Nothing Special   »   [go: up one dir, main page]

WO2015060429A1 - ヘモグロビンA1cの測定方法および測定キット - Google Patents

ヘモグロビンA1cの測定方法および測定キット Download PDF

Info

Publication number
WO2015060429A1
WO2015060429A1 PCT/JP2014/078363 JP2014078363W WO2015060429A1 WO 2015060429 A1 WO2015060429 A1 WO 2015060429A1 JP 2014078363 W JP2014078363 W JP 2014078363W WO 2015060429 A1 WO2015060429 A1 WO 2015060429A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
seq
amadoriase
acid sequence
αf6p
Prior art date
Application number
PCT/JP2014/078363
Other languages
English (en)
French (fr)
Inventor
陽介 鉞
敦 一柳
Original Assignee
キッコーマン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キッコーマン株式会社 filed Critical キッコーマン株式会社
Priority to EP14856134.3A priority Critical patent/EP3061819B1/en
Priority to CN201480058684.9A priority patent/CN105683374A/zh
Priority to US15/031,037 priority patent/US11078517B2/en
Priority to JP2015543924A priority patent/JP6542671B2/ja
Priority to KR1020167013254A priority patent/KR102390390B1/ko
Publication of WO2015060429A1 publication Critical patent/WO2015060429A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0026Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5)
    • C12N9/0032Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5) with oxygen as acceptor (1.5.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/28Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving peroxidase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y105/00Oxidoreductases acting on the CH-NH group of donors (1.5)
    • C12Y105/03Oxidoreductases acting on the CH-NH group of donors (1.5) with oxygen as acceptor (1.5.3)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • G01N33/725Haemoglobin using peroxidative activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y111/00Oxidoreductases acting on a peroxide as acceptor (1.11)
    • C12Y111/01Peroxidases (1.11.1)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/795Porphyrin- or corrin-ring-containing peptides
    • G01N2333/805Haemoglobins; Myoglobins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/906Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.7)
    • G01N2333/9065Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.7) acting on CH-NH groups of donors (1.5)
    • G01N2333/90672Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.7) acting on CH-NH groups of donors (1.5) with oxygen as acceptor (1.5.3) in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/908Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)

Definitions

  • the present invention relates to a method for measuring hemoglobin A1c in a sample and a reagent kit for measurement used in the method.
  • Glycated proteins are produced by non-enzymatic covalent bond formation between the aldehyde group of aldoses (monosaccharides and derivatives thereof that potentially have aldehyde groups) such as glucose, and Amadori transfer It is.
  • aldehyde group of aldoses monosaccharides and derivatives thereof that potentially have aldehyde groups
  • Amadori transfer It is.
  • the amino group of a protein include an ⁇ -amino group at the amino terminus and an ⁇ -amino group of a lysine residue side chain in the protein.
  • Known glycated proteins generated in vivo include glycated hemoglobin in which hemoglobin in blood is glycated, glycated albumin in which albumin is glycated, and the like.
  • HbA1c hemoglobin A1c
  • ⁇ -chain a protein in which glucose is bound to the ⁇ -amino group of Val (valine) at the N-terminus (amino terminus) of the hemoglobin “ ⁇ -chain”. Since the HbA1c concentration in blood reflects the average blood glucose level over a certain period in the past, the value of HbA1c is an important index in the diagnosis and management of diabetes symptoms.
  • Amadoriase catalyzes a reaction that oxidizes iminodiacetic acid or its derivative (also called “Amadori compound”) in the presence of oxygen to produce glyoxylic acid or ⁇ -ketoaldehyde, an amino acid or peptide, and hydrogen peroxide. It is a general term for enzymes to be used. Amadoriase is known as a useful enzyme for measuring HbA1c by an enzymatic method. As a substrate oxidized by amadoriase, for example, ⁇ -fructosyl valyl histidine (hereinafter referred to as ⁇ FVH) is known.
  • ⁇ FVH ⁇ -fructosyl valyl histidine
  • Amadoriase has been found so far in bacteria, yeasts and fungi, such as the genus Coniochaeta, Eupenicillium, Pyrenochaeta, Arthrinium, Curvularia. , Neocosmospora genus, Cryptococcus genus, Phaeosphaeria genus, Aspergillus genus, Emericella genus, Ulocladium genus, Penicillium F arium ), Achaetomiella, Achaetomium, Thielavia, Chaetomium, Gerasinospora, Microascus, Leptosphaeria, Ophiobolus, Pleospora, Conioketidium (Co Amadoriases from the genera niochaetidium, Pichia, Debaryomyces, Corynebacterium, Agrobacterium, Arthrobacter are reported (for example, (See Patent Documents 1, 6 to 15 and Non-Patent Document
  • amadoriase may be described by expressions such as ketoamine oxidase, fructosyl amino acid oxidase, fructosyl peptide oxidase, and fructosylamine oxidase depending on the literature.
  • HbA1c As a method for measuring HbA1c quickly and conveniently using various amadoriases as described above, HbA1c is decomposed with a protease or peptidase (hereinafter referred to as protease) excision enzyme, and the ⁇ -chain amino terminus of HbA1c is used.
  • protease peptidase
  • a method is known in which a specific measurement substance is liberated and the liberated measurement substance is quantified using the amadoriase as described above (see, for example, Patent Documents 1 to 7).
  • HbA1c was digested with Glu-C protease, and glycated ⁇ -fructosyl hexapeptide ( ⁇ -fructosyl hexapeptide comprising ⁇ -amino acid-terminal valine)
  • ⁇ F6P ktosylvalylhistidyl leucylthreonylprolyl glutamic acid
  • This method is a method for measuring HbA1c with an enzyme in accordance with the HbA1c measurement method (see Non-patent Document 10) defined by IFCC (International Federation of Clinical Chemistry and Laboratory Medicine).
  • Proteases and the like show the action of hydrolyzing proteins, so that enzymes that are proteins are also hydrolyzed by proteases and the like. Therefore, amadoriase is also hydrolyzed by protease and inactivated, and as a result, the reaction of consuming glycated peptide and oxygen to produce hydrogen peroxide is inhibited. As a countermeasure against this, it is conceivable to increase the prescription amount of amadoriase and finish the measurement before the amadoriase is completely inactivated. This is not preferable in nature.
  • peroxidase when HbA1c is measured by quantifying hydrogen peroxide generated by the action of amadoriase on a glycated peptide, peroxidase may be used for the quantification of hydrogen peroxide. In this case, peroxidase is also undesirably hydrolyzed by protease and the like and deactivated.
  • an automatic analyzer for HbA1c measurement by an enzyme.
  • various biological markers such as HbA1c are simultaneously measured using one sample.
  • each biomarker is measured using an enzyme or an antibody, if a protease or the like is contaminated, the enzyme or antibody contained in each biomarker measurement reagent is hydrolyzed, and a biomarker other than HbA1c is accurately measured.
  • the reagent set in the automatic analyzer does not originally contain protease or the like.
  • the problem to be solved by the present invention is to find an amadoriase that generates hydrogen peroxide by oxidizing the ⁇ chain of HbA1c, and to construct a method for measuring HbA1c using the same.
  • the present invention includes the following.
  • a method for measuring hemoglobin A1c in a sample wherein amadoriase directly acting on hemoglobin A1c is allowed to act on the sample, and hydrogen peroxide or oxygen consumed by the action is measured.
  • the amadoriase that directly acts on hemoglobin A1c has a specific activity of 0.1 U / mg or more with respect to ⁇ -fructosylvalylhistidyl leucylthreonylprolylglutamic acid ( ⁇ F6P). The method described.
  • the amadoriase that directly acts on hemoglobin A1c has a specific activity of 0.1 U / mg or more with respect to ⁇ -fructosylvalylhistidyl leucylthreonylprolylglutamic acid ( ⁇ F6P), and an amadoriase selected from the group consisting of (i) to (iii), (i) a position corresponding to a position selected from the group consisting of (a) to (j) below of the amino acid sequence of SEQ ID NO: 1 when the amino acid sequence of Amadoriase is aligned with the amino acid sequence of SEQ ID NO: 1
  • the amadoriase amino acid sequence has a substitution of one or more amino acid residues, (A) position 62 of SEQ ID NO: 1, (B) position 63 of SEQ ID NO: 1, (C) position 102 of SEQ ID NO: 1, (D) position 106 of SEQ ID NO: 1, (E) position 110 of SEQ ID
  • amino acid at a position corresponding to two or more positions is an amino acid residue described in each of (a) to (j), and ⁇ -fructosylvalylhistidyl leucylthreonylprolyl 5.
  • the method according to 4 which is an amadoriase having a specific activity of 0.1 U / mg or more with respect to glutamic acid ( ⁇ F6P).
  • the amadoriase that directly acts on the hemoglobin A1c is selected from the group consisting of (a) to (j) of the amino acid described in SEQ ID NO: 1 when the amino acid sequence of Amadoriase is aligned with the amino acid sequence described in SEQ ID NO: 1.
  • the amino acid at a position corresponding to three or more positions is an amino acid residue described in each of (a) to (j), and ⁇ -fructosylvalylhistidyl leucylthreonylprolyl 6.
  • the amadoriase that directly acts on hemoglobin A1c is selected from the group consisting of amino acids (a) to (j) of the amino acid described in SEQ ID NO: 1 when the amino acid sequence of Amadoriase is aligned with the amino acid sequence described in SEQ ID NO: 1.
  • amino acid at a position corresponding to 4 or more positions is an amino acid residue described in each of (a) to (j), and ⁇ -fructosylvalylhistidyl leucylthreonylprolyl 7.
  • the amadoriase that directly acts on hemoglobin A1c is selected from the group consisting of amino acids (a) to (j) of the amino acid described in SEQ ID NO: 1 when the amino acid sequence of Amadoriase is aligned with the amino acid sequence described in SEQ ID NO: 1.
  • the amino acid at a position corresponding to 5 or more positions is an amino acid residue described in each of (a) to (j), and ⁇ -fructosylvalylhistidyl leucylthreonylprolyl 8.
  • the amadoriase that directly acts on the hemoglobin A1c is selected from the group consisting of (a) to (j) of the amino acid described in SEQ ID NO: 1 when the amino acid sequence of Amadoriase is aligned with the amino acid sequence described in SEQ ID NO: 1.
  • amino acid at the position corresponding to 6 or more positions is an amino acid residue described in each of the above (a) to (j), and ⁇ -fructosylvalylhistidyl leucylthreonylprolyl 9.
  • Amadoriases that directly act on hemoglobin A1c are genus Coniochaeta, Eupenicillium, Pyrenochaeta, Arthrinium, Curvularia, Neocosmospora 1 to 9, derived from the genus Cryptococcus, Phaeosphaeria, Aspergillus, Emericella, Ulocladium, or Penicillium Measuring method of hemoglobin A1c in the sample.
  • Amadoriase directly acting on hemoglobin A1c is Coniochaeta sp., Eupenicillium terrenum, Pyrenochaeta sp., Arthrinium sp.
  • Neocosmospora vasinfecta Cryptococcus neoformans, Phaeosphaeria nodorum, Aspergillus nidulans, U.
  • amadoriase directly acting on hemoglobin A1c is an amadoriase selected from the group consisting of: (i) Amadoriase having an amino acid sequence in which one or several amino acid substitutions, deletions or additions have been made to the amino acid sequence shown in SEQ ID NO: 141 or 143.
  • the full-length amino acid sequence of the amadoriase has a sequence identity of 70% or more with the amino acid sequence of SEQ ID NO: 141 or 143, and positions 10 to 32, 36 of SEQ ID NO: 141 -41st, 49-52th, 54-58th, 73-75th, 84-86th, 88-90th, 120-122, 145-150, 156-162, 164-170, 180 182nd, 202th to 205th, 207th to 211th, 214th to 224th, 227th to 230th, 236th to 24th, 243th to 248th, 258th to 261st, 266th to 268th, 270th to 273th, 275 ⁇ 287, 295 to 297, 306 to 308, 310 to 316, 324 to 329, 332 to 334, 341 to 344, 346 to 355, 357 to In the homology
  • Amadoriase further comprises the following amino acids in the amino acid sequence shown in SEQ ID NO: 1, (I) 262th asparagine, (Ii) 257th valine, (Iii) glutamic acid at position 249 (iv) glutamic acid at position 253, (V) 337th glutamine, (Vi) glutamic acid at position 340, (Vii) aspartic acid at position 232; (Viii) aspartic acid at position 129, (Ix) aspartic acid at position 132, (X) glutamic acid at position 133, (Xi) glutamic acid at position 44, (Xii) 256th glycine, (Xiii) glutamic acid at position 231 and (xiv) glutamic acid at position 81, Having a substitution of one or more amino acid residues at a position corresponding to an amino acid selected from the group consisting of optionally 3 amino acid residues from the carboxyl terminus may be deleted; 12.
  • the measuring
  • a reagent kit for measuring hemoglobin A1c in a sample comprising the following components (1) and (2):
  • the amadoriase that directly acts on hemoglobin A1c has a specific activity of 0.1 U / mg or more with respect to ⁇ -fructosylvalylhistidyl leucylthreonylprolylglutamic acid ( ⁇ F6P).
  • ⁇ F6P ⁇ -fructosylvalylhistidyl leucylthreonylprolylglutamic acid
  • the amadoriase that directly acts on hemoglobin A1c has a specific activity of 0.1 U / mg or more with respect to ⁇ -fructosylvalylhistidyl leucylthreonylprolylglutamic acid ( ⁇ F6P), and an amadoriase selected from the group consisting of (i) to (iii), (i) a position corresponding to a position selected from the group consisting of (a) to (j) below of the amino acid sequence of SEQ ID NO: 1 when the amino acid sequence of Amadoriase is aligned with the amino acid sequence of SEQ ID NO: 1
  • the amadoriase amino acid sequence has a substitution of one or more amino acid residues, (A) position 62 of SEQ ID NO: 1, (B) position 63 of SEQ ID NO: 1, (C) position 102 of SEQ ID NO: 1, (D) position 106 of SEQ ID NO: 1, (E) position 110 of SEQ ID
  • amadoriase directly acting on hemoglobin A1c aligns the amino acid sequence of amadoriase with the amino acid sequence described in SEQ ID NO: 1, from the group consisting of the following amino acids (a) to (j) of SEQ ID NO: 1
  • the amino acid at a position corresponding to one or more selected positions is an amino acid residue described in each of the following, and ⁇ -fructosyl valyl histidyl leucyl threonyl prolyl glutamic acid ( ⁇ F6P)
  • An amadoriase having a specific activity of 0.1 U / mg or more (A) the amino acid at the position corresponding to position 62 of SEQ ID NO: 1 is alanine, aspartic acid, asparagine, glutamine, glutamic acid, glycine, valine, leucine, isoleucine, cysteine, serine, threonine or proline; (B) the amino acid at the position corresponding to position
  • the amadoriase that acts directly on hemoglobin A1c is selected from the group consisting of (a) to (j) of the amino acids described in SEQ ID NO: 1 when the amino acid sequence of Amadoriase is aligned with the amino acid sequence described in SEQ ID NO: 1. And the amino acid at a position corresponding to two or more positions is an amino acid residue described in each of (a) to (j), and ⁇ -fructosylvalylhistidyl leucylthreonylprolyl 18.
  • the amadoriase that directly acts on hemoglobin A1c is selected from the group consisting of (a) to (j) of the amino acids described in SEQ ID NO: 1 when the amino acid sequence of Amadoriase is aligned with the amino acid sequence described in SEQ ID NO: 1.
  • the amino acid at a position corresponding to three or more positions is an amino acid residue described in each of (a) to (j), and ⁇ -fructosylvalylhistidyl leucylthreonylprolyl 19.
  • the amadoriase that directly acts on hemoglobin A1c is selected from the group consisting of (a) to (j) of the amino acids described in SEQ ID NO: 1 when the amino acid sequence of Amadoriase is aligned with the amino acid sequence described in SEQ ID NO: 1. And the amino acid at a position corresponding to 4 or more positions is an amino acid residue described in each of (a) to (j), and ⁇ -fructosylvalylhistidyl leucylthreonylprolyl 20.
  • the amadoriase directly acting on hemoglobin A1c is selected from the group consisting of amino acids (a) to (j) of amino acids described in SEQ ID NO: 1 when the amino acid sequence of Amadoriase is aligned with the amino acid sequence described in SEQ ID NO: 1. And the amino acid at a position corresponding to 5 or more positions is an amino acid residue described in each of (a) to (j), and ⁇ -fructosylvalylhistidyl leucylthreonylprolyl 21.
  • the amadoriase directly acting on hemoglobin A1c is selected from the group consisting of (a) to (j) of the amino acids described in SEQ ID NO: 1 when the amino acid sequence of Amadoriase is aligned with the amino acid sequence described in SEQ ID NO: 1. And the amino acid at the position corresponding to 6 or more positions is an amino acid residue described in each of the above (a) to (j), and ⁇ -fructosylvalylhistidyl leucylthreonylprolyl
  • Amadoriase which acts directly on the hemoglobin A1c to generate hydrogen peroxide, includes the genus Coniochaeta, Eupenicillium, Pyrenochaeta, Arthrinium, Carbraria (Curvularia), Neocosmospora, Cryptococcus, Phaeosphaeria, Aspergillus, Emericella, Ulocladium, or Penicillium
  • Coniochaeta Eupenicillium
  • Pyrenochaeta Pyrenochaeta
  • Arthrinium Carbraria (Curvularia)
  • Neocosmospora Neocosmospora
  • Cryptococcus Phaeosphaeria
  • Aspergillus Emericella
  • Ulocladium or Penicillium
  • Penicillium The kit according to any one of 14 to 22, which is derived from a genus.
  • Amadoriase having an action of directly acting on hemoglobin A1c to generate hydrogen peroxide (i) an amadoriase having an amino acid sequence in which one or several amino acid substitutions, deletions or additions have been made to the amino acid sequence shown in SEQ ID NO: 141 or 143, or (ii) In the amadoriase of (i), the full-length amino acid sequence of the amadoriase has a sequence identity of 70% or more with the amino acid sequence of SEQ ID NO: 141 or 143, and positions 10 to 32, 36 of SEQ ID NO: 141 -41st, 49-52th, 54-58th, 73-75th, 84-86th, 88-90th, 120-122, 145-150, 156-162, 164-170, 180 182nd, 202th to 205th, 207th to 211th, 214th to 224th, 227th to 230th, 236th to 24th, 243th to 248
  • amino acid in the amino acid sequence shown in SEQ ID NO: 1 is further produced by the amadoriase having the action of directly acting on hemoglobin A1c and generating hydrogen peroxide, (I) 262th asparagine, (Ii) 257th valine, (Iii) glutamic acid at position 249 (iv) glutamic acid at position 253, (V) 337th glutamine, (Vi) glutamic acid at position 340, (Vii) aspartic acid at position 232; (Viii) aspartic acid at position 129, (Ix) aspartic acid at position 132, (X) glutamic acid at position 133, (Xi) glutamic acid at position 44, (Xii) 256th glycine, (Xiii) glutamic acid at position 231 and (xiv) glutamic acid at position 81, Having a substitution of one or more amino acid residues at a position corresponding to an amino acid selected from the group
  • an amadoriase selected from the group consisting of: (i) When the amino acid sequence of Amadoriase is aligned with the amino acid sequence shown in SEQ ID NO: 1, the amino acid at the position corresponding to position 68 in the amino acid sequence shown in SEQ ID NO: 1 is asparagine, or the amino acid shown in SEQ ID NO: 1 An amadoriase wherein the amino acid at the position corresponding to position 356 in the sequence is threonine and has activity against ⁇ -fructosyl hexapeptide ( ⁇ F6P); (ii) From the amino acid sequence in which one or several amino acids in the position other than the position corresponding to position 68 or position 356 in the amino acid sequence shown in SEQ ID NO: 1 are substituted, deleted or added in the amadoriase of (i) above And an amadoriase having activity against ⁇ F6P, (iii) In the amadoriase of (i), the amino acid at the position
  • the present invention it is possible to provide an amadoriase that can quantify HbA1c quickly, simply, accurately and satisfactorily. If such an amadoriase is used, the measuring method and measuring kit of HbA1c by the enzyme method can be provided without prescribing protease or the like. In the present invention, since it is not necessary to formulate a protease or the like, the kit can be simplified, the reaction efficiency and measurement accuracy can be increased, and furthermore, an undesirable reaction to other protein reagents by the protease or the like can be avoided.
  • FIG. 1-1 It is a continuation of FIG. 1-2. It is a continuation of FIG. 1-3. This is continued from FIG. It is the 2nd figure which illustrates the identity in the amino acid sequence of various well-known amadoriases, and a similar amino acid. In addition to Co, Et, Py, Ar, Cc, and Nv, Cn, Pn, An, En, Ul, and Pj were aligned. This is continued from FIG. 2-1. It is a continuation of FIG. 2-2. This is continued from FIG. 2-3. It is a continuation of FIG.
  • FIG. 6 is a diagram showing the results of measuring HbA1c after diluting a sample containing HbA1c with an n-dodecyl- ⁇ -D-maltoside solution.
  • FIG. 6 is a diagram showing the results of HbA1c measurement after diluting a sample containing HbA1c with an n-tetradecyl- ⁇ -D-maltoside solution. It is a figure which shows the relationship between the elapsed time after mixing a sample diluent (reagent D1) and a measurement reagent, and a light absorbency at the time of measuring HbA1c using a modified
  • reagent D1 sample diluent
  • FIG. 4 is a diagram showing the results of HbA1c measurement using amadoriase 25 after diluting a sample containing HbA1c with an n-dodecyl- ⁇ -D-maltoside solution (reagent D1) containing hydrochloric acid. It is a figure which shows the result of having diluted the sample containing HbA1c with the polyoxyethylene (20) cetyl ether solution (reagent D2) containing hydrochloric acid, and having performed HbA1c measurement.
  • FIG. 4 is a diagram showing the results of HbA1c measurement using amadoriase 28 after diluting a sample containing HbA1c with an n-dodecyl- ⁇ -D-maltoside solution (reagent D1) containing hydrochloric acid. It is a figure which shows the relationship between the elapsed time after mixing a sample diluent (reagent G1) and the reagent for a measurement, and a light absorbency when HbA1c is measured using a modified amadoriase. When 300 seconds have elapsed, the amadoriase solution is added.
  • the glycated protein in the present invention refers to a non-enzymatically glycated protein.
  • Glycated proteins exist both in vivo and externally. Examples of existing in vivo include glycated hemoglobin and glycated albumin in blood. Among glycated hemoglobins, the ⁇ -chain amino-terminal valine of hemoglobin is glycated. Glycated hemoglobin is particularly referred to as hemoglobin A1c (HbA1c). Examples that exist outside the body include foods and beverages such as liquid seasonings in which proteins, peptides and sugars coexist, and infusions.
  • the glycated peptide in the present invention refers to a non-enzymatically glycated peptide derived from a glycated protein, a peptide that is directly non-enzymatically glycated, a peptide that is generated as a result of degradation of a glycated protein by a protease, A glycated (poly) peptide constituting a glycated protein is included.
  • a glycated peptide may be referred to as a fructosyl peptide.
  • the amino group on the side of the peptide to be glycated includes an ⁇ -amino group at the amino terminus, an ⁇ -amino group on the side chain of a lysine residue inside the peptide, and the glycated peptide in the present invention refers to More specifically, it is an ⁇ -glycated peptide ( ⁇ -fructosyl peptide).
  • the ⁇ -glycated peptide is formed by releasing it from a glycated protein in which the N-terminal ⁇ -amino acid is glycated by some means, for example, limited decomposition with a protease or the like.
  • the corresponding ⁇ -glycated peptide refers to a glycated peptide cut out from the ⁇ chain of HbA1c in which the N-terminus is glycated.
  • the ⁇ chain of HbA1c composed of 146 amino acids also corresponds to the ⁇ -glycated peptide.
  • the measurement substance on which the amadoriase of the present invention acts is HbA1c, more specifically, the ⁇ chain of HbA1c.
  • the measurement substance on which the amadoriase of the present invention acts is ⁇ F6P cleaved from the ⁇ chain of HbA1c, specifically, ⁇ -fructosyl valyl histidyl leucyl threonyl prolyl glutamic acid.
  • the measurement substance on which the amadoriase of the present invention acts is ⁇ FVH ( ⁇ -fructosyl valylhistidine) or ⁇ FV ( ⁇ -fructosyl valine).
  • Amadoriase is also called ketoamine oxidase, fructosyl amino acid oxidase, fructosyl peptide oxidase, or fructosylamine oxidase, which oxidizes iminodiacetic acid or its derivative (Amadori compound) in the presence of oxygen to produce glyoxylic acid or ⁇ - It refers to an enzyme that catalyzes a reaction that produces ketoaldehyde, an amino acid or peptide, and hydrogen peroxide.
  • Amadoriase is widely distributed in nature and can be obtained by searching for microorganisms, enzymes of animal or plant origin. The microorganism can be obtained from, for example, filamentous fungi, yeast, or bacteria.
  • amadoriase of the present invention acts directly on HbA1c.
  • amadoriase directly acts on HbA1c.
  • amadoriase acts on the fructosyl group at the N-terminal of the ⁇ chain of HbA1c, and 2-keto-D glucose and hydrogen peroxide, It means that the ⁇ chain of hemoglobin is generated.
  • this does not exclude that the amadoriase reacts with a fructosyl peptide derived from the ⁇ chain of HbA1c, such as ⁇ F6P.
  • the amadoriase of the present invention not only directly acts on HbA1c but also has reactivity with a fructosyl peptide derived from the ⁇ chain of HbA1c, such as ⁇ F6P.
  • Amadoriase variant The present invention is based on wild type amadoriase having the amino acid sequence shown in SEQ ID NO: 1, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 54, or SEQ ID NO: 62, or SEQ ID NO: 89, or SEQ ID NO: 99, ⁇ F6P
  • a variant of Amadoriase that is reactive to HbA1c and acts directly on HbA1c is provided.
  • a variant is used interchangeably with a variant, and means that a part of amino acids is substituted, deleted or added when the amino acid sequence of amadoriase is compared with a wild-type sequence. The addition here includes insertion.
  • the present invention further relates to ⁇ F6P based on a wild type amadoriase having the amino acid sequence shown in SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 145 or SEQ ID NO: 149.
  • a wild type amadoriase having the amino acid sequence shown in SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 145 or SEQ ID NO: 149.
  • variants of amadoriase that are reactive to and act directly on HbA1c.
  • a variant of amadoriase that directly acts on HbA1c can be obtained based on other wild-type amadoriases derived from the genus Coniochaeta.
  • the modified amadoriase of the present invention may further have a mutation that modifies other properties of the enzyme as long as it has reactivity with ⁇ F6P and acts directly on HbA1c.
  • the amadoriase of the present invention is a variant of amadoriase that directly acts on HbA1c, which is produced based on the amadoriase derived from the genus Coniochaeta having the amino acid sequence shown in SEQ ID NO: 1.
  • one or several amino acids means 1 to 15, preferably 1 to 10, more preferably 1 to 5, more preferably 1 to 4 amino acid sequences with a total length exceeding 400 amino acids. More preferably, it refers to 1 to 3, more preferably 1 or 2 amino acids.
  • one or several amino acids are 1 to 10, preferably 1 to 7, preferably 1 to 5, preferably 1 to 4, More preferably, it refers to 1 to 3, more preferably 1 or 2 amino acids.
  • one or several amino acids are 1 to 5, preferably 1 to 4, preferably 1 to 3, more preferably 1 or 2.
  • An amino acid refer to one or two amino acids when referring to a sequence having a total length of less than 40 amino acids.
  • hybridization solution 50% formamide, 6-10 ⁇ SSC (0.15-1.5M NaCl, 15 mM sodium citrate, pH 7.0), 5 ⁇ Denhardt solution, 1% SDS, 10% dextran sulfate, 10 ⁇ g / ml denatured salmon sperm DNA, 50 mM phosphate buffer (pH 7.5)), and incubation at about 42 ° C. to about 50 ° C., followed by about 65 ° C. to about 70 ° C. using 0.1 ⁇ SSC, 0.1% SDS The conditions for washing can be mentioned.
  • mutant of the present invention is, for example, Eupenicillium, Pyrenecata, Arsulium, Carbraria, Neocosmosspora as long as the conditions relating to substrate specificity and / or amino acid sequence described in the claims are satisfied.
  • Cryptococcus spp. Feosferia spp.
  • Produced based on amadoriase derived from other species such as Pleospora, Conioketidium, Pichia, Corynebacterium, Agrobacterium, or Arthrobacter.
  • a variant based on Coniochaeta sp. NISL 9330-derived amadoriase may have one or more amino acid substitutions at the following positions.
  • the one or more amino acid substitutions used for the modified amadoriase are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 Or 18 amino acid substitutions, for example 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 amino acid substitutions, for example 1, 2, 3, 4, 5 6, 7, 8, 9 or 10 amino acid substitutions, for example 1, 2, 3, 4, 5, 6, 7 or 8 amino acid substitutions.
  • the one or more amino acid substitutions used with respect to the amadoriase variant are 1, 2, 3, 4, 5, 6, or 7 amino acid substitutions.
  • NISL 9330-derived amadoriase (SEQ ID NO: 1), preferably (a) arginine at position 62 , Asparagine or aspartic acid, glutamine, glutamic acid, glycine, valine, leucine, isoleucine, cysteine, serine, threonine or proline.
  • leucine at position 63 is replaced with histidine or alanine.
  • glutamic acid at position 102 is substituted with lysine.
  • aspartic acid at position 106 is replaced with alanine, lysine or arginine.
  • glutamine at position 110 is replaced with leucine or tyrosine.
  • alanine at position 113 is substituted with lysine or arginine.
  • alanine at position 355 is substituted with serine.
  • alanine at position 419 may be substituted with lysine.
  • aspartic acid at position 68 may be substituted with asparagine.
  • alanine at position 356 may be substituted with threonine.
  • a variant based on amadoriase from Phaeosphaeria nodorum may have one or more amino acid substitutions at the following positions: (A) Serine at position 62 (b) Leucine at position 63 (c) Lysine at position 102 (d) Aspartic acid at position 106 (e) Glycine at position 110 (f) Alanine at position 113 (g) Alanine at position 351 (H) Serine at position 416 (i) Aspartic acid at position 68 (j) Alanine at position 352
  • serine at position 62 may not be optionally substituted.
  • the serine at position 62 can be substituted with alanine, aspartic acid, asparagine, glutamine, glutamic acid, glycine, valine, leucine, isoleucine, cysteine, threonine or proline.
  • leucine at position 63 is replaced with histidine.
  • the lysine at position 102 may not be substituted.
  • the aspartic acid at position 106 is replaced with lysine.
  • glycine at position 110 is replaced with leucine.
  • the alanine at position 113 is replaced with lysine.
  • alanine at position 351 is substituted with serine.
  • serine at position 416 may be substituted with lysine.
  • aspartic acid at position 68 may be substituted with asparagine.
  • alanine at position 352 may be substituted with threonine.
  • Neocosmospora vasinfecta derived amadoriase may have one or more amino acid substitutions at the following positions: (A) Arginine at position 62 (b) Leucine at position 63 (c) Glutamic acid at position 102 (d) Glycine at position 106 (e) Glutamic acid at position 110 (f) Lysine at position 113 (g) Serine at position 355 ( h) alanine at position 420 (i) aspartic acid at position 68 (j) alanine at position 356
  • arginine at position 62 is alanine, aspartic acid, asparagine, It can be substituted with glutamine, glutamic acid, glycine, valine, leucine, isoleucine, cysteine, se
  • leucine at position 63 is replaced with histidine.
  • glutamic acid at position 102 is substituted with lysine.
  • glycine at position 106 is replaced with lysine.
  • glutamic acid at position 110 is replaced with leucine.
  • the lysine at position 113 may not be substituted.
  • the serine at position 355 may not be substituted.
  • alanine at position 420 may be substituted with lysine.
  • aspartic acid at position 68 may be substituted with asparagine.
  • (j) alanine at position 356 may be substituted with threonine.
  • a variant based on an amadoriase from Aspergillus nidulans may have one or more amino acid substitutions at the following positions: (A) Arginine at position 61 (b) Leucine at position 62 (c) Glutamic acid at position 101 (d) Glycine at position 105 (e) Lysine at position 109 (f) Serine at position 112 (g) Alanine at position 355 ( h) Alanine at position 420 (i) Aspartic acid at position 67 (j) Asparagine at position 356
  • arginine at position 61 is alanine, aspartic acid, asparagine, It can be substituted with glutamine, glutamic acid, glycine, valine, leucine, isoleucine, cysteine, serine, thre
  • leucine at position 62 is replaced with histidine.
  • glutamic acid at position 101 is substituted with lysine.
  • glycine at position 105 is substituted with lysine.
  • the lysine at position 109 is replaced with leucine.
  • serine at position 112 is replaced with lysine.
  • alanine at position 355 is replaced with serine.
  • alanine at position 420 may be substituted with lysine.
  • aspartic acid at position 67 may be substituted with asparagine.
  • asparagine at position 356 may be replaced with threonine.
  • a variant based on amadoriase from Eupenicillium terrenum may have one or more amino acid substitutions at the following positions: (A) Arginine at position 62 (b) Leucine at position 63 (c) Glutamic acid at position 102 (d) Asparagine at position 106 (e) Lysine at position 110 (f) Threonine at position 113 (g) Alanine at position 355 ( h) Glycine 419 (i) Aspartic acid 68 , Glutamine, glutamic acid, glycine, valine, leucine, isoleucine, cysteine, serine, threonine or proline.
  • leucine at position 63 is replaced with histidine.
  • glutamic acid at position 102 is substituted with lysine.
  • asparagine at position 106 is replaced with lysine.
  • the lysine at position 110 is replaced with leucine.
  • the threonine at position 113 is replaced with lysine.
  • alanine at position 355 is replaced with serine.
  • glycine at position 419 may be substituted with lysine.
  • aspartic acid at position 68 may be substituted with asparagine.
  • asparagine at position 356 may be replaced with threonine.
  • a variant based on fructosyl amino acid oxidase from Cryptococcus neoformans may have one or more amino acid substitutions at the following positions: (A) Arginine at position 62 (b) Isoleucine at position 63 (c) Glutamic acid at position 102 (d) Serine at position 106 (e) Serine at position 110 (f) Alanine at position 113 (g) Alanine at position 355 ( h) Alanine at position 420 (i) Aspartic acid at position 68 (j) Asparagine at position 356 Fructosyl amino acid oxidase (CnFX, SEQ ID NO: 89 or 149) derived from the above Cryptococcus neoformans, preferably (a) Arginine at position 62 Can be substituted with alanine, aspartic acid, asparagine, glutamine, glutamic acid, glycine, valine, leucine, isoleu
  • (b) isoleucine at position 63 is replaced with histidine.
  • (c) glutamic acid at position 102 is substituted with lysine.
  • serine at position 106 is substituted with lysine.
  • the serine at position 110 is replaced with leucine.
  • the alanine at position 113 is replaced with lysine.
  • alanine at position 355 is replaced with serine.
  • alanine at position 420 may be substituted with lysine.
  • aspartic acid at position 68 may be substituted with asparagine.
  • asparagine at position 356 may be replaced with threonine.
  • a variant based on ketoamine oxidase (SEQ ID NO: 113) from Pyrenochaeta sp. May have one or more amino acid substitutions at the following positions: (A) Arginine at position 62 (b) Leucine at position 63 (c) Lysine at position 102 (d) Aspartic acid at position 106 (e) Alanine at position 110 (f) Threonine at position 113 (g) Alanine at position 353 (H) Alanine at position 418 (i) Aspartic acid at position 68 (j) Alanine at position 354 In the ketoamine oxidase (SEQ ID NO: 113) derived from Pyrenochaeta sp.
  • Aspartic acid asparagine, glutamine, glutamic acid, glycine, valine, leucine, isoleucine, cysteine, serine, threonine or proline can be substituted.
  • leucine at position 63 is replaced with histidine.
  • lysine at position 102 may not be substituted.
  • the aspartic acid at position 106 is replaced with lysine.
  • the alanine at position 110 is replaced with leucine.
  • the threonine at position 113 is replaced with lysine.
  • alanine at position 353 is substituted with serine.
  • alanine at position 418 may be substituted with lysine.
  • aspartic acid at position 68 may be substituted with asparagine.
  • alanine at position 354 may be substituted with threonine.
  • a variant based on ketoamine oxidase (SEQ ID NO: 115) from Arthrinium sp. May have one or more amino acid substitutions at the following positions: (A) Arginine at position 62 (b) Leucine at position 63 (c) Lysine at position 102 (d) Alanine at position 106 (e) Glutamine at position 110 (f) Threonine at position 113 (g) Alanine at position 356 ( h) Alanine at position 421 (i) Aspartic acid at position 68 (j) Alanine at position 357 In the above-mentioned ketoamine oxidase derived from Arthrinium sp.
  • Arginine at position 62 is preferably alanine It can be substituted with acid, asparagine, glutamine, glutamic acid, glycine, valine, leucine, isoleucine, cysteine, serine, threonine or proline.
  • leucine at position 63 is replaced with histidine.
  • lysine at position 102 may not be substituted.
  • alanine at position 106 is substituted with lysine.
  • glutamine at position 110 is replaced with leucine.
  • the threonine at position 113 is replaced with lysine.
  • alanine at position 356 is substituted with serine.
  • alanine at position 421 may be substituted with lysine.
  • aspartic acid at position 68 may be substituted with asparagine.
  • alanine at position 357 may be substituted with threonine.
  • a variant based on ketoamine oxidase (SEQ ID NO: 117) from Curvularia clavata may have one or more amino acid substitutions at the following positions: (A) Arginine at position 62 (b) Leucine at position 63 (c) Glutamic acid at position 102 (d) Aspartic acid at position 106 (e) Alanine at position 110 (f) Alanine at position 113 (g) Alanine at position 353 (H) Alanine at position 418 (i) Aspartic acid at position 68 (j) Alanine at position 354
  • arginine at position 62 is alanine or asparagine It can be substituted with acid, asparagine, glutamine, glutamic acid, glycine, valine, leucine, isoleucine, cysteine, serine, threonine or proline.
  • leucine at position 63 is replaced with histidine.
  • glutamic acid at position 102 is substituted with lysine.
  • the aspartic acid at position 106 is replaced with lysine.
  • the alanine at position 110 is replaced with leucine.
  • the alanine at position 113 is replaced with lysine.
  • alanine at position 353 is substituted with serine.
  • alanine at position 418 may be substituted with lysine.
  • aspartic acid at position 68 may be substituted with asparagine.
  • (j) alanine at position 354 may be substituted with threonine.
  • a variant based on ketoamine oxidase (Cc95FX, SEQ ID NO: 99) with 95% amino acid sequence identity with ketoamine oxidase (SEQ ID NO: 117) from Curvularia clavata has one or more amino acid substitutions at the following positions:
  • leucine at position 63 is replaced with histidine.
  • glutamic acid at position 102 is substituted with lysine.
  • the aspartic acid at position 106 is replaced with lysine.
  • the alanine at position 110 is replaced with leucine.
  • the alanine at position 113 is replaced with lysine.
  • alanine at position 353 is substituted with serine. In some cases (h) serine at position 418 may be substituted with lysine. In some cases (i) aspartic acid at position 68 may be substituted with asparagine. In some cases, (j) alanine at position 354 may be substituted with threonine.
  • a variant based on fructosyl peptide oxidase (SEQ ID NO: 119) from Emericella nidulans may have one or more amino acid substitutions at the following positions: (A) Arginine at position 61 (b) Leucine at position 62 (c) Glutamic acid at position 101 (d) Lysine at position 105 (e) Arginine at position 109 (f) Serine at position 112 (g) Alanine at position 355 ( h) Alanine at position 420 (i) Aspartic acid at position 67 (j) Asparagine at position 356
  • arginine at position 61 is alanine or asparagine.
  • leucine at position 62 is replaced with histidine.
  • glutamic acid at position 101 is replaced with lysine.
  • lysine at position 105 may not be substituted.
  • arginine at position 109 is replaced with leucine.
  • serine at position 112 is replaced with lysine.
  • alanine at position 355 is replaced with serine.
  • alanine at position 420 may be substituted with lysine.
  • aspartic acid at position 67 may be substituted with asparagine.
  • asparagine at position 356 may be replaced with threonine.
  • a variant based on fructosyl amino acid oxidase (SEQ ID NO: 121) from Ulocladium sp. May have one or more amino acid substitutions at the following positions: (A) Arginine at position 62 (b) Leucine at position 63 (c) Lysine at position 102 (d) Aspartic acid at position 106 (e) Alanine at position 110 (f) Alanine at position 113 (g) Alanine at position 353 (H) Alanine at position 418 (i) Aspartic acid at position 68 (j) Alanine at position 354 In the fructosyl amino acid oxidase derived from Ulocladium sp.
  • Arginine at position 62 is alanine.
  • aspartic acid, asparagine, glutamine, glutamic acid, glycine, valine, leucine, isoleucine, cysteine, serine, threonine or proline can be substituted.
  • leucine at position 63 is replaced with histidine.
  • lysine at position 102 may not be substituted.
  • the aspartic acid at position 106 is replaced with lysine.
  • the alanine at position 110 is replaced with leucine.
  • the alanine at position 113 is replaced with lysine.
  • alanine at position 353 is substituted with serine.
  • alanine at position 418 may be substituted with lysine.
  • aspartic acid at position 68 may be substituted with asparagine.
  • alanine at position 354 may be substituted with threonine.
