Nothing Special   »   [go: up one dir, main page]

WO2015072270A1 - Indoor unit for air conditioner - Google Patents

Indoor unit for air conditioner Download PDF

Info

Publication number
WO2015072270A1
WO2015072270A1 PCT/JP2014/077421 JP2014077421W WO2015072270A1 WO 2015072270 A1 WO2015072270 A1 WO 2015072270A1 JP 2014077421 W JP2014077421 W JP 2014077421W WO 2015072270 A1 WO2015072270 A1 WO 2015072270A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
indoor
air
indoor unit
air conditioner
Prior art date
Application number
PCT/JP2014/077421
Other languages
French (fr)
Japanese (ja)
Inventor
雅人 平木
伸二 長岡
平良 繁治
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201480061607.9A priority Critical patent/CN105723161B/en
Publication of WO2015072270A1 publication Critical patent/WO2015072270A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control

Definitions

  • the present invention relates to an air conditioner indoor unit, and more particularly to an air conditioner indoor unit using a flammable refrigerant.
  • a refrigerant circuit using a flammable refrigerant and a temperature distribution detecting means for detecting the temperature distribution of the room are provided, and the air leakage and the air direction are controlled by the air direction control means to cause refrigerant leakage.
  • the refrigerant is diffused in a direction different from that of the resident or the high temperature object detected by the temperature distribution detecting means (see, for example, JP 2012-13348 A (Patent Document 1)).
  • Patent Document 1 JP 2012-13348 A
  • the blown air controlled by the wind direction control means since the blown air controlled by the wind direction control means does not blow out in the direction of indoor occupants or hot objects, it is flammable to indoor occupants or hot objects on the floor side.
  • the refrigerant gas may stay and the gas concentration may increase.
  • the gas concentration of the combustible refrigerant increases to some extent, the risk of ignition and the like increases.
  • an object of the present invention is to provide an indoor unit of an air conditioner that can reduce the risk associated with leakage of a flammable refrigerant by diffusing refrigerant that has accumulated on the floor side of the room.
  • an indoor unit of an air conditioner of the present invention is A body casing; An indoor heat exchanger disposed in the main body casing and through which a flammable refrigerant flows; A blower fan that is disposed in the main body casing, sucks in through the indoor heat exchanger, and blows out air from an air outlet provided in the main body casing; A refrigerant sensor disposed in the main body casing for detecting leakage of the combustible refrigerant; A wind direction control unit for controlling the wind direction of air blown from the air outlet; A control device for controlling the blower fan and the wind direction controller; When the refrigerant sensor detects a refrigerant leak, the control device operates the blower fan for a preset stirring operation time and blows out the air blown from the blowout outlet to the indoor floor side. .
  • the refrigerant sensor disposed in the main body casing causes the flammable refrigerant to flow.
  • the air blowing fan is operated for a preset stirring operation time, and the air blown from the outlet is blown out to the indoor floor side.
  • the control device controls the blower fan and the wind direction control unit, detects refrigerant leakage by the refrigerant sensor, and blows out the blown air from the outlet to the floor side after the stirring operation time, and is set in advance. During the swing operation time, the air direction of the air blown from the air outlet is swung while the air blowing fan is operated.
  • the control device controls the blower fan and the wind direction control unit, and is set in advance. Swing the wind direction of the air blown from the air outlet while operating the air blowing fan during the swing operation time. Thereby, the airflow is disturbed in the room, and the air in the stagnant space formed in the corner of the room is stirred, so that the refrigerant gas staying in the stagnant space can also be diffused.
  • the wind direction swing of the blown air may be a vertical swing, a horizontal swing, or a vertical swing and a horizontal swing may be performed simultaneously.
  • the main body casing is a floor-standing type.
  • the refrigerant leakage location is close to the indoor floor surface, the refrigerant gas stays on the floor side, and the gas concentration is Although it tends to be high, even in an indoor unit equipped with a main body casing having such a configuration, the refrigerant accumulated on the floor side of the room can be forcibly diffused to effectively reduce the risk associated with leakage of flammable refrigerant. .
  • the main casing is at least partially embedded in a recess provided on the wall surface.
  • the refrigerant leakage point is close to the indoor floor surface, Refrigerant gas stays on the side and the gas concentration tends to increase.
  • the refrigerant staying on the floor side of the room is forcibly diffused to make a combustible refrigerant. Risk associated with leakage can be effectively reduced.
  • combustible refrigerant a single refrigerant made of R32 or a mixed refrigerant containing R32 as a main component was used.
  • R32 has a low ozone depletion coefficient and global warming coefficient GWP (Global Warming Potential). Therefore, the influence of global warming can be suppressed, and the coefficient of performance COP (CoefficientCoOf Performance) can be improved to reduce energy consumption.
  • GWP Global Warming Potential
  • FIG. 1 is a circuit diagram of a refrigerant circuit of an indoor unit and an outdoor unit of an air conditioner according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of the indoor unit of the air conditioner.
  • FIG. 3 is a front view of the air conditioner indoor unit with the suction panel and the front grille removed.
  • 4 is a cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a sectional view taken along line VV of FIG.
  • FIG. 6 is a control block diagram of the indoor unit of the air conditioner.
  • FIG. 7 is a flowchart for explaining the operation of the indoor control device for the indoor unit.
  • FIG. 8 is a flowchart following
  • FIG. 9 is a cross-sectional view taken along line IV-IV in FIG.
  • FIG. 10 is a schematic view of a room in which floor-mounted indoor units are arranged as seen from the side.
  • FIG. 11 is a schematic view of a room in which the floor-mounted indoor unit is disposed as viewed from above.
  • FIG. 12 is a schematic view of a room in which a wall-mounted indoor unit is disposed as viewed from the side.
  • FIG. 13 is a schematic view of a room in which the wall-mounted indoor unit is disposed as viewed from above.
  • FIG. 1 shows an indoor unit 2 of an air conditioner according to an embodiment of the present invention and a refrigerant circuit of the outdoor unit 1 connected to the indoor unit 2 via connection pipes L1 and L2.
  • the air conditioner has a compressor 11, a four-way switching valve 12 connected to one end of the discharge side of the compressor 11, and one end connected to the other end of the four-way switching valve 12.
  • the other end of the outdoor heat exchanger 13 is connected to the other end of the outdoor heat exchanger 13, and the other end of the electric expansion valve 14 is connected to the other end via the closing valve 21 and the communication pipe L1. Is connected to the other end of the indoor heat exchanger 15 through the connecting pipe L2, the closing valve 22, and the four-way switching valve 12, and the other end is sucked into the compressor 11.
  • the compressor 11, the four-way switching valve 12, the outdoor heat exchanger 13, the electric expansion valve 14, the indoor heat exchanger 15 and the accumulator 16 constitute a refrigerant circuit.
  • this refrigerant circuit a single refrigerant of R32 or a mixed refrigerant containing R32 as a main component is used.
  • the compressor 11, the four-way switching valve 12, the outdoor heat exchanger 13, the electric expansion valve 14, the accumulator 16, the outdoor fan 17 and the humidifying unit 42 constitute the outdoor unit 1, and the indoor heat exchanger 15 and the indoor fan.
  • the indoor unit 2 is configured by the duct 18 and the duct unit 40.
  • the indoor unit 2 includes a duct portion 40 for supplying humidified air from the outside to the room.
  • One end of the humidifying hose 41 is connected to the humidifying unit 42 of the outdoor unit 1, and the other end of the humidifying hose 41 is connected to the humidifying unit 42. It connects with the hose connection part 40b of the duct part 40 of the indoor unit 2.
  • the outdoor unit 1 includes an outdoor control device 100 that controls the compressor 11 and the outdoor fan 17.
  • the indoor unit 2 includes an indoor control device 200 as an example of a control device that controls the indoor fan 18 and the like based on a remote controller, an indoor temperature sensor (not shown), and the like.
  • the air conditioner configured as described above, when the four-way switching valve 12 is switched to the solid line switching position and the compressor 11 is started during heating operation, the high-pressure refrigerant discharged from the compressor 11 passes through the four-way switching valve 12. And enters the indoor heat exchanger 15. The refrigerant condensed in the indoor heat exchanger 15 enters the outdoor heat exchanger 13 after being depressurized by the electric expansion valve 14. The refrigerant evaporated in the outdoor heat exchanger 13 returns to the suction side of the compressor 11 through the four-way switching valve 12 and the accumulator 16.
  • the refrigerant circulates through the refrigerant circuit constituted by the compressor 11, the indoor heat exchanger 15, the electric expansion valve 14, the outdoor heat exchanger 13 and the accumulator 16, thereby executing a refrigeration cycle.
  • the indoor fan 18 heats the room by circulating the room air through the indoor heat exchanger 15.
  • the four-way switching valve 12 is switched to the dotted line switching position, and the refrigerant in the order of the compressor 11, the outdoor heat exchanger 13, the electric expansion valve 14, the indoor heat exchanger 15, and the accumulator 16. Execute a refrigeration cycle in which
  • humidified air from the humidifying unit 42 is supplied to the room through the humidifying hose 41 and the duct unit 40.
  • the humidifying unit 42 adsorbs moisture from the outdoor air using an adsorbent such as zeolite, humidifies the outdoor air with the moisture adsorbed on the adsorbent, and then supplies the humidified outdoor air to the indoor unit 2.
  • an adsorbent such as zeolite
  • the configuration of the humidifying unit is not limited to this, and a humidifying unit that supplies humidified air to the indoor unit using water replenished by water supply means such as tap water may be used.
  • FIG. 2 is a perspective view of the indoor unit 2 of the air conditioner.
  • the indoor unit 2 of this air conditioner is attached to a substantially rectangular bottom frame 31 whose rear side is attached to an indoor wall surface, and to the front side of the bottom frame 31, and is substantially rectangular on the front side.
  • a front grill 32 having an opening (not shown), and a suction panel 33 attached to cover the opening of the front grill 32.
  • the bottom frame 31 and the front grill 32 constitute a main body casing.
  • An upper air outlet 32 a is provided at the upper part of the front grill 32, and a lower air outlet 32 b is provided at the lower part of the front grill 32.
  • a flap 34 as an example of a wind direction control unit is provided at the upper outlet 32 a of the front grill 32. The flap 34 rotates during the cooling operation and the heating operation, blows cool air and warm air forward and obliquely upward from the upper air outlet 32a, and covers the upper air outlet 32a when the operation is stopped.
  • an upper suction port 33a is provided on the upper side of the suction panel 33
  • a lower suction port 33b is provided on the lower side of the suction panel 33
  • a side suction port 33c (right side in FIG. Only shown).
  • FIG. 3 shows a front view of the air conditioner indoor unit 2 with the suction panel 33 and the front grill 32 removed. 3, the same components as those of the indoor unit 2 shown in FIG.
  • a substantially planar indoor heat exchanger 15 is disposed on the front side of the bottom frame 31, and an indoor fan 18 as an example of a blower fan is disposed on the back side thereof.
  • the indoor fan 18 is a turbo fan that sucks air from the front side and blows it outward in the radial direction.
  • a duct portion 40 having an indoor side opening 40a is disposed near and below the left side surface of the bottom frame 31.
  • a pipe connection portion (not shown) to which connecting pipes L1 and L2 (shown in FIG. 1) are connected is provided in the vicinity of the right side surface of the bottom frame 31.
