Nothing Special   »   [go: up one dir, main page]

WO2015064149A1 - Radiographic imaging device and information processing device - Google Patents

Radiographic imaging device and information processing device Download PDF

Info

Publication number
WO2015064149A1
WO2015064149A1 PCT/JP2014/067184 JP2014067184W WO2015064149A1 WO 2015064149 A1 WO2015064149 A1 WO 2015064149A1 JP 2014067184 W JP2014067184 W JP 2014067184W WO 2015064149 A1 WO2015064149 A1 WO 2015064149A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
radiation
photoelectric conversion
ray
irradiation
Prior art date
Application number
PCT/JP2014/067184
Other languages
French (fr)
Japanese (ja)
Inventor
廣池 太郎
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to JP2015544831A priority Critical patent/JP6425658B2/en
Publication of WO2015064149A1 publication Critical patent/WO2015064149A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis

Definitions

  • the disclosure of the present specification relates to a radiation imaging apparatus and an information processing apparatus.
  • a radiation imaging apparatus that converts radiation into an electrical signal to form a radiation image by a plurality of radiation detection elements arranged in a two-dimensional matrix is in practical use and is rapidly spreading.
  • This type of radiation imaging apparatus includes an X-ray detection apparatus (for example, FPD: Flat Panel Detector).
  • an X-ray detector is provided with a micro X-ray detector in which a solid photoelectric conversion element and a scintillator for converting X-rays into visible light are stacked in a two-dimensional matrix.
  • the irradiated X-ray is converted into an electrical signal (charge amount) according to the irradiation amount of the X-ray.
  • FPD In general, charges generated by X-ray irradiation are accumulated in the solid photoelectric conversion element by controlling a voltage applied to the solid photoelectric conversion element.
  • the charge is read from the solid photoelectric conversion element, and image data corresponding to the amount of charge accumulated in the solid photoelectric conversion element is formed.
  • the timing of X-ray irradiation and the timing of charge accumulation (photographing) by the X-ray detector are accurately synchronized due to the characteristics of the solid-state photoelectric conversion element being used. There is a need.
  • Patent Document 1 there is a technique for synchronizing the X-ray irradiation timing and the X-ray image imaging timing by mutually exchanging synchronization signals between the X-ray generator and the X-ray imaging apparatus. It is disclosed. Specifically, first, the X-ray imaging apparatus (for example, FPD) prepares for imaging by receiving an irradiation request signal from the X-ray generator. Thereafter, when the X-ray imaging apparatus starts imaging (charge accumulation starts), the X-ray imaging apparatus transmits an irradiation permission signal to the X-ray generation apparatus, and the X-ray generation apparatus transmits X-rays. Is irradiated.
  • the X-ray imaging apparatus for example, FPD
  • the X-ray imaging apparatus prepares for imaging by receiving an irradiation request signal from the X-ray generator. Thereafter, when the X-ray imaging apparatus starts imaging (charge accumulation starts), the X-ray imaging apparatus transmits an irradiation permission signal to the X
  • X-ray irradiation timing is detected by detecting a change in current generated inside the X-ray imaging apparatus when the X-ray imaging apparatus irradiates the X-ray imaging apparatus with X-rays.
  • a technique for detecting an X-ray emission timing and using this X-ray irradiation timing as a trigger to start imaging In this case, synchronous communication between the X-ray generator and the X-ray imaging apparatus is not necessarily required.
  • Patent No. 4684747 Japanese Patent Application Laid-Open No. 11-155847
  • the X-ray can be irradiated at an arbitrary timing by an operation or the like on the X-ray generator side.
  • the X-ray is irradiated during a preparation period which is a period before preparation for imaging on the X-ray imaging apparatus side or before transition to a state where the image quality is sufficiently ensured. Can occur.
  • a preparation period which is a period before preparation for imaging on the X-ray imaging apparatus side or before transition to a state where the image quality is sufficiently ensured. Can occur.
  • the state of the X-ray imaging apparatus is not stable. Therefore, an X-ray image based on X-rays irradiated during the preparation period may not be able to be used as an image suitable for diagnosis from the viewpoint of image quality.
  • a radiation imaging apparatus includes: detection means for detecting that irradiation of radiation has been started based on charges generated in a photoelectric conversion element performing photoelectric conversion; and sensitivity of the photoelectric conversion element And driving means for performing a reset operation for outputting the charge accumulated in the photoelectric conversion element to recover the radiation, wherein the driving means detects the period during which radiation irradiation is not recommended.
  • the driving means detects the period during which radiation irradiation is not recommended.
  • the photoelectric conversion element when it is detected that the irradiation of the radiation has been started by the detection means in a period when the irradiation of the radiation is recommended.
  • the reset operation is performed at a timing at which a period during which charge is accumulated in the photoelectric conversion element becomes shorter than a period during which charge is accumulated.
  • FIG. 1 is a diagram showing an example of the configuration of an X-ray imaging system.
  • the X-ray imaging system of this embodiment includes an X-ray imaging apparatus 100, an X-ray generation apparatus 200, an imaging information processing apparatus 400, a display unit 410, a storage unit 420, an operation unit 430, and an imaging table 500.
  • the X-ray generator 200 includes an X-ray control unit 210, an X-ray irradiation switch 220, and an X-ray generation unit 230.
  • the X-ray control unit 210 controls, for example, on / off of X-rays, and generation conditions of X-rays such as tube current and tube voltage.
  • the X-ray generation unit 230 has, for example, a reflective or transmissive target, and generates, for example, pulsed X-rays by colliding the target with an electron beam.
  • the X-ray generated by the X-ray generator 230 is shaped into a bundle of X-rays by the collimator of the X-ray generator 200, and the X-ray is irradiated to the subject 300 (subject) and the X-ray imaging apparatus 100.
  • the X-ray irradiation switch 220 is a switch operated when instructing the irradiation of X-rays. By operating the X-ray irradiation switch 220, X-rays can be generated at any timing.
  • the imaging table 500 has, for example, a top plate on which the subject 300 is placed, a column movably holding the X-ray generator 200, and a storage unit movably storing the X-ray imaging apparatus 100.
  • the X-ray generation unit 230 and the X-ray imaging apparatus 100 are positioned by the imaging table 500, and the positional relationship between the X-ray generation unit 230 and the subject 300 placed on the top plate can be adjusted.
  • the X-ray imaging apparatus 100 repeatedly and continuously monitors the output of the X-ray detector 110 (see FIG. 2) to detect that X-rays have been irradiated, and based on the detection result, X-rays are detected.
  • the generation timing of the X-ray by the generator 200 can be detected. Therefore, the connection between the X-ray generator 200 and the imaging information processing apparatus 400 is not necessarily required.
  • the X-ray control unit 210 and the X-ray control unit 210 communicate with the X-ray control unit 210 and the X-ray imaging apparatus 100 to generate X-rays while the X-ray detector 110 is in the accumulation state.
  • the communication with the imaging device 100 may be synchronized.
  • the detailed configuration of the X-ray imaging apparatus 100 will be described later with reference to FIG.
  • the imaging information processing apparatus 400 includes a control unit 401, a communication circuit 402, and a storage unit 403.
  • the imaging information processing apparatus 400 communicates with the X-ray imaging apparatus 100 through the communication circuit 402.
  • the control unit 401 generates and manages imaging information for performing X-ray imaging, acquires an X-ray image obtained by X-ray imaging, associates the acquired X-ray image with the imaging information, and stores it in the storage unit 403 or the like.
  • the control unit 401 is mutually connected to the display unit 410, the storage unit 420, and the operation unit 430, receives an operation input from the operation unit 430, and performs settings such as acquisition, generation, and change of imaging information.
  • the imaging information and the X-ray image are displayed on the display unit 410, and the user can confirm the X-ray image.
  • the imaging information and the X-ray image can be stored in the storage unit 420.
  • the operation unit 430 may be a general-purpose operation device such as a keyboard, a mouse device, or a touch panel, or an operation device dedicated to the imaging information processing apparatus 400.
  • the imaging information processing device 400 is a computer device, and is connected to a network 700 such as an in-hospital intranet.
  • the imaging information processing apparatus 400 transmits an X-ray image to an output destination apparatus such as the PACS 620, the viewer 630, and the printer 640 through the communication circuit 402.
  • the RIS (Radiology Information System) 610 manages requests for imaging information, transmits imaging request information to the imaging information processing apparatus 400, and manages the progress of the requested imaging.
  • the imaging information processing apparatus 400 that has received the imaging request information generates imaging information necessary for imaging, and instructs X-ray imaging.
  • the imaging information here includes the drive conditions of the X-ray imaging apparatus 100.
  • the imaging information includes the X-ray irradiation conditions of the X-ray generator 200, the image processing conditions of the X-ray image obtained by the X-ray imaging apparatus 100, cropping of the image processed X-ray image, etc.
  • An output condition may be included. Also, any combination of these may be used as the shooting information.
  • the communication circuit 402 transmits information indicating the progress to the RIS 610 according to the control of the control unit 401.
  • the imaging information processing apparatus 400 When the imaging information includes the X-ray irradiation condition, the imaging information processing apparatus 400 establishes communication with the X-ray control unit 210 and transmits the X-ray irradiation condition from the communication circuit 402 to the X-ray control unit 210. It is convenient if it makes it. When there is no communication between the imaging information processing apparatus 400 and the X-ray control unit 210, the user operates the console of the X-ray control unit 210 separately to input the X-ray generation condition.
  • a Picture Archiving and Communication Systems (PACS) 610 is an image management server that receives X-ray images and manages them together with other medical images.
  • the Viewer 630 is an apparatus that performs image processing and display control for a diagnostician such as a doctor to view a medical image.
  • the Viewer 630 can also communicate with the PACS 620 to obtain medical images.
  • the printer 640 outputs the X-ray image and the medical image from the imaging information processing apparatus 400, the PACS 620, and the viewer 630 to a recording medium such as film or paper.
  • FIG. 2 is a diagram showing an example of the configuration of the X-ray imaging apparatus 100.
  • the X-ray imaging apparatus 100 is configured as an example of a radiation imaging apparatus, and includes an X-ray detector 110, an X-ray irradiation detection unit 150, a control unit 160, a drive circuit 165, a readout circuit 170, and an image processing unit 175. And a communication circuit 180.
  • the X-ray detector 110 includes a two-dimensional imaging device 120 in which a plurality of solid-state photoelectric conversion devices are arranged in a two-dimensional matrix, and a bias power supply 140 for supplying a bias voltage to the two-dimensional imaging device 120.
  • a bias power supply 140 for supplying a bias voltage to the two-dimensional imaging device 120.
  • the X-ray irradiation detection unit (X-ray irradiation detection circuit) 150 is connected to the bias power supply 140 and detects the start of X-ray irradiation.
  • a control unit (control circuit) 160 controls various operations of the X-ray imaging apparatus 100.
  • the drive circuit 165 drives the X-ray detector 110 based on the control signal from the control unit 160.
  • the readout circuit 170 reads out image data from the X-ray detector 110.
  • the image processing unit 175 performs various types of image processing on the image data read by the reading circuit 170.
  • the communication circuit 180 is a circuit for communicating with an external photographing information processing apparatus 400 or the like.
  • an X-ray 240 generated from the X-ray generation unit 230 is irradiated to the subject 300.
  • the X-ray 240 transmitted through the subject 300 is incident on the two-dimensional imaging element 120 disposed inside the X-ray imaging apparatus 100 and is converted into an X-ray image.
  • the X-ray image is read out through the readout circuit 170 and subjected to image processing by the image processing unit 175, and then transferred as digital image data to the external imaging information processing apparatus 400 via the communication circuit 180.
  • the digital image data transferred to the photographing information processing apparatus 400 is stored in the storage unit 420 or displayed on the display unit 410.
  • Communication by the communication circuit 180 may be wired communication or wireless communication.
  • digital image data may be directly stored in the storage unit 420 without passing through the photographing information processing apparatus 400.
  • a storage unit may be provided inside the X-ray imaging apparatus 100, and the digital image data may be stored in the storage unit.
  • FIG. 3 is a view showing an example of an equivalent circuit of the X-ray detector 110. As shown in FIG. 3
  • the photoelectric conversion elements S11 to S33 generate and accumulate charges in accordance with the amount of incident X-rays.
  • the amount of transmission of the X-rays transmitted through the subject 300 differs depending on the structure, the lesion, and the like of the bone and viscera inside the subject 300.
  • the X-rays transmitted through the subject 300 have a distribution depending on the amount of transmission which differs depending on the structure, the lesion, and the like.
  • the distribution of X-rays having such a distribution is converted into a distribution of charges and accumulated in the photoelectric conversion elements S11 to S33.
  • the photoelectric conversion elements S11 to S33 various elements using amorphous silicon or polysilicon besides CCD (charge-coupled device) are known.
  • CCD charge-coupled device
  • MIS type photodiodes which are disposed on an insulating substrate such as a glass substrate and are mainly made of amorphous silicon, are used as the photoelectric conversion elements S11 to S33.
  • PIN type photodiodes may be used as the photoelectric conversion elements S11 to S33.
  • direct type conversion elements that convert radiation directly into electric charges can also be suitably used as the photoelectric conversion elements S11 to S33.
  • switch elements T11 to T33 for example, a transistor having a control terminal and two main terminals is preferably used.
  • TFTs thin film transistors
  • the lower electrode side of the photoelectric conversion elements S11 to S33 is indicated by G
  • the upper electrode side is indicated by D
  • the lower electrode is referred to as the G electrode as necessary
  • the upper electrode as the D electrode as necessary.
  • the D electrode is electrically connected to one of the two main terminals of the switch elements T11 to T33.
  • the G electrodes are electrically connected to the bias power supply 140 via a common bias line in each row.
  • a control terminal of each of the plurality of switch elements arranged in the same row is commonly connected to the drive wirings g1, g2, g3 of the row (for example, control of each of the switch elements T11 to T13 in the first row)
  • the terminal is connected to the drive wiring g1 in the first row).
  • Drive signals for controlling the conductive states of the switch elements T11 to T33 are supplied from the drive circuit 165 in row units through the drive wirings g1, g2, g3.
  • the main terminals not connected to the photoelectric conversion elements S11 to S33 are electrically connected to the signal wirings s1, s2, and s3 of the corresponding column.
  • Ru for example, among the main terminals of the switch elements T11, T21, and T31, the main terminals not connected to the photoelectric conversion elements S11, S21, and S31 in the first column are electrically connected to the signal wiring s1 in the first column.
  • the electrical signals corresponding to the charge amount stored in the photoelectric conversion elements S11 to S33 are output to the readout circuit 170 through the signal lines s1 to s3 while the switch elements T11 to T33 are in the conductive state.
  • the plurality of signal lines s1 to s3 arranged in the column direction transmit the electric signals read from the plurality of pixels in parallel to the reading circuit 170.
  • the readout circuit 170 sequentially processes the electrical signals read out in parallel, and outputs a multiplexer (not shown) as an image signal of a serial signal, and a buffer amplifier (not shown) which converts the impedance of the image signal and outputs it. including.
  • the image signal which is an analog electrical signal output from the buffer amplifier is converted by the AD converter 171 into digital image data.
  • the bias power supply 140 supplies the bias voltage Vs to the G electrodes of the photoelectric conversion elements S11 to S33 through the bias wiring, and outputs current information including a change in the amount of current supplied to the bias wiring.
  • a current-voltage conversion circuit having an operational amplifier AMP and a resistor R and an AD converter 141 for converting a converted output voltage into a digital value are used as a circuit for outputting current information. It is not limited to this.
  • a current-voltage conversion circuit using a shunt resistor may be used as a circuit that outputs current information.
  • the output voltage of the current-voltage conversion circuit may be output as it is.
  • a physical quantity corresponding to the amount of current supplied to the bias wiring may be output.
  • the current information of the bias wiring is sent to the X-ray irradiation detection unit 150.
  • the X-ray irradiation detection unit 150 detects the X-ray irradiation by capturing a change in the amount of current generated during the X-ray irradiation.
  • the bias power supply 140 also includes a refresh voltage Vr. Similarly to the bias voltage Vs, the refresh voltage Vr is also supplied to the G electrodes of the photoelectric conversion elements S11 to S33 through the bias wiring. During the refresh period of the photoelectric conversion elements S11 to S33, the refresh voltage Vr is applied to the G electrode. The voltage applied to the G electrode is controlled by the SW control circuit 142. The SW control circuit 142 controls the operation of the switch SW so that the refresh voltage Vr is applied to the G electrode in the refresh period and the bias voltage Vs is applied to the G electrode in the other periods.
  • the AD converter 141 and the SW control circuit 142 may be included in the bias power supply 140 or may be disposed independently of the bias power supply 140.
  • photoelectric conversion elements S11 to S33 There are two types of operation modes of the photoelectric conversion elements S11 to S33: a refresh mode and a photoelectric conversion mode.
  • FIG. 4 is a view schematically showing an example of a cross section of the photoelectric conversion elements S11 to S33 of the present embodiment.
  • the upper electrode 135 is formed of a transparent electrode.
  • the lower electrode 131 is formed of Al, Cr or the like.
  • the insulating layer 132 is formed of an amorphous silicon nitride film and blocks passage of both electrons and holes.
  • the intrinsic semiconductor layer 133 is formed of hydrogenated amorphous silicon, generates an electron-hole pair when X-rays are incident, and operates as a photoelectric conversion layer.
  • the impurity semiconductor layer 134 is formed of n-amorphous silicon, and operates as a hole blocking layer that blocks the injection of holes from the upper electrode 135 into the intrinsic semiconductor layer 133.
  • FIG. 5 is a diagram showing an example of energy bands of the photoelectric conversion elements S11 to S33.
  • FIG. 5A is a diagram showing energy bands of the photoelectric conversion elements S11 to S33 at the time of no bias.
  • FIG. 5B is a diagram showing an example of energy bands of the photoelectric conversion elements S11 to S33 in the photoelectric conversion mode.
  • FIG. 5C is a diagram showing an example of energy bands of the photoelectric conversion elements S11 to S33 in a saturated state.
  • FIG. 5D is a diagram showing an example of energy bands of the photoelectric conversion elements S11 to S33 in the refresh mode.
  • a bias voltage Vs is applied between the upper electrode 135 and the lower electrode 131 so that the upper electrode 135 has a positive voltage. Electrons in the intrinsic semiconductor layer 133 are swept out of the upper electrode 135 by the bias voltage Vs.
  • the impurity semiconductor layer 134 prevents the holes from being injected into the intrinsic semiconductor layer 133. Therefore, the holes can not move to the intrinsic semiconductor layer 133.
  • an operation called refresh is performed.
  • a refresh voltage Vr is applied between the upper electrode 135 and the lower electrode 131 so that the lower electrode 131 has a positive voltage.
  • the refresh mode holes accumulated at the interface between the insulating layer 132 and the intrinsic semiconductor layer 133 are swept out from the upper electrode 135, and instead, electrons are injected and accumulated at the interface of the insulating layer 132.
  • the photoelectric conversion elements S11 to S33 In order for the photoelectric conversion elements S11 to S33 to maintain the sensitivity to light, it is necessary to operate the photoelectric conversion elements S11 to S33 periodically in the refresh mode. First, refreshment is required immediately after X-rays enter the photoelectric conversion elements S11 to S33. That is, when the X-ray imaging apparatus 100 irradiates X-rays and captures an X-ray image, the X-ray imaging apparatus 100 operates the photoelectric conversion element in the refresh mode to prepare for the next imaging. It is necessary to restore the sensitivity to Further, even if the X-ray is not irradiated, charges (dark current) are randomly generated inside the photoelectric conversion elements S11 to S33 due to the influence of temperature and other factors.
  • the sensitivity to light of the photoelectric conversion elements S11 to S33 is gradually lost also by the accumulation of the charges generated at random. Therefore, it is necessary to operate the photoelectric conversion elements S11 to S33 in the refresh mode also when the X-ray non-irradiation state continues for a predetermined time or more.
  • offset correction processing is generally performed in acquiring an X-ray image.
  • the offset correction process is a process of removing various offset components which are superimposed on the X-ray image to reduce the image quality.
  • the offset correction process is performed by subtracting offset image data acquired in a state in which X-rays are not irradiated from image data acquired in a state in which X-rays are irradiated.
  • the offset component is generated mainly by the influence of temperature or fixed noise caused by residual charge remaining based on the characteristics of the phosphor or photoelectric conversion element after the previous imaging, defects inherent to the X-ray detector, or the like. There is a dark current and the like accompanying the charge. In particular, during a fixed period immediately after the refresh mode, the change of the dark current component is often unstable, and the accuracy of the offset correction process is reduced. Therefore, the image quality of the obtained image data is degraded. Therefore, it is necessary to secure a certain preparation period before performing the next imaging after performing the refresh.
  • the X-ray irradiation detection unit when the X-ray irradiation detection unit is turned off during the preparation period, the X-ray irradiation is not detected when the X-ray is accidentally irradiated during the preparation period, so the patient 300 is a subject. May cause unwanted exposure. In addition, the following problems occur.
  • the image quality of the obtained X-ray image does not reach a predetermined standard, and there is a high possibility that it can not be appropriately used for diagnosis and the like.
  • the photoelectric conversion elements S11 to S33 may be in a saturated state as shown in FIG. 5C due to the charge generated by the erroneous irradiation of the X-ray.
  • the photoelectric conversion elements S11 to S33 become saturated, the sensitivity of the pixel itself to light decreases, the saturation level to the incident X-ray (light) decreases, and the dynamic range of the X-ray image narrows, etc.
  • the image quality of the X-ray image may be significantly degraded.
  • the photoelectric conversion elements S11 to S33 are saturated, the X-ray detection sensitivity itself also decreases. For this reason, it is not possible to accurately detect normally irradiated X-rays, and there is also a possibility of repeatedly causing invalid exposure to the patient.
  • the photoelectric conversion elements S11 to S11 are more likely to be detected when X-ray irradiation is detected during the irradiation determination period than when X-ray irradiation is detected during the preparation period.
  • the period (accumulation period) for accumulating charges in S33 is shortened.
  • the accumulation period when X-ray irradiation is detected during the preparation period is preferably as close to 0 (zero) as possible.
  • the fixed period after the refresh operation is the first period (the preparation period for receiving the irradiation of the X-ray in the two-dimensional imaging device 120) during which the irradiation of the X-ray is not recommended.
  • This is a second period (irradiation determination period) in which irradiation of a line is recommended.