  • a variant based on fructosyl amino acid oxidase (SEQ ID NO: 123) from Penicillium janthinellum may have one or more amino acid substitutions at the following positions: (A) Arginine at position 62 (b) Leucine at position 63 (c) Glutamic acid at position 102 (d) Serine at position 106 (e) Lysine at position 110 (f) Aspartic acid at position 113 (g) Alanine at position 355 (H) Serine at position 419 (i) Aspartic acid at position 68 (j) Asparagine at position 356 Fructosyl amino acid oxidase derived from Penicillium janthinellum (SEQ ID NO: 123), preferably (a) Arginine at position 62 is alanine or Aspartic acid, asparagine, glutamine, glutamic acid, glycine, valine, leucine, isoleucine, cysteine, serine, threonine or proline
  • leucine at position 63 is replaced with histidine.
  • glutamic acid at position 102 is substituted with lysine.
  • serine at position 106 is substituted with lysine.
  • the lysine at position 110 is replaced with leucine.
  • the aspartic acid at position 113 is replaced with lysine.
  • alanine at position 355 is replaced with serine.
  • serine at position 419 may be substituted with lysine.
  • aspartic acid at position 68 may be substituted with asparagine.
  • asparagine at position 356 may be replaced with threonine. The same applies to fructosyl amino acid oxidase derived from Penicillium chrysogenum.
  • the amadoriase that acts directly on hemoglobin A1c of the present invention preferably recognizes the ⁇ chain of hemoglobin A1c as a substrate, As an action, the ⁇ chain of hemoglobin A1c is oxidized to produce hydrogen peroxide, Having an optimum pH range of pH 6-8, Having a working pH range of pH 5-9, The working temperature is 25 ⁇ 40 °C, The molecular weight on SDS-PAGE may be about 45-55 KDa, for example about 48-50 KDa.
  • amadoriase that does not show any activity against HbA1c is excluded from the amadoriase mutants or modifications of the present invention.
  • amadoriase genes In order to obtain genes encoding these amadoriases (hereinafter also simply referred to as “amadoriase genes”), generally used gene cloning methods are used. For example, chromosomal DNA or mRNA can be extracted from microbial cells having the ability to produce amadoriase and various cells by a conventional method, for example, a method described in Current Protocols in Molecular Biology (WILEY Interscience, 1989). Furthermore, cDNA can be synthesized using mRNA as a template. A chromosomal DNA or cDNA library can be prepared using the chromosomal DNA or cDNA thus obtained.
  • a suitable probe DNA is synthesized, and using this, a method for selecting the amadoriase gene from a chromosomal DNA or cDNA library, or a suitable primer DNA based on the amino acid sequence. And amplifying DNA containing the gene fragment of interest encoding amadoriase by an appropriate polymerase chain reaction (Polymerase Chain Reaction, PCR method) such as 5'RACE method or 3'RACE method. Can be ligated to obtain a DNA containing the full length of the target amadoriase gene.
  • PCR method Polymerase Chain Reaction
  • a preferred example of the gene encoding the amadoriase obtained in this way is the amadoriase gene derived from the genus Coniocaeta (Japanese Patent Laid-Open No. 2003-235585).
  • amadoriase gene derived from Phaeosphaeria genus can be mentioned.
  • Amadoriase gene derived from Neocosmospora genus can be mentioned.
  • Amadoriase gene derived from Aspergillus genus can be mentioned.
  • Amadoriase gene derived from Cryptococcus genus can be mentioned.
  • amadoriase genes are linked to various vectors as usual.
  • a recombinant plasmid pKK223-3-CFP-T7 International Publication No. 2007/12579 containing DNA encoding an amadoriase gene derived from Coniochaeta sp. NISL 9330, GenElute Plasmid Miniprep Kit (manufactured by Sigma-Alcrich)
  • a recombinant plasmid pKK223-3-CFP-T7 containing a DNA encoding the amadoriase gene can be obtained by extraction and purification.
  • amadoriase genes derived from other organisms those skilled in the art can obtain DNA by the same procedure according to conventional methods. Specifically, Escherichia coli carrying a recombinant plasmid pUTE100K′-EFP-T5 (International Publication No. 2007/1225779) containing a DNA encoding the amadoriase gene derived from Eupenicillium terrenum ATCC 18547 strain is cultured, and GenElute Plasmid Miniprep By using Kit, a recombinant plasmid pUTE100K′-EFP-T5 containing DNA encoding the amadoriase gene can be obtained by extraction from cells and purification.
  • a recombinant plasmid pET22b-AnFX containing DNA encoding the amadoriase gene can be obtained by extraction and purification.
  • a recombinant plasmid pET22b-CnFX International Publication No.
  • a recombinant plasmid pET22b-CnFX containing the encoding DNA can be obtained by extraction and purification. Further, by culturing Escherichia coli carrying a recombinant plasmid pET22b-NvFX (International Publication No.
  • a recombinant plasmid pET22b-NvFX containing the encoding DNA can be obtained by extraction and purification.
  • the vector that can be used in the present invention is not limited to the above plasmid, and any other vector known to those skilled in the art such as bacteriophage, cosmid, and the like can be used. Specifically, for example, pBluescript II SK + (Stratagene) is preferable.
  • amadoriase gene mutation treatment The mutation process of the amadoriase gene can be performed by any known method depending on the intended mutant form. That is, a wide variety of methods such as a method of contacting and acting an amadoriase gene or a recombinant DNA incorporating the gene and a mutagen agent; an ultraviolet irradiation method; a genetic engineering method; or a method using a protein engineering method. Can be used.
  • Examples of the mutagen used in the mutation treatment include hydroxylamine, N-methyl-N′-nitro-N-nitrosoguanidine, nitrous acid, sulfite, hydrazine, formic acid, and 5-bromouracil. be able to.
  • the various conditions for the contact and action are not particularly limited as long as it is possible to adopt conditions according to the type of drug used and the like and a desired mutation can be actually induced in the amadoriase gene.
  • a desired mutation can be induced by contact and action at a reaction temperature of 20 to 80 ° C. for 10 minutes or more, preferably 10 to 180 minutes, preferably at a drug concentration of 0.5 to 12M.
  • a reaction temperature 20 to 80 ° C. for 10 minutes or more, preferably 10 to 180 minutes, preferably at a drug concentration of 0.5 to 12M.
  • Even in the case of performing ultraviolet irradiation it can be carried out according to a conventional method as described above (Hyundai Kagaku, 024-30, June 1989 issue).
  • a method generally known as Site-Specific Mutagenesis can be used.
  • Kramer method Nucleic Acids Res., 12, 9441 (1984): Methods Enzymol., 154, 350 (1987): Gene, 37, 73 (1985), Eckstein method (Nucleic Acid Res. 49 (Nucleic Acid Res. 49)). (1985): Nucleic Acids Res., 13, 8765 (1985): Nucleic Acids Res, 14, 9679 (1986), Kunkel method (Proc. Natl. Acid. Sci. US, 48, 1982). ): Methods Enzymol., 154, 367 (1987)).
  • a technique known as a general PCR method can also be used (see Technique, 1, 11 (1989)).
  • a desired modified amadoriase gene can also be directly synthesized by an organic synthesis method or an enzyme synthesis method.
  • the determination or confirmation of the DNA base sequence of the amadoriase gene obtained by the above method can be performed by using, for example, a multicapillary DNA analysis system Applied Biosystems 3130xl Genetic Analyzer (manufactured by Life Technologies).
  • the amadoriase gene obtained as described above is incorporated into a vector such as a bacteriophage, a cosmid, or a plasmid used for transformation of prokaryotic cells or eukaryotic cells by a conventional method, and a host corresponding to each vector is selected by a conventional method.
  • a microorganism belonging to the genus Escherichia as a host for example, using the obtained recombinant DNA, for example, Escherichia coli K-12 strain, preferably Escherichia coli JM109 strain, Escherichia coli DH5 ⁇ strain (both manufactured by Takara Bio Inc.), etc. Transform or transduce them to obtain the respective strain.
  • amino acid sequence homology, identity or similarity The homology, identity, or similarity of amino acid sequences is determined by GENETYX (GENETYX) maximum matching and search homology programs, DNASIS Pro (Hitachi Solutions) maximum matching and multiple alignment, or CLUSTAL W multiple It can be calculated by a program such as alignment.
  • GENETYX GENETYX
  • DNASIS Pro Haitachi Solutions
  • CLUSTAL W multiple CLUSTAL W multiple It can be calculated by a program such as alignment.
  • amino acid sequence identity when two or more amadoriases are aligned, the amino acid positions that are identical in the two or more amadoriases can be examined. Based on such information, the same region in the amino acid sequence can be determined.
  • the percent identity means that the total number of amino acids in the region that can be aligned when performing alignment of two or more amino acid sequences using an algorithm such as Blosum62 is used as the denominator.
  • the percentage when the number of positions occupied by the same amino acid is used as a molecule. Therefore, usually, when there is a region where no identity is found in two or more amino acid sequences, for example, when there is an additional sequence in one amino acid sequence where no identity is found at the C-terminal, there is no region with the identity. Cannot be used to calculate% identity because it cannot be aligned.
  • amino acid positions that are similar in two or more amadoriases can be examined.
  • CLUSTALW can be used to align multiple amino acid sequences.
  • Blosum62 is used as an algorithm, and amino acids that are judged to be similar when multiple amino acid sequences are aligned are called similar amino acids.
  • amino acid substitutions may be due to substitutions between such similar amino acids.
  • the term “homology region” refers to a region in which, when two or more amadoriases are aligned, the amino acids at corresponding positions of a reference amadoriase and a comparison amadoriase are the same or consist of similar amino acids. It is a region composed of 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, or 10 or more consecutive amino acids. For example, in FIG. 1, an amadoriase having a sequence identity of 74% or more of the full-length amino acid sequence was aligned. Among these, the 10th to 32nd positions are composed of the same or similar amino acids based on Coniochaeta sp.
  • Amadoriase represented by SEQ ID NO: 1 and thus correspond to the homology region. Similarly, 36 to 41, 49 to 52, 54 to 58, 73 to 75, 84 to 86, 88 to 90, 120 to 122 with respect to Coniochaeta sp. Amadoriase represented by SEQ ID NO: 1.
  • the homology region of amadoriase is from positions 11 to 32, 36 to 41, 50 to 52, 54 to 58, and 84 to 86 based on ConiochaetaConsp.
  • Amadoriase represented by SEQ ID NO: 1. , 88-90, 145-150, 157-168, 202-205, 207-212, 215-225, 236-248, 258-261, 266-268, 270-273 275-287, 347-354, 357-363, 370-383, 385-387, and 405-410.
  • the homology region of amadoriase is positions 11 to 18, 20 to 32, 50 to 52, 54 to 58, 266 to 268, based on Coniochaeta sp.
  • the Amadoriase mutant of the present invention has 50% or more, preferably 60% or more, preferably 70% or more, preferably 75% or more, preferably 80% when aligned with an amadoriase having the amino acid sequence shown in SEQ ID NO: 1. It has a full-length amino acid sequence identity of preferably 85% or more, more preferably 90% or more, more preferably 95% or more, and most preferably 99% or more, and high reactivity with ⁇ F6P. Furthermore, the amino acid sequence in the homology region of the amadoriase variant of the present invention is 80%, preferably 85%, preferably 90%, preferably 95%, preferably 98% with the amino acid sequence of the homology region in SEQ ID NO: 1. More preferably, it has a sequence identity of 99% or more.
  • the homology region of amadoriase is positions 10-32, 36-41, 49-52, 54-58, 73-75, 84-86 relative to the amadoriase of SEQ ID NO: 141. , 88-90, 120-122, 145-150, 156-162, 164-170, 180-182, 202-205, 207-211, 214-224, 227-230 236-241, 243-248, 258-261, 266-268, 270-273, 275-287, 295-297, 306-308, 310-316, 324-329 332, 334, 341, 344, 346, 355, 357, 363, 370, 383, 385, 387, 389, 394, A region consisting of amino acid sequences of positions 05-410 and 423-431, preferably positions 11-32, 36-41, 50-52, 54-58, 84-86, 88-90, 145-150, 157-168, 202-205, 207-212,
  • the amadoriase of the present invention comprises (i) an amadoriase having an amino acid sequence in which one or several amino acid substitutions, deletions or additions are made to the amino acid sequence shown in SEQ ID NO: 141, or (ii) In the amadoriase of the above (i), the full-length amino acid sequence of the amadoriase has 70% or more sequence identity with the amino acid sequence of SEQ ID NO: 141, and positions 10 to 32 and 36 to 41 of SEQ ID NO: 141 , 49-52, 54-58, 73-75, 84-86, 88-90, 120-122, 145-150, 156-162, 164-170, 180-182 , 202-205, 207-211, 214-224, 227-230, 236-241, 243-248, 258-261, 266-268, 270-273, 275-287 , 295-297, 306-308, 310-316, 324-329, 332-334, 341-344
  • the amadoriase of the present invention has 95% or more sequence identity between the amino acid sequence in the homology region defined in (ii) above and the amino acid sequence in the homology region at the corresponding position of the amadoriase Amadoriase.
  • the amadoriase of the present invention includes the following amino acids in the amino acid sequence shown in SEQ ID NO: 1, in addition to or independently of the above, (I) aspartic acid at position 68, and (ii) alanine at position 356, Having a substitution of one or more amino acid residues at a position corresponding to an amino acid selected from the group consisting of:
  • the amadoriase of the present invention includes the following amino acids in the amino acid sequence shown in SEQ ID NO: 1, (I) 262th asparagine, (Ii) 257th valine, (Iii) glutamic acid at position 249 (iv) glutamic acid at position 253, (V) 337th glutamine, (Vi) glutamic acid at position 340, (Vii) aspartic acid at position 232; (Viii) aspartic acid at position 129, (Ix) aspartic acid at position 132, (X) glutamic acid at position 133, (Xi) glutamic acid at position 44, (Xii) 256th glycine, (Xiii) glutamic acid at position 231 and (xiv) glutamic acid at position 81, Having a substitution of one or more amino acid residues at a position corresponding to an amino acid selected from the group consisting of:
  • the amadoriase of the present invention includes the following amino acids
  • the homologous amino acid residues in the sequence of each amadoriase sequence regardless of insertions or deletions in the amino acid sequences.
  • the homologous position is considered to exist at the same position in the three-dimensional structure, and it can be estimated that the homologous position has a similar effect on the specific function of the target amadoriase.
  • the amino acid “position corresponding to arginine at position 62 of the amino acid sequence described in SEQ ID NO: 1” refers to the confirmed amino acid sequence of Amadoriase, and the amino acid of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. It means the amino acid corresponding to the arginine at position 62 of the amadoriase of SEQ ID NO: 1 when compared with the sequence. Thereby, the amino acid sequence can be aligned and specified by the above-mentioned method of specifying “corresponding amino acid residue”.
  • amino acid at “position corresponding to arginine at position 62 of the amino acid sequence described in SEQ ID NO: 1” is auporicillium ⁇ ⁇ terrenum-derived amadoriase (SEQ ID NO: 40 and 145), Pyrenochaeta sp.-derived ketoamine oxidase (SEQ ID NO: 113) Ketoamine oxidase derived from Arthrinium sp.
  • the amino acid “position corresponding to leucine at position 63 of the amino acid sequence described in SEQ ID NO: 1” refers to the confirmed amino acid sequence of Amadoriase, the amino acid of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1 It means the amino acid corresponding to leucine at position 63 of the amadoriase of SEQ ID NO: 1 when compared with the sequence. Thereby, the amino acid sequence can be aligned and specified by the above-mentioned method of specifying “corresponding amino acid residue”.
  • amino acid at “position corresponding to leucine at position 63 in the amino acid sequence described in SEQ ID NO: 1” is auporicillium terrenum-derived amadoriase (SEQ ID NOs: 40 and 145), Pyrenochaeta sp.-derived ketoamine oxidase (SEQ ID NO: 113) Ketoamine oxidase derived from Arthrinium sp.
  • the amino acid “position corresponding to glutamic acid at position 102 of the amino acid sequence described in SEQ ID NO: 1” refers to the confirmed amino acid sequence of Amadoriase, the amino acid of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1 When compared with the sequence, it means the amino acid corresponding to glutamic acid at position 102 of the amadoriase of SEQ ID NO: 1. Thereby, the amino acid sequence can be aligned and specified by the above-mentioned method of specifying “corresponding amino acid residue”.
  • the amino acid of “position corresponding to glutamic acid at position 102 of the amino acid sequence described in SEQ ID NO: 1” is Auporicillium terrenum-derived amadoriase (SEQ ID NOs: 40 and 145), Curvularia clavata-derived ketoamine oxidase (SEQ ID NO: 117), In the case of ketoamine oxidase derived from Neocosmospora vasinfecta (SEQ ID NO: 54), fructosyl amino acid oxidase derived from Cryptococcus neoformans (SEQ ID NO: 89 and 149), fructosyl amino acid oxidase derived from Penicillium janthinellum (SEQ ID NO: 123), glutamic acid at position 102, Pyrenochaeta sp Derived from ketoamine oxidase (SEQ ID NO: 113), ketoamine oxidase derived from Arthrinium sp.
  • fructosyl peptide oxidase derived from Phaeosphaeria nodorum (SEQ ID NO: 38), Ulocladium sp.
  • fructosyl amino acid oxidase SEQ ID NO: 121
  • lysine at position 102 fructosyl peptide oxidase (SEQ ID NO: 119) derived from Emericella nidulans
  • glutamic acid at position 101 in the fructosyl amino acid oxidase SEQ ID NO: 62 and 147) derived from Aspergillus nidulans It is.
  • the amino acid at “position corresponding to aspartic acid at position 106 of the amino acid sequence shown in SEQ ID NO: 1” refers to the confirmed amino acid sequence of Amadoriase, which is the Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1.
  • it means an amino acid corresponding to aspartic acid at position 106 of the amadoriase of SEQ ID NO: 1.
  • the amino acid sequence can be aligned and specified by the above-mentioned method of specifying “corresponding amino acid residue”.
  • amino acid at “position corresponding to aspartic acid at position 106 in the amino acid sequence described in SEQ ID NO: 1” is asparagine at position 106 in the amadoriase derived from Eupenicillium terrenum (SEQ ID NOs: 40 and 145), ketoamine derived from Pyrenochaeta sp. 106 for oxidase (SEQ ID NO: 113), ketoamine oxidase derived from Curvularia clavata (SEQ ID NO: 117), fructosyl peptide oxidase derived from Phaeosphaeria nodorum (SEQ ID NO: 38), fructosyl amino acid oxidase derived from Ulocladium sp.
  • the amino acid at “position corresponding to glutamine at position 110 of the amino acid sequence described in SEQ ID NO: 1” refers to the confirmed amino acid sequence of Amadoriase, the amino acid of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1 When compared with the sequence, it means the amino acid corresponding to glutamine at position 110 of the amadoriase of SEQ ID NO: 1. Thereby, the amino acid sequence can be aligned and specified by the above-mentioned method of specifying “corresponding amino acid residue”.
  • amino acid “position corresponding to glutamine at position 110 of the amino acid sequence described in SEQ ID NO: 1” is auporicillium terrenum-derived amadoriase (SEQ ID NOs: 40 and 145), Penicillium janthinellum-derived fructosyl amino acid oxidase (SEQ ID NO: 123) In lysine at position 110, ketoamine oxidase from Pyrenochaeta sp. (SEQ ID NO: 113), ketoamine oxidase from Curvularia clavata (SEQ ID NO: 117), and fructosyl amino acid oxidase from Ulocladium sp.
  • SEQ ID NO: 121 in position 110 Of alanine of Arthrinium sp. (SEQ ID NO: 115), glutamine at position 110, and ketoamine oxidase (SEQ ID NO: 54) from Neocosmospora vasinfecta, glutamate at position 110, fructosyl from Cryptococcus neoformans Serine at position 110 for amino acid oxidase (SEQ ID NOs: 89 and 149), glycine at position 110 for Phaeosphaeria nodorum-derived fructosyl peptide oxidase (SEQ ID NO: 38), position 109 for fructosyl peptide oxidase derived from Emericella nidulans (SEQ ID NO: 119) Arginine, a fructosyl amino acid oxidase derived from Aspergillus nidulans (SEQ ID NOs: 62 and 147), is lysine at position 109.
  • the amino acid “position corresponding to alanine at position 113 of the amino acid sequence described in SEQ ID NO: 1” refers to the confirmed amino acid sequence of Amadoriase, and the amino acid of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. It means the amino acid corresponding to alanine at position 113 of the amadoriase of SEQ ID NO: 1 when compared with the sequence. Thereby, the amino acid sequence can be aligned and specified by the above-mentioned method of specifying “corresponding amino acid residue”.
  • amino acid “position corresponding to alanine at position 113 of the amino acid sequence described in SEQ ID NO: 1” is auporicillium terrenum-derived amadoriase (SEQ ID NOs: 40 and 145), Pyrenochaeta sp.-derived ketoamine oxidase (SEQ ID NO: 113) Arthrinium sp.-derived ketoamine oxidase (SEQ ID NO: 115), threonine at position 113, Curvularia clavata-derived ketoamine oxidase (SEQ ID NO: 117), Cryptococcus neoformans-derived fructosyl amino acid oxidase (SEQ ID NOs: 89 and 149), Phaeosphaeria Nodrum-derived fructosyl peptide oxidase (SEQ ID NO: 38), Ulocladium sp.-derived fructosyl amino acid oxidase (SEQ ID NO: 121), a
  • the amino acid “position corresponding to alanine at position 355 of the amino acid sequence described in SEQ ID NO: 1” refers to the confirmed amino acid sequence of Amadoriase, and the amino acid of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1 When compared with the sequence, it means the amino acid corresponding to alanine at position 355 of the amadoriase of SEQ ID NO: 1.
  • the amino acid sequence can be aligned and specified by the above-mentioned method of specifying “corresponding amino acid residue”.
  • amino acid “position corresponding to alanine at position 355 of the amino acid sequence described in SEQ ID NO: 1” is auporicillium terrenum-derived amadoriase (SEQ ID NO: 40 and 145), Cryptococcus neoformans-derived fructosyl amino acid oxidase (SEQ ID NO: 89 and 149), fructosyl amino acid oxidase derived from Aspergillus nidulans (SEQ ID NO: 62 and 147), fructosyl peptide oxidase derived from Emericella nidulans (SEQ ID NO: 119), and fructosyl amino acid oxidase derived from Penicillium janthinellum (SEQ ID NO: 123) Alanine, Pyrenochaeta ⁇ ⁇ ⁇ ⁇ ⁇ sp.-derived ketoamine oxidase (SEQ ID NO: 113), Curvularia clavata-
  • the amino acid “position corresponding to alanine at position 419 of the amino acid sequence described in SEQ ID NO: 1” refers to the confirmed amino acid sequence of Amadoriase and the amino acid of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. It means the amino acid corresponding to alanine at position 419 of the amadoriase of SEQ ID NO: 1 when compared with the sequence. Thereby, the amino acid sequence can be aligned and specified by the above-mentioned method of specifying “corresponding amino acid residue”.
  • amino acid at “position corresponding to alanine at position 419 of the amino acid sequence described in SEQ ID NO: 1” is a glycine at position 419 in the amadoriase derived from Eupenicillium terrenum (SEQ ID NOs: 40 and 145), a ketoamine oxidase derived from Pyrenochaeta sp.
  • the amino acid at “position corresponding to aspartic acid at position 68 of the amino acid sequence shown in SEQ ID NO: 1” is the determined amino acid sequence of Amadoriase, which is the amino acid sequence of the genus Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1.
  • Amadoriase is the amino acid sequence of the genus Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1.
  • it means the amino acid corresponding to aspartic acid at position 68 of the amadoriase of SEQ ID NO: 1.
  • the amino acid sequence can be aligned and specified by the above-mentioned method of specifying “corresponding amino acid residue”.
  • amino acid “position corresponding to aspartic acid at position 68 of the amino acid sequence described in SEQ ID NO: 1” is auporicillium ⁇ ⁇ terrenum-derived amadoriase (SEQ ID NOs: 40 and 145), Pyrenochaeta sp.-derived ketoamine oxidase (SEQ ID NO: 113). ), Ketoamine oxidase derived from Arthrinium sp.
  • the amino acid “position corresponding to alanine at position 356 of the amino acid sequence described in SEQ ID NO: 1” is the confirmed amino acid sequence of Amadoriase, and the amino acid of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1 It means an amino acid corresponding to alanine at position 356 of the amadoriase of SEQ ID NO: 1 when compared with the sequence.
  • the amino acid sequence can be aligned and specified by the above-mentioned method of specifying “corresponding amino acid residue”.
  • amino acid “position corresponding to alanine at position 356 of the amino acid sequence described in SEQ ID NO: 1” is an asparagine at position 356 in the amadoriase derived from Eupenicillium terrenum (SEQ ID NOs: 40 and 145), a ketoamine oxidase derived from Pyrenochaeta sp. (SEQ ID NO: 113) alanine at position 354, ketoamine oxidase from Arthrinium sp.
  • ketoamine oxidase (SEQ ID NO: 115), alanine at position 357, ketoamine oxidase from Curvularia clavata (SEQ ID NO: 117), alanine at position 354, Neocosmospora vasinfecta
  • ketoamine oxidase (SEQ ID NO: 54) derived from alanine at position 356
  • fructosyl amino acid oxidase derived from Cryptococcus neoformans
  • asparagine in position 356 a fructosyl peptide oxidase derived from Phaeosphaeria nodorum Ase (SEQ ID NO: 38) alanine at position 352
  • fructosyl amino acid oxidase from Aspergillus nidulans (SEQ ID NOs: 62 and 147), asparagine at position 356, and fructosyl peptide oxidase from Emericella nidul
  • the amadoriase mutant of the present invention may be a single mutant or a multiple mutant having two or more amino acid substitutions.
  • the present inventors surprisingly found that amadoriase substituted with amino acids at positions corresponding to positions 62, 63, 102, 106, 110, 113, and 355 in the amino acid sequence of SEQ ID NO: 1. It was found to show activity against HbA1c. Furthermore, the present inventors have surprisingly found that amadoriase substituted with amino acids at positions 68 and 356 in the amino acid sequence of SEQ ID NO: 1 has an increased activity against ⁇ F6P.
  • mutations at these positions (62/63/102/106/110/113/355/419 and 68/356), mutations that alter the substrate specificity of amadoriase, or change the substrate specificity of amadoriase Sometimes called amino acid substitution.
  • the amadoriase of the present invention has a specific activity (U / mg) for ⁇ F6P of 0.1 U / mg or more, 0.2 U / mg or more, 0.3 U / mg or more, 0.4 U / mg or more, 0.5 U / mg or more, 0.6 U / mg or more, 0.7 U / mg or more, 0.8 U / mg or more, 0.9 U / mg or more, for example, 1 U / mg or more.
  • the amadoriase may have 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, or 10 or more amino acid substitutions that change the substrate specificity.
  • Such an amadoriase of the present invention directly acts on HbA1c and can be used in the HbA1c measurement method of the present invention.
  • the amadoriase of the present invention having a specific activity (U / mg) for ⁇ F6P of 0.1 U / mg or more, when the amino acid sequence of amadoriase is aligned with the amino acid sequence set forth in SEQ ID NO: 1, (A) Arginine at position 62 of SEQ ID NO: 1, (B) leucine at position 63 of SEQ ID NO: 1, (C) glutamic acid at position 102 of SEQ ID NO: 1, (D) aspartic acid at position 106 of SEQ ID NO: 1, (E) glutamine at position 110 of SEQ ID NO: 1, (F) alanine at position 113 of SEQ ID NO: 1, (G) alanine at position 355 of SEQ ID NO: 1, (H) alanine at position 419 of SEQ ID NO: 1, (i) aspartic acid at position 68 of SEQ ID NO: 1; and (j) alanine at position 356 of SEQ ID NO: 1,
  • A Arginine at
  • amino acid at “position corresponding to position 62 arginine of the amino acid sequence described in SEQ ID NO: 1” is serine at position 62 in the fructosyl peptide oxidase derived from Phaeosphaeria nodorum (SEQ ID NO: 38). From the amino acid sequence of SEQ ID NO: 1, this is equivalent to the amino acid at the position corresponding to arginine at position 62 being serine, that is, substituted with serine.
  • SEQ ID NO: 38 fructosyl peptide oxidase derived from Phaeosphaeria nodorum
  • the amadoriase of the present invention having a specific activity (U / mg) against ⁇ F6P of 0.1 U / mg or more is selected from the group consisting of the following (a) to (j) of the amino acids described in SEQ ID NO: 1.
  • amino acids at the position corresponding to the amino acid at the position are described in each of the following: 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, for example 10
  • the Amadoriase mutant of the present invention includes those in which the amino acid at the position corresponding to position 60 of SEQ ID NO: 1 is glycine.
  • Aspergillus nidulans-derived amadoriase is obtained by replacing the amino acid at position 59 in SEQ ID NO: 147 corresponding to position 60 in SEQ ID NO: 1 with serine in the wild type, but substituting it with glycine (SEQ ID NO: 62). It may be used as an amadoriase which is the basis for the variants of the invention. The same applies to Penicillium janthinellum (Pj) -derived amadoriase (SEQ ID NO: 123).
  • the present inventors have confirmed that the tolerance to the surfactant can be improved by substituting the amino acid residue of amadoriase.
  • the amadoriase of the present invention may optionally further have such an amino acid substitution.
  • amino acid substitution that brings about the improvement of the surfactant resistance
  • Substitution of glutamine at position 337 for example, substitution with lysine or arginine.
  • Substitution of glutamic acid at position 340 for example, substitution with proline.
  • Substitution of aspartic acid at position 232 for example, substitution with lysine or arginine.
  • Substitution of aspartic acid at position 129 for example, substitution with lysine or arginine.
  • Substitution of aspartic acid at position 132 for example, substitution with lysine or arginine.
  • Substitution of glutamic acid at position 133 for example, substitution with alanine, methionine, lysine, arginine.
  • Substitution of glutamic acid at position 44 for example, substitution with proline.
  • Substitution of glycine at position 256 for example, substitution with lysine or arginine.
  • Substitution of glutamic acid at position 81 for example, substitution with lysine or arginine.
  • the variant of amadoriase with improved surfactant resistance only needs to have at least one amino acid substitution as described above, and may have a plurality of amino acid substitutions. For example, it may have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 of the above amino acid substitutions.
  • position corresponding to glutamic acid at position 44 of the amino acid sequence described in SEQ ID NO: 1 refers to the confirmed amino acid sequence of Amadoriase, the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1 Is the amino acid corresponding to glutamic acid at position 44 of the amadoriase of SEQ ID NO: 1.
  • the amino acid sequence can be identified by FIG. 1 in which the amino acid sequences are aligned by the above-described method of identifying the “corresponding amino acid residue”.
  • position corresponding to glutamic acid at position 81 of the amino acid sequence described in SEQ ID NO: 1 means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means an amino acid corresponding to glutamic acid at position 81 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • the “position corresponding to glutamic acid at position 133 in the amino acid sequence described in SEQ ID NO: 1” means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means an amino acid corresponding to glutamic acid at position 133 in the amino acid sequence described in SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • ketoamine oxidase derived from alanine at position 133 in the ketoamine oxidase derived from Curvularia clavata in position 133, glutamic acid in position 133, in ketoamine oxidase derived from Neocosmospora vasinfecta, in alanine at position 133, in the fructosyl amino acid oxidase from fructosyl amino acid oxidase 13 in the form of Cryptococcus neoformans
  • Phthasphaeria nodorum-derived fructosyl peptide oxidase is glutamic acid at position 131
  • Aspergillus nidulans-derived fructosyl amino acid oxidase is glutamic acid at position 132
  • Emeralella nidulans-derived fructosyl peptide oxidase is at position 132.
  • the “position corresponding to glutamic acid at position 253 of the amino acid sequence described in SEQ ID NO: 1” means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means an amino acid corresponding to glutamic acid at position 253 of the amino acid sequence described in SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • ketoamine oxidase derived from glutamic acid at position 253 in ketoamine oxidase derived from Curvularia clavata, glutamic acid in position 251; in ketoamine oxidase derived from Neocosmospora vasinfecta, valine at position 253; in fructosyl amino acid derived from cructococcus neoformans oxidase; , 249th arginine in Phaeosphaeria nodorum derived fructosyl peptide oxidase, 253rd alanine in Aspergillus nidulans fructosyl amino acid oxidase, 253rd alanine in Emeralella nidulans fructosyl peptide oxidase, locladium sp.
  • the fructosyl amino acid oxidase derived from glutamic acid at position 251 in ketoamine oxidase derived from Curvularia
  • the “position corresponding to glycine at position 256 of the amino acid sequence described in SEQ ID NO: 1” means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means an amino acid corresponding to glycine at position 256 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • asparagine Pyrenochaeta sp., which is 256th in the amadoriase derived from Eupenicillium terrenum.
  • ketoamine oxidase derived from aspartic acid at position 254, Arthrium sp. Glycine at position 256 in the ketoamine oxidase derived from, 254th asparagine in the ketoamine oxidase derived from Curvularia clavata, glycine in the 256th position in ketoamine oxidase derived from Neocosmospora vasinfecta, and fructosyl amino acid glutamine glutamin oxidase derived from Cryptococcus neoformans in the 56th position.
  • the fructosyl amino acid oxidase derived from Penicillium janthinelum is aspartic acid at position 256.
  • the position corresponding to valine at position 257 of the amino acid sequence described in SEQ ID NO: 1 means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means the amino acid corresponding to the valine at position 257 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • Phthaosphaeria nodorum-derived fructosyl peptide oxidase is serine at position 253
  • Aspergillus nidulans-derived fructosyl amino acid oxidase is threonine at position 257
  • Emeralella nidulans-derived fructosyl peptide oxidase is threonine at position 257
  • Ulo ladium sp Ulo ladium sp.
  • the valine at position 255 In the fructosyl amino acid oxidase derived from valine, the valine at position 255, and in the fructosyl amino acid oxidase derived from Penicillium janthinelum, it is valine at position 257.
  • the position corresponding to asparagine at position 262 of the amino acid sequence described in SEQ ID NO: 1 means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means the amino acid corresponding to asparagine at position 262 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • ketoamine oxidase derived from asparagine at position 260 Arthrinium sp.
  • the ketidine oxidase derived from histidine at position 262 the ketoamine oxidase derived from Curvularia clavata asparagine at position 260, the ketoamine oxidase derived from Neocosmospora vasinfecta histidine at position 262, and the fructosyl oxidase derived from ascites oxidase 26 at the position Cryptococcus neoformans oxidase.
  • the 260th position is asparagine
  • in the fructosyl amino acid oxidase derived from Penicillium janthinelum it is aspartic acid at position 262.
  • the position corresponding to glutamine at position 337 of the amino acid sequence described in SEQ ID NO: 1 means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means the amino acid corresponding to glutamine at position 337 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • fructosyl amino acid oxidase derived from threonine at position 335 in the fructosyl amino acid oxidase derived from Penicillium janthinelum, it is lysine at position 337.
  • the position corresponding to glutamic acid at position 340 of the amino acid sequence described in SEQ ID NO: 1 means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means an amino acid corresponding to glutamic acid at position 340 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • ketoamine oxidase derived from Eupenicillium terrenum glutamic acid at position 340, Pyrenochaeta sp.
  • ketoamine oxidase derived from glutamic acid at position 338 Arthrium sp.
  • glutamic acid in position 340 in ketoamine oxidase derived from Neocosmospora vasinfecta, in the form of proline at position 340 in fructosyl amino acid derived from Cryptococcus neoformans.
  • Phthasphaeria nodorum-derived fructosyl peptide oxidase is lysine at position 336
  • Aspergillus nidulans-derived fructosyl amino acid oxidase is glutamic acid at position 340
  • Fructosyl peptide oxidase from Emericella nidulans is at position 340.
  • the fructosyl amino acid oxidase derived from Penicillium janthinelum is glutamic acid at position 340.
  • the position corresponding to aspartic acid at position 129 of the amino acid sequence described in SEQ ID NO: 1 means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1 And amino acid corresponding to aspartic acid at position 129 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • the position corresponding to aspartic acid at position 132 of the amino acid sequence described in SEQ ID NO: 1 means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1 Further, it means an amino acid corresponding to aspartic acid at position 132 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • the position corresponding to glutamic acid at position 231 of the amino acid sequence described in SEQ ID NO: 1 means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means the amino acid corresponding to glutamic acid at position 231 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • ketoamine oxidase derived from glutamic acid at position 231 In the case of ketoamine oxidase derived from glutamic acid at position 231; in the case of ketoamine oxidase derived from Curvularia clavata, glutamic acid in position 229; in ketoamine oxidase derived from Neocosmospora vasinfecta; glutamic acid in position 231; , Histidine at position 227 for fructosyl peptide oxidase derived from Phaeosphaeria nodorum, glutamic acid at position 231 for fructosyl amino acid oxidase derived from Aspergillus nidulans, position 231 for fructosyl peptide oxidase derived from Emericella nidulans Glutamic acid, Ulocladium sp. It is glutamine at position 229 in the fructosyl amino acid oxidase derived from it, and glutamic acid at position 2
  • the position corresponding to aspartic acid at position 232 of the amino acid sequence described in SEQ ID NO: 1 means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of the amadoriase derived from Coniochaeta genus shown in SEQ ID NO: 1 Further, it means an amino acid corresponding to aspartic acid at position 232 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • ketoamine oxidase derived from glutamic acid at position 232 in ketoamine oxidase derived from Curvularia clavata aspartic acid in position 230, in ketoamine oxidase derived from Neocosmospora vasinfecta, glutamic acid in position 232 from position 2 of fructosylamino acid derived from Cryptococcus neoformans oxidase Glycine, Phthaosphaeria nodorum-derived fructosyl peptide oxidase, glutamic acid at position 228, Aspergillus nidulans-derived fructosyl amino acid oxidase, glutamic acid at position 232, and Fructosyl peptide oxidase from Emeralella nidulans, position 232 Glutamic acid, Ulocladium sp.
  • the position corresponding to glutamic acid at position 249 of the amino acid sequence described in SEQ ID NO: 1 means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means the amino acid corresponding to glutamic acid at position 249 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • Phthaosphaeria nodorum-derived fructosyl peptide oxidase is glutamic acid at position 245, Aspergillus nidulans-derived fructosyl amino acid oxidase is alanine at position 249, and Emeralella nidulans-derived fructosyl peptide oxidase is at position 249.
  • This mutation is sometimes referred to as a mutation that improves the surfactant resistance of amadoriase or an amino acid substitution that improves the surfactant resistance of amadoriase.
  • the amadoriase of the present invention may have mutations that further improve surfactant resistance in addition to mutations that alter substrate specificity.
  • amadoriase of the present invention may further lack three amino acid residues from the carboxyl terminus in addition to the above substitution.
  • the sequence of 3 residues at this position consists of a proline at position 435, a lysine at position 436, and a leucine at position 437. Can be identified from FIG.
  • the 3 amino acids at the carboxyl terminal consist of alanine at position 435, histidine at position 436, and leucine at position 437, and Pyrenochaeta sp.
  • the ketoamine oxidase derived from the above the three amino acids at the carboxyl terminus are composed of alanine at position 438, lysine at position 439, and leucine at position 440, and Artrinium sp.
  • the 3 amino acids at the carboxyl end consist of histidine at position 450, the lysine at position 451, and the leucine at position 452.
  • the 3 amino acids at the carboxyl end are serine at position 438, position 439
  • the fructosyl peptide oxidase derived from Phaeosphaeria nodorum consists of 3 amino acids at the carboxyl terminus consisting of alanine at position 435, asparagine at position 436 and leucine at position 437, and fructosyl amino acid oxidase derived from Aspergillus nidulans. So, the three amino acids at the carboxyl terminus are alanine at position 436, lysine at position 437, and methionine at position 438.
  • Emericella nidulans of 3 amino acids at position 436 of the carboxyl terminal is fructosyl peptide oxidase derived from alanine, consists 437 of lysine and position 438 methionine, Ulocladium sp.
  • the 3 amino acids at the carboxyl terminal consist of alanine at position 439, the lysine at position 440, and the leucine at position 441.
  • the 3 amino acids at the carboxyl terminal are at the alanine at position 435, It consists of lysine at position 436 and leucine at position 437.
  • deletion of these carboxyl terminal amino acid residues related to amadoriase is sometimes referred to as deletion that improves the thermal stability of amadoriase.
  • the amadoriase of the invention may have a deletion that improves thermal stability in addition to a mutation that changes substrate specificity, a mutation that improves surfactant resistance.
  • this strain may be cultured by a normal solid culture method, but a liquid culture method is adopted. It is preferable to culture.
  • the present invention provides a method for producing amadoriase, comprising a step of culturing a strain having an ability to produce amadoriase under conditions capable of expressing amadoriase protein, and a step of isolating amadoriase from the culture or culture medium.
  • a host cell transformed with a vector incorporating a gene encoding the amadoriase of the present invention can be used.
  • the condition under which the amadoriase protein can be expressed means that the amadoriase gene is transcribed and translated, and a polypeptide encoded by the gene is produced.
  • Examples of the medium for culturing the above strain include, for example, yeast extract, tryptone, peptone, meat extract, corn steep liquor or one or more nitrogen sources such as soybean or wheat bran leachate, sodium chloride, dihydrogen phosphate. Add one or more inorganic salts such as potassium, dipotassium hydrogen phosphate, magnesium sulfate, magnesium chloride, ferric chloride, ferric sulfate or manganese sulfate, and add sugar raw materials, vitamins, etc. as necessary. Used.
  • the amount of the target enzyme produced by adding a substrate on which the amadoriase can act or a similar compound such as glycated amino acid, glycated peptide, glycated protein degradation product, or glycated protein such as glycated hemoglobin or glycated albumin. can be improved.