  • the connecting pipes L1 and L2 enter the vicinity of the left side of the bottom frame 31 and the lower side thereof together with the humidifying hose 41 (shown in FIG. 1) from the back side, and the lower side of the bottom frame 31 faces from the left to the right in FIG. To be connected to the pipe connection.
  • a refrigerant sensor 60 for detecting the leakage of the R32 refrigerant is disposed on the bottom frame 31 side and in the vicinity of the right side surface in the main body casing.
  • FIG. 4 shows a cross-sectional view taken along line IV-IV in FIG. 4, the same reference numerals are assigned to the same components as those of the indoor unit 2 shown in FIG.
  • the fan motor 26 is fixed at the approximate center of the bottom frame 31.
  • the indoor fan 18 to which the shaft of the fan motor 26 is connected is disposed on the bottom frame 31 so that the shaft is in the front-rear direction.
  • the indoor fan 18 is a turbo fan that blows air sucked from the front side outward in the radial direction with respect to the shaft.
  • a bell mouth 27 is provided on the bottom frame 31 on the front side of the indoor fan 18.
  • the indoor heat exchanger 15 is arranged on the front side of the bell mouth 27, the front grill 32 is attached to the front side of the indoor heat exchanger 15, and the suction panel 33 is attached to the front side of the front grill 32. .
  • a filter (not shown) is attached to the opening of the front grill 32.
  • a drain pan 28 is disposed below the bell mouth 27 and below the indoor heat exchanger 15.
  • a shutter 50 as an example of a wind direction control unit that opens and closes the lower air outlet 32b is disposed in the blowout passage below the front grill 32.
  • the shutter 50 is rotated about a shaft 50a provided on the bottom frame 31 side by a shutter driving unit 51 (shown in FIG. 6), and the lower blowing passage is fully opened or fully closed.
  • the two-way blow control for blowing warm air from both the upper air outlet 32a and the lower air outlet 32b, and the lower air outlet 32b are closed by the shutter 50, There is one blow control that blows warm air from only one of the blow outlets 32a. Further, during cooling operation, cool air is blown out only from one of the upper air outlets 32a.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 3.
  • the same reference numerals are given to the same components as the indoor unit 2 shown in FIG.
  • FIG. 5 shows a state where the suction panel 33 and the front grill 32 are removed.
  • a refrigerant sensor 60 is arranged on the bottom frame 31 side and below in the main body casing (configured by the bottom frame 31 and the front grill 32).
  • the refrigerant sensor 60 is a sensor that heats a semiconductor with a heater.
  • FIG. 6 is a control block diagram of the indoor unit 2 of the air conditioner, and the indoor unit 2 has an indoor control device 200 including a microcomputer and an input / output circuit.
  • the indoor control device 200 includes a refrigerant leakage determination unit 200a and a timer 200b, and is based on command signals from a remote controller (not shown), detection signals from an indoor temperature sensor (not shown), the refrigerant sensor 60, and the like.
  • the fan motor 26 that drives the indoor fan 18 (shown in FIG. 4), the shutter drive unit 51, the flap drive unit 52, and the like are controlled.
  • the flap drive unit 52 drives the flap 34 (shown in FIG. 4).
  • the refrigerant leakage determination unit 200a determines whether or not the refrigerant sensor 60 has detected leakage of the R32 refrigerant in step S1 shown in FIG. If it is determined in step S1 that the refrigerant sensor 60 has detected leakage of the R32 refrigerant, the process proceeds to step S2. If the refrigerant sensor 60 determines that leakage of the R32 refrigerant has not been detected, step S1 is repeated.
  • step S2 it is determined whether or not the vehicle is in operation in step S2. That is, it is determined whether or not a cooling operation or a heating operation is being performed. And if it determines with driving
  • step S2 determines whether the vehicle is not in operation, that is, the operation is stopped. If it is determined in step S2 that the vehicle is not in operation, that is, the operation is stopped, the process proceeds to step S4.
  • step S4 the process proceeds to step S4, and the user is informed that refrigerant leakage has occurred due to a buzzer, sound, and / or blinking of the LED display.
  • step S12 the shutter controller 51 is controlled by the indoor control device 200 to open the shutter 50 and open the lower air outlet 32b.
  • step S13 the flap controller 52 is controlled by the indoor control device 200 so that the flap 34 faces downward.
  • step S14 the fan motor 26 is controlled by the indoor control apparatus 200, and the indoor fan 18 is drive
  • step S15 the process proceeds to step S15, and if it is determined that the time Tm of the timer 200b exceeds the stirring operation time T1, the process proceeds to step S16.
  • the stirring operation time T1 is set to 5 to 10 minutes.
  • step S16 the flap controller 52 is controlled by the indoor control device 200 to swing the flap 34 up and down.
  • step S17 the process proceeds to step S17, and if it is determined that the measured time Tm of the timer 200b exceeds the set time T2, the process proceeds to step S16.
  • the set time T2 is set to (T1 + 20 minutes), and the swing operation time is set to 20 minutes.
  • step S18 the fan motor 26 is controlled by the indoor control device 200, the indoor fan 18 is stopped, and this process is terminated.
  • FIG. 9 is a cross-sectional view taken along line IV-IV in FIG. 3, and shows the stirring operation of the indoor unit 2 when the refrigerant leaks.
  • the shutter 50 is opened to open the lower air outlet 32b, and the flap 34 is directed downward to operate the indoor fan 18 to operate the upper air outlet 32a and the lower air outlet 32b. Blows air out to the floor side of the room.
  • FIG. 10 is a schematic view of a room in which the floor-mounted indoor unit 2 is arranged as viewed from the side, with the flap 34 (shown in FIG. 9) facing downward and the upper air outlet 32a (shown in FIG. 9). The air blown out from the lower air outlet 32b (shown in FIG. 9) is blown out to the floor side.
  • the indoor unit of the air conditioner having the above-described configuration, in the operation stop state (the indoor fan 18 is stopped), the combustible refrigerant is discharged from the connection portion between the indoor heat exchanger 15 and the refrigerant pipe in the main casing (31, 32).
  • the agitation operation time T1 after detecting the refrigerant leakage the indoor fan 18 is operated, and the upper outlet 32a and the lower outlet are operated.
  • the stirring operation time T1 for blowing the air blown out from the upper air outlet 32a and the lower air outlet 32b to the indoor floor is a predetermined period (for example, 30 minutes) after detecting the refrigerant leakage. It is a part.
  • the predetermined period is a period in which the leaked combustible refrigerant gas may stay near the floor in the room and the gas concentration may increase.
  • the determination of the leakage detection of the R32 refrigerant by the refrigerant leakage determination unit 200a determines that the refrigerant leaks when the output signal level of the refrigerant sensor 60 exceeds a predetermined threshold, but the refrigerant leakage detection based on the output signal of the refrigerant sensor 60 This determination method is not limited to this.
  • the refrigerant sensor 60 detects the leakage of the R32 refrigerant, the user is alerted by a notification means such as a buzzer, sound, and / or blinking of the LED display unit, thereby allowing the user to open the window and ventilate the room. Can be encouraged.
  • a notification means such as a buzzer, sound, and / or blinking of the LED display unit
  • the leakage outlet to the outside is raised from the floor surface to promote the diffusion of the refrigerant, thereby reducing the risk associated with the leakage of the R32 refrigerant. Note that once the R32 refrigerant diffuses when it leaks into the room, it does not collect again on the floor side of the room and the refrigerant gas concentration does not increase.
  • the indoor controller 18 and the flap 34 In addition, after the refrigerant sensor 60 detects refrigerant leakage and the stirring operation time T1 when the air blown out from the upper air outlet 32a and the lower air outlet 32b to the floor side, the indoor controller 18 and the flap 34, The shutter 50 (wind direction control unit) is controlled to swing the wind direction of the air blown from the upper air outlet 32a while operating the indoor fan 18 for a preset swing operation time (T2-T1). Thereby, the airflow is disturbed in the room, and the air in the stagnant space formed in the corner of the room is stirred, so that the refrigerant gas staying in the stagnant space can also be diffused.
  • T2-T1 preset swing operation time
  • FIG. 11 is a schematic view of a room in which the floor-mounted indoor unit is disposed as viewed from above.
  • the refrigerant leakage point is close to the indoor floor surface, and the refrigerant gas stays on the floor side, and the gas concentration tends to increase. Even in the indoor unit including the main body casing having such a configuration, it is possible to forcibly diffuse the refrigerant staying on the indoor floor side, and to effectively reduce the risk associated with the leakage of the combustible refrigerant.
  • the present invention may be applied to an indoor unit of an air conditioner including a main body casing of a type (ground bag type; Jibukuro type) in which at least a part is embedded in a concave portion provided on a wall surface close to a floor in the room. .
  • a main body casing of a type ground bag type; Jibukuro type
  • the refrigerant leak location is close to the floor surface in the room, and the refrigerant gas stays on the floor side, and the gas concentration tends to increase.
  • the refrigerant accumulated on the indoor floor side can be forcibly diffused to effectively reduce the risk associated with the leakage of combustible refrigerant.
  • R32 has a low ozone destruction coefficient and a global warming coefficient GWP.
  • the coefficient of performance COP CoefficientCoOf Performance
  • the outdoor air supplied from the humidification unit 42 via the humidification hose 41 may be introduced into the room from the duct portion 40 of the indoor unit 2.
  • the indoor refrigerant concentration can be reduced by the outdoor air, and the risk associated with the leakage of the combustible refrigerant can be quickly reduced.
  • a slightly flammable R32 single refrigerant or a mixed refrigerant mainly composed of R32 is used as the flammable refrigerant.
  • the present invention is not limited to this, and an air conditioner using other flammable refrigerants.
  • the present invention may be applied to other indoor units.
  • FIG. 12 is a schematic view of a room in which a wall-mounted indoor unit 300 to which the present invention is applied is viewed from the side.
  • the wall-mounted indoor unit 300 is based on a refrigerant sensor.
  • the refrigerant leakage is detected, the blown air is blown out to the indoor floor side while operating the blower fan. Thereafter, the wind direction of the air blown from the outlet is swung in the vertical direction while operating the blower fan for a preset swing operation time.
  • FIG. 13 is a schematic view of a room in which the wall-mounted indoor unit 300 is disposed as viewed from above.
  • this invention is not limited to this but this invention is applied to the indoor unit of the air conditioner not provided with the air supply humidification function.
  • the present invention may be applied to an indoor unit of an air conditioner having at least one of an air supply function and an exhaust function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An indoor unit for an air conditioning device, having arranged inside main casings (31, 32): an indoor heat exchanger (15) through which a flammable refrigerant flows; an indoor fan (18) that sucks in air via the indoor heat exchanger (15) and blows out same from an upper outlet (32a) and a lower outlet (32b) provided in the main casings (31, 32); and a refrigerant sensor (60) for detecting leakage of the flammable refrigerant. An indoor control device (200) controls the indoor fan (18), a flap (34), and a shutter (50) and, if refrigerant leakage is detected by the refrigerant sensor (60), operates the indoor fan (18) for a pre-set agitation operation time and jets out outlet air from the upper outlet (32a) and the lower outlet (32b), to the indoor floor side. As a result, an indoor unit for an air conditioner is provided that disperses refrigerant pooled on the floor side indoors and reduces risk associated with leakage of flammable refrigerant.

