cでは大幅に減弱した一方、化合物Aではほとんど変化しないことが確認された。
(1)FGFR阻害剤によるin vitroでの細胞増殖抑制効果の評価
野生型TEL(配列番号:33)の二量体化ドメインをコードするポリヌクレオチドと野生型FGFR2(配列番号:1)の細胞内ドメインをコードするポリヌクレオチドを、PCR法を用いたSite-Directed Mutagenesis法により融合させ、TEL融合野生型FGFR2(配列番号:34)をコードするポリヌクレオチド(配列番号:11)を作製した。TEL融合野生型FGFR2をコードするポリヌクレオチドを鋳型にTEL融合FGFR2 V564F変異体(配列番号:35)をコードするポリヌクレオチド(配列番号:12)を、PCR法を用いたSite-Directed Mutagenesis法により作製した。TEL融合野生型FGFR2およびTEL融合FGFR2 V564F変異体をコードするポリヌクレオチドを、pCXND3ベクター(化血研)にサブクローニングし、各ポリペプチド発現用ベクターを作製した。TEL融合野生型FGFR2もしくはTEL融合FGFR2 V564F変異体の各ポリペプチド発現ベクターをIL-3依存性マウスプロ B 細胞Ba/F3に電気穿孔法 によって導入し、IL-3非存在下にてセレクションマーカーであるG-418を添加して培養し、TEL融合野生型FGFR2ポリペプチドまたはTEL融合FGFR2 V564F変異ポリペプチドを安定的に発現しIL-3非依存的な増殖が可能なBa/F3株をそれぞれ樹立した。96ウェルプレートに蒔いた各株に対し、50 μMを最大濃度として4倍ずつ18段階希釈した各化合物(化合物A、B、C、もしくはE)、10 μMを最大濃度として4倍ずつ18段階希釈した各化合物(化合物D)、またはDMSO(コントロールとして使用)を添加した状態で4日間培養した。4日間経過後の細胞増殖をWST-8(同仁化学研究所)により計測した。各細胞に対する各化合物の細胞増殖阻害活性は、各濃度の化合物を添加し細胞を培養したウェルの450nMの吸光度の値をT、DMSOを添加し細胞を培養した際の450nMの吸光度の値をCとした時の(1-T/C) x 100 (%)で算出した。その結果、図3に示すように、TEL融合FGFR2 V564F変異ポリペプチドを安定的に発現する株に対する各化合物の細胞増殖阻害活性は、TEL融合野生型FGFR2ポリペプチドを安定的に発現する株に対する細胞増殖阻害活性に比べ、化合物B、C、DおよびEでは大幅に減弱した一方、化合物Aではほとんど変化しないことが確認された。
実施例2(1)で樹立したTEL融合野生型FGFR2もしくはTEL融合FGFR2 V564F変異ポリペプチドを安定的に発現しIL-3非依存的な増殖が可能なBa/F3株をBALB/c ヌードマウス(日本チャールズ・リバー)の鼠頚部皮下に5.0~5.2 x 106個ずつ接種し、植付け9日後から、化合物Aまたは化合物Cを10% DMSO、10% Cremophor EL、15% PEG400、および15% HPCDを含む溶液に懸濁し、20 mL/kgの濃度で、経口で1日1回毎日マウスに投与したところ、図4に示すように、TEL融合FGFR2 V564F変異体ポリペプチドを発現する腫瘍細胞を担持するマウスにおける各化合物の腫瘍増殖抑制活性は、TEL融合野生型FGFR2ポリペプチドを発現する腫瘍細胞を担持するマウスにおける活性に比べ、化合物Cでは大幅に減弱した一方、化合物Aではほとんど変化しないことが確認された。
また、試験終了後の腫瘍サンプルからCell lysis buffer(Cell Signaling Technology社)を用いて腫瘍溶解物を回収し、各腫瘍溶解物を、Phospho-FGF Receptor (Tyr653/654) Antibody(Cell Signaling Technology社)またはFGFR-2 Antibody (Sigma社)を用いてウェスタンブロッティング法で解析したところ、図5に示すように、TEL融合FGFR2 V564F変異体ポリペプチドを発現する腫瘍細胞を担持するマウスにおける各化合物の腫瘍中リン酸化抑性効果は、TEL融合野生型FGFR2ポリペプチドを発現する腫瘍細胞を担持するマウスにおける活性に比べ、化合物Cでは大幅に減弱した一方、化合物Aではほとんど変化しないことが確認された。
Claims (23)
- 下記式(I)で示される化合物またはその薬学的に許容される塩を有効成分として含む癌治療用医薬組成物であって、
FGFRポリペプチドにおける、配列番号53もしくは54に記載される部分アミノ酸配列のうち、N末端側から7番目のアミノ酸であるバリンのフェニルアラニンへの置換、および/もしくはN末端側から5番目のアミノ酸であるバリンのロイシンへの置換を含むFGFR変異ポリペプチドを発現するか、あるいは該変異ポリペプチドをコードするポリヌクレオチドを有する患者に投与されるように用いられることを特徴とする、癌治療用医薬組成物:
R1は、水素、ヒドロキシ、ハロゲン、シアノ、ニトロ、C1-4ハロアルキル、C1-6アルキル、C2-6アルケニル、C2-6アルキニル、C3-7シクロアルキル、C6-10アリールC1-4アルキル、-OR5、-NR6R7、-(CR8R9)nZ1、-C(O)NR12R13、-SR14、-SOR15、-SO2R16、-NR17SO2R18、COOH、P群から独立して選択される1または複数の基で置換されていてもよいC6-10アリール、Q群から独立して選択される1または複数の基で置換されていてもよい5~10員ヘテロアリールもしくは3~10員ヘテロシクリル、-COR19、-COOR20、-OC(O)R21、-NR22C(O)R23、-NR24C(S)R25、-C(S)NR26R27、-SO2NR28R29、-OSO2R30、-SO3R31または-Si(R32)3を示し;
R2は、水素、ヒドロキシ、ハロゲン、シアノ、ニトロ、C1-4ハロアルキル、C1-6アルキル、C2-6アルケニル、C2-6アルキニル、C3-7シクロアルキル、C6-10アリールC1-4アルキル、-OR5、-NR6R7、-(CR8R9)nZ1、-C(O)NR12R13、-SR14、-SOR15、-SO2R16、-NR17SO2R18、COOH、P群から独立して選択される1または複数の基で置換されていてもよいC6-10アリール、Q群から独立して選択される1または複数の基で置換されていてもよい5~10員ヘテロアリールもしくは3~10員ヘテロシクリル、-COR19、-COOR20、-OC(O)R21、-NR22C(O)R23、-NR24C(S)R25、-C(S)NR26R27、-SO2NR28R29、-OSO2R30、-SO3R31または-Si(R32)3を示し;
またはR1およびR2は、それらが結合している原子と一緒になって、3~10員ヘテロシクリルまたは5~10員ヘテロアリールを形成し、ここで該ヘテロシクリルまたは該ヘテロアリールは、ハロゲンで置換されていてもよく;
R3はメチルを示し;
R4は水素を示し;
Aはインドールであり;
R5はC1-5アルキル、C3-7シクロアルキル、C3-7シクロアルキルC1-3アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、C1-3アルコキシC1-4アルキル、C1-3アルコキシC1-4アルコキシC1-4アルキル、C1-4アミノアルキル、C1-4アルキルアミノC1-4アルキル、ジ(C1-4アルキル)アミノC1-4アルキル、C6-10アリール、C6-10アリールC1-3アルキル、Q群から独立して選択される1または複数の基で置換されていてもよい3~10員ヘテロシクリルC1-3アルキル、3~10員ヘテロシクリル、5~10員ヘテロアリール、5~10員ヘテロアリールC1-3アルキル、C1-6モノヒドロキシアルキル、C1-6ジヒドロキシアルキルまたはC1-6トリヒドロキシアルキルを示し;
R6およびR7は、同一でも異なってもよく、それぞれ、水素、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、C1-3アルコキシC1-4アルキル、C6-10アリールC1-3アルキル、3~10員ヘテロシクリルC1-3アルキル、5~10員ヘテロアリールC1-3アルキル、C1-6モノヒドロキシアルキル、C1-6ジヒドロキシアルキル、C1-6トリヒドロキシアルキル、3~10員ヘテロシクリル、C1-4アミノアルキル、C1-4アルキルアミノC1-4アルキル、ジ(C1-4アルキル)アミノC1-4アルキルまたはシアノ(C1-3アルキル)を示すか、またはR6およびR7は、それらが結合している窒素原子と一緒になって3~10員ヘテロシクリルまたは5~10員ヘテロアリールを形成し;
nは1~3を示し;
R8およびR9は、同一でも異なってもよく、それぞれ水素、C1-4アルキルまたはハロゲンを示すか、またはR8およびR9は、それらが結合している炭素原子と一緒になって脂環式環を形成してもよく;
Z1は、水素、NR10R11、-OH、またはQ群から独立して選択される1または複数の基で置換されていてもよい3~10員ヘテロシクリルもしくは5~10員ヘテロアリールを示し;