  • Culturing is carried out at a culture temperature of 20 to 42 ° C., preferably at a culture temperature of about 25 to 37 ° C. for 4 to 24 hours, more preferably at a culture temperature of about 25 to 37 ° C. for 8 to 16 hours, deep aeration and agitation, It is preferable to carry out by culture, stationary culture or the like.
  • the cells are subjected to ultrasonic disruption treatment, grinding treatment, or the like, or the enzyme is extracted using a lytic enzyme such as lysozyme, or shaken or left in the presence of toluene or the like for lysis. This enzyme can be discharged out of the cells. Then, this solution is filtered, centrifuged, etc.
  • a normal enzyme collecting means For example, the cells are subjected to ultrasonic disruption treatment, grinding treatment, or the like, or the enzyme is extracted using a lytic enzyme such as lysozyme, or shaken or left in the presence of toluene or the like for lysis. This enzyme can be discharged out of the cells. Then, this solution is filtered, centrifuged, etc.
  • nucleic acid is removed with streptomycin sulfate, protamine sulfate, manganese sulfate or the like, and then ammonium sulfate, alcohol, acetone or the like is added thereto.
  • the fraction is collected and the precipitate is collected to obtain a crude enzyme of amadoriase.
  • amadoriase purified enzyme preparation from the crude enzyme of the above amadoriase, for example, gel filtration method using Sephadex, Superdex or Ultrogel, ion exchange carrier, hydrophobic carrier, adsorption elution method using hydroxyapatite, Select electrophoresis method using polyacrylamide gel, sedimentation method such as sucrose density gradient centrifugation, affinity chromatography method, fractionation method using molecular sieve membrane or hollow fiber membrane, etc.
  • gel filtration method using Sephadex, Superdex or Ultrogel ion exchange carrier
  • hydrophobic carrier hydrophobic carrier
  • adsorption elution method using hydroxyapatite for example, gel filtration method using polyacrylamide gel, sedimentation method such as sucrose density gradient centrifugation, affinity chromatography method, fractionation method using molecular sieve membrane or hollow fiber membrane, etc.
  • amadoriase of the present invention Reactivity of the amadoriase of the present invention to HbA1c
  • the amadoriase obtained by the above means can act directly on HbA1c as a result of mutation in its amino acid sequence by genetic modification or the like.
  • the amadoriase of the present invention may also have improved reactivity with ⁇ F6P compared to that before modification. Specifically, the ratio of “reactivity to ⁇ F6P” when “reactivity to ⁇ FVH” is 1 may be increased as compared with that before modification.
  • ⁇ F6P / ⁇ FVH which indicates the ratio of reactivity to ⁇ F6P when the reactivity to ⁇ FVH is 1, is 10% or more, preferably 20% or more, more preferably 30% relative to that before modification. As described above, more preferably 40% or more may be improved.
  • ⁇ F6P / ⁇ FV which indicates the ratio of reactivity to ⁇ F6P when the reactivity to ⁇ FV is 1, is 10% or more, preferably 20% or more, more preferably 30% relative to that before modification. % Or more, more preferably 40% or more. “Reactivity to ⁇ FV” may be expressed as “ ⁇ FV oxidation activity”.
  • an amadoriase of the present invention that directly acts on HbA1c is, for example, an amadoriase produced by E. coli JM109 (pKK223-3-CFP-T7-H35).
  • an amadoriase directly acts on HbA1c without treating HbA1c with a protease or the like, thereby enabling the realization of an enzyme measurement system for directly measuring HbA1c in a sample, which is very advantageous for industrial use.
  • Method for measuring amadoriase activity Various methods can be used as a method for measuring the activity of amadoriase. As an example, a method for measuring amadoriase activity used in the present invention will be described below.
  • Examples of the method for measuring the enzyme activity of amadoriase in the present invention include a method for measuring the amount of hydrogen peroxide produced by the reaction of the enzyme and a method for measuring the amount of oxygen consumed by the enzyme reaction.
  • a method for measuring the amount of hydrogen peroxide will be described.
  • ⁇ FV, ⁇ FVH, or ⁇ F6P is used as a substrate unless otherwise specified.
  • the enzyme titer is defined as 1 U for the amount of enzyme that produces 1 ⁇ mol of hydrogen peroxide per minute when measured using ⁇ FV, ⁇ FVH, or ⁇ F6P as a substrate.
  • the specific activity (U / mg) is the enzyme titer (U) per 1 mg of enzyme.
  • U the enzyme titer
  • the same enzyme titer as that of an enzyme with a specific activity of 1 U / mg can be obtained by increasing the amount of the enzyme 10 times.
  • ⁇ F6P active to ⁇ F6P
  • a specific activity (U / mg) against ⁇ F6P of 0.1 U / mg or more, 0.2 U / mg or more, 0.3 U / mg or more, 0.4U / mg or more, 0.5U / mg or more, 0.6U / mg or more, 0.7U / mg or more, 0.8U / mg or more, 0.9U / mg or more, for example, 1U / mg or more Shall be included.
  • glycated peptide such as ⁇ FV and ⁇ FVH
  • ⁇ FV and ⁇ FVH those synthesized and purified based on the method of Sakagami et al.
  • Can be used see JP 2001-95598 A.
  • glycated hemoglobin (HbA1c) with endoproteinase Glu-C
  • ⁇ -glycated hexapeptide derived from the ⁇ chain subunit of glycated hemoglobin (HbA1c) (fructosyl Val-His-Leu-Thr-Pro-Glu) Is released (Clin. Chem., 43, 1994-1951 (1997)).
  • HbA1c glycated hemoglobin
  • a synthetic substrate fructosyl Val-His-Leu-Thr-Pro-Glu manufactured by Peptide Institute
  • Peptide Institute which is the same substance as this ⁇ -glycated hexapeptide
  • Reagent 1 Preparation of reagent (Preparation example of reagent for measuring activity of amadoriase against ⁇ F6P, ⁇ FVH or ⁇ FV)
  • Reagent 1 0.1 M phosphate buffer pH 6.5 containing 5 U / ml peroxidase, 0.49 mM 4-aminoantipyrine 5.0 kU peroxidase (manufactured by Kikkoman) and 100 mg of 4-aminoantipyrine (manufactured by Wako Pure Chemical Industries, Ltd.) are dissolved in 0.1 M potassium phosphate buffer (pH 6.5) and adjusted to a volume of 1000 ml. .
  • Reagent 2 A 15 mM TOOS solution 500 mg of TOOS (sodium N-ethyl-N- (2-hydroxy-3-sulfopropyl) -m-toluidine, manufactured by Dojindo Laboratories) was dissolved in ion-exchanged water to make 100 ml. Constant volume.
  • Reagent 3 Substrate solution (30 mM; final concentration 1 mM) ⁇ F6P (manufactured by Peptide Institute) 257.1 mg, or ⁇ FVH (manufactured by Kikkoman) 124.9 mg, or ⁇ FV (manufactured by Kikkoman) 83.8 mg is dissolved in ion-exchanged water and made up to a volume of 10 ml.
  • Activity measurement method (an example of a method for measuring the activity of amadoriase on ⁇ F6P, ⁇ FVH or ⁇ FV) 2.7 ml of reagent 1, 100 ⁇ l of reagent 2, and 100 ⁇ l of enzyme solution are mixed and pre-warmed at 37 ° C. for 5 minutes. Thereafter, 100 ⁇ l of Reagent 3 was added and mixed well, and the time course of absorbance at 555 nm was observed with a spectrophotometer (U-3010A, manufactured by Hitachi High-Technologies Corporation), and the amount of change per minute in absorbance at 555 nm ( ⁇ As) is measured.
  • a spectrophotometer U-3010A, manufactured by Hitachi High-Technologies Corporation
  • the amount of change per minute ( ⁇ A0) in absorbance at 555 nm is measured in the same manner as described above except that 100 ⁇ l of ion-exchanged water is added instead of 100 ⁇ l of reagent 3.
  • the number of micromoles of hydrogen peroxide produced per minute at 37 ° C. is defined as the activity unit (U) in the enzyme solution and is calculated according to the following formula.
  • HbA1c solution HbA1c certified practical reference material JCCRM423 manufactured by National Institute for Laboratory Medicine
  • Reagent A1 Sample pretreatment solution 5.0% n-dodecyl- ⁇ -D-maltoside (manufactured by Dojindo Laboratories)
  • Reagent A2 Sample pretreatment solution 5.0% n-tetradecyl- ⁇ -D-maltoside (manufactured by Sigma-Aldrich)
  • Reagent B leuco dye, peroxidase solution 150 mM potassium phosphate buffer, pH 6.5 0.30 mM N- (carboxymethylaminocarbonyl) -4,4′-bis (dimethylamino) diphenylamine sodium (DA-64, manufactured by Wako Pure Chemical Industries, Ltd.) 15 U / ml peroxidas
  • sample diluent (sometimes referred to as “sample diluent” in this specification)
  • 25 ⁇ l of the sample dilution is diluted with 50 ⁇ l of the reagent.
  • the leuco dye When hydrogen peroxide is generated in the solution, the leuco dye is colored by the action of peroxidase, and the absorbance of light at 751 nm increases. Based on the results obtained according to the HbA1c concentration of the sample, the HbA1c concentration (NGSP value) of the sample and the absorbance difference ⁇ A of light at 751 nm before and after the quantitative reaction of hydrogen peroxide can be plotted on a graph.
  • ⁇ A is calculated according to the following formula.
  • ⁇ A (absorbance 5 minutes after addition of reagent C1) ⁇ (absorbance immediately before addition of reagent C1 ⁇ 0.75)
  • the volume of the reaction solution is increased 1.33 times by the addition of the reagent C1, and therefore the absorbance immediately before the addition of the reagent C1 multiplied by 0.75 is regarded as the absorbance immediately after the addition of the reagent C1.
  • HbA1c Example of quantification method of acid-treated HbA1c
  • a reagent for measuring HbA1c having the following composition is prepared, and HbA1c is measured using Bio Majesty JCA-BM1650 (manufactured by JEOL).
  • HbA1c solution HbA1c certified practical reference material JCCRM423 (manufactured by National Institute for Laboratory Medicine) Total hemoglobin concentration 133 g / l, HbA1c concentration 3 level (NGSP value 5.6%, 7.7%, 10.5%)
  • Reagent D Sample pretreatment solution 8.3% n-dodecyl- ⁇ -D-maltoside (Dojindo Laboratories) or polyoxyethylene (20) cetyl ether (Brij58, Wako Pure Chemical Industries) 0.1 M hydrochloric acid reagent E: leuco dye solution 30 mM Tris-potassium phosphate buffer pH 9.0 290 mM potassium phosphate buffer, pH 6.5 0.16 mM N- (carboxymethylaminocarbonyl) -4,4′-bis (dimethylamino) diphenylamine sodium (DA-64, manufactured by Wako Pure Chemical Industries, Ltd.)
  • Reagent F1 Peroxidase, amadoriase
  • ⁇ A can be calculated according to the following equation.
  • ⁇ A (absorbance 5 minutes after addition of reagent F1) ⁇ (absorbance immediately before addition of reagent F1 ⁇ 0.75) (Example of quantification method of surfactant-treated HbA1c)
  • a reagent for measuring HbA1c having the following composition is prepared, and HbA1c is measured using Bio Majesty JCA-BM1650 (manufactured by JEOL).
  • HbA1c solution HbA1c certified practical reference material JCCRM423 manufactured by National Institute for Laboratory Medicine
  • Reagent G1 Sample pretreatment solution 0.80% tetradecyltrimethylammonium bromide (manufactured by Tokyo Chemical Industry)
  • Reagent G2 Sample pretreatment solution 0.70% hexadecyltrimethylammonium bromide (manufactured by Tokyo Chemical Industry)
  • Reagent H1 Leuco dye solution 120 mM MOPS-NaOH buffer pH 6.5 1.6% n-dodecyl- ⁇ -D-maltoside (Dojindo Laboratories) 0.16 mM N- (carboxymethylaminocarbonyl) -4,4′-bis (dimethylamino) diphenylamine sodium (DA-64, manufactured by Wako Pure Chemical Industries,
  • ⁇ A can be calculated according to the following equation.
  • HbA1c oxidase (Amadoriase) is allowed to act on a sample containing HbA1c.
  • the action time is, for example, 5 seconds or more, 10 seconds or more, or 20 seconds or more, less than 180 minutes or less than 150 minutes, such as 0.5 to 120 minutes, preferably 0.5 to 60 minutes, more preferably 1 to 30 minutes. It can be. When the action time is too short, HbA1c in the sample cannot be measured sufficiently, and good measurement cannot be performed.
  • the action time is too long, in addition to the problem that the measurement time is extended and the efficiency of the measurement process is poor, the sample and the measurement reagent are exposed to the measurement conditions for a long time.
  • the problem of causing decomposition and modification of components occurs.
  • a change in concentration due to a decrease in sample volume resulting from drying over a long period of time can cause an error.
  • HbA1c oxidase action time is 0.5 to 60 minutes, more preferably 1 to 30 minutes, and even more preferably 1 to 10 minutes.
  • the working temperature depends on the optimum temperature of the enzyme used, it is, for example, 20 to 45 ° C., and the temperature used for normal enzyme reaction can be appropriately selected.
  • a suitable amount of amadoriase used in the present invention depends on the amount of the substrate contained in the sample solution.
  • the final concentration is 0.1 to 50 U / mL, preferably 0.2 to 10 U / mL. What is necessary is just to add so that it may become.
  • the pH at the time of action is preferably adjusted using a buffering agent so that the optimum pH of the amadoriase is taken into consideration, but is not limited to this as long as the pH is operable.
  • the pH is 3 to 11, particularly preferably pH 5 to 9, such as pH 6 to 8.
  • buffering agents include, for example, N- [tris (hydroxymethyl) methyl] glycine, phosphate, acetate, carbonate, tris (hydroxymethyl) -aminomethane, borate, citrate, dimethylglutamic acid Salt, tricine, HEPES, MES, Bis-Tris, ADA, PIPES, ACES, MOPSO, BES, MOPS, TES, DIPSO, TAPSO, POPSO, HEPPSO, EPPS, Tricine, Bicine, TAPS, phthalic acid, tartaric acid, etc.
  • a surfactant (n-octyl- ⁇ -D-glucoside, n-octyl- ⁇ -D-thioglucoside, n-type) may be used as a solubilizer, stabilizer, reactivity improver, HbA1c modifier, etc.
  • the surfactant used in the present invention is not particularly limited as long as it is a surfactant that enables the method for measuring HbA1c of the present invention, and is a nonionic surfactant or an ionic surfactant such as a cationic surfactant.
  • Surfactant, anionic surfactant, amphoteric surfactant, etc. are mentioned. In this specification, when referring to a surfactant, this expression includes one or more surfactants unless otherwise specified.
  • nonionic surfactant examples include polyoxyethylene alkyl ether, fatty acid sorbitan ester, alkyl polyglucoside, fatty acid diethanolamide, alkyl monoglyceryl ether and the like.
  • Cationic surfactants include, for example, alkyl trimethyl ammonium salts, dialkyl dimethyl ammonium salts, alkyl benzyl dimethyl ammonium salts, pyridinium salts such as alkyl pyridinium salts, phosphonium salts such as alkyl phosphonium salts, imidazolium salts such as alkyl imidazolium. Salts, isoquinonium salts, such as alkylisoquinonium salts.
  • Examples of the cationic surfactant of the present invention include quaternary ammonium salts (I), pyridinium salts (II) and phosphonium salts (III) represented by the following general formula.
  • R 1 to R 4 may be the same or different and each represents a substituted or unsubstituted C 1 to C 20 alkyl, alkenyl, aryl, or benzyl, and Z- represents a monovalent anion. . ]
  • R 5 represents a substituted or unsubstituted C 1 to C 20 alkyl, and each R a may be the same or different, and is a hydrogen atom or a substituted or unsubstituted C 1 to C 20 alkyl; Represents alkenyl, aryl or benzyl, n represents an integer of 1 to 5, and Z- represents a monovalent anion.
  • R 6 to R 9 may be the same or different and each represents a substituted or unsubstituted C 1 to C 20 alkyl, alkenyl, aryl or benzyl, and Z- represents a monovalent anion. .
  • Examples of the quaternary ammonium salt include octyltrimethylammonium chloride (OTAC) and bromide (OTAB), decyltrimethylammonium chloride and bromide (DTAB), dodecyltrimethylammonium chloride and bromide, tetradecyltrimethylammonium chloride (TTAC) and bromide.
  • TTAB hexadecyltrimethylammonium chloride
  • CTAC hexadecyltrimethylammonium chloride
  • STAB octadecyltrimethylammonium chloride and bromide
  • BDDAB benzyldodecyldimethylammonium chloride and bromide
  • BDTAC benzyltetradecyldimethylammonium chloride
  • BCDAC benzyl cetyl dimethyl Ammonium chloride
  • BCDAC dioctyl dimethyl ammonium chloride
  • pyridinium salts include 1-decylpyridinium chloride and bromide, 1-dodecylpyridinium chloride (1-DPC) and bromide, 1-tetradecylpyridinium chloride and bromide, 1-hexadecylpyridinium chloride (1-CPC) and bromide (1-CPB), N-cetyl-2-methylpyridinium chloride and bromide, N-cetyl-3-methylpyridinium chloride and bromide, N-cetyl-4-methylpyridinium chloride (4Me-1-CPC) and bromide, -Octadecylpyridinium chloride and bromide, 1-eicosylpyridinium chloride and bromide.
  • 1-decylpyridinium chloride and bromide 1-dodecylpyridinium chloride (1-DPC) and bromide
  • 1-tetradecylpyridinium chloride and bromide 1-
  • Examples of the phosphonium salt include tetraethylphosphonium chloride and bromide, tributylmethylphosphonium chloride and bromide and iodide, tetrabutylphosphonium chloride and bromide, tetra-n-octylphosphonium chloride and bromide, tributyldodecylphosphonium chloride and bromide, tributylhexadecylphosphonium And chloride and bromide (TBCPB), methyltriphenylphosphonium chloride and bromide and iodide, tetraphenylphosphonium chloride and bromide.
  • TCPB tributylhexadecylphosphonium And chloride and bromide
  • Anion paired cationic surfactants Z - is for example Cl -, Br -, I - it may be like.
  • anionic surfactant examples include linear alkylbenzene sulfonate, alkyl sulfate, alpha-olefin sulfonate, polyoxyethylene alkyl ether sulfate, ⁇ -sulfo fatty acid ester salt, and alkali metal salt of natural fatty acid. Is mentioned.
  • An example of such a surfactant is sodium dodecyl sulfate (SDS).
  • amphoteric surfactants examples include alkyl dimethylamine oxide and alkyl carboxybetaine.
  • the present invention provides a method for measuring HbA1c by measuring a product or a consumable by the action of amadoriase, but it is a product that can be easily measured, and hydrogen peroxide is preferable as a measurement target.
  • Hydrogen peroxide produced by the action of amadoriase may be detected by a chromogenic substrate or the like, and examples of the chromogenic substrate used in the present invention include ADOS (N-ethyl-N- () in addition to 4-aminoantipyrine.
  • 2-hydroxy-3-sulfopropyl) -m-anisidine 2-hydroxy-3-sulfopropyl) -m-anisidine
  • ALOS N-ethyl-N- (2-hydroxy-3-sulfopropyl) aniline
  • TOOS N-ethyl-N- (2-hydroxy-3) -Sulfopropyl) -m-toluidine sodium
  • DA-67 (10- (carboxymethylaminocarbonyl) -3,7-bis (dimethylamino) -phenocyanazine
  • DA-64 N- (carboxymethylaminocarbonyl)- 4,4′-bis (dimethylamino) -diphenylamine) and the like.
  • ADOS, ALOS, and TOOS develop color when condensed with 4-aminoantipyrine.
  • DA-64 and DA-67 do not require 4-aminoantipyrine and develop color only by prescribing alone.
  • the color reaction is catalyzed by peroxidase.
  • the measurement of hydrogen peroxide is preferably performed simultaneously with the step of generating hydrogen peroxide, and is preferably performed simultaneously with the action of amadoriase.
  • dissolved oxygen is mentioned as a consumable to measure, The amount of dissolved oxygen in a reaction liquid can be measured using a dissolved oxygen meter etc.
  • the present invention provides a reagent for measuring the above-mentioned amadoriase and hydrogen peroxide, and a reagent for measuring HbA1c to which a buffering agent or the like is added if desired.
  • a buffering agent or the like e.g., a surfactant, salts, buffers, pH adjusters, preservatives and the like can be appropriately selected and added to the reagent.
  • the above-described reagent for measuring HbA1c of the present invention may be prepared by containing each reagent in a different container. For example, it may be provided as a liquid product, a frozen product of the liquid product, or a freeze-dried product.
  • measuring reagents may be used in a dry product or dissolved state, or may be used by impregnating a carrier on a thin film, for example, a sheet-impregnated paper.
  • the enzymes used for the measuring reagent can be used repeatedly after being immobilized by a conventional method.
  • the reagent for measuring HbA1c of the present invention does not contain a protease or the like for cleaving an ⁇ -fructosyl peptide from a glycated protein.
  • an optimal one may be selected according to the components contained therein, but for example, the measurement can be set to be performed at 20 to 45 ° C.
  • the time required for the measurement can be appropriately selected depending on various measurement conditions. For example, 0.5 to 60 minutes, preferably 0.5 to 30 minutes, and more preferably 1 to 10 minutes are preferable.
  • the degree of color development (change in absorbance) of the measurement reagent can be measured with a spectrophotometer, and compared with the standard absorbance, the glycated peptide or glycated protein contained in the sample can be measured.
  • a normal automatic analyzer can also be used for the measurement.
  • the HbA1c measurement method of the present invention may be qualitative, but may be a quantitative measurement method.
  • the quantitative measurement method of HbA1c refers to a method of determining the concentration of HbA1c in a sample. That is, one embodiment of the present invention provides a method for quantifying HbA1c in a sample, comprising using amadoriase.
  • This quantification method includes a step of bringing a sample containing HbA1c into contact with the amadoriase of the present invention, and a step of measuring a product or a consumer due to the action of the amadoriase on HbA1c.
  • HbA1c here may be in a natural state or in a denatured state.
  • the contact used for the quantification method includes any embodiment in which the amadoriase and the sample are physically combined so that the amadoriase of the present invention can catalyze the oxidation reaction of HbA1c.
  • a mode in which a solution sample containing HbA1c is added to or dropped from the amadoriase of the present invention supported on a solid phase carrier is also included.
  • the sample used in the HbA1c measurement method of the present invention can be any biological sample that may contain glycated hemoglobin, for example, a sample derived from blood, body fluid, lymph fluid or the like.
  • the sample can be appropriately processed.
  • denatured HbA1c may be used for the reaction with amadoriase.
  • the modified HbA1c can be obtained by mixing with an appropriate surfactant, obtained by heat treatment, obtained by addition of a surfactant and heat treatment, or obtained by modification treatment with an acid / alkali.
  • the heat treatment may be performed at a temperature and time sufficient to denature all or part of HbA1c.
  • the treatment temperature can be, for example, 60 ° C. or higher, 70 ° C. or higher, 80 ° C. or higher, 90 ° C.
  • the treatment time can be, for example, 10 seconds or more, 20 seconds, 30 seconds or more, 1 minute or more, or 2 minutes or more.
  • the surfactant are as described above, and these can be added at an appropriate concentration.
  • the absorbance of the detected luminescent substrate decreases proportionally as the amount of HbA1c added decreases.
  • this concentration is sometimes referred to as a detection limit concentration.
  • a calibration curve can be prepared in advance by performing regression analysis such as the least square method from measured values such as absorbance of a control containing HbA1c having a known concentration. By plotting the measured value of the sample whose HbA1c concentration is unknown with respect to the prepared calibration curve, the HbA1c concentration in the sample can be quantified.
  • HbA1c in a sample can be quantified satisfactorily using a Coniochaeta-derived amadoriase mutant such as CFP-T7-H35. This is a surprising finding. Refer to FIGS. 4-1 and 4-2. CFP-T7-H35 also shows activity against ⁇ F6P. Therefore, those skilled in the art may be able to use other amadoriases exhibiting good activity against ⁇ -fructosyl oligopeptides such as ⁇ F6P directly on HbA1c based on these findings and use them for quantitative measurement. I understand that there is.
  • amadoriase having high specific activity for ⁇ -fructosyl oligopeptide acts on HbA1c in the same manner and has a high probability of being used for quantitative measurement thereof.
  • those skilled in the art can appropriately set conditions such as the amount of enzyme (enzyme concentration) and reaction time for such quantitative measurement.
  • the method described above can be used to determine whether an amadoriase acts directly on HbA1c.
  • Candidate amadoriases include various natural amadoriases or variants thereof, such as amadoriase having ⁇ FV activity, amadoriase having ⁇ FVH activity, amadoriase having ⁇ F6P activity, amadoriase exhibiting activity against ⁇ -fructosyl peptide, or modifications thereof Body, for example, those described in the above (modified form of amadoriase).
  • Candidate amadoriases can be screened for direct action on HbA1c. Alternatively, the candidate amadoriase may be first selected as to whether it has ⁇ FV activity, ⁇ FVH activity, ⁇ F6P activity, etc., and then those having the activity may directly act on HbA1c or be secondarily selected.
  • the screening can be performed on a crude enzyme extract prepared from a biological sample or a purified product thereof.
  • an amadoriase gene showing activity against ⁇ -fructosyl peptide may be obtained by a conventional method, an enzyme may be produced using a gene recombination technique, and this may be used for selection.
  • Conventional methods include purification of amadoriase exhibiting activity against ⁇ -fructosyl peptide, determination of its amino acid sequence, design of PCR primers based on the sequence information, and acquisition of a gene, and known amadoriase Examples include, but are not limited to, methods for obtaining genes from genome libraries or cDNA libraries of organisms for which PCR primers are designed based on sequence information. See also (Acquisition of gene encoding amadoriase) above.
  • An appropriate mutation is introduced into the obtained amadoriase gene using a conventional gene recombination technique, and it can be examined whether the obtained mutant directly acts on HbA1c.
  • an appropriate mutation is introduced into the obtained amadoriase gene using a gene recombination technique to produce a long chain ⁇ -fructosyl peptide, for example, a variant exhibiting activity against ⁇ F6P, which is then expressed against ⁇ F6P, for example. It can also be examined whether it has a specific activity of 0.1 U / mg or more and / or whether it acts directly on HbA1c.
  • the amino acid at position (a) corresponding to position 62 in the amino acid sequence of SEQ ID NO: 1 is substituted with alanine, asparagine or aspartic acid, (b) at the position corresponding to position 63.
  • Substituting an amino acid with histidine or alanine (c) substituting an amino acid at a position corresponding to position 102 with lysine, and (d) an amino acid at a position corresponding to position 106 with alanine, lysine or arginine.
  • amadoriase to be used may be introduced with a mutation that improves the surfactant resistance and / or may be deleted so as to improve the thermal stability. Moreover, as long as it has activity with respect to HbA1c, the mutation which changes the other characteristic of an enzyme can also be introduce
  • the HbA1c measurement kit of the present invention may include other known stabilizers and contaminant elimination systems, if necessary, in addition to the above-described HbA1c measurement reagent.
  • HbA1c containing the amadoriase of the present invention by appropriately modifying the techniques used in various conventional reagents and kits for the purpose of measuring HbA1c by enzymatic methods using proteases that act on HbA1c Can be used in kits.
  • the kit for measuring HbA1c of the present invention does not require such a protease. That is, in one embodiment, the kit for measuring HbA1c of the present invention does not contain a protease or the like for cleaving an ⁇ -fructosyl peptide from HbA1c.
  • Example 1 (1) Preparation of recombinant plasmid pKK223-3-CFP-T7 DNA Escherichia coli JM109 (pKK223-3-CFP-T7) strain having a recombinant plasmid of the amadoriase gene (SEQ ID NO: 2) derived from the genus Coniochaeta (International Publication No. 1) 2007/125779) 3 ml of LB-amp medium [1% (w / v) bactotripton, 0.5% (w / v) peptone, 0.5% (w / v) NaCl, 50 ⁇ g / ml ampicillin] and cultured with shaking at 37 ° C. for 16 hours to obtain a culture.
  • SEQ ID NO: 2 amadoriase gene
  • the culture was collected by centrifugation at 10,000 ⁇ g for 1 minute to obtain bacterial cells. From this cell, the recombinant plasmid pKK223-3-CFP-T7 was extracted and purified using GenElute Plasmid Miniprep Kit (manufactured by Sigma-Aldrich), and 2.5 ⁇ g of the recombinant plasmid pKK223-3-CFP was purified. -T7 DNA was obtained.
  • the base sequence of DNA encoding amadoriase in the plasmid was determined using a multi-capillary DNA analysis system Applied Biosystems 3130xl Genetic Analyzer (manufactured by Life Technologies), and the arginine at position 62 of the amino acid sequence described in SEQ ID NO: 1 was alanine.
  • a recombinant plasmid (pKK223-3-CFP-T7-H1) encoding a modified amadoriase substituted with the above was obtained.
  • Table 1 shows the oxidative activity against ⁇ FV, ⁇ FVH and ⁇ F6P, and ⁇ F6P / ⁇ FVH and ⁇ F6P / ⁇ FV when ⁇ FVH oxidation activity is defined as 100 for each amadoriase.
  • CFP-T7 showed ⁇ FV oxidation activity and ⁇ FVH oxidation activity but not ⁇ F6P oxidation activity. As a result, it was found that CFP-T7 was extremely specific for ⁇ -fructosyl dipeptide and did not act on ⁇ -fructosyl hexapeptide.
  • mutant CFP-T7-H1 exhibited ⁇ F6P oxidation activity in addition to ⁇ FV and ⁇ FVH oxidation activity.
  • a recombinant plasmid (pKK223) encoding a modified amadoriase in which arginine at position 62 in the amino acid sequence shown in SEQ ID NO: 1 was substituted with alanine and glutamine at position 110 was replaced with leucine, phenylalanine, or tyrosine.
  • pKK223 a recombinant plasmid encoding a modified amadoriase in which arginine at position 62 in the amino acid sequence shown in SEQ ID NO: 1 was substituted with alanine and glutamine at position 110 was replaced with leucine, phenylalanine, or tyrosine.
  • E. coli JM109 strain transduced with pKK223-3-CFP-T7-H2, pKK223-3-CFP-T7-H3, or pKK223-3-CFP-T7-H4 is cultured by the method described in (3) above.
  • 0.6 ml of a crude enzyme solution containing various modified amadoriases (CFP-T7-H2, CFP-T7-H3, CFP-T7-H4) was prepared.
  • the oxidation activity for ⁇ FV, ⁇ FVH, and ⁇ F6P was measured by the method shown in B: Activity measurement method.
  • B Activity measurement method.
  • the same measurement was performed using an enzyme solution containing CFP-T7-H1 produced from Escherichia coli JM109 (pKK223-3-CFP-T7-H1).
  • Table 2 shows the oxidation activity for ⁇ FV, ⁇ FVH and ⁇ F6P, and ⁇ F6P / ⁇ FVH and ⁇ F6P / ⁇ FV when ⁇ FVH oxidation activity is defined as 100 for each amadoriase.
  • CFP-T7-H2 and CFP-T7-H4 further increased the reactivity (substrate specificity) to ⁇ F6P compared to CFP-T7-H1.
  • the oxidation activity for ⁇ F6P was measured by the method shown in B: Activity measurement method.
  • B Activity measurement method.
  • the same measurement was performed using an enzyme solution containing CFP-T7-H2 produced from Escherichia coli JM109 (pKK223-3-CFP-T7-H2).
  • Table 3 shows the ratio of ⁇ F6P oxidation activity of each crude enzyme solution containing amadoriase when the ⁇ F6P oxidation activity of the crude enzyme solution containing CFP-T7-H2 is defined as 100.
  • CFP-T7-H2-62N and CFP-T7-H6 have higher ⁇ F6P oxidation activity than CFP-T7-H2.
  • the wild-type enzyme whose amino acid at position 62 is arginine does not show activity against ⁇ F6P.
  • mutants in which arginine at position 62 is substituted with glutamine or glutamic acid also have improved activity against ⁇ F6P.
  • alanine, asparagine, aspartic acid, glutamine and glutamic acid, which are substituted amino acids showing activity against ⁇ F6P are amino acids having a relatively small molecular weight.
  • a modified amadoriase having ⁇ F6P activity can be obtained by substituting position 62 with glycine, valine, leucine, isoleucine, cysteine, serine, threonine and proline having the same low molecular weight.
  • alanine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, valine, leucine, isoleucine, cysteine, serine, threonine and proline may be collectively referred to as amino acids having a small molecular weight.
  • CFP-T7-H6 has significantly improved ⁇ F6P oxidation activity and improved reactivity to ⁇ F6P (substrate specificity) compared to CFP-T7-H2.
  • a recombinant plasmid encoding amadoriase (pKK223-3-CFP-T7-H7, pKK223-3-CFP-T7-H8, pKK223-3-CFP-T7-H9), and an amino acid sequence described in SEQ ID NO: 1
  • pKK223-3-CFP-T7-H7 or pKK223-3-CFP-T7-H8, or pKK223-3-CFP-T7-H9, or pKK223-3-CFP-T7-H10, or pKK223-3-CFP- E. coli JM109 strain transduced with T7-H11, or pKK223-3-CFP-T7-H12, or pKK223-3-CFP-T7-H13, or pKK223-3-CFP-T7-H14 is described in (3) above.
  • the modified amadoriase (CFP-T7-H7, CFP-T7-H8, CFP-T7-H9, CFP-T7-H10, CFP-T7-H11, CFP-T7-H12, CFP-T7) 0.6 ml of a crude enzyme solution containing -H13, CFP-T7-H14) was prepared.
  • the oxidation activity for ⁇ F6P was measured by the method shown in B: Activity measurement method.
  • B Activity measurement method.
  • the same measurement was performed using an enzyme solution containing CFP-T7-H6 produced from Escherichia coli JM109 (pKK223-3-CFP-T7-H6).
  • Table 5 shows the ⁇ F6P oxidation activity of each crude enzyme solution containing amadoriase when the ⁇ F6P oxidation activity of the crude enzyme solution containing CFP-T7-H6 is defined as 100.
  • CFP-T7-H10, CFP-T7-H11, CFP-T7-H12, CFP-T7-H13, and CFP-T7-H14 all have a significantly improved ⁇ F6P oxidation activity ratio than CFP-T7-H6. Some things have improved dramatically.
  • ⁇ FV was obtained by the method shown in B: Activity measurement method above.
  • ⁇ FVH and ⁇ F6P were measured for oxidation activity.
  • the oxidation activity with respect to each substrate, ⁇ F6P / ⁇ FVH and ⁇ F6P / FV when ⁇ FVH oxidation activity is taken as 100 are shown in Table 6.
  • CFP-T7-H11, CFP-T7-H12, CFP-T7-H13, and CFP-T7-H14 are more reactive to ⁇ F6P than CFP-T7-H6 (substrate specificity) It has become clear that there is a significant improvement.
  • the arginine at position 62 of the amino acid sequence shown in SEQ ID NO: 1 is substituted with aspartic acid, the aspartic acid at position 106 is replaced with lysine, the glutamine at position 110 is replaced with leucine, and the alanine at position 113 is also lysine, or Recombinant plasmids (pKK223-3-CFP-T7-H20, pKK223-3-CFP-T7-H21) encoding modified amadoriase substituted with arginine were obtained.
  • Escherichia coli JM109 strain transduced with pKK223-3-CFP-T7-H20 or pKK223-3-CFP-T7-H21 is cultured by the method described in (3) above, and various modified amadoriases (CFP-T7-H20) are cultured. 0.6 ml of a crude enzyme solution containing CFP-T7-H21) was prepared.
  • CFP-T7-H20 and CFP-T7-H21 have improved reactivity (substrate specificity) to ⁇ F6P than CFP-T7-H11.
  • arginine at position 62 of the amino acid sequence described in SEQ ID NO: 1 is substituted with aspartic acid, aspartic acid at position 106 is replaced with lysine, glutamine at position 110 is replaced with leucine, and alanine at position 113 is replaced with lysine, Furthermore, recombinant plasmids (pKK223-3-CFP-T7-H24, pKK223-3-CFP-T7-) encoding a modified amadoriase in which leucine at position 63 is substituted with alanine, aspartic acid, histidine, or lysine. H25, pKK223-3-CFP-T7-H26, pKK223-3-CFP-T7-H27).
  • E. coli strain JM109 transduced with pKK223-3-CFP-T7-H24, or pKK223-3-CFP-T7-H25, or pKK223-3-CFP-T7-H26, or pKK223-3-CFP-T7-H27 Then, 0.6 ml of a crude enzyme solution containing various modified amadoriases (CFP-T7-H24, CFP-T7-H25, CFP-T7-H26, CFP-T7-H27) cultured by the method described in (3) above. Prepared.
  • the oxidation activity for ⁇ F6P was measured by the method shown in B: Activity measurement method.
  • B Activity measurement method.
  • the same measurement was performed using an enzyme solution containing CFP-T7-H20 produced from Escherichia coli JM109 (pKK223-3-CFP-T7-H20).
  • Table 8 shows the ⁇ F6P oxidation activity of the crude enzyme solutions containing each amadoriase when the ⁇ F6P oxidation activity of the crude enzyme solution containing CFP-T7-H20 is defined as 100.
  • CFP-T7-H24 and CFP-T7-H26 have improved reactivity (substrate specificity) to ⁇ F6P than CFP-T7-H20.
  • the oligonucleotides of SEQ ID NOS: 30 to 33 and KOD-Plus- were used for PCR reaction under the same conditions as in (2) above. Transformation of E. coli JM109 and determination of the DNA sequence encoding amadoriase in the plasmid DNA retained by the growing colonies were performed.
  • arginine at position 62 of the amino acid sequence shown in SEQ ID NO: 1 is aspartic acid
  • leucine at position 63 is histidine
  • aspartic acid at position 106 is lysine
  • glutamine at position 110 is leucine
  • 113 A recombinant plasmid (pKK223-3-CFP-T7-H28) encoding a modified amadoriase in which the alanine at position is substituted with lysine and the glutamic acid at position 102 is substituted with lysine
  • the amino acid sequence described in SEQ ID NO: 1 Arginine at position 62 is replaced with aspartic acid
  • leucine at position 63 is replaced with histidine
  • aspartic acid at position 106 is replaced with lysine
  • glutamine at position 110 is replaced with leucine
  • alanine at position 113 is replaced with lysine.
  • E. coli JM109 strain transduced with pKK223-3-CFP-T7-H26, pKK223-3-CFP-T7-H28, or pKK223-3-CFP-T7-H29 is cultured by the method described in (3) above.
  • 0.6 ml of a crude enzyme solution containing various modified amadoriases (CFP-T7-H26, CFP-T7-H28, CFP-T7-H29) was prepared.
  • the oxidation activity for ⁇ F6P was measured by the method shown in B: Activity measurement method.
  • B Activity measurement method.
  • the same measurement was performed using an enzyme solution containing CFP-T7-H26 produced from Escherichia coli JM109 (pKK223-3-CFP-T7-H26).
  • Table 10 shows the ⁇ F6P oxidation activity of each crude enzyme solution containing amadoriase when the ⁇ F6P oxidation activity of the crude enzyme solution containing CFP-T7-H26 is 100.
  • CFP-T7-H28 and CFP-T7-H29 have higher reactivity (substrate specificity) to ⁇ F6P than CFP-T7-H26.
  • arginine at position 62 of the amino acid sequence shown in SEQ ID NO: 1 is aspartic acid
  • leucine at position 63 is histidine
  • glutamic acid at position 102 is lysine
  • aspartic acid at position 106 is lysine
  • 110 A recombinant plasmid (pKK223-3-CFP-T7-H35) encoding a modified amadoriase in which the glutamine at the position is replaced by leucine, the alanine at the 113th position is replaced by lysine, and the alanine at the 355th position is replaced by serine Got.
  • E. coli JM109 strain transduced with pKK223-3-CFP-T7-H35 was cultured by the method described in (3) above to prepare 0.6 ml of a crude enzyme solution containing CFP-T7-H35, which is a modified amadoriase. .
  • the oxidation activity for ⁇ F6P was measured by the method shown in B: Activity measurement method.
  • B Activity measurement method.
  • the same measurement was performed using an enzyme solution containing CFP-T7-H20 produced from Escherichia coli JM109 (pKK223-3-CFP-T7-H28).
  • Table 12 shows the ⁇ F6P oxidation activity of each crude enzyme solution containing amadoriase when the ⁇ F6P oxidation activity of the crude enzyme solution containing CFP-T7-H26 is defined as 100.
  • the oligonucleotides of SEQ ID NOs: 4 and 10 and KOD-Plus- were used for PCR reaction under the same conditions as in (2) above, E. coli JM109 And the nucleotide sequence of the DNA encoding amadoriase in the plasmid DNA retained by the growing colony was determined.
  • a recombinant plasmid (pKK223-3-CFP-T7-62D) encoding a modified amadoriase in which arginine at position 62 of the amino acid sequence shown in SEQ ID NO: 1 was replaced with aspartic acid was obtained.
  • E. coli JM109 strain transduced with pKK223-3-CFP-T7-62D was prepared.
  • PCR was performed using the recombinant plasmid pKK223-3-CFP-T7-H35 DNA as a template, the oligonucleotides of SEQ ID NO: 193, SEQ ID NO: 194, and KOD-Plus- under the same conditions as in (2) above.