Description

空気調和機の室内機Air conditioner indoor unit
 この発明は、空気調和機の室内機に関し、詳しくは可燃性冷媒を用いた空気調和機の室内機に関する。 The present invention relates to an air conditioner indoor unit, and more particularly to an air conditioner indoor unit using a flammable refrigerant.
 従来、空気調和機の室内機としては、可燃性冷媒が用いられた冷媒回路と、部屋の温度分布を検出する温度分布検出手段を備え、風向制御手段により送風や風向を制御して、冷媒漏洩時に温度分布検出手段により検出した居住者や高温物とは異なる方向へ冷媒を拡散させるものがある(例えば、特開2012-13348号公報(特許文献1)参照)。上記空気調和機の室内機では、漏洩した冷媒を、居住者や高温物とは異なる方向へ拡散させることによって、冷媒漏洩時の安全性を向上している。 Conventionally, as an indoor unit of an air conditioner, a refrigerant circuit using a flammable refrigerant and a temperature distribution detecting means for detecting the temperature distribution of the room are provided, and the air leakage and the air direction are controlled by the air direction control means to cause refrigerant leakage. Sometimes, the refrigerant is diffused in a direction different from that of the resident or the high temperature object detected by the temperature distribution detecting means (see, for example, JP 2012-13348 A (Patent Document 1)). In the indoor unit of the air conditioner, safety at the time of refrigerant leakage is improved by diffusing the leaked refrigerant in a direction different from that of the occupants and high-temperature objects.
特開2012-13348号公報JP 2012-13348 A
 しかしながら、上記空気調和機の室内機では、風向制御手段により制御された吹出空気は、室内の居住者や高温物の方向に吹き出さないため、室内の居住者や高温物の床側に可燃性冷媒ガスが滞留してガス濃度が高くなる可能性がある。上記可燃性冷媒は、ガス濃度がある程度高くなると、発火などのリスクが高まる。 However, in the indoor unit of the air conditioner, since the blown air controlled by the wind direction control means does not blow out in the direction of indoor occupants or hot objects, it is flammable to indoor occupants or hot objects on the floor side. The refrigerant gas may stay and the gas concentration may increase. When the gas concentration of the combustible refrigerant increases to some extent, the risk of ignition and the like increases.
 そこで、この発明の課題は、室内の床側に滞留した冷媒を拡散させて、可燃性冷媒の漏洩に伴うリスクを低減できる空気調和機の室内機を提供することにある。 Therefore, an object of the present invention is to provide an indoor unit of an air conditioner that can reduce the risk associated with leakage of a flammable refrigerant by diffusing refrigerant that has accumulated on the floor side of the room.
 上記課題を解決するため、この発明の空気調和機の室内機は、
 本体ケーシングと、
 上記本体ケーシング内に配置され、可燃性冷媒が流れる室内熱交換器と、
 上記本体ケーシング内に配置され、上記室内熱交換器を介して吸い込んで上記本体ケーシングに設けられた吹出口から空気を吹き出す送風ファンと、
 上記本体ケーシング内に配置され、上記可燃性冷媒の漏洩を検出するための冷媒センサと、
 上記吹出口からの吹出空気の風向を制御する風向制御部と、
 上記送風ファンと上記風向制御部を制御する制御装置と
を備え、
 上記制御装置は、上記冷媒センサにより冷媒漏洩を検出した場合、予め設定された攪拌動作時間、上記送風ファンを運転して上記吹出口からの吹出空気を室内の床側に吹き出すことを特徴とする。
In order to solve the above problems, an indoor unit of an air conditioner of the present invention is
A body casing;
An indoor heat exchanger disposed in the main body casing and through which a flammable refrigerant flows;
A blower fan that is disposed in the main body casing, sucks in through the indoor heat exchanger, and blows out air from an air outlet provided in the main body casing;
A refrigerant sensor disposed in the main body casing for detecting leakage of the combustible refrigerant;
A wind direction control unit for controlling the wind direction of air blown from the air outlet;
A control device for controlling the blower fan and the wind direction controller;
When the refrigerant sensor detects a refrigerant leak, the control device operates the blower fan for a preset stirring operation time and blows out the air blown from the blowout outlet to the indoor floor side. .
 上記構成によれば、例えば、運転停止状態において本体ケーシング内の室内熱交換器と冷媒配管との接続部などから可燃性冷媒が漏洩したとき、本体ケーシングに配置された冷媒センサにより可燃性冷媒の漏洩を検出した場合、予め設定された攪拌動作時間、送風ファンを運転して吹出口からの吹出空気を室内の床側に吹き出す。そうすることによって、本体ケーシングから室内の床面に流れ出した可燃性冷媒ガスを拡散させるので、漏洩した可燃性冷媒ガスが室内の床近傍に滞留してガス濃度が高くなるのを防止できる。 According to the above configuration, for example, when the flammable refrigerant leaks from the connection portion between the indoor heat exchanger in the main body casing and the refrigerant pipe in the operation stop state, the refrigerant sensor disposed in the main body casing causes the flammable refrigerant to flow. When a leak is detected, the air blowing fan is operated for a preset stirring operation time, and the air blown from the outlet is blown out to the indoor floor side. By doing so, the combustible refrigerant gas that has flowed out from the main casing to the indoor floor is diffused, so that it is possible to prevent the leaked combustible refrigerant gas from staying in the vicinity of the indoor floor and increasing the gas concentration.
 また、一実施形態の空気調和機の室内機では、
 上記制御装置は、上記送風ファンと上記風向制御部を制御して、上記冷媒センサにより冷媒漏洩を検出して上記吹出口から床側に吹出空気を上記攪拌動作時間吹き出した後、予め設定されたスイング動作時間、上記送風ファンを運転しつつ上記吹出口からの吹出空気の風向をスイングさせる。
Moreover, in the indoor unit of the air conditioner of one embodiment,
The control device controls the blower fan and the wind direction control unit, detects refrigerant leakage by the refrigerant sensor, and blows out the blown air from the outlet to the floor side after the stirring operation time, and is set in advance. During the swing operation time, the air direction of the air blown from the air outlet is swung while the air blowing fan is operated.
 上記実施形態によれば、冷媒センサにより冷媒漏洩を検出して吹出口から床側に吹出空気を吹き出した攪拌動作時間後、制御装置により送風ファンと風向制御部を制御して、予め設定されたスイング動作時間、送風ファンを運転しつつ吹出口からの吹出空気の風向をスイングさせる。これにより、室内に気流の乱れを生じさせて、室内の隅にできた澱んだ空間の空気を攪拌することによって、澱んだ空間に滞留した冷媒ガスも拡散させることができる。ここで、吹出空気の風向のスイングは、上下方向のスイングであってもよいし、左右方向のスイングでもよく、上下方向および左右方向のスイングを同時に行ってもよい。 According to the above embodiment, after the stirring operation time in which the refrigerant leakage is detected by the refrigerant sensor and the blown air is blown out from the outlet to the floor side, the control device controls the blower fan and the wind direction control unit, and is set in advance. Swing the wind direction of the air blown from the air outlet while operating the air blowing fan during the swing operation time. Thereby, the airflow is disturbed in the room, and the air in the stagnant space formed in the corner of the room is stirred, so that the refrigerant gas staying in the stagnant space can also be diffused. Here, the wind direction swing of the blown air may be a vertical swing, a horizontal swing, or a vertical swing and a horizontal swing may be performed simultaneously.
 また、一実施形態の空気調和機の室内機では、
 上記本体ケーシングは、床置型である。
Moreover, in the indoor unit of the air conditioner of one embodiment,
The main body casing is a floor-standing type.
 上記実施形態によれば、室内の床(または床近傍)に載置された床置型の本体ケーシングでは、冷媒漏洩箇所が室内の床面に近く、床側に冷媒ガスが滞留してガス濃度が高くなりやすいが、このような構成の本体ケーシングを備えた室内機においても、室内の床側に滞留した冷媒を強制的に拡散させて、可燃性冷媒の漏洩に伴うリスクを効果的に低減できる。 According to the above embodiment, in the floor-mounted main body casing placed on the indoor floor (or in the vicinity of the floor), the refrigerant leakage location is close to the indoor floor surface, the refrigerant gas stays on the floor side, and the gas concentration is Although it tends to be high, even in an indoor unit equipped with a main body casing having such a configuration, the refrigerant accumulated on the floor side of the room can be forcibly diffused to effectively reduce the risk associated with leakage of flammable refrigerant. .
 また、一実施形態の空気調和機の室内機では、
 上記本体ケーシングは、壁面に設けられた凹部に少なくとも一部が埋め込まれる。
Moreover, in the indoor unit of the air conditioner of one embodiment,
The main casing is at least partially embedded in a recess provided on the wall surface.
 上記実施形態によれば、室内の床に近い壁面に設けられた凹部に少なくとも一部が埋め込まれた本体ケーシング(地袋型;Jibukuro type)では、冷媒漏洩箇所が室内の床面に近く、床側に冷媒ガスが滞留してガス濃度が高くなりやすいが、このような構成の本体ケーシングを備えた室内機においても、室内の床側に滞留した冷媒を強制的に拡散させて、可燃性冷媒の漏洩に伴うリスクを効果的に低減できる。 According to the above embodiment, in the main casing (ground bag type; Jibukuro type) in which at least a part is embedded in the recess provided on the wall surface close to the indoor floor, the refrigerant leakage point is close to the indoor floor surface, Refrigerant gas stays on the side and the gas concentration tends to increase. However, even in an indoor unit equipped with a main body casing having such a configuration, the refrigerant staying on the floor side of the room is forcibly diffused to make a combustible refrigerant. Risk associated with leakage can be effectively reduced.
 また、一実施形態の空気調和機の室内機では、
 上記可燃性冷媒として、R32からなる単一冷媒またはR32を主成分とする混合冷媒を用いた。
Moreover, in the indoor unit of the air conditioner of one embodiment,
As the combustible refrigerant, a single refrigerant made of R32 or a mixed refrigerant containing R32 as a main component was used.
 上記実施形態によれば、可燃性冷媒として、R32からなる単一冷媒またはR32を主成分とする混合冷媒を用いることによって、R32はオゾン破壊係数や地球温暖化係数GWP(Global Warming Potential)が低いので、地球温暖化の影響を抑えることができると共に、成績係数COP(Coefficient Of Performance)が向上してエネルギー消費を低減できる。 According to the above embodiment, by using a single refrigerant composed of R32 or a mixed refrigerant mainly composed of R32 as the flammable refrigerant, R32 has a low ozone depletion coefficient and global warming coefficient GWP (Global Warming Potential). Therefore, the influence of global warming can be suppressed, and the coefficient of performance COP (CoefficientCoOf Performance) can be improved to reduce energy consumption.
 以上より明らかなように、この発明によれば、室内の床側に滞留した冷媒を拡散させて、可燃性冷媒の漏洩に伴うリスクを低減できる空気調和機の室内機を実現することができる。 As is clear from the above, according to the present invention, it is possible to realize an indoor unit of an air conditioner that can reduce the risk associated with leakage of combustible refrigerant by diffusing refrigerant that has accumulated on the floor side of the room.
図1はこの発明の実施の一形態の空気調和機の室内機と室外機の冷媒回路の回路図である。FIG. 1 is a circuit diagram of a refrigerant circuit of an indoor unit and an outdoor unit of an air conditioner according to an embodiment of the present invention. 図2は上記空気調和機の室内機の斜視図である。FIG. 2 is a perspective view of the indoor unit of the air conditioner. 図3は上記空気調和機の室内機の吸込パネルと前面グリルを外した状態の正面図である。FIG. 3 is a front view of the air conditioner indoor unit with the suction panel and the front grille removed. 図4は図3のIV-IV線から見た断面図である。4 is a cross-sectional view taken along line IV-IV in FIG. 図5は図3のV-V線から見た断面図である。FIG. 5 is a sectional view taken along line VV of FIG. 図6は上記空気調和機の室内機の制御ブロック図である。FIG. 6 is a control block diagram of the indoor unit of the air conditioner. 図7は上記室内機の室内制御装置の動作を説明するためのフローチャートである。FIG. 7 is a flowchart for explaining the operation of the indoor control device for the indoor unit. 図8は図7に続くフローチャートである。FIG. 8 is a flowchart following FIG. 図9は図3のIV-IV線から見た断面図である。9 is a cross-sectional view taken along line IV-IV in FIG. 図10は床置型の室内機が配置された室内を側面から見た模式図である。FIG. 10 is a schematic view of a room in which floor-mounted indoor units are arranged as seen from the side. 図11は上記床置型の室内機が配置された室内を上方から見た模式図である。FIG. 11 is a schematic view of a room in which the floor-mounted indoor unit is disposed as viewed from above. 図12は壁掛型の室内機が配置された室内を側面から見た模式図である。FIG. 12 is a schematic view of a room in which a wall-mounted indoor unit is disposed as viewed from the side. 図13は上記壁掛型の室内機が配置された室内を上方から見た模式図である。FIG. 13 is a schematic view of a room in which the wall-mounted indoor unit is disposed as viewed from above.