  • a preparation period a period until the state of the X-ray imaging apparatus 100 is stabilized or a period until the state of the X-ray imaging apparatus 100 is assumed to be stable.
  • the state of the X-ray imaging apparatus 100 is stabilized by the preparation of imaging at the X-ray imaging apparatus 100 side and the state of the X-ray imaging apparatus 100 transitioning to a state where the image quality of the X-ray image is sufficiently ensured. become.
  • the irradiation determination period refers to a period during which X-ray irradiation is recommended.
  • an X-ray image having a desired image quality can be obtained (or a desired image quality can be obtained if X-ray irradiation is detected during a period after the preparation period ends as an irradiation determination period and X-ray irradiation is detected during this period. It is assumed that an X-ray image can be obtained.
  • the control unit 160 determines the start and end of the preparation period. In response to the end of the preparation period, the control unit 160 causes the communication circuit 180 to transmit a signal indicating that the preparation period has ended to the imaging information processing apparatus 400.
  • the control unit 401 of the imaging information processing apparatus 400 having received such a signal indicates that the display of the state of the X-ray imaging apparatus 100 displayed on the display unit 410 is in the preparation completion state from the display indicating the unprepared state. Change to display.
  • the indication indicating the ready state is a indication indicating that the X-ray detector 110 is ready to receive X-ray irradiation.
  • the imaging information processing apparatus 400 When the X-ray imaging apparatus 100 transmits such a signal, when the imaging information processing apparatus 400 receives it, or when such a display is performed, a first period during which X-ray irradiation is not recommended and an X-ray You may switch with the 2nd period when irradiation is not recommended.
  • the start and end of the preparation period may be determined by the control unit 401 of the imaging information processing apparatus 403.
  • the control unit 160 of the X-ray imaging apparatus 100 outputs, for example, a signal indicating the start of the preparation period.
  • the control unit 401 of the imaging information processing apparatus 403 displays that the status display of the X-ray imaging apparatus 100 displayed on the display unit 410 is not ready in response to the elapse of a predetermined period from the reception of the signal. Is changed to a display indicating that the preparation is completed.
  • reception of the status signal from the X-ray imaging apparatus 100 becomes unnecessary except in the case where a problem occurs. .
  • control unit 401 causes a state display of the X-ray imaging apparatus 100 displayed on the display unit 410 to be in the preparation complete state from the display indicating the unprepared state in response to the passage of a predetermined period from the instruction. Change to a display that indicates that there is.
  • FIG. 6 is a timing chart showing an example of drive timing of the X-ray detector 110. As shown in FIG. FIG. 6 shows the drive timing of the X-ray detector 110 from the middle of the irradiation detection drive (blank read drive).
  • the blank read drive is performed to remove the charge due to the dark current generated in the photoelectric conversion elements S11 to S33.
  • the blank reading drive is repeated at a constant cycle until X-ray irradiation is detected. During this time, the voltage Vb of the bias line is always kept at the bias voltage Vs.
  • X-ray irradiation start is observed by observing changes in current during blank reading. Can be detected.
  • the current information of the bias wiring is input to the X-ray irradiation detection unit 150, and the start of the X-ray irradiation is detected.
  • the X-ray irradiation detection unit 150 can determine, for example, whether or not the peak value of the current flowing through the bias wiring exceeds a predetermined threshold, and can detect the start of X-ray irradiation if it exceeds.
  • the X-ray irradiation detection unit 150 performs time integration of the current flowing through the bias wiring, and determines whether the integral value (total amount of charge) exceeds a predetermined threshold value. The start can be detected.
  • the blank reading drive is stopped at that point (in FIG. 6, the X-ray irradiation start is detected in the i-th row), and the operation shifts to an operation of accumulating charge.
  • all the switch elements T11 to T33 are turned off.
  • the refresh operation is continued.
  • the refresh operation is performed by setting the voltage Vb of the bias line to the refresh voltage Vr.
  • the refresh may be simultaneously performed on the photoelectric conversion elements S11 to S33 of all the lines, or the refresh may be performed in order.
  • a plurality of two-dimensional matrix pixels may be divided into several blocks, and the refresh operation may be performed for each block.
  • blank reading is performed as a preparation period during which X-ray irradiation is not recommended for a certain period after the refresh operation.
  • the blank drive is continued as it is, and X-ray irradiation becomes a recommended irradiation determination period.
  • X-ray irradiation may not be permitted.
  • the period immediately after the start of the X-ray imaging apparatus 100 may be set as the preparation period.
  • the X-ray irradiation detection unit 150 is off from the start of the accumulation period to the end of the refresh operation, and is on in the other periods.
  • the length of the preparation period may be set arbitrarily within the range that guarantees the image quality of the X-ray image and the like, and is set to, for example, 10 seconds. Thus, regardless of whether or not the state of the X-ray imaging apparatus 100 is actually stable, it may be a period in which the state of the X-ray imaging apparatus 100 is assumed to be stable. Of course, a period during which the state of the X-ray imaging apparatus 100 is actually stabilized may be set as the preparation period.
  • the length of the preparation period may be the same or different immediately after activation of the X-ray imaging apparatus 100 and immediately after the refresh operation. Further, the length of the preparation period may be set collectively at the start of the X-ray imaging apparatus 100 and immediately after the refresh operation, or may be set individually.
  • the X-ray irradiation detection unit 150 by monitoring the state of the current signal of the bias wiring using the X-ray irradiation detection unit 150, it is possible to set a period until the current signal of the bias wiring is sufficiently stabilized as a preparation period. is there. That is, it is also possible to automatically switch the preparation period according to the current signal of the bias wiring.
  • the degree of stability of the current signal of the bias wiring may be set arbitrarily in consideration of the image quality and the like required for the X-ray image. By doing this, for example, when residual charge is present more than expected due to, for example, irradiation of a high dose at the time of immediately preceding imaging, deterioration of the image quality of the X-ray image due to afterimage etc. by setting a sufficient preparation period. Can be effectively prevented.
  • FIG. 7 is a flowchart illustrating an example of processing in the X-ray imaging apparatus 100.
  • the flowchart of FIG. 7 starts.
  • step S701 the X-ray imaging apparatus 100 (drive circuit 165) starts the idle reading drive immediately after startup.
  • the refresh operation may be performed once after startup, and then the blank read drive may be started.
  • the X-ray imaging apparatus 100 starts detection of X-ray irradiation in step S702.
  • the X-ray imaging apparatus 100 (X-ray irradiation detection unit 150) is irradiated with X-rays based on the change in current flowing in the bias wiring generated by the X-ray irradiation It is determined whether or not. As described above, this determination can be realized by comparing the peak value or the time integral value of the current of the bias wiring with the threshold value.
  • step S704 the X-ray imaging apparatus 100 (control unit 160) determines whether or not the timing is within the timing preparation period in which the X-ray irradiation is detected. .
  • step S 705 the X-ray imaging apparatus 100 (drive circuit 165) stops the blank reading drive, and shifts to a mode for accumulating charges generated in the two-dimensional imaging element 120 by X-ray irradiation.
  • the charge may be accumulated for a predetermined time, or the end of the X-ray irradiation may be detected, and the timing of ending the charge accumulation may be controlled based on the detected result.
  • step S706 the X-ray imaging apparatus 100 (readout circuit 170) reads the charge stored in the two-dimensional imaging device 120 (performs a main reading). Image data obtained by the main reading is transmitted to the photographing information processing apparatus 400.
  • the timing of transmitting the image data to the imaging information processing apparatus 400 may be the timing of step S706 or the timing after step S706.
  • step S 707 the X-ray imaging apparatus 100 (drive circuit 165) performs a refresh operation to restore the sensitivity of the photoelectric conversion elements S 11 to S 33.
  • step S 708 the X-ray imaging apparatus 100 (control unit 160) determines whether or not the imaging of the X-ray image is to be ended based on an operation or the like by the photographer. As a result of this determination, when the imaging of the X-ray image is not finished, the blank reading drive is started again. On the other hand, when the imaging of the X-ray image is ended, the processing according to the flowchart of FIG.
  • step S704 If it is determined in step S704 that the timing is within the timing preparation period in which the X-ray irradiation is detected, steps S705 and S706 are omitted and the process proceeds to step S707. That is, the refresh operation is immediately performed without the charge accumulation and the real reading. By doing this, the influence of the X-rays irradiated during the preparation period remains at the time of the next imaging, and the image quality of the X-ray image and the detection sensitivity of the X-rays can be effectively prevented from decreasing. it can.
  • control unit 160 can transmit information indicating that X-ray irradiation has been performed at an inappropriate timing to the imaging information processing apparatus 400 via the communication circuit 180. Based on this information, the control unit 401 of the imaging information processing apparatus 400 displays on the display unit 410 a warning message indicating that X-ray irradiation has been performed at an inappropriate timing, and warns the photographer. It is also good.
  • the preparation period (period in which the state of the X-ray imaging apparatus 100 is not stable) can be shortened, and preparation for the next imaging can be made. Therefore, false detection in the preparation period can be suppressed, X-ray images to be provided for diagnosis can be efficiently taken, and useless exposure of the subject 300 can be suppressed.
  • X-ray irradiation is performed during the preparation period of the X-ray imaging apparatus 100. It is possible to suppress the inconvenience that occurs in the case of
  • the refresh operation when it is detected that X-rays are irradiated in the preparation period, the refresh operation is performed immediately.
  • the period during which charge is accumulated in the photoelectric conversion elements S11 to S33 when the X-ray irradiation is detected during the irradiation determination period is longer than when the X-ray irradiation is detected during the preparation period (storage This may not be necessary as long as the period is shortened.
  • the refresh operation may be performed on the photoelectric conversion elements S11 to S33 at a timing when a predetermined time has elapsed after detection of X-ray irradiation during the preparation period. Even in this case, it is preferable to perform the refresh operation on the photoelectric conversion elements S11 to S33 as the first operation of the drive circuit 165 after detecting the X-ray irradiation during the preparation period.
  • the case where the accumulated value of the current signal flowing from the photoelectric conversion elements S11 to S33 to the bias wiring by the X-ray irradiation is compared with the threshold has been described as an example.
  • the physical quantity that changes in the X-ray detector 110 due to the X-ray irradiation is compared with the threshold, it is not necessary to compare the accumulated value of the current signal flowing in the bias wiring with the threshold.
  • the relationship between the rows and the columns in the two-dimensional imaging device 120 may be reversed. That is, readout of pixel signals in units of columns by the readout circuit 170 may be performed in units of rows, and driving of pixels in units of rows by the drive circuit 165 may be performed in units of columns.
  • the refresh operation is always performed when it is detected during the preparation period that the X-rays have been irradiated.
  • the refresh is performed as described in the first embodiment. Do the action.
  • charge accumulation and main reading are performed, and then the refresh operation is performed.
  • the imaging information processing apparatus 400 displays the information.
  • this embodiment and the first embodiment are different in part of the processing when X-rays are irradiated in the preparation period, and are mainly different in configuration resulting from the part of the processing being different. Therefore, in the description of the present embodiment, the same parts as those of the first embodiment will be denoted by the same reference numerals as those of FIGS. 1 to 7, and the detailed description will be omitted.
  • FIG. 8 is a diagram showing an example of the configuration of the X-ray imaging apparatus 800. As shown in FIG. 8
  • the X-ray imaging apparatus 800 of this embodiment is different from the X-ray imaging apparatus 100 shown in FIG. 2 in that an image storage unit 190 is provided between the image processing unit 175 and the communication circuit 180.
  • the other configuration of the X-ray imaging apparatus 800 is the same as that of the X-ray imaging apparatus 100 shown in FIG.
  • the image storage unit 190 is for storing at least one photographed image data (X-ray image) and various information attached thereto.
  • a semiconductor memory device, a hard disk drive or the like can be suitably used as the image storage unit 190.
  • the image data read from the X-ray detector 110 by the reading circuit 170 is stored in the image storage unit 190 after being subjected to image processing by the image processing unit 175.
  • the image storage unit 190 has a storage capacity capable of storing at least one piece of image data.
  • the image data that has been stored in the image storage unit 190 is transmitted to the external imaging information processing apparatus 400 via the communication circuit 180. Specifically, the image data is transmitted when the main reading is finished and can be transmitted to the external photographing information processing apparatus 400.
  • the control unit 160 adds detection timing information indicating that to the header to the image data.
  • the detection timing information may not necessarily be added to the header.
  • the detection timing information may be embedded in the image data, or the detection timing information may be stored and transmitted in a file different from the file of the image data.
  • the detection timing information is, for example, information indicating the time from the end of the refresh driving to the detection of the X-ray (the time from the start of the preparation period to the detection of the X-ray).
  • the control unit 401 of the imaging information processing apparatus 400 determines whether detection timing information is added to the image data. If detection timing information is added to the image data as a result of this determination, the control unit 401 of the imaging information processing apparatus 400 performs the following processing. That is, when the control unit 401 of the imaging information processing apparatus 400 displays the image data on the display unit 410, the image data is obtained by irradiating X-rays during the preparation period. Is displayed on the display unit 410 at the same time. Specifically, for example, the message is displayed superimposed on the image data (the message is pop-up displayed for the image data). Such a message may include information indicating the time after the end of the refresh driving (the time after the preparation period starts).
  • the photographer can use the obtained image data for diagnosis and the like within a range without any problem. This can reduce unnecessary exposure to the patient.
  • FIG. 9 is a flowchart illustrating an example of processing in the X-ray imaging apparatus 800.
  • the flowchart of FIG. 9 is started.
  • step S904 The difference between the flowchart of FIG. 9 and the flowchart of FIG. 7 is the process after it is determined in step S904 that the timing at which the X-ray irradiation is detected is the timing within the preparation period.
  • step S904 If it is determined in step S904 that the timing at which the X-ray irradiation is detected is the timing within the preparation period, the process proceeds to step S909.
  • step S 909 the control unit 160 determines whether the timing at which the X-ray irradiation has been detected is within one second after the preparation period starts.
  • step S 907 charge accumulation and processing are performed as in the first embodiment.
  • the refresh operation is immediately performed without the actual reading.
  • step S910 the control unit 160 generates detection timing information.
  • the detection timing information is, for example, information indicating the time from the end of the refresh driving to the detection of the X-ray (the time from the start of the preparation period to the detection of the X-ray).
  • step S911 the X-ray imaging apparatus 100 (drive circuit 165) stops the blank reading drive, and shifts to a mode for accumulating charges generated in the two-dimensional imaging element 120 by X-ray irradiation.
  • the process of step S911 is the same as the process of step S905.
  • the X-ray imaging apparatus 100 readout circuit 170 reads out the charge stored in the two-dimensional imaging device 120 (performs the main reading).
  • the actual reading operation itself of step S912 is the same as the process of step S906.
  • the detection timing information generated in step S910 is also transmitted to the imaging information processing apparatus 400 together with the image data obtained by the main reading.
  • the timing of transmitting the image data and the detection timing information to the imaging information processing apparatus 400 may be the timing of step S912 or the timing after step S912. Then, when at least the main reading is completed, the process proceeds to step S 907.
  • the refresh operation is performed as soon as it is detected that X-rays have been emitted within one second after the start of the preparation period.
  • charge accumulation and main reading are performed, and then the refresh operation is performed.
  • the X-ray image (image data) thus obtained and detection timing information indicating that the X-ray image is obtained during the preparation period are transmitted to the imaging information processing apparatus 400, and the imaging information processing apparatus 400 The detection timing information is displayed on the device 400.
  • the state of the X-ray imaging apparatus 100 approaches a stable state, so diagnosis of an X-ray image obtained in such a state is make it possible to However, since such an X-ray image is obtained during a period in which the X-ray irradiation is not recommended, this is notified. Thus, the image reader can read the X-ray image after recognizing that the X-ray irradiation is not recommended. Therefore, for example, if diagnosis is possible with the X-ray image, it is not necessary to obtain the X-ray image again. On the other hand, the state of the X-ray imaging apparatus 100 is unstable during a period immediately after the start of the preparation period.
  • the X-ray image obtained at such timing is highly likely not to be suitable for diagnosis, as in the first embodiment, the preparation period (the state of the X-ray imaging apparatus 100 Short) and prepare for the next shooting. As described above, in the present embodiment, it is possible to further suppress unnecessary exposure to the subject 300.
  • X-rays were irradiated within 1 second after the preparation period started.
  • a predetermined condition is satisfied after the start of the preparation period.
  • a time other than one second may be employed.
  • it may be determined whether or not the change in the amplitude of the current signal of the bias wiring at a predetermined time before the timing at which the X-ray irradiation is detected is within a predetermined range.
  • detection timing information is added only to image data based on X-rays detected within one second after the preparation period starts. However, this is not necessarily the case, and detection timing information may be added to all image data.
  • the case where the message based on the detection timing information is superimposed and displayed on the image data has been described as an example.
  • the method of displaying the detection timing information on the display unit 410 of the imaging information processing apparatus 400 is not limited to such a method.
  • the control unit 401 of the imaging information processing apparatus 400 may display a message based on the detection timing information on the display unit 410 without displaying the image data.
  • a message may include information indicating the time after the end of the refresh driving (the time after the preparation period starts).
  • the control unit 401 of the photographing information processing apparatus 400 displays the image data after the photographer instructs to display the image data based on the operation of the operation unit 430. Can.
  • messages based on the detection timing information may be displayed in parallel on one screen of the display unit 410 without overlapping the image data.
  • the detection timing information added to the image data obtained in the irradiation determination period, not in the preparation period is displayed, it is preferable to do so because it is not necessary to warn the reader of the hardness.
  • the method of displaying the detection timing information may be different depending on whether the image data obtained in the preparation period is displayed or the image data obtained in the irradiation determination period is displayed.
  • steps S904 to S907 and S909 in FIG. 9 become unnecessary. That is, when the timing at which the X-ray irradiation is detected is the timing within the preparation period, the detection timing information and the image data are transmitted to the imaging information processing apparatus 400 without fail.
  • the imaging information processing apparatus 400 may interrupt, or some operation (for example, correction of information of a captured X-ray image) is performed by the imaging information processing apparatus 400. If it is, it may be included in the preparation period. That is, a state where an appropriate photographing can not be performed for some reason is defined as a preparation period, and when the image is photographed at such a timing, information indicating that is added to the image data. Just do it. For example, information indicating the communication state between the X-ray imaging apparatus 100 and the imaging information processing apparatus 400 may be added to the image data and displayed as one of the detection timing information.
  • a PIN type photodiode can be used.
  • the reset drive can be substituted by the output of the charge by the switch elements T11 to T33, and the refresh operation becomes unnecessary. Therefore, in one embodiment, the reset driving is the same as the blank reading (output driving).
  • the reset driving is to make the on time of the switch element longer than the blank reading. Since the blank reading (output driving) is driving according to the detection of the X-ray by the X-ray irradiation detection unit 150, it is not necessarily implemented in the aspect of the discharge function of the charge accumulated in the photoelectric conversion element. .
  • the drive circuit 165 discharges the charge by controlling the signal of Vg (i) in FIG. 6, for example, to make the on time of the switch element longer than the blank reading in the irradiation determination period.
  • the efficiency can be increased, and the imaging device can be stabilized earlier.
  • the on-time of the switch element is not read long during the refresh period.
  • Detection of the start of X-ray irradiation in this period may increase the size of the defect generated in each line of the image, but since it is a period during which image quality is not stable initially, it can be an image that can not be used for diagnosis The problem is small.
  • the drive circuit 165 when the false exposure is detected, continues the idle reading drive without putting the imaging device 120 in the accumulation state.
  • the functions of the imaging control apparatus (imaging information processing apparatus) 107 may be distributed to a plurality of apparatuses that can communicate with each other to realize the functions of the imaging control apparatus (imaging information processing apparatus) 107 as a control system. It may be for example, there is an example in which some functions such as image processing are provided to an external server. Such an external server may be disposed in an imaging room or an operation room in which an X-ray imaging system performing tomosynthesis imaging is placed and connected by a dedicated LAN, or may be disposed in a hospital and communicated by an in-hospital LAN. It is also good. Alternatively, it may be arranged in a data center outside the hospital regardless of whether it is domestic or foreign, and may exchange data with each other by secure communication such as VPN.
  • VPN secure communication
  • the present invention is also realized by performing the following processing. That is, first, software (computer program) for realizing the functions of the above embodiments is supplied to a system or apparatus via a network or various storage media. Then, a computer (or a CPU or MPU or the like) of the system or apparatus reads out and executes the computer program.
  • software computer program
  • a computer or a CPU or MPU or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

Provided is a radiographic imaging device that immediately performs a refresh operation when it is detected that an X-ray has been emitted during a preparation period that begins when the refreshing of a photoelectric conversion element is completed (or when an X-ray imaging device (100) starts up).