  • arginine at position 62 of the amino acid sequence shown in SEQ ID NO: 1 is aspartic acid
  • leucine at position 63 is histidine
  • glutamic acid at position 102 is lysine
  • aspartic acid at position 106 is lysine
  • 110 A recombinant plasmid encoding a modified amadoriase in which the glutamine at the position is replaced with leucine, the alanine at the 113th position is replaced with lysine, the alanine at the 355th position is replaced with serine, and the aspartic acid at the 68th position is replaced with asparagine pKK223-3-CFP-T7-H36) was obtained.
  • PCR was performed under the same conditions as in (2) above using the recombinant plasmid pKK223-3-CFP-T7-H36 DNA as a template, the oligonucleotides of SEQ ID NO: 195, SEQ ID NO: 196, and KOD-Plus-.
  • arginine at position 62 of the amino acid sequence shown in SEQ ID NO: 1 is aspartic acid
  • leucine at position 63 is histidine
  • glutamic acid at position 102 is lysine
  • aspartic acid at position 106 is lysine
  • 110 The glutamine at the position was replaced with leucine
  • the alanine at the 113th position was replaced with lysine
  • the alanine at the 355th position was replaced with serine
  • the aspartic acid at the 68th position was replaced with asparagine
  • the alanine at the 356th position was replaced with threonine.
  • a recombinant plasmid (pKK223-3-CFP-T7-H37) encoding a modified amadoriase was obtained.
  • CFP-DH1 type CFP-T7-H36
  • the 1305 bp gene (including the stop codon TAA) shown in SEQ ID NO: 200, which encodes the amino acid sequence of SEQ ID NO: 199 and whose codons are optimized for E. coli expression, is a total synthesis by PCR of gene fragments, which is a standard method. Obtained by. At this time, an EcoRI site and a HindIII site were added to the 5 ′ end and 3 ′ end of SEQ ID NO: 200, respectively.
  • the grown colonies were inoculated into LB-amp medium and cultured with shaking, and plasmid DNA was isolated by the same method as in (1) above.
  • the nucleotide sequence of the DNA encoding the amadoriase in the plasmid was determined using a multicapillary DNA analysis system Applied Biosystems 3130xl Genetic Analyzer (manufactured by Life Technologies). In fact, the CFP- was found at the multicloning site of the pKK223-3 vector. It was confirmed that a recombinant plasmid pKK223-3-CFP-DH1 DNA into which the DH1 gene had been inserted was obtained.
  • a recombinant plasmid (pKK223-3-CFP-DH2) encoding a modified amadoriase in which the alanine at position 356 of the amino acid sequence shown in SEQ ID NO: 199 was replaced with threonine was obtained.
  • Example 2 (Production and purification of various amadoriases) (Production and purification of modified amadoriase from the genus Coniochaeta) E. coli JM109 (pKK223-3-CFP-T7), E. coli JM109 (pKK223-3-CFP-T7-62D), E. coli producing the wild-type amadoriase derived from the genus Coniochaeta, and the modified amadoriase obtained as described above JM109 (pKK223-3-CFP-T7-H20), E. coli JM109 (pKK223-3-CFP-T7-H21), and E.
  • coli JM109 (pKK223-3-CFP-T7-H35) were added at a final concentration of 0.1 mM. Inoculated into 120 ml of LB-amp medium supplemented with IPTG, and cultured at 25 ° C. for 16 hours. Each of the obtained cultured cells was washed with 10 mM potassium phosphate buffer (pH 7.0), suspended in the same buffer solution, subjected to ultrasonic disruption, and centrifuged at 20,000 ⁇ g for 10 minutes. After separation, 24 ml of a crude enzyme solution was prepared.
  • the prepared crude enzyme solution was adsorbed to 1.35M (NH 4) Butyl Toyopearl 650C resin (Tosoh Corporation) of 12ml equilibrated with 2SO 4 10 mM potassium phosphate buffer containing (pH 7.0), then 120ml of the same buffer resin was washed with, followed by 84ml of 1.05M (NH 4) 2SO 4 the amadoriase adsorbed on the resin was eluted were collected with 10mM potassium phosphate buffer (pH7.0) containing.
  • the obtained crude enzyme solution containing amadoriase was transferred to a dialysis tube (Spectra / Por MWCO: 12,000-14,000) and dialyzed in 10 volumes of 5 mM potassium phosphate buffer (pH 7.5) three times. (NH 4 ) 2 SO 4 was completely removed from the crude enzyme solution containing amadoriase. Subsequently, a crude enzyme solution containing amadoriase was applied to HiScreen Capto Q ImpRes (manufactured by GE Healthcare) equilibrated with 10 mM potassium phosphate buffer (pH 7.5) to bind the amadoriase to the anion exchange resin. .
  • E. coli JM109 (pKK223-3-CFP-T7-H36), E. coli JM109 (pKK223-3-CFP-T7-H37), and E. coli JM109 (pKK223-3) producing the modified amadoriase obtained in [Example 1] -CFP-DH2) was inoculated into 200 ml of LB-amp medium supplemented with IPTG to a final concentration of 0.1 mM, and cultured at 25 ° C. for 16 hours. Each of the obtained cultured cells was washed with 10 mM potassium phosphate buffer (pH 7.0), suspended in the same buffer solution, subjected to ultrasonic disruption, and centrifuged at 20,000 ⁇ g for 10 minutes.
  • 10 mM potassium phosphate buffer pH 7.0
  • the enzyme solution was applied to bind amadoriase to the anion exchange resin.
  • 20 column volume integration was carried out with 10 mM potassium phosphate buffer (pH 7.5) containing 30 mM NaCl concentration to elute contaminating proteins, and then 10 mM potassium phosphate buffer (pH 7.7 containing 80 mM NaCl).
  • the protein bound to the resin was eluted, and the fraction showing amadoriase activity was collected.
  • a column packed with Q-sepharose FF (manufactured by GE Healthcare) was equilibrated with 2 mM potassium phosphate buffer (pH 8.0), and then the prepared crude enzyme solution containing CFP-DH2 was applied to remove the amadoriase. Binding to ion exchange resin. Thereafter, 20 column volume integration of 4 mM potassium phosphate buffer (pH 8.0) was carried out to elute contaminating proteins, and then bound to the resin with 4 mM potassium phosphate buffer (pH 8.0) containing 30 mM NaCl. The eluted protein was eluted, and the fraction showing amadoriase activity was collected.
  • the obtained fractions showing amadoriase activity were concentrated with Amicon Ultra Ultra-30K (Millipore) and purified with HiLoad 26/60 Superdex200.
  • a 10 mM potassium phosphate buffer (pH 6.5) containing 150 mM NaCl was used for equilibration and elution of the resin.
  • the purity of each eluted fraction was evaluated by SDS-PAGE, and fractions containing no contaminating protein were collected and used as purified samples of CFP-T7-H36, CFP-T7-H37 and CFP-DH2.
  • SEQ ID NO: 36 is the amino acid sequence of Aspergillus oryzae RIB40-derived fructosyl amino acid oxidase (hereinafter referred to as FAOAo2).
  • a recombinant plasmid (hereinafter referred to as pUC19-) into which the gene (SEQ ID NO: 37) encoding the amino acid sequence of SEQ ID NO: 36 has been inserted.
  • FAOAo2 is produced by expression in E. coli DH5 ⁇ (referred to as FAOAo2), and FAOAo2 has been shown to act on fructosyl hexapeptide (see WO 2008/108385).
  • E. coli DH5 ⁇ (pUC19-FAOAo2) having the ability to produce FAOAo2 was inoculated into an LB-amp medium supplemented with IPTG to a final concentration of 0.1 mM, and cultured at 25 ° C. for 16 hours. Each of the obtained cultured cells was washed with 10 mM Tris-HCl buffer (pH 8.5), suspended in the same buffer solution, subjected to ultrasonic disruption, and centrifuged at 20,000 ⁇ g for 10 minutes. Separated to prepare a crude enzyme solution.
  • the prepared crude enzyme solution is adsorbed on Q Sepharose Fast Flow resin (manufactured by GE Healthcare) equilibrated with 10 mM Tris-HCl buffer (pH 8.5), and then 10 mM Tris-HCl buffer (containing 50 mM NaCl) ( The resin was washed with pH 8.5), and FAOAo2 adsorbed on the resin was then eluted and recovered with 10 mM Tris-HCl buffer (pH 8.5) containing 100 mM NaCl.
  • the obtained FAOAo2 crude enzyme solution was applied to a HiLoad 26/600 Superdex 200 column equilibrated with 20 mM MES-NaOH buffer solution (pH 7.0) containing 150 mM NaCl, and FAOAo2 was eluted with the same buffer solution. The fractions indicating were collected. The obtained fraction was analyzed by SDS-PAGE to confirm that it was purified to a purity free from other contaminating proteins, and was used as a purified FAOAo2 preparation.
  • SEQ ID NO: 38 is the amino acid sequence of Phaeosphaeria nodorum-derived fructosyl peptide oxidase (hereinafter referred to as PnFX) (see Biotechnology and Bioengineering, 106, 358-366, 2010).
  • PnFX Phaeosphaeria nodorum-derived fructosyl peptide oxidase
  • the gene encoding the amino acid sequence of SEQ ID NO: 38 was obtained by total synthesis of cDNA by total synthesis by PCR of gene fragments, which is a conventional method.
  • the gene synthesized above is treated with two types of restriction enzymes, NdeI site and BamHI (Takara Bio), and inserted into the NdeI-BamHI site of pET-22b (+) Vector (Novagen). Then, the recombinant plasmid pET22b-PnFX was obtained, and the E. coli BL21 (DE3) strain was transformed under the same conditions as above to obtain the E. coli BL21 (DE3) (pET22b-PnFX) strain.
  • the prepared crude enzyme solution of PnFX was purified according to the method described in the above-mentioned non-patent literature (Biotechnology and Bioengineering, 106, 358-366, 2010). That is, the crude enzyme solution was fractionated with ammonium sulfate, dialyzed with 10 mM potassium phosphate buffer (pH 8.0), purified by anion exchange chromatography (in this example, using Q Sepharose Fast Flow), and gel Purification was performed by filtration chromatography (HiLoad 26/600 Suprdex 200 was used in this example). The obtained fraction was analyzed by SDS-PAGE to confirm that it had been purified to a purity free from other contaminating proteins, and was used as a purified PnFX preparation.
  • CFP-T7 showed activity to oxidize ⁇ FV and ⁇ FVH, but did not show activity to oxidize ⁇ F6P.
  • CFP-T7-H35 exhibited ⁇ F6P oxidation activity in addition to ⁇ FV and ⁇ FVH, and the specific activity of the ⁇ F6P oxidation reaction reached a high level of 4.27 U / mg.
  • CFP-T7-62D The specific activities of CFP-T7-62D, CFP-T7-H20, and CFP-T7-H21 with respect to ⁇ F6P are 0.018 U / mg, 0.850 U / mg, and 0.795 U / mg, respectively. Even in the measurement method that excludes the influence of protease / peptidase, sufficiently high reactivity to ⁇ F6P was shown.
  • CFP-T7-H36 and CFP-T7-H37 with respect to ⁇ F6P are 4.65 U / mg and 7.19 U / mg, respectively, and the specific activity of CFP-T7-H35 before introduction of amino acid substitution (4.27 U / mg). mg), it improved with each additional amino acid substitution.
  • CFP-DH2 also showed higher specific activity (5.30 U / mg) than CFP-T7-H35 (Table 13-2).
  • amadoriase having no such mutation remains active even after treatment with the surfactant, and HbA1c can be measured using an appropriate amount of enzyme.
  • an amadoriase with improved surfactant resistance or an amadoriase with improved thermal stability is used, the amount of enzyme required for the measurement can be reduced.
  • fructosyl peptide oxidase gene derived from Eupenicillium terrenum SEQ ID NO: 40 is the amino acid sequence of Eupenicillium terrenum-derived fructosyl peptide oxidase (hereinafter referred to as EFP-T5), and the gene (sequence) encoding the amino acid sequence of SEQ ID NO: 40 No. 41) can be produced by Escherichia coli carrying the recombinant plasmid pUTE100K′-EFP-T5, and EFP-T5 has been confirmed to exhibit ⁇ FV and ⁇ FVH oxidation activity (WO 2007/12579) And International Publication No. 2008/018094).
  • EFP-T5 Eupenicillium terrenum-derived fructosyl peptide oxidase
  • a recombinant plasmid (pUTE100K'-EFP-T5-62D) encoding the EFP-T5 gene in which the arginine at position 62 of the amino acid sequence shown in SEQ ID NO: 40 was replaced with aspartic acid was obtained.
  • arginine at position 62 of the amino acid sequence shown in SEQ ID NO: 40 was converted to aspartic acid using pUTE100K′-EFP-T5-62D as a template and the synthetic oligonucleotides of SEQ ID NOs: 44 and 45.
  • a recombinant plasmid (pUTE100K′-EFP-T5-62D / 106K) encoding the EFP-T5 gene in which asparagine at position 106 was replaced with lysine was obtained.
  • the arginine at position 62 of the amino acid sequence described in SEQ ID NO: 40 is A recombinant plasmid (pUTE100K'-EFP-T5-62D / 106K / 110L) encoding the EFP-T5 gene in which aspartic acid was substituted with asparagine at position 106 with lysine and lysine at position 110 with leucine was obtained. .
  • pUTE100K′-EFP-T5-62D / 106K / 110L was used as a template, and synthetic oligonucleotides of SEQ ID NOs: 48 and 49 were used.
  • the pUTE100K′-EFP-T5-62D / 106K / 110L / 113K was used as a template and the synthetic oligonucleotides of SEQ ID NOs: 50 and 51 were used.
  • a recombinant plasmid (pUTE100K′-EFP-T5-62D / 106K / 110L / 113K / 355S) was obtained.
  • the pUTE100K′-EFP-T5-62D / 106K / 110L / 113K / 355S was used as a template, and the synthetic oligonucleotides of SEQ ID NOs: 52 and 53 were used.
  • Arginine at position 62 is replaced with aspartic acid
  • leucine at position 63 is replaced with histidine
  • asparagine at position 106 is replaced with lysine
  • lysine at position 110 is replaced with leucine
  • threonine at position 113 is replaced with lysine
  • alanine at position 355 is replaced with serine.
  • a recombinant plasmid (pUTE100K′-EFP-T5-62D / 63H / 106K / 110L / 113K / 355S) encoding the EFP-T5 gene was obtained.
  • ketoamine oxidase gene derived from Neocosmospora vasinfecta is the amino acid sequence of ketoamine oxidase derived from Neocosmospora vasinfecta (hereinafter referred to as NvFX), and the gene encoding the amino acid sequence of SEQ ID NO: 54 (SEQ ID NO: 55) It has been confirmed that NvFX exhibits ⁇ FV and ⁇ FVH oxidation activity (see International Publication No. 2012/018094).
  • the recombinant plasmid pET22b-NvFX was used as a template, and synthetic oligonucleotides of SEQ ID NOs: 56 and 57, KOD-Plus- (manufactured by Toyobo Co., Ltd.) were used.
  • PCR reaction, transformation of E. coli JM109 and determination of the nucleotide sequence of the DNA encoding the NvFX mutant in the plasmid DNA retained by the growing colonies were performed.
  • arginine at position 62 of the amino acid sequence of SEQ ID NO: 54 is converted to aspartic acid
  • a recombinant plasmid (pET22b-NvFX-62D / 106K / 110L) encoding the NvFX gene in which arginine at position 106 was replaced with lysine and glutamic acid at position 110 was replaced with leucine was obtained.
  • E. coli BL21 (DE3) strain was transformed under the same conditions as in Example 1 to obtain E. coli BL21 (DE3) (pET22b-NvFX-62D / 106K / 110L) strain.
  • SEQ ID NO: 62 is a fructosyl amino acid oxidase derived from Aspergillus nidulans obtained by substituting serine at position 59 with glycine in order to confer fructosyl peptide oxidase activity (hereinafter referred to as AnFX)
  • AnFX The recombinant plasmid pET22b-AnFX inserted with the gene encoding the amino acid sequence of SEQ ID NO: 62 (SEQ ID NO: 63) can be produced by Escherichia coli, and AnFX exhibits ⁇ FV and ⁇ FVH oxidation activities It has been confirmed (see International Publication No. 2012/018094).
  • the recombinant plasmid pET22b-AnFX was used as a template, and synthetic oligonucleotides of SEQ ID NOS: 64 and 65, KOD-Plus- (manufactured by Toyobo Co., Ltd.) were used.
  • synthetic oligonucleotides of SEQ ID NOS: 64 and 65, KOD-Plus- manufactured by Toyobo Co., Ltd.
  • arginine at position 61 of the amino acid sequence shown in SEQ ID NO: 62 was converted to aspartic acid using pET22b-AnFX-61D / 105K as a template and synthetic oligonucleotides of SEQ ID NOs: 68 and 69.
  • a recombinant plasmid (pET22b-AnFX-61D / 105K / 109L) encoding the AnFX gene in which glycine at position 105 was replaced with lysine and lysine at position 109 was replaced with leucine was obtained.
  • E. coli BL21 (DE3) strain was transformed under the same conditions as in Example 1 to obtain E. coli BL21 (DE3) (pET22b-AnFX-61D / 105K / 109L) strain.
  • pET22b-AnFX-61D / 105K / 109L was used as a template, and the synthetic oligonucleotides of SEQ ID NOS: 112 and 70 were used.
  • a recombinant plasmid (pET22b-AnFX-61D / 105K / 109L / 112K) encoding an AnFX gene in which glycine at position 105 is replaced by lysine, lysine at position 109 is replaced by leucine, and serine at position 112 is replaced by lysine. )
  • pET22b A recombinant plasmid encoding an AnFX gene in which glycine at position 105 is replaced by lysine, lysine at position 109 is replaced by leucine, serine at position 112 is replaced by lysine, and alanine at position 355 is replaced by serine.
  • pET22b-AnFX-61D / 105K / 109L / 112K / 355S was used as a template, and synthetic oligonucleotides of SEQ ID NOs: 73 and 74 were used, and position 61 of the amino acid sequence described in SEQ ID NO: 62 was used. Arginine was replaced with aspartic acid, leucine at position 62 was replaced with histidine, glycine at position 105 was replaced with lysine, lysine at position 109 was replaced with leucine, serine at position 112 was replaced with lysine, and alanine at position 355 was replaced with serine.
  • a recombinant plasmid (pET22b-AnFX-61D / 62H / 105K / 109L / 112K / 355S) encoding the gene was obtained.
  • Arginine at position 61 is aspartic acid, leucine at position 62 is histidine, glutamic acid at position 101 is lysine, glycine at position 105 is lysine, lysine at position 109 is leucine, serine at position 112 is lysine, 355 A recombinant plasmid (pET22b-AnFX-61D / 62H / 101K / 105K / 109L / 112K / 355S) encoding the substituted AnFX gene in which the alanine at the position was replaced with serine was obtained.
  • E. coli BL21 (DE3) strain was transformed under the same conditions as in Example 1 to obtain E. coli BL21 (DE3) (pET22b-AnFX-61D / 62H / 101K / 105K / 109L / 112K / 355S) strain.
  • serine at position 62 of the amino acid sequence described in SEQ ID NO: 38 is converted to aspartic acid using pET22b-PnFX-62D / 106K as a template and the synthetic oligonucleotides of SEQ ID NOS: 81 and 82.
  • a recombinant plasmid (pET22b-PnFX-62D / 106K / 110L) encoding the PnFX gene in which aspartic acid at position 106 was replaced with lysine and glycine at position 110 was replaced with leucine was obtained.
  • serine at position 62 of the amino acid sequence described in SEQ ID NO: 38 is aspartic acid using pET22b-PnFX-62D / 106K / 110L as a template and the synthetic oligonucleotides of SEQ ID NOS: 83 and 84.
  • a recombinant plasmid (pET22b-PnFX-62D / 106K / 110L / 113K) encoding a PnFX gene in which aspartic acid at position 106 is replaced with lysine, glycine at position 110 is replaced with leucine, and alanine at position 113 is replaced with lysine. )
  • E. coli BL21 (DE3) strain was transformed under the same conditions as in Example 1 to obtain E. coli BL21 (DE3) (pET22b-PnFX-62D / 106K / 110L / 113K) strain.
  • serine at position 62 of the amino acid sequence described in SEQ ID NO: 38 is obtained using pET22b-PnFX-62D / 106K / 110L / 113K as a template and the synthetic oligonucleotides of SEQ ID NOs: 85 and 86.
  • -PnFX-62D / 106K / 110L / 113K / 351S ).
  • pET22b-PnFX-62D / 106K / 110L / 113K / 351S was used as a template, and synthetic oligonucleotides of SEQ ID NOs: 87 and 88 were used, and position 62 of the amino acid sequence described in SEQ ID NO: 38 was used.
  • a recombinant plasmid (pET22b-PnFX-62D / 63H / 106K / 110L / 113K / 351S) encoding the gene was obtained.
  • E. coli BL21 (DE3) strain was transformed under the same conditions as in Example 1 to obtain E. coli BL21 (DE3) (pET22b-PnFX-62D / 63H / 106K / 110L / 113K / 351S) strain.
  • SEQ ID NO: 89 is the amino acid sequence of fructosyl amino acid oxidase derived from Cryptococcus neoformans (hereinafter referred to as CnFX), and the gene encoding the amino acid sequence of SEQ ID NO: 89 (SEQ ID NO: 90) can be produced by Escherichia coli carrying the recombinant plasmid pET22b-CnFX, and CnFX has been confirmed to exhibit ⁇ FV and ⁇ FVH oxidation activities (see International Publication No. 2012/018094).
  • the recombinant plasmid pET22b-CnFX prepared as described above was used as a template, and synthetic oligonucleotides SEQ ID NOS: 91 and 92, KOD-Plus- (Toyobo Co., Ltd.)
  • SEQ ID NOS: 91 and 92 synthetic oligonucleotides
  • KOD-Plus- KOD-Plus-
  • a recombinant plasmid (pET22b-CnFX-62D) encoding a CnFX gene in which arginine at position 62 of the amino acid sequence shown in SEQ ID NO: 89 was replaced with aspartic acid was obtained.
  • arginine at position 62 of the amino acid sequence shown in SEQ ID NO: 89 was converted to aspartic acid using pET22b-CnFX-62D / 106K as a template and the synthetic oligonucleotides of SEQ ID NOs: 95 and 96.
  • a recombinant plasmid (pET22b-CnFX-62D / 106K / 110L) encoding a CnFX gene in which serine at position 106 was replaced with lysine and serine at position 110 was replaced with leucine was obtained.
  • the arginine at position 62 of the amino acid sequence described in SEQ ID NO: 89 is asparagine.
  • a recombinant plasmid (pET22b-CnFX-62D / 106K / 110L / 113K) encoding a CnFX gene in which serine at position 106 is replaced with lysine, serine at position 110 with leucine, and alanine at position 113 with lysine. )
  • E. coli BL21 (DE3) strain was transformed under the same conditions as in Example 1 to obtain E. coli BL21 (DE3) (pET22b-CnFX-62D / 106K / 110L / 113K) strain.
  • SEQ ID NO: 99 is an amadoriase having an amino acid sequence showing 95% sequence identity with Curvularia clavata-derived ketoamine oxidase (hereinafter referred to as Cc95FX).
  • the gene encoding the amino acid sequence of SEQ ID NO: 99 was obtained by total synthesis of cDNA by total synthesis by PCR of gene fragments, which is a conventional method. At this time, an NdeI site and a BamHI site were added to the 5 ′ end and 3 ′ end of SEQ ID NO: 100, respectively.
  • the gene synthesized above is treated with two types of restriction enzymes, NdeI site and BamHI (Takara Bio), and inserted into the NdeI-BamHI site of pET-22b (+) Vector (Novagen). Then, the recombinant plasmid pET22b-Cc95FX was obtained, and Escherichia coli BL21 (DE3) was transformed under the same conditions as described above to obtain Escherichia coli BL21 (DE3) (pET22b-Cc95FX).
  • pET22b-Cc95FX-62D / 106K was used as a template and the synthetic oligonucleotides of SEQ ID NOS: 105 and 106 were used to convert arginine at position 62 of the amino acid sequence shown in SEQ ID NO: 99 into aspartic acid.
  • a recombinant plasmid (pET22b-Cc95FX-62D / 106K / 110L) encoding the Cc95FX gene in which aspartic acid at position 106 was replaced with lysine and alanine at position 110 was replaced with leucine was obtained.
  • arginine at position 62 of the amino acid sequence described in SEQ ID NO: 99 was converted to asparagine using pET22b-Cc95FX-62D / 106K / 110L as a template and the synthetic oligonucleotides of SEQ ID NOs: 107 and 108.
  • arginine at position 62 of the amino acid sequence described in SEQ ID NO: 99 using pET22b-Cc95FX-62D / 106K / 110L / 113K as a template and using the synthetic oligonucleotides of SEQ ID NOs: 109 and 110 Is a recombinant plasmid encoding a Cc95FX gene in which aspartic acid is substituted with aspartic acid at position 106 with lysine, alanine at position 110 with leucine, alanine at position 113 with lysine, and alanine at position 353 with serine.
  • pET22b-Cc95FX-62D / 106K / 110L / 113K / 353S was obtained.
  • pET22b-Cc95FX-62D / 106K / 110L / 113K / 353S was used as a template, and synthetic oligonucleotides of SEQ ID NOS: 111 and 102 were used, and position 62 of the amino acid sequence described in SEQ ID NO: 99 was used.
  • Arginine was replaced with aspartic acid
  • leucine at position 63 was replaced with histidine
  • aspartic acid at position 106 was replaced with lysine
  • alanine at position 110 was replaced with leucine
  • alanine at position 113 was replaced with lysine
  • alanine at position 353 was replaced with serine.
  • a recombinant plasmid (pET22b-Cc95FX-62D / 63H / 106K / 110L / 113K / 353S) encoding the Cc95FX gene was obtained.
  • E. coli BL21 (DE3) strain was transformed under the same conditions as in Example 1 to obtain E. coli BL21 (DE3) (pET22b-Cc95FX-62D / 63H / 106K / 110L / 113K / 353S) strain.
  • Example 4 (Production and purification of various amadoriases) (Production and purification of fructosyl peptide oxidase from Eupenicillium terrenum) E. coli JM109 (pUTE100K′-EFP-T5), E. coli JM109 (pUTE100K′-EFP-T5-62D), E.
  • EFP-T5 producing wild-type EFP-T5 and modified EFP-T5 obtained as described above (PUTE100K'-EFP-T5-62D / 63H / 106K / 110L / 113K / 355S) was inoculated into LB-amp medium supplemented with IPTG to a final concentration of 0.1 mM and cultured at 25 ° C. for 16 hours. did.
  • Each of the obtained cultured cells was washed with 10 mM potassium phosphate buffer (pH 7.0), suspended in the same buffer solution, subjected to ultrasonic disruption, and centrifuged at 20,000 ⁇ g for 10 minutes. Separated to prepare a crude enzyme solution.
  • ammonium sulfate was added to a 35% saturation concentration and stirred, and centrifuged at 20,000 ⁇ g for 10 minutes to collect the supernatant. Subsequently, ammonium sulfate was additionally added to the obtained supernatant to a 70% saturation concentration and stirred, centrifuged at 20,000 ⁇ g for 10 minutes, the supernatant was discarded, and the precipitate was 10 mM phosphoric acid. It was dissolved in potassium buffer (pH 7.0).
  • the obtained crude enzyme solution of wild type or modified EFP-T5 was dialyzed with 10 mM potassium phosphate buffer (pH 6.5), and then equilibrated with the same buffer, 4 ml of Q Sepharose Fast Flow resin (GE Healthcare). The protein not adsorbed on the resin was eluted with the same buffer. Subsequently, the obtained wild-type or modified EFP-T5M crude enzyme solution was dialyzed with 10 mM potassium phosphate buffer (pH 8.0), and then equilibrated with the same buffer, HiLoad 26/10 Q Sepharose HP column.
  • the obtained crude enzyme solution containing wild-type or modified EFP-T5 was applied to a HiLoad 26/600 Superdex 200 column equilibrated with 10 mM potassium phosphate buffer (pH 7.0) containing 150 mM NaCl. Wild-type or modified EFP-T5 was eluted with a buffer, and a fraction showing fructosyl amino acid oxidase activity (amadriase activity) was collected. The obtained fraction was analyzed by SDS-PAGE to confirm that it was purified to a purity free from other contaminating proteins, and used as a purified sample of wild-type or modified EFP-T5.
  • E. coli BL21 (DE3) (pET22b-NvFX) and E. coli BL21 (DE3) (pET22b-NvFX-62D / 106K / 110L) producing the wild-type NvFX and the modified NvFX obtained as described above were terminated.
  • Each of the obtained cultured cells was washed with 10 mM potassium phosphate buffer (pH 8.0), suspended in the same buffer solution, subjected to ultrasonic disruption, and centrifuged at 20,000 ⁇ g for 10 minutes. Separated to prepare a crude enzyme solution.
  • the prepared crude enzyme solution was adsorbed on Q Sepharose Fast Flow resin (manufactured by GE Healthcare) equilibrated with 10 mM potassium phosphate buffer (pH 8.0), and then 10 mM potassium phosphate buffer (containing 20 mM NaCl) ( The resin was washed with pH 8.0), and then the wild-type or modified NvFX adsorbed on the resin was eluted and collected with 10 mM potassium phosphate buffer (pH 8.0) containing 300 mM NaCl.
  • the obtained crude enzyme solution containing wild-type NvFX or modified NvFX was applied to a HiLoad 26/600 Superdex 200 column equilibrated with 20 mM MES-NaOH buffer solution (pH 7.0) containing 150 mM NaCl. Wild-type NvFX or modified NvFX was eluted with the solution, and a fraction showing fructosyl amino acid oxidase activity (amadoriase activity) was collected. The obtained fraction was analyzed by SDS-PAGE to confirm that it was purified to a purity free from other contaminating proteins, and used as a purified sample of wild type or modified NvFX.
  • Each of the obtained cultured cells was washed with 10 mM potassium phosphate buffer (pH 6.0), suspended in the same buffer solution, subjected to ultrasonic disruption, and centrifuged at 20,000 ⁇ g for 10 minutes. Separated to prepare a crude enzyme solution.
  • the prepared crude enzyme solution was adsorbed to SP Sepharose Fast Flow resin (manufactured by GE Healthcare) equilibrated with 10 mM potassium phosphate buffer (pH 6.0), and then 10 mM potassium phosphate buffer (containing 20 mM NaCl) ( The resin was washed with pH 6.0), and then the modified AnFX adsorbed on the resin was eluted and collected with 10 mM potassium phosphate buffer (pH 6.0) containing 100 mM NaCl.
  • the obtained crude enzyme solution containing modified AnFX was applied to a HiLoad 26/600 Superdex 200 column equilibrated with 20 mM MES-NaOH buffer solution (pH 7.0) containing 150 mM NaCl, and modified AnFX with the same buffer solution. And fractions showing fructosyl amino acid oxidase activity (amadoriase activity) were collected. The obtained fraction was analyzed by SDS-PAGE to confirm that it was purified to a purity free from other contaminating proteins, and was used as a purified sample of modified AnFX.
  • E. coli BL21 (DE3) (pET22b-PnFX-62D / 106K / 110L / 113K) and E. coli BL21 (DE3) (pET22b-PnFX-62D / 63H / 106K / 110L) producing the modified AnFX obtained as described above / 113K / 351S) was purified according to the purification method of wild-type PnFX described above.
  • E. coli BL21 (DE3) (pET22b-CnFX) and E. coli BL21 (DE3) (pET22b-CnFX-62D / 106K / 110L / 113K) that produce wild-type CnFX and modified CnFX obtained as described above were used.
  • Each of the obtained cultured cells was washed with 10 mM potassium phosphate buffer (pH 8.0), suspended in the same buffer solution, subjected to ultrasonic disruption, and centrifuged at 20,000 ⁇ g for 10 minutes. Separated to prepare a crude enzyme solution.
  • the prepared crude enzyme solution was adsorbed on Q Sepharose Fast Flow resin (manufactured by GE Healthcare) equilibrated with 10 mM potassium phosphate buffer (pH 8.0), and then 10 mM potassium phosphate buffer (containing 20 mM NaCl) ( The resin was washed with pH 8.0), and then the wild-type or modified CnFX adsorbed on the resin was eluted and recovered with 10 mM potassium phosphate buffer (pH 8.0) containing 300 mM NaCl.
  • the obtained crude enzyme solution containing wild-type CnFX or modified CnFX was applied to a HiLoad 26/600 Superdex 200 column equilibrated with 20 mM MES-NaOH buffer solution (pH 7.0) containing 150 mM NaCl. Wild-type CnFX or modified CnFX was eluted with the solution, and a fraction showing fructosyl amino acid oxidase activity (amadoriase activity) was collected. The obtained fraction was analyzed by SDS-PAGE to confirm that it was purified to a purity free from other contaminating proteins, and used as a purified sample of wild type or modified CnFX.
  • Each of the obtained cultured cells was washed with 10 mM potassium phosphate buffer (pH 7.0), suspended in the same buffer solution, subjected to ultrasonic disruption, and centrifuged at 20,000 ⁇ g for 10 minutes. Separated to prepare a crude enzyme solution.
  • Cc95FX As a result of introduction into the prepared amadoriase (Cc95FX; Comparative Example 8) showing 95% sequence identity with Curvularia clavata-derived ketoamine oxidase, Cc95FX was newly given reactivity to ⁇ F6P as expected, and Cc95FX-62D In / 63H / 106K / 110L / 113K / 355S, ⁇ F6P oxidation activity exceeded ⁇ FVH oxidation activity.
  • the effect of amino acid substitution that imparts or enhances the reactivity to ⁇ F6P to Coniochaeta-derived amadoriase described in the present specification is not limited to Coniochaeta-derived amadoriase. If it was an amadoriase showing 74% or more sequence identity with Coniochaeta-derived amadoriase as shown, reactivity to ⁇ F6P was imparted or enhanced in the same manner.
  • Amadoriase 30 in which the mutation 61D / 105K / 110L was introduced into AnFX showed a specific activity of 0.1 or more with respect to ⁇ F6P. That is, it was possible to obtain a modified amadoriase exhibiting a specific activity of 0.1 or more with respect to ⁇ F6P by introducing a triple mutation into the enzyme.
  • mutations that improve the activity of amadoriase on ⁇ F6P are not limited to any particular mutation, and are not limited to any particular combination, and are shown in the 62, 63, 102, 106, 110, as shown herein.
  • mutations at positions, 113, 355, 419, 68 and 356, and other positions that improve activity against ⁇ F6P can be used in any combination.
  • amadoriase having activity against ⁇ F6P can be used in the method for measuring HbA1c of the present invention.
  • Example 5 Quantification of HbA1c
  • a reagent for measuring HbA1c having the following composition was prepared, and HbA1c was measured as described below using Bio Majesty JCA-BM1650 (manufactured by JEOL).
  • HbA1c solution HbA1c certified practical reference material JCCRM423-8 manufactured by National Institute for Laboratory Science
  • Reagent A1 Sample pretreatment solution 5.0% n-dodecyl- ⁇ -D-maltoside (manufactured by Dojindo Laboratories)
  • Reagent A2 Sample pretreatment solution 5.0% n-tetradecyl- ⁇ -D-maltoside (manufactured by Sigma-Aldrich)
  • Reagent B leuco dye, peroxidase solution 150 mM potassium phosphate buffer, pH 6.5 0.30 mM N- (carboxymethylaminocarbonyl) -4,4′-bis (dimethylamino) diphenylamine sodium (DA-64, manufactured by Wako Pure Chemical Industries, Ltd.) 15 U / ml peroxide solution
  • ⁇ A was calculated according to the following formula.
  • ⁇ A (absorbance 5 minutes after addition of reagent C1 or C2) ⁇ (absorbance immediately before addition of reagent C1 or C2 ⁇ 0.75)
  • a value obtained by multiplying the absorbance immediately before the addition of the reagent C1 or the reagent C2 by 0.75 is immediately after the addition of the reagent C1 or the reagent C2.
  • the absorbance was taken as.
  • the results when the sample was diluted with the reagent A1 are shown in FIG. 4-1, and the results when the sample was diluted with the reagent A2 are shown in FIG.
  • Example 6 Quantification of HbA1c pretreated with acid
  • a reagent for measuring HbA1c having the following composition was prepared, and HbA1c was measured as described below using Bio Majesty JCA-BM1650 (manufactured by JEOL).
  • a nonionic surfactant solution adjusted to acidity was used as a pretreatment liquid for the HbA1c sample.
  • HbA1c solution HbA1c certified practical reference material JCCRM423-8 (manufactured by National Institute for Laboratory Science) Total hemoglobin concentration 133 g / l, HbA1c concentration 3 level (NGSP value 5.56%, 7.74%, 10.48%) Or HbA1c certified practical reference material JCCRM 423-9b (manufactured by National Institute for Laboratory Medicine) Total hemoglobin concentration 133 g / l, HbA1c concentration 3 level (NGSP value 5.61%, 7.71%, 10.55%)
  • Reagent D1 Sample pretreatment solution 8.3% n-dodecyl- ⁇ -D-maltoside (manufactured by Dojindo Laboratories) 0.1M hydrochloric acid reagent
  • D2 Sample pretreatment solution 8.3% Polyoxyethylene (20) cetyl ether (Brij58, manufactured by Wako Pure Chemical Industries, Ltd.) 0.1 M hydrochloric acid reagent E: leuco dye solution 30 mM
  • FIG. 5-1 the relationship between the elapsed time after mixing the sample diluted with the reagent D1 and the reagent E and the absorbance is shown in FIG. 5-1.
  • the CFP-T7-H35 solution reagent F1
  • NGSP value the HbA1c concentration of the sample was plotted on the horizontal axis and the absorbance difference ⁇ A of 751 nm light before and after the quantitative reaction of hydrogen peroxide was plotted on the vertical axis.
  • ⁇ A was calculated according to the following formula.
  • ⁇ A (absorbance 5 minutes after addition of reagent F1 or F2) ⁇ (absorbance immediately before addition of reagent F1 or F2 ⁇ 0.75)
  • the value obtained by multiplying the absorbance immediately before the addition of the reagent F1 or F2 by 0.75 is the absorbance immediately after the addition of the reagent F1 or F2.
  • HbA1c concentration ⁇ A regardless of whether reagent D1 or reagent D2 was used for sample dilution. Therefore, when measuring a denatured HbA1c using amadoriase exhibiting ⁇ F6P oxidation activity, it was shown that HbA1c can be quantified quickly and accurately even if the HbA1c is denatured by acid treatment. It was also shown that the type of nonionic surfactant is not limited when a nonionic surfactant coexists in the acidic solution for modification.
  • an amadoriase for directly measuring HbA1c can be used as long as it exhibits a certain reactivity to ⁇ F6P. It has also been shown that it is not limited.
  • Example 7 Quantification of HbA1c pretreated with ionic surfactant
  • a reagent for measuring HbA1c having the following composition was prepared, and HbA1c was measured as described below using Bio Majesty JCA-BM1650 (manufactured by JEOL).
  • an ionic surfactant solution was used as a pretreatment liquid for the HbA1c sample.
  • HbA1c solution HbA1c certified practical reference material JCCRM 423-9b manufactured by Laboratory Medicine Reference Material Organization
  • Reagent G1 Sample pretreatment solution 0.80% tetradecyltrimethylammonium bromide (manufactured by Tokyo Chemical Industry)
  • Reagent G2 Sample pretreatment solution 0.70% hexadecyltrimethylammonium bromide (manufactured by Tokyo Chemical Industry)
  • Reagent H1 Leuco dye solution 120 mM MOPS-NaOH buffer pH 6.5 1.6% n-dodecyl- ⁇ -D-maltoside (Dojindo Laboratories) 0.16 mM N- (carboxymethylaminocarbonyl) -4,4′-bis (dimethylamino) diphenylamine sodium (DA-64, manufactured by Wako
  • the relationship between the elapsed time after mixing the reagent H1 and the absorbance of the sample diluted with the reagent G1 is shown in FIG. 7-1, and in this case, the excess time immediately after the addition of the CFP-DH2 solution (reagent I1) was shown. An increase in absorbance associated with the generation of hydrogen oxide was confirmed. From the measurement results of each HbA1c sample, a graph was prepared in which the HbA1c concentration (NGSP value) of the sample was plotted on the horizontal axis and the absorbance difference ⁇ A of 751 nm light before and after the quantitative reaction of hydrogen peroxide was plotted on the vertical axis.
  • NGSP value HbA1c concentration
  • ⁇ A was calculated according to the following formula.
  • ⁇ A (absorbance 5 minutes after addition of reagent I1 or I2) ⁇ (absorbance immediately before addition of reagent I1 or I2 ⁇ 0.75)
  • the absorbance immediately before the addition of the reagent I1 or I2 is obtained by multiplying the absorbance immediately before the addition of the reagent I1 or I2 by 0.75.
  • HbA1c concentration ⁇ A regardless of whether reagent G1 or reagent G2 was used for sample dilution. Therefore, when measuring a denatured HbA1c using amadoriase exhibiting ⁇ F6P oxidation activity, it was shown that HbA1c can be quantified quickly and accurately even if HbA1c is denatured with an ionic surfactant. Moreover, it was also shown that the type of ionic surfactant used for the modification of HbA1c is not limited when carrying out this measurement.
  • CFP-T7-H35 also used a glycated peptide ( ⁇ F6P) having a long peptide chain that could not be used as a substrate by the wild-type enzyme (CFP-T7).
  • ⁇ F6P glycated peptide
  • CFP-T7-H35 direct measurement of HbA1c was attempted without going through a treatment step with protease or the like for cutting out ⁇ F6P from HbA1c.
  • a sample as described in Example 5 was used.