 以下、この発明の空気調和機の室内機を図示の実施の形態により詳細に説明する。 Hereinafter, an indoor unit of an air conditioner according to the present invention will be described in detail with reference to embodiments shown in the drawings.
 図1はこの発明の実施の一形態の空気調和機の室内機2およびその室内機2に連絡配管L1,L2を介して接続された室外機1の冷媒回路を示している。この空気調和機は、図1に示すように、圧縮機11と、上記圧縮機11の吐出側が一端に接続された四路切換弁12と、上記四路切換弁12の他端に一端が接続された室外熱交換器13と、上記室外熱交換器13の他端に一端が接続された電動膨張弁14と、上記電動膨張弁14の他端に閉鎖弁21,連絡配管L1を介して一端が接続された室内熱交換器15と、上記室内熱交換器15の他端に連絡配管L2,閉鎖弁22,四路切換弁12を介して一端が接続され、他端が圧縮機11の吸入側に接続されたアキュムレータ16とを備えている。上記圧縮機11,四路切換弁12,室外熱交換器13,電動膨張弁14,室内熱交換器15およびアキュムレータ16で冷媒回路を構成している。この冷媒回路では、R32の単一冷媒またはR32を主成分とする混合冷媒を用いている。 FIG. 1 shows an indoor unit 2 of an air conditioner according to an embodiment of the present invention and a refrigerant circuit of the outdoor unit 1 connected to the indoor unit 2 via connection pipes L1 and L2. As shown in FIG. 1, the air conditioner has a compressor 11, a four-way switching valve 12 connected to one end of the discharge side of the compressor 11, and one end connected to the other end of the four-way switching valve 12. And the other end of the outdoor heat exchanger 13 is connected to the other end of the outdoor heat exchanger 13, and the other end of the electric expansion valve 14 is connected to the other end via the closing valve 21 and the communication pipe L1. Is connected to the other end of the indoor heat exchanger 15 through the connecting pipe L2, the closing valve 22, and the four-way switching valve 12, and the other end is sucked into the compressor 11. And an accumulator 16 connected to the side. The compressor 11, the four-way switching valve 12, the outdoor heat exchanger 13, the electric expansion valve 14, the indoor heat exchanger 15 and the accumulator 16 constitute a refrigerant circuit. In this refrigerant circuit, a single refrigerant of R32 or a mixed refrigerant containing R32 as a main component is used.
 また、上記圧縮機11,四路切換弁12,室外熱交換器13,電動膨張弁14,アキュムレータ16,室外ファン17および加湿ユニット42で室外機1を構成し、室内熱交換器15,室内ファン18およびダクト部40で室内機2を構成している。 The compressor 11, the four-way switching valve 12, the outdoor heat exchanger 13, the electric expansion valve 14, the accumulator 16, the outdoor fan 17 and the humidifying unit 42 constitute the outdoor unit 1, and the indoor heat exchanger 15 and the indoor fan. The indoor unit 2 is configured by the duct 18 and the duct unit 40.
 また、室内機2は、室外からの加湿空気を室内に供給するためのダクト部40を備え、室外機1の加湿ユニット42に加湿ホース41の一端を接続し、その加湿ホース41の他端を室内機2のダクト部40のホース接続部40bに接続している。 The indoor unit 2 includes a duct portion 40 for supplying humidified air from the outside to the room. One end of the humidifying hose 41 is connected to the humidifying unit 42 of the outdoor unit 1, and the other end of the humidifying hose 41 is connected to the humidifying unit 42. It connects with the hose connection part 40b of the duct part 40 of the indoor unit 2.
 また、上記室外機1は、圧縮機11や室外ファン17を制御する室外制御装置100を備えている。また、室内機2は、リモートコントローラ,室内温度センサ(図示せず)などに基づいて室内ファン18などを制御する制御装置の一例としての室内制御装置200を備えている。 The outdoor unit 1 includes an outdoor control device 100 that controls the compressor 11 and the outdoor fan 17. The indoor unit 2 includes an indoor control device 200 as an example of a control device that controls the indoor fan 18 and the like based on a remote controller, an indoor temperature sensor (not shown), and the like.
 上記構成の空気調和機において、暖房運転時、四路切換弁12を実線の切換え位置に切り換えて、圧縮機11を起動すると、圧縮機11から吐出された高圧冷媒が四路切換弁12を通って室内熱交換器15に入る。そして、上記室内熱交換器15で凝縮した冷媒は、電動膨張弁14で減圧された後に室外熱交換器13に入る。上記室外熱交換器13で蒸発した冷媒が四路切換弁12およびアキュムレータ16を介して圧縮機11の吸入側に戻る。こうして、上記圧縮機11,室内熱交換器15,電動膨張弁14,室外熱交換器13およびアキュムレータ16で構成された冷媒回路を冷媒が循環して、冷凍サイクルを実行する。そして、室内ファン18により室内熱交換器15を介して室内空気を循環させることにより室内を暖房する。 In the air conditioner configured as described above, when the four-way switching valve 12 is switched to the solid line switching position and the compressor 11 is started during heating operation, the high-pressure refrigerant discharged from the compressor 11 passes through the four-way switching valve 12. And enters the indoor heat exchanger 15. The refrigerant condensed in the indoor heat exchanger 15 enters the outdoor heat exchanger 13 after being depressurized by the electric expansion valve 14. The refrigerant evaporated in the outdoor heat exchanger 13 returns to the suction side of the compressor 11 through the four-way switching valve 12 and the accumulator 16. In this way, the refrigerant circulates through the refrigerant circuit constituted by the compressor 11, the indoor heat exchanger 15, the electric expansion valve 14, the outdoor heat exchanger 13 and the accumulator 16, thereby executing a refrigeration cycle. Then, the indoor fan 18 heats the room by circulating the room air through the indoor heat exchanger 15.
 これに対して、冷房運転時は、四路切換弁12を点線の切換え位置に切り換えて、圧縮機11,室外熱交換器13,電動膨張弁14,室内熱交換器15およびアキュムレータ16の順に冷媒が循環する冷凍サイクルを実行する。 On the other hand, during the cooling operation, the four-way switching valve 12 is switched to the dotted line switching position, and the refrigerant in the order of the compressor 11, the outdoor heat exchanger 13, the electric expansion valve 14, the indoor heat exchanger 15, and the accumulator 16. Execute a refrigeration cycle in which
 そして、暖房運転時等において室内が乾燥する場合、加湿ユニット42からの加湿空気を加湿ホース41とダクト部40を介して室内に供給する。この加湿ユニット42は、ゼオライト等の吸着材を用いて室外空気から水分を吸着し、その吸着剤に吸着した水分により室外空気を加湿した後、加湿された室外空気を室内機2に供給するものである。なお、加湿ユニットの構成はこれに限らず、水道などの給水手段により補給される水を用いて、加湿された空気を室内機に供給する加湿ユニットなどでもよい。 When the room is dried during heating operation or the like, humidified air from the humidifying unit 42 is supplied to the room through the humidifying hose 41 and the duct unit 40. The humidifying unit 42 adsorbs moisture from the outdoor air using an adsorbent such as zeolite, humidifies the outdoor air with the moisture adsorbed on the adsorbent, and then supplies the humidified outdoor air to the indoor unit 2. It is. Note that the configuration of the humidifying unit is not limited to this, and a humidifying unit that supplies humidified air to the indoor unit using water replenished by water supply means such as tap water may be used.
 図2は上記空気調和機の室内機2の斜視図を示している。 FIG. 2 is a perspective view of the indoor unit 2 of the air conditioner.
 この空気調和機の室内機2は、図2に示すように、室内の壁面に後面側が取り付けられる略長方形状の底フレーム31と、上記底フレーム31の前面側に取り付けられ、前面に略長方形状の開口部(図示せず)を有する前面グリル32と、前面グリル32の開口部を覆うように取り付けられた吸込パネル33とを備えている。上記底フレーム31と前面グリル32で本体ケーシングを構成している。 As shown in FIG. 2, the indoor unit 2 of this air conditioner is attached to a substantially rectangular bottom frame 31 whose rear side is attached to an indoor wall surface, and to the front side of the bottom frame 31, and is substantially rectangular on the front side. A front grill 32 having an opening (not shown), and a suction panel 33 attached to cover the opening of the front grill 32. The bottom frame 31 and the front grill 32 constitute a main body casing.
 上記前面グリル32の上部に上側吹出口32aを設けると共に、前面グリル32の下部に下側吹出口32bを設けている。上記前面グリル32の上側吹出口32aに風向制御部の一例としてのフラップ34を設けている。このフラップ34は、冷房運転および暖房運転時に回動して、上側吹出口32aから冷風,温風を前方かつ斜め上方に吹き出し、運転停止時に上側吹出口32aを覆う。 An upper air outlet 32 a is provided at the upper part of the front grill 32, and a lower air outlet 32 b is provided at the lower part of the front grill 32. A flap 34 as an example of a wind direction control unit is provided at the upper outlet 32 a of the front grill 32. The flap 34 rotates during the cooling operation and the heating operation, blows cool air and warm air forward and obliquely upward from the upper air outlet 32a, and covers the upper air outlet 32a when the operation is stopped.
 また、上記吸込パネル33の上側に上側吸込口33aを設け、吸込パネル33の下側に下側吸込口33bを設け、さらに吸込パネル33の左右の側面に側方吸込口33c(図2では右側のみを示す)を設けている。 Further, an upper suction port 33a is provided on the upper side of the suction panel 33, a lower suction port 33b is provided on the lower side of the suction panel 33, and a side suction port 33c (right side in FIG. Only shown).
 図3は上記空気調和機の室内機2の吸込パネル33と前面グリル32を外した状態の正面図を示している。図3において、図2に示す室内機2と同一の構成部には同一参照番号を付している。 FIG. 3 shows a front view of the air conditioner indoor unit 2 with the suction panel 33 and the front grill 32 removed. 3, the same components as those of the indoor unit 2 shown in FIG.
 図3に示すように、底フレーム31の前面側に略平面形状の室内熱交換器15が配置され、その裏面側に送風ファンの一例としての室内ファン18を配置している。この室内ファン18は、前面側から空気を吸い込んで半径方向外向に吹き出すターボファンである。上記底フレーム31の左側面近傍かつ下側に、室内側開口部40aを有するダクト部40を配置している。 As shown in FIG. 3, a substantially planar indoor heat exchanger 15 is disposed on the front side of the bottom frame 31, and an indoor fan 18 as an example of a blower fan is disposed on the back side thereof. The indoor fan 18 is a turbo fan that sucks air from the front side and blows it outward in the radial direction. A duct portion 40 having an indoor side opening 40a is disposed near and below the left side surface of the bottom frame 31.
 また、上記底フレーム31の右側面近傍に、連絡配管L1,L2(図1に示す)が接続される配管接続部(図示せず)を設けている。この連絡配管L1,L2は、底フレーム31の左側面近傍かつ下側に背面側から加湿ホース41(図1に示す)と共に入り、底フレーム31内の下側を図3の左から右に向かって導かれて配管接続部に接続される。 Further, a pipe connection portion (not shown) to which connecting pipes L1 and L2 (shown in FIG. 1) are connected is provided in the vicinity of the right side surface of the bottom frame 31. The connecting pipes L1 and L2 enter the vicinity of the left side of the bottom frame 31 and the lower side thereof together with the humidifying hose 41 (shown in FIG. 1) from the back side, and the lower side of the bottom frame 31 faces from the left to the right in FIG. To be connected to the pipe connection.
 また、本体ケーシング内の底フレーム31側かつ右側面近傍に、R32冷媒の漏洩を検出するための冷媒センサ60を配置している。 Further, a refrigerant sensor 60 for detecting the leakage of the R32 refrigerant is disposed on the bottom frame 31 side and in the vicinity of the right side surface in the main body casing.