R10およびR11は、同一でも異なってもよく、それぞれC1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、C1-3アルコキシC1-4アルキル、シアノ(C1-3アルキル)またはC1-3アルキルスルホニルC1-4アルキルを示すか、またはR10およびR11は、それらが結合している窒素原子と一緒になって3~10員ヘテロシクリルまたは5~10員ヘテロアリールを形成してもよく;
R12およびR13は同一でも異なってもよく、それぞれ水素、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、C1-3アルコキシC1-4アルキル、C6-10アリール、5~10員ヘテロアリール、3~10員ヘテロシクリル、C6-10アリールC1-4アルキル、3~10員ヘテロシクリルC1-3アルキル、5~10員ヘテロアリールC1-3アルキル、シアノ(C1-3アルキル)、C1-3アルキルスルホニルC1-4アルキル、3~10員脂環式環、5~10員ヘテロアリールまたは3~10員ヘテロシクリルを示すか、またはR12およびR13は、それらが結合している窒素原子と一緒になって、Q群から独立して選択される1または複数の基で置換されていてもよい3~10員ヘテロシクリルもしくは5~10員ヘテロアリールを形成してもよく;
R14は、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、P群から独立して選択される1または複数の基で置換されていてもよいC6-10アリール、またはQ群から独立して選択される1または複数の基で置換されていてもよい5~10員ヘテロアリールもしくは3~10員ヘテロシクリルを示し;
R15は、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、P群から独立して選択される1または複数の基で置換されていてもよいC6-10アリール、またはQ群から独立して選択される1または複数の基で置換されていてもよい5~10員ヘテロアリールもしくは3~10員ヘテロシクリルを示し;
R16は、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、P群から独立して選択される1または複数の基で置換されていてもよいC6-10アリール、またはQ群から独立して選択される1または複数の基で置換されていてもよい5~10員ヘテロアリールもしくは3~10員ヘテロシクリルを示し;
R17は、水素またはC1-4アルキルを示し;
R18は、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、P群から独立して選択される1または複数の基で置換されていてもよいC6-10アリール、またはQ群から独立して選択される1または複数の基で置換されていてもよい5~10員ヘテロアリールもしくは3~10員ヘテロシクリルを示し;
R19は、水素、C1-4アルキル、C3-7シクロアルキル、C1-4ハロアルキル、C6-10アリール、またはQ群から独立して選択される1または複数の基で置換されていてもよい5~10員ヘテロアリールもしくは3~10員ヘテロシクリルを示し;
R20は、C1-4アルキル、C3-7シクロアルキル、C1-4ハロアルキル、C6-10アリール、5~10員ヘテロアリールまたは3~10員ヘテロシクリルを示し;
R21は、C1-4アルキル、C3-7シクロアルキル、C1-4ハロアルキル、C6-10アリール、5~10員ヘテロアリールまたは3~10員ヘテロシクリルを示し;
R22は、水素、C1-4アルキルまたはC1-4ハロアルキルを示し;
R23は、水素、C1-4アルキル、C3-7シクロアルキル、C1-4ハロアルキル、C6-10アリール、5~10員ヘテロアリールまたは3~10員ヘテロシクリルを示し;
R24は、水素、C1-4アルキルまたはC1-4ハロアルキルを示し;
R25は、C1-4アルキル、C3-7シクロアルキル、C1-4ハロアルキル、C6-10アリール、5~10員ヘテロアリールまたは3~10員ヘテロシクリルを示し;
R26およびR27は、同一でも異なってもよく、それぞれ水素、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、C1-3アルコキシルC1-4アルキル、C6-10アリール、5~10員ヘテロアリール、3~10員ヘテロシクリル、C6-10アリールC1-4アルキル、3~10員ヘテロシクリルC1-3アルキル、5~10員ヘテロアリールC1-3アルキル、シアノ(C1-3アルキル)、C1-3アルキルスルホニルC1-4アルキル、または3~10員脂環式環を示すか、またはR26およびR27は、それらが結合している窒素原子と一緒になって3~10員ヘテロシクリルまたは5~10員ヘテロアリールを形成してもよく;
R28およびR29は、同一でも異なってもよく、それぞれ水素、C1-4アルキル、C2-6アルケニル、C2-6アルキニル、C1-4ハロアルキル、C1-3アルコキシルC1-4アルキル、C6-10アリール、5~10員ヘテロアリール、3~10員ヘテロシクリル、C6-10アリールC1-4アルキル、3~10員ヘテロシクリルC1-3アルキル、5~10員ヘテロアリールC1-3アルキル、シアノ(C1-3アルキル)、C1-3アルキルスルホニルC1-4アルキル、または3~10員脂環式環を示すか、またはR28およびR29は、それらが結合している窒素原子と一緒になって3~10員ヘテロシクリルまたは5~10員ヘテロアリールを形成してもよく;
R30は、C1-4アルキル、C3-7シクロアルキル、C1-4ハロアルキル、C6-10アリール、5~10員ヘテロアリールまたは3~10員ヘテロシクリルを示し;
R31は、C1-4アルキル、C3-7シクロアルキル、C1-4ハロアルキル、C6-10アリール、5~10員ヘテロアリールまたは3~10員ヘテロシクリルを示し;
R32は、C1-4アルキルまたはC6-10アリールを示し;
<P群>
ハロゲン、C1-4アルキル、C1-4ハロアルキル、-OH、C1-3アルコキシ、C1-3ハロアルコキシ、3~10員ヘテロシクリルアミノ、-SO2R16、-CN、-NO2、および3~10員ヘテロシクリル。
<Q群>
ハロゲン、C1-4アルキル、C1-4ハロアルキル、-OH、C1-3アルコキシ、C1-6モノヒドロキシアルキル、C1-6ジヒドロキシアルキルまたはC1-6トリヒドロキシアルキル、3~10員ヘテロシクリルアミン、-SO2R16、-CN、-NO2、C3-7シクロアルキル、-COR19、およびC1-4アルキルで置換されていてもよい3~10員ヘテロシクリル。 - FGFRポリペプチドにおける、配列番号53もしくは54に記載される部分アミノ酸配列のうち、N末端側から7番目のアミノ酸であるバリンのフェニルアラニンへの置換、および/もしくはN末端側から5番目のアミノ酸であるバリンのロイシンへの置換を含むFGFR変異ポリペプチド。
- 請求項3記載の変異ポリペプチドをコードするポリヌクレオチド。
- 請求項4記載のポリヌクレオチドを含むベクター。
- 請求項5記載のベクターを含む組み換え細胞。
- 請求項3記載の変異ポリペプチドに特異的に結合する抗体またはその抗原結合断片。
- 請求項3記載の変異ポリペプチドをコードするポリヌクレオチドに特異的にハイブリダイズするオリゴヌクレオチドを含む、該ポリヌクレオチドの検出または増幅のための一対のオリゴヌクレオチドプライマーまたはオリゴヌクレオチドプローブ。
- 請求項3記載の変異ポリペプチドをコードするmRNAポリヌクレオチドに結合し、該mRNAポリヌクレオチドのタンパク質への翻訳を阻害する活性を有するオリゴヌクレオチド。
- 該オリゴヌクレオチドが、mRNAポリヌクレオチドを切断するsiRNAである、請求項9記載のオリゴヌクレオチド。
- 請求項3記載の変異ポリペプチドに特異的に結合する抗体またはその抗原結合断片を用いて、被験者から単離された試料中において、該変異ポリペプチドを検出する工程を含む、FGFR変異ポリペプチドの検出方法。
- 請求項3記載の変異ポリペプチドをコードするポリヌクレオチドに特異的にハイブリダイズするオリゴヌクレオチドを含む、該ポリヌクレオチドの検出または増幅のための一対のオリゴヌクレオチドプライマーまたはオリゴヌクレオチドプローブを用いて、被験者から単離された試料中において、該変異ポリペプチドをコードするポリヌクレオチドを検出する工程を含む、FGFR変異ポリペプチドをコードするポリヌクレオチドの検出方法。
- 請求項3記載の変異ポリペプチドをコードするポリヌクレオチドに特異的にハイブリダイズするオリゴヌクレオチドを含む、該ポリヌクレオチドの検出または増幅のための一対のオリゴヌクレオチドプライマーまたはオリゴヌクレオチドプローブを含む、FGFR変異ポリペプチドをコードするポリヌクレオチドの検出用キット。
- 請求項3記載の変異ポリペプチドに特異的に結合する抗体またはその抗原結合断片を含む、FGFR変異ポリペプチドの検出用キット。
- 被験者から単離された試料中において、請求項3記載の変異ポリペプチドまたは該変異ポリペプチドをコードするポリヌクレオチドの存否を決定し、該変異ポリペプチドまたは該ポリヌクレオチドが検出された場合に、請求項1または2記載の医薬組成物を当該被験者に投与して、癌を治療する方法。
- 該癌が、膀胱癌、脳腫瘍、頭頸部扁平上皮癌、肺癌、肺腺癌、肺扁平上皮癌、皮膚黒色腫、子宮体癌、乳癌、前立腺癌、大腸癌、食道癌、胃癌、胆管癌、胆道癌または肝癌である、請求項15記載の方法。