  • the HbA1c concentration in the medium could be determined.
  • Amadoriase that acts directly on HbA1c has not been discovered so far, and there are no reports of it. Therefore, it is a surprising finding that amadoriase using ⁇ F6P as a substrate acts directly on HbA1c.
  • amadoriase using ⁇ F6P as a substrate directly acts on HbA1c
  • other amadoriases having activity against ⁇ F6P as well as CFP-T7-H35 can also directly bind the ⁇ chain of HbA1c.
  • the possibility of using as a substrate is suggested.
  • an amadoriase having a high specific activity with respect to ⁇ F6P acts directly on HbA1c in the same manner as the amadoriase of the present invention. Therefore, it is considered that there is a high probability that it can be used for quantitative measurement of HbA1c.
  • the findings of the present invention are not limited to showing that amadoriase having ⁇ F6P activity can directly act on HbA1c.
  • ⁇ -fructosyl oligopeptides such as ⁇ F3P, ⁇ F4P, ⁇ F5P, ⁇ F7P, ⁇ F8P, ⁇ F10P
  • any amadoriase exhibiting activity against ⁇ F16P or the like may directly act on HbA1c.
  • the HbA1c measurement method using the amadoriase of the present invention does not require treatment with HbA1c protease or the like, and HbA1c can be quantified quickly, simply, and with good accuracy.
  • the method of denaturing HbA1c is not particularly limited. Thereby, the direct measurement of HbA1c by the enzyme method is realized, and industrial utility value is expected.
  • Amadoriase nucleotide sequence SEQ ID NO: 123 Penicillium janthinellum (Pj) Amadoriase amino acid sequence SEQ ID NO: 124 Penicillium janthinellum (Pj) Amadoriase nucleotide sequence SEQ ID NO: 125 Aspergillus fumigatus Amadoriase I amino acid sequence SEQ ID NO: 126 Amadoriase I nucleotide sequence SEQ ID NO: 127 Aspergillus oryzae FAOAo1 amino acid sequence SEQ ID NO: 128 FAOAo1 nucleotide sequence SEQ ID NO: 129 Aspergillus fumigatus Amadoriase II amino acid sequence No.
  • Amadoriase II nucleotide sequence SEQ ID NO: 131 Aspergillus terreus FAOD-A amino acid sequence SEQ ID NO: 132 FAOD-A nucleotide sequence SEQ ID NO: 133 CFP-T7-H20 (R62D, D106K, Q110L, A113K) Coniochaeta sp.
  • Amino acid sequence SEQ ID NO: 152 CFP-T7- H1 nucleotide sequence SEQ ID NO: 153 (Amadoriase 26) CFP-T7-62D (R62D) Coniochaeta sp.
  • Amino acid sequence SEQ ID NO: 158 CFP-T7-H2 Base sequence SEQ ID NO: 159 (Amadoriase 4) CFP-T7-H4 (R62A, Q110Y ) Coniochaeta sp.
  • Amino acid sequence SEQ ID NO: 160 CFP-T7-H4 nucleotide sequence SEQ ID NO: 161 (Amadoriase 5) CFP-T7-H2-62N (R62N, Q110L) Coniochaeta sp.
  • Amino acid sequence SEQ ID NO: 162 CFP-T7-H2-62N Base sequence SEQ ID NO: 163 (Amadoriase 6) CFP-T7-H6 (R62D, Q110L) Coniochaeta sp.
  • Amino acid sequence SEQ ID NO: 164 CFP-T7-H6 Base sequence SEQ ID NO: 165 (Amadoriase 12) CFP-T7-H10 (R62D, D106A) , Q110L) Coniochaeta sp.
  • Amino acid sequence SEQ ID NO: 178 CFP-T7-H24 nucleotide sequence SEQ ID NO: 179 (Amadoriase 21) CFP-T7-H26 (R62D, L63H, D106K, Q110L, A113K) Coniochaeta sp.
  • Amino acid sequence SEQ ID NO: 180 CFP -T7-H26 nucleotide sequence SEQ ID NO: 181 (Amadoriase 23) CFP-T7-H28 (R62D, L63H, E102K, D106K, Q110L, A113K) Coniochaeta sp.
  • Amino acid sequence SEQ ID NO: 182 CFP-T7-H28 nucleotide sequence SEQ ID NO: 183 ( Amadoriase 24) CFP-T7-H29 (R62D, L63H, D106K, Q110L, A113K, A419K) Coniochaeta sp.
  • NISL 9330 modified amadoriase 36, CFP-T7-H36 (CFP-T7-R62D / L63H / D68N / E102K / D106K / Q110L / A113K / A355S / E44P / E133A / E253K / V257C / N262H / Q337K / E340P / ⁇ P435 / ⁇ K436 / ⁇ L437) amino acid sequence SEQ ID NO: 200 nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 199 PCR primer SEQ ID NO: 203 amino acid sequence of CFP-DH2 (derived from Coniochaeta sp. NISL 9330) (Amadoriase 39) SEQ ID NO: 204 A nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 203

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 ヘモグロビンA1c(HbA1c)のβ鎖に作用し、過酸化水素を生成することを特徴とするアマドリアーゼを提供し、それを用いたHbA1cの測定方法および測定試薬キットを提供する。 αF6Pに対し0.1U/mg以上の比活性を有しHbA1cのβ鎖アミノ末端を酸化して過酸化水素を生成することを特徴とするアマドリアーゼを用いたHbA1cの測定方法および該アマドリアーゼを含む測定試薬キット。 HbA1cを迅速、簡便に、かつ、精度よく定量できる測定方法、測定キットを提供できる。

Description

ヘモグロビンA1cの測定方法および測定キット
 本発明は、試料中のヘモグロビンA1cの測定方法、およびその測定方法に用いられる測定用試薬キットに関する。
 糖化タンパク質は、グルコースなどのアルドース(アルデヒド基を潜在的に有する単糖およびその誘導体)のアルデヒド基と、タンパク質のアミノ基が非酵素的に共有結合を形成し、アマドリ転移することにより生成したものである。タンパク質のアミノ基としてはアミノ末端のα-アミノ基、タンパク質中のリジン残基側鎖のε-アミノ基が挙げられる。生体内で生じる糖化タンパク質としては血液中のヘモグロビンが糖化された糖化ヘモグロビン、アルブミンが糖化された糖化アルブミンなどが知られている。
 これら生体内で生じる糖化タンパク質の中でも、糖尿病の臨床診断分野において、糖尿病患者の診断や症状管理のための重要な血糖コントロールマーカーとして、ヘモグロビンA1c(HbA1c)が注目されている。HbA1cは、へモグロビン「β鎖」のN末端(アミノ末端)のVal(バリン)の、α-アミノ基にグルコースが結合したタンパク質である。血液中のHbA1c濃度は、過去の一定期間の平均血糖値を反映することから、HbA1cの値は糖尿病の症状の診断や管理において重要な指標となっている。
 このHbA1cを迅速かつ簡便に測定する方法として、従来、アマドリアーゼを用いる数種類の酵素的方法が知られている。
 アマドリアーゼは、酸素の存在下で、イミノ2酢酸若しくはその誘導体(「アマドリ化合物」とも言う)を酸化して、グリオキシル酸若しくはα-ケトアルデヒド、アミノ酸若しくはペプチド、および過酸化水素を生成する反応を触媒する酵素の総称である。アマドリアーゼは、HbA1cを酵素的方法により測定するために有用な酵素として知られている。アマドリアーゼにより酸化される基質としては、例えば、α-フルクトシルバリルヒスチジン(以降αFVHと表す)が知られている。
 アマドリアーゼはこれまでに、細菌、酵母、真菌から見出されており、例えば、コニオカエタ(Coniochaeta)属、ユーペニシリウム(Eupenicillium)属、ピレノケータ(Pyrenochaeta)属、アルスリニウム(Arthrinium)属、カーブラリア(Curvularia)属、ネオコスモスポラ(Neocosmospora)属、クリプトコッカス(Cryptococcus)属、フェオスフェリア(Phaeosphaeria)属、アスペルギルス(Aspergillus)属、エメリセラ(Emericella)属、ウロクラディウム(Ulocladium)属、ペニシリウム(Penicillium)属、フザリウム(Fusarium)属、アカエトミエラ(Achaetomiella)属、アカエトミウム(Achaetomium)属、シエラビア(Thielavia)属、カエトミウム(Chaetomium)属、ゲラシノスポラ(Gelasinospora)属、ミクロアスカス(Microascus)属、レプトスフェリア(Leptosphaeria)属、オフィオボラス(Ophiobolus)属、プレオスポラ(Pleospora)属、コニオケチジウム(Coniochaetidium)属、ピチア(Pichia)属、デバリオマイセス(Debaryomyces)属、コリネバクテリウム(Corynebacterium)属、アグロバクテリウム(Agrobacterium)属、アルスロバクター(Arthrobacter)属由来のアマドリアーゼが報告されている(例えば、特許文献1、6~15、非特許文献1~9参照。)。これらの属のことを本明細書においてコニオカエタ(Coniochaeta)属等と呼ぶことがある。なお、上記報告例の中で、アマドリアーゼは、文献によってはケトアミンオキシダーゼやフルクトシルアミノ酸オキシダーゼ、フルクトシルペプチドオキシダーゼ、フルクトシルアミンオキシダーゼ等の表現で記載されている場合もある。
 上述のような各種のアマドリアーゼを用いて、HbA1cを迅速かつ簡便に測定する方法としては、プロテアーゼまたはペプチダーゼ(以下、プロテアーゼ等という)の切り出し用酵素でHbA1cを分解し、HbA1cのβ鎖アミノ末端より特定の測定用物質を遊離させ、遊離した測定用物質を、上述のようなアマドリアーゼを用いて定量する方法が知られている(例えば、特許文献1~7参照)。
 具体的には、HbA1cを特定のプロテアーゼ等で分解し、そのβ鎖アミノ末端よりαFVHを遊離させたのちに、遊離したαFVHを定量する方法が知られており、この測定方法が、現在のHbA1c酵素的測定法の主流となっている。
 さらに、アマドリアーゼを用いたHbA1cの測定方法としては、HbA1cをGlu-Cプロテアーゼを用いて消化し、糖化されたβ鎖アミノ末端のバリンを含む6アミノ酸からなるα-フルクトシルヘキサペプチド(α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸、以降αF6Pと表す)を遊離させたのちに、遊離したαF6Pを定量する方法がある(例えば、特許文献16、17参照。)。この方法は、IFCC(International Federation of Clinical Chemistry and Laboratory Medicine)により定められたHbA1c測定法(非特許文献10参照)に則った、酵素によるHbA1cの測定方法である。
 しかしながら、前述のアマドリアーゼを用いたHbA1cの測定方法では、プロテアーゼまたはペプチダーゼ(以下、プロテアーゼ等という)によりHbA1cを消化し、そのβ鎖アミノ末端のバリンを含む糖化ペプチドを遊離させる工程を欠かすことはできない。したがって、HbA1cの測定試薬キットには必ずプロテアーゼ等を処方する必要があるが、これは以下に述べる理由により本来好ましいことではない。
 プロテアーゼ等はタンパク質を加水分解する作用を示すため、タンパク質である酵素もまたプロテアーゼ等により加水分解される。したがって、アマドリアーゼもまたプロテアーゼにより加水分解されて失活し、その結果、糖化ペプチドと酸素を消費して過酸化水素を生成する反応が阻害される。これに対する対処法としては、アマドリアーゼの処方量を増やし、アマドリアーゼが完全に失活する前に測定を終えることが考えられるが、アマドリアーゼの増量は、プロテアーゼ等がHbA1cよりもアマドリアーゼを優先的に加水分解することに繋がり、本来好ましくはない。
 また、糖化ペプチドにアマドリアーゼを作用させて生じる過酸化水素を定量してHbA1cを測定する場合には、過酸化水素の定量にパーオキシダーゼを用いることがある。この場合、パーオキシダーゼもまたプロテアーゼ等により加水分解されて失活するため、好ましくない。
 また別の側面として、酵素によるHbA1c測定には自動分析装置を使用することが一般的であり、この場合、一つの試料を用いてHbA1cを始めとする様々な生体マーカーを同時測定する。この際、各生体マーカーは酵素もしくは抗体を利用して測定するため、プロテアーゼ等がコンタミネーションすると、各生体マーカー測定試薬に含まれる酵素もしくは抗体が加水分解され、HbA1c以外の生体マーカーが正確に測定できない恐れがある。したがって、自動分析装置にセットする試薬には、本来プロテアーゼ等が含まれていないことが好ましい。
 以上の理由により、アマドリアーゼで直接HbA1cのβ鎖を酸化して過酸化水素を生成させるアマドリアーゼと、それを利用したHbA1c測定法が求められていたが、そのような酵素活性を示すアマドリアーゼはこれまでに見出されていなかった。
国際公開第2004/104203号 国際公開第2005/49857号 特開2001-95598号公報 特公平05-33997号公報 特開平11-127895号公報 国際公開第97/13872号 特開2011-229526号公報 特開2003-235585号公報 特開2004-275013号公報 特開2004-275063号公報 特開2010-35469号公報 特開2010-57474号公報 国際公開第2010/41715号 国際公開第2010/41419号 国際公開第2011/15325号 国際公開第2004/38034号 国際公開第2008/108385号
Biochem. Biophys. Res. Commun. 311, 104-11, 2003 Biotechnol. Bioeng. 106, 358-66, 2010 J. Biosci. Bioeng. 102, 241-3, 2006 Appl. Microbiol. Biotechnol. 74, 813-9, 2007 Eur. J. Biochem. 242, 499-505, 1996 Mar. Biotechnol. 6, 625-32, 2004 Biosci. Biotechnol. Biochem. 66, 1256-61, 2002 Biosci. Biotechnol. Biochem. 66, 2323-29, 2002 Biotechnol. Letters 27, 27-32, 2005 Jeppsson JO, et al;Approved IFCC reference method for the measurement of HbA1c in human blood. Clin. Chem. Lab. Med. 40, 78-89,2002
 本発明が解決しようとする課題は、HbA1cのβ鎖を酸化して過酸化水素を生成させるアマドリアーゼを見出し、それを利用したHbA1c測定法を構築することにある。
 本発明者らは、前記課題解決のために鋭意研究を重ねた結果、コニオカエタ(Coniochaeta)属等に由来するアマドリアーゼに数個のアミノ酸置換が導入された改変型アマドリアーゼが、HbA1cを酸化して過酸化水素を生成させる活性を有することを見出し、それを利用したHbA1c測定法を実現して本発明を完成させた。
 すなわち、本発明は以下を包含する。
[1] 試料にヘモグロビンA1cに直接作用するアマドリアーゼを作用させ、その作用によって生じる過酸化水素もしくは消費される酸素を測定することを特徴とする、試料中のヘモグロビンA1cの測定方法。 
[2] 前記ヘモグロビンA1cに直接作用するアマドリアーゼが、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するものである、1に記載の方法。 
[3] 前記ヘモグロビンA1cに直接作用するアマドリアーゼが、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有し、かつ、以下の(i)~(iii)からなる群より選択されるアマドリアーゼ、
(i) アマドリアーゼのアミノ酸配列を、配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸配列の以下(a)から(j)よりなる群から選択される位置に対応する位置で当該アマドリアーゼのアミノ酸配列が1つまたはそれ以上のアミノ酸残基の置換を有するアマドリアーゼ、
(a)配列番号1の62位、
(b)配列番号1の63位、
(c)配列番号1の102位、
(d)配列番号1の106位、
(e)配列番号1の110位、
(f)配列番号1の113位、
(g)配列番号1の355位、
(h)配列番号1の419位、
(i)配列番号1の68位、
(j)配列番号1の356位、
(ii) 前記(i)のアマドリアーゼにおいて、配列番号1に示すアミノ酸配列における62位、63位、102位、106位、110位、113位、355位、419、68位及び356位に対応する位置以外の位置における1又は数個のアミノ酸が置換、欠失又は付加されたアミノ酸配列からなるアマドリアーゼ、
(iii) 前記(i)のアマドリアーゼにおいて、当該アマドリアーゼの全長アミノ酸配列が配列番号1のアミノ酸配列と70%以上の配列同一性を有し、配列番号1の第10位~32位、36~41位、49~52位、54~58位、63~65位、73~75位、84~86位、88~90位、120~122位、145~150位、156~162位、164~170位、180~182位、202~205位、207~211位、214~224位、227~230位、236~241位、243~248位、258~261位、266~268位、270~273位、275~287位、295~297位、306~308位、310~316位、324~329位、332~334位、341~344位、346~355位、357~363位、370~383位、385~387位、389~394位、405~410位及び423~431位のアミノ酸配列からなる相同性領域におけるアミノ酸配列と当該アマドリアーゼの対応する位置の相同性領域におけるアミノ酸配列とが90%以上の配列同一性を有するアマドリアーゼ、
である、1又は2に記載の方法。 
[4] 前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の以下(a)から(j)よりなる群から選択される1つまたはそれ以上の位置に対応する位置のアミノ酸が以下の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼ、
(a)配列番号1の62位に対応する位置のアミノ酸がアラニン、アスパラギン酸、アスパラギン、グルタミン、グルタミン酸、グリシン、バリン、ロイシン、イソロイシン、システイン、セリン、スレオニン又はプロリンである、
(b)配列番号1の63位に対応する位置のアミノ酸がアラニン又はヒスチジンである、
(c)配列番号1の102位に対応する位置のアミノ酸がリジンである、
(d)配列番号1の106位に対応する位置のアミノ酸がアラニン、リジン又はアルギニンである、
(e)配列番号1の110位に対応する位置のアミノ酸がロイシン又はチロシンである、
(f)配列番号1の113位に対応する位置のアミノ酸がリジン又はアルギニンである、
(g)配列番号1の355位に対応する位置のアミノ酸がセリンである、
(h)配列番号1の419位に対応する位置のアミノ酸がリジンである、
(i) 配列番号1の68位に対応する位置のアミノ酸がアスパラギンである、
(j) 配列番号1の356位に対応する位置のアミノ酸がスレオニンである、
である、3に記載の方法。 
[5] 前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の(a)から(j)よりなる群から選択される2以上の位置に対応する位置のアミノ酸が、当該(a)から(j)の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼである、4に記載の方法。 
[6] 前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の(a)から(j)よりなる群から選択される3以上の位置に対応する位置のアミノ酸が、当該(a)から(j)の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼである、5に記載の方法。 
[7] 前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の(a)から(j)よりなる群から選択される4以上の位置に対応する位置のアミノ酸が、当該(a)から(j)の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼである、6に記載の方法。 
[8] 前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の(a)から(j)よりなる群から選択される5以上の位置に対応する位置のアミノ酸が、当該(a)から(j)の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼである、7に記載の方法。 
[9] 前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の(a)から(j)よりなる群から選択される6以上の位置に対応する位置のアミノ酸が、当該(a)から(j)の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼである、8に記載の方法。 
[10] ヘモグロビンA1cに直接作用するアマドリアーゼがコニオカエタ(Coniochaeta)属、ユーペニシリウム(Eupenicillium)属、ピレノケータ(Pyrenochaeta)属、アルスリニウム(Arthrinium)属、カーブラリア(Curvularia)属、ネオコスモスポラ(Neocosmospora)属、クリプトコッカス(Cryptococcus)属、フェオスフェリア(Phaeosphaeria)属、アスペルギルス(Aspergillus)属、エメリセラ(Emericella)属、ウロクラディウム(Ulocladium)属、またはペニシリウム(Penicillium)属由来である、1~9のいずれかに記載の試料中のヘモグロビンA1cの測定方法。 
[11] ヘモグロビンA1cに直接作用するアマドリアーゼがコニオカエタ エスピー(Coniochaeta sp.)、ユーペニシリウム テレナム(Eupenicillium terrenum)、ピレノケータ エスピー(Pyrenochaeta sp.)、アルスリニウム エスピー(Arthrinium sp.)、カーブラリア クラベータ(Curvularia clavata)、ネオコスモスポラ バシンフェクタ(Neocosmospora vasinfecta)、クリプトコッカス ネオフォルマンス(Cryptococcus neoformans)、フェオスフェリア ノドラム(Phaeosphaeria nodorum)、アスペルギルス ニードランス(Aspergillus nidulans)、エメリセラ ニードランス(Emericella nidulans)属、ウロクラディウム エスピー(Ulocladium sp.)、またはペニシリウム ヤンシネラム(Penicillium janthinelum)もしくはペニシリウム クリソゲナム(Penicillium chrysogenum)由来である、1~10のいずれかに記載の試料中のヘモグロビンA1cの測定方法。 
[12] ヘモグロビンA1cに直接作用するアマドリアーゼが、以下からなる群より選択されるアマドリアーゼである、1に記載の試料中のヘモグロビンA1cの測定方法。 
(i) 配列番号141又は143に示すアミノ酸配列に1又は数個のアミノ酸の置換、欠失又は付加がなされたアミノ酸配列を有するアマドリアーゼ。 
(ii) 前記(i)のアマドリアーゼにおいて、当該アマドリアーゼの全長アミノ酸配列が配列番号141又は143のアミノ酸配列と70%以上の配列同一性を有し、配列番号141の第10位~32位、36~41位、49~52位、54~58位、73~75位、84~86位、88~90位、120~122位、145~150位、156~162位、164~170位、180~182位、202~205位、207~211位、214~224位、227~230位、236~241位、243~248位、258~261位、266~268位、270~273位、275~287位、295~297位、306~308位、310~316位、324~329位、332~334位、341~344位、346~355位、357~363位、370~383位、385~387位、389~394位、405~410位及び423~431位のアミノ酸配列からなる相同性領域におけるアミノ酸配列と当該アマドリアーゼの対応する位置の相同性領域におけるアミノ酸配列とが90%以上の配列同一性を有するアマドリアーゼ。
[13] アマドリアーゼがさらに、配列番号1に示すアミノ酸配列における以下のアミノ酸、
(i)262位のアスパラギン、
(ii)257位のバリン、
(iii)249位のグルタミン酸
(iv)253位のグルタミン酸、
(v)337位のグルタミン、
(vi)340位のグルタミン酸、
(vii)232位のアスパラギン酸、
(viii)129位のアスパラギン酸、
(ix)132位のアスパラギン酸、
(x)133位のグルタミン酸、
(xi)44位のグルタミン酸、
(xii)256位のグリシン、
(xiii)231位のグルタミン酸、及び
(xiv)81位のグルタミン酸、
よりなる群から選択されるアミノ酸に対応する位置で1つまたはそれ以上のアミノ酸残基の置換を有し、かつ
 場合によりカルボキシル末端からの3アミノ酸残基を欠失していてもよい、3~12のいずれかに記載の測定方法。
[14] 以下の(1)および(2)の成分を含むことを特徴とする、試料中のヘモグロビンA1cの測定用試薬キット。
(1)ヘモグロビンA1cに直接作用して、過酸化水素を生成する作用を有するアマドリアーゼ。
(2)過酸化水素を測定するための試薬。
[15] 前記ヘモグロビンA1cに直接作用するアマドリアーゼが、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するものである、14に記載のキット。
[16] 前記ヘモグロビンA1cに直接作用するアマドリアーゼが、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有し、かつ、以下の(i)~(iii)からなる群より選択されるアマドリアーゼ、
(i) アマドリアーゼのアミノ酸配列を、配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸配列の以下(a)から(j)よりなる群から選択される位置に対応する位置で当該アマドリアーゼのアミノ酸配列が1つまたはそれ以上のアミノ酸残基の置換を有するアマドリアーゼ、
(a)配列番号1の62位、
(b)配列番号1の63位、
(c)配列番号1の102位、
(d)配列番号1の106位、
(e)配列番号1の110位、
(f)配列番号1の113位、
(g)配列番号1の355位、
(h)配列番号1の419位、
(i)配列番号1の68位、
(j)配列番号1の356位、
(ii) 前記(i)のアマドリアーゼにおいて、配列番号1に示すアミノ酸配列における62位、63位、102位、106位、110位、113位、355位、419、68位及び356位に対応する位置以外の位置における1又は数個のアミノ酸が置換、欠失又は付加されたアミノ酸配列からなるアマドリアーゼ、
(iii) 前記(i)のアマドリアーゼにおいて、当該アマドリアーゼの全長アミノ酸配列が配列番号1のアミノ酸配列と70%以上の配列同一性を有し、配列番号1の第10位~32位、36~41位、49~52位、54~58位、63~65位、73~75位、84~86位、88~90位、120~122位、145~150位、156~162位、164~170位、180~182位、202~205位、207~211位、214~224位、227~230位、236~241位、243~248位、258~261位、266~268位、270~273位、275~287位、295~297位、306~308位、310~316位、324~329位、332~334位、341~344位、346~355位、357~363位、370~383位、385~387位、389~394位、405~410位及び423~431位のアミノ酸配列からなる相同性領域におけるアミノ酸配列と当該アマドリアーゼの対応する位置の相同性領域におけるアミノ酸配列とが90%以上の配列同一性を有するアマドリアーゼ、
である、14又は15に記載のキット。
[17] 前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の以下(a)から(j)よりなる群から選択される1つまたはそれ以上の位置に対応する位置のアミノ酸が以下の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼ、
(a)配列番号1の62位に対応する位置のアミノ酸がアラニン、アスパラギン酸、アスパラギン、グルタミン、グルタミン酸、グリシン、バリン、ロイシン、イソロイシン、システイン、セリン、スレオニン又はプロリンである、
(b)配列番号1の63位に対応する位置のアミノ酸がアラニン又はヒスチジンである、
(c)配列番号1の102位に対応する位置のアミノ酸がリジンである、
(d)配列番号1の106位に対応する位置のアミノ酸がアラニン、リジン又はアルギニンである、
(e)配列番号1の110位に対応する位置のアミノ酸がロイシン又はチロシンである、
(f)配列番号1の113位に対応する位置のアミノ酸がリジン又はアルギニンである、
(g)配列番号1の355位に対応する位置のアミノ酸がセリンである、
(h)配列番号1の419位に対応する位置のアミノ酸がリジンである、
(i) 配列番号1の68位に対応する位置のアミノ酸がアスパラギンである、
(j) 配列番号1の356位に対応する位置のアミノ酸がスレオニンである、
である、16に記載のキット。
[18] 前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の(a)から(j)よりなる群から選択される2以上の位置に対応する位置のアミノ酸が、当該(a)から(j)の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼである、17に記載のキット。
[19] 前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の(a)から(j)よりなる群から選択される3以上の位置に対応する位置のアミノ酸が、当該(a)から(j)の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼである、18に記載のキット。
[20] 前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の(a)から(j)よりなる群から選択される4以上の位置に対応する位置のアミノ酸が、当該(a)から(j)の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼである、19に記載のキット。
[21] 前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の(a)から(j)よりなる群から選択される5以上の位置に対応する位置のアミノ酸が、当該(a)から(j)の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼである、20に記載のキット。
[22] 前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の(a)から(j)よりなる群から選択される6以上の位置に対応する位置のアミノ酸が、当該(a)から(j)の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼである、21に記載のキット。
[23] 前記ヘモグロビンA1cに直接作用して、過酸化水素を生成する作用を有するアマドリアーゼが、コニオカエタ(Coniochaeta)属、ユーペニシリウム(Eupenicillium)属、ピレノケータ(Pyrenochaeta)属、アルスリニウム(Arthrinium)属、カーブラリア(Curvularia)属、ネオコスモスポラ(Neocosmospora)属、クリプトコッカス(Cryptococcus)属、フェオスフェリア(Phaeosphaeria)属、アスペルギルス(Aspergillus)属、エメリセラ(Emericella)属、ウロクラディウム(Ulocladium)属、またはペニシリウム(Penicillium)属由来である、14~22のいずれかに記載のキット。
[24] 前記ヘモグロビンA1cに直接作用して、過酸化水素を生成する作用を有するアマドリアーゼが、
(i) 配列番号141又は143に示すアミノ酸配列に1又は数個のアミノ酸の置換、欠失又は付加がなされたアミノ酸配列を有するアマドリアーゼ、または
(ii) 前記(i)のアマドリアーゼにおいて、当該アマドリアーゼの全長アミノ酸配列が配列番号141又は143のアミノ酸配列と70%以上の配列同一性を有し、配列番号141の第10位~32位、36~41位、49~52位、54~58位、73~75位、84~86位、88~90位、120~122位、145~150位、156~162位、164~170位、180~182位、202~205位、207~211位、214~224位、227~230位、236~241位、243~248位、258~261位、266~268位、270~273位、275~287位、295~297位、306~308位、310~316位、324~329位、332~334位、341~344位、346~355位、357~363位、370~383位、385~387位、389~394位、405~410位及び423~431位のアミノ酸配列からなる相同性領域におけるアミノ酸配列と当該アマドリアーゼの対応する位置の相同性領域におけるアミノ酸配列とが90%以上の配列同一性を有するアマドリアーゼ
である、14~23のいずれかに記載のキット。
[25] 前記ヘモグロビンA1cに直接作用して、過酸化水素を生成する作用を有するアマドリアーゼがさらに配列番号1に示すアミノ酸配列における以下のアミノ酸、
(i)262位のアスパラギン、
(ii)257位のバリン、
(iii)249位のグルタミン酸
(iv)253位のグルタミン酸、
(v)337位のグルタミン、
(vi)340位のグルタミン酸、
(vii)232位のアスパラギン酸、
(viii)129位のアスパラギン酸、
(ix)132位のアスパラギン酸、
(x)133位のグルタミン酸、
(xi)44位のグルタミン酸、
(xii)256位のグリシン、
(xiii)231位のグルタミン酸、及び
(xiv)81位のグルタミン酸、
よりなる群から選択されるアミノ酸に対応する位置で1つまたはそれ以上のアミノ酸残基の置換を有し、かつ
 場合によりカルボキシル末端からの3アミノ酸残基を欠失していてもよい、16~24のいずれかに記載のキット。
[26] 以下からなる群より選択されるアマドリアーゼ、
(i) アマドリアーゼのアミノ酸配列を、配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1に示すアミノ酸配列における68位に対応する位置のアミノ酸がアスパラギンであるか、配列番号1に示すアミノ酸配列における356位に対応する位置のアミノ酸がスレオニンであり、かつα-フルクトシルヘキサペプチド(αF6P)に対する活性を有するアマドリアーゼ、
(ii) 前記(i)のアマドリアーゼにおいて、配列番号1に示すアミノ酸配列における68位又は356位に対応する位置以外の位置における1又は数個のアミノ酸が置換、欠失又は付加されたアミノ酸配列からなり、かつαF6Pに対する活性を有するアマドリアーゼ、
(iii) 前記(i)のアマドリアーゼにおいて、配列番号1に示すアミノ酸配列における68位に対応する位置のアミノ酸がアスパラギンであるか、配列番号1に示すアミノ酸配列における356位に対応する位置のアミノ酸がスレオニンであり、かつ、当該アマドリアーゼの全長アミノ酸配列が配列番号1のアミノ酸配列と70%以上の配列同一性を有し、配列番号1の第10位~32位、36~41位、49~52位、54~58位、63~65位、73~75位、84~86位、88~90位、120~122位、145~150位、156~162位、164~170位、180~182位、202~205位、207~211位、214~224位、227~230位、236~241位、243~248位、258~261位、266~268位、270~273位、275~287位、295~297位、306~308位、310~316位、324~329位、332~334位、341~344位、346~355位、357~363位、370~383位、385~387位、389~394位、405~410位及び423~431位のアミノ酸配列からなる相同性領域におけるアミノ酸配列と当該アマドリアーゼの対応する位置の相同性領域におけるアミノ酸配列とが90%以上の配列同一性を有し、αF6Pに対する活性を有するアマドリアーゼ。
[27] ヘモグロビンA1cが、変性したヘモグロビンA1cである、[1]~[13]のいずれかに記載の方法。 
[28] 変性が加熱処理、界面活性剤処理、酸若しくは塩基処理又はそれらの組み合わせによるものである、[27]に記載の方法。
 本明細書は本願の優先権の基礎である日本国特許出願2013-222774号の明細書および/または図面に記載される内容を包含する。
 本発明によれば、HbA1cを迅速、簡便に、かつ、精度よく良好に定量できるアマドリアーゼを提供できる。このようなアマドリアーゼを用いれば、プロテアーゼ等を処方することなくHbA1cの酵素法による測定方法、測定キットを提供できる。本発明はプロテアーゼ等を処方する必要がないため、キットを簡素化でき、反応効率や測定精度を高めることができ、さらにはプロテアーゼ等による他のタンパク質試薬への望ましくない反応を回避できる。
各種公知のアマドリアーゼのアミノ酸配列における同一性を例示する1番目の図である。Co(Coniochaeta sp.)、Et(Eupenicillium terrenum)、Py(Pyrenochaeta sp.)、Ar(Arthrinium sp.)、Cc(Curvularia clavata)、Nv(Neocosmospora vasinfecta)のほか、Cn(Cryptococcus neoformans)、Pn(Phaeosphaeria nodorum)、An(Aspergillus nidulans)、En(Emericella nidulans)、Ul(Ulocladium sp.)及びPj(Penicillium janthinelum)をアライメントした。 図1-1のつづきである。 図1-2のつづきである。 図1-3のつづきである。 図1-4のつづきである。 各種公知のアマドリアーゼのアミノ酸配列における同一性及び類似アミノ酸を例示する2番目の図である。Co、Et、Py、Ar、Cc、Nvのほか、Cn、Pn、An、En、Ul及びPjをアライメントした。 図2-1のつづきである。 図2-2のつづきである。 図2-3のつづきである。 図2-4のつづきである。 改変型アマドリアーゼを使用してHbA1cを測定した場合の、試料希釈液(試薬A2)と測定用試薬を混合してからの経過時間と吸光度の関係を示す図である。300秒が経過した時点でアマドリアーゼ溶液が添加される。 HbA1cを含む試料をn-ドデシル-β-D-マルトシド溶液で希釈して、HbA1c測定を行った結果を示す図である。 HbA1cを含む試料をn-テトラデシル-β-D-マルトシド溶液で希釈して、HbA1c測定を行った結果を示す図である。 改変型アマドリアーゼを使用してHbA1cを測定した場合の、試料希釈液(試薬D1)と測定用試薬を混合してからの経過時間と吸光度の関係を示す図である。300秒が経過した時点でアマドリアーゼ溶液が添加される。 HbA1cを含む試料を、塩酸を含むn-ドデシル-β-D-マルトシド溶液(試薬D1)で希釈し、アマドリアーゼ25を用いてHbA1c測定を行った結果を示す図である。 HbA1cを含む試料を、塩酸を含むポリオキシエチレン(20)セチルエーテル溶液(試薬D2)で希釈して、HbA1c測定を行った結果を示す図である。 HbA1cを含む試料を、塩酸を含むn-ドデシル-β-D-マルトシド溶液(試薬D1)で希釈し、アマドリアーゼ28を用いてHbA1c測定を行った結果を示す図である。 改変型アマドリアーゼを使用してHbA1cを測定した場合の、試料希釈液(試薬G1)と測定用試薬を混合してからの経過時間と吸光度の関係を示す図である。300秒が経過した時点でアマドリアーゼ溶液が添加される。 HbA1cを含む試料を、テトラデシルトリメチルアンモニウムブロマイド溶液(試薬G1)で希釈して、HbA1c測定を行った結果を示す図である。 HbA1cを含む試料を、ヘキサデシルトリメチルアンモニウムブロマイド溶液(試薬G2)で希釈して、HbA1c測定を行った結果を示す図である。
 以下、本発明を詳細に説明する。
(糖化タンパク質、ヘモグロビンA1c)
 本発明における糖化タンパク質とは、非酵素的に糖化されたタンパク質を指す。糖化タンパク質は生体内、外を問わず存在し、生体内に存在する例としては、血液中の糖化ヘモグロビン、糖化アルブミンなどがあり、糖化ヘモグロビンの中でもヘモグロビンのβ鎖アミノ末端のバリンが糖化された糖化ヘモグロビンを特にヘモグロビンA1c(HbA1c)と言う。生体外に存在する例としては、タンパク質やペプチドと糖が共存する液状調味料などの飲食品や輸液などがある。
(糖化ペプチド、フルクトシルペプチド)
 本発明における糖化ペプチドとは、糖化タンパク質由来の非酵素的に糖化されたペプチドを指し、ペプチドが直接非酵素的に糖化されたものや、プロテアーゼ等により糖化タンパク質が分解された結果生じたものや糖化タンパク質を構成する(ポリ)ペプチドが糖化されたものが含まれる。糖化ペプチドをフルクトシルペプチドと表記することもある。糖化タンパク質において、糖化を受けるペプチド側のアミノ基としては、アミノ末端のα-アミノ基、ペプチド内部のリジン残基側鎖のε-アミノ基などが挙げられるが、本発明における糖化ペプチドとは、より具体的には、α-糖化ペプチド(α-フルクトシルペプチド)である。α-糖化ペプチドは、N末端のα-アミノ酸が糖化された糖化タンパク質から何らかの手段、例えば、プロテアーゼ等による限定分解などにより遊離させて形成される。例えば、対象の糖化タンパク質がヘモグロビンA1c(HbA1c)である場合、該当するα-糖化ペプチドは、N末端が糖化されているHbA1cのβ鎖から切り出される糖化されたペプチドを指す。146残基のアミノ酸により構成されているHbA1cのβ鎖もまたα-糖化ペプチドに該当する。
 ある実施形態において本発明のアマドリアーゼが作用する測定物質は、HbA1c、より具体的にはHbA1cのβ鎖である。別の実施形態において本発明のアマドリアーゼが作用する測定物質はHbA1cのβ鎖から切り出されるαF6Pであり、具体的には、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸である。別の実施形態において本発明のアマドリアーゼが作用する測定物質はαFVH(α-フルクトシルバリルヒスチジン)またはαFV(α-フルクトシルバリン)である。
(アマドリアーゼ)
 アマドリアーゼは、ケトアミンオキシダーゼ、フルクトシルアミノ酸オキシダーゼ、フルクトシルペプチドオキシダーゼ、フルクトシルアミンオキシダーゼともいい、酸素の存在下で、イミノ2酢酸若しくはその誘導体(アマドリ化合物)を酸化して、グリオキシル酸若しくはα-ケトアルデヒド、アミノ酸若しくはペプチド、および過酸化水素を生成する反応を触媒する酵素のことをいう。アマドリアーゼは、自然界に広く分布しており、微生物や、動物若しくは植物起源の酵素を探索することにより、得ることができる。微生物においては、例えば、糸状菌、酵母、若しくは細菌等から得ることができる。
 本発明のアマドリアーゼはHbA1cに直接作用する。本明細書において、アマドリアーゼがHbA1cに直接作用する、とは、アマドリアーゼが、酸素の存在下で、HbA1cのβ鎖のN末端のフルクトシル基に作用し、2-ケト-Dグルコースおよび過酸化水素、ヘモグロビンのβ鎖が生じることをいう。ただしこれは当該アマドリアーゼがHbA1cのβ鎖由来のフルクトシルペプチド、例えばαF6Pに反応することを排除するものではない。すなわち、ある実施形態において本発明のアマドリアーゼは、HbA1cに直接作用するのみならず、HbA1cのβ鎖由来のフルクトシルペプチド、例えばαF6Pに対しても反応性を有する。
(アマドリアーゼ改変体)
 本発明は、配列番号1、配列番号38、配列番号40、配列番号54、又は配列番号62、又は配列番号89、又は配列番号99に示すアミノ酸配列を有する野生型アマドリアーゼに基づき作製される、αF6Pに対して反応性を有し、かつHbA1cに直接作用するアマドリアーゼの改変体を提供する。本明細書において改変体とは変異体と交換可能に用いられ、アマドリアーゼのアミノ酸配列を野生型の配列と比較したときに、一部のアミノ酸が置換、欠失又は付加されているものをいう。ここでいう付加には挿入も包含されるものとする。
 本発明はさらに、配列番号113、配列番号115、配列番号117、配列番号119、配列番号121、配列番号123又は配列番号145又は配列番号149に示すアミノ酸配列を有する野生型アマドリアーゼに基づき、αF6Pに対して反応性を有し、かつHbA1cに直接作用するアマドリアーゼの改変体を提供する。
 また、本発明の知見に基づき、コニオカエタ(Coniochaeta)属等に由来する他の野生型アマドリアーゼに基づき、HbA1cに直接作用するアマドリアーゼの改変体を取得することができる。
 本発明のアマドリアーゼ改変体は、αF6Pに対して反応性を有し、かつHbA1cに直接作用する限り、酵素の他の特性を改変する変異をさらに有しうる。
(Coniochaeta sp. NISL 9330由来アマドリアーゼに基づく改変体)
 ある実施形態において本発明のアマドリアーゼは、配列番号1に示されるアミノ酸配列を有するコニオカエタ属由来のアマドリアーゼに基づき作製された、HbA1cに直接作用するアマドリアーゼの改変体である。
 配列番号151、配列番号153、配列番号155(一重変異体)、配列番号157、配列番号159、配列番号161、及び配列番号163(二重変異体)、配列番号137、配列番号139、配列番号165、配列番号167、配列番号169、配列番号171、配列番号173(三重変異体)、配列番号133、配列番号135、配列番号175、配列番号189(四重変異体)、配列番号177、配列番号179(五重変異体)、配列番号143、配列番号181、配列番号183、配列番号187、配列番号191(六重変異体)、配列番号141又は配列番号185(七重変異体)のアミノ酸配列と高い配列同一性(例えば、50%以上、好ましくは60%以上、好ましくは70%以上、好ましくは75%以上、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは90%以上、さらに好ましくは95%以上、さらに好ましくは98%以上、最も好ましくは99%以上)のアミノ酸配列を有し、かつαF6Pに対する活性を有するアマドリアーゼは、HbA1cに直接作用しうる。例えば配列番号141のアミノ酸配列を有するアマドリアーゼは、αF6Pに対する活性を有し、かつHbA1cに直接作用する。