 図4は図3のIV-IV線から見た断面図を示している。図4において、図2に示す室内機2と同一の構成部には同一参照番号を付している。 FIG. 4 shows a cross-sectional view taken along line IV-IV in FIG. 4, the same reference numerals are assigned to the same components as those of the indoor unit 2 shown in FIG.
 図4に示すように、底フレーム31の略中央にファンモータ26を固定している。このファンモータ26の軸が接続された室内ファン18を、軸が前後方向になるように底フレーム31に配置している。上記室内ファン18は、前面側から吸い込んだ空気を軸に対して半径方向外向に吹き出すターボファンである。また、上記底フレーム31に室内ファン18の前面側にベルマウス27を設けている。そして、上記ベルマウス27の前面側に室内熱交換器15を配置し、その室内熱交換器15の前面側に前面グリル32を取り付け、その前面グリル32の前面側に吸込パネル33を取り付けている。上記前面グリル32の開口部にフィルタ(図示せず)を取り付けている。また、上記ベルマウス27の下部かつ室内熱交換器15の下側には、ドレンパン28を配置している。 As shown in FIG. 4, the fan motor 26 is fixed at the approximate center of the bottom frame 31. The indoor fan 18 to which the shaft of the fan motor 26 is connected is disposed on the bottom frame 31 so that the shaft is in the front-rear direction. The indoor fan 18 is a turbo fan that blows air sucked from the front side outward in the radial direction with respect to the shaft. A bell mouth 27 is provided on the bottom frame 31 on the front side of the indoor fan 18. The indoor heat exchanger 15 is arranged on the front side of the bell mouth 27, the front grill 32 is attached to the front side of the indoor heat exchanger 15, and the suction panel 33 is attached to the front side of the front grill 32. . A filter (not shown) is attached to the opening of the front grill 32. A drain pan 28 is disposed below the bell mouth 27 and below the indoor heat exchanger 15.
 また、前面グリル32の下側の吹き出し通路内に下側吹出口32bを開閉する風向制御部の一例としてのシャッタ50を配置している。このシャッタ50は、底フレーム31側に設けられた軸50aを中心にシャッタ駆動部51(図6に示す)により回動し、下側の吹き出し通路を全開状態または全閉状態にする。 Further, a shutter 50 as an example of a wind direction control unit that opens and closes the lower air outlet 32b is disposed in the blowout passage below the front grill 32. The shutter 50 is rotated about a shaft 50a provided on the bottom frame 31 side by a shutter driving unit 51 (shown in FIG. 6), and the lower blowing passage is fully opened or fully closed.
 上記空気調和機の室内機2では、暖房運転時に、上側吹出口32aと下側吹出口32bの両方から温風を吹き出す二方吹き制御と、下側吹出口32bをシャッタ50により閉じて、上側吹出口32aの一方からのみ温風を吹き出す一方吹き制御がある。また、冷房運転時は、上側吹出口32aの一方からのみ冷風を吹き出す。 In the indoor unit 2 of the air conditioner, during the heating operation, the two-way blow control for blowing warm air from both the upper air outlet 32a and the lower air outlet 32b, and the lower air outlet 32b are closed by the shutter 50, There is one blow control that blows warm air from only one of the blow outlets 32a. Further, during cooling operation, cool air is blown out only from one of the upper air outlets 32a.
 また、図5は図3のV-V線から見た断面図を示しており、図5において、図4に示す室内機2と同一の構成部には同一参照番号を付している。なお、図5では、吸込パネル33と前面グリル32を外した状態を示している。 FIG. 5 is a cross-sectional view taken along line VV in FIG. 3. In FIG. 5, the same reference numerals are given to the same components as the indoor unit 2 shown in FIG. FIG. 5 shows a state where the suction panel 33 and the front grill 32 are removed.
 図5に示すように、本体ケーシング(底フレーム31と前面グリル32で構成)内の底フレーム31側かつ下側に冷媒センサ60を配置している。この冷媒センサ60は、半導体をヒータで加熱する方式のセンサである。 As shown in FIG. 5, a refrigerant sensor 60 is arranged on the bottom frame 31 side and below in the main body casing (configured by the bottom frame 31 and the front grill 32). The refrigerant sensor 60 is a sensor that heats a semiconductor with a heater.
 図6は上記空気調和機の室内機2の制御ブロック図を示しており、この室内機2は、マイクロコンピュータと入出力回路などからなる室内制御装置200を有している。 FIG. 6 is a control block diagram of the indoor unit 2 of the air conditioner, and the indoor unit 2 has an indoor control device 200 including a microcomputer and an input / output circuit.
 上記室内制御装置200は、冷媒漏洩判定部200aとタイマ200bを有し、リモートコントローラ(図示せず)からの指令信号や室内温度センサ(図示せず)および冷媒センサ60などの検出信号に基づいて、室内ファン18(図4に示す)を駆動するファンモータ26とシャッタ駆動部51およびフラップ駆動部52などを制御する。このフラップ駆動部52は、フラップ34(図4に示す)を駆動する。 The indoor control device 200 includes a refrigerant leakage determination unit 200a and a timer 200b, and is based on command signals from a remote controller (not shown), detection signals from an indoor temperature sensor (not shown), the refrigerant sensor 60, and the like. The fan motor 26 that drives the indoor fan 18 (shown in FIG. 4), the shutter drive unit 51, the flap drive unit 52, and the like are controlled. The flap drive unit 52 drives the flap 34 (shown in FIG. 4).
 次に、上記室内機2の室内制御装置200の冷媒漏洩時の動作を図7,図8フローチャートを用いて説明する。 Next, the operation of the indoor control device 200 of the indoor unit 2 when the refrigerant leaks will be described with reference to the flowcharts of FIGS.
 まず、処理がスタートすると、図7に示すステップS1で冷媒センサ60によりR32冷媒の漏洩を検出したか否かを冷媒漏洩判定部200aにより判定する。このステップS1で冷媒センサ60によりR32冷媒の漏洩を検出したと判定すると、ステップS2に進み、冷媒センサ60によりR32冷媒の漏洩を検出していないと判定すると、ステップS1を繰り返す。 First, when the process starts, the refrigerant leakage determination unit 200a determines whether or not the refrigerant sensor 60 has detected leakage of the R32 refrigerant in step S1 shown in FIG. If it is determined in step S1 that the refrigerant sensor 60 has detected leakage of the R32 refrigerant, the process proceeds to step S2. If the refrigerant sensor 60 determines that leakage of the R32 refrigerant has not been detected, step S1 is repeated.
 次に、ステップS2で運転中か否かを判定する。すなわち、冷房運転、暖房運転などの運転中か否かを判定する。そして、ステップS2で運転中であると判定すると、ステップS3に進み、運転を停止して、ステップS4に進む。 Next, it is determined whether or not the vehicle is in operation in step S2. That is, it is determined whether or not a cooling operation or a heating operation is being performed. And if it determines with driving | running | working at step S2, it will progress to step S3, will stop driving | operation, and will progress to step S4.
 一方、ステップS2で、運転中でないすなわち運転停止中であると判定すると、ステップS4に進む。 On the other hand, if it is determined in step S2 that the vehicle is not in operation, that is, the operation is stopped, the process proceeds to step S4.
 次に、ステップS4に進み、ブザーや音声および/またはLED表示部の点滅などにより冷媒漏洩が発生したことをユーザーに報知する。 Next, the process proceeds to step S4, and the user is informed that refrigerant leakage has occurred due to a buzzer, sound, and / or blinking of the LED display.
 次に、図8に示すステップS11に進み、タイマ200bをスタートする。 Next, the process proceeds to step S11 shown in FIG. 8, and the timer 200b is started.
 次に、ステップS12に進み、室内制御装置200によりシャッタ駆動部51を制御して、シャッタ50を開いて下側吹出口32bを開状態にする。 Next, proceeding to step S12, the shutter controller 51 is controlled by the indoor control device 200 to open the shutter 50 and open the lower air outlet 32b.
 次に、ステップS13に進み、室内制御装置200によりフラップ駆動部52を制御して、フラップ34を下向きにする。 Next, proceeding to step S13, the flap controller 52 is controlled by the indoor control device 200 so that the flap 34 faces downward.
 そして、ステップS14に進み、室内制御装置200によりファンモータ26を制御して、室内ファン18を運転する。 And it progresses to step S14, the fan motor 26 is controlled by the indoor control apparatus 200, and the indoor fan 18 is drive | operated.
 次に、ステップS15に進み、タイマ200bの計時時間Tmが攪拌動作時間T1を越えたと判定すると、ステップS16に進む。この実施の形態では、攪拌動作時間T1を5分~10分に設定している。 Next, the process proceeds to step S15, and if it is determined that the time Tm of the timer 200b exceeds the stirring operation time T1, the process proceeds to step S16. In this embodiment, the stirring operation time T1 is set to 5 to 10 minutes.
 次に、ステップS16で室内制御装置200によりフラップ駆動部52を制御して、フラップ34を上下にスイング動作させる。 Next, in step S16, the flap controller 52 is controlled by the indoor control device 200 to swing the flap 34 up and down.
 次に、ステップS17に進み、タイマ200bの計時時間Tmが設定時間T2を越えたと判定するとステップS16に進む。この実施の形態では、設定時間T2を(T1+20分)に設定して、スイング動作時間を20分に設定している。 Next, the process proceeds to step S17, and if it is determined that the measured time Tm of the timer 200b exceeds the set time T2, the process proceeds to step S16. In this embodiment, the set time T2 is set to (T1 + 20 minutes), and the swing operation time is set to 20 minutes.
 次に、ステップS18に進み、室内制御装置200によりファンモータ26を制御して、室内ファン18を停止して、この処理を終了する。 Next, the process proceeds to step S18, the fan motor 26 is controlled by the indoor control device 200, the indoor fan 18 is stopped, and this process is terminated.
 図9は図3のIV-IV線から見た断面図であって、冷媒漏洩時の室内機2の攪拌動作を示している。図9に示すように、シャッタ50を開いて下側吹出口32bを開状態にすると共に、フラップ34を下向きにして、室内ファン18を運転して上側吹出口32a,下側吹出口32bからの吹出空気を室内の床側に吹き出す。 FIG. 9 is a cross-sectional view taken along line IV-IV in FIG. 3, and shows the stirring operation of the indoor unit 2 when the refrigerant leaks. As shown in FIG. 9, the shutter 50 is opened to open the lower air outlet 32b, and the flap 34 is directed downward to operate the indoor fan 18 to operate the upper air outlet 32a and the lower air outlet 32b. Blows air out to the floor side of the room.
 また、図10は床置型の室内機2が配置された室内を側面から見た模式図を示しており、フラップ34(図9に示す)を下向きにして上側吹出口32a(図9に示す)からの吹出空気を床側に吹き出すと共に、下側吹出口32b(図9に示す)からの吹出空気を床側に吹き出している。 FIG. 10 is a schematic view of a room in which the floor-mounted indoor unit 2 is arranged as viewed from the side, with the flap 34 (shown in FIG. 9) facing downward and the upper air outlet 32a (shown in FIG. 9). The air blown out from the lower air outlet 32b (shown in FIG. 9) is blown out to the floor side.
 上記構成の空気調和機の室内機によれば、運転停止状態(室内ファン18停止)において本体ケーシング(31,32)内の室内熱交換器15と冷媒配管との接続部などから可燃性冷媒が漏洩したとき、本体ケーシングに配置された冷媒センサ60により可燃性冷媒の漏洩を検出すると、冷媒漏洩を検出してから攪拌動作時間T1、室内ファン18を運転して上側吹出口32a,下側吹出口32bからの吹出空気を室内の床側に吹き出すことによって、本体ケーシングから室内の床面に流れ出した可燃性冷媒ガスを拡散させるので、漏洩した可燃性冷媒ガスが室内の床近傍に滞留してガス濃度が高くなるのを防止できる。 According to the indoor unit of the air conditioner having the above-described configuration, in the operation stop state (the indoor fan 18 is stopped), the combustible refrigerant is discharged from the connection portion between the indoor heat exchanger 15 and the refrigerant pipe in the main casing (31, 32). When leaking, if the leak of the combustible refrigerant is detected by the refrigerant sensor 60 arranged in the main body casing, the agitation operation time T1 after detecting the refrigerant leakage, the indoor fan 18 is operated, and the upper outlet 32a and the lower outlet are operated. By blowing the air blown out from the outlet 32b toward the indoor floor, the combustible refrigerant gas flowing out from the main casing to the indoor floor surface is diffused, so that the leaked combustible refrigerant gas stays near the indoor floor. It is possible to prevent the gas concentration from increasing.
 ここで、上記上側吹出口32a,下側吹出口32bからの吹出空気を室内の床側に吹き出す攪拌動作時間T1は、上記冷媒漏洩を検出してから予め決められた期間(例えば30分間)の一部である。上記予め決められた期間とは、漏洩した可燃性冷媒ガスが室内の床近傍に滞留してガス濃度が高くなる可能性のある期間である。 Here, the stirring operation time T1 for blowing the air blown out from the upper air outlet 32a and the lower air outlet 32b to the indoor floor is a predetermined period (for example, 30 minutes) after detecting the refrigerant leakage. It is a part. The predetermined period is a period in which the leaked combustible refrigerant gas may stay near the floor in the room and the gas concentration may increase.