- 以下の工程を含む、請求項1または2記載の医薬組成物が適用される患者を選択する方法:
(a) 被験者から単離された試料中において、請求項3記載の変異ポリペプチドの存否を決定する工程;
(b) 該変異ポリペプチドの存在が確認された被験者を該医薬組成物が適用される患者として選択する工程。 - 以下の工程を含む、請求項1または2記載の医薬組成物が適用される患者を選択する方法:
(a) 被験者から単離された試料中において、請求項3記載の変異ポリペプチドをコードするポリヌクレオチドの存否を決定する工程;
(b) 該変異ポリペプチドをコードするポリヌクレオチドの存在が確認された被験者を該医薬組成物が適用される患者として選択する工程。 - 該癌が、膀胱癌、脳腫瘍、頭頸部扁平上皮癌、肺癌、肺腺癌、肺扁平上皮癌、皮膚黒色腫、子宮体癌、乳癌、前立腺癌、大腸癌、食道癌、胃癌、胆管癌、胆道癌または肝癌である、請求項18記載の方法。
- 請求項3記載の変異ポリペプチドを発現するか、または該変異ポリペプチドをコードするポリヌクレオチドを有する患者における癌の治療において使用するための、請求項1または2で定義される化合物またはその薬学的に許容される塩。
- 前記癌が、膀胱癌、脳腫瘍、頭頸部扁平上皮癌、肺癌、肺腺癌、肺扁平上皮癌、皮膚黒色腫、子宮体癌、乳癌、前立腺癌、大腸癌、食道癌、胃癌、胆管癌、胆道癌または肝癌である、請求項20記載の化合物またはその薬学的に許容される塩。
- FGFRポリペプチドにおける、配列番号53もしくは54に記載される部分アミノ酸配列のうち、N末端側から7番目のアミノ酸であるバリンのフェニルアラニンへの置換、および/もしくはN末端側から5番目のアミノ酸であるバリンのロイシンへの置換を含むFGFR変異ポリペプチドの機能を阻害するか発現を阻害する物質を有効成分として含有する癌治療用医薬組成物。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES14873761T ES2756175T3 (es) | 2013-12-27 | 2014-12-26 | Genes mutantes guardián de fgfr y fármacos que se dirigen a los mismos |
EP19185746.5A EP3581179A1 (en) | 2013-12-27 | 2014-12-26 | Fgfr gatekeeper mutant gene and drug targeting same |
US15/108,014 US10391081B2 (en) | 2013-12-27 | 2014-12-26 | FGFR gatekeeper mutant gene and drug targeting same |
JP2015555047A JP6514645B2 (ja) | 2013-12-27 | 2014-12-26 | Fgfrゲートキーパー変異遺伝子およびそれを標的とする医薬 |
EP14873761.2A EP3087986B1 (en) | 2013-12-27 | 2014-12-26 | Fgfr gatekeeper mutant gene and drug targeting same |
DK14873761T DK3087986T3 (da) | 2013-12-27 | 2014-12-26 | Mutant fgfr-gatekeepergen og aktivt stof rettet mod samme |
US16/516,566 US20190358205A1 (en) | 2013-12-27 | 2019-07-19 | Fgfr gatekeeper mutant gene and drug targeting same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013273053 | 2013-12-27 | ||
JP2013-273053 | 2013-12-27 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/108,014 A-371-Of-International US10391081B2 (en) | 2013-12-27 | 2014-12-26 | FGFR gatekeeper mutant gene and drug targeting same |
US16/516,566 Division US20190358205A1 (en) | 2013-12-27 | 2019-07-19 | Fgfr gatekeeper mutant gene and drug targeting same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015099127A1 true WO2015099127A1 (ja) | 2015-07-02 |
Family
ID=53478966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/084521 WO2015099127A1 (ja) | 2013-12-27 | 2014-12-26 | Fgfrゲートキーパー変異遺伝子およびそれを標的とする医薬 |
Country Status (7)
Country | Link |
---|---|
US (2) | US10391081B2 (ja) |
EP (2) | EP3087986B1 (ja) |
JP (1) | JP6514645B2 (ja) |
DK (1) | DK3087986T3 (ja) |
ES (1) | ES2756175T3 (ja) |
TW (1) | TW201609093A (ja) |
WO (1) | WO2015099127A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017028816A1 (zh) * | 2015-08-20 | 2017-02-23 | 浙江海正药业股份有限公司 | 吲哚类衍生物及其制备方法和其在医药上的用途 |
CN108026588A (zh) * | 2015-07-24 | 2018-05-11 | 德彪药业国际股份公司 | Fgfr表达以及对fgfr抑制剂的敏感性 |
US10208024B2 (en) | 2015-10-23 | 2019-02-19 | Array Biopharma Inc. | 2-aryl- and 2-heteroaryl-substituted 2-pyridazin-3(2H)-one compounds as inhibitors of FGFR tyrosine kinases |
US10391081B2 (en) | 2013-12-27 | 2019-08-27 | Chugai Seiyaku Kabushiki Kaisha | FGFR gatekeeper mutant gene and drug targeting same |
US10479780B2 (en) | 2015-06-17 | 2019-11-19 | Chugai Seiyaku Kabushiki Kaisha | Aminopyrazole derivatives |
WO2021138392A1 (en) | 2019-12-30 | 2021-07-08 | Tyra Biosciences, Inc. | Aminopyrimidine compounds |
WO2021138391A1 (en) | 2019-12-30 | 2021-07-08 | Tyra Biosciences, Inc. | Indazole compounds |
WO2022147246A1 (en) | 2020-12-30 | 2022-07-07 | Tyra Biosciences, Inc. | Indazole compounds as kinase inhibitors |
WO2022182972A1 (en) | 2021-02-26 | 2022-09-01 | Tyra Biosciences, Inc. | Aminopyrimidine compounds and methods of their use |
WO2024006897A1 (en) | 2022-06-29 | 2024-01-04 | Tyra Biosciences, Inc. | Indazole compounds |
WO2024006883A1 (en) | 2022-06-29 | 2024-01-04 | Tyra Biosciences, Inc. | Polymorphic compounds and uses thereof |
WO2024138112A1 (en) | 2022-12-22 | 2024-06-27 | Tyra Biosciences, Inc. | Indazole compounds |
Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0125023A1 (en) | 1983-04-08 | 1984-11-14 | Genentech, Inc. | Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor |
EP0239400A2 (en) | 1986-03-27 | 1987-09-30 | Medical Research Council | Recombinant antibodies and methods for their production |
JPH0159878B2 (ja) | 1982-05-21 | 1989-12-20 | Yunibaashitei Obu Karifuorunia | |
JPH0239747B2 (ja) | 1980-04-25 | 1990-09-06 | Efu Hofuman Ra Roshu Unto Co Ag | |
EP0404097A2 (de) | 1989-06-22 | 1990-12-27 | BEHRINGWERKE Aktiengesellschaft | Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung |
US5057313A (en) | 1986-02-25 | 1991-10-15 | The Center For Molecular Medicine And Immunology | Diagnostic and therapeutic antibody conjugates |
WO1992001047A1 (en) | 1990-07-10 | 1992-01-23 | Cambridge Antibody Technology Limited | Methods for producing members of specific binding pairs |
WO1992003918A1 (en) | 1990-08-29 | 1992-03-19 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5156840A (en) | 1982-03-09 | 1992-10-20 | Cytogen Corporation | Amine-containing porphyrin derivatives |
WO1992020791A1 (en) | 1990-07-10 | 1992-11-26 | Cambridge Antibody Technology Limited | Methods for producing members of specific binding pairs |
WO1993006213A1 (en) | 1991-09-23 | 1993-04-01 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
WO1993011236A1 (en) | 1991-12-02 | 1993-06-10 | Medical Research Council | Production of anti-self antibodies from antibody segment repertoires and displayed on phage |
WO1993011161A1 (en) | 1991-11-25 | 1993-06-10 | Enzon, Inc. | Multivalent antigen-binding proteins |
WO1993012227A1 (en) | 1991-12-17 | 1993-06-24 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
WO1993019172A1 (en) | 1992-03-24 | 1993-09-30 | Cambridge Antibody Technology Limited | Methods for producing members of specific binding pairs |
WO1994002602A1 (en) | 1992-07-24 | 1994-02-03 | Cell Genesys, Inc. | Generation of xenogeneic antibodies |
WO1994025585A1 (en) | 1993-04-26 | 1994-11-10 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
WO1995001438A1 (en) | 1993-06-30 | 1995-01-12 | Medical Research Council | Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof |
US5401629A (en) | 1990-08-07 | 1995-03-28 | The Salk Institute Biotechnology/Industrial Associates, Inc. | Assay methods and compositions useful for measuring the transduction of an intracellular signal |
WO1995015388A1 (en) | 1993-12-03 | 1995-06-08 | Medical Research Council | Recombinant binding proteins and peptides |
WO1996002576A1 (fr) | 1994-07-13 | 1996-02-01 | Chugai Seiyaku Kabushiki Kaisha | Anticorps humain reconstitue contre l'interleukine-8 humaine |
WO1996034096A1 (en) | 1995-04-28 | 1996-10-31 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
WO1996033735A1 (en) | 1995-04-27 | 1996-10-31 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
US5670113A (en) | 1991-12-20 | 1997-09-23 | Sibia Neurosciences, Inc. | Automated analysis equipment and assay method for detecting cell surface protein and/or cytoplasmic receptor function using same |
WO1998013388A1 (fr) | 1996-09-26 | 1998-04-02 | Chugai Seiyaku Kabushiki Kaisha | Anticorps contre les peptides lies a la parathormone humaine |
WO1998046777A1 (fr) | 1997-04-11 | 1998-10-22 | Centre National De La Recherche Scientifique (Cnrs) | Preparation de recepteurs membranaires a partir de baculovirus extracellulaires |
WO1999054342A1 (en) | 1998-04-20 | 1999-10-28 | Pablo Umana | Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity |
WO2000061739A1 (en) | 1999-04-09 | 2000-10-19 | Kyowa Hakko Kogyo Co., Ltd. | Method for controlling the activity of immunologically functional molecule |
WO2002031140A1 (fr) | 2000-10-06 | 2002-04-18 | Kyowa Hakko Kogyo Co., Ltd. | Cellules produisant des compositions d'anticorps |
WO2002079255A1 (en) | 2001-04-02 | 2002-10-10 | Idec Pharmaceuticals Corporation | RECOMBINANT ANTIBODIES COEXPRESSED WITH GnTIII |
WO2011016528A1 (ja) | 2009-08-07 | 2011-02-10 | 中外製薬株式会社 | アミノピラゾール誘導体 |
JP2012180344A (ja) * | 2011-02-07 | 2012-09-20 | Chugai Pharmaceut Co Ltd | アミノピラゾール誘導体を含む医薬 |
WO2014050781A1 (ja) * | 2012-09-25 | 2014-04-03 | 中外製薬株式会社 | Ret阻害剤 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0170567B1 (ko) | 1992-12-17 | 1999-02-18 | 알렌 제이. 스피겔 | 부신피질자극호르몬-유리 인자 길항물질 활성을 갖는 피라졸 및 피라졸로피리미딘 |