Description

放射線撮影装置及び情報処理装置Radiation imaging apparatus and information processing apparatus
 本明細書の開示は、放射線撮影装置及び情報処理装置に関する。 The disclosure of the present specification relates to a radiation imaging apparatus and an information processing apparatus.
 近年、医療におけるX線画像等の放射線画像のデジタル化が進んでいる。X線画像をデジタル化することで、多くのメリットを得ることができる。例えば、撮影したX線画像を表示装置等ですぐに確認できるようにすることにより、診断の高速化を図ることができる。また、各種画像処理を行ったX線画像を用いることによって診断の自動化を図ることができる。また、微細な病変に対する診断精度の向上を図ることができる。また、フィルムの保管スペースが不要になることによる病院内のスペース効率の大幅な向上を図ることができる。さらに、伝送によるデータの劣化が少ないことから、撮影したX線画像を劣化無く遠方に送信することも可能である。こうした特徴を活かして、例えば、在宅医療の現場や災害現場等で撮影されたX線画像を、設備の整った都市部の病院に送信し高度に訓練を受けた医師による診断を受けることも可能となる。 In recent years, digitization of radiation images such as X-ray images in medical treatment has progressed. By digitizing x-ray images, many benefits can be obtained. For example, speeding up of diagnosis can be achieved by making it possible to immediately confirm a captured X-ray image with a display device or the like. Moreover, automation of diagnosis can be achieved by using X-ray images subjected to various image processing. In addition, it is possible to improve the diagnostic accuracy for minute lesions. In addition, the space efficiency in the hospital can be greatly improved by eliminating the storage space of the film. Furthermore, since there is little deterioration of data due to transmission, it is also possible to transmit a captured X-ray image to a distant place without deterioration. Taking advantage of these features, for example, it is possible to transmit X-ray images taken at home medical care sites or disaster sites to a well-equipped urban hospital for diagnosis by a highly trained physician. It becomes.
 こうした背景の下、2次元マトリクス状に配列された複数の放射線検出素子により、放射線を電気信号に変換して放射線画像を形成する放射線撮像装置が実用化され、急速に普及している。 Under such a background, a radiation imaging apparatus that converts radiation into an electrical signal to form a radiation image by a plurality of radiation detection elements arranged in a two-dimensional matrix is in practical use and is rapidly spreading.
 この種の放射線撮像装置は、X線検出装置(例えばFPD:Flat Panel Detector)を備える。X線検出装置は、例えば、固体光電変換素子とX線を可視光に変換するシンチレータとを積層した微小なX線検出器を2次元マトリクス状に配置して撮像素子とし、X線発生装置から照射されたX線を、当該X線の照射量に応じた電気信号(電荷量)に変換する。FPDにおいては一般に、固体光電変換素子に印加する電圧を制御することによって、X線の照射によって生じた電荷を固体光電変換素子の内部に蓄積する。その後、固体光電変換素子に印加する電圧を別の電圧に制御することによって、固体光電変換素子から電荷を読み出し、固体光電変換素子に蓄積された電荷量に応じた画像データが形成される。FPDを用いてX線画像を撮影する場合、用いている固体光電変換素子の特性上、X線を照射するタイミングとX線検出器が電荷の蓄積(撮影)を行うタイミングとを正確に同期させる必要がある。 This type of radiation imaging apparatus includes an X-ray detection apparatus (for example, FPD: Flat Panel Detector). From the X-ray generator, for example, an X-ray detector is provided with a micro X-ray detector in which a solid photoelectric conversion element and a scintillator for converting X-rays into visible light are stacked in a two-dimensional matrix. The irradiated X-ray is converted into an electrical signal (charge amount) according to the irradiation amount of the X-ray. In FPD, in general, charges generated by X-ray irradiation are accumulated in the solid photoelectric conversion element by controlling a voltage applied to the solid photoelectric conversion element. Thereafter, by controlling the voltage applied to the solid photoelectric conversion element to another voltage, the charge is read from the solid photoelectric conversion element, and image data corresponding to the amount of charge accumulated in the solid photoelectric conversion element is formed. When capturing an X-ray image using FPD, the timing of X-ray irradiation and the timing of charge accumulation (photographing) by the X-ray detector are accurately synchronized due to the characteristics of the solid-state photoelectric conversion element being used. There is a need.
 そのために、特許文献1では、X線発生装置とX線撮影装置との間で、相互に同期信号をやり取りすることによって、X線の照射タイミングとX線画像の撮影タイミングとを同期させる技術が開示されている。具体的には、まず、X線発生装置からの照射要求信号を受信することによりX線撮影装置(例えばFPD)が撮影準備を行う。その後、X線撮影装置が撮影を開始する(電荷の蓄積を開始する)のに合わせてX線撮影装置からX線発生装置に対して照射許可信号が送信されて、X線発生装置からX線が照射される。 Therefore, in Patent Document 1, there is a technique for synchronizing the X-ray irradiation timing and the X-ray image imaging timing by mutually exchanging synchronization signals between the X-ray generator and the X-ray imaging apparatus. It is disclosed. Specifically, first, the X-ray imaging apparatus (for example, FPD) prepares for imaging by receiving an irradiation request signal from the X-ray generator. Thereafter, when the X-ray imaging apparatus starts imaging (charge accumulation starts), the X-ray imaging apparatus transmits an irradiation permission signal to the X-ray generation apparatus, and the X-ray generation apparatus transmits X-rays. Is irradiated.
 また、特許文献2には、X線発生装置からX線撮影装置に対してX線が照射された際にX線撮影装置の内部で生じる電流の変化を検出することで、X線の照射タイミングを検出し、このX線の照射タイミングをトリガとして撮影を開始する技術が開示されている。この場合、X線発生装置とX線撮影装置の同期通信は必ずしも必要なくなる。 Further, in Patent Document 2, X-ray irradiation timing is detected by detecting a change in current generated inside the X-ray imaging apparatus when the X-ray imaging apparatus irradiates the X-ray imaging apparatus with X-rays. There is disclosed a technique for detecting an X-ray emission timing and using this X-ray irradiation timing as a trigger to start imaging. In this case, synchronous communication between the X-ray generator and the X-ray imaging apparatus is not necessarily required.
特許第4684747号公報Patent No. 4684747 特開平11-155847号公報Japanese Patent Application Laid-Open No. 11-155847
 しかしながら、特許文献1、2に記載の技術でも、X線発生装置側の操作等により任意のタイミングでX線を照射する構成にすることが可能である。このような構成を採用する場合、X線撮影装置側で撮影の準備が整う前や、画質が十分に保証される状態に遷移する前の期間である準備期間にX線が照射されるという状況が発生し得る。このような準備期間においては、X線撮影装置の状態が安定していない。したがって、準備期間に照射されたX線に基づくX線画像は、画質の面から、診断に適した画像として用いることができない可能性がある。これに加えて、当該準備期間に照射されたX線に基づいて光電変換素子に蓄積された電荷が次の撮影で得られるX線画像の画質に影響を与える可能性もある。したがって、X線撮影装置の状態が安定していない期間を短縮することが望まれる。 However, even with the techniques described in Patent Documents 1 and 2, the X-ray can be irradiated at an arbitrary timing by an operation or the like on the X-ray generator side. When adopting such a configuration, the X-ray is irradiated during a preparation period which is a period before preparation for imaging on the X-ray imaging apparatus side or before transition to a state where the image quality is sufficiently ensured. Can occur. In such a preparation period, the state of the X-ray imaging apparatus is not stable. Therefore, an X-ray image based on X-rays irradiated during the preparation period may not be able to be used as an image suitable for diagnosis from the viewpoint of image quality. In addition to this, there is also a possibility that the charge stored in the photoelectric conversion element based on the X-rays irradiated in the preparation period may affect the image quality of the X-ray image obtained in the next imaging. Therefore, it is desirable to shorten the period in which the state of the X-ray imaging apparatus is not stable.
 本発明の実施形態の1つに係る放射線撮影装置は、光電変換を行う光電変換素子で発生した電荷に基づいて放射線の照射が開始されたことを検知する検知手段と、前記光電変換素子の感度を回復させるために前記光電変換素子に蓄積された電荷を出力するリセット動作を行う駆動手段と、を有する放射線撮影装置であって、前記駆動手段は、前記放射線の照射が推奨されない期間に前記検知手段により前記放射線の照射が開始されたことが検知されると、前記放射線の照射が推奨される期間に前記検知手段により前記放射線の照射が開始されたことが検知された場合に前記光電変換素子に電荷が蓄積される期間よりも、前記光電変換素子に電荷が蓄積される期間が短くなるタイミングで、前記リセット動作を行うことを特徴とする。  A radiation imaging apparatus according to one of the embodiments of the present invention includes: detection means for detecting that irradiation of radiation has been started based on charges generated in a photoelectric conversion element performing photoelectric conversion; and sensitivity of the photoelectric conversion element And driving means for performing a reset operation for outputting the charge accumulated in the photoelectric conversion element to recover the radiation, wherein the driving means detects the period during which radiation irradiation is not recommended. When it is detected that the irradiation of the radiation has been started by the means, the photoelectric conversion element when it is detected that the irradiation of the radiation has been started by the detection means in a period when the irradiation of the radiation is recommended. The reset operation is performed at a timing at which a period during which charge is accumulated in the photoelectric conversion element becomes shorter than a period during which charge is accumulated.
 これにより放射線撮影装置の状態が安定していない期間を短縮することができる。 Thereby, the period when the state of the radiation imaging apparatus is not stable can be shortened.
X線撮影システムの構成を示す図である。It is a figure which shows the structure of a radiography system. X線撮影装置の構成の第1の例を示す図である。It is a figure which shows the 1st example of a structure of a X-ray imaging apparatus. X線検出器の等価回路を示す図である。It is a figure which shows the equivalent circuit of a X-ray detector. 光電変換素子の断面を示す図である。It is a figure which shows the cross section of a photoelectric conversion element. 光電変換素子のエネルギーバンドを示す図である。It is a figure which shows the energy band of a photoelectric conversion element. X線検出器の駆動タイミングを示すタイミングチャートである。It is a timing chart which shows the drive timing of an X-ray detector. X線撮影装置における処理の第1の例を説明するフローチャートである。It is a flowchart explaining the 1st example of the process in a radiography apparatus. X線撮影装置の構成の第2の例を示す図である。It is a figure which shows the 2nd example of a structure of a X-ray imaging apparatus. X線撮影装置における処理の第2の例を説明するフローチャートである。It is a flowchart explaining the 2nd example of the process in a radiography apparatus.
 以下、図面を参照しながら、本発明の実施形態について説明する。尚、各実施形態においては、X線画像を撮影する場合について説明を行う。しかしながら、X線以外の放射線であるα線やβ線、γ線やその他の電磁波を用いて画像を撮影する場合にも、以下で説明するX線を、これらの放射線等に置き換えることによって以下の各実施形態を適用することができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each embodiment, the case of capturing an X-ray image will be described. However, even when radiographs are performed using alpha rays, beta rays, gamma rays, and other electromagnetic waves other than X-rays, the X-rays described below may be replaced by these radiations, etc. Each embodiment can be applied.
 (第1の実施形態)
 図1は、X線撮影システムの構成の一例を示す図である。
First Embodiment
FIG. 1 is a diagram showing an example of the configuration of an X-ray imaging system.
 本実施形態のX線撮影システムは、X線撮影装置100、X線発生装置200、撮影情報処理装置400、表示部410、保存部420、操作部430、及び撮影台500を有する。 The X-ray imaging system of this embodiment includes an X-ray imaging apparatus 100, an X-ray generation apparatus 200, an imaging information processing apparatus 400, a display unit 410, a storage unit 420, an operation unit 430, and an imaging table 500.
 X線発生装置200は、X線制御部210、X線照射スイッチ220、及びX線発生部230を有する。X線制御部210は、例えば、X線のオン/オフや、管電流や管電圧といったX線の発生条件を制御する。X線発生部230は、例えば反射型、又は透過型のターゲットを有し、ターゲットに電子線を衝突させることにより、例えばパルス状のX線を発生させる。X線発生部230で発生されたX線はX線発生装置200のコリメータによりX線束の形状が整形され、被写体300(被検者)及びX線撮影装置100に照射される。また、X線照射スイッチ220は、X線の照射を指示する際に操作されるスイッチである。X線照射スイッチ220の操作によって、任意のタイミングでX線を発生させることができる。 The X-ray generator 200 includes an X-ray control unit 210, an X-ray irradiation switch 220, and an X-ray generation unit 230. The X-ray control unit 210 controls, for example, on / off of X-rays, and generation conditions of X-rays such as tube current and tube voltage. The X-ray generation unit 230 has, for example, a reflective or transmissive target, and generates, for example, pulsed X-rays by colliding the target with an electron beam. The X-ray generated by the X-ray generator 230 is shaped into a bundle of X-rays by the collimator of the X-ray generator 200, and the X-ray is irradiated to the subject 300 (subject) and the X-ray imaging apparatus 100. Further, the X-ray irradiation switch 220 is a switch operated when instructing the irradiation of X-rays. By operating the X-ray irradiation switch 220, X-rays can be generated at any timing.
 撮影台500は、例えば、被写体300を載置する天板と、X線発生装置200を移動可能に保持するカラムと、X線撮影装置100を移動可能に収納する収納部とを有する。撮影台500により、X線発生部230とX線撮影装置100との位置決めがなされ、X線発生部230と、天板上に載置された被写体300との位置関係を調整できる。 The imaging table 500 has, for example, a top plate on which the subject 300 is placed, a column movably holding the X-ray generator 200, and a storage unit movably storing the X-ray imaging apparatus 100. The X-ray generation unit 230 and the X-ray imaging apparatus 100 are positioned by the imaging table 500, and the positional relationship between the X-ray generation unit 230 and the subject 300 placed on the top plate can be adjusted.
 X線撮影装置100は、例えば、X線検出器110(図2を参照)の出力を繰り返し継続的にモニタしてX線が照射されたことを検知し、検知した結果に基づいて、X線発生装置200によるX線の発生タイミングを検知することができる。このため、X線発生装置200と撮影情報処理装置400との接続は必ずしも必要ではない。尚、X線制御部210とX線撮影装置100との通信を確立し、X線検出器110が蓄積状態となっている間にX線を発生させるように、X線制御部210とX線撮影装置100とが同期通信することとしてもよい。X線撮影装置100の詳細な構成については、図2を参照しながら後で説明する。 For example, the X-ray imaging apparatus 100 repeatedly and continuously monitors the output of the X-ray detector 110 (see FIG. 2) to detect that X-rays have been irradiated, and based on the detection result, X-rays are detected. The generation timing of the X-ray by the generator 200 can be detected. Therefore, the connection between the X-ray generator 200 and the imaging information processing apparatus 400 is not necessarily required. The X-ray control unit 210 and the X-ray control unit 210 communicate with the X-ray control unit 210 and the X-ray imaging apparatus 100 to generate X-rays while the X-ray detector 110 is in the accumulation state. The communication with the imaging device 100 may be synchronized. The detailed configuration of the X-ray imaging apparatus 100 will be described later with reference to FIG.
 撮影情報処理装置400は、制御部401と、通信回路402と、記憶部403とを有する。 The imaging information processing apparatus 400 includes a control unit 401, a communication circuit 402, and a storage unit 403.
 撮影情報処理装置400は、通信回路402を通じてX線撮影装置100と通信する。制御部401は、X線撮影を行うための撮影情報を生成管理し、X線撮影により得られるX線画像を取得し、取得したX線画像を撮影情報と関連付けて記憶部403等に記憶する。制御部401は、表示部410、保存部420、及び操作部430と相互に接続されており、操作部430からの操作入力を受けて撮影情報の取得、生成、変更といった設定を行う。これら撮影情報やX線画像は表示部410に表示され、ユーザはX線画像を確認することができる。また、撮影情報やX線画像は、保存部420に保存されるようにすることもできる。尚、操作部430は、キーボード、マウスデバイス、タッチパネルといった汎用の操作機器でも、撮影情報処理装置400の専用の操作機器であってもよい。 The imaging information processing apparatus 400 communicates with the X-ray imaging apparatus 100 through the communication circuit 402. The control unit 401 generates and manages imaging information for performing X-ray imaging, acquires an X-ray image obtained by X-ray imaging, associates the acquired X-ray image with the imaging information, and stores it in the storage unit 403 or the like. . The control unit 401 is mutually connected to the display unit 410, the storage unit 420, and the operation unit 430, receives an operation input from the operation unit 430, and performs settings such as acquisition, generation, and change of imaging information. The imaging information and the X-ray image are displayed on the display unit 410, and the user can confirm the X-ray image. Further, the imaging information and the X-ray image can be stored in the storage unit 420. The operation unit 430 may be a general-purpose operation device such as a keyboard, a mouse device, or a touch panel, or an operation device dedicated to the imaging information processing apparatus 400.
 撮影情報処理装置400は、コンピュータ装置であり、院内イントラネット等のネットワーク700に接続されている。撮影情報処理装置400は、通信回路402を通じて、X線画像を、PACS620、Viewer630、プリンタ640といった出力先の装置に送信する。 The imaging information processing device 400 is a computer device, and is connected to a network 700 such as an in-hospital intranet. The imaging information processing apparatus 400 transmits an X-ray image to an output destination apparatus such as the PACS 620, the viewer 630, and the printer 640 through the communication circuit 402.
 RIS(Radiology Information System)610は、撮影情報の依頼を管理し、撮影情報処理装置400に対して撮影依頼情報を送信すると共に、依頼した撮影の進捗管理を行う。撮影依頼情報を受けた撮影情報処理装置400は、撮影に必要な撮影情報を生成し、X線撮影を指示する。ここでいう撮影情報とは、X線撮影装置100の駆動条件を含む。また、撮影情報は、これに加えて、X線発生装置200のX線照射条件、X線撮影装置100により得られたX線画像の画像処理条件、画像処理されたX線画像のクロップ等の出力条件を含むこととしてもよい。また、これらの任意の組み合わせを撮影情報としてもよい。撮影の開始、完了等の進捗があった場合には、制御部401の制御に応じて、通信回路402が、当該進捗を示す情報をRIS610に送信する。 The RIS (Radiology Information System) 610 manages requests for imaging information, transmits imaging request information to the imaging information processing apparatus 400, and manages the progress of the requested imaging. The imaging information processing apparatus 400 that has received the imaging request information generates imaging information necessary for imaging, and instructs X-ray imaging. The imaging information here includes the drive conditions of the X-ray imaging apparatus 100. In addition to this, the imaging information includes the X-ray irradiation conditions of the X-ray generator 200, the image processing conditions of the X-ray image obtained by the X-ray imaging apparatus 100, cropping of the image processed X-ray image, etc. An output condition may be included. Also, any combination of these may be used as the shooting information. When there is a progress such as start and completion of imaging, the communication circuit 402 transmits information indicating the progress to the RIS 610 according to the control of the control unit 401.
 尚、撮影情報にX線照射条件を含む場合、撮影情報処理装置400は、X線制御部210との通信を確立し、通信回路402からX線制御部210へX線照射条件を送信することとすれば便宜である。撮影情報処理装置400とX線制御部210との通信がない場合、ユーザは、別途、X線制御部210の操作卓を操作してX線発生条件を入力することとなる。 When the imaging information includes the X-ray irradiation condition, the imaging information processing apparatus 400 establishes communication with the X-ray control unit 210 and transmits the X-ray irradiation condition from the communication circuit 402 to the X-ray control unit 210. It is convenient if it makes it. When there is no communication between the imaging information processing apparatus 400 and the X-ray control unit 210, the user operates the console of the X-ray control unit 210 separately to input the X-ray generation condition.
 PACS(Picture Archiving and Communication Systems)610は、画像管理サーバであり、X線画像を受信し、他の医用画像とまとめて管理する。 A Picture Archiving and Communication Systems (PACS) 610 is an image management server that receives X-ray images and manages them together with other medical images.
 Viewer630は、医師等の診断者が医用画像を閲覧するための画像処理及び表示制御を行う装置である。Viewer630は、PACS620と通信して医用画像を取得することも可能である。 The Viewer 630 is an apparatus that performs image processing and display control for a diagnostician such as a doctor to view a medical image. The Viewer 630 can also communicate with the PACS 620 to obtain medical images.
 プリンタ640は、撮影情報処理装置400、PACS620、Viewer630からのX線画像や医用画像をフィルムや紙等の記録媒体に出力する。 The printer 640 outputs the X-ray image and the medical image from the imaging information processing apparatus 400, the PACS 620, and the viewer 630 to a recording medium such as film or paper.
 図2は、X線撮影装置100の構成の一例を示す図である。
X線撮影装置100は、放射線撮影装置の一例として構成され、X線検出器110と、X線照射検知部150と、制御部160と、駆動回路165と、読み出し回路170と、画像処理部175と、通信回路180とを有する。
FIG. 2 is a diagram showing an example of the configuration of the X-ray imaging apparatus 100. As shown in FIG.
The X-ray imaging apparatus 100 is configured as an example of a radiation imaging apparatus, and includes an X-ray detector 110, an X-ray irradiation detection unit 150, a control unit 160, a drive circuit 165, a readout circuit 170, and an image processing unit 175. And a communication circuit 180.
 X線検出器110は、複数の固体光電変換素子が2次元マトリクス状に配列されて構成された2次元撮像素子120と、2次元撮像素子120にバイアス電圧を供給するためのバイアス電源140とを有する。 The X-ray detector 110 includes a two-dimensional imaging device 120 in which a plurality of solid-state photoelectric conversion devices are arranged in a two-dimensional matrix, and a bias power supply 140 for supplying a bias voltage to the two-dimensional imaging device 120. Have.
 X線照射検知部(X線照射検知回路)150は、バイアス電源140に接続され、X線の照射開始を検知する。 The X-ray irradiation detection unit (X-ray irradiation detection circuit) 150 is connected to the bias power supply 140 and detects the start of X-ray irradiation.
 制御部(制御回路)160は、X線撮影装置100の各種の動作を制御する。駆動回路165は、制御部160からの制御信号に基づいてX線検出器110を駆動する。 A control unit (control circuit) 160 controls various operations of the X-ray imaging apparatus 100. The drive circuit 165 drives the X-ray detector 110 based on the control signal from the control unit 160.
  読み出し回路170は、X線検出器110から画像データを読み出す。画像処理部175は、読み出し回路170で読み出された画像データに対して各種の画像処理を行う。 The readout circuit 170 reads out image data from the X-ray detector 110. The image processing unit 175 performs various types of image processing on the image data read by the reading circuit 170.
 通信回路180は、外部の撮影情報処理装置400等と通信するための回路である。 The communication circuit 180 is a circuit for communicating with an external photographing information processing apparatus 400 or the like.
 図2において、X線発生部230から発生したX線240は、被写体300に照射される。被写体300を透過したX線240は、X線撮影装置100の内部に配置された2次元撮像素子120に入射し、X線画像に変換される。X線画像は、読み出し回路170を通じて読み出されて画像処理部175で画像処理が施された後に、通信回路180を経由して外部の撮影情報処理装置400にデジタル画像データとして転送される。撮影情報処理装置400に転送されたデジタル画像データは、保存部420に保存されたり、表示部410に表示されたりする。通信回路180による通信は、有線通信であっても無線通信であってもよい。また、撮影情報処理装置400を介さずに、デジタル画像データを保存部420に直接保存するように構成してもよい。また、X線撮影装置100の内部に、保存部を設け、当該保存部にデジタル画像データを保存することも可能である。 In FIG. 2, an X-ray 240 generated from the X-ray generation unit 230 is irradiated to the subject 300. The X-ray 240 transmitted through the subject 300 is incident on the two-dimensional imaging element 120 disposed inside the X-ray imaging apparatus 100 and is converted into an X-ray image. The X-ray image is read out through the readout circuit 170 and subjected to image processing by the image processing unit 175, and then transferred as digital image data to the external imaging information processing apparatus 400 via the communication circuit 180. The digital image data transferred to the photographing information processing apparatus 400 is stored in the storage unit 420 or displayed on the display unit 410. Communication by the communication circuit 180 may be wired communication or wireless communication. Alternatively, digital image data may be directly stored in the storage unit 420 without passing through the photographing information processing apparatus 400. In addition, a storage unit may be provided inside the X-ray imaging apparatus 100, and the digital image data may be stored in the storage unit.
 図3は、X線検出器110の等価回路の一例を示す図である。 FIG. 3 is a view showing an example of an equivalent circuit of the X-ray detector 110. As shown in FIG.
 2次元撮像素子120は、m行×n列の2次元マトリクス状に配列された複数の画素を有する。尚、図3では説明を簡単にするためにm=3、n=3の3×3の2次元マトリクスを示す。しかしながら、実際のX線検出器110は、例えばm=2800、n=2800のように多くの画素を有する。各画素は、X線240を光電変換素子が感知可能な波長帯域の光に変換する蛍光体(不図示)と、光電変換素子S11~S33と、スイッチ素子T11~T33とを有する。 The two-dimensional imaging device 120 has a plurality of pixels arranged in a two-dimensional matrix of m rows and n columns. Note that FIG. 3 shows a 3 × 3 two-dimensional matrix of m = 3 and n = 3 in order to simplify the description. However, the actual X-ray detector 110 has many pixels, for example, m = 2800 and n = 2800. Each pixel includes a phosphor (not shown) that converts the X-ray 240 into light in a wavelength band that can be sensed by the photoelectric conversion element, photoelectric conversion elements S11 to S33, and switch elements T11 to T33.
 光電変換素子S11~S33は、入射したX線の量に応じて電荷を生成し蓄積する。被写体300を透過したX線の透過量は、被写体300の内部の骨や内臓と言った構造物や病巣等によって異なる。このように被写体300を透過したX線は、構造物や病巣等によって異なる透過量に依存した分布を持つ。このような分布を持つX線の分布が電荷の分布に変換されて光電変換素子S11~S33に蓄積されることになる。 The photoelectric conversion elements S11 to S33 generate and accumulate charges in accordance with the amount of incident X-rays. The amount of transmission of the X-rays transmitted through the subject 300 differs depending on the structure, the lesion, and the like of the bone and viscera inside the subject 300. As described above, the X-rays transmitted through the subject 300 have a distribution depending on the amount of transmission which differs depending on the structure, the lesion, and the like. The distribution of X-rays having such a distribution is converted into a distribution of charges and accumulated in the photoelectric conversion elements S11 to S33.