 また、冷媒漏洩判定部200aによるR32冷媒の漏洩検出の判定は、冷媒センサ60の出力信号レベルが所定の閾値を越えたとき冷媒漏洩と判定するが、冷媒センサ60の出力信号に基づく冷媒漏洩検出の判定方法はこれに限らない。 Further, the determination of the leakage detection of the R32 refrigerant by the refrigerant leakage determination unit 200a determines that the refrigerant leaks when the output signal level of the refrigerant sensor 60 exceeds a predetermined threshold, but the refrigerant leakage detection based on the output signal of the refrigerant sensor 60 This determination method is not limited to this.
 なお、冷媒センサ60によりR32冷媒の漏洩を検出したとき、ブザーや音声および/またはLED表示部の点滅などの報知手段によりユーザーに注意喚起することにより、ユーザーに窓を開けさせて室内を換気するように促すことができる。 When the refrigerant sensor 60 detects the leakage of the R32 refrigerant, the user is alerted by a notification means such as a buzzer, sound, and / or blinking of the LED display unit, thereby allowing the user to open the window and ventilate the room. Can be encouraged.
 このように、本体ケーシング内からのR32冷媒の漏洩時に外部への漏洩出口を床面から高くして冷媒の拡散を促進することによって、R32冷媒の漏洩に伴うリスクを低減することができる。なお、R32冷媒は、室内に漏洩したときに一旦拡散すると、室内の床面側に再び集まることがなく冷媒ガス濃度が高くなることはない。 As described above, when the R32 refrigerant leaks from the inside of the main casing, the leakage outlet to the outside is raised from the floor surface to promote the diffusion of the refrigerant, thereby reducing the risk associated with the leakage of the R32 refrigerant. Note that once the R32 refrigerant diffuses when it leaks into the room, it does not collect again on the floor side of the room and the refrigerant gas concentration does not increase.
 また、上記冷媒センサ60により冷媒漏洩を検出して上側吹出口32a,下側吹出口32bから床側に吹出空気を吹き出した攪拌動作時間T1後、室内制御装置200により室内ファン18とフラップ34,シャッタ50(風向制御部)を制御して、予め設定されたスイング動作時間(T2-T1)、室内ファン18を運転しつつ上側吹出口32aからの吹出空気の風向をスイングさせる。これにより、室内に気流の乱れを生じさせて、室内の隅にできた澱んだ空間の空気を攪拌することによって、澱んだ空間に滞留した冷媒ガスも拡散させることができる。 In addition, after the refrigerant sensor 60 detects refrigerant leakage and the stirring operation time T1 when the air blown out from the upper air outlet 32a and the lower air outlet 32b to the floor side, the indoor controller 18 and the flap 34, The shutter 50 (wind direction control unit) is controlled to swing the wind direction of the air blown from the upper air outlet 32a while operating the indoor fan 18 for a preset swing operation time (T2-T1). Thereby, the airflow is disturbed in the room, and the air in the stagnant space formed in the corner of the room is stirred, so that the refrigerant gas staying in the stagnant space can also be diffused.
 なお、上記フラップ34により吹出空気の風向を上下方向にスイングするスイング動作に代えて、室内機の上側吹出口に吹出空気の風向を左右方向に制御する垂直フラップを設けて、図11に示すように、左右方向にスイング動作させてもよい。この図11は、上記床置型の室内機が配置された室内を上方から見た模式図を示している。 As shown in FIG. 11, a vertical flap for controlling the air direction of the blown air in the left-right direction is provided at the upper outlet of the indoor unit instead of the swing operation in which the airflow of the blown air is swung up and down by the flap 34. Alternatively, a swing operation may be performed in the left-right direction. FIG. 11 is a schematic view of a room in which the floor-mounted indoor unit is disposed as viewed from above.
 また、上記室内の床(または床近傍)に載置された床置型の本体ケーシングでは、冷媒漏洩箇所が室内の床面に近く、床側に冷媒ガスが滞留してガス濃度が高くなりやすいが、このような構成の本体ケーシングを備えた室内機においても、室内の床側に滞留した冷媒を強制的に拡散させて、可燃性冷媒の漏洩に伴うリスクを効果的に低減できる。 Further, in the floor-mounted main body casing placed on the indoor floor (or in the vicinity of the floor), the refrigerant leakage point is close to the indoor floor surface, and the refrigerant gas stays on the floor side, and the gas concentration tends to increase. Even in the indoor unit including the main body casing having such a configuration, it is possible to forcibly diffuse the refrigerant staying on the indoor floor side, and to effectively reduce the risk associated with the leakage of the combustible refrigerant.
 また、室内の床に近い壁面に設けられた凹部に少なくとも一部が埋め込まれるタイプ(地袋型;Jibukuro type)の本体ケーシングを備えた空気調和機の室内機にこの発明を適用してもよい。このような壁面埋め込み型の本体ケーシングを備えた空気調和機の室内機では、冷媒漏洩箇所が室内の床面に近く、床側に冷媒ガスが滞留してガス濃度が高くなりやすいが、このような構成の本体ケーシングを備えた室内機においても、室内の床側に滞留した冷媒を強制的に拡散させて、可燃性冷媒の漏洩に伴うリスクを効果的に低減できる。 Further, the present invention may be applied to an indoor unit of an air conditioner including a main body casing of a type (ground bag type; Jibukuro type) in which at least a part is embedded in a concave portion provided on a wall surface close to a floor in the room. . In an indoor unit of an air conditioner equipped with such a wall-embedded main body casing, the refrigerant leak location is close to the floor surface in the room, and the refrigerant gas stays on the floor side, and the gas concentration tends to increase. Even in an indoor unit equipped with a main body casing having such a configuration, the refrigerant accumulated on the indoor floor side can be forcibly diffused to effectively reduce the risk associated with the leakage of combustible refrigerant.
 また、上記可燃性冷媒として、微燃性のR32からなる単一冷媒またはR32を主成分とする混合冷媒を用いることによって、R32はオゾン破壊係数や地球温暖化係数GWPが低いので、地球温暖化への影響を抑えることができると共に、成績係数COP(Coefficient Of Performance)が向上してエネルギー消費を低減することができる。 In addition, by using a single refrigerant composed of slightly flammable R32 or a mixed refrigerant mainly composed of R32 as the flammable refrigerant, R32 has a low ozone destruction coefficient and a global warming coefficient GWP. In addition, the coefficient of performance COP (CoefficientCoOf Performance) can be improved and energy consumption can be reduced.
 また、冷媒センサ60によりR32冷媒の漏洩を検出したとき、加湿ユニット42から加湿ホース41を介して供給された室外空気を室内機2のダクト部40から室内に導入するようにしてもよい。この場合、室外空気で室内の冷媒濃度を薄めることができ、可燃性冷媒の漏洩に伴うリスクを迅速に低減することができる。 Further, when the leakage of the R32 refrigerant is detected by the refrigerant sensor 60, the outdoor air supplied from the humidification unit 42 via the humidification hose 41 may be introduced into the room from the duct portion 40 of the indoor unit 2. In this case, the indoor refrigerant concentration can be reduced by the outdoor air, and the risk associated with the leakage of the combustible refrigerant can be quickly reduced.
 上記実施の形態では、可燃性冷媒として、微燃性のR32の単一冷媒またはR32を主成分とする混合冷媒を用いたが、これに限らず、他の可燃性冷媒を用いた空気調和機の室内機にこの発明を適用してもよい。 In the above embodiment, a slightly flammable R32 single refrigerant or a mixed refrigerant mainly composed of R32 is used as the flammable refrigerant. However, the present invention is not limited to this, and an air conditioner using other flammable refrigerants. The present invention may be applied to other indoor units.
 また、上記実施の形態では、床置型の本体ケーシングを備えた空気調和機の室内機2について説明したが、壁掛型の本体ケーシングを備えた空気調和機の室内機にこの発明を適用してもよい。図12は、この発明を適用した壁掛型の室内機300が配置された室内を側面から見た模式図を示しており、図12に示すように、壁掛型の室内機300は、冷媒センサによる冷媒漏洩の検出時に送風ファンを運転しつつ吹出口からの吹出空気を室内の床側に吹き出す。その後、予め設定されたスイング動作時間、送風ファンを運転しつつ吹出口からの吹出空気の風向を上下方向にスイングさせる。 In the above-described embodiment, the air conditioner indoor unit 2 including a floor-mounted main body casing has been described. However, the present invention may be applied to an air conditioner indoor unit including a wall-mounted main body casing. Good. FIG. 12 is a schematic view of a room in which a wall-mounted indoor unit 300 to which the present invention is applied is viewed from the side. As shown in FIG. 12, the wall-mounted indoor unit 300 is based on a refrigerant sensor. When the refrigerant leakage is detected, the blown air is blown out to the indoor floor side while operating the blower fan. Thereafter, the wind direction of the air blown from the outlet is swung in the vertical direction while operating the blower fan for a preset swing operation time.
 なお、上記水平フラップにより吹出空気の風向を上下方向にスイングするスイング動作に代えて、壁掛型の室内機300の吹出口に吹出空気の風向を左右方向に制御する垂直フラップを設けて、図11に示すように、左右方向にスイング動作させてもよい。この図13は、上記壁掛型の室内機300が配置された室内を上方から見た模式図を示している。 In addition, instead of the swing operation in which the air direction of the blown air is swung in the vertical direction by the horizontal flap, a vertical flap for controlling the air direction of the blown air in the left-right direction is provided at the outlet of the wall-mounted indoor unit 300. As shown in FIG. 4, the swing operation may be performed in the left-right direction. FIG. 13 is a schematic view of a room in which the wall-mounted indoor unit 300 is disposed as viewed from above.
 また、上記実施の形態では、給気加湿機能を備えた空気調和機の室内機2について説明したが、これに限らず、給気加湿機能を備えていない空気調和機の室内機にこの発明を適用してもよく、また、給気機能または排気機能の少なくとも一方を備えた空気調和機の室内機にこの発明を適用してもよい。 Moreover, although the said embodiment demonstrated the indoor unit 2 of the air conditioner provided with the air supply humidification function, this invention is not limited to this but this invention is applied to the indoor unit of the air conditioner not provided with the air supply humidification function. The present invention may be applied to an indoor unit of an air conditioner having at least one of an air supply function and an exhaust function.
 この発明の具体的な実施の形態について説明したが、この発明は上記実施の形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。 Although specific embodiments of the present invention have been described, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention.
 1…室外機
 2…室内機
 11…圧縮機
 12…四路切換弁
 13…室外熱交換器
 14…電動膨張弁
 15…室内熱交換器
 16…アキュムレータ
 17…室外ファン
 18…室内ファン
 21,22…閉鎖弁
 26…ファンモータ
 27…ベルマウス
 28…ドレンパン
 31…底フレーム
 32…前面グリル
 32a…上側吹出口
 32b…下側吹出口
 33…吸込パネル
 33a…上側吸込口
 33b…下側吸込口
 33c…側方吸込口
 34…フラップ
 40…ダクト部
 40a…室内側開口部
 40b…ホース接続部
 41…加湿ホース
 42…加湿ユニット
 50…シャッタ
 51…シャッタ駆動部
 52…フラップ駆動部
 60…冷媒センサ
 100…室外制御装置
 200…室内制御装置
 200a…冷媒漏洩判定部
 200b…タイマ
 L1,L2…連絡配管
DESCRIPTION OF SYMBOLS 1 ... Outdoor unit 2 ... Indoor unit 11 ... Compressor 12 ... Four-way switching valve 13 ... Outdoor heat exchanger 14 ... Electric expansion valve 15 ... Indoor heat exchanger 16 ... Accumulator 17 ... Outdoor fan 18 ... Indoor fan 21,22 ... Shut-off valve 26 ... Fan motor 27 ... Bell mouth 28 ... Drain pan 31 ... Bottom frame 32 ... Front grill 32a ... Upper outlet 32b ... Lower outlet 33 ... Suction panel 33a ... Upper inlet 33b ... Lower inlet 33c ... Side Side suction port 34 ... flap 40 ... duct part 40a ... indoor side opening 40b ... hose connection part 41 ... humidification hose 42 ... humidification unit 50 ... shutter 51 ... shutter drive part 52 ... flap drive part 60 ... refrigerant sensor 100 ... outdoor control Device 200 ... Indoor control device 200a ... Refrigerant leakage determination unit 200b ... Timer L1, L2 ... Communication piping