RU2000130199A (ru) | 1998-05-05 | 2002-11-10 | Ф.Хоффманн-Ля Рош Аг (Ch) | Производные пиразола в качестве ингибиторов р-38 мар киназы |
US6316466B1 (en) | 1998-05-05 | 2001-11-13 | Syntex (U.S.A.) Llc | Pyrazole derivatives P-38 MAP kinase inhibitors |
WO2001012600A1 (en) | 1999-08-12 | 2001-02-22 | Cor Therapeutics, Inc. | INHIBITORS OF FACTOR Xa |
JP2003050945A (ja) | 2001-08-06 | 2003-02-21 | Takashi Hashimoto | 連動型広告配信システム及び広告配信サーバの動作方法 |
BR0213562A (pt) | 2001-10-26 | 2004-08-31 | Aventis Pharma Inc | Benzimidazóis e análogos e seu uso como inibidores de cinases de proteìna |
FR2831537B1 (fr) | 2001-10-26 | 2008-02-29 | Aventis Pharma Sa | Nouveaux derives de benzimidazoles, leur procede de preparation, leur application a titre de medicament, compositions pharmaceutiques et nouvelle utilisation |
FR2854159B1 (fr) | 2003-04-25 | 2008-01-11 | Aventis Pharma Sa | Nouveaux derives de l'indole, leur preparation a titre de medicaments, compositions pharmaceutiques et notamment comme inhibiteurs de kdr |
KR101120857B1 (ko) | 2003-06-26 | 2012-04-12 | 노파르티스 아게 | 5원의 헤테로사이클-기재 p38 키나제 억제제 |
US20090131470A1 (en) | 2005-06-11 | 2009-05-21 | Vernalis R & D Limited | Pyrazole-substituted benzimidazole derivatives for use in the treatment of cancer and autoimmune disorders |
EP1968579A1 (en) | 2005-12-30 | 2008-09-17 | Astex Therapeutics Limited | Pharmaceutical compounds |
FR2903406B1 (fr) | 2006-07-04 | 2012-08-10 | Aventis Pharma Sa | Derives de pyrazolylbenzimidazole,compositions les contenant et utilisation |
BRPI0916233A2 (pt) | 2008-07-23 | 2018-03-13 | F.Hoffman-La Roche Ag | compostos heterocíclicos antivirais |
US8361720B2 (en) | 2010-11-15 | 2013-01-29 | Exact Sciences Corporation | Real time cleavage assay |
PT2657233E (pt) * | 2012-01-19 | 2014-10-24 | Taiho Pharmaceutical Co Ltd | Composto de alcinil-benzeno substituído nas posições 3 e 5 e um seu sal |
EP2695950A1 (en) * | 2012-08-10 | 2014-02-12 | Blackfield AG | Markers for responsiveness to an inhibitor of the fibroblast growth factor receptor |
JP6117222B2 (ja) | 2012-09-27 | 2017-04-19 | 中外製薬株式会社 | Fgfr3融合遺伝子およびそれを標的とする医薬 |
AU2014297298B2 (en) | 2013-07-31 | 2019-10-17 | Chugai Seiyaku Kabushiki Kaisha | Pharmaceutical preparation comprising aminopyrazole derivative |
KR101822767B1 (ko) | 2013-12-13 | 2018-01-26 | 에프. 호프만-라 로슈 아게 | 브루톤 티로신 키나아제의 억제제 |
CA2929747C (en) | 2013-12-13 | 2018-01-23 | F. Hoffmann-La Roche Ag | Inhibitors of bruton's tyrosine kinase |
CA2931189C (en) | 2013-12-13 | 2017-09-26 | F. Hoffmann-La Roche Ag | Inhibitors of bruton's tyrosine kinase |
WO2015099127A1 (ja) | 2013-12-27 | 2015-07-02 | 中外製薬株式会社 | Fgfrゲートキーパー変異遺伝子およびそれを標的とする医薬 |
US10479780B2 (en) | 2015-06-17 | 2019-11-19 | Chugai Seiyaku Kabushiki Kaisha | Aminopyrazole derivatives |
US20180223371A1 (en) | 2015-07-24 | 2018-08-09 | Debiopharm International Sa | Fgfr expression and susceptibility to an fgfr inhibitor |
WO2017028816A1 (zh) | 2015-08-20 | 2017-02-23 | 浙江海正药业股份有限公司 | 吲哚类衍生物及其制备方法和其在医药上的用途 |
-
2014
- 2014-12-26 WO PCT/JP2014/084521 patent/WO2015099127A1/ja active Application Filing
- 2014-12-26 TW TW103145698A patent/TW201609093A/zh unknown
- 2014-12-26 EP EP14873761.2A patent/EP3087986B1/en active Active
- 2014-12-26 EP EP19185746.5A patent/EP3581179A1/en not_active Withdrawn
- 2014-12-26 ES ES14873761T patent/ES2756175T3/es active Active
- 2014-12-26 US US15/108,014 patent/US10391081B2/en active Active
- 2014-12-26 DK DK14873761T patent/DK3087986T3/da active
- 2014-12-26 JP JP2015555047A patent/JP6514645B2/ja active Active
-
2019
- 2019-07-19 US US16/516,566 patent/US20190358205A1/en not_active Abandoned
Patent Citations (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0239747B2 (ja) | 1980-04-25 | 1990-09-06 | Efu Hofuman Ra Roshu Unto Co Ag | |
US5156840A (en) | 1982-03-09 | 1992-10-20 | Cytogen Corporation | Amine-containing porphyrin derivatives |
JPH0159878B2 (ja) | 1982-05-21 | 1989-12-20 | Yunibaashitei Obu Karifuorunia | |
EP0125023A1 (en) | 1983-04-08 | 1984-11-14 | Genentech, Inc. | Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor |
US5057313A (en) | 1986-02-25 | 1991-10-15 | The Center For Molecular Medicine And Immunology | Diagnostic and therapeutic antibody conjugates |
EP0239400A2 (en) | 1986-03-27 | 1987-09-30 | Medical Research Council | Recombinant antibodies and methods for their production |
EP0404097A2 (de) | 1989-06-22 | 1990-12-27 | BEHRINGWERKE Aktiengesellschaft | Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung |
WO1992001047A1 (en) | 1990-07-10 | 1992-01-23 | Cambridge Antibody Technology Limited | Methods for producing members of specific binding pairs |
WO1992020791A1 (en) | 1990-07-10 | 1992-11-26 | Cambridge Antibody Technology Limited | Methods for producing members of specific binding pairs |
US5401629A (en) | 1990-08-07 | 1995-03-28 | The Salk Institute Biotechnology/Industrial Associates, Inc. | Assay methods and compositions useful for measuring the transduction of an intracellular signal |
US5436128A (en) | 1990-08-07 | 1995-07-25 | Salk Institute Biotechnology/Industrial Associates | Assay methods and compositions for detecting and evaluating the intracellular transduction of an extracellular signal |
WO1992003918A1 (en) | 1990-08-29 | 1992-03-19 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
WO1993006213A1 (en) | 1991-09-23 | 1993-04-01 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
WO1993011161A1 (en) | 1991-11-25 | 1993-06-10 | Enzon, Inc. | Multivalent antigen-binding proteins |
WO1993011236A1 (en) | 1991-12-02 | 1993-06-10 | Medical Research Council | Production of anti-self antibodies from antibody segment repertoires and displayed on phage |
WO1993012227A1 (en) | 1991-12-17 | 1993-06-24 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5670113A (en) | 1991-12-20 | 1997-09-23 | Sibia Neurosciences, Inc. | Automated analysis equipment and assay method for detecting cell surface protein and/or cytoplasmic receptor function using same |
WO1993019172A1 (en) | 1992-03-24 | 1993-09-30 | Cambridge Antibody Technology Limited | Methods for producing members of specific binding pairs |
WO1994002602A1 (en) | 1992-07-24 | 1994-02-03 | Cell Genesys, Inc. | Generation of xenogeneic antibodies |
WO1994025585A1 (en) | 1993-04-26 | 1994-11-10 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
WO1995001438A1 (en) | 1993-06-30 | 1995-01-12 | Medical Research Council | Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof |
WO1995015388A1 (en) | 1993-12-03 | 1995-06-08 | Medical Research Council | Recombinant binding proteins and peptides |
WO1996002576A1 (fr) | 1994-07-13 | 1996-02-01 | Chugai Seiyaku Kabushiki Kaisha | Anticorps humain reconstitue contre l'interleukine-8 humaine |
WO1996033735A1 (en) | 1995-04-27 | 1996-10-31 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
WO1996034096A1 (en) | 1995-04-28 | 1996-10-31 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
WO1998013388A1 (fr) | 1996-09-26 | 1998-04-02 | Chugai Seiyaku Kabushiki Kaisha | Anticorps contre les peptides lies a la parathormone humaine |
WO1998046777A1 (fr) | 1997-04-11 | 1998-10-22 | Centre National De La Recherche Scientifique (Cnrs) | Preparation de recepteurs membranaires a partir de baculovirus extracellulaires |
WO1999054342A1 (en) | 1998-04-20 | 1999-10-28 | Pablo Umana | Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity |
WO2000061739A1 (en) | 1999-04-09 | 2000-10-19 | Kyowa Hakko Kogyo Co., Ltd. | Method for controlling the activity of immunologically functional molecule |
WO2002031140A1 (fr) | 2000-10-06 | 2002-04-18 | Kyowa Hakko Kogyo Co., Ltd. | Cellules produisant des compositions d'anticorps |
WO2002079255A1 (en) | 2001-04-02 | 2002-10-10 | Idec Pharmaceuticals Corporation | RECOMBINANT ANTIBODIES COEXPRESSED WITH GnTIII |
WO2011016528A1 (ja) | 2009-08-07 | 2011-02-10 | 中外製薬株式会社 | アミノピラゾール誘導体 |
JP2013144679A (ja) * | 2009-08-07 | 2013-07-25 | Chugai Pharmaceut Co Ltd | アミノピラゾール誘導体 |
JP2012180344A (ja) * | 2011-02-07 | 2012-09-20 | Chugai Pharmaceut Co Ltd | アミノピラゾール誘導体を含む医薬 |
WO2014050781A1 (ja) * | 2012-09-25 | 2014-04-03 | 中外製薬株式会社 | Ret阻害剤 |
Non-Patent Citations (65)
Title |