 光電変換素子S11~S33としては、CCD(charge-coupled device)の他、アモルファスシリコンやポリシリコンを用いた各種素子が知られている。本実施形態では、光電変換素子S11~S33として、ガラス基板等の絶縁性基板上に配置されアモルファスシリコンを主材料とするMIS型フォトダイオードを用いるものとする。しかしながら、例えば、PIN型フォトダイオードを光電変換素子S11~S33として用いてもよい。また、放射線を直接電荷に変換する直接型の変換素子も光電変換素子S11~S33として好適に用いることができる。 As the photoelectric conversion elements S11 to S33, various elements using amorphous silicon or polysilicon besides CCD (charge-coupled device) are known. In the present embodiment, MIS type photodiodes, which are disposed on an insulating substrate such as a glass substrate and are mainly made of amorphous silicon, are used as the photoelectric conversion elements S11 to S33. However, for example, PIN type photodiodes may be used as the photoelectric conversion elements S11 to S33. Further, direct type conversion elements that convert radiation directly into electric charges can also be suitably used as the photoelectric conversion elements S11 to S33.
 スイッチ素子T11~T33としては、例えば、制御端子と2つの主端子とを有するトランジスタが好適に用いられる。本実施形態では、薄膜トランジスタ(TFT)をスイッチ素子T11~T33として用いるものとする。 As the switch elements T11 to T33, for example, a transistor having a control terminal and two main terminals is preferably used. In the present embodiment, thin film transistors (TFTs) are used as the switch elements T11 to T33.
 図3では、光電変換素子S11~S33の下部電極側をG、上部電極側をDで示す(以下の説明では下部電極を必要に応じてG電極と称し、上部電極を必要に応じてD電極と称する)。D電極は、スイッチ素子T11~T33の2つの主端子のうちの一方の端子に電気的に接続される。他方G電極は、各行で共通のバイアス配線を介して、バイアス電源140と電気的に接続される。同一の行に配置される複数のスイッチ素子の各々の制御端子は、当該行の駆動配線g1、g2、g3に共通に接続される(例えば、1行目のスイッチ素子T11~T13の各々の制御端子は、1行目の駆動配線g1に接続される)。駆動回路165からスイッチ素子T11~T33の導通状態を制御する駆動信号が駆動配線g1、g2、g3を通じて行単位で与えられる。 In FIG. 3, the lower electrode side of the photoelectric conversion elements S11 to S33 is indicated by G, and the upper electrode side is indicated by D (in the following description, the lower electrode is referred to as the G electrode as necessary, and the upper electrode as the D electrode as necessary. Called The D electrode is electrically connected to one of the two main terminals of the switch elements T11 to T33. On the other hand, the G electrodes are electrically connected to the bias power supply 140 via a common bias line in each row. A control terminal of each of the plurality of switch elements arranged in the same row is commonly connected to the drive wirings g1, g2, g3 of the row (for example, control of each of the switch elements T11 to T13 in the first row) The terminal is connected to the drive wiring g1 in the first row). Drive signals for controlling the conductive states of the switch elements T11 to T33 are supplied from the drive circuit 165 in row units through the drive wirings g1, g2, g3.
 同一の列に配置される複数のスイッチ素子の主端子のうち、光電変換素子S11~S33に接続されていない方の主端子は、当該列の信号配線s1、s2、s3に電気的に接続される。例えばスイッチ素子T11、T21、T31の主端子のうち、1列目の光電変換素子S11、S21、S31に接続されていない方の主端子は、1列目の信号配線s1に電気的に接続される。光電変換素子S11~S33に蓄積された電荷量に応じた電気信号は、スイッチ素子T11~T33が導通状態である間に、信号配線s1~s3を介して読み出し回路170に出力される。列方向に配置される複数の信号配線s1~s3は、複数の画素から読み出された電気信号を並列に読み出し回路170に伝送する。 Among the main terminals of a plurality of switch elements arranged in the same column, the main terminals not connected to the photoelectric conversion elements S11 to S33 are electrically connected to the signal wirings s1, s2, and s3 of the corresponding column. Ru. For example, among the main terminals of the switch elements T11, T21, and T31, the main terminals not connected to the photoelectric conversion elements S11, S21, and S31 in the first column are electrically connected to the signal wiring s1 in the first column. Ru. The electrical signals corresponding to the charge amount stored in the photoelectric conversion elements S11 to S33 are output to the readout circuit 170 through the signal lines s1 to s3 while the switch elements T11 to T33 are in the conductive state. The plurality of signal lines s1 to s3 arranged in the column direction transmit the electric signals read from the plurality of pixels in parallel to the reading circuit 170.
 読み出し回路170は、並列に読み出された電気信号を順次処理して、直列信号の画像信号として出力するマルチプレクサ(不図示)と、画像信号をインピーダンス変換して出力するバッファ増幅器(不図示)とを含む。バッファ増幅器から出力されたアナログ電気信号である画像信号は、AD変換器171によってデジタルの画像データに変換される。 The readout circuit 170 sequentially processes the electrical signals read out in parallel, and outputs a multiplexer (not shown) as an image signal of a serial signal, and a buffer amplifier (not shown) which converts the impedance of the image signal and outputs it. including. The image signal which is an analog electrical signal output from the buffer amplifier is converted by the AD converter 171 into digital image data.
 バイアス電源140は、バイアス配線を通じて、光電変換素子S11~S33のG電極にバイアス電圧Vsを供給すると共に、バイアス配線に供給した電流量の変化を含む電流情報を出力する。本実施形態では、電流情報を出力する回路として、オペアンプAMPと抵抗Rとを有する電流-電圧変換回路と、変換された出力電圧をデジタル値に変換するAD変換器141とを用いているが、これに限定されるものではない。例えば、シャント抵抗を用いた電流-電圧変換回路を、電流情報を出力する回路として用いてもよい。また、電流-電圧変換回路の出力電圧をそのまま出力してもよい。さらには、バイアス配線に供給した電流量に対応する物理量を出力してもよい。 The bias power supply 140 supplies the bias voltage Vs to the G electrodes of the photoelectric conversion elements S11 to S33 through the bias wiring, and outputs current information including a change in the amount of current supplied to the bias wiring. In this embodiment, a current-voltage conversion circuit having an operational amplifier AMP and a resistor R and an AD converter 141 for converting a converted output voltage into a digital value are used as a circuit for outputting current information. It is not limited to this. For example, a current-voltage conversion circuit using a shunt resistor may be used as a circuit that outputs current information. In addition, the output voltage of the current-voltage conversion circuit may be output as it is. Furthermore, a physical quantity corresponding to the amount of current supplied to the bias wiring may be output.
 バイアス配線の電流情報は、X線照射検知部150に送られる。X線照射検知部150は、X線の照射中に生じる電流量の変化を捉えることでX線の照射を検知する。 The current information of the bias wiring is sent to the X-ray irradiation detection unit 150. The X-ray irradiation detection unit 150 detects the X-ray irradiation by capturing a change in the amount of current generated during the X-ray irradiation.
  また、バイアス電源140は、リフレッシュ電圧Vrも含む。リフレッシュ電圧Vrもバイアス電圧Vsと同様に、バイアス配線を介して各光電変換素子S11~S33のG電極に供給される。光電変換素子S11~S33のリフレッシュ期間に、G電極に対してリフレッシュ電圧Vrが印加される。G電極に印加される電圧は、SW制御回路142によって制御される。リフレッシュ期間にはリフレッシュ電圧Vrが、それ以外の期間にはバイアス電圧VsがそれぞれG電極に印加されるように、SW制御回路142によってスイッチSWの動作が制御される。尚、AD変換器141とSW制御回路142は、バイアス電源140に含まれていても、バイアス電源140と独立して配置されていてもよい。 The bias power supply 140 also includes a refresh voltage Vr. Similarly to the bias voltage Vs, the refresh voltage Vr is also supplied to the G electrodes of the photoelectric conversion elements S11 to S33 through the bias wiring. During the refresh period of the photoelectric conversion elements S11 to S33, the refresh voltage Vr is applied to the G electrode. The voltage applied to the G electrode is controlled by the SW control circuit 142. The SW control circuit 142 controls the operation of the switch SW so that the refresh voltage Vr is applied to the G electrode in the refresh period and the bias voltage Vs is applied to the G electrode in the other periods. The AD converter 141 and the SW control circuit 142 may be included in the bias power supply 140 or may be disposed independently of the bias power supply 140.
 次に、光電変換素子S11~S33の一例について説明する。光電変換素子S11~S33の動作モードには、リフレッシュモードと光電変換モードの2種類がある。 Next, an example of the photoelectric conversion elements S11 to S33 will be described. There are two types of operation modes of the photoelectric conversion elements S11 to S33: a refresh mode and a photoelectric conversion mode.
  図4は、本実施形態の光電変換素子S11~S33の断面の一例を模式的に示す図である。 FIG. 4 is a view schematically showing an example of a cross section of the photoelectric conversion elements S11 to S33 of the present embodiment.
 絶縁性基体からなるガラス基板130上に各種材料が成膜積層されて光電変換素子S11~S33が形成される。上部電極135は透明電極で形成される。下部電極131は、AlやCr等で形成される。絶縁層132は、アモルファスシリコン窒化膜により形成され、電子とホールの双方の通過を阻止する。真性半導体層133は、水素化アモルファスシリコンで形成され、X線が入射した際に電子-ホール対を生成し、光電変換層として動作する。不純物半導体層134は、n‐アモルファスシリコンにより形成され、上部電極135から真性半導体層133へのホールの注入を阻止するホールブロッキング層として動作する。 Various materials are deposited and laminated on a glass substrate 130 made of an insulating substrate to form photoelectric conversion elements S11 to S33. The upper electrode 135 is formed of a transparent electrode. The lower electrode 131 is formed of Al, Cr or the like. The insulating layer 132 is formed of an amorphous silicon nitride film and blocks passage of both electrons and holes. The intrinsic semiconductor layer 133 is formed of hydrogenated amorphous silicon, generates an electron-hole pair when X-rays are incident, and operates as a photoelectric conversion layer. The impurity semiconductor layer 134 is formed of n-amorphous silicon, and operates as a hole blocking layer that blocks the injection of holes from the upper electrode 135 into the intrinsic semiconductor layer 133.
 図5は、光電変換素子S11~S33のエネルギーバンドの一例を示す図である。図5(a)は、無バイアスのときの光電変換素子S11~S33のエネルギーバンドを示す図である。図5(b)は、光電変換モードのときの光電変換素子S11~S33のエネルギーバンドの一例を示す図である。図5(c)は、飽和状態のときの光電変換素子S11~S33のエネルギーバンドの一例を示す図である。図5(d)は、リフレッシュモードのときの光電変換素子S11~S33のエネルギーバンドの一例を示す図である。 FIG. 5 is a diagram showing an example of energy bands of the photoelectric conversion elements S11 to S33. FIG. 5A is a diagram showing energy bands of the photoelectric conversion elements S11 to S33 at the time of no bias. FIG. 5B is a diagram showing an example of energy bands of the photoelectric conversion elements S11 to S33 in the photoelectric conversion mode. FIG. 5C is a diagram showing an example of energy bands of the photoelectric conversion elements S11 to S33 in a saturated state. FIG. 5D is a diagram showing an example of energy bands of the photoelectric conversion elements S11 to S33 in the refresh mode.
 光電変換モードにおいては図5(b)に示すように、上部電極135と下部電極131との間に、上部電極135が正電圧となるようにバイアス電圧Vsが印加される。バイアス電圧Vsにより、真性半導体層133中の電子は上部電極135から掃き出される。一方、上部電極135から真性半導体層133に向かってホールが注入されようとするが、不純物半導体層134によって、ホールが真性半導体層133に注入されるのが阻止される。したがって、ホールは真性半導体層133まで移動することはできない。 In the photoelectric conversion mode, as shown in FIG. 5B, a bias voltage Vs is applied between the upper electrode 135 and the lower electrode 131 so that the upper electrode 135 has a positive voltage. Electrons in the intrinsic semiconductor layer 133 are swept out of the upper electrode 135 by the bias voltage Vs. On the other hand, although holes are to be injected from the upper electrode 135 toward the intrinsic semiconductor layer 133, the impurity semiconductor layer 134 prevents the holes from being injected into the intrinsic semiconductor layer 133. Therefore, the holes can not move to the intrinsic semiconductor layer 133.
 この状態で真性半導体層133にX線が入射すると、光電変換効果によって電子-ホール対が生成される。電子とホールは電界に従って再結合することなく真性半導体層133中を移動する。その結果、電子は上部電極135から掃き出されるが、ホールは絶縁層132に阻まれて、絶縁層132と真性半導体層133との界面に留まる。 When X-rays enter the intrinsic semiconductor layer 133 in this state, electron-hole pairs are generated by the photoelectric conversion effect. Electrons and holes move in the intrinsic semiconductor layer 133 without recombination according to the electric field. As a result, electrons are swept out of the upper electrode 135, but holes are blocked by the insulating layer 132 and stay at the interface between the insulating layer 132 and the intrinsic semiconductor layer 133.
 光電変換動作が継続し、絶縁層132と真性半導体層133との界面に滞留したホールが増加すると、その影響により真性半導体層133に印加される電界が弱まってくる。その結果、図5(c)に示すように、X線の入射によって発生した電子-ホール対は電界によって移動することなく再結合により消滅するようになり、光電変換素子S11~S33は光に対する感度を失う。このような状態を飽和と呼ぶ。 When the photoelectric conversion operation continues and holes accumulated at the interface between the insulating layer 132 and the intrinsic semiconductor layer 133 increase, the electric field applied to the intrinsic semiconductor layer 133 is weakened due to the influence. As a result, as shown in FIG. 5C, the electron-hole pair generated by the incidence of X-rays disappears by recombination without moving by the electric field, and the photoelectric conversion elements S11 to S33 have sensitivity to light. Lose. Such a state is called saturation.
 飽和した光電変換素子S11~S33の感度を回復するためには、リフレッシュといわれる動作を行う。リフレッシュモードにおいては、図5(d)に示すように、上部電極135と下部電極131との間に、下部電極131が正電圧となるようにリフレッシュ電圧Vrが印加される。リフレッシュモードにおいては、絶縁層132と真性半導体層133との界面に滞留していたホールは上部電極135から掃き出され、代わりに電子が注入されて絶縁層132の界面に滞留する。 In order to recover the sensitivity of the saturated photoelectric conversion elements S11 to S33, an operation called refresh is performed. In the refresh mode, as shown in FIG. 5D, a refresh voltage Vr is applied between the upper electrode 135 and the lower electrode 131 so that the lower electrode 131 has a positive voltage. In the refresh mode, holes accumulated at the interface between the insulating layer 132 and the intrinsic semiconductor layer 133 are swept out from the upper electrode 135, and instead, electrons are injected and accumulated at the interface of the insulating layer 132.
 ここで再び光電変換モードに切り替えると、注入された電子は速やかに上部電極135から掃き出される。その結果、光電変換素子S11~S33は、バイアス電圧Vrが印加された状態となり、光に対する感度を回復する。 Here, when switching to the photoelectric conversion mode again, injected electrons are rapidly swept out of the upper electrode 135. As a result, the photoelectric conversion elements S11 to S33 are in a state where the bias voltage Vr is applied, and the sensitivity to light is restored.
 以上の通り、光電変換素子S11~S33が光に対する感度を維持するためには定期的にリフレッシュモードで光電変換素子S11~S33を動作させる必要がある。リフレッシュが必要となるのは、第一に、X線が光電変換素子S11~S33に入射した直後である。つまり、X線撮影装置100は、X線の照射が行われX線画像の撮影が行われた際には、次の撮影に備えてリフレッシュモードで光電変換素子を動作させ、光電変換素子の光に対する感度を回復させる必要がある。また、X線が無照射の状態であっても、光電変換素子S11~S33の内部では温度やその他の影響によってランダムに電荷(暗電流)が発生する。こうしたランダムに発生する電荷の蓄積によっても光電変換素子S11~S33の光に対する感度は徐々に失われていく。このため、X線が無照射の状態が一定時間以上継続した場合にもリフレッシュモードで光電変換素子S11~S33を動作させる必要がある。 As described above, in order for the photoelectric conversion elements S11 to S33 to maintain the sensitivity to light, it is necessary to operate the photoelectric conversion elements S11 to S33 periodically in the refresh mode. First, refreshment is required immediately after X-rays enter the photoelectric conversion elements S11 to S33. That is, when the X-ray imaging apparatus 100 irradiates X-rays and captures an X-ray image, the X-ray imaging apparatus 100 operates the photoelectric conversion element in the refresh mode to prepare for the next imaging. It is necessary to restore the sensitivity to Further, even if the X-ray is not irradiated, charges (dark current) are randomly generated inside the photoelectric conversion elements S11 to S33 due to the influence of temperature and other factors. The sensitivity to light of the photoelectric conversion elements S11 to S33 is gradually lost also by the accumulation of the charges generated at random. Therefore, it is necessary to operate the photoelectric conversion elements S11 to S33 in the refresh mode also when the X-ray non-irradiation state continues for a predetermined time or more.
 リフレッシュ動作(リセット動作)中は、X線の照射を検知するために利用する電流信号(バイアス配線の電流情報)が得られないため、X線の照射の検知を行うことはできない。またリフレッシュモードから光電変換モードに切り替えられた直後は、前記電流信号が不安定であり、前記電流信号が安定するまでの間はX線の照射の検知精度が低下する。さらに、X線画像の取得に当たっては一般的にオフセット補正処理が行われる。オフセット補正処理とは、X線画像に重畳して画質を低下させる様々なオフセット成分を除去する処理である。オフセット補正処理は、X線を照射しない状態で取得したオフセット画像データを、X線を照射した状態で取得した画像データから差し引くことで行われる。 During the refresh operation (reset operation), since the current signal (current information of the bias wiring) used to detect the irradiation of the X-ray can not be obtained, it is not possible to detect the irradiation of the X-ray. Further, immediately after switching from the refresh mode to the photoelectric conversion mode, the current signal is unstable, and the detection accuracy of the X-ray irradiation decreases until the current signal is stabilized. Furthermore, offset correction processing is generally performed in acquiring an X-ray image. The offset correction process is a process of removing various offset components which are superimposed on the X-ray image to reduce the image quality. The offset correction process is performed by subtracting offset image data acquired in a state in which X-rays are not irradiated from image data acquired in a state in which X-rays are irradiated.
 オフセット成分としては、直前の撮影後に蛍光体や光電変換素子の特性に基づいて残留する残留電荷や、X線検出器に固有の欠陥に起因する固定ノイズ、あるいは主に温度の影響で生成される電荷に伴う暗電流等がある。特にリフレッシュモードの直後から一定の期間は、暗電流成分の変化が不安定であることが多く、オフセット補正処理の精度が低下する。このため、得られる画像データの画質が低下する。したがって、リフレッシュを実施した後、次の撮影を行うまでの間には一定の準備期間を確保する必要がある。 The offset component is generated mainly by the influence of temperature or fixed noise caused by residual charge remaining based on the characteristics of the phosphor or photoelectric conversion element after the previous imaging, defects inherent to the X-ray detector, or the like. There is a dark current and the like accompanying the charge. In particular, during a fixed period immediately after the refresh mode, the change of the dark current component is often unstable, and the accuracy of the offset correction process is reduced. Therefore, the image quality of the obtained image data is degraded. Therefore, it is necessary to secure a certain preparation period before performing the next imaging after performing the refresh.
 ここで準備期間については、誤検知の抑制や、X線画像の画質の低下の抑制のために、X線照射検知部をオフにすることが望ましい。 Here, for the preparation period, it is desirable to turn off the X-ray irradiation detection unit in order to suppress erroneous detection and to suppress deterioration in the image quality of the X-ray image.
  しかしながら、準備期間中にX線照射検知部をオフとした場合、誤って準備期間中にX線が照射された際に、X線の照射の検知が行われないために、被写体300である患者に無用の被曝を生じさせてしまう可能性がある。加えて以下のような問題が発生する。 However, when the X-ray irradiation detection unit is turned off during the preparation period, the X-ray irradiation is not detected when the X-ray is accidentally irradiated during the preparation period, so the patient 300 is a subject. May cause unwanted exposure. In addition, the following problems occur.
 まず、X線の照射自体は検知されないが、X線の照射に伴って、光電変換素子S11~S33内では、通常と同様に電荷が生成される。光電変換素子S11~S33で生成された電荷は空読みによって徐々に除去されていくが、除去しきれない電荷が光電変換素子S11~S33に蓄積される。この状態のまま、準備期間が終了して撮影が行われると、撮影によって発生した電荷に誤照射によって発生した電荷の残留成分が重畳され、撮影されたX線画像の画質を低下させる要因となる。尚、空読みについては、図6を参照しながら後で説明する。 First, although the X-ray irradiation itself is not detected, charges are generated in the photoelectric conversion elements S11 to S33 in the same manner as usual, as the X-ray irradiation is performed. The charges generated by the photoelectric conversion elements S11 to S33 are gradually removed by blank reading, but the electric charges that can not be removed are accumulated in the photoelectric conversion elements S11 to S33. In this state, when the preparation period ends and imaging is performed, the residual component of the charge generated by the erroneous irradiation is superimposed on the charge generated by the imaging, which causes the image quality of the captured X-ray image to be degraded. . The blank reading will be described later with reference to FIG.
 また、誤照射の直後に準備期間が終了してX線の検知が開始されるような場合、誤照射によって発生した大量の電荷が光電変換素子S11~S33に残留している。このため、X線照射検知部が、誤照射の直後の空読みで光電変換素子S11~S33から読み出された電荷によって、X線の照射を誤検知することによって、X線画像が出力される可能性もある。このとき実際には撮影が行われていないため、得られるX線画像の画質は所定に基準に達しておらず、診断等に適切に用いることができない可能性が高い。このような場合、撮影者は、例えば、こうしたX線画像に対して写損処理等を行うことが必要となる。すなわち、撮影者に対する負荷が増加する原因となり得る。 In addition, when the preparation period ends immediately after the erroneous irradiation and detection of the X-ray is started, a large amount of charge generated by the erroneous irradiation remains in the photoelectric conversion elements S11 to S33. Therefore, an X-ray image is output by the X-ray irradiation detection unit erroneously detecting the X-ray irradiation by the charge read from the photoelectric conversion elements S11 to S33 in the blank reading immediately after the erroneous irradiation. There is also the possibility. At this time, since imaging is not actually performed, the image quality of the obtained X-ray image does not reach a predetermined standard, and there is a high possibility that it can not be appropriately used for diagnosis and the like. In such a case, it is necessary for the photographer to perform, for example, an imaging process or the like on such an X-ray image. That is, the load on the photographer may be increased.
 さらに、X線の誤照射によって発生した電荷により、光電変換素子S11~S33が図5(c)に示したような飽和状態になることがある。光電変換素子S11~S33が飽和状態になると、画素自体の光に対する感度が低下したり、入射したX線(光)に対する飽和レベルが低下してX線画像のダイナミックレンジが狭くなったりする等、X線画像の画質が大幅に劣化する可能性がある。さらに、光電変換素子S11~S33が飽和状態になると、X線の検知感度自体も低下する。このため、正常に照射されたX線の検知を正確に行えず、患者に対して無効な被曝を重ねて生じさせる可能性もある。 Furthermore, the photoelectric conversion elements S11 to S33 may be in a saturated state as shown in FIG. 5C due to the charge generated by the erroneous irradiation of the X-ray. When the photoelectric conversion elements S11 to S33 become saturated, the sensitivity of the pixel itself to light decreases, the saturation level to the incident X-ray (light) decreases, and the dynamic range of the X-ray image narrows, etc. The image quality of the X-ray image may be significantly degraded. Furthermore, when the photoelectric conversion elements S11 to S33 are saturated, the X-ray detection sensitivity itself also decreases. For this reason, it is not possible to accurately detect normally irradiated X-rays, and there is also a possibility of repeatedly causing invalid exposure to the patient.
 こうした理由から、患者に対する無効な被曝を最小限に抑制するためには、準備期間中にもX線の照射を検知することが望ましい。一方で準備期間中にX線を照射して得られるX線画像には画質上の問題がある。したがって、準備期間をなるべく短くし、X線の照射の検知を長い期間にわたって行うことが望ましい。そこで、本実施形態では、準備期間中にX線の照射を検知すると、直ちに光電変換素子S11~S33をリフレッシュするようにする。本実施形態ではこのようにすることによって、照射判定期間中にX線の照射が検知された場合の方が、準備期間中にX線の照射が検知された場合よりも、光電変換素子S11~S33に電荷を蓄積する期間(蓄積期間)を短くする。準備期間中にX線の照射が検知された場合の蓄積期間は0(ゼロ)に近いほど好ましい。 For these reasons, it is desirable to detect x-ray radiation during preparation as well, to minimize ineffective exposure to the patient. On the other hand, X-ray images obtained by irradiating X-rays during the preparation period have problems with image quality. Therefore, it is desirable to shorten the preparation period as much as possible and to detect the X-ray irradiation over a long period. Therefore, in the present embodiment, when X-ray irradiation is detected during the preparation period, the photoelectric conversion elements S11 to S33 are immediately refreshed. In this embodiment, by doing this, the photoelectric conversion elements S11 to S11 are more likely to be detected when X-ray irradiation is detected during the irradiation determination period than when X-ray irradiation is detected during the preparation period. The period (accumulation period) for accumulating charges in S33 is shortened. The accumulation period when X-ray irradiation is detected during the preparation period is preferably as close to 0 (zero) as possible.