Claims (5)

  1.  本体ケーシング(31,32)と、
     上記本体ケーシング(31,32)内に配置され、可燃性冷媒が流れる室内熱交換器(15)と、
     上記本体ケーシング(31,32)内に配置され、上記室内熱交換器(15)を介して吸い込んで上記本体ケーシング(31,32)に設けられた吹出口(32a,32b)から空気を吹き出す送風ファン(18)と、
     上記本体ケーシング(31,32)内に配置され、上記可燃性冷媒の漏洩を検出するための冷媒センサ(60)と、
     上記吹出口(32a,32b)からの吹出空気の風向を制御する風向制御部(34,50)と、
     上記送風ファン(18)と上記風向制御部(34,50)を制御する制御装置(200)と
    を備え、
     上記制御装置(200)は、上記冷媒センサ(60)により冷媒漏洩を検出した場合、予め設定された攪拌動作時間、上記送風ファン(18)を運転して上記吹出口(32a,32b)からの吹出空気を室内の床側に吹き出すことを特徴とする空気調和機の室内機。
    A body casing (31, 32);
    An indoor heat exchanger (15) disposed in the main casing (31, 32) and through which a flammable refrigerant flows;
    A blower that is arranged in the main casing (31, 32), sucks in through the indoor heat exchanger (15), and blows out air from the outlets (32a, 32b) provided in the main casing (31, 32). With fan (18),
    A refrigerant sensor (60) disposed in the main casing (31, 32) for detecting leakage of the combustible refrigerant;
    A wind direction controller (34, 50) for controlling the wind direction of the air blown from the air outlets (32a, 32b);
    A control device (200) for controlling the blower fan (18) and the wind direction control unit (34, 50);
    When the refrigerant sensor (60) detects a refrigerant leak, the control device (200) operates the blower fan (18) for a preset stirring operation time and outputs from the outlets (32a, 32b). An indoor unit of an air conditioner characterized in that blown air is blown out to a floor in the room.
  2.  請求項1に記載の空気調和機の室内機において、
     上記制御装置(200)は、上記送風ファン(18)と上記風向制御部(34,50)を制御して、上記冷媒センサ(60)により冷媒漏洩を検出して上記吹出口(32a,32b)から床側に吹出空気を上記攪拌動作時間吹き出した後、予め設定されたスイング動作時間、上記送風ファン(18)を運転しつつ上記吹出口(32a)からの吹出空気の風向をスイングさせることを特徴とする空気調和機の室内機。
    In the indoor unit of the air conditioner according to claim 1,
    The control device (200) controls the blower fan (18) and the wind direction controller (34, 50), detects refrigerant leakage by the refrigerant sensor (60), and detects the air outlets (32a, 32b). After blowing out the blown air to the floor side from the above-mentioned stirring operation time, swinging the wind direction of the blown air from the blowout port (32a) while operating the blower fan (18) for a preset swing operation time. An air conditioner indoor unit.
  3.  請求項1または2に記載の空気調和機の室内機において、
     上記本体ケーシング(31,32)は、床置型であることを特徴とする空気調和機の室内機。
    In the indoor unit of the air conditioner according to claim 1 or 2,
    The main body casing (31, 32) is a floor-standing type indoor unit of an air conditioner.
  4.  請求項1または2に記載の空気調和機の室内機において、
     上記本体ケーシングは、壁面に設けられた凹部に少なくとも一部が埋め込まれることを特徴とする空気調和機の室内機。
    In the indoor unit of the air conditioner according to claim 1 or 2,
    The indoor unit of an air conditioner, wherein the main casing is at least partially embedded in a recess provided on a wall surface.
  5.  請求項1から4までのいずれか1つに記載の空気調和機の室内機において、
     上記可燃性冷媒として、R32からなる単一冷媒またはR32を主成分とする混合冷媒を用いたことを特徴とする空気調和機の室内機。
    In the indoor unit of the air conditioner according to any one of claims 1 to 4,
    An indoor unit of an air conditioner, wherein a single refrigerant composed of R32 or a mixed refrigerant composed mainly of R32 is used as the combustible refrigerant.
PCT/JP2014/077421 2013-11-14 2014-10-15 Indoor unit for air conditioner WO2015072270A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480061607.9A CN105723161B (en) 2013-11-14 2014-10-15 The indoor unit of air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013235746A JP5804027B2 (en) 2013-11-14 2013-11-14 Air conditioner indoor unit
JP2013-235746 2013-11-14