 配列番号151、配列番号153、配列番号155(一重変異体)、配列番号157、配列番号159、配列番号161、及び配列番号163(二重変異体)、配列番号137、配列番号139、配列番号165、配列番号167、配列番号169、配列番号171、配列番号173(三重変異体)、配列番号133、配列番号135、配列番号175、配列番号189(四重変異体)、配列番号177、配列番号179(五重変異体)、配列番号143、配列番号181、配列番号183、配列番号187、配列番号191(六重変異体)、配列番号141又は配列番号185(七重変異体)のアミノ酸配列において、1又は数個のアミノ酸が改変若しくは変異、または、欠失、置換、付加および/または挿入されたアミノ酸配列を有し、かつαF6Pに対する活性を有するアマドリアーゼは、HbA1cに直接作用しうる。ここで1又は数個のアミノ酸とは、全長が400アミノ酸を超えるアミノ酸配列について言う場合は1~15個、好ましくは1~10個、より好ましくは1~5個、より好ましくは1~4個、より好ましくは1~3個、さらに好ましくは1又は2個のアミノ酸をいう。また、1又は数個のアミノ酸とは、全長が200~400アミノ酸の配列について言う場合は、1~10個、好ましくは1~7個、好ましくは1~5個、好ましくは1~4個、より好ましくは1~3個、さらに好ましくは1又は2個のアミノ酸をいう。1又は数個のアミノ酸とは、全長が40アミノ酸以上、200アミノ酸未満の配列について言う場合は、1~5個、好ましくは1~4個、好ましくは1~3個、さらに好ましくは1又は2個のアミノ酸をいう。1又は数個のアミノ酸とは、全長が40アミノ酸未満の配列について言う場合は、1又は2個のアミノ酸をいう。
 また、配列番号152、配列番号154、配列番号156(一重変異体)、配列番号158、配列番号160、配列番号162、及び配列番号164(二重変異体)、配列番号138、配列番号140、配列番号166、配列番号168、配列番号170、配列番号172、配列番号174(三重変異体)、配列番号134、配列番号136、配列番号176、配列番号190(四重変異体)、配列番号178、配列番号180(五重変異体)、配列番号144、配列番号182、配列番号184、配列番号188、配列番号192(六重変異体)、配列番号142又は配列番号186(七重変異体)に示す塩基配列に相補的な配列と、ストリンジェントな条件下でハイブリダイズする塩基配列によりコードされ、かつαF6Pに対する活性を有するアマドリアーゼはHbA1cに直接作用しうる。ここでストリンジェントな条件下でのハイブリダイゼーションはSambrookら, Molecular Cloning第2版、(Cold Spring Harbor Laboratory press)やCurrent protocols in molecular biology(Frederick M. Ausubel ら, 編, 1987)等に記載されている。ストリンジェントな条件として例えば、ハイブリダイゼーション液(50%ホルムアミド、6~10×SSC(0.15~1.5M NaCl, 15mM sodium citrate, pH 7.0)、5×Denhardt溶液、1% SDS、10% デキストラン硫酸、10μg/mlの変性サケ精子DNA、50mMリン酸バッファー(pH7.5))を用いて約42℃~約50℃でインキュベートし、その後0.1×SSC、0.1% SDSを用いて約65℃~約70℃で洗浄する条件を挙げることができる。また別のストリンジェントな条件において、ハイブリダイゼーション液として50%ホルムアミド、5×SSC(0.15M NaCl, 15mM sodium citrate, pH 7.0)、1×Denhardt溶液、1%SDS、10%デキストラン硫酸、10μg/mlの変性サケ精子DNA、50mMリン酸バッファー(pH7.5))を用いる条件を挙げることができる。
 なお、本発明の変異体は、請求の範囲に記載された、基質特異性および/またはアミノ酸配列に関する条件を満たす限り、例えば、ユーペニシリウム属、ピレノケータ属、アルスリニウム属、カーブラリア属、ネオコスモスポラ属、クリプトコッカス属、フェオスフェリア属、アスペルギルス属、エメリセラ属、ウロクラディウム属、ペニシリウム属、フザリウム属、アカエトミエラ属、アカエトミウム属、シエラビア属、カエトミウム属、ゲラシノスポラ属、ミクロアスカス属、レプトスフェリア属、オフィオボラス属、プレオスポラ属、コニオケチジウム属、ピチア属、コリネバクテリウム属、アグロバクテリウム属、若しくはアルスロバクター属のような、他の生物種に由来するアマドリアーゼに基づき作製されたものでもよい。
 Coniochaeta sp. NISL 9330由来アマドリアーゼ(配列番号1)に基づく改変体は、以下の位置において1又は複数のアミノ酸置換を有するものであり得る。ここで、アマドリアーゼ改変体に関して用いる1又は複数のアミノ酸置換とは、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17又は18のアミノ酸置換、例えば1、2、3、4、5、6、7、8、9、10、11、12、13、14又は15のアミノ酸置換、例えば1、2、3、4、5、6、7、8、9又は10のアミノ酸置換、例えば1、2、3、4、5、6、7又は8つのアミノ酸置換をいう。ある実施形態ではアマドリアーゼ改変体に関して用いる1又は複数のアミノ酸置換は1、2、3、4、5、6、又は7つのアミノ酸置換である。 
(a)62位のアルギニン
(b)63位のロイシン
(c)102位のグルタミン酸
(d)106位のアスパラギン酸
(e)110位のグルタミン
(f)113位のアラニン
(g)355位のアラニン
(h)419位のアラニン
(i)68位のアスパラギン酸
(j)356位のアラニン
 上記Coniochaeta sp. NISL 9330由来アマドリアーゼ(配列番号1)において、好ましくは、(a)62位のアルギニンは、アラニン、アスパラギンまたはアスパラギン酸、グルタミン、グルタミン酸、グリシン、バリン、ロイシン、イソロイシン、システイン、セリン、スレオニン又はプロリンへと置換され得る。好ましくは(b)63位のロイシンは、ヒスチジン又はアラニンへと置換される。好ましくは(c)102位のグルタミン酸は、リジンへと置換される。好ましくは(d)106位のアスパラギン酸は、アラニン、リジン、又はアルギニンへと置換される。好ましくは(e)110位のグルタミンはロイシン又はチロシンへと置換される。好ましくは(f)113位のアラニンはリジン又はアルギニンへと置換される。好ましくは(g)355位のアラニンはセリンへと置換される。場合により(h)419位のアラニンはリジンへと置換されていてもよい。場合により(i)68位のアスパラギン酸はアスパラギンへと置換されてもよい。場合により(j)356位のアラニンはスレオニンへと置換されてもよい。
 Phaeosphaeria nodorum由来アマドリアーゼ(PnFX、配列番号38)に基づく改変体は、以下の位置において1又は複数のアミノ酸置換を有するものであり得る:
(a)62位のセリン
(b)63位のロイシン
(c)102位のリジン
(d)106位のアスパラギン酸
(e)110位のグリシン
(f)113位のアラニン
(g)351位のアラニン
(h)416位のセリン
(i)68位のアスパラギン酸
(j)352位のアラニン
 上記Phaeosphaeria nodorum由来アマドリアーゼ(配列番号38)において、場合により(a)62位のセリンは置換されなくともよい。また、(a)62位のセリンはアラニン、アスパラギン酸、アスパラギン、グルタミン、グルタミン酸、グリシン、バリン、ロイシン、イソロイシン、システイン、スレオニン又はプロリンへと置換され得る。好ましくは(b)63位のロイシンはヒスチジンへと置換される。場合により(c)102位のリジンは置換されなくともよい。好ましくは(d)106位のアスパラギン酸はリジンへと置換される。好ましくは110位のグリシンはロイシンへと置換される。好ましくは113位のアラニンはリジンへと置換される。好ましくは351位のアラニンはセリンへと置換される。場合により(h)416位のセリンはリジンへと置換されてもよい。場合により(i)68位のアスパラギン酸はアスパラギンへと置換されてもよい。場合により(j)352位のアラニンはスレオニンへと置換されてもよい。
 Neocosmospora vasinfecta由来アマドリアーゼ(NvFX、配列番号54)に基づく改変体は、以下の位置において1又は複数のアミノ酸置換を有するものであり得る:
(a)62位のアルギニン
(b)63位のロイシン
(c)102位のグルタミン酸
(d)106位のグリシン
(e)110位のグルタミン酸
(f)113位のリジン
(g)355位のセリン
(h)420位のアラニン
(i)68位のアスパラギン酸
(j)356位のアラニン
 上記Neocosmospora vasinfecta由来アマドリアーゼ(配列番号54)において、好ましくは(a)62位のアルギニンはアラニン、アスパラギン酸、アスパラギン、グルタミン、グルタミン酸、グリシン、バリン、ロイシン、イソロイシン、システイン、セリン、スレオニン又はプロリンへと置換され得る。好ましくは(b)63位のロイシンはヒスチジンへと置換される。好ましくは(c)102位のグルタミン酸はリジンへと置換される。好ましくは(d)106位のグリシンはリジンへと置換される。好ましくは110位のグルタミン酸はロイシンへと置換される。場合により113位のリジンは置換されなくともよい。場合により355位のセリンは置換されなくともよい。場合により(h)420位のアラニンはリジンへと置換されてもよい。場合により(i)68位のアスパラギン酸はアスパラギンへと置換されてもよい。場合により(j)356位のアラニンはスレオニンへと置換されてもよい。
 Aspergillus nidulans由来アマドリアーゼ(AnFX、配列番号62)に基づく改変体は、以下の位置において1又は複数のアミノ酸置換を有するものであり得る:
(a)61位のアルギニン
(b)62位のロイシン
(c)101位のグルタミン酸
(d)105位のグリシン
(e)109位のリジン
(f)112位のセリン
(g)355位のアラニン
(h)420位のアラニン
(i)67位のアスパラギン酸
(j)356位のアスパラギン
 上記Aspergillus nidulans由来アマドリアーゼ(配列番号62)において、好ましくは(a)61位のアルギニンはアラニン、アスパラギン酸、アスパラギン、グルタミン、グルタミン酸、グリシン、バリン、ロイシン、イソロイシン、システイン、セリン、スレオニン又はプロリンへと置換され得る。好ましくは(b)62位のロイシンはヒスチジンへと置換される。好ましくは(c)101位のグルタミン酸はリジンと置換される。好ましくは(d)105位のグリシンはリジンへと置換される。好ましくは109位のリジンはロイシンへと置換される。好ましくは112位のセリンはリジンへと置換される。好ましくは355位のアラニンはセリンへと置換される。場合により(h)420位のアラニンはリジンへと置換されてもよい。場合により(i)67位のアスパラギン酸はアスパラギンへと置換されてもよい。場合により(j)356位のアスパラギンはスレオニンへと置換されてもよい。
 Eupenicillium terrenum由来アマドリアーゼ(配列番号40)に基づく改変体は、以下の位置において1又は複数のアミノ酸置換を有するものであり得る:
(a)62位のアルギニン
(b)63位のロイシン
(c)102位のグルタミン酸
(d)106位のアスパラギン
(e)110位のリジン
(f)113位のスレオニン
(g)355位のアラニン
(h)419位のグリシン
(i)68位のアスパラギン酸
(j)356位のアスパラギン
 上記EFP-T5由来アマドリアーゼ(配列番号40)において、好ましくは(a)62位のアルギニンはアラニン、アスパラギン酸、アスパラギン、グルタミン、グルタミン酸、グリシン、バリン、ロイシン、イソロイシン、システイン、セリン、スレオニン又はプロリンへと置換され得る。好ましくは(b)63位のロイシンはヒスチジンへと置換される。好ましくは(c)102位のグルタミン酸はリジンへと置換される。好ましくは(d)106位のアスパラギンはリジンへと置換される。好ましくは110位のリジンはロイシンへと置換される。好ましくは113位のスレオニンはリジンへと置換される。好ましくは355位のアラニンはセリンへと置換される。場合により(h)419位のグリシンはリジンへと置換されてもよい。場合により(i)68位のアスパラギン酸はアスパラギンへと置換されてもよい。場合により(j)356位のアスパラギンはスレオニンへと置換されてもよい。
 Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼ(配列番号89又は149)に基づく改変体は、以下の位置において1又は複数のアミノ酸置換を有するものであり得る:
(a)62位のアルギニン
(b)63位のイソロイシン
(c)102位のグルタミン酸
(d)106位のセリン
(e)110位のセリン
(f)113位のアラニン
(g)355位のアラニン
(h)420位のアラニン
(i)68位のアスパラギン酸
(j)356位のアスパラギン
 上記Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼ(CnFX、配列番号89又は149)において、好ましくは(a)62位のアルギニンはアラニン、アスパラギン酸、アスパラギン、グルタミン、グルタミン酸、グリシン、バリン、ロイシン、イソロイシン、システイン、セリン、スレオニン又はプロリンへと置換され得る。好ましくは(b)63位のイソロイシンはヒスチジンへと置換される。好ましくは(c)102位のグルタミン酸はリジンへと置換される。好ましくは(d)106位のセリンはリジンへと置換される。好ましくは110位のセリンはロイシンへと置換される。好ましくは113位のアラニンはリジンへと置換される。好ましくは355位のアラニンはセリンへと置換される。場合により(h)420位のアラニンはリジンへと置換されてもよい。場合により(i)68位のアスパラギン酸はアスパラギンへと置換されてもよい。場合により(j)356位のアスパラギンはスレオニンへと置換されてもよい。
 Pyrenochaeta sp.由来のケトアミンオキシダーゼ(配列番号113)に基づく改変体は、以下の位置において1又は複数のアミノ酸置換を有するものであり得る:
(a)62位のアルギニン
(b)63位のロイシン
(c)102位のリジン
(d)106位のアスパラギン酸
(e)110位のアラニン
(f)113位のスレオニン
(g)353位のアラニン
(h)418位のアラニン
(i)68位のアスパラギン酸
(j)354位のアラニン
 上記Pyrenochaeta sp.由来のケトアミンオキシダーゼ(配列番号113)において、好ましくは(a)62位のアルギニンはアラニン、アスパラギン酸、アスパラギン、グルタミン、グルタミン酸、グリシン、バリン、ロイシン、イソロイシン、システイン、セリン、スレオニン又はプロリンへと置換され得る。好ましくは(b)63位のロイシンはヒスチジンへと置換される。場合により(c)102位のリジンへは置換されずともよい。好ましくは(d)106位のアスパラギン酸はリジンへと置換される。好ましくは110位のアラニンはロイシンへと置換される。好ましくは113位のスレオニンはリジンへと置換される。好ましくは353位のアラニンはセリンへと置換される。場合により(h)418位のアラニンはリジンへと置換されてもよい。場合により(i)68位のアスパラギン酸はアスパラギンへと置換されてもよい。場合により(j)354位のアラニンはスレオニンへと置換されてもよい。
 Arthrinium sp.由来のケトアミンオキシダーゼ(配列番号115)に基づく改変体は、以下の位置において1又は複数のアミノ酸置換を有するものであり得る:
(a)62位のアルギニン
(b)63位のロイシン
(c)102位のリジン
(d)106位のアラニン
(e)110位のグルタミン
(f)113位のスレオニン
(g)356位のアラニン
(h)421位のアラニン
(i)68位のアスパラギン酸
(j)357位のアラニン
 上記Arthrinium sp.由来のケトアミンオキシダーゼ(配列番号115)において、好ましくは(a)62位のアルギニンはアラニン、アスパラギン酸、アスパラギン、グルタミン、グルタミン酸、グリシン、バリン、ロイシン、イソロイシン、システイン、セリン、スレオニン又はプロリンへと置換され得る。好ましくは(b)63位のロイシンはヒスチジンへと置換される。場合により(c)102位のリジンへは置換されずともよい。好ましくは(d)106位のアラニンはリジンへと置換される。好ましくは110位のグルタミンはロイシンへと置換される。好ましくは113位のスレオニンはリジンへと置換される。好ましくは356位のアラニンはセリンへと置換される。場合により(h)421位のアラニンはリジンへと置換されてもよい。場合により(i)68位のアスパラギン酸はアスパラギンへと置換されてもよい。場合により(j)357位のアラニンはスレオニンへと置換されてもよい。
 Curvularia clavata由来のケトアミンオキシダーゼ(配列番号117)に基づく改変体は、以下の位置において1又は複数のアミノ酸置換を有するものであり得る:
(a)62位のアルギニン
(b)63位のロイシン
(c)102位のグルタミン酸
(d)106位のアスパラギン酸
(e)110位のアラニン
(f)113位のアラニン
(g)353位のアラニン
(h)418位のアラニン
(i)68位のアスパラギン酸
(j)354位のアラニン
 上記Curvularia clavata由来のケトアミンオキシダーゼ(配列番号117)において、好ましくは(a)62位のアルギニンはアラニンまたはアスパラギン酸、アスパラギン、グルタミン、グルタミン酸、グリシン、バリン、ロイシン、イソロイシン、システイン、セリン、スレオニン又はプロリンへと置換され得る。好ましくは(b)63位のロイシンはヒスチジンへと置換される。好ましくは(c)102位のグルタミン酸はリジンへと置換される。好ましくは(d)106位のアスパラギン酸はリジンへと置換される。好ましくは110位のアラニンはロイシンへと置換される。好ましくは113位のアラニンはリジンへと置換される。好ましくは353位のアラニンはセリンへと置換される。場合により(h)418位のアラニンはリジンへと置換されてもよい。場合により(i)68位のアスパラギン酸はアスパラギンへと置換されてもよい。場合により(j)354位のアラニンはスレオニンへと置換されてもよい。
 Curvularia clavata由来のケトアミンオキシダーゼ(配列番号117)と95%のアミノ酸配列同一性を有するケトアミンオキシダーゼ(Cc95FX、配列番号99)に基づく改変体は、以下の位置において1又は複数のアミノ酸置換を有するものであり得る:
(a)62位のアルギニン
(b)63位のロイシン
(c)102位のグルタミン酸
(d)106位のアスパラギン酸
(e)110位のアラニン
(f)113位のアラニン
(g)353位のアラニン
(h)418位のセリン
(i)68位のアスパラギン酸
(j)354位のアラニン
 上記Curvularia clavata由来のケトアミンオキシダーゼ(配列番号117)と95%のアミノ酸配列同一性を有するケトアミンオキシダーゼ(配列番号99)において、好ましくは(a)62位のアルギニンはアラニンまたはアスパラギン酸、アスパラギン、グルタミン、グルタミン酸、グリシン、バリン、ロイシン、イソロイシン、システイン、セリン、スレオニン又はプロリンへと置換され得る。好ましくは(b)63位のロイシンはヒスチジンへと置換される。好ましくは(c)102位のグルタミン酸はリジンへと置換される。好ましくは(d)106位のアスパラギン酸はリジンへと置換される。好ましくは110位のアラニンはロイシンへと置換される。好ましくは113位のアラニンはリジンへと置換される。好ましくは353位のアラニンはセリンへと置換される。場合により(h)418位のセリンはリジンへと置換されてもよい。場合により(i)68位のアスパラギン酸はアスパラギンへと置換されてもよい。場合により(j)354位のアラニンはスレオニンへと置換されてもよい。
 Emericella nidulans由来のフルクトシルペプチドオキシダーゼ(配列番号119)に基づく改変体は、以下の位置において1又は複数のアミノ酸置換を有するものであり得る:
(a)61位のアルギニン
(b)62位のロイシン
(c)101位のグルタミン酸
(d)105位のリジン
(e)109位のアルギニン
(f)112位のセリン
(g)355位のアラニン
(h)420位のアラニン
(i)67位のアスパラギン酸
(j)356位のアスパラギン
 上記Emericella nidulans由来のフルクトシルペプチドオキシダーゼ(配列番号119)において、好ましくは(a)61位のアルギニンはアラニンまたはアスパラギン酸、アスパラギン、グルタミン、グルタミン酸、グリシン、バリン、ロイシン、イソロイシン、システイン、セリン、スレオニン又はプロリンへと置換され得る。好ましくは(b)62位のロイシンはヒスチジンへと置換される。好ましくは(c)101位のグルタミン酸はリジンへと置換される。場合により(d)105位のリジンへは置換されずともよい。好ましくは109位のアルギニンはロイシンへと置換される。好ましくは112位のセリンはリジンへと置換される。好ましくは355位のアラニンはセリンへと置換される。場合により(h)420位のアラニンはリジンへと置換されてもよい。場合により(i)67位のアスパラギン酸はアスパラギンへと置換されてもよい。場合により(j)356位のアスパラギンはスレオニンへと置換されてもよい。
 Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼ(配列番号121)に基づく改変体は、以下の位置において1又は複数のアミノ酸置換を有するものであり得る:
(a)62位のアルギニン
(b)63位のロイシン
(c)102位のリジン
(d)106位のアスパラギン酸
(e)110位のアラニン
(f)113位のアラニン
(g)353位のアラニン
(h)418位のアラニン
(i)68位のアスパラギン酸
(j)354位のアラニン
 上記Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼ(配列番号121)において、好ましくは(a)62位のアルギニンはアラニンまたはアスパラギン酸、アスパラギン、グルタミン、グルタミン酸、グリシン、バリン、ロイシン、イソロイシン、システイン、セリン、スレオニン又はプロリンへと置換され得る。好ましくは(b)63位のロイシンはヒスチジンへと置換される。場合により(c)102位のリジンへは置換されずともよい。好ましくは(d)106位のアスパラギン酸はリジンへと置換される。好ましくは110位のアラニンはロイシンへと置換される。好ましくは113位のアラニンはリジンへと置換される。好ましくは353位のアラニンはセリンへと置換される。場合により(h)418位のアラニンはリジンへと置換されてもよい。場合により(i)68位のアスパラギン酸はアスパラギンへと置換されてもよい。場合により(j)354位のアラニンはスレオニンへと置換されてもよい。
 Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼ(配列番号123)に基づく改変体は、以下の位置において1又は複数のアミノ酸置換を有するものであり得る:
(a)62位のアルギニン
(b)63位のロイシン
(c)102位のグルタミン酸
(d)106位のセリン
(e)110位のリジン
(f)113位のアスパラギン酸
(g)355位のアラニン
(h)419位のセリン
(i)68位のアスパラギン酸
(j)356位のアスパラギン
 上記Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼ(配列番号123)において、好ましくは(a)62位のアルギニンはアラニンまたはアスパラギン酸、アスパラギン、グルタミン、グルタミン酸、グリシン、バリン、ロイシン、イソロイシン、システイン、セリン、スレオニン又はプロリンへと置換され得る。好ましくは(b)63位のロイシンはヒスチジンへと置換される。好ましくは(c)102位のグルタミン酸はリジンへと置換される。好ましくは(d)106位のセリンはリジンへと置換される。好ましくは110位のリジンはロイシンへと置換される。好ましくは113位のアスパラギン酸はリジンへと置換される。好ましくは355位のアラニンはセリンへと置換される。場合により(h)419位のセリンはリジンへと置換されてもよい。場合により(i)68位のアスパラギン酸はアスパラギンへと置換されてもよい。場合により(j)356位のアスパラギンはスレオニンへと置換されてもよい。Penicillium chrysogenum由来のフルクトシルアミノ酸オキシダーゼについても同様である。
 ある実施形態において、本発明のヘモグロビンA1cに直接作用するアマドリアーゼは、好ましくは
基質としてヘモグロビンA1cのβ鎖を認識し、
作用としてヘモグロビンA1cのβ鎖を酸化して過酸化水素を生成し、
至適pH範囲をpH6~8の範囲に有し、
作用pH範囲をpH5~9の範囲に有し、
作用温度が25~40℃であり、
SDS-PAGE上での分子量が約45~55KDa、例えば約48~50KDaであるものであり得る。
 本発明のアマドリアーゼ変異体又は改変体からは、HbA1cに対する活性を全く示さないアマドリアーゼは除くものとする。
(アマドリアーゼをコードする遺伝子の取得)
 これらのアマドリアーゼをコードする遺伝子(以下、単に「アマドリアーゼ遺伝子」ともいう)を得るには、通常一般的に用いられている遺伝子のクローニング方法が用いられる。例えば、アマドリアーゼ生産能を有する微生物菌体や種々の細胞から常法、例えば、Current Protocols in Molecular Biology(WILEY Interscience,1989)記載の方法により、染色体DNAまたはmRNAを抽出することができる。さらにmRNAを鋳型としてcDNAを合成することができる。このようにして得られた染色体DNAまたはcDNAを用いて、染色体DNAまたはcDNAのライブラリーを作製することができる。
 次いで、上記アマドリアーゼのアミノ酸配列に基づき、適当なプローブDNAを合成して、これを用いて染色体DNAまたはcDNAのライブラリーからアマドリアーゼ遺伝子を選抜する方法、あるいは、上記アミノ酸配列に基づき、適当なプライマーDNAを作製して、5’RACE法や3’RACE法などの適当なポリメラーゼ連鎖反応(Polymerase Chain Reaction、PCR法)により、アマドリアーゼをコードする目的の遺伝子断片を含むDNAを増幅させ、これらのDNA断片を連結させて、目的のアマドリアーゼ遺伝子の全長を含むDNAを得ることができる。
 このようにして得られたアマドリアーゼをコードする遺伝子の好ましい一例として、コニオカエタ属由来のアマドリアーゼ遺伝子(特開2003-235585号公報)が挙げられる。
 また、別の好ましい例として、Phaeosphaeria属由来のアマドリアーゼ遺伝子、Neocosmospora属由来のアマドリアーゼ遺伝子、Aspergillus属由来のアマドリアーゼ遺伝子、及びCryptococcus属由来のアマドリアーゼ遺伝子、及びCurvularia属由来のアマドリアーゼ遺伝子、及びEupenicillium属由来のアマドリアーゼ遺伝子が挙げられる。
 これらのアマドリアーゼ遺伝子は、常法通り各種ベクターに連結されていることが、取扱い上好ましい。例えば、Coniochaeta sp. NISL 9330株由来のアマドリアーゼ遺伝子をコードするDNAを含む組換え体プラスミドpKK223-3-CFP-T7(国際公開第2007/125779号)から、GenElute Plasmid Miniprep Kit(Sigma-Alcrich社製)を用いることにより、アマドリアーゼ遺伝子をコードするDNAを含む組換え体プラスミドpKK223-3-CFP-T7を、抽出、精製して得ることができる。他の生物由来のアマドリアーゼ遺伝子についても、当業者であれば慣用法により、同様の手順でDNAを取得することができる。具体的には、Eupenicillium terrenum ATCC 18547株由来のアマドリアーゼ遺伝子をコードするDNAを含む組換え体プラスミドpUTE100K’-EFP-T5(国際公開第2007/125779号)を保持する大腸菌を培養し、GenElute Plasmid Miniprep Kitを用いることにより、アマドリアーゼ遺伝子をコードするDNAを含む組換え体プラスミドpUTE100K’-EFP-T5を、細胞から抽出、精製して得ることができる。また、Aspergillus nidulans FGSC A26株由来のアマドリアーゼ遺伝子をコードするDNAを含む組換え体プラスミドpET22b-AnFX(国際公開第2012/018094号)を保持する大腸菌を培養し、GenElute Plasmid Miniprep Kitを用いることにより、アマドリアーゼ遺伝子をコードするDNAを含む組換え体プラスミドpET22b-AnFXを、抽出、精製して得ることができる。また、Cryptococcus neoformans由来のアマドリアーゼ遺伝子をコードするDNAを含む組換え体プラスミドpET22b-CnFX(国際公開第2012/018094号)を保持する大腸菌を培養し、GenElute Plasmid Miniprep Kitを用いることにより、アマドリアーゼ遺伝子をコードするDNAを含む組換え体プラスミドpET22b-CnFXを、抽出、精製して得ることができる。また、Neocosmospora vasinfecta由来のアマドリアーゼ遺伝子をコードするDNAを含む組換え体プラスミドpET22b-NvFX(国際公開第2012/018094号)を保持する大腸菌を培養し、GenElute Plasmid Miniprep Kitを用いることにより、アマドリアーゼ遺伝子をコードするDNAを含む組換え体プラスミドpET22b-NvFXを、抽出、精製して得ることができる。
(ベクター)
 本発明において用いることのできるベクターとしては、上記プラスミドに限定されることなく、それ以外の、例えば、バクテリオファージ、コスミド等の当業者に公知の任意のベクターを用いることができる。具体的には、例えば、pBluescriptII SK+(Stratagene社製)等が好ましい。
(アマドリアーゼ遺伝子の変異処理)
 アマドリアーゼ遺伝子の変異処理は、企図する変異形態に応じた、公知の任意の方法で行うことができる。すなわち、アマドリアーゼ遺伝子あるいは当該遺伝子の組み込まれた組換え体DNAと変異原となる薬剤とを接触・作用させる方法;紫外線照射法;遺伝子工学的手法;または蛋白質工学的手法を駆使する方法等を広く用いることができる。
 上記変異処理に用いられる変異原となる薬剤としては、例えば、ヒドロキシルアミン、N-メチル-N’-ニトロ-N-ニトロソグアニジン、亜硝酸、亜硫酸、ヒドラジン、蟻酸、若しくは5-ブロモウラシル等を挙げることができる。
 この接触・作用の諸条件は、用いる薬剤の種類等に応じた条件を採ることが可能であり、現実に所望の変異をアマドリアーゼ遺伝子において惹起することができる限り特に限定されない。通常、好ましくは0.5~12Mの上記薬剤濃度において、20~80℃の反応温度下で10分間以上、好ましくは10~180分間接触・作用させることで、所望の変異を惹起可能である。紫外線照射を行う場合においても、上記の通り常法に従い行うことができる(現代化学、024~30、1989年6月号)。
 蛋白質工学的手法を駆使する方法としては、一般的に、Site-Specific Mutagenesisとして知られる手法を用いることができる。例えば、Kramer法(Nucleic Acids Res., 12, 9441 (1984): Methods Enzymol., 154, 350 (1987): Gene, 37, 73 (1985))、Eckstein法(Nucleic Acids Res., 13, 8749 (1985): Nucleic Acids Res., 13, 8765 (1985): Nucleic Acids Res, 14, 9679 (1986))、Kunkel法(Proc. Natl. Acid. Sci. U.S.A., 82, 488 (1985): Methods Enzymol., 154, 367 (1987))等が挙げられる。
 また、一般的なPCR法として知られる手法を用いることもできる(Technique, 1, 11(1989)参照)。なお、上記遺伝子改変法の他に、有機合成法または酵素合成法により、直接所望の改変アマドリアーゼ遺伝子を合成することもできる。
 上記方法により得られるアマドリアーゼ遺伝子のDNA塩基配列の決定若しくは確認を行う場合には、例えば、マルチキャピラリーDNA解析システムApplied Biosystems 3130xlジェネティックアナライザ(Life Technologies社製)等を用いることにより行うことができる。
(形質転換・形質導入)
 上述のように得られたアマドリアーゼ遺伝子を、常法により、バクテリオファージ、コスミド、または原核細胞若しくは真核細胞の形質転換に用いられるプラスミド等のベクターに組み込み、各々のベクターに対応する宿主を常法により、形質転換または形質導入をすることができる。例えば、宿主として、エッシェリシア属に属する微生物、例えば得られた組換え体DNAを用いて、例えば、大腸菌K-12株、好ましくは大腸菌JM109株、大腸菌DH5α株(ともにタカラバイオ社製)等を形質転換またはそれらに形質導入してそれぞれの菌株を得る。
(アミノ酸配列の相同性、同一性又は類似性)
 アミノ酸配列の相同性、同一性又は類似性は、GENETYX(GENETYX社製)のマキシマムマッチングやサーチホモロジー等のプログラム、またはDNASIS Pro(日立ソリューションズ社製)のマキシマムマッチングやマルチプルアライメント、またはCLUSTAL Wのマルチプルアライメント等のプログラムにより計算することができる。アミノ酸配列同一性を計算するために、2以上のアマドリアーゼをアライメントしたときに、該2以上のアマドリアーゼにおいて同一であるアミノ酸の位置を調べることができる。こうした情報を基に、アミノ酸配列中の同一領域を決定できる。ここで2以上のアミノ酸配列について、同一性%とは、Blosum62等のアルゴリズムを利用して2以上のアミノ酸配列のアラインメントを行った際に、アラインメント可能であった領域の総アミノ酸数を分母とし、そのうち同一のアミノ酸によって占められる位置の数を分子としたときのパーセンテージをいう。故に、通常、2以上のアミノ酸配列に同一性が全く見られない領域がある場合、例えばC末端に同一性が全く見られない付加配列が一方のアミノ酸配列にある場合、当該同一性のない領域はアラインメント不可能であるため、同一性%の算出には利用されない。
 また、2以上のアマドリアーゼにおいて類似であるアミノ酸の位置を調べることもできる。例えばCLUSTALWを用いて複数のアミノ酸配列をアライメントすることができ、この場合、アルゴリズムとしてBlosum62を使用し、複数のアミノ酸配列をアライメントしたときに類似(similar)と判断されるアミノ酸を類似アミノ酸と呼ぶことがある。本発明の変異体において、アミノ酸置換はこのような類似アミノ酸の間の置換によるものであり得る。こうしたアライメントにより、複数のアミノ酸配列について、アミノ酸配列が同一である領域及び類似アミノ酸によって占められる位置を調べることができる。こうした情報を基に、アミノ酸配列中の相同性領域(保存領域)を決定できる。
 本明細書において「相同性領域」とは、2以上のアマドリアーゼをアライメントしたときに、ある基準となるアマドリアーゼと比較対象のアマドリアーゼの対応する位置におけるアミノ酸が同一であるか又は類似アミノ酸からなる領域であって、連続する3以上、4以上、5以上、6以上、7以上、8以上、9以上又は10以上のアミノ酸からなる領域をいう。例えば、図1では全長アミノ酸配列の配列同一性が74%以上であるアマドリアーゼをアライメントした。このうち、配列番号1で示されるConiochaeta sp.アマドリアーゼを基準として第10位~32位は同一又は類似アミノ酸からなり、よって相同性領域に該当する。同様に、配列番号1で示されるConiochaeta sp.アマドリアーゼを基準として36~41位、49~52位、54~58位、73~75位、84~86位、88~90位、120~122位、145~150位、156~162位、164~170位、180~182位、202~205位、207~211位、214~224位、227~230位、236~241位、243~248位、258~261位、266~268位、270~273位、275~287位、295~297位、306~308位、310~316位、324~329位、332~334位、341~344位、346~355位、357~363位、370~383位、385~387位、389~394位、405~410位及び423~431位は相同性領域に該当しうる。
 好ましくは、アマドリアーゼの相同性領域は、配列番号1で示されるConiochaeta sp.アマドリアーゼを基準として、第11位~32位、36~41位、50~52位、54~58位、84~86位、88~90位、145~150位、157~168位、202~205位、207~212位、215~225位、236~248位、258~261位、266~268位、270~273位、275~287位、347~354位、357~363位、370~383位、385~387位、及び405~410位のアミノ酸配列からなる領域である。
 さらに好ましくは、アマドリアーゼの相同性領域は、配列番号1で示されるConiochaeta sp.アマドリアーゼを基準として第11~18位、20~32位、50~52位、54~58位、266~268位、270~273位、277~286位、及び370~383位のアミノ酸配列からなる領域である。
 本発明のアマドリアーゼ変異体は、配列番号1に示されるアミノ酸配列を有するアマドリアーゼとアライメントしたときに50%以上、好ましくは60%以上、好ましくは70%以上、好ましくは75%以上、好ましくは80%以上、好ましくは85%以上、より好ましくは90%以上、より好ましくは95%以上、最も好ましくは99%以上の全長アミノ酸配列同一性を有し、αF6Pに対して高い反応性を有する。さらに、本発明のアマドリアーゼ変異体の相同性領域におけるアミノ酸配列は、配列番号1における相同性領域のアミノ酸配列と80%、好ましくは85%、好ましくは90%、好ましくは95%、好ましくは98%、さらに好ましくは99%以上の配列同一性を有する。
 ある実施形態において、アマドリアーゼの相同性領域は、配列番号141のアマドリアーゼを基準として第10位~32位、36~41位、49~52位、54~58位、73~75位、84~86位、88~90位、120~122位、145~150位、156~162位、164~170位、180~182位、202~205位、207~211位、214~224位、227~230位、236~241位、243~248位、258~261位、266~268位、270~273位、275~287位、295~297位、306~308位、310~316位、324~329位、332~334位、341~344位、346~355位、357~363位、370~383位、385~387位、389~394位、405~410位及び423~431位のアミノ酸配列からなる領域、好ましくは第11位~32位、36~41位、50~52位、54~58位、84~86位、88~90位、145~150位、157~168位、202~205位、207~212位、215~225位、236~248位、258~261位、266~268位、270~273位、275~287位、347~354位、357~363位、370~383位、385~387位、及び405~410位のアミノ酸配列からなる領域、さらに好ましくは第11~18位、20~32位、50~52位、54~58位、266~268位、270~273位、277~286位、及び370~383位のアミノ酸配列からなる領域である。
 ある実施形態において、本発明のアマドリアーゼは、
(i) 配列番号141に示すアミノ酸配列に1又は数個のアミノ酸の置換、欠失又は付加がなされたアミノ酸配列を有するアマドリアーゼであるか、または
(ii) 前記(i)のアマドリアーゼにおいて、当該アマドリアーゼの全長アミノ酸配列が配列番号141のアミノ酸配列と70%以上の配列同一性を有し、配列番号141の第10位~32位、36~41位、49~52位、54~58位、73~75位、84~86位、88~90位、120~122位、145~150位、156~162位、164~170位、180~182位、202~205位、207~211位、214~224位、227~230位、236~241位、243~248位、258~261位、266~268位、270~273位、275~287位、295~297位、306~308位、310~316位、324~329位、332~334位、341~344位、346~355位、357~363位、370~383位、385~387位、389~394位、405~410位及び423~431位のアミノ酸配列からなる相同性領域におけるアミノ酸配列と当該アマドリアーゼの対応する位置の相同性領域におけるアミノ酸配列とが90%以上の配列同一性を有するアマドリアーゼである。ある実施形態において、本発明のアマドリアーゼは、前記(ii)に規定される相同性領域におけるアミノ酸配列と当該アマドリアーゼの対応する位置の相同性領域におけるアミノ酸配列とが95%以上の配列同一性を有するアマドリアーゼである。
 ある実施形態において本発明のアマドリアーゼは、上記に加え、又は上記とは独立に配列番号1に示すアミノ酸配列における以下のアミノ酸、
(i)68位のアスパラギン酸、及び
(ii)356位のアラニン、
よりなる群から選択されるアミノ酸に対応する位置で1つまたはそれ以上のアミノ酸残基の置換を有する。
 ある実施形態において本発明のアマドリアーゼは、上記に加え、配列番号1に示すアミノ酸配列における以下のアミノ酸、
(i)262位のアスパラギン、
(ii)257位のバリン、
(iii)249位のグルタミン酸
(iv)253位のグルタミン酸、
(v)337位のグルタミン、
(vi)340位のグルタミン酸、
(vii)232位のアスパラギン酸、
(viii)129位のアスパラギン酸、
(ix)132位のアスパラギン酸、
(x)133位のグルタミン酸、
(xi)44位のグルタミン酸、
(xii)256位のグリシン、
(xiii)231位のグルタミン酸、及び
(xiv)81位のグルタミン酸、
よりなる群から選択されるアミノ酸に対応する位置で1つまたはそれ以上のアミノ酸残基の置換を有する。さらなる実施形態において、本発明のアマドリアーゼは、上記に加え、場合によりカルボキシル末端からの3アミノ酸残基を欠失していてもよい。
(アミノ酸に対応する位置の特定)
 本発明において、あるベースとなるアミノ酸配列中の特定の位置のアミノ酸が別の類似するアミノ酸配列中の特定の位置のアミノ酸と対応する場合、これを対応するアミノ酸といい、そのアミノ酸の位置を対応する位置、又は相当する位置という。また、「アミノ酸の位置に対応する位置」を特定する方法としては、例えばリップマン-パーソン法等の公知のアルゴリズムを用いてアミノ酸配列を比較し、各アマドリアーゼのアミノ酸配列中に存在する保存アミノ酸残基に最大の同一性を与えることにより行う方法が挙げられる。アマドリアーゼのアミノ酸配列をこのような方法で整列させることにより、アミノ酸配列中にある挿入、欠失にかかわらず、相同アミノ酸残基の各アマドリアーゼ配列における配列中の位置を決めることが可能である。相同位置は、三次元構造中で同位置に存在すると考えられ、対象となるアマドリアーゼの特異的機能に関して類似した効果を有することが推定できる。
 なお、本発明において、「配列番号1記載のアミノ酸配列の62位のアルギニンに対応する位置」のアミノ酸とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの62位のアルギニンに対応するアミノ酸を意味するものである。これにより、上記の「相当する位置のアミノ酸残基」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、「配列番号1記載のアミノ酸配列の62位のアルギニンに対応する位置」のアミノ酸は、Eupenicillium terrenum由来のアマドリアーゼ(配列番号40及び145)、Pyrenochaeta sp.由来のケトアミンオキシダーゼ(配列番号113)、Arthrinium sp.由来のケトアミンオキシダーゼ(配列番号115)、Curvularia clavata由来のケトアミンオキシダーゼ(配列番号117)、Neocosmospora vasinfecta由来のケトアミンオキシダーゼ(配列番号54)、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼ(配列番号89及び149)、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼ(配列番号121)、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼ(配列番号123)では62位のアルギニン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼ(配列番号38)では62位のセリン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼ(配列番号119)では61位のアルギニン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼ(配列番号62及び147)では61位のアルギニンである。
 また、本発明において、「配列番号1記載のアミノ酸配列の63位のロイシンに対応する位置」のアミノ酸とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの63位のロイシンに対応するアミノ酸を意味するものである。これにより、上記の「相当する位置のアミノ酸残基」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、「配列番号1記載のアミノ酸配列の63位のロイシンに対応する位置」のアミノ酸は、Eupenicillium terrenum由来のアマドリアーゼ(配列番号40及び145)、Pyrenochaeta sp.由来のケトアミンオキシダーゼ(配列番号113)、Arthrinium sp.由来のケトアミンオキシダーゼ(配列番号115)、Curvularia clavata由来のケトアミンオキシダーゼ(配列番号117)、Neocosmospora vasinfecta由来のケトアミンオキシダーゼ(配列番号54)、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼ(配列番号38)、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼ(配列番号121)、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼ(配列番号123)では63位のロイシン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼ(配列番号89及び149)では63位のイソロイシン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼ(配列番号62及び147)、Emericella nidulans由来のフルクトシルペプチドオキシダーゼ(配列番号119)では62位のロイシンである。
 また、本発明において、「配列番号1記載のアミノ酸配列の102位のグルタミン酸に対応する位置」のアミノ酸とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの102位のグルタミン酸に対応するアミノ酸を意味するものである。これにより、上記の「相当する位置のアミノ酸残基」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、「配列番号1記載のアミノ酸配列の102位のグルタミン酸に対応する位置」のアミノ酸は、Eupenicillium terrenum由来のアマドリアーゼ(配列番号40及び145)、Curvularia clavata由来のケトアミンオキシダーゼ(配列番号117)、Neocosmospora vasinfecta由来のケトアミンオキシダーゼ(配列番号54)、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼ(配列番号89及び149)、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼ(配列番号123)では102位のグルタミン酸、Pyrenochaeta sp.由来のケトアミンオキシダーゼ(配列番号113)、Arthrinium sp.由来のケトアミンオキシダーゼ(配列番号115)、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼ(配列番号38)、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼ(配列番号121)では102位のリジン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼ(配列番号119)、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼ(配列番号62及び147)では101位のグルタミン酸である。
 また、本発明において、「配列番号1記載のアミノ酸配列の106位のアスパラギン酸に対応する位置」のアミノ酸とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの106位のアスパラギン酸に対応するアミノ酸を意味するものである。これにより、上記の「相当する位置のアミノ酸残基」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、「配列番号1記載のアミノ酸配列の106位のアスパラギン酸に対応する位置」のアミノ酸は、Eupenicillium terrenum由来のアマドリアーゼ(配列番号40及び145)では106位のアスパラギン、Pyrenochaeta sp.由来のケトアミンオキシダーゼ(配列番号113)、Curvularia clavata由来のケトアミンオキシダーゼ(配列番号117)、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼ(配列番号38)、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼ(配列番号121)では106位のアスパラギン酸、Arthrinium sp.由来のケトアミンオキシダーゼ(配列番号115)では106位のアラニン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼ(配列番号54)では106位のグリシン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼ(配列番号89及び149)、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼ(配列番号123)では106位のセリン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼ(配列番号119)では105位のリジン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼ(配列番号62及び147)では105位のグリシンである。