---|
"Idenshi Kougaku Handbook (Handbook of Genetic Engineering)", 1992, article "Jikken Igaku Bessatsu (Experimental Medicine: SUPPLEMENT)" |
"Molecular Cloning, 2nd ed.", 1989, COLD SPRING HARBOR LABORATORY PRESS |
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 10 |
BASS, NATURE, vol. 411, 2001, pages 428 - 429 |
BETTER ET AL., SCIENCE, vol. 240, 1988, pages 1041 - 1043 |
BETTER, M.; HORWITZ, A. H., METHODS ENZYMOL., vol. 178, 1989, pages 476 - 496 |
BETTER, M.; HORWITZ, A. H., METHODS IN ENZYMOLOGY, vol. 178, 1989, pages 476 - 496 |
BIRD, R. E. ET AL., TIBTECH, vol. 9, 1991, pages 132 - 137 |
BIRD, R. E.; WALKER, B. W., TRENDS BIOTECHNOL., vol. 9, 1991, pages 132 - 137 |
BLOOD, vol. 101, 2003, pages 4569 - 4575 |
BLOOD, vol. 105, no. 5, 2005, pages 2115 - 2123 |
BYRON S.A. ET AL.: "The N550K/H mutations in FGFR2 confer differential resistance to PD173074, Dovitinib, and Ponatinib ATP-competitive inhibitors", NEOPLASIA, vol. 15, no. 8, August 2013 (2013-08-01), pages 975 - 988, XP009172164 * |
CANCER DISCOVERY, vol. 3, 2013, pages 636 - 647 |
CANCER RESEARCH, vol. 61, 2001, pages 8371 - 8374 |
CANCER RESEARCH, vol. 72, 2012, pages 2045 - 2056 |
CARL, A. K. BORREBAECK; JAMES, W. LARRICK: "THERAPEUTIC MONOCLONAL ANTIBODIES", 1990, MACMILLAN PUBLISHERS LTD |
CO, M. S. ET AL., J. IMMUNOL., vol. 152, 1994, pages 2968 - 2976 |
CO, M.S. ET AL., J. IMMUNOL., vol. 152, 1994, pages 2968 - 2976 |
CYTOKINE & GROWTH FACTOR REVIEWS, vol. 16, 2005, pages 139 - 149 |
DANIEL R. MARSHAK ET AL.: "Strategies for Protein Purification and Characterization: A Laboratory Course Manual.", 1996, COLD SPRING HARBOR LABORATORY PRESS |
EIJI ISHIKAWA ET AL.: "Kouso Men-eki Sokutei Hou (Enzyme immunoassay), 3rd Ed.", 1987, IGAKUSHOIN |
ELBASHIR ET AL., NATURE, vol. 411, 2001, pages 494 - 498 |
FASEB J., vol. 6, 1992, pages 2422 - 2427 |
GENE, vol. 25, 1983, pages 263 |
HIROSHI SAKAMOTO: "ALK inhibitor", FOLIA PHARMACOL. JPN., vol. 142, no. 1, July 2013 (2013-07-01), pages 48 - 50, XP055356049 * |
HOLLIGER P ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6444 - 6448 |
HOPP, T. P. ET AL., BIOTECHNOLOGY, vol. 6, 1988, pages 1204 - 1210 |
HUDSON ET AL., J IMMUNOL. METHODS, vol. 231, 1999, pages 177 - 189 |
HUSTON, J. S. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 85, 1988, pages 5879 - 5883 |
J. BACTERIOL., vol. 153, 1983, pages 163 |
J. MED. CHEM., vol. 54, 2011, pages 7066 - 7083 |
J. MOL. BIOL., vol. 56, 1971, pages 209 |
JIN, A. ET AL., NATURE MEDICINE, vol. 15, 2009, pages 1088 - 92 |
KARLIN; ALTSCHUL, PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873 - 7 |
KOHLER, G.; MILSTEIN, C., METHODS ENZYMOL., vol. 73, 1981, pages 3 - 46 |
KOHLER. G.; MILSTEIN, C., METHODS ENZYMOL., vol. 73, 1981, pages 3 - 46 |
LAMOYI, E., METHODS ENZYMOL., vol. 121, 1986, pages 652 - 663 |
LAMOYI, E., METHODS IN ENZYMOLOGY, vol. 121, 1989, pages 652 - 663 |
MIZUSHIMA ET AL., NUCLEIC ACIDS RES., vol. 18, 1990, pages 5322 |
MOL. CELL. BIOL., vol. 2, 1982, pages 161 |
MOL. CELL. BIOL., vol. 3, 1983, pages 2156 - 2165 |
MOL. CELL. BIOL., vol. 3, 1983, pages 280 |
MOL. GEN. GENET., vol. 168, 1979, pages 111 |
MULLIGAN ET AL., NATURE, vol. 277, 1979, pages 108 |
NAKANISHI Y. ET AL.: "The fibroblast growth factor receptor genetic status as a potential predictor of the sensitivity to CH 5183284/Debio1347, a novel selective FGFR inhibitor.", MOLECULAR CANCER THERAPEUTICS, vol. 13, no. 11, November 2014 (2014-11-01), pages 2547 - 2558, XP055258714 * |
NATURE GENETICS, vol. 23, no. 1, September 1999 (1999-09-01), pages 18 - 20 |
NEOPLASIA, vol. 15, no. 8, 2013, pages 975 - 988 |
NUCLEIC ACID RESEARCH, vol. 18, 1990, pages 5322 |
NUCLEIC ACIDS. RES., vol. 18, no. 17, 1990, pages 5322 |
NUKINORI AKIYAMA ET AL.: "Shinki FGFR1/2/3 Sentakuteki Keiko Sogaizai CH 5183284/Debio 1347", THE JAPANESE ASSOCIATION FOR MOLECULAR TARGET THERAPY OF CANCER GAKUJUTSU SHUKAI PROGRAM/SHOROKUSHU, vol. 18 TH, May 2014 (2014-05-01), pages 85 * |
PLICKTHUN: "The Pharmacology of Monoclonal Antibodies", vol. 113, 1994, SPRINGER VERLAG, pages: 269 - 315 |