Publications (1)

Publication Number Publication Date
WO2015072270A1 true WO2015072270A1 (en) 2015-05-21

Family

ID=53057212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077421 WO2015072270A1 (en) 2013-11-14 2014-10-15 Indoor unit for air conditioner

Country Status (3)

Country Link
JP (1) JP5804027B2 (en)
CN (1) CN105723161B (en)
WO (1) WO2015072270A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106196536A (en) * 2015-07-14 2016-12-07 威能集团股份有限公司 Possesses the air duct blow equipment of ventilation closing organ
EP3318823A4 (en) * 2015-06-30 2019-03-20 Mitsubishi Electric Corporation Refrigeration cycle system
EP3428555A4 (en) * 2016-03-10 2019-03-20 Mitsubishi Electric Corporation Refrigeration cycle device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5939292B2 (en) * 2014-10-31 2016-06-22 ダイキン工業株式会社 Air conditioner
JP6222252B2 (en) * 2015-03-30 2017-11-01 ダイキン工業株式会社 Air conditioner indoor unit
EP3150943B1 (en) * 2015-07-17 2019-03-27 Mitsubishi Electric Corporation Air conditioning apparatus including indoor unit and outdoor unit
JP2017040381A (en) * 2015-08-17 2017-02-23 ダイキン工業株式会社 Air-conditioning indoor unit
JP6613734B2 (en) * 2015-09-04 2019-12-04 ダイキン工業株式会社 Air conditioning system
CN209101501U (en) * 2016-03-28 2019-07-12 三菱电机株式会社 The indoor unit of air conditioner
WO2017175300A1 (en) * 2016-04-05 2017-10-12 三菱電機株式会社 Air conditioner
WO2017183104A1 (en) * 2016-04-19 2017-10-26 三菱電機株式会社 Air conditioner
EP3457043B1 (en) * 2016-05-13 2021-09-08 Mitsubishi Electric Corporation Air conditioner
WO2017199340A1 (en) 2016-05-17 2017-11-23 三菱電機株式会社 Air conditioner
AU2017413868B2 (en) * 2017-05-09 2020-11-26 Mitsubishi Electric Corporation Air-conditioning system and refrigerant-amount setting method for the same
JP6869213B2 (en) * 2018-08-31 2021-05-12 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP6869212B2 (en) * 2018-08-31 2021-05-12 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP7243132B2 (en) * 2018-11-02 2023-03-22 三菱電機株式会社 heat pump equipment
CN111189250B (en) * 2018-11-15 2021-05-25 青岛海尔空调器有限总公司 Refrigerating equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1137619A (en) * 1997-07-16 1999-02-12 Daikin Ind Ltd Air conditioner employing natural coolant
JP2000081258A (en) * 1998-07-01 2000-03-21 Daikin Ind Ltd Refrigerating device and refrigerant leakage detecting method
JP2000234797A (en) * 1999-02-12 2000-08-29 Matsushita Electric Ind Co Ltd Indoor unit of refrigeration cycle device, and its installation method
JP2001012763A (en) * 1999-07-01 2001-01-19 Matsushita Electric Ind Co Ltd Air-conditioning and ventilating system
JP2002098393A (en) * 2000-09-26 2002-04-05 Daikin Ind Ltd Air conditioner
JP2008256324A (en) * 2007-04-09 2008-10-23 Daikin Ind Ltd Indoor unit of air conditioner
US20130213068A1 (en) * 2012-02-21 2013-08-22 Rakesh Goel Safe operation of space conditioning systems using flammable refrigerants

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020067525A (en) * 2000-09-26 2002-08-22 다이킨 고교 가부시키가이샤 Air conditioner
JP2008025632A (en) * 2006-07-18 2008-02-07 Inax Corp Combination faucet
CN101968241A (en) * 2010-09-30 2011-02-09 广东美的电器股份有限公司 Air-conditioner using combustible refrigerant and control method thereof
CN102679506A (en) * 2011-03-11 2012-09-19 上海日立电器有限公司 Leakage processing device for flammable refrigerant in air-conditioning system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1137619A (en) * 1997-07-16 1999-02-12 Daikin Ind Ltd Air conditioner employing natural coolant
JP2000081258A (en) * 1998-07-01 2000-03-21 Daikin Ind Ltd Refrigerating device and refrigerant leakage detecting method
JP2000234797A (en) * 1999-02-12 2000-08-29 Matsushita Electric Ind Co Ltd Indoor unit of refrigeration cycle device, and its installation method
JP2001012763A (en) * 1999-07-01 2001-01-19 Matsushita Electric Ind Co Ltd Air-conditioning and ventilating system
JP2002098393A (en) * 2000-09-26 2002-04-05 Daikin Ind Ltd Air conditioner
JP2008256324A (en) * 2007-04-09 2008-10-23 Daikin Ind Ltd Indoor unit of air conditioner
US20130213068A1 (en) * 2012-02-21 2013-08-22 Rakesh Goel Safe operation of space conditioning systems using flammable refrigerants

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3318823A4 (en) * 2015-06-30 2019-03-20 Mitsubishi Electric Corporation Refrigeration cycle system
CN106196536A (en) * 2015-07-14 2016-12-07 威能集团股份有限公司 Possesses the air duct blow equipment of ventilation closing organ
EP3118537A1 (en) * 2015-07-14 2017-01-18 Vaillant GmbH Ducted air appliance with ventilation closure means
CN106196536B (en) * 2015-07-14 2019-01-08 威能集团股份有限公司 The air duct blow equipment for having ventilation closing organ
EP3428555A4 (en) * 2016-03-10 2019-03-20 Mitsubishi Electric Corporation Refrigeration cycle device

Also Published As

Publication number Publication date
JP2015094566A (en) 2015-05-18
CN105723161B (en) 2018-07-13
JP5804027B2 (en) 2015-11-04
CN105723161A (en) 2016-06-29

Similar Documents

Publication Publication Date Title
JP5804027B2 (en) Air conditioner indoor unit
JP6519360B2 (en) Indoor unit of air conditioner
JP6876375B2 (en) Fan drive circuit of heat pump device
JP5939292B2 (en) Air conditioner
WO2009151092A1 (en) Ventilating and air-conditioning apparatus for vehicle
CN106352400A (en) Air conditioning device
JP6020534B2 (en) Air conditioner
WO2016088653A1 (en) Air conditioner
JP6519373B2 (en) Indoor unit of air conditioner
JP2015094512A (en) Indoor unit for floor-installed air conditioner
EP2169320B1 (en) Air conditioner
JP4698726B2 (en) Floor-standing air conditioner
JP2008261555A (en) Air conditioner
JP2008144999A (en) Air conditioner
CN114051574A (en) Indoor unit of air conditioner and air conditioner
JP2016070533A (en) Air conditioner
KR20130083553A (en) Air cinditioner with the function of ventilation and air conditioning method using it
KR20180035291A (en) Air conditioning system
WO2015083579A1 (en) Air conditioner
JP2004353921A (en) Air conditioner
KR20180035290A (en) Air conditioning system
KR20080095115A (en) Humidification ventilation unit and air conditioner having the same
JP2023030640A (en) air conditioner
JP6477126B2 (en) Floor-mounted air conditioning indoor unit
JP2000314537A (en) Bathroom air-conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862715

Country of ref document: EP

Kind code of ref document: A1