 ここで、リフレッシュ動作後の一定期間はX線の照射が推奨されない第1の期間(2次元撮像素子120においてX線の照射を受けるための準備期間)となり、この準備期間が経過した後に、X線の照射が推奨される第2の期間(照射判定期間)となる。本実施形態では、X線撮影装置100の状態が安定するまでの期間、又は、X線撮影装置100の状態が安定すると想定されるまでの期間を準備期間という。X線撮影装置100側で撮影の準備が整うことや、X線画像の画質が十分に保証される状態にX線撮影装置100の状態が遷移することにより、X線撮影装置100の状態が安定になる。一方、照射判定期間とは、X線の照射が推奨される期間をいう。本実施形態では、準備期間が終了した後の期間を照射判定期間とし、この期間にX線の照射を検知すれば、所望の画質を有するX線画像が得られる(又は、所望の画質を有するX線画像が得られることが想定される)ものとする。 Here, the fixed period after the refresh operation is the first period (the preparation period for receiving the irradiation of the X-ray in the two-dimensional imaging device 120) during which the irradiation of the X-ray is not recommended. This is a second period (irradiation determination period) in which irradiation of a line is recommended. In the present embodiment, a period until the state of the X-ray imaging apparatus 100 is stabilized or a period until the state of the X-ray imaging apparatus 100 is assumed to be stable is referred to as a preparation period. The state of the X-ray imaging apparatus 100 is stabilized by the preparation of imaging at the X-ray imaging apparatus 100 side and the state of the X-ray imaging apparatus 100 transitioning to a state where the image quality of the X-ray image is sufficiently ensured. become. On the other hand, the irradiation determination period refers to a period during which X-ray irradiation is recommended. In this embodiment, an X-ray image having a desired image quality can be obtained (or a desired image quality can be obtained if X-ray irradiation is detected during a period after the preparation period ends as an irradiation determination period and X-ray irradiation is detected during this period. It is assumed that an X-ray image can be obtained.
 本実施形態では、準備期間の開始、終了は制御部160により判定される。準備期間が終了することに応じて、制御部160は通信回路180を介して、準備期間が終了したことを示す信号を撮影情報処理装置400に対して送信させる。かかる信号を受けた撮影情報処理装置400の制御部401は、表示部410に表示されるX線撮影装置100の状態表示を非準備状態であることを示す表示から準備完了状態であることを示す表示へと変更する。ここで準備完了状態であることを示す表示は、X線検出器110においてX線の照射を受ける準備が整っていることを示す表示である。かかる信号をX線撮影装置100が送信するタイミング、撮影情報処理装置400が受信するタイミング、又はかかる表示が行われるタイミングを契機として、X線の照射が推奨されない第1の期間と、X線の照射が推奨されない第2の期間とを切り替えてもよい。 In the present embodiment, the control unit 160 determines the start and end of the preparation period. In response to the end of the preparation period, the control unit 160 causes the communication circuit 180 to transmit a signal indicating that the preparation period has ended to the imaging information processing apparatus 400. The control unit 401 of the imaging information processing apparatus 400 having received such a signal indicates that the display of the state of the X-ray imaging apparatus 100 displayed on the display unit 410 is in the preparation completion state from the display indicating the unprepared state. Change to display. Here, the indication indicating the ready state is a indication indicating that the X-ray detector 110 is ready to receive X-ray irradiation. When the X-ray imaging apparatus 100 transmits such a signal, when the imaging information processing apparatus 400 receives it, or when such a display is performed, a first period during which X-ray irradiation is not recommended and an X-ray You may switch with the 2nd period when irradiation is not recommended.
 尚、準備期間の開始、終了は撮影情報処理装置403の制御部401で判定することとしてもよい。この場合には、X線撮影装置100の制御部160からは例えば準備期間の開始を示す信号が出力される。撮影情報処理装置403の制御部401はかかる信号の受信から所定期間が経過することに応じて、表示部410に表示されるX線撮影装置100の状態表示を非準備状態であることを示す表示から準備完了状態であることを示す表示へと変更する。また別の例では、撮影情報処理装置403の制御部401で準備期間の開始を指示する場合には、不具合が生じた場合を除いてX線撮影装置100からの状態信号の受信が不要となる。この場合制御部401は、かかる指示から所定期間が経過することに応じて、表示部410に表示されるX線撮影装置100の状態表示を非準備状態であることを示す表示から準備完了状態であることを示す表示へと変更する。 The start and end of the preparation period may be determined by the control unit 401 of the imaging information processing apparatus 403. In this case, the control unit 160 of the X-ray imaging apparatus 100 outputs, for example, a signal indicating the start of the preparation period. The control unit 401 of the imaging information processing apparatus 403 displays that the status display of the X-ray imaging apparatus 100 displayed on the display unit 410 is not ready in response to the elapse of a predetermined period from the reception of the signal. Is changed to a display indicating that the preparation is completed. In another example, when the control unit 401 of the imaging information processing apparatus 403 instructs the start of the preparation period, reception of the status signal from the X-ray imaging apparatus 100 becomes unnecessary except in the case where a problem occurs. . In this case, the control unit 401 causes a state display of the X-ray imaging apparatus 100 displayed on the display unit 410 to be in the preparation complete state from the display indicating the unprepared state in response to the passage of a predetermined period from the instruction. Change to a display that indicates that there is.
 図6は、X線検出器110の駆動タイミングの一例を示すタイミングチャートである。図6では、照射検知駆動(空読み駆動)の途中から、X線検出器110の駆動タイミングを示す。 FIG. 6 is a timing chart showing an example of drive timing of the X-ray detector 110. As shown in FIG. FIG. 6 shows the drive timing of the X-ray detector 110 from the middle of the irradiation detection drive (blank read drive).
 空読み駆動とは先頭行(y=0)から最終行(y=m)まで順番に、行単位でスイッチ素子T11~T33をオンにして導通させる駆動である。空読み駆動は、光電変換素子S11~S33内に生じた暗電流による電荷を除去するために行われる。空読み駆動は、X線の照射が検知されるまでの間は一定の周期で繰り返される。この間、バイアス配線の電圧Vbは常にバイアス電圧Vsに保たれている。 The blank read drive is a drive that turns on the switch elements T11 to T33 in a row unit to conduct current sequentially from the top row (y = 0) to the last row (y = m). The blank read drive is performed to remove the charge due to the dark current generated in the photoelectric conversion elements S11 to S33. The blank reading drive is repeated at a constant cycle until X-ray irradiation is detected. During this time, the voltage Vb of the bias line is always kept at the bias voltage Vs.
 X線がX線検出器110に照射されると、空読みによって読み出される電荷量(バイアス配線を流れる電流)が増大するため、空読み中の電流の変化を観測することでX線の照射開始を検知することができる。バイアス配線の電流情報は、X線照射検知部150に入力され、X線の照射開始が検知される。X線照射検知部150は、例えば、バイアス配線を流れる電流のピーク値が所定の閾値を超えたか否かを判定し、超えた場合に、X線の照射開始を検知することができる。また、X線照射検知部150は、バイアス配線を流れる電流の時間積分を行い、積分値(電荷の総量)が所定の閾値を超えたか否かを判定し、超えた場合に、X線の照射開始を検知することができる。 When X-rays are irradiated to the X-ray detector 110, the amount of charge read out by blank reading (current flowing through the bias wiring) increases. Therefore, X-ray irradiation start is observed by observing changes in current during blank reading. Can be detected. The current information of the bias wiring is input to the X-ray irradiation detection unit 150, and the start of the X-ray irradiation is detected. The X-ray irradiation detection unit 150 can determine, for example, whether or not the peak value of the current flowing through the bias wiring exceeds a predetermined threshold, and can detect the start of X-ray irradiation if it exceeds. In addition, the X-ray irradiation detection unit 150 performs time integration of the current flowing through the bias wiring, and determines whether the integral value (total amount of charge) exceeds a predetermined threshold value. The start can be detected.
 X線の照射開始が判定されると、その時点で空読み駆動は停止され(図6ではi行目でX線の照射開始を検知している)、電荷を蓄積する動作に移行する。電荷の蓄積中は全てのスイッチ素子T11~T33がオフとなる。所定の時間が経過して電荷の蓄積が終了すると、本読みに移行する。本読みは、先頭行(y=0)から最終行(y=m)まで順番に、行単位でスイッチ素子T11~T33をオンにすることで行われる。 When the X-ray irradiation start is determined, the blank reading drive is stopped at that point (in FIG. 6, the X-ray irradiation start is detected in the i-th row), and the operation shifts to an operation of accumulating charge. During charge accumulation, all the switch elements T11 to T33 are turned off. When a predetermined time has elapsed and charge accumulation is completed, the process proceeds to the main reading. This reading is performed by turning on the switch elements T11 to T33 in row units sequentially from the first row (y = 0) to the last row (y = m).
 本読みが終了すると引き続きリフレッシュ動作が行われる。リフレッシュ動作はバイアス配線の電圧Vbをリフレッシュ電圧Vrにすることで行われる。このとき、このとき、全てのラインの光電変換素子S11~S33に対して一斉にリフレッシュを実施してもよいし、順番にリフレッシュを実施してもよい。あるいは、2次元マトリクス状の複数の画素(光電変換素子)をいくつかのブロックに分割して、ブロックごとにリフレッシュ動作を実施しても構わない。リフレッシュ動作が終了したら再び空読みが開始される。 When the main reading is finished, the refresh operation is continued. The refresh operation is performed by setting the voltage Vb of the bias line to the refresh voltage Vr. At this time, at this time, the refresh may be simultaneously performed on the photoelectric conversion elements S11 to S33 of all the lines, or the refresh may be performed in order. Alternatively, a plurality of two-dimensional matrix pixels (photoelectric conversion elements) may be divided into several blocks, and the refresh operation may be performed for each block. When the refresh operation is completed, blank reading is started again.
 ここで、リフレッシュ動作後の一定期間はX線の照射が推奨されない準備期間として空読みが行われる。準備期間が経過した後は、空読み駆動はそのまま継続され、X線の照射が推奨される照射判定期間となる。尚、準備期間においては、X線の照射を許可しないようにしてもよい。また、このようなリフレッシュ動作後の期間に加えて又は替えて、X線撮影装置100の起動直後の期間を準備期間としてもよい。 Here, blank reading is performed as a preparation period during which X-ray irradiation is not recommended for a certain period after the refresh operation. After the preparation period has elapsed, the blank drive is continued as it is, and X-ray irradiation becomes a recommended irradiation determination period. In the preparation period, X-ray irradiation may not be permitted. In addition to or instead of the period after such a refresh operation, the period immediately after the start of the X-ray imaging apparatus 100 may be set as the preparation period.
 X線照射検知部150は、例えば、蓄積期間が開始してからリフレッシュ動作が終了するまでの間はオフとなり、その他の期間はオンとなっている。 For example, the X-ray irradiation detection unit 150 is off from the start of the accumulation period to the end of the refresh operation, and is on in the other periods.
 準備期間の長さは、X線画像の画質等を保証する範囲で任意で設定すればよく、例えば10秒間に設定される。このようにX線撮影装置100の状態が実際に安定しているか否かに関わらず、X線撮影装置100の状態が安定すると想定される期間であればよい。X線撮影装置100の状態が実際に安定することが保証される期間を準備期間としてもよいことは勿論である。準備期間の長さは、X線撮影装置100の起動直後と、リフレッシュ動作直後とで同じであってもよいし、異なっていてもよい。また、準備期間の長さを、X線撮影装置100の起動直後と、リフレッシュ動作直後とで一括して設定してもよいし、個別に設定してもよい。さらに、例えば、バイアス配線の電流信号の状態を、X線照射検知部150を用いて監視することで、バイアス配線の電流信号が十分に安定するまでの期間を準備期間として設定することも可能である。すなわち、バイアス配線の電流信号に応じて準備期間を自動的に切り替えることも可能である。バイアス配線の電流信号の安定性の程度は、X線画像に要求される画質等を考慮して任意に設定すればよい。こうすることで、例えば、直前の撮影時に高い線量の照射がある等して残留電荷が想定以上に存在する場合に、十分な準備期間をおくことで、残像等によるX線画像の画質の劣化を効果的に防止することもできる。 The length of the preparation period may be set arbitrarily within the range that guarantees the image quality of the X-ray image and the like, and is set to, for example, 10 seconds. Thus, regardless of whether or not the state of the X-ray imaging apparatus 100 is actually stable, it may be a period in which the state of the X-ray imaging apparatus 100 is assumed to be stable. Of course, a period during which the state of the X-ray imaging apparatus 100 is actually stabilized may be set as the preparation period. The length of the preparation period may be the same or different immediately after activation of the X-ray imaging apparatus 100 and immediately after the refresh operation. Further, the length of the preparation period may be set collectively at the start of the X-ray imaging apparatus 100 and immediately after the refresh operation, or may be set individually. Furthermore, for example, by monitoring the state of the current signal of the bias wiring using the X-ray irradiation detection unit 150, it is possible to set a period until the current signal of the bias wiring is sufficiently stabilized as a preparation period. is there. That is, it is also possible to automatically switch the preparation period according to the current signal of the bias wiring. The degree of stability of the current signal of the bias wiring may be set arbitrarily in consideration of the image quality and the like required for the X-ray image. By doing this, for example, when residual charge is present more than expected due to, for example, irradiation of a high dose at the time of immediately preceding imaging, deterioration of the image quality of the X-ray image due to afterimage etc. by setting a sufficient preparation period. Can be effectively prevented.
 図7は、X線撮影装置100における処理の一例を説明するフローチャートである。X線画像の撮影の開始にあたり、X線撮影装置100及びX線発生装置200をそれぞれ起動すると、図7のフローチャートが開始する。 FIG. 7 is a flowchart illustrating an example of processing in the X-ray imaging apparatus 100. When the X-ray imaging apparatus 100 and the X-ray generation apparatus 200 are started up, respectively, at the start of X-ray imaging, the flowchart of FIG. 7 starts.
 ステップS701において、X線撮影装置100(駆動回路165)は、起動後ただちに空読み駆動を開始する。尚、起動後に一度リフレッシュ動作を行い、その後に空読み駆動を開始するようにしてもよい。 In step S701, the X-ray imaging apparatus 100 (drive circuit 165) starts the idle reading drive immediately after startup. Alternatively, the refresh operation may be performed once after startup, and then the blank read drive may be started.
 次に、空読み駆動が開始されたら、引き続きステップS702において、X線撮影装置100(X線照射検知部150)は、X線の照射の検知を開始する。X線の照射の検知を開始すると、ステップS703において、X線撮影装置100(X線照射検知部150)は、X線の照射によって生じるバイアス配線に流れる電流の変化に基づきX線が照射されたか否かを判定する。この判定は、前述したように、バイアス配線の電流のピーク値や時間積分値と閾値とを比較することにより実現することができる。 Next, when blank drive is started, the X-ray imaging apparatus 100 (X-ray irradiation detection unit 150) starts detection of X-ray irradiation in step S702. When detection of X-ray irradiation is started, in step S703, the X-ray imaging apparatus 100 (X-ray irradiation detection unit 150) is irradiated with X-rays based on the change in current flowing in the bias wiring generated by the X-ray irradiation It is determined whether or not. As described above, this determination can be realized by comparing the peak value or the time integral value of the current of the bias wiring with the threshold value.
 この判定の結果、X線の照射が検知されない場合、空読み駆動が継続される。一方、X線の照射が検知された場合、ステップS704において、X線撮影装置100(制御部160)は、X線の照射が検知されたタイミング準備期間内のタイミングであるか否かを判定する。 As a result of this determination, when the X-ray irradiation is not detected, the blank reading drive is continued. On the other hand, when the X-ray irradiation is detected, in step S704, the X-ray imaging apparatus 100 (control unit 160) determines whether or not the timing is within the timing preparation period in which the X-ray irradiation is detected. .
 この判定の結果、X線の照射が検知されたタイミングが準備期間以外のタイミングであると判定された場合、ステップS705に進む。 As a result of this determination, when it is determined that the timing at which the X-ray irradiation is detected is a timing other than the preparation period, the process proceeds to step S705.
 ステップS705に進むと、X線撮影装置100(駆動回路165)は、空読み駆動を停止し、X線照射によって2次元撮像素子120に発生する電荷を蓄積するモードに移行する。予め設定した一定の時間、電荷の蓄積を行うようにしてもよいし、X線の照射の終了を検知して、検知した結果に基づいて電荷の蓄積を終了するタイミングを制御してもよい。電荷の蓄積が終了したら、ステップS706において、X線撮影装置100(読み出し回路170)は、2次元撮像素子120に蓄積された電荷を読み出す(本読みを行う)。本読みにより得られた画像データは、撮影情報処理装置400に送信される。画像データを撮影情報処理装置400に送信するタイミングは、ステップS706のタイミングであっても、ステップS706の後のタイミングであってもよい。 In step S 705, the X-ray imaging apparatus 100 (drive circuit 165) stops the blank reading drive, and shifts to a mode for accumulating charges generated in the two-dimensional imaging element 120 by X-ray irradiation. The charge may be accumulated for a predetermined time, or the end of the X-ray irradiation may be detected, and the timing of ending the charge accumulation may be controlled based on the detected result. When the charge storage is completed, in step S706, the X-ray imaging apparatus 100 (readout circuit 170) reads the charge stored in the two-dimensional imaging device 120 (performs a main reading). Image data obtained by the main reading is transmitted to the photographing information processing apparatus 400. The timing of transmitting the image data to the imaging information processing apparatus 400 may be the timing of step S706 or the timing after step S706.
 そして、少なくとも本読みが終了すると、ステップS707に進み、X線撮影装置100(駆動回路165)は、リフレッシュ動作を行い、光電変換素子S11~S33の感度を回復させる。その後、ステップS708において、X線撮影装置100(制御部160)は、撮影者による操作等に基づき、X線画像の撮影を終了するか否かを判定する。この判定の結果、X線画像の撮影を終了しない場合には、再び空読み駆動が開始される。一方、X線画像の撮影を終了する場合には、図7のフローチャートによる処理を終了する。 Then, when at least the main reading is completed, the process proceeds to step S 707, and the X-ray imaging apparatus 100 (drive circuit 165) performs a refresh operation to restore the sensitivity of the photoelectric conversion elements S 11 to S 33. Thereafter, in step S 708, the X-ray imaging apparatus 100 (control unit 160) determines whether or not the imaging of the X-ray image is to be ended based on an operation or the like by the photographer. As a result of this determination, when the imaging of the X-ray image is not finished, the blank reading drive is started again. On the other hand, when the imaging of the X-ray image is ended, the processing according to the flowchart of FIG.
 ステップS704おいて、X線の照射が検知されたタイミング準備期間内のタイミングであると判定されると、ステップS705、S706を省略してステップS707に進む。すなわち、電荷の蓄積及び本読みが行われずに、直ちにリフレレッシュ動作が行われる。このようにすることで、準備期間中に照射されたX線の影響が次の撮影時に残留し、X線画像の画質やX線の検知感度等が低下するのを効果的に防止することができる。 If it is determined in step S704 that the timing is within the timing preparation period in which the X-ray irradiation is detected, steps S705 and S706 are omitted and the process proceeds to step S707. That is, the refresh operation is immediately performed without the charge accumulation and the real reading. By doing this, the influence of the X-rays irradiated during the preparation period remains at the time of the next imaging, and the image quality of the X-ray image and the detection sensitivity of the X-rays can be effectively prevented from decreasing. it can.
 このとき、制御部160は、不適切なタイミングでX線の照射が行われたことを示す情報を、通信回路180を介して撮影情報処理装置400に送信することができる。撮影情報処理装置400の制御部401は、この情報に基づいて、不適切なタイミングでX線の照射が行われたことを示す警告メッセージを表示部410に表示し、撮影者に注意を促してもよい。 At this time, the control unit 160 can transmit information indicating that X-ray irradiation has been performed at an inappropriate timing to the imaging information processing apparatus 400 via the communication circuit 180. Based on this information, the control unit 401 of the imaging information processing apparatus 400 displays on the display unit 410 a warning message indicating that X-ray irradiation has been performed at an inappropriate timing, and warns the photographer. It is also good.
 以上のように本実施形態では、光電変換素子のリフレッシュが終了(又はX線撮影装置100が起動)したときを始点として開始する準備期間にX線が照射されたことを検知した場合には、直ちにリフレッシュ動作を行うようにした。したがって、準備期間(X線撮影装置100の状態が安定していない期間)を短くすることができ、次の撮影に備えることができる。したがって、準備期間における誤検知を抑制することができ、診断に供するX線画像を効率よく撮影することができるとともに、被写体300に無用の被爆をさせることを抑制することができる。特に、X線撮影装置100とX線発生装置200とを電気的に接続せずに撮影することができるX線撮影システムにおいて、X線撮影装置100の準備期間中にX線の照射が行われた場合に生じる不都合を抑制することができる。 As described above, in the present embodiment, when it is detected that X-rays are irradiated during a preparation period starting from the start of the refresh of the photoelectric conversion element (or the start of the X-ray imaging apparatus 100), The refresh operation was immediately performed. Therefore, the preparation period (period in which the state of the X-ray imaging apparatus 100 is not stable) can be shortened, and preparation for the next imaging can be made. Therefore, false detection in the preparation period can be suppressed, X-ray images to be provided for diagnosis can be efficiently taken, and useless exposure of the subject 300 can be suppressed. In particular, in an X-ray imaging system capable of imaging without electrically connecting the X-ray imaging apparatus 100 and the X-ray generation apparatus 200, X-ray irradiation is performed during the preparation period of the X-ray imaging apparatus 100. It is possible to suppress the inconvenience that occurs in the case of
 本実施形態では、準備期間にX線が照射されたことを検知した場合には、直ちにリフレッシュ動作を行うようにした。しかしながら、照射判定期間中にX線の照射が検知された場合の方が、準備期間中にX線の照射が検知された場合よりも、光電変換素子S11~S33に電荷を蓄積する期間(蓄積期間)が短くなるようにしていれば、必ずしもこのようにしなくてもよい。例えば、準備期間中にX線の照射が検知されてから所定の時間が経過したタイミングで光電変換素子S11~S33に対するリフレッシュ動作を行うようにしてもよい。このようにする場合でも、準備期間中にX線の照射を検知した後の駆動回路165の最初の動作として、光電変換素子S11~S33に対するリフレッシュ動作を行うのが好ましい。 In the present embodiment, when it is detected that X-rays are irradiated in the preparation period, the refresh operation is performed immediately. However, the period during which charge is accumulated in the photoelectric conversion elements S11 to S33 when the X-ray irradiation is detected during the irradiation determination period is longer than when the X-ray irradiation is detected during the preparation period (storage This may not be necessary as long as the period is shortened. For example, the refresh operation may be performed on the photoelectric conversion elements S11 to S33 at a timing when a predetermined time has elapsed after detection of X-ray irradiation during the preparation period. Even in this case, it is preferable to perform the refresh operation on the photoelectric conversion elements S11 to S33 as the first operation of the drive circuit 165 after detecting the X-ray irradiation during the preparation period.
 また、本実施形態では、X線の照射によって光電変換素子S11~S33からバイアス配線に流れる電流信号の累積値と閾値とを比較する場合を例に挙げて説明した。しかしながら、X線の照射によってX線検出器110において変化する物理量を閾値と比較していれば、必ずしも、バイアス配線に流れる電流信号の累積値を閾値と比較しなくてもよい。また、2次元撮像素子120における行と列の関係は逆であってもよい。すなわち、読み出し回路170による列単位の画素信号の読み出しを行単位で行い、駆動回路165による行単位の画素の駆動を列単位で行ってもよい。 Further, in the present embodiment, the case where the accumulated value of the current signal flowing from the photoelectric conversion elements S11 to S33 to the bias wiring by the X-ray irradiation is compared with the threshold has been described as an example. However, as long as the physical quantity that changes in the X-ray detector 110 due to the X-ray irradiation is compared with the threshold, it is not necessary to compare the accumulated value of the current signal flowing in the bias wiring with the threshold. Further, the relationship between the rows and the columns in the two-dimensional imaging device 120 may be reversed. That is, readout of pixel signals in units of columns by the readout circuit 170 may be performed in units of rows, and driving of pixels in units of rows by the drive circuit 165 may be performed in units of columns.
 (第2の実施形態)
 次に、本発明の第2の実施形態について説明する。第1の実施形態では、X線が照射されたことが準備期間に検知されると必ずリフレッシュ動作を行うようにした。これに対し、本実施形態では、準備期間が開始してから所定の条件が成立するまでの間にX線が照射されたことが検知されると第1の実施形態で説明したようにしてリフレッシュ動作を行う。一方、準備期間が開始してから所定の条件が成立した後にX線が照射されたことが検知された場合には、通常通り、電荷の蓄積と本読みとを行った後にリフレッシュ動作を行う。ただし、この場合には、このようにして得たX線画像(画像データ)と、当該X線画像が準備期間に得られたものであることを示す情報を撮影情報処理装置400に送信し、撮影情報処理装置400において当該情報を表示する。このように本実施形態と第1の実施形態とは、準備期間にX線が照射された際の処理の一部が異なると共に、当該処理の一部が異なることに起因する構成が主として異なる。したがって、本実施形態の説明において、第1の実施形態と同一の部分については、図1~図7に付した符号と同一の符号を付すこと等により詳細な説明を省略する。
Second Embodiment
Next, a second embodiment of the present invention will be described. In the first embodiment, the refresh operation is always performed when it is detected during the preparation period that the X-rays have been irradiated. On the other hand, in the present embodiment, if it is detected that X-rays have been irradiated from the start of the preparation period until the predetermined condition is satisfied, the refresh is performed as described in the first embodiment. Do the action. On the other hand, when it is detected that X-rays are irradiated after a predetermined condition is satisfied after the preparation period starts, as usual, charge accumulation and main reading are performed, and then the refresh operation is performed. However, in this case, the X-ray image (image data) obtained in this manner and information indicating that the X-ray image is obtained during the preparation period are transmitted to the imaging information processing apparatus 400, The imaging information processing apparatus 400 displays the information. As described above, this embodiment and the first embodiment are different in part of the processing when X-rays are irradiated in the preparation period, and are mainly different in configuration resulting from the part of the processing being different. Therefore, in the description of the present embodiment, the same parts as those of the first embodiment will be denoted by the same reference numerals as those of FIGS. 1 to 7, and the detailed description will be omitted.
 図8は、X線撮影装置800の構成の一例を示す図である。 FIG. 8 is a diagram showing an example of the configuration of the X-ray imaging apparatus 800. As shown in FIG.