PLUCKTHUN, A.; SKERRA, A., METHODS ENZYMOL., vol. 178, 1989, pages 497 - 515 |
PLUECKTHUN, A.; SKERRA, A., METHODS IN ENZYMOLOGY, vol. 178, 1989, pages 476 - 496 |
PROC. NATL. ACAD. SCI. USA, vol. 69, 1972, pages 2110 |
PROC. NATL. ACAD. SCI. USA, vol. 75, 1978, pages 1927 |
PROTEIN ENGINEERING, vol. 9, no. 3, 1996, pages 299 - 305 |
ROUSSEAUX, J. ET AL., METHODS ENZYMOL., vol. 121, 1986, pages 663 - 669 |
ROUSSEAUX, J. ET AL., METHODS IN ENZYMOLOGY, vol. 121, 1989, pages 663 - 669 |
SATO, K. ET AL., CANCER RES., vol. 53, 1993, pages 851 - 856 |
SCHEID, J.F. ET AL., NATURE, vol. 458, 2009, pages 636 - 640 |
SOSHIKI BAIYOU KOUGAKU, vol. 23, no. 13, pages 521 - 524 |
TILLER, T. ET AL., JOURNAL OF IMMUNOLOGICAL METHODS, vol. 329, 2008, pages 112 - 124 |
VIROLOGY, vol. 52, 1973, pages 456 |
WARD ET AL., NATURE, vol. 341, 1989, pages 544 - 546 |
WRAMMERT, J. ET AL., NATURE, vol. 453, 2008, pages 667 - 672 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10391081B2 (en) | 2013-12-27 | 2019-08-27 | Chugai Seiyaku Kabushiki Kaisha | FGFR gatekeeper mutant gene and drug targeting same |
US10479780B2 (en) | 2015-06-17 | 2019-11-19 | Chugai Seiyaku Kabushiki Kaisha | Aminopyrazole derivatives |
CN108026588A (zh) * | 2015-07-24 | 2018-05-11 | 德彪药业国际股份公司 | Fgfr表达以及对fgfr抑制剂的敏感性 |
JP2018524010A (ja) * | 2015-07-24 | 2018-08-30 | デバイオファーム インターナショナル エスエイ | Fgfr発現とfgfr阻害剤に対する感受性 |
CN107406431B (zh) * | 2015-08-20 | 2020-06-26 | 上海昂睿医药技术有限公司 | 吲哚类衍生物及其制备方法和其在医药上的用途 |
CN107406431A (zh) * | 2015-08-20 | 2017-11-28 | 浙江海正药业股份有限公司 | 吲哚类衍生物及其制备方法和其在医药上的用途 |
WO2017028816A1 (zh) * | 2015-08-20 | 2017-02-23 | 浙江海正药业股份有限公司 | 吲哚类衍生物及其制备方法和其在医药上的用途 |
US10214515B2 (en) | 2015-08-20 | 2019-02-26 | Zhejiang Hisun Pharmaceutical Co., Ltd. | Substituted pyrazoles as inhibitors of fibroblast growth factor receptor |
US10208024B2 (en) | 2015-10-23 | 2019-02-19 | Array Biopharma Inc. | 2-aryl- and 2-heteroaryl-substituted 2-pyridazin-3(2H)-one compounds as inhibitors of FGFR tyrosine kinases |
WO2021138392A1 (en) | 2019-12-30 | 2021-07-08 | Tyra Biosciences, Inc. | Aminopyrimidine compounds |
WO2021138391A1 (en) | 2019-12-30 | 2021-07-08 | Tyra Biosciences, Inc. | Indazole compounds |
WO2022147246A1 (en) | 2020-12-30 | 2022-07-07 | Tyra Biosciences, Inc. | Indazole compounds as kinase inhibitors |
WO2022182972A1 (en) | 2021-02-26 | 2022-09-01 | Tyra Biosciences, Inc. | Aminopyrimidine compounds and methods of their use |
WO2024006897A1 (en) | 2022-06-29 | 2024-01-04 | Tyra Biosciences, Inc. | Indazole compounds |
WO2024006883A1 (en) | 2022-06-29 | 2024-01-04 | Tyra Biosciences, Inc. | Polymorphic compounds and uses thereof |
WO2024138112A1 (en) | 2022-12-22 | 2024-06-27 | Tyra Biosciences, Inc. | Indazole compounds |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015099127A1 (ja) | 2017-03-23 |
JP6514645B2 (ja) | 2019-05-15 |
US10391081B2 (en) | 2019-08-27 |
TW201609093A (zh) | 2016-03-16 |
EP3581179A1 (en) | 2019-12-18 |
EP3087986A4 (en) | 2017-08-02 |
ES2756175T3 (es) | 2020-04-27 |
EP3087986A1 (en) | 2016-11-02 |
US20160317499A1 (en) | 2016-11-03 |
US20190358205A1 (en) | 2019-11-28 |
EP3087986B1 (en) | 2019-09-18 |
DK3087986T3 (da) | 2019-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6117222B2 (ja) | Fgfr3融合遺伝子およびそれを標的とする医薬 | |
JP6514645B2 (ja) | Fgfrゲートキーパー変異遺伝子およびそれを標的とする医薬 | |
EP2431393B1 (en) | Anti-axl antibody | |
KR20190126003A (ko) | Ros1 키나제 억제제로서의 매크로시클릭 화합물 | |
KR101857310B1 (ko) | 인간 프로스타글란딘 e2 수용체 ep4 에 대한 항체 | |
KR20150130421A (ko) | Met-결합제 및 그의 용도 | |
AU2019376078A1 (en) | CDCP1-targeted therapies | |
TW202404646A (zh) | 抗cdh6抗體-藥物結合物之給藥方案 | |
JP2015129755A (ja) | c−Met阻害剤の効能予測または効能検証のためのバイオマーカー | |
IL301883A (en) | A drug to treat cancer | |
US20160033518A1 (en) | Biomarker pnck for predicting effect of a dual-targeting agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14873761 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015555047 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15108014 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014873761 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014873761 Country of ref document: EP |