 また、本発明において、「配列番号1記載のアミノ酸配列の110位のグルタミンに対応する位置」のアミノ酸とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの110位のグルタミンに対応するアミノ酸を意味するものである。これにより、上記の「相当する位置のアミノ酸残基」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、「配列番号1記載のアミノ酸配列の110位のグルタミンに対応する位置」のアミノ酸は、Eupenicillium terrenum由来のアマドリアーゼ(配列番号40及び145)、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼ(配列番号123)では110位のリジン、Pyrenochaeta sp.由来のケトアミンオキシダーゼ(配列番号113)、Curvularia clavata由来のケトアミンオキシダーゼ(配列番号117)、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼ(配列番号121)では110位のアラニン、Arthrinium sp.由来のケトアミンオキシダーゼ(配列番号115)では110位のグルタミン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼ(配列番号54)では110位のグルタミン酸、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼ(配列番号89及び149)では110位のセリン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼ(配列番号38)では110位のグリシン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼ(配列番号119)では109位のアルギニン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼ(配列番号62及び147)では、109位のリジンである。
 また、本発明において、「配列番号1記載のアミノ酸配列の113位のアラニンに対応する位置」のアミノ酸とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの113位のアラニンに対応するアミノ酸を意味するものである。これにより、上記の「相当する位置のアミノ酸残基」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、「配列番号1記載のアミノ酸配列の113位のアラニンに対応する位置」のアミノ酸は、Eupenicillium terrenum由来のアマドリアーゼ(配列番号40及び145)、Pyrenochaeta sp.由来のケトアミンオキシダーゼ(配列番号113)、Arthrinium sp.由来のケトアミンオキシダーゼ(配列番号115)では113位のスレオニン、Curvularia clavata由来のケトアミンオキシダーゼ(配列番号117)、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼ(配列番号89及び149)、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼ(配列番号38)、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼ(配列番号121)では113位のアラニン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼ(配列番号54)では113位のリジン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼ(配列番号62及び147)、Emericella nidulans由来のフルクトシルペプチドオキシダーゼ(配列番号119)では112位のセリン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼ(配列番号123)では113位のアスパラギン酸である。
 また、本発明において、「配列番号1記載のアミノ酸配列の355位のアラニンに対応する位置」のアミノ酸とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの355位のアラニンに対応するアミノ酸を意味するものである。これにより、上記の「相当する位置のアミノ酸残基」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、「配列番号1記載のアミノ酸配列の355位のアラニンに対応する位置」のアミノ酸は、Eupenicillium terrenum由来のアマドリアーゼ(配列番号40及び145)、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼ(配列番号89及び149)、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼ(配列番号62及び147)、Emericella nidulans由来のフルクトシルペプチドオキシダーゼ(配列番号119)、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼ(配列番号123)では355位のアラニン、Pyrenochaeta sp.由来のケトアミンオキシダーゼ(配列番号113)、Curvularia clavata由来のケトアミンオキシダーゼ(配列番号117)、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼ(配列番号121)では353位のアラニン、Arthrinium sp.由来のケトアミンオキシダーゼ(配列番号115)では356位のアラニン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼ(配列番号54)では355位のセリン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼ(配列番号38)では351位のアラニンである。
 また、本発明において、「配列番号1記載のアミノ酸配列の419位のアラニンに対応する位置」のアミノ酸とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの419位のアラニンに対応するアミノ酸を意味するものである。これにより、上記の「相当する位置のアミノ酸残基」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、「配列番号1記載のアミノ酸配列の419位のアラニンに対応する位置」のアミノ酸は、Eupenicillium terrenum由来のアマドリアーゼ(配列番号40及び145)では419位のグリシン、Pyrenochaeta sp.由来のケトアミンオキシダーゼ(配列番号113)、Curvularia clavata由来のケトアミンオキシダーゼ(配列番号117)、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼ(配列番号121)では418位のアラニン、Arthrinium sp.由来のケトアミンオキシダーゼ(配列番号115)では421位のアラニン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼ(配列番号54)、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼ(配列番号89及び149)、Emericella nidulans由来のフルクトシルペプチドオキシダーゼ(配列番号119)では420位のアラニン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼ(配列番号38)では416位のセリン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼ(配列番号123)では419位のセリン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼ(配列番号62及び147)では420位のアラニンである。
 また、本発明において、「配列番号1記載のアミノ酸配列の68位のアスパラギン酸に対応する位置」のアミノ酸とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの68位のアスパラギン酸に対応するアミノ酸を意味するものである。これにより、上記の「相当する位置のアミノ酸残基」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、「配列番号1記載のアミノ酸配列の68位のアスパラギン酸に対応する位置」のアミノ酸は、Eupenicillium terrenum由来のアマドリアーゼ(配列番号40及び145)、Pyrenochaeta sp.由来のケトアミンオキシダーゼ(配列番号113)、Arthrinium sp.由来のケトアミンオキシダーゼ(配列番号115)、Curvularia clavata由来のケトアミンオキシダーゼ(配列番号117)、Neocosmospora vasinfecta由来のケトアミンオキシダーゼ(配列番号54)、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼ(配列番号89及び149)、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼ(配列番号38)、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼ(配列番号121)、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼ(配列番号123)では68位のアスパラギン酸、Emericella nidulans由来のフルクトシルペプチドオキシダーゼ(配列番号119)及びAspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼ(配列番号62及び147)では67位のアスパラギン酸である。
 また、本発明において、「配列番号1記載のアミノ酸配列の356位のアラニンに対応する位置」のアミノ酸とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの356位のアラニンに対応するアミノ酸を意味するものである。これにより、上記の「相当する位置のアミノ酸残基」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、「配列番号1記載のアミノ酸配列の356位のアラニンに対応する位置」のアミノ酸は、Eupenicillium terrenum由来のアマドリアーゼ(配列番号40及び145)では356位のアスパラギン、Pyrenochaeta sp.由来のケトアミンオキシダーゼ(配列番号113)では354位のアラニン、Arthrinium sp.由来のケトアミンオキシダーゼ(配列番号115)では357位のアラニン、Curvularia clavata由来のケトアミンオキシダーゼ(配列番号117)では354位のアラニン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼ(配列番号54)では356位のアラニン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼ(配列番号89及び149)では356位のアスパラギン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼ(配列番号38)では352位のアラニン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼ(配列番号62及び147)では356位のアスパラギン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼ(配列番号119)では356位のアスパラギン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼ(配列番号121)では354位のアラニン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼ(配列番号123)では356位のアスパラギンである。
 本発明のアマドリアーゼ変異体は、一重変異体であってもよいが、2以上のアミノ酸置換を有する多重変異体であってもよい。本発明者らは、配列番号1のアミノ酸配列における第62位、63位、102位、106位、110位、113位、及び355位に対応する位置のアミノ酸を置換したアマドリアーゼが驚くべきことにHbA1cに対する活性を示すことを見出した。さらに本発明者らは、配列番号1のアミノ酸配列における第68位及び356位に対応する位置のアミノ酸を置換したアマドリアーゼが驚くべきことにαF6Pに対する活性が増大することを見いだした。
 本明細書では、これらの位置(62/63/102/106/110/113/355/419及び68/356)の変異を、アマドリアーゼの基質特異性を変化させる変異又はアマドリアーゼの基質特異性を変化させるアミノ酸置換と呼ぶことがある。
 ある実施形態において、本発明のアマドリアーゼはαF6Pに対する比活性(U/mg)が0.1U/mg以上、0.2U/mg以上、0.3U/mg以上、0.4U/mg以上、0.5U/mg以上、0.6U/mg以上、0.7U/mg以上、0.8U/mg以上、0.9U/mg以上、例えば1U/mg以上である。該アマドリアーゼは、基質特異性を変化させるアミノ酸置換を1以上、2以上、3以上、4以上、5以上、6以上、7以上、8以上、9以上又は10以上、有しうる。このような本発明のアマドリアーゼは、HbA1cに直接作用し、本発明のHbA1c測定方法に用いることができる。
 ある実施形態において、αF6Pに対する比活性(U/mg)が0.1U/mg以上である本発明のアマドリアーゼは、アマドリアーゼのアミノ酸配列を、配列番号1記載のアミノ酸配列とアライメントしたときに、
(a)配列番号1の62位のアルギニン、
(b)配列番号1の63位のロイシン、
(c)配列番号1の102位のグルタミン酸、
(d)配列番号1の106位のアスパラギン酸、
(e)配列番号1の110位のグルタミン、
(f)配列番号1の113位のアラニン、
(g)配列番号1の355位のアラニン、
(h)配列番号1の419位のアラニン、
(i) 配列番号1の68位のアスパラギン酸、及び
(j) 配列番号1の356位のアラニン、
からなる群より選択される位置に対応する位置のアミノ酸が1つまたはそれ以上、2以上、3以上、4以上、5以上、6以上、7以上、8以上、9以上、例えば10、置換されたものであり得る。なお、「配列番号1記載のアミノ酸配列の62位のアルギニンに対応する位置」のアミノ酸は、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼ(配列番号38)では62位のセリンである。これは配列番号1のアミノ酸配列から見れば62位のアルギニンに対応する位置のアミノ酸がセリンとなった、すなわちセリンに置換されたものと同等である。したがって天然のアマドリアーゼとして、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼ(配列番号38)のような、配列番号1のアミノ酸配列の62位のアルギニンに対応する位置のアミノ酸がセリンであるアマドリアーゼも便宜上、本明細書では、配列番号1記載のアミノ酸配列とアライメントしたときに(a)配列番号1の62位のアルギニンに対応する位置にアミノ酸置換を有するアマドリアーゼに含めるものとする。
 ある実施形態において、αF6Pに対する比活性(U/mg)が0.1U/mg以上である本発明のアマドリアーゼは、配列番号1記載のアミノ酸の以下(a)から(j)よりなる群から選択される位置のアミノ酸に対応する位置のアミノ酸の1つまたはそれ以上、2以上、3以上、4以上、5以上、6以上、7以上、8以上、9以上、例えば10が以下の各々に記載されるアミノ酸残基であり得る:
(a)配列番号1の62位に対応する位置のアミノ酸がアラニン、アスパラギン酸、アスパラギン、グルタミン、グルタミン酸、グリシン、バリン、ロイシン、イソロイシン、システイン、セリン、スレオニン又はプロリンである、
(b)配列番号1の63位に対応する位置のアミノ酸がアラニン又はヒスチジンである、
(c)配列番号1の102位に対応する位置のアミノ酸がリジンである、
(d)配列番号1の106位に対応する位置のアミノ酸がアラニン、リジン又はアルギニンである、
(e)配列番号1の110位に対応する位置のアミノ酸がロイシン又はチロシンである、
(f)配列番号1の113位に対応する位置のアミノ酸がリジン又はアルギニンである、
(g)配列番号1の355位に対応する位置のアミノ酸がセリンである、
(h)配列番号1の419位に対応する位置のアミノ酸がリジンである、
(i) 配列番号1の68位に対応する位置のアミノ酸がアスパラギンである、
(j) 配列番号1の356位に対応する位置のアミノ酸がスレオニンである。
(予備的な置換について)
 アマドリアーゼは、配列番号1のアミノ酸配列の第60位に対応する位置のアミノ酸がセリンである場合、これをグリシンへと置換することによって、置換前にαFVH活性を示さなかった酵素が、置換後にαFVH活性を示すようになることが報告されている(特開2010-35469号公報、国際公開第2012/018094号参照)。したがって、本発明に用いるアマドリアーゼの配列番号1の第60位に対応する位置のアミノ酸がセリンである場合、これを予めグリシンへと置換しておくこともできる。あるいは、野生型において配列番号1の60位に対応する位置がグリシンであるアマドリアーゼを用いて、上記配列番号1の第62位、63位、102位、106位、110位、113位、355位及び419位に対応する位置並びに68位及び356位に変異を導入してもよい。本発明のアマドリアーゼ変異体は、特に断らない限り、配列番号1の第60位に対応する位置のアミノ酸がグリシンであるものを包含する。例えば、Aspergillus nidulans由来アマドリアーゼは、配列番号1の60位に対応する配列番号147中の第59位のアミノ酸が野生型ではセリンであるが、これをグリシンに置換したもの(配列番号62)を本発明の変異体のための基となるアマドリアーゼとして用いてもよい。Penicillium janthinellum(Pj)由来アマドリアーゼ(配列番号123)についても同様である。
(さらなる予備的な置換について-界面活性剤耐性を向上させる変異)
 本発明者らは、アマドリアーゼのアミノ酸残基を置換することによりその界面活性剤に対する耐性を向上させることができることを確認している。本発明のアマドリアーゼは、場合により、さらにこのようなアミノ酸置換を有しうる。
 界面活性剤耐性の向上をもたらすアミノ酸の置換として、配列番号1に示すアミノ酸配列における以下の位置のアミノ酸に対応する位置のアミノ酸の置換が挙げられる。 
(1)262位のアスパラギンの置換、例えば、ヒスチジンへの置換。 
(2)257位のバリンの置換、例えば、システイン、セリン、スレオニンへの置換。 
(3)249位のグルタミン酸の置換、例えば、リジン、アルギニンへの置換。 
(4)253位のグルタミン酸の置換、例えば、リジン、アルギニンへの置換。 
(5)337位のグルタミンの置換、例えば、リジン、アルギニンへの置換。 
(6)340位のグルタミン酸の置換、例えば、プロリンへの置換。 
(7)232位のアスパラギン酸の置換、例えば、リジン、アルギニンへの置換。 
(8)129位のアスパラギン酸の置換、例えば、リジン、アルギニンへの置換。 
(9)132位のアスパラギン酸の置換、例えば、リジン、アルギニンへの置換。 
(10)133位のグルタミン酸の置換、例えば、アラニン、メチオニン、リジン、アルギニンへの置換。 
(11)44位のグルタミン酸の置換、例えば、プロリンへの置換。 
(12)256位のグリシンの置換、例えば、リジン、アルギニンへの置換。 
(13)231位のグルタミン酸の置換、例えば、リジン、アルギニンへの置換。 
(14)81位のグルタミン酸の置換、例えば、リジン、アルギニンへの置換。
 界面活性剤耐性が向上したアマドリアーゼの変異体は、上記アミノ酸置換を少なくとも1つ有していればよく、複数のアミノ酸置換を有していてもよい。例えば、上記アミノ酸置換の1、2、3、4、5、6、7、8、9、10、11、12、13または14を有しうる。
 なお、本明細書において、「配列番号1記載のアミノ酸配列の44位のグルタミン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの44位のグルタミン酸に対応するアミノ酸を意味するものである。これにより、上記の「相当する位置のアミノ酸残基」を特定する方法でアミノ酸配列を整列させた図1により特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは44位のリジン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは44位のプロリン、Arthrinium sp.由来のケトアミンオキシダーゼでは44位のプロリン、Curvularia clavata由来のケトアミンオキシダーゼでは44位のプロリン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは44位のプロリン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは44位のロイシン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは44位のプロリン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは43位のプロリン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは43位のプロリン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは44位のプロリン、Penicillium janthinelum由来のフルクトシルアミノ酸オキシダーゼでは44位のプロリンである。
 また、「配列番号1記載のアミノ酸配列の81位のグルタミン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの81位のグルタミン酸に対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは81位のアスパラギン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは81位のグルタミン酸、Arthrinium sp.由来のケトアミンオキシダーゼでは81位のヒスチジン、Curvularia clavata由来のケトアミンオキシダーゼでは81位のグルタミン酸、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは81位のアスパラギン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは81位のアスパラギン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは81位のグルタミン酸、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは80位のアスパラギン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは80位のアスパラギン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは81位のグルタミン酸、Penicillium janthinelum由来のフルクトシルアミノ酸オキシダーゼでは81位のアスパラギンである。
 また、「配列番号1記載のアミノ酸配列の133位のグルタミン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1記載のアミノ酸配列の133位のグルタミン酸に対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは133位のグルタミン酸、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは133位のグルタミン酸、Arthrinium sp.由来のケトアミンオキシダーゼでは133位のアラニン、Curvularia clavata由来のケトアミンオキシダーゼでは133位のグルタミン酸、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは133位のアラニン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは133位のグルタミン酸、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは131位のグルタミン酸、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは132位のグルタミン酸、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは132位のグルタミン酸、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは133位のリジン、Penicillium janthinelum由来のフルクトシルアミノ酸オキシダーゼでは133位のアスパラギン酸である。
 また、「配列番号1記載のアミノ酸配列の253位のグルタミン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1記載のアミノ酸配列の253位のグルタミン酸に対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは253位のアラニン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは251位のアラニン、Arthrinium sp.由来のケトアミンオキシダーゼでは253位のグルタミン酸、Curvularia clavata由来のケトアミンオキシダーゼでは251位のグルタミン酸、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは253位のバリン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは253位のグルタミン酸、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは249位のアルギニン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは253位のアラニン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは253位のアラニン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは251位のグルタミン酸、Penicillium janthinelum由来のフルクトシルアミノ酸オキシダーゼでは253位のグルタミンである。
 さらに、「配列番号1記載のアミノ酸配列の256位のグリシンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの256位のグリシンに対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは256位のアスパラギン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは254位のアスパラギン酸、Arthrinium sp.由来のケトアミンオキシダーゼでは256位のグリシン、Curvularia clavata由来のケトアミンオキシダーゼでは254位のアスパラギン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは256位のグリシン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは256位のグルタミン酸、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは252位のアスパラギン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは256位のアスパラギン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは256位のアスパラギン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは254位のアスパラギン、Penicillium janthinelum由来のフルクトシルアミノ酸オキシダーゼでは256位のアスパラギン酸である。
 さらに、「配列番号1記載のアミノ酸配列の257位のバリンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの257位のバリンに対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは257位のバリン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは255位のスレオニン、Arthrinium sp.由来のケトアミンオキシダーゼでは257位のシステイン、Curvularia clavata由来のケトアミンオキシダーゼでは255位のバリン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは257位のシステイン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは257位のシステイン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは253位のセリン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは257位のスレオニン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは257位のスレオニン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは255位のバリン、Penicillium janthinelum由来のフルクトシルアミノ酸オキシダーゼでは257位のバリンである。
 さらに、「配列番号1記載のアミノ酸配列の262位のアスパラギンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの262位のアスパラギンに対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは262位のアスパラギン酸、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは260位のアスパラギン、Arthrinium sp.由来のケトアミンオキシダーゼでは262位のヒスチジン、Curvularia clavata由来のケトアミンオキシダーゼでは260位のアスパラギン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは262位のヒスチジン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは262位のアスパラギン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは258位のアスパラギン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは262位のアスパラギン酸、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは262位のアスパラギン酸、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは260位のアスパラギン、Penicillium janthinelum由来のフルクトシルアミノ酸オキシダーゼでは262位のアスパラギン酸である。
 さらに、「配列番号1記載のアミノ酸配列の337位のグルタミンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの337位のグルタミンに対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわちEupenicillium terrenum由来のアマドリアーゼでは337位のリジン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは335位のリジン、Arthrinium sp.由来のケトアミンオキシダーゼでは338位のグルタミン、Curvularia clavata由来のケトアミンオキシダーゼでは335位のスレオニン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは337位のリジン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは337位のリジン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは333位のリジン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは337位のアスパラギン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは337位のアスパラギン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは335位のスレオニン、Penicillium janthinelum由来のフルクトシルアミノ酸オキシダーゼでは337位のリジンである。
 さらに、「配列番号1記載のアミノ酸配列の340位のグルタミン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの340位のグルタミン酸に対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは340位のグルタミン酸、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは338位のグルタミン酸、Arthrinium sp.由来のケトアミンオキシダーゼでは341位のグルタミン酸、Curvularia clavata由来のケトアミンオキシダーゼでは338位のグルタミン酸、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは340位のプロリン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは340位のグルタミン酸、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは336位のリジン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは340位のグルタミン酸、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは340位のグルタミン酸、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは338位のグルタミン酸、Penicillium janthinelum由来のフルクトシルアミノ酸オキシダーゼでは340位のグルタミン酸である。
 さらに、「配列番号1記載のアミノ酸配列の129位のアスパラギン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの129位のアスパラギン酸に対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは129位のグルタミン酸、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは129位のアスパラギン酸、Arthrinium sp.由来のケトアミンオキシダーゼでは129位のアスパラギン酸、Curvularia clavata由来のケトアミンオキシダーゼでは129位のアスパラギン酸、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは129位のアスパラギン酸、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは129位のセリン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは127位のアスパラギン酸、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは128位のグルタミン酸、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは128位のグルタミン酸、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは129位のアスパラギン酸、Penicillium janthinelum由来のフルクトシルアミノ酸オキシダーゼでは129位のグルタミン酸である。
 さらに、「配列番号1記載のアミノ酸配列の132位のアスパラギン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの132位のアスパラギン酸に対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは132位のアスパラギン酸、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは132位のアスパラギン酸、Arthrinium sp.由来のケトアミンオキシダーゼでは132位のアスパラギン酸、Curvularia clavata由来のケトアミンオキシダーゼでは132位のアスパラギン酸、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは132位のグルタミン酸、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは132位のアスパラギン酸、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは130位のアスパラギン酸、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは131位のアスパラギン酸、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは131位のアスパラギン酸、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは132位のアスパラギン酸、Penicillium janthinelum由来のフルクトシルアミノ酸オキシダーゼでは132位のアスパラギン酸である。
 さらに、「配列番号1記載のアミノ酸配列の231位のグルタミン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの231位のグルタミン酸に対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは231位のグルタミン酸、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは229位のグルタミン酸、Arthrinium sp.由来のケトアミンオキシダーゼでは231位のグルタミン酸、Curvularia clavata由来のケトアミンオキシダーゼでは229位のグルタミン酸、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは231位のグルタミン酸、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは231位のグルタミン酸、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは227位のヒスチジン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは231位のグルタミン酸、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは231位のグルタミン酸、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは229位のグルタミン、Penicillium janthinelum由来のフルクトシルアミノ酸オキシダーゼでは231位のグルタミン酸である。
 さらに、「配列番号1記載のアミノ酸配列の232位のアスパラギン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの232位のアスパラギン酸に対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは232位のアスパラギン酸、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは230位のアスパラギン酸、Arthrinium sp.由来のケトアミンオキシダーゼでは232位のグルタミン酸、Curvularia clavata由来のケトアミンオキシダーゼでは230位のアスパラギン酸、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは232位のグルタミン酸、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは232位のグリシン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは228位のグルタミン酸、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは232位のグルタミン酸、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは232位のグルタミン酸、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは230位のアスパラギン酸、Penicillium janthinelum由来のフルクトシルアミノ酸オキシダーゼでは232位のアスパラギン酸である。
 さらに、「配列番号1記載のアミノ酸配列の249位のグルタミン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの249位のグルタミン酸に対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは249位のリジン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは247位のリジン、Arthrinium sp.由来のケトアミンオキシダーゼでは249位のヒスチジン、Curvularia clavata由来のケトアミンオキシダーゼでは247位のグルタミン酸、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは249位のグルタミン酸、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは249位のグルタミン酸、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは245位のグルタミン酸、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは249位のアラニン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは249位のアラニン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは247位のセリン、Penicillium janthinelum由来のフルクトシルアミノ酸オキシダーゼでは249位のグルタミンである。
 本明細書ではこれらの位置(44位/133位/253位/257位/262位/337位/340位並びに249位/232位/129位/132位/256位/231位/81位)の変異を、アマドリアーゼの界面活性剤耐性を向上させる変異またはアマドリアーゼの界面活性剤耐性を向上させるアミノ酸置換と呼ぶことがある。ある実施形態において、本発明のアマドリアーゼは、基質特異性を変化させる変異に加え、さらに界面活性剤耐性を向上させる変異を有し得る。
(さらなる予備的な欠失について-カルボキシル末端からの3アミノ酸残基の欠失)
 本発明者らは以前に、アマドリアーゼのカルボキシル末端から、3アミノ酸残基を欠失させることにより、その熱安定性を向上させうることを報告した(国際公開第2013/100006号明細書を参照のこと。参照によりその全内容を本明細書に組み入れる)。ある実施形態において、本発明のアマドリアーゼは上記の置換に加え、さらにカルボキシル末端からの3アミノ酸残基を欠失していてもよい。
(カルボキシル末端の欠失箇所に対応する位置)
 「配列番号1記載のアマドリアーゼのカルボキシル末端からの3アミノ酸残基に対応する位置」とは、アマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1記載のアミノ酸配列のカルボキシル末端からの3アミノ酸残基を意味する。Coniochaeta属由来のアマドリアーゼにおける、この位置の3残基の配列は、435位のプロリン、436位のリジン及び437位のロイシンからなり、これらに対応する位置のアミノ酸配列も、上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわちEupenicillium terrenum由来のアマドリアーゼではカルボキシル末端の3アミノ酸が435位のアラニン、436位のヒスチジンおよび437位のロイシンからなり、Pyrenochaeta sp.由来のケトアミンオキシダーゼではカルボキシル末端の3アミノ酸が438位のアラニン、439位のリジンおよび440位のロイシンからなり、Arthrinium sp.由来のケトアミンオキシダーゼではカルボキシル末端の3アミノ酸が450位のヒスチジン、451位のリジンおよび452位のロイシンからなり、Curvularia clavata由来のケトアミンオキシダーゼではカルボキシル末端の3アミノ酸が438位のセリン、439位のリジンおよび440位のロイシンからなり、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼではカルボキシル末端の3アミノ酸が435位のアラニン、436位のアスパラギンおよび437位のロイシンからなり、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼではカルボキシル末端の3アミノ酸が436位のアラニン、437位のリジンおよび438位のメチオニンからなり、Emericella nidulans由来のフルクトシルペプチドオキシダーゼではカルボキシル末端の3アミノ酸が436位のアラニン、437位のリジンおよび438位のメチオニンからなり、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼではカルボキシル末端の3アミノ酸が439位のアラニン、440位のリジンおよび441位のロイシンからなり、Penicillium janthinelum由来のフルクトシルアミノ酸オキシダーゼではカルボキシル末端の3アミノ酸が435位のアラニン、436位のリジンおよび437位のロイシンからなる。
 本明細書ではアマドリアーゼに関するこれらのカルボキシル末端アミノ酸残基の欠失を、アマドリアーゼの熱安定性を向上させる欠失と呼ぶことがある。ある実施形態において、本発明のアマドリアーゼは、基質特異性を変化させる変異、界面活性剤耐性を向上させる変異に加え、熱安定性を向上させる欠失を有し得る。
(アマドリアーゼの生産)
 上記のようにして得られたアマドリアーゼの生産能を有する菌株を用いて、当該アマドリアーゼを生産するには、この菌株を通常の固体培養法で培養してもよいが、液体培養法を採用して培養するのが好ましい。
 すなわち、本発明は、アマドリアーゼの生産能を有する菌株を、アマドリアーゼタンパク質を発現しうる条件下で培養する工程、及び培養物又は培養液からアマドリアーゼを単離する工程を含む、アマドリアーゼの製造方法を提供する。この方法には、本発明のアマドリアーゼをコードする遺伝子を組み込んだベクターで形質転換された宿主細胞を用いることができる。ここでアマドリアーゼタンパク質を発現しうる条件とは、アマドリアーゼ遺伝子が転写、翻訳され、当該遺伝子によりコードされるポリペプチドが産生されることをいう。
 また、上記菌株を培養する培地としては、例えば、酵母エキス、トリプトン、ペプトン、肉エキス、コーンスティープリカーあるいは大豆若しくは小麦ふすまの浸出液等の1種以上の窒素源に、塩化ナトリウム、リン酸2水素カリウム、リン酸水素2カリウム、硫酸マグネシウム、塩化マグネシウム、塩化第2鉄、硫酸第2鉄あるいは硫酸マンガン等の無機塩類の1種以上を添加し、さらに必要により糖質原料、ビタミン等を適宜添加したものが用いられる。
 また、培地に当該アマドリアーゼが作用し得る基質やその類似化合物、例えば糖化アミノ酸、糖化ペプチド類、糖化タンパク質分解物、若しくは糖化ヘモグロビンや糖化アルブミン等の糖化タンパク質を添加することにより目的の酵素の製造量を向上させることができる。
 培地の初発pHは、pH7~9に調整するのが適当である。培養は、20~42℃の培養温度、好ましくは25~37℃前後の培養温度で4~24時間、さらに好ましくは25~37℃前後の培養温度で8~16時間、通気攪拌深部培養、振盪培養、静置培養等により実施するのが好ましい。
 培養終了後、該培養物よりアマドリアーゼを採取するには、通常の酵素採取手段を用いて得ることができる。例えば、常法により菌体を、超音波破壊処理、磨砕処理等するか、またはリゾチーム等の溶菌酵素を用いて本酵素を抽出するか、またはトルエン等の存在下で振盪若しくは放置して溶菌を行わせ、本酵素を菌体外に排出させることができる。そして、この溶液を濾過、遠心分離等して固形部分を除去し、必要によりストレプトマイシン硫酸塩、プロタミン硫酸塩、若しくは硫酸マンガン等により核酸を除去したのち、これに硫安、アルコール、アセトン等を添加して分画し、沈澱物を採取し、アマドリアーゼの粗酵素を得る。
 上記アマドリアーゼの粗酵素よりさらにアマドリアーゼ精製酵素標品を得るには、例えば、セファデックス、スーパーデックス若しくはウルトロゲル等を用いるゲル濾過法、イオン交換性担体、疎水性担体、ヒドロキシアパタイトを用いる吸着溶出法、ポリアクリルアミドゲル等を用いる電気泳動法、蔗糖密度勾配遠心法等の沈降法、アフィニティクロマトグラフィー法、分子ふるい膜若しくは中空糸膜等を用いる分画法等を適宜選択し、またはこれらを組み合わせて実施することにより、精製されたアマドリアーゼ酵素標品を得ることができる。このようにして、所望のアマドリアーゼを得ることができる。
(本発明のアマドリアーゼのHbA1cに対する反応性)
 上記のような手段で得られるアマドリアーゼは、遺伝子改変等により、そのアミノ酸配列に変異を生じた結果、HbA1cに直接作用しうる。
 本発明のアマドリアーゼはまた、改変前のものと比較してαF6Pに対する反応性が向上していてもよい。具体的には、改変前のものと比較して、「αFVHに対する反応性」を1とした時の「αF6Pに対する反応性」の割合が増大していてもよい。