 本実施形態のX線撮影装置800は、図2に示したX線撮影装置100に対し、画像処理部175と通信回路180との間に画像保存部190を設けた点が異なる。その他のX線撮影装置800の構成は、図2に示したX線撮影装置100の構成と同じである。 The X-ray imaging apparatus 800 of this embodiment is different from the X-ray imaging apparatus 100 shown in FIG. 2 in that an image storage unit 190 is provided between the image processing unit 175 and the communication circuit 180. The other configuration of the X-ray imaging apparatus 800 is the same as that of the X-ray imaging apparatus 100 shown in FIG.
 画像保存部190は、少なくとも1枚の撮影された画像データ(X線画像)やそれに付随する各種情報を保存するためのものである。例えば、半導体メモリ素子やハードディスク装置等を画像保存部190として好適に用いることができる。 The image storage unit 190 is for storing at least one photographed image data (X-ray image) and various information attached thereto. For example, a semiconductor memory device, a hard disk drive or the like can be suitably used as the image storage unit 190.
 本実施形態では、読み出し回路170によってX線検出器110から読み出された画像データは、画像処理部175で画像処理が施された後に画像保存部190に保存される。画像保存部190は、少なくとも1枚の画像データを保存することができるだけの保存容量を有する。画像保存部190への保存が完了した画像データは、通信回路180を介して外部の撮影情報処理装置400に送信される。具体的に、画像データは、本読みが終了し、且つ、外部の撮影情報処理装置400に送信することが可能になると送信される。 In the present embodiment, the image data read from the X-ray detector 110 by the reading circuit 170 is stored in the image storage unit 190 after being subjected to image processing by the image processing unit 175. The image storage unit 190 has a storage capacity capable of storing at least one piece of image data. The image data that has been stored in the image storage unit 190 is transmitted to the external imaging information processing apparatus 400 via the communication circuit 180. Specifically, the image data is transmitted when the main reading is finished and can be transmitted to the external photographing information processing apparatus 400.
 このとき画像データの保存を行いながら、同時に撮影情報処理装置400への送信を行ってもよいが、全ての画像データが無事に送信されるまでの間、全ての画像データを画像保存部190に保持させることが望ましい。通信状態の不良等で、画像データの一部を送信できず、外部の撮影情報処理装置400で正確なX線画像を再現(表示)することができなかった場合等に、画像データを再送することができるからである。 At this time, while the image data may be stored, transmission to the imaging information processing apparatus 400 may be simultaneously performed, but all image data is transmitted to the image storage unit 190 until all the image data is successfully transmitted. It is desirable to keep it. When a part of the image data can not be transmitted due to a poor communication condition or the like, and an accurate X-ray image can not be reproduced (displayed) by the external imaging information processing apparatus 400, the image data is resent, etc. Because you can do it.
 準備期間が開始してから所定の条件が経過した後に画像データが得られた場合、制御部160は、当該画像データに対して、その旨を示す検知タイミング情報をヘッダに付加する。検知タイミング情報は、必ずしもヘッダに付加されていなくてもよい。例えば、検知タイミング情報を画像データに埋め込んだり、画像データのファイルとは別のファイルに検知タイミング情報を保存して送信したりしてもよい。検知タイミング情報は、例えば、リフレッシュ駆動が終了してからX線を検知するまでの時間(準備期間が開始してからX線を検知するまでの時間)を示す情報である。 If the image data is obtained after a predetermined condition has elapsed since the start of the preparation period, the control unit 160 adds detection timing information indicating that to the header to the image data. The detection timing information may not necessarily be added to the header. For example, the detection timing information may be embedded in the image data, or the detection timing information may be stored and transmitted in a file different from the file of the image data. The detection timing information is, for example, information indicating the time from the end of the refresh driving to the detection of the X-ray (the time from the start of the preparation period to the detection of the X-ray).
 撮影情報処理装置400の制御部401は、画像データに検知タイミング情報が付加されているか否かを判定する。この判定の結果、画像データに検知タイミング情報が付加されている場合、撮影情報処理装置400の制御部401は、次の処理を行う。すなわち、撮影情報処理装置400の制御部401は、当該画像データを表示部410に表示する際に、当該画像データが、準備期間中にX線が照射されることにより得られたものであることを示すメッセージを併せて表示部410に表示する。具体的には、例えば、当該画像データの上に重ねて当該メッセージを表示する(当該画像データに対して当該メッセージをポップアップ表示する)。このようなメッセージに、リフレッシュ駆動が終了してからの時間(準備期間が開始してからの時間)を示す情報を含めてもよい。 The control unit 401 of the imaging information processing apparatus 400 determines whether detection timing information is added to the image data. If detection timing information is added to the image data as a result of this determination, the control unit 401 of the imaging information processing apparatus 400 performs the following processing. That is, when the control unit 401 of the imaging information processing apparatus 400 displays the image data on the display unit 410, the image data is obtained by irradiating X-rays during the preparation period. Is displayed on the display unit 410 at the same time. Specifically, for example, the message is displayed superimposed on the image data (the message is pop-up displayed for the image data). Such a message may include information indicating the time after the end of the refresh driving (the time after the preparation period starts).
 以上のようなメッセージを表示することにより、撮影者は得られた画像データを、問題のない範囲で診断等に用いることができる。これにより、患者への無用の被曝量を低減することができる。 By displaying the message as described above, the photographer can use the obtained image data for diagnosis and the like within a range without any problem. This can reduce unnecessary exposure to the patient.
 図9は、X線撮影装置800における処理の一例を説明するフローチャートである。X線画像の撮影の開始にあたり、X線撮影装置800及びX線発生装置200をそれぞれ起動すると、図9のフローチャートが開始する。 FIG. 9 is a flowchart illustrating an example of processing in the X-ray imaging apparatus 800. When the X-ray imaging apparatus 800 and the X-ray generation apparatus 200 are activated at the start of X-ray imaging, the flowchart of FIG. 9 is started.
  図9のステップS901~S908の処理の内容は、それぞれ図7のステップS701~S708と同じである。 The contents of the processes in steps S901 to S908 in FIG. 9 are the same as those in steps S701 to S708 in FIG.
  図9のフローチャートと図7のフローチャートとの相違は、ステップS904において、X線の照射が検知されたタイミングが準備期間内のタイミングであると判定された後の処理である。 The difference between the flowchart of FIG. 9 and the flowchart of FIG. 7 is the process after it is determined in step S904 that the timing at which the X-ray irradiation is detected is the timing within the preparation period.
 ステップS904において、X線の照射が検知されたタイミングが準備期間内のタイミングであると判定されると、ステップS909に進む。ステップS909に進むと、制御部160は、X線の照射が検知されたタイミングが、準備期間が開始してから1秒以内であるか否かを判定する。 If it is determined in step S904 that the timing at which the X-ray irradiation is detected is the timing within the preparation period, the process proceeds to step S909. In step S 909, the control unit 160 determines whether the timing at which the X-ray irradiation has been detected is within one second after the preparation period starts.
  この判定の結果、X線の照射が検知されたタイミングが、準備期間が開始してから1秒以内である場合には、ステップS907に進み、第1の実施形態と同様に、電荷の蓄積及び本読みが行われずに、直ちにリフレレッシュ動作が行われる。 As a result of the determination, if the timing at which the X-ray irradiation is detected is within one second after the start of the preparation period, the process proceeds to step S 907, and charge accumulation and processing are performed as in the first embodiment. The refresh operation is immediately performed without the actual reading.
 一方、X線の照射が検知されたタイミングが、準備期間が開始してから1秒以内でない場合には、ステップS910に進む。ステップS910に進むと、制御部160は、検知タイミング情報を生成する。前述したように、検知タイミング情報は、例えば、リフレッシュ駆動が終了してからX線を検知するまでの時間(準備期間が開始してからX線を検知するまでの時間)を示す情報である。 On the other hand, if the timing at which the X-ray irradiation is detected is not within one second after the start of the preparation period, the process proceeds to step S 910. In step S910, the control unit 160 generates detection timing information. As described above, the detection timing information is, for example, information indicating the time from the end of the refresh driving to the detection of the X-ray (the time from the start of the preparation period to the detection of the X-ray).
 次に、ステップS911において、X線撮影装置100(駆動回路165)は、空読み駆動を停止し、X線照射によって2次元撮像素子120に発生する電荷を蓄積するモードに移行する。ステップS911の処理は、ステップS905の処理と同じである。荷の蓄積が終了したら、ステップS912において、X線撮影装置100(読み出し回路170)は、2次元撮像素子120に蓄積された電荷を読み出す(本読みを行う)。ステップS912の本読みの動作自体は、ステップS906の処理と同じである。ただし、ステップS912では、本読みにより得られた画像データと共にステップS910で生成された検知タイミング情報も撮影情報処理装置400に送信される。画像データと検知タイミング情報を撮影情報処理装置400に送信するタイミングは、ステップS912のタイミングであっても、ステップS912の後のタイミングであってもよい。そして、少なくとも本読みが終了すると、ステップS907に進む。 Next, in step S911, the X-ray imaging apparatus 100 (drive circuit 165) stops the blank reading drive, and shifts to a mode for accumulating charges generated in the two-dimensional imaging element 120 by X-ray irradiation. The process of step S911 is the same as the process of step S905. When the storage of the load is completed, in step S912, the X-ray imaging apparatus 100 (readout circuit 170) reads out the charge stored in the two-dimensional imaging device 120 (performs the main reading). The actual reading operation itself of step S912 is the same as the process of step S906. However, in step S912, the detection timing information generated in step S910 is also transmitted to the imaging information processing apparatus 400 together with the image data obtained by the main reading. The timing of transmitting the image data and the detection timing information to the imaging information processing apparatus 400 may be the timing of step S912 or the timing after step S912. Then, when at least the main reading is completed, the process proceeds to step S 907.
 以上のように本実施形態では、準備期間が開始してから1秒以内にX線が照射されたことが検知されると直ちにリフレッシュ動作を行う。一方、準備期間が開始してから1秒が経過した後にX線が照射されたことが検知された場合には、通常通り、電荷の蓄積と本読みとを行った後にリフレッシュ動作を行う。そして、このようにして得たX線画像(画像データ)と、当該X線画像が準備期間に得られたものであることを示す検知タイミング情報を撮影情報処理装置400に送信し、撮影情報処理装置400において当該検知タイミング情報を表示する。 As described above, in the present embodiment, the refresh operation is performed as soon as it is detected that X-rays have been emitted within one second after the start of the preparation period. On the other hand, when it is detected that X-rays have been irradiated after 1 second has passed since the start of the preparation period, as usual, charge accumulation and main reading are performed, and then the refresh operation is performed. Then, the X-ray image (image data) thus obtained and detection timing information indicating that the X-ray image is obtained during the preparation period are transmitted to the imaging information processing apparatus 400, and the imaging information processing apparatus 400 The detection timing information is displayed on the device 400.
 準備期間が開始してからある程度の期間が経過すると、X線撮影装置100の状態が安定している状態に近づいてくるので、このような状態のときに得られたX線画像については、診断に供することを可能にする。ただし、かかるX線画像は、X線の照射が推奨されない期間に得られたものであるので、そのことを報知する。これにより、読影者は、X線の照射が推奨されない期間に得られたものであることを認識したうえで当該X線画像を読影することができる。したがって、例えば、当該X線画像で診断が可能であれば、再度X線画像を得る必要はなくなる。一方、準備期間が開始してから間もない期間では、X線撮影装置100の状態は不安定である。したがって、本実施形態では、このようなタイミングで得られるX線画像は診断に適したものでない可能性が高いものとして、第1の実施形態と同様に、準備期間(X線撮影装置100の状態が安定していない期間)を短くし、次の撮影に備えるようにする。以上のように本実施形態では、被写体300に無用の被爆をさせることをより一層抑制することができる。 When a certain period of time has passed since the start of the preparation period, the state of the X-ray imaging apparatus 100 approaches a stable state, so diagnosis of an X-ray image obtained in such a state is Make it possible to However, since such an X-ray image is obtained during a period in which the X-ray irradiation is not recommended, this is notified. Thus, the image reader can read the X-ray image after recognizing that the X-ray irradiation is not recommended. Therefore, for example, if diagnosis is possible with the X-ray image, it is not necessary to obtain the X-ray image again. On the other hand, the state of the X-ray imaging apparatus 100 is unstable during a period immediately after the start of the preparation period. Therefore, in the present embodiment, the X-ray image obtained at such timing is highly likely not to be suitable for diagnosis, as in the first embodiment, the preparation period (the state of the X-ray imaging apparatus 100 Short) and prepare for the next shooting. As described above, in the present embodiment, it is possible to further suppress unnecessary exposure to the subject 300.
 本実施形態では、準備期間が開始してから1秒以内にX線が照射されたか否かを判定した。しかしながら、準備期間が開始してから所定の条件が成立したか否かを判定していれば、必ずしもこのようにする必要はない。例えば、1秒以外の時間を採用してもよい。また、例えば、X線の照射が検知されたタイミングよりも所定時間前までのタイミングにおけるバイアス配線の電流信号の振幅の変化が所定の範囲内であるか否かを判定してもよい。 In the present embodiment, it was determined whether or not X-rays were irradiated within 1 second after the preparation period started. However, if it is determined whether or not a predetermined condition is satisfied after the start of the preparation period, this is not necessarily the case. For example, a time other than one second may be employed. Further, for example, it may be determined whether or not the change in the amplitude of the current signal of the bias wiring at a predetermined time before the timing at which the X-ray irradiation is detected is within a predetermined range.
 また、本実施形態では、準備期間が開始してから1秒以内に検知されたX線に基づく画像データに対してのみ検知タイミング情報を付加した。しかしながら、必ずしもこのようにする必要はなく、全ての画像データに対して検知タイミング情報を付加してもよい。 Further, in the present embodiment, detection timing information is added only to image data based on X-rays detected within one second after the preparation period starts. However, this is not necessarily the case, and detection timing information may be added to all image data.
 また、本実施形態は、検知タイミング情報に基づくメッセージを画像データの上に重ねて表示する場合を例に挙げて説明した。しかしながら、検知タイミング情報を撮影情報処理装置400の表示部410に表示する方法は、このような方法に限定されない。 Also, in the present embodiment, the case where the message based on the detection timing information is superimposed and displayed on the image data has been described as an example. However, the method of displaying the detection timing information on the display unit 410 of the imaging information processing apparatus 400 is not limited to such a method.
 例えば、画像データに検知タイミング情報が付加されている場合、撮影情報処理装置400の制御部401は、当該画像データを表示せずに、検知タイミング情報に基づくメッセージを表示部410に表示してもよい。前述したように、このようなメッセージに、リフレッシュ駆動が終了してからの時間(準備期間が開始してからの時間)を示す情報を含めてもよい。このようにメッセージのみを表示する場合、撮影情報処理装置400の制御部401は、操作部430の操作に基づいて撮影者により画像データの表示の指示があってから、当該画像データを表示することができる。 For example, when detection timing information is added to image data, the control unit 401 of the imaging information processing apparatus 400 may display a message based on the detection timing information on the display unit 410 without displaying the image data. Good. As described above, such a message may include information indicating the time after the end of the refresh driving (the time after the preparation period starts). When only the message is displayed as described above, the control unit 401 of the photographing information processing apparatus 400 displays the image data after the photographer instructs to display the image data based on the operation of the operation unit 430. Can.
 また、検知タイミング情報に基づくメッセージを画像データの上に重ねずに、表示部410の一画面において並列表示してもよい。特に、準備期間ではなく照射判定期間に得られた画像データに付加された検知タイミング情報を表示する場合には、読影者に対する硬度の注意喚起が必要ではないので、このようにするのが好ましい。また、準備期間に得られた画像データを表示する場合と照射判定期間に得られた画像データを表示する場合とで、検知タイミング情報を表示する方法を異ならせてもよい。 Also, messages based on the detection timing information may be displayed in parallel on one screen of the display unit 410 without overlapping the image data. In particular, when the detection timing information added to the image data obtained in the irradiation determination period, not in the preparation period, is displayed, it is preferable to do so because it is not necessary to warn the reader of the hardness. Further, the method of displaying the detection timing information may be different depending on whether the image data obtained in the preparation period is displayed or the image data obtained in the irradiation determination period is displayed.
 また、準備期間が開始してから所定の条件が成立したか否かを判定しなくてもよい。このようにした場合、図9のステップS904~S907、S909の処理が不要になる。すなわち、X線の照射が検知されたタイミングが準備期間内のタイミングである場合には、検知タイミング情報と画像データを必ず撮影情報処理装置400に送信する構成となる。 In addition, it is not necessary to determine whether a predetermined condition is satisfied after the preparation period starts. In this case, the processes of steps S904 to S907 and S909 in FIG. 9 become unnecessary. That is, when the timing at which the X-ray irradiation is detected is the timing within the preparation period, the detection timing information and the image data are transmitted to the imaging information processing apparatus 400 without fail.
 また、例えば通信不良により、X線撮影装置100と撮影情報処理装置400との通信が途切れたり、あるいは撮影情報処理装置400で何らかの操作(例えば撮影されたX線画像の情報の訂正等)を行ったりしている場合も準備期間に含んでもよい。すなわち、何らかの理由により適切な撮影を行うことができないような状態を準備期間とし、そのようなタイミングで撮影が行われた画像である場合、その旨を示す情報を画像データに付加するようにしていればよい。例えば、検知タイミング情報の一つとして、X線撮影装置100と撮影情報処理装置400との通信状態を示す情報を画像データに付加して表示してもよい。 Further, for example, due to a communication failure, communication between the X-ray imaging apparatus 100 and the imaging information processing apparatus 400 is interrupted, or some operation (for example, correction of information of a captured X-ray image) is performed by the imaging information processing apparatus 400. If it is, it may be included in the preparation period. That is, a state where an appropriate photographing can not be performed for some reason is defined as a preparation period, and when the image is photographed at such a timing, information indicating that is added to the image data. Just do it. For example, information indicating the communication state between the X-ray imaging apparatus 100 and the imaging information processing apparatus 400 may be added to the image data and displayed as one of the detection timing information.
 また、本実施形態においても、第1の実施形態で説明した種々の変形例を採用することができる。 Also in the present embodiment, various modifications described in the first embodiment can be adopted.
 上述の実施形態で述べた通り、PIN型のフォトダイオードを用いることができる。この場合、図3に示すような1トランジスタの撮像素子である場合には、スイッチ素子T11-T33による電荷の出力によりリセット駆動を代用でき、リフレッシュ動作は不要となる。そのため、実施形態の1つではリセット駆動は空読み(出力駆動)と同一となる。 As described in the above embodiments, a PIN type photodiode can be used. In this case, in the case of an imaging device of one transistor as shown in FIG. 3, the reset drive can be substituted by the output of the charge by the switch elements T11 to T33, and the refresh operation becomes unnecessary. Therefore, in one embodiment, the reset driving is the same as the blank reading (output driving).
 別の実施形態では、リセット駆動は、空読みよりもスイッチ素子のオン時間を長くすることとする。空読み(出力駆動)は、X線照射検知部150によるX線の検知に合わせた駆動となっているため、必ずしも光電変換素子に蓄積する電荷の吐き出し機能という側面で実装されているわけではない。 In another embodiment, the reset driving is to make the on time of the switch element longer than the blank reading. Since the blank reading (output driving) is driving according to the detection of the X-ray by the X-ray irradiation detection unit 150, it is not necessarily implemented in the aspect of the discharge function of the charge accumulated in the photoelectric conversion element. .
 バイアス線Vbを流れる電流に基づくX線の検知では、X線の照射が実際に開始されたタイミングとX線の照射開始が検知されるタイミングとの時間のずれに起因するアーチファクトあるいは画像の欠損が生じるは、かかる欠損は、行方向に延びるライン状または帯状の形状を有する。かかる欠損はその後の処理で補正されるべきであるが、補正の処理の容易化の観点で、各ラインにおける画像の欠損の大きさを抑える必要がある。この観点で、空読み(出力駆動)におけるスイッチ素子のオン時間が決定される。そのため、オン時間は、少なくとも本読みの駆動よりは短く設定される。 In detection of X-rays based on the current flowing through the bias line Vb, artefacts or image defects due to the time lag between the timing when X-ray irradiation is actually started and the timing when X-ray irradiation start is detected Such defects have a line-like or band-like shape extending in the row direction. Such defects should be corrected in the subsequent processing, but it is necessary to suppress the size of image defects in each line in terms of facilitating the correction processing. From this point of view, the on time of the switch element in blank reading (output drive) is determined. Therefore, the on time is set to be shorter than at least the drive of the main reading.
 上述の観点から、正規の撮影期間(図6の「照射判定期間」)でない期間(X線の照射が推奨されない期間、図6の「準備期間」)にX線が照射されたことを検知した後のリセット駆動としては、駆動回路165は、例えば図6のVg(i)の信号を制御することにより、照射判定期間の空読みよりもスイッチ素子のオン時間を長くすることで、電荷の吐き出し効率を上げることができ、より早期に撮像素子を安定化することができる。図6の例で言えば、PIN型のセンサの場合には、リフレッシュの期間でスイッチ素子のオン時間が長い空読みを行うこととなる。かかる期間でのX線の照射開始検知により、画像の各ラインに生じる欠損の大きさが大きくなる恐れがあるが、そもそも画質が安定しない期間であるので、診断に用いることができない画像である可能性が高く、問題は小さい。 From the above point of view, it was detected that X-rays were irradiated in a period (period in which X-ray irradiation is not recommended, “preparation period” in FIG. 6) other than the regular imaging period (“irradiation determination period” in FIG. 6) For the subsequent reset drive, the drive circuit 165 discharges the charge by controlling the signal of Vg (i) in FIG. 6, for example, to make the on time of the switch element longer than the blank reading in the irradiation determination period. The efficiency can be increased, and the imaging device can be stabilized earlier. In the example of FIG. 6, in the case of the PIN type sensor, the on-time of the switch element is not read long during the refresh period. Detection of the start of X-ray irradiation in this period may increase the size of the defect generated in each line of the image, but since it is a period during which image quality is not stable initially, it can be an image that can not be used for diagnosis The problem is small.
 かかる実施形態によれば、誤曝射が検知される場合には、駆動回路165は撮像素子120を蓄積状態とせずに空読み駆動を継続させることとなる。 According to this embodiment, when the false exposure is detected, the drive circuit 165 continues the idle reading drive without putting the imaging device 120 in the accumulation state.
 上述の実施形態において、例えば撮影制御装置(撮影情報処理装置)107の機能を互いに通信可能な複数の装置に分散させて制御システムとして撮影制御装置(撮影情報処理装置)107の機能を実現させることとしてもよい。例えば画像処理等の一部の機能を外部のサーバに設けるなどの例がある。かかる外部のサーバは、トモシンセシス撮影を行うX線撮影システムの置かれる撮影室あるいは操作室内に配置され専用のLANで接続されていてもよいし、病院内に配置され院内のLANで通信することとしてもよい。あるいは国内及び国外を問わず院外のデータセンタ等に配置され、VPN等のセキュアな通信で互いにデータをやり取りすることとしてもよい。 In the above embodiment, for example, the functions of the imaging control apparatus (imaging information processing apparatus) 107 may be distributed to a plurality of apparatuses that can communicate with each other to realize the functions of the imaging control apparatus (imaging information processing apparatus) 107 as a control system. It may be For example, there is an example in which some functions such as image processing are provided to an external server. Such an external server may be disposed in an imaging room or an operation room in which an X-ray imaging system performing tomosynthesis imaging is placed and connected by a dedicated LAN, or may be disposed in a hospital and communicated by an in-hospital LAN. It is also good. Alternatively, it may be arranged in a data center outside the hospital regardless of whether it is domestic or foreign, and may exchange data with each other by secure communication such as VPN.
 尚、前述した実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。 The embodiments described above are merely examples of implementation for carrying out the present invention, and the technical scope of the present invention should not be interpreted in a limited manner by these. That is, the present invention can be implemented in various forms without departing from the technical concept or the main features thereof.
 (その他の実施例)
 本発明は、以下の処理を実行することによっても実現される。即ち、まず、以上の実施形態の機能を実現するソフトウェア(コンピュータプログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給する。そして、そのシステム或いは装置のコンピュータ(又はCPUやMPU等)が当該コンピュータプログラムを読み出して実行する。
(Other embodiments)
The present invention is also realized by performing the following processing. That is, first, software (computer program) for realizing the functions of the above embodiments is supplied to a system or apparatus via a network or various storage media. Then, a computer (or a CPU or MPU or the like) of the system or apparatus reads out and executes the computer program.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Accordingly, the following claims are attached to disclose the scope of the present invention.
 本願は、2013年10月30日提出の日本国特許出願特願2013-226016を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 The present application claims priority based on Japanese Patent Application No. 2013-226016 filed on October 30, 2013, the entire contents of which are incorporated herein by reference.

Claims (22)

  1.  放射線の照射が開始されたことを検知する(150)放射線撮影装置(100)であって、
     複数の光電変換素子(S11-S33)を含む撮像素子(120)と、
     複数の光電変換素子に蓄積された電荷に基づく電気信号を出力させる動作を行わせる駆動回路(165)と、
     前記電気信号に基づいて画像データを得る読み出し回路(170)と、
     前記放射線撮影装置のX線撮影のための準備が完了している期間に放射線の照射が開始されたことが検知された場合には、前記検知に応じて前記複数の光電変換素子を蓄積状態とした後に、該蓄積状態で得られる電荷に基づく電気信号を読み出し画像データを得る読み出し動作を行わせ、その後に前記読み出し動作の後に前記撮像素子のリセット駆動を行わせる制御回路(160)を有し、
     前記制御回路は、前記期間とは異なる期間に前記放射線の照射が開始されたことが検知された場合には、前記読み出し動作を行わせずに前記リセット駆動を行わせることを特徴とする放射線撮影装置。
    A radiation imaging apparatus (100) for detecting that radiation irradiation has been started (150),
    An imaging device (120) including a plurality of photoelectric conversion devices (S11 to S33);
    A drive circuit (165) for performing an operation of outputting an electrical signal based on the charge accumulated in the plurality of photoelectric conversion elements;
    A readout circuit (170) for obtaining image data based on the electrical signal;
    When it is detected that radiation irradiation has been started during a period when preparation for X-ray imaging of the radiation imaging apparatus is completed, the plurality of photoelectric conversion elements are stored according to the detection. After that, it has a control circuit (160) for performing a readout operation of reading out an electrical signal based on charges obtained in the storage state and acquiring image data, and thereafter performing reset drive of the imaging element after the readout operation. ,
    When it is detected that the irradiation of the radiation is started in a period different from the period, the control circuit causes the reset drive to be performed without performing the reading operation. apparatus.
  2.  前記制御回路は、前記準備完了している期間に放射線の照射が開始されたことが検知された場合には、前記光電変換素子を蓄積状態とした後、該蓄積状態の終了に応じて前記読み出し動作を行わせ、
     前記制御回路は、前記異なる期間に放射線の照射が開始されたことが検知された場合には、前記光電変換素子を蓄積状態とした後、蓄積状態の終了に応じて前記撮像素子のリセット駆動を行わせることを特徴とする請求項1に記載の放射線撮影装置。
    When it is detected that the irradiation of radiation is started in the preparation completion period, the control circuit puts the photoelectric conversion element in the accumulation state, and then the readout in response to the end of the accumulation state. Make it work,
    When it is detected that the irradiation of radiation is started in the different period, the control circuit puts the photoelectric conversion element in the accumulation state, and then performs reset driving of the imaging element in accordance with the end of the accumulation state. The radiation imaging apparatus according to claim 1, wherein the radiation imaging apparatus comprises:
  3.  前記準備が完了している期間は、前記リセット駆動が終了してから所定の条件が成立するまでの期間と、前記放射線撮影装置が起動してから所定の条件が成立するまでの期間との少なくとも一方の期間であることを特徴とする請求項2に記載の放射線撮影装置。 The period in which the preparation is completed is at least a period from the end of the reset drive to the establishment of a predetermined condition and a period from the activation of the radiation imaging apparatus to the establishment of the predetermined condition. The radiation imaging apparatus according to claim 2, which is one of the periods.
  4.  前記所定の条件は、所定の時間が経過したか否かであることを特徴とする請求項3に記載の放射線撮影装置。 The radiation imaging apparatus according to claim 3, wherein the predetermined condition is whether or not a predetermined time has elapsed.
  5.  前記光電変換素子と、前記光電変換素子の一方の端子に接続されるスイッチ素子(T11-T33)と、をそれぞれが有する複数の画素(125)が2次元マトリクス状に配置された撮像素子(120)と、
     同一の行または列に配置された複数の前記光電変換素子の他方の端子に共通に接続されたバイアス配線(Vb)に電圧を供給する電源(140)と、を有し、
    前記所定の条件は、前記バイアス配線に流れる電流に基づいて定められることとする請求項3に記載の放射線撮影装置。
    An imaging element (120 in which a plurality of pixels (125) each including the photoelectric conversion element and a switch element (T11 to T33) connected to one terminal of the photoelectric conversion element are arranged in a two-dimensional matrix. )When,
    A power supply (140) for supplying a voltage to a bias wire (Vb) commonly connected to the other terminal of the plurality of photoelectric conversion elements arranged in the same row or column;
    The radiation imaging apparatus according to claim 3, wherein the predetermined condition is determined based on a current flowing through the bias wiring.
  6.  前記制御回路は、前記異なる期間に放射線の照射が開始されたことが検知された場合には、前記検知された後にリセット駆動を行わせることを特徴とする請求項1乃至5のいずれか1項に記載の放射線撮影装置。 6. The control circuit according to claim 1, wherein, when it is detected that the irradiation of radiation has been started in the different period, the control circuit causes a reset drive to be performed after the detection. The radiography apparatus described in.
  7.  前記異なる期間は、前記リセット駆動が終了してから前記放射線撮影装置の動作が安定するまでの期間と、前記放射線撮影装置が起動してから前記放射線撮影装置の動作が安定するまでの期間との少なくとも一方の期間であることを特徴とする請求項6に記載の放射線撮影装置。 In the different period, a period from the end of the reset driving to the stabilization of the operation of the radiation imaging apparatus, and a period from the activation of the radiation imaging apparatus to the stabilization of the operation of the radiation imaging apparatus The radiation imaging apparatus according to claim 6, which is at least one period.
  8.  前記駆動手段は、前記異なる期間に前記放射線の照射が開始されたことが検知されると、該検知の直後に前記リセット駆動を行うことを特徴とする請求項1乃至7の何れか1項に記載の放射線撮影装置。 The said drive means performs the said reset drive immediately after the said detection, when it is detected that irradiation of the said radiation was started in the said different period, The 1st term in any 1 item Radiographic apparatus as described.
  9.  前記異なる期間において所定の条件が成立した後に前記放射線の照射が開始されたことが検知されると、検知タイミング情報を取得する取得手段と、
     前記異なる期間において所定の条件が成立した後に照射の開始が検知された放射線に基づく画像と、前記取得手段により取得された検知タイミング情報とを前記放射線撮影装置の外部の情報処理装置に出力する出力手段と、を有し、
     前記駆動手段は、前記異なる期間において所定の条件が成立するまでに前記放射線の照射が開始されたことが検知されると、前記異なる期間に前記放射線の照射が開始されたことが検知された場合よりも早いタイミングで、前記リセット駆動を開始することを特徴とする請求項1乃至8の何れか1項に記載の放射線撮影装置。
    Acquisition means for acquiring detection timing information when it is detected that irradiation of the radiation has been started after a predetermined condition is satisfied in the different periods;
    An output of outputting an image based on radiation of which start of irradiation has been detected after a predetermined condition is satisfied in the different period, and detection timing information acquired by the acquisition unit to an information processing apparatus outside the radiation imaging apparatus Means, and
    When it is detected that the irradiation of the radiation has been started before the predetermined condition is satisfied in the different periods, the driving means detects that the irradiation of the radiation has been started in the different periods. The radiation imaging apparatus according to any one of claims 1 to 8, wherein the reset drive is started earlier than timing.
  10.  前記検知タイミング情報は、前記異なる期間が開始してからの時間の情報を含むことを特徴とする請求項9に記載の放射線撮影装置。 10. The radiation imaging apparatus according to claim 9, wherein the detection timing information includes information of time since the start of the different period.
  11.  前記制御回路は、前記駆動回路に前記複数の光電変換素子に蓄積される電荷を出力させる出力駆動を繰り返し行わせ、
     前記制御回路はさらに、前記期間とは異なる期間に前記放射線の照射が開始されたことが検知されることに応じて前記出力駆動を停止し、前記複数の光電変換素子を蓄積状態とし、該蓄積状態の終了に応じて前記撮像素子のリセット駆動を行わせることを特徴とする請求項1乃至10のいずれか1項に記載の放射線撮影装置。
    The control circuit causes the drive circuit to repeatedly perform output driving that causes the charge accumulated in the plurality of photoelectric conversion elements to be output.
    The control circuit further stops the output driving in response to detection of the start of the irradiation of the radiation during a period different from the period, causing the plurality of photoelectric conversion elements to be in the accumulation state, and the accumulation. The radiation imaging apparatus according to any one of claims 1 to 10, wherein reset driving of the imaging element is performed according to the end of the state.
  12.  前記制御回路は、前記駆動回路に前記複数の光電変換素子に蓄積される電荷を出力させる出力駆動を繰り返し行わせ、
     前記制御回路はさらに、前記期間とは異なる期間に前記放射線の照射が開始されたことが検知された場合には、前記出力駆動を継続して行わせ、少なくとも次の照射開始の検知がされるまでの間は前記読み出し動作を行わせないことを特徴とする請求項1乃至10のいずれか1項に記載の放射線撮影装置。
    The control circuit causes the drive circuit to repeatedly perform output driving that causes the charge accumulated in the plurality of photoelectric conversion elements to be output.
    The control circuit further causes the output drive to be continuously performed when it is detected that the irradiation of the radiation has been started in a period different from the period, and at least a start of the next irradiation is detected. The radiographing apparatus according to any one of claims 1 to 10, wherein the reading operation is not performed until the time t1.
  13.  前記出力駆動は、前記リセット駆動と同一の駆動であることを特徴とする請求項12に記載の放射線撮影装置。 The radiation imaging apparatus according to claim 12, wherein the output drive is the same drive as the reset drive.
  14.  前記撮像素子は、行列状に配置された複数の光電変換素子と、
     行方向に並ぶ複数の光電変換素子に共通に設けられ、前記駆動回路の信号を伝達する駆動信号線(g1-g3)と、
     列方向に並ぶ複数の光電変換素子に共通に設けられ、前記光電変換素子に蓄積される電荷に基づく電気信号を出力する出力信号線(s1-s3)と、
     前記光電変換素子毎に設けられ、前記駆動信号線により伝達される信号により制御される、前記光電変換素子と前記出力信号線とを接続状態または非接続状態とするスイッチ素子(T11-T33)と、を有する請求項1乃至13のいずれか1項に記載の放射線撮影装置。
    The imaging device includes a plurality of photoelectric conversion devices arranged in a matrix.
    A drive signal line (g1-g3) which is commonly provided to a plurality of photoelectric conversion elements arranged in a row direction and transmits signals of the drive circuit;
    An output signal line (s1-s3) which is commonly provided to a plurality of photoelectric conversion elements arranged in the column direction and which outputs an electrical signal based on the charge accumulated in the photoelectric conversion elements;
    A switch element (T11 to T33) provided for each of the photoelectric conversion elements and controlled by a signal transmitted by the drive signal line, for connecting or not connecting the photoelectric conversion element and the output signal line The radiography apparatus according to any one of claims 1 to 13, comprising
  15.  前記駆動回路は、前記出力駆動において前記スイッチ素子のそれぞれが接続状態とされる期間よりも、前記リセット駆動において前記スイッチ素子のそれぞれが接続状態とされる期間が長くなるように信号の出力を制御することを特徴とする請求項14に記載の放射線撮影装置。 The drive circuit controls signal output such that a period in which each of the switch elements is in the connection state is longer in the reset drive than a period in which each of the switch elements is in the connection state in the output drive. The radiation imaging apparatus according to claim 14, characterized in that:
  16.  前記駆動回路は、前記出力駆動において前記スイッチ素子のそれぞれが接続状態とされる期間よりも、前記読み出し動作において前記スイッチ素子のそれぞれが接続状態とされる期間が長くなるように信号の出力を制御することを特徴とする請求項14に記載の放射線撮影装置。 The drive circuit controls signal output such that a period in which each of the switch elements is connected is longer in the read operation than a period in which each of the switch elements is connected in the output drive. The radiation imaging apparatus according to claim 14, characterized in that:
  17.  請求項9または10に記載の放射線撮影装置と通信することが可能な情報処理装置であって、
     前記出力手段により出力された検知タイミング情報に基づく情報を表示装置に表示する表示手段を有することを特徴とする情報処理装置。
    An information processing apparatus capable of communicating with the radiation imaging apparatus according to claim 9 or 10, comprising:
    An information processing apparatus comprising: display means for displaying information based on detection timing information outputted by the output means on a display device.
  18.  前記表示手段は、前記出力手段により出力された検知タイミング情報に基づく情報と当該検知タイミング情報に対応する画像とを一つの画面に表示することを特徴とする請求項17に記載の情報処理装置。 The information processing apparatus according to claim 17, wherein the display unit displays information based on the detection timing information output by the output unit and an image corresponding to the detection timing information on one screen.
  19.  前記表示手段は、
     前記出力手段により出力された検知タイミング情報に対応する画像を表示せずに、当該検知タイミング情報を表示装置に表示した後、ユーザによる操作がなされてから、当該画像を表示装置に表示することを特徴とする請求項17に記載の情報処理装置。
    The display means is
    After the detection timing information is displayed on the display device without displaying the image corresponding to the detection timing information output by the output unit, the user may perform the operation to display the image on the display device. The information processing apparatus according to claim 17, characterized in that:
  20.  放射線の照射が開始されたことを検知する(150)放射線撮影装置(100)であって、
     複数の光電変換素子(S11-S33)を含む撮像素子(120)と、
     複数の光電変換素子に蓄積された電荷に基づく電気信号を出力させる動作を行わせる駆動回路(165)と、
     前記電気信号に基づいて画像データを得る読み出し回路(170)と、
     前記放射線撮影装置のX線撮影のための準備が完了している期間である第一の期間に放射線の照射開始が検知された場合には、前記検知に応じて前記複数の光電変換素子を蓄積状態とした後に、該蓄積状態で得られる電荷に基づく電気信号を読み出し画像データを得る読み出し動作を行わせ、前記第一の期間とは異なる第二の期間のうち少なくとも一部の期間に、前記放射線の照射開始が検知された場合には、前記読み出し動作を行わせない制御回路(160)を有し、
     前記制御回路は、前記第二の期間のうち前記一部の期間とは異なる期間では、前記放射線の照射開始が検知された場合には、前記検知に応じて前記複数の光電変換素子を蓄積状態とした後に、前記読み出し動作を行わせることを特徴とする放射線撮影装置。
    A radiation imaging apparatus (100) for detecting that radiation irradiation has been started (150),
    An imaging device (120) including a plurality of photoelectric conversion devices (S11 to S33);
    A drive circuit (165) for performing an operation of outputting an electrical signal based on the charge accumulated in the plurality of photoelectric conversion elements;
    A readout circuit (170) for obtaining image data based on the electrical signal;
    When the start of radiation irradiation is detected in a first period, which is a period in which preparation for X-ray imaging of the radiation imaging apparatus is completed, the plurality of photoelectric conversion elements are accumulated according to the detection. After the state is set, an electric signal based on the charge obtained in the storage state is read out to perform a read operation to obtain image data, and at least a part of a second period different from the first period It has a control circuit (160) which does not perform the reading operation when the start of radiation irradiation is detected;
    The control circuit is configured to store the plurality of photoelectric conversion elements in response to the detection when the start of the radiation irradiation is detected in a period different from the partial period of the second period. And the read operation is performed.
  21.  前記第二の期間のうち前記一部の期間とは異なる期間に前記放射線の照射開始が検知された場合に行われる場合に、該第二の期間に前記放射線の照射開始が検知されたことを示す情報と、前記読み出し動作により得られる画像データとを外部に出力する通信回路(180)をさらに有することを特徴とする請求項20に記載の放射線撮影装置。 In the case where the start of radiation irradiation is detected in a period different from the partial period of the second period, the fact that the start of irradiation of the radiation is detected in the second period is 21. The radiation imaging apparatus according to claim 20, further comprising a communication circuit (180) for outputting the information to be shown and the image data obtained by the reading operation to the outside.
  22.  放射線の照射が開始されたことを検知する(150)放射線撮影装置(100)であって、
     複数の光電変換素子(S11-S33)に蓄積された電荷を出力させる動作を行わせる駆動回路(150)と、を有し、 
     前記駆動回路は、前記放射線撮影装置のX線撮影のための準備が完了している期間に前記放射線の照射が開始されたことが検知された場合には、前記検知に応じて所定時間前記複数の光電変換素子を蓄積状態とした後に該蓄積状態で蓄積された電荷の出力を開始させ、 
     前記期間とは異なる期間に前記放射線の照射が開始されたことが検知された場合には、前記検知に応じて所定時間よりも短い時間前記複数の光電変換素子を蓄積状態とした後に、または蓄積状態とせずに該蓄積状態で蓄積された電荷の出力を開始させることを特徴とする放射線撮影装置。
    A radiation imaging apparatus (100) for detecting that radiation irradiation has been started (150),
    And d) a drive circuit (150) for performing an operation of outputting the charges accumulated in the plurality of photoelectric conversion elements (S11 to S33),
    When it is detected that the irradiation of the radiation has been started during a period when the preparation for X-ray imaging of the radiation imaging apparatus is completed, the drive circuit is configured to perform the plurality of operations for a predetermined time according to the detection. After putting the photoelectric conversion element in the storage state into the storage state, the output of the charge stored in the storage state is started,
    When it is detected that the irradiation of the radiation is started in a period different from the period, the plurality of photoelectric conversion elements are put in the accumulation state for a time shorter than a predetermined time according to the detection, or A radiation imaging apparatus characterized by starting output of accumulated charges in the accumulation state without setting the state.
PCT/JP2014/067184 2013-10-30 2014-06-27 Radiographic imaging device and information processing device WO2015064149A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015544831A JP6425658B2 (en) 2013-10-30 2014-06-27 Radiation imaging apparatus and information processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013226016 2013-10-30
JP2013-226016 2013-10-30

Publications (1)

Publication Number Publication Date
WO2015064149A1 true WO2015064149A1 (en) 2015-05-07

Family

ID=53003769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067184 WO2015064149A1 (en) 2013-10-30 2014-06-27 Radiographic imaging device and information processing device

Country Status (2)

Country Link
JP (1) JP6425658B2 (en)
WO (1) WO2015064149A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118504A (en) * 2014-12-22 2016-06-30 キヤノン株式会社 Radiographic imaging apparatus and control method therefor
WO2016203984A1 (en) * 2015-06-19 2016-12-22 ソニーセミコンダクタソリューションズ株式会社 Imaging device and control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003126072A (en) * 2001-10-23 2003-05-07 Canon Inc X-ray imaging apparatus and imaging method of x-ray imaging apparatus
JP2012075077A (en) * 2010-06-30 2012-04-12 Fujifilm Corp Radiation detection element and radiation image pickup apparatus
JP2012074817A (en) * 2010-09-28 2012-04-12 Fujifilm Corp Radiation image detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003126072A (en) * 2001-10-23 2003-05-07 Canon Inc X-ray imaging apparatus and imaging method of x-ray imaging apparatus
JP2012075077A (en) * 2010-06-30 2012-04-12 Fujifilm Corp Radiation detection element and radiation image pickup apparatus
JP2012074817A (en) * 2010-09-28 2012-04-12 Fujifilm Corp Radiation image detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118504A (en) * 2014-12-22 2016-06-30 キヤノン株式会社 Radiographic imaging apparatus and control method therefor
WO2016203984A1 (en) * 2015-06-19 2016-12-22 ソニーセミコンダクタソリューションズ株式会社 Imaging device and control method
US10602071B2 (en) 2015-06-19 2020-03-24 Sony Semicondutor Solutions Corporation Imaging device and control method

Also Published As

Publication number Publication date
JPWO2015064149A1 (en) 2017-03-09
JP6425658B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
CN105266832B (en) Radiation detection apparatus, control method thereof, and radiation imaging apparatus
JP5399444B2 (en) Radiation image detection apparatus and radiation image detection method
US10206642B2 (en) Imaging information processing apparatus, X-ray imaging apparatus, X-ray imaging system, control method, and program for causing computer to execute control method
JP6990986B2 (en) Radiation imaging device, radiation imaging system, control method and program of radiation imaging device
JP6431310B2 (en) Management device, control method thereof, and program
JP5473854B2 (en) Radiography apparatus and radiation imaging system
KR102004695B1 (en) Radiography system, control method, and storage medium
JP6425658B2 (en) Radiation imaging apparatus and information processing apparatus
JP2018038547A (en) Radiation imaging apparatus, control method thereof, radiation imaging system, and program
US9894306B2 (en) Radiation imaging system, control apparatus, control method, and storage medium
US9962137B2 (en) Control apparatus, radiation imaging apparatus, radiation imaging system, and control method of radiation imaging apparatus, controlling a state of a radiation sensor based on first and second times from an initialization operation
JP6600403B2 (en) Radiation detection apparatus, control method therefor, radiation imaging apparatus, and program
JP2014050418A (en) Radiographic system, radiation generation apparatus, and operation method of the same
JP2011117930A (en) Radiation image forming device and radiation image forming method
JP2006325631A (en) Imaging apparatus
US12082967B2 (en) Radiation imaging system
JPWO2013057941A1 (en) 2D image detector
WO2015087610A1 (en) Radiation imaging device, and radiation imaging system
JP2018153359A (en) Radiographic apparatus, control method thereof, and imaging system
JP6917774B2 (en) Radiation imaging device, radiation imaging system, control method and program of radiation imaging device
JP6147316B2 (en) X-ray imaging system and control method of X-ray imaging system
JP2022123631A (en) Radiation imaging apparatus, radiation imaging system, and control method and program of radiation imaging apparatus
JP2013093736A (en) Radiation image photographing device and radiation image photographing system
JP2019136403A (en) Radiographic apparatus and radiographic system
JP2016042971A (en) Radiation imaging system, control device, radiation imaging device, control method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015544831

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14857330

Country of ref document: EP

Kind code of ref document: A1