 例えば本発明のアマドリアーゼにおける、αFVHに対する反応性を1とした時のαF6Pに対する反応性の割合を示すαF6P/αFVHは、改変前に対して10%以上、好ましくは20%以上、より好ましくは30%以上、さらに好ましくは40%以上向上していてもよい。
 また、本発明のアマドリアーゼにおける、αFVに対する反応性を1とした時のαF6Pに対する反応性の割合を示すαF6P/αFVは、改変前に対して10%以上、好ましくは20%以上、より好ましくは30%以上、さらに好ましくは40%以上向上していてもよい。なお、「αFVに対する反応性」は「αFV酸化活性」と表記することもある。
 HbA1cに直接作用する本発明のアマドリアーゼの一例としては、例えば、大腸菌JM109(pKK223-3-CFP-T7-H35)株により生産されるアマドリアーゼが挙げられる。このようなアマドリアーゼは、プロテアーゼ等でHbA1cを処理せずともHbA1cに直接作用することから試料中のHbA1cを直接測定する酵素測定系の実現を可能にし、産業利用上非常に有利である。
(アマドリアーゼ活性の測定方法)
 アマドリアーゼの活性の測定方法としては、種々の方法を用いることができるが、一例として、以下に、本発明で用いるアマドリアーゼ活性の測定方法について説明する。
 本発明におけるアマドリアーゼの酵素活性の測定方法としては、酵素の反応により生成する過酸化水素量を測定する方法や、酵素反応により消費する酸素量を測定する方法などが主な測定方法として挙げられる。以下に、一例として、過酸化水素量を測定する方法について示す。
 本発明におけるアマドリアーゼの活性測定には、断りの無い限り、αFV、若しくはαFVH、またはαF6Pを基質として用いる。なお、酵素力価は、αFV、若しくはαFVH、またはαF6Pを基質として測定した時、1分間に1μmolの過酸化水素を生成する酵素量を1Uと定義する。
 また、比活性(U/mg)は、酵素1mg当たりの酵素力価(U)である。例えばある酵素のαF6Pに対する比活性が0.1U/mgであれば、酵素量を10倍とすることで、比活性が1U/mgの酵素と同じ酵素力価が得られることとなる。
 本明細書において、アマドリアーゼについて「αF6Pに対して反応性を有し」という場合、特に断らない限りこれはαF6Pに対する比活性(U/mg)が0.1U/mg以上、0.2U/mg以上、0.3U/mg以上、0.4U/mg以上、0.5U/mg以上、0.6U/mg以上、0.7U/mg以上、0.8U/mg以上、0.9U/mg以上、例えば1U/mg以上である態様を含むものとする。 αFV、αFVH等の糖化ペプチドは、例えば、阪上らの方法に基づき合成、精製したものを用いることができる(特開2001-95598号公報参照)。例えば糖化ヘモグロビン(HbA1c)を、エンドプロテイナーゼGlu-Cで処理することにより、糖化ヘモグロビン(HbA1c)のβ鎖サブユニット由来のα-糖化ヘキサペプチド(フルクトシルVal-His-Leu-Thr-Pro-Glu)が遊離する(Clin.Chem.,43,1994-1951(1997))。これをαF6P基質として使用することができる。また、このα-糖化ヘキサペプチドと同一物質である、合成基質フルクトシルVal-His-Leu-Thr-Pro-Glu(ペプチド研究所製)を用いることもできる。
A:試薬の調製
(アマドリアーゼのαF6P、αFVHまたはαFVに対する活性の測定用試薬の調製例)
(試薬1):5U/ml パーオキシダーゼ、0.49mM 4-アミノアンチピリンを含む0.1M リン酸緩衝液 pH6.5
5.0kUのパーオキシダーゼ(キッコーマン社製)、100mgの4-アミノアンチピリン(和光純薬工業社製)を0.1Mのリン酸カリウム緩衝液(pH6.5)に溶解し、1000mlに定容する。
(試薬2):15mM TOOS溶液
500mgのTOOS(N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-m-トルイジンナトリウム、同仁化学研究所製)をイオン交換水に溶解し、100mlに定容する。
(試薬3):基質溶液(30mM; 終濃度1mM)
αF6P(ペプチド研究所製) 257.1mg、若しくはαFVH(キッコーマン社製) 124.9mg、若しくはαFV(キッコーマン社製) 83.8mgをイオン交換水に溶解し、10mlに定容する。
B:活性測定法
(アマドリアーゼのαF6P、αFVHまたはαFVに対する活性の測定方法の例)
 2.7mlの試薬1、100μlの試薬2、および100μlの酵素液を混和し、37℃で5分間予備加温する。その後、試薬3を100μl加えて良く混ぜた後、分光光度計(U-3010A、日立ハイテクノロジーズ社製)により、555nmにおける吸光度の経時変化を観測し、555nmにおける吸光度の1分間あたりの変化量(ΔAs)を測定する。なお、対照液は、100μlの試薬3の代わりに100μlのイオン交換水を加える以外は前記と同様にして、555nmにおける吸光度の1分間あたりの変化量(ΔA0)を測定する。37℃で1分間当たりに生成される過酸化水素のマイクロモル数を酵素液中の活性単位(U)とし、下記の式に従って算出する。
活性(U/ml)={(ΔAs-ΔA0)×3.0×df}÷(39.2×0.5×0.1)
ΔAs:反応液の1分間あたりの吸光度変化
ΔA0:対照液の1分間あたりの吸光度変化
39.2:反応により生成されるキノイミン色素のミリモル吸光係数(mM-1・cm-1)
0.5:1 molの過酸化水素による生成されるキノイミン色素のmol数
df:希釈係数
(熱処理HbA1cの定量法の例)
 以下のHbA1c測定用試薬を調製する。
試料:HbA1c溶液
HbA1c認証実用標準物質JCCRM423(検査医学標準物質機構製)
総ヘモグロビン濃度133g/l、
HbA1c濃度3レベル(NGSP値 約5.6%、約7.7%、約10.5%)
試薬A1:試料前処理液
5.0% n-ドデシル-β-D-マルトシド(同仁化学研究所製)
試薬A2:試料前処理液
5.0% n-テトラデシル-β-D-マルトシド(シグマアルドリッチ社製)
試薬B:ロイコ色素、パーオキシダーゼ溶液
150mM リン酸カリウム緩衝液 pH6.5
0.30mM N-(カルボキシメチルアミノカルボニル)-4,4′- ビス(ジメチルアミノ)ジフェニルアミンナトリウム(DA-64、和光純薬工業製)
15U/ml パーオキシダーゼ(キッコーマン製)
試薬C1:アマドリアーゼ溶液
120mM リン酸カリウム緩衝液 pH6.5
120U/mlの本発明のアマドリアーゼ(例えばCFP-T7-H35等)。
(アマドリアーゼのHbA1cに対する活性の測定方法の例)
 試薬A1もしくは試薬A2で30倍希釈した試料(本明細書において試料希釈液と表記することがある)を高温で所定時間、例えば98℃で2分間インキュベートした後、試料希釈液25μlを50μlの試薬Bに添加して37℃で5分間インキュベートし、その後、25μlの試薬C1を添加してHbA1cのβ鎖アミノ末端の酸化により生じる過酸化水素の定量反応を37℃で5分間進行させる。溶液中に過酸化水素が生じる場合、パーオキシダーゼの作用によりロイコ色素が発色し、751nmの光の吸光度が増加する。試料のHbA1c濃度に応じて得られた結果を基に、試料のHbA1c濃度(NGSP値)と、過酸化水素の定量反応前後の751nmの光の吸光度差ΔAとをグラフにプロットすることができる。
 なお、ΔAは下記の式に従って算出する。
ΔA=(試薬C1添加5分後の吸光度)-(試薬C1添加直前の吸光度×0.75)
 上記の例では、試薬C1添加により、反応液の容積が1.33倍となるため、試薬C1添加直前の吸光度に0.75を掛けたものを、試薬C1添加直後の吸光度と見なす。
(酸処理HbA1cの定量法の例)
 以下の組成を有するHbA1c測定用試薬を調製し、Bio Majesty JCA-BM1650(日本電子製)を利用してHbA1cを測定する。
試料:HbA1c溶液
HbA1c認証実用標準物質JCCRM423(検査医学標準物質機構製)
総ヘモグロビン濃度133g/l、
HbA1c濃度3レベル(NGSP値 約5.6%、約7.7%、約10.5%)
試薬D:試料前処理液
8.3% n-ドデシル-β-D-マルトシド(同仁化学研究所製)またはポリオキシエチレン(20)セチルエーテル(Brij58、和光純薬工業製)
0.1M 塩酸
試薬E:ロイコ色素溶液
30mM Tris-リン酸カリウム緩衝液 pH9.0
290mM リン酸カリウム緩衝液 pH6.5
0.16mM N-(カルボキシメチルアミノカルボニル)-4,4′- ビス(ジメチルアミノ)ジフェニルアミンナトリウム(DA-64、和光純薬工業製)
試薬F1:パーオキシダーゼ、アマドリアーゼ溶液
100mM リン酸カリウム緩衝液 pH6.5
40U/ml パーオキシダーゼ(キッコーマン製)
180U/mlの本発明アマドリアーゼ(例えばCFP-T7-H35等)
 試薬Dで30倍希釈した試料25μlを、125μlの試薬Eに添加して37℃で5分間インキュベート後、50μlの試薬F1を添加してHbA1cのβ鎖アミノ末端の酸化により生じる過酸化水素の定量反応を37℃で5分間進行させる。
 一例としてΔAは下記の式に従って算出することができる。
ΔA=(試薬F1添加5分後の吸光度)-(試薬F1添加直前の吸光度×0.75)
(界面活性剤処理HbA1cの定量法の例)
 以下の組成を有するHbA1c測定用試薬を調製し、Bio Majesty JCA-BM1650(日本電子製)を利用してHbA1cを測定する。
試料:HbA1c溶液
HbA1c認証実用標準物質JCCRM423(検査医学標準物質機構製)
総ヘモグロビン濃度133g/l、
HbA1c濃度3レベル(NGSP値 約5.6%、約7.7%、約10.5%)
試薬G1:試料前処理液
0.80% テトラデシルトリメチルアンモニウムブロマイド(東京化成工業製)
試薬G2:試料前処理液
0.70% ヘキサデシルトリメチルアンモニウムブロマイド(東京化成工業製)
試薬H1:ロイコ色素溶液
120mM MOPS-NaOH緩衝液 pH6.5
1.6% n-ドデシル-β-D-マルトシド(同仁化学研究所製)
0.16mM N-(カルボキシメチルアミノカルボニル)-4,4′- ビス(ジメチルアミノ)ジフェニルアミンナトリウム(DA-64、和光純薬工業製)
試薬H2:ロイコ色素溶液
120mM PIPES-NaOH緩衝液 pH6.5
1.6% n-ドデシル-β-D-マルトシド(同仁化学研究所製)
0.16mM N-(カルボキシメチルアミノカルボニル)-4,4′- ビス(ジメチルアミノ)ジフェニルアミンナトリウム(DA-64、和光純薬工業製)
試薬I1:パーオキシダーゼ、アマドリアーゼ溶液
100mM MOPS-NaOH緩衝液 pH6.5
40U/ml パーオキシダーゼ(キッコーマン製)
160U/ml 本発明のアマドリアーゼ(例えばCFP-DH2等)
試薬I2:パーオキシダーゼ、アマドリアーゼ溶液
100mM PIPES-NaOH緩衝液 pH6.5
40U/ml パーオキシダーゼ(キッコーマン製)
160U/ml 本発明のアマドリアーゼ(例えばCFP-DH2等)
 試薬G1で25倍希釈した試料25μlを、125μlの試薬H1に添加して37℃で5分間インキュベート後、50μlの試薬I1を添加してHbA1cのβ鎖アミノ末端の酸化により生じる過酸化水素の定量反応を37℃で5分間進行させる。また、試料を試薬G2で25倍希釈した場合は、希釈試料25μlを、125μlの試薬H2に添加して37℃で5分間インキュベートした後、50μlの試薬I2を添加してHbA1cのβ鎖アミノ末端の酸化により生じる過酸化水素の定量反応を37℃で5分間進行させた。
 一例としてΔAは下記の式に従って算出することができる。
ΔA=(試薬I1またはI2添加5分後の吸光度)-(試薬I1またはI2添加直前の吸光度×0.75)
(HbA1cの測定)
 HbA1cを含む試料にHbA1cオキシダーゼ(アマドリアーゼ)を作用させる。作用時間は例えば、5秒以上、10秒以上、又は20秒以上、180分未満又は150分未満、例えば0.5~120分間、好ましくは0.5~60分間、より好ましくは1~30分間とすることができる。作用時間が短すぎる場合、試料中のHbA1cを十分に測定しきれず、良好な測定が行えない。一方、作用時間が長すぎる場合には、測定時間が延長し、測定処理の効率が悪いという問題に加え、試料及び測定試薬が測定条件下に長くさらされる結果、試料中の基質あるいは試薬中の成分の分解、変性を招くという問題を生じる。さらに、特に微量測定系においては、長時間経過による乾燥に起因する試料容量の減少による濃度変化なども誤差の原因となり得る。HbA1cオキシダーゼ作用時間を0.5~60分間、より好ましくは1~30分間、さらに好ましくは1~10分間とすることにより、迅速かつ良好にHbA1cを測定できる。作用温度は、用いる酵素の至適温度にもよるが、例えば、20~45℃であり、通常の酵素反応に用いられる温度を適宜選択できる。
 本発明に使用するアマドリアーゼの好適な使用量は、試料溶液中に含まれる基質の量にもよるが、例えば、終濃度が、0.1~50U/mL、好ましくは0.2~10U/mLとなるように添加すればよい。作用させる際のpHは、アマドリアーゼの至適pHを考慮し、反応に適したpHとなるように緩衝剤を用いて調整することが好ましいが、作用可能なpHであればこれに限定されない。例えば、pH3~11、特に好ましくはpH5~9、例えばpH6~8である。
 本発明の測定方法においては、酵素や試薬の安定化や反応性向上等の目的でpHを調節及び/又は維持するため、必要により適宜、各種の緩衝剤を使用することが好ましい。使用可能な緩衝剤としては、例えば、N-[トリス(ヒドロキシメチル)メチル]グリシン、リン酸塩、酢酸塩、炭酸塩、トリス(ヒドロキシメチル)-アミノメタン、硼酸塩、クエン酸塩、ジメチルグルタミン酸塩、トリシン、HEPES、MES、Bis-Tris、ADA、PIPES、ACES、MOPSO、BES、MOPS、TES、DIPSO、TAPSO、POPSO、HEPPSO、EPPS、Tricine、Bicine、TAPS、フタル酸、酒石酸等が挙げられる。さらに必要により、溶解補助剤、安定化剤、反応性向上剤、HbA1c変性剤等として、界面活性剤(n-オクチル-β-D-グルコシド、n-オクチル-β-D-チオグルコシド、n-ドデシル-β-D-マルトシド、n-テトラデシル-β-D-マルトシド、n-オクチル-β-D-マルトシド、1-ドデシルピリジニウム塩、ヘキサデシルトリメチルアンモニウム塩、テトラデシルトリメチルアンモニウム塩、ドデシルトリメチルアンモニウム塩、トリトンX-100、ブリッジ35、ブリッジ58、ツイーン80、コール酸塩、n-ヘプチル-β-D-チオグルコシド、3-オキサトリデシル-α-D-マンノシド、n-ノニル-β-D-チオマルトシド、n-デシル-β-D-マルトシド、n-ウンデシル-β-D-マルトシド、トレハロースC8、トレハロースC10、トレハロースC12、トレハロースC14、トレハロースC16、BIGCHAP、deoxy-BIGCHAP、MEGA-8、MEGA-9、MEGA-10、ヘキサデシルピリジニウム塩、オクタデシルトリメチルアンモニウム塩、デシルトリメチルアンモニウム塩、ノニルトリメチルアンモニウム塩、オクチルトリメチルアンモニウム塩、へキシルトリメチルアンモニウム塩、ドデシル硫酸ナトリウム等)、還元剤(ジチオスレイトール、メルカプトエタノール、L-システイン等)、牛血清アルブミン、糖類(グリセリン、乳糖、シュークロース等)等を適宜添加してもよい。
 本発明に用いる界面活性剤としては、本発明のHbA1cの測定方法を可能とする界面活性剤であれば特に制限は無く、非イオン性界面活性剤やイオン性の界面活性剤、例えば、カチオン性界面活性剤、アニオン性界面活性剤、両性界面活性剤等が挙げられる。本明細書において界面活性剤というとき、特に断らない限り、この表現は1以上の界面活性剤を包含するものとする。
 非イオン界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、脂肪酸ソルビタンエステル、アルキルポリグルコシド、脂肪酸ジエタノールアミド、アルキルモノグリセリルエーテルなどが挙げられる。
 カチオン性界面活性剤としては、例えば、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルベンジルジメチルアンモニウム塩、ピリジニウム塩、例えばアルキルピリジニウム塩、ホスホニウム塩、例えばアルキルホスホニウム塩、イミダゾリウム塩、例えばアルキルイミダゾリウム塩、イソキノニウム塩、例えばアルキルイソキノニウム塩などが挙げられる。
 また本発明のカチオン性界面活性剤としては、以下の一般式で表される第四級アンモニウム塩(I)、ピリジニウム塩(II)やホスホニウム塩(III)が挙げられる。
Figure JPOXMLDOC01-appb-C000001
[式中、R~Rは、同一又は異なっていてもよく、置換若しくは非置換のC~C20アルキル、アルケニル、アリール又はベンジルを表し、Z-は、1価の陰イオンを表す。]
Figure JPOXMLDOC01-appb-C000002
[式中、Rは、置換若しくは非置換のC~C20アルキルを表し、各Rは、同一又は異なっていてもよく、水素原子又は置換若しくは非置換のC~C20アルキル、アルケニル、アリール又はベンジルを表し、nは1~5の整数を表し、Z-は、1価の陰イオンを表す。]
Figure JPOXMLDOC01-appb-C000003
[式中、R~Rは、同一又は異なっていてもよく、置換若しくは非置換のC~C20アルキル、アルケニル、アリール又はベンジルを表し、Z-は、1価の陰イオンを表す。]
 第四級アンモニウム塩としては、例えば、オクチルトリメチルアンモニウムクロリド(OTAC)及びブロミド(OTAB)、デシルトリメチルアンモニウムクロリド及びブロミド(DTAB)、ドデシルトリメチルアンモニウムクロリド及びブロミド、テトラデシルトリメチルアンモニウムクロリド(TTAC)及びブロミド(TTAB)、ヘキサデシルトリメチルアンモニウムクロリド(CTAC)及びブロミド、オクタデシルトリメチルアンモニウムクロリド及びブロミド(STAB)、エイコシルトリメチルアンモニウムクロリド及びブロミド、ベンジルドデシルジメチルアンモニウムクロリド及びブロミド(BDDAB)、ベンジルテトラデシルジメチルアンモニウムクロリド(BDTAC)及びブロミド、ベンジルセチルジメチルアンモニウムクロリド(BCDAC)及びブロミド、ジオクチルジメチルアンモニウムクロリド及びブロミド、が挙げられる。
 ピリジニウム塩としては、例えば、1-デシルピリジニウムクロリド及びブロミド、1-ドデシルピリジニウムクロリド(1-DPC)及びブロミド、1-テトラデシルピリジニウムクロリド及びブロミド、1-ヘキサデシルピリジニウムクロリド(1-CPC)及びブロミド(1-CPB)、N-セチル-2-メチルピリジニウムクロリド及びブロミド、N-セチル-3-メチルピリジニウムクロリド及びブロミド、N-セチル-4-メチルピリジニウムクロリド(4Me-1-CPC)及びブロミド、1-オクタデシルピリジニウムクロリド及びブロミド、1-エイコシルピリジニウムクロリド及びブロミドが挙げられる。
 ホスホニウム塩としては、例えば、テトラエチルホスホニウムクロリド及びブロミド、トリブチルメチルホスホニウムクロリド及びブロミド及びヨージド、テトラブチルホスホニウムクロリド及びブロミド、テトラ-n-オクチルホスホニウムクロリド及びブロミド、トリブチルドデシルホスホニウムクロリド及びブロミド、トリブチルヘキサデシルホスホニウムクロリド及びブロミド(TBCPB)、メチルトリフェニルホスホニウムクロリド及びブロミド及びヨージド、テトラフェニルホスホニウムクロリド及びブロミドが挙げられる。
 カチオン性界面活性剤の対となる陰イオンZ-は例えばCl-、Br-、I-等でありうる。
 アニオン性界面活性剤としては、例えば、直鎖状アルキルベンゼンスルホン酸塩、アルキル硫酸塩、アルファーオレフィンスルホン酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、α-スルホ脂肪酸エステル塩及び天然脂肪酸のアルカリ金属塩などが挙げられる。このような界面活性剤としては例えばドデシル硫酸ナトリウム(SDS)が挙げられる。
 両性界面活性剤としては、例えば、アルキルジメチルアミンオキシド、アルキルカルボキシベタインなどが挙げられる。
 本発明は、アマドリアーゼの作用による生成物又は消費物を測定することによりHbA1cを測定する方法を提供するが、測定が容易な生成物であり、測定対象として好ましいものとして過酸化水素が挙げられる。アマドリアーゼの作用により生成した過酸化水素は、発色基質等によって検出してもよく、本発明に用いられる発色基質としては、4-アミノアンチピリンの他に、例えば、ADOS(N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-m-アニシジン)、ALOS(N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)アニリン)、TOOS(N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-m-トルイジンナトリウム)、DA-67(10-(カルボキシメチルアミノカルボニル)-3、7-ビス(ジメチルアミノ)-フェノシアジン)、DA-64(N-(カルボキシメチルアミノカルボニル)-4、4’-ビス(ジメチルアミノ)-ジフェニルアミン)等が挙げられる。ADOS、ALOS、TOOSは4-アミノアンチピリンと縮合した際に発色する。DA-64、DA-67は4-アミノアンチピリンを必要とせず、単独で処方するだけで発色する。いずれの場合も、発色反応はパーオキシダーゼにより触媒される。過酸化水素の測定は、一般に、過酸化水素を生成する工程と同時に行うことが好ましく、アマドリアーゼの作用時と同時に進行させることが好ましい。また、測定する消費物としては、溶存酸素が挙げられ、溶存酸素計等を用いて反応液中の溶存酸素量を測定することができる。
 本発明は、上述のアマドリアーゼと過酸化水素の測定用試薬、それに所望により緩衝剤等を添加したHbA1c測定用試薬を提供する。この試薬中には、各種既知の成分、例えば、界面活性剤、塩類、緩衝剤、pH調製剤や防腐剤などを適宜選択して添加することができる。上述の本発明のHbA1c測定用試薬は、各試薬を異なる容器に含むものとして調製すれば良く、例えば液状品及び液状品の凍結物あるいは凍結乾燥品として提供することもできる。また、これらの測定用試薬は、乾燥物又は溶解した状態で用いてもよく、薄膜上の担体、例えば、シート含浸性の紙等に含浸させて用いてもよい。また、測定用試薬に用いられる酵素類は、常法により固定化させて反復使用することもできる。ある実施形態において、本発明のHbA1c測定用試薬は、糖化タンパク質からα-フルクトシルペプチドを切り出すためのプロテアーゼ等を含まない。
 本発明のHbA1c測定用試薬の仕様や使用条件は、その含有成分等に応じて最適なものを選択すればよいが、例えば、測定を20~45℃において行うよう設定することができる。測定に要する時間も種々の測定条件により適宜選択できるが、例えば、0.5~60分間、好ましくは、0.5~30分間、さらに好ましくは1~10分間が好ましい。例えば、上記測定試薬の発色の程度(吸光度変化量)を分光光度計により測定し、標準の吸光度と比較して、試料中に含まれる糖化ペプチドあるいは糖化蛋白質を測定することができる。測定には、通常の自動分析装置を用いることもできる。
(HbA1cの定量)
 本発明のHbA1c測定方法は、定性的であってもよいが、定量的な測定方法とすることもできる。ここでHbA1cの定量的測定方法とは、試料中のHbA1cの濃度を決定する方法をいう。すなわち本発明の一実施形態は、アマドリアーゼを使用することを含む、試料中のHbA1cの定量法を提供する。この定量法は、HbA1cを含む試料と本発明のアマドリアーゼとを接触させる工程、及び該アマドリアーゼのHbA1cに対する作用による生成物又は消費物を測定する工程を含む。ここでのHbA1cは天然の状態であってもよく、または変性した状態であってもよい。該定量法について用いる接触とは、本発明のアマドリアーゼがHbA1cの酸化反応を触媒しうるように、該アマドリアーゼと試料とを物理的に一緒にするあらゆる態様を包含し、例えば溶液中で遊離の酵素とHbA1cを混合する場合のみならず、固相担体に担持された本発明のアマドリアーゼにHbA1cを含む溶液試料を添加又は滴下するような態様も包含する。
 本発明のHbA1c測定方法に用いる試料は、糖化ヘモグロビンを含む可能性のあるあらゆる生物学的試料、例えば血液、体液、リンパ液等に由来する試料とすることができる。試料は適宜、加工処理されたものでありうる。
 アマドリアーゼとHbA1cとの反応効率を高めるためには、変性したHbA1cをアマドリアーゼとの反応に用いてもよい。変性HbA1cは、適当な界面活性剤との混合により取得でき、熱処理により取得でき、または界面活性剤添加および熱処理により取得でき、あるいは酸・アルカリでの変性処理により取得できる。変性処理として界面活性剤添加と熱処理の両方を行う場合、その順序は任意である。熱処理はHbA1cの全部または一部を変性させるのに十分な温度及び時間で行われうる。処理温度は例えば60℃以上、70℃以上、80℃以上、90℃以上、例えば98℃とすることができる。処理時間は温度にもよるが例えば10秒以上、20秒、30秒以上、1分以上、または2分以上であり得る。界面活性剤の例は上述したとおりであり、これらを適当な濃度で添加しうる。
 用いるアマドリアーゼ変異体の酵素量及び反応時間(作用時間)を一定とし、添加するHbA1cの量を変化させた場合に、HbA1c添加量が減少するにつれて、検出される発光基質の吸光度も比例的に減少するHbA1c濃度範囲を調べることで、当該アマドリアーゼを用いた場合の検出可能な最低HbA1c濃度を決定することができる。この濃度を本明細書において検出限界濃度ということがある。本発明のHbA1c定量法では、HbA1cの検出限界が、測定試料中のHbA1c濃度又は血中糖化ヘモグロビン濃度よりも低くなるように酵素量及び反応時間を設定することが好ましい。
 本発明の定量的測定では、予め、濃度既知のHbA1cを含む対照の吸光度等の測定値から最小二乗法などの回帰分析を行うことによって検量線を作成しておくこともできる。作成した検量線に対し、HbA1c濃度が未知である試料の測定値をプロットすることで、当該試料中のHbA1c濃度を定量できる。
 本発明者らは、Coniochaeta由来アマドリアーゼ変異体、例えばCFP-T7-H35を用いて、良好に試料中のHbA1cを定量できることを示した。これは驚くべき知見である。図4-1及び図4-2を参照されたい。CFP-T7-H35はまた、αF6Pに対する活性を示す。したがって当業者であれば、こうした知見に基づき、α-フルクトシルオリゴペプチド、例えばαF6Pに対する良好な活性を示す他のアマドリアーゼも同様にHbA1cに直接作用し、その定量的測定に用いることができる可能性がある、と理解する。例えばαF6Pなどのα-フルクトシルオリゴペプチドに対する比活性の高いアマドリアーゼは、同様にHbA1cに直接作用し、その定量測定用に用いることができる蓋然性が高い。また、当業者であればそのような定量的測定のための酵素量(酵素濃度)、反応時間等の条件を適宜設定することができる。
(スクリーニング方法)
 ある実施形態において、上記の(HbA1cの測定)に記載の方法を用いて、あるアマドリアーゼがHbA1cに直接作用するか否か、決定することができる。候補となるアマドリアーゼとしては、種々の天然アマドリアーゼまたはそれらの改変体、例えばαFV活性を有するアマドリアーゼ、αFVH活性を有するアマドリアーゼ、αF6P活性を有するアマドリアーゼ、α-フルクトシルペプチドに対する活性を示すアマドリアーゼまたはそれらの改変体、例えば上記の(アマドリアーゼの改変体)に記載のものが挙げられる。スクリーニングは96ウェルプレート等を用いて多数の候補を一度に処理しハイスループットにて迅速に行うことができる。候補アマドリアーゼがHbA1cに直接作用するかスクリーニングすることができる。または候補アマドリアーゼについて、まずαFV活性、αFVH活性、αF6P活性等を有するか否か一次選抜を行い、次いで当該活性を有するものについてHbA1cに直接作用するか二次選抜してもよい。スクリーニングは生物試料から調製した粗酵素抽出液またはその精製物について行うことができる。また、α-フルクトシルペプチドに対する活性を示すアマドリアーゼの遺伝子を慣用法により取得し、遺伝子組換技術を用いて酵素を製造し、これを選抜に用いてもよい。慣用法とは、α-フルクトシルペプチドに対する活性を示すアマドリアーゼを精製し、そのアミノ酸配列を決定し、その配列情報を元にPCR用プライマーを設計して遺伝子を取得する方法や、公知のアマドリアーゼの配列情報を基にPCR用プライマーを設計してある生物のゲノムライブラリーやcDNAライブラリーから遺伝子を取得する方法が挙げられるがこれに限らない。上記の(アマドリアーゼをコードする遺伝子の取得)も参照されたい。取得したアマドリアーゼ遺伝子について慣用の遺伝子組換技術を用いて適当な変異を導入し、得られた変異体がHbA1cに直接作用するか調べることができる。また、取得したアマドリアーゼ遺伝子について遺伝子組換技術を用いて適当な変異を導入して鎖長の長いα-フルクトシルペプチド、例えばαF6Pに対する活性を示す改変体を作製し、次いでこれが例えばαF6Pに対して0.1U/mg以上の比活性を有するかを調べ、かつ/又はHbA1cに直接作用するか調べることもできる。こうした改変体の作製に当たっては、配列番号1のアミノ酸配列の(a)62位に対応する位置のアミノ酸を、アラニン、アスパラギンまたはアスパラギン酸へと置換すること、(b)63位に対応する位置のアミノ酸をヒスチジン又はアラニンへと置換すること、(c)102位に対応する位置のアミノ酸をリジンへと置換すること、(d)106位に対応する位置のアミノ酸をアラニン、リジン、又はアルギニンへと置換すること、(e)110位に対応する位置のアミノ酸をロイシン又はチロシンへと置換すること、(f)113位に対応する位置のアミノ酸をリジン又はアルギニンへと置換すること、(g)355位に対応する位置のアミノ酸をセリンへと置換すること、および/または(h)419位に対応する位置のアミノ酸をリジンへと置換すること(i)68位に対応する位置のアミノ酸をアスパラギンへと置換すること、および/または(j)356位に対応する位置のアミノ酸をスレオニンへと置換することを参考にしてもよいが、導入する変異はこれに限られず、ランダムな突然変異を導入する手法を用いることもできる。変異導入と活性の確認を複数回繰り返し、よりα-フルクトシルペプチドまたはHbA1cに対する活性の高い変異体を取得することもできる。上記の(アマドリアーゼ遺伝子の変異処理)も参照されたい。
 用いるアマドリアーゼには、上記の界面活性剤耐性を向上させる変異を導入してもよく、かつ/又は上記の熱安定性を向上させる欠失を行ってもよい。また、HbA1cに対する活性を有する限り、酵素のその他の特性を改変する変異を導入することもできる。
 本発明のHbA1c測定用キットには、上述のHbA1c測定用試薬に加え、必要に応じ、その他の公知の安定化剤や夾雑物質の消去系などを包含してもよい。HbA1cに作用するプロテアーゼ等を使用しHbA1cを酵素法により測定することを目的とした、従来の各種の試薬やキットに用いられている技術を、適宜改変して本発明のアマドリアーゼを含むHbA1c測定用キットに用いることができる。ただし、本発明のHbA1c測定用キットはそのようなプロテアーゼ等を必要としない。すなわち、ある実施形態において、本発明のHbA1c測定用キットは、HbA1cからα-フルクトシルペプチドを切り出すためのプロテアーゼ等を含まない。
 以下、実施例により、本発明をさらに具体的に説明する。ただし、本発明の技術的範囲は、それらの例により何ら限定されるものではない。
[実施例1]
(1)組換え体プラスミドpKK223-3-CFP-T7 DNAの調製
 Coniochaeta属由来アマドリアーゼ遺伝子(配列番号2)の組換え体プラスミドを有する大腸菌JM109(pKK223-3-CFP-T7)株(国際公開第2007/125779号参照)を、3mlのLB-amp培地[1%(w/v)バクトトリプトン、0.5%(w/v)ペプトン、0.5%(w/v)NaCl、50μg/ml アンピシリン]に接種して、37℃で16時間振とう培養し、培養物を得た。
 この培養物を10,000×gで、1分間遠心分離することにより集菌して菌体を得た。この菌体より、GenElute Plasmid Miniprep Kit(Sigma-Aldrich社製)を用いて組換え体プラスミドpKK223-3-CFP-T7を抽出して精製し、2.5μgの組換え体プラスミドpKK223-3-CFP-T7 DNAを得た。
(2)組換え体プラスミドpKK223-3-CFP-T7 DNAの部位特異的改変操作
 得られた組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、配列番号3、4の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、以下の条件でPCR反応を行った。
 すなわち、10×KOD-Plus-緩衝液を5μl、dNTPが各2mMになるよう調製されたdNTPs混合溶液を5μl、25mMのMgSO4溶液を2μl、鋳型となるpKK223-3-CFP-T7 DNAを50ng、上記合成オリゴヌクレオチドをそれぞれ15pmol、KOD-Plus-を1Unit加えて、滅菌水により全量を50μlとした。調製した反応液をサーマルサイクラー(エッペンドルフ社製)を用いて、94℃で2分間インキュベートし、続いて、「94℃、15秒」-「50℃、30秒」-「68℃、6分」のサイクルを30回繰り返した。
 反応液の一部を1.0%アガロースゲルで電気泳動し、約6,000bpのDNAが特異的に増幅されていることを確認した。こうして得られたDNAを制限酵素DpnI(NEW ENGLAND BioLabs社製)で処理し、残存している鋳型DNAを切断した後、大腸菌JM109を形質転換し、LB-amp寒天培地に展開した。生育したコロニーをLB-amp培地に接種して振とう培養し、上記(1)と同様の方法でプラスミドDNAを単離した。該プラスミド中のアマドリアーゼをコードするDNAの塩基配列を、マルチキャピラリーDNA解析システムApplied Biosystems 3130xlジェネティックアナライザ(Life Technologies社製)を用いて決定し、配列番号1記載のアミノ酸配列の62位のアルギニンがアラニンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-H1)を得た。
(3)各種改変型アマドリアーゼの生産
 pKK223-3-CFP-T7-H1を形質導入した大腸菌JM109(pKK223-3-CFP-T7-H1)株を、終濃度0.1mMとなるようにIPTGを添加したLB-amp培地3mlにおいて、25℃で16時間培養した。得られた各培養菌体を10mMのリン酸カリウム緩衝液(pH7.0)で洗浄した後、同緩衝液に懸濁して超音波破砕処理を行い、20,000×gで10分間遠心分離して、改変型アマドリアーゼ(CFP-T7-H1)を含む粗酵素液0.6mlを調製した。
(4)αF6P/αFVHおよびαF6P/αFVの測定
 上述のCFP-T7-H1を含む酵素液を用いて、上記のB:活性測定法に示した方法により、αFV、αFVH、αF6Pに対する酸化活性を測定した。また、比較のために、大腸菌JM109(pKK223-3-CFP-T7)株から生産したCFP-T7を含む酵素液を用いて同様の測定を行った。それぞれのアマドリアーゼについて、αFVH酸化活性を100とした場合の、αFV、αFVHおよびαF6Pに対する酸化活性、ならびに、αF6P/αFVHおよびαF6P/αFVを表1に示す。
Figure JPOXMLDOC01-appb-T000004
 表1に示す通り、CFP-T7は、αFV酸化活性およびαFVH酸化活性は示したが、αF6P酸化活性は示さなかった。これにより、CFP-T7はα-フルクトシルジペプチドに極めて特異性が高く、α-フルクトシルヘキサペプチドには作用しないことがわかった。
 一方、変異体CFP-T7-H1は、αFV、αFVH酸化活性に加えて、αF6P酸化活性も示した。
 すなわち、CFP-T7に対しR62Aのアミノ酸置換を導入することにより、CFP-T7に新たにαF6P酸化活性を付与することができ、αF6Pに対する反応性(基質特異性)が向上していることが明らかとなった。 
 続いて、組換え体プラスミドpKK223-3-CFP-T7-H1 DNAを鋳型として、配列番号5~8のオリゴヌクレオチド、およびKOD -Plus- を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の62位のアルギニンがアラニンに置換され、かつ110位のグルタミンがロイシン、またはフェニルアラニン、若しくはチロシンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-H2、pKK223-3-CFP-T7-H3、pKK223-3-CFP-T7-H4)を得た。
 pKK223-3-CFP-T7-H2、またはpKK223-3-CFP-T7-H3、若しくはpKK223-3-CFP-T7-H4を形質導入した大腸菌JM109株を、上記(3)記載の方法で培養して各種改変型アマドリアーゼ(CFP-T7-H2、CFP-T7-H3、CFP-T7-H4)を含む粗酵素液0.6mlを調製した。
 このようにして調製した粗酵素液を用いて、上記B:活性測定法に示した方法によりαFV、αFVH、αF6Pに対する酸化活性を測定した。また、比較のために、大腸菌JM109(pKK223-3-CFP-T7-H1)株から生産したCFP-T7-H1を含む酵素液を用いて同様の測定を行った。それぞれのアマドリアーゼについて、αFVH酸化活性を100とした場合の、αFV、αFVHおよびαF6Pに対する酸化活性、ならびに、αF6P/αFVHおよびαF6P/αFVを表2に示す。
Figure JPOXMLDOC01-appb-T000005
 すなわち、CFP-T7-H2、およびCFP-T7-H4は、CFP-T7-H1と比較して、αF6Pに対する反応性(基質特異性)がさらに増大していることが明らかとなった。
 続いて、組換え体プラスミドpKK223-3-CFP-T7-H2 DNAを鋳型として、配列番号4、配列番号9~12のオリゴヌクレオチド、およびKOD -Plus- を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の110位のグルタミンがロイシンに置換され、かつ62位のアルギニンがアスパラギン、またはアスパラギン酸、またはグルタミン、若しくはグルタミン酸に置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-H2-62N、pKK223-3-CFP-T7-H6、pKK223-3-CFP-T7-H2-62Q、pKK223-3-CFP-T7-H2-62E)を得た。
 pKK223-3-CFP-T7-H2-62N、またはpKK223-3-CFP-T7-H6、またはpKK223-3-CFP-T7-H2-62Q、若しくはpKK223-3-CFP-T7-H2-62Eを形質導入した大腸菌JM109株を、上記(3)記載の方法で培養して各種改変型アマドリアーゼ(CFP-T7-H2-62N、CFP-T7-H6、CFP-T7-H2-62Q、CFP-T7-H2-62E)を含む粗酵素液0.6mlを調製した。
 このようにして調製した粗酵素液を用いて、上記B:活性測定法に示した方法によりαF6Pに対する酸化活性を測定した。また、比較のために、大腸菌JM109(pKK223-3-CFP-T7-H2)株から生産したCFP-T7-H2を含む酵素液を用いて同様の測定を行った。CFP-T7-H2を含む粗酵素液のαF6P酸化活性を100とした場合の、それぞれのアマドリアーゼを含む粗酵素液のαF6P酸化活性比率は表3の通りとなった。
Figure JPOXMLDOC01-appb-T000006
 すなわち、CFP-T7-H2-62N、およびCFP-T7-H6はCFP-T7-H2よりもαF6P酸化活性が向上していることが明らかとなった。なお62位のアミノ酸がアルギニンである野生型酵素は表1のとおりαF6Pに対する活性を示さない。このような野生型酵素と比較すると、62位のアルギニンをグルタミン又はグルタミン酸に置換した変異体も、それぞれ、αF6Pに対する活性が向上していることが分かる。第62位に関し、αF6Pに対する活性を示した置換アミノ酸であるアラニン、アスパラギン、アスパラギン酸、グルタミン及びグルタミン酸は比較的分子量の小さなアミノ酸である。したがって62位を同様に分子量の小さいグリシン、バリン、ロイシン、イソロイシン、システイン、セリン、スレオニン及びプロリンに置換することにより同様にαF6P活性を有する改変アマドリアーゼが得られると考えられる。本明細書では、アラニン、アスパラギン、アスパラギン酸、グルタミン、グルタミン酸、グリシン、バリン、ロイシン、イソロイシン、システイン、セリン、スレオニン及びプロリンを総称して分子量の小さいアミノ酸と呼ぶことがある。
 CFP-T7-H2、またはCFP-T7-H6を含む粗酵素液を用いて、上記B:活性測定法に示した方法によりαFV、αFVH、αF6Pに対する酸化活性を測定した。それぞれのアマドリアーゼについて、αFVH酸化活性を100とした場合の、各基質に対する酸化活性、ならびにαF6P/αFVHおよびαF6P/FVは表4の通りとなった。
Figure JPOXMLDOC01-appb-T000007
 すなわち、CFP-T7-H6はCFP-T7-H2よりも大幅にαF6P酸化活性が向上し、αF6Pへの反応性(基質特異性)が向上していることが明らかとなった。
 続いて、組換え体プラスミドpKK223-3-CFP-T7-H6 DNAを鋳型として、配列番号13~24のオリゴヌクレオチド、およびKOD -Plus- を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、かつ110位のグルタミンがロイシンに置換され、さらに64位のアルギニンがアラニン、またはグルタミン酸、若しくはヒスチジンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-H7、pKK223-3-CFP-T7-H8、pKK223-3-CFP-T7-H9)、および、配列番号1記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、かつ110位のグルタミンがロイシンに置換され、さらに106位のアスパラギン酸がアラニン、またはリジン、若しくはアルギニンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-H10、pKK223-3-CFP-T7-H11、pKK223-3-CFP-T7-H12)、及び、配列番号1記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、かつ110位のグルタミンがロイシンに置換され、さらに113位のアラニンがリジン、若しくはアルギニンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-H13、pKK223-3-CFP-T7-H14)を得た。
 pKK223-3-CFP-T7-H7、またはpKK223-3-CFP-T7-H8、またはpKK223-3-CFP-T7-H9、またはpKK223-3-CFP-T7-H10、またはpKK223-3-CFP-T7-H11、またはpKK223-3-CFP-T7-H12、またはpKK223-3-CFP-T7-H13、若しくはpKK223-3-CFP-T7-H14を形質導入した大腸菌JM109株を、上記(3)記載の方法で培養して各種改変型アマドリアーゼ(CFP-T7-H7、CFP-T7-H8、CFP-T7-H9、CFP-T7-H10、CFP-T7-H11、CFP-T7-H12、CFP-T7-H13、CFP-T7-H14)を含む粗酵素液0.6mlを調製した。
 このようにして調製した粗酵素液を用いて、上記B:活性測定法に示した方法によりαF6Pに対する酸化活性を測定した。また、比較のために、大腸菌JM109(pKK223-3-CFP-T7-H6)株から生産したCFP-T7-H6を含む酵素液を用いて同様の測定を行った。CFP-T7-H6を含む粗酵素液のαF6P酸化活性を100とした場合の、それぞれのアマドリアーゼを含む粗酵素液のαF6P酸化活性は表5の通りとなった。
Figure JPOXMLDOC01-appb-T000008
 すなわち、CFP-T7-H10、CFP-T7-H11、CFP-T7-H12、CFP-T7-H13、およびCFP-T7-H14はCFP-T7-H6よりも全て大幅にαF6P酸化活性比率が向上し、一部のものでは飛躍的に向上した。
 CFP-T7-H6、CFP-T7-H11、CFP-T7-H12、CFP-T7-H13、CFP-T7-H14を含む粗酵素液を用いて、上記B:活性測定法に示した方法によりαFV、αFVH、αF6Pに対する酸化活性を測定した。それぞれのアマドリアーゼについて、αFVH酸化活性を100とした場合の、各基質に対する酸化活性、ならびにαF6P/αFVHおよびαF6P/FVは表6の通りとなった。
Figure JPOXMLDOC01-appb-T000009
 すなわち、表6に示す通り、CFP-T7-H11、CFP-T7-H12、CFP-T7-H13、およびCFP-T7-H14はCFP-T7-H6よりもαF6Pへの反応性(基質特異性)が大幅に向上していることが明らかとなった。
 続いて、組換え体プラスミドpKK223-3-CFP-T7-H11 DNAを鋳型として、配列番号21~24のオリゴヌクレオチド、及びKOD -Plus- を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、かつ106位のアスパラギン酸がリジンに、かつ110位のグルタミンがロイシンに置換され、さらに113位のアラニンがリジン、若しくはアルギニンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-H20、pKK223-3-CFP-T7-H21)を得た。
 pKK223-3-CFP-T7-H20、若しくはpKK223-3-CFP-T7-H21を形質導入した大腸菌JM109株を、上記(3)記載の方法で培養して各種改変型アマドリアーゼ(CFP-T7-H20、CFP-T7-H21)を含む粗酵素液0.6mlを調製した。
 CFP-T7-H11、CFP-T7-H20、CFP-T7-H21を含む粗酵素液を用いて、上記B:活性測定法に示した方法によりαFV、αFVH、αF6Pに対する酸化活性を測定した。それぞれのアマドリアーゼについて、αFVH酸化活性を100とした場合の、各基質に対する酸化活性、ならびにαF6P/αFVHおよびαF6P/FVは表7の通りとなった。
Figure JPOXMLDOC01-appb-T000010
 すなわち、CFP-T7-H20およびCFP-T7-H21は、CFP-T7-H11よりもαF6Pに対する反応性(基質特異性)が向上していることが明らかとなった。
 続いて、組換え体プラスミドpKK223-3-CFP-T7-H20 DNAを鋳型として、配列番号25~29のオリゴヌクレオチド、およびKOD -Plus- を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、かつ106位のアスパラギン酸がリジンに、かつ110位のグルタミンがロイシンに、かつ113位のアラニンがリジンに置換され、さらに63位のロイシンがアラニン、またはアスパラギン酸、またはヒスチジン、若しくはリジンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-H24、pKK223-3-CFP-T7-H25、pKK223-3-CFP-T7-H26、pKK223-3-CFP-T7-H27)を得た。
 pKK223-3-CFP-T7-H24、またはpKK223-3-CFP-T7-H25、またはpKK223-3-CFP-T7-H26、若しくはpKK223-3-CFP-T7-H27を形質導入した大腸菌JM109株を、上記(3)記載の方法で培養して各種改変型アマドリアーゼ(CFP-T7-H24、CFP-T7-H25、CFP-T7-H26、CFP-T7-H27)を含む粗酵素液0.6mlを調製した。
 このようにして調製した粗酵素液を用いて、上記B:活性測定法に示した方法によりαF6Pに対する酸化活性を測定した。また、比較のために、大腸菌JM109(pKK223-3-CFP-T7-H20)株から生産したCFP-T7-H20を含む酵素液を用いて同様の測定を行った。CFP-T7-H20を含む粗酵素液のαF6P酸化活性を100とした場合の、それぞれのアマドリアーゼを含む粗酵素液のαF6P酸化活性は表8の通りとなった。
Figure JPOXMLDOC01-appb-T000011
 すなわち、表8に示す通り、CFP-T7-H24、およびCFP-T7-H26はCFP-T7-H20よりもαF6P酸化活性が向上していることが明らかとなった。
 CFP-T7-H20、またはCFP-T7-H24、若しくはCFP-T7-H26を含む粗酵素液を用いて、上記B:活性測定法に示した方法によりαFV、αFVH、αF6Pに対する酸化活性を測定した。それぞれのアマドリアーゼについて、αFVH酸化活性を100とした場合の、各基質に対する酸化活性、ならびにαF6P/αFVHおよびαF6P/αFVは表9の通りとなった。
Figure JPOXMLDOC01-appb-T000012
 すなわち、表9に示す通り、CFP-T7-H24、およびCFP-T7-H26はCFP-T7-H20よりもαF6Pに対する反応性(基質特異性)が向上していることが明らかとなった。
 続いて、組換え体プラスミドpKK223-3-CFP-T7-H26 DNAを鋳型として、配列番号30~33のオリゴヌクレオチド、及びKOD -Plus- を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、かつ63位のロイシンがヒスチジンに、かつ106位のアスパラギン酸がリジンに、かつ110位のグルタミンがロイシンに、かつ113位のアラニンがリジンに置換され、さらに102位のグルタミン酸がリジンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-H28)、および配列番号1記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、かつ63位のロイシンがヒスチジンに、かつ106位のアスパラギン酸がリジンに、かつ110位のグルタミンがロイシンに、かつ113位のアラニンがリジンに置換され、さらに419位のアラニンがリジンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-H29)を得た。
 pKK223-3-CFP-T7-H26、又はpKK223-3-CFP-T7-H28、若しくはpKK223-3-CFP-T7-H29を形質導入した大腸菌JM109株を、上記(3)記載の方法で培養して各種改変型アマドリアーゼ(CFP-T7-H26、CFP-T7-H28、CFP-T7-H29)を含む粗酵素液0.6mlを調製した。
 このようにして調製した粗酵素液を用いて、上記B:活性測定法に示した方法によりαF6Pに対する酸化活性を測定した。また、比較のために、大腸菌JM109(pKK223-3-CFP-T7-H26)株から生産したCFP-T7-H26を含む酵素液を用いて同様の測定を行った。CFP-T7-H26を含む粗酵素液のαF6P酸化活性を100とした場合の、それぞれのアマドリアーゼを含む粗酵素液のαF6P酸化活性は表10の通りとなった。
Figure JPOXMLDOC01-appb-T000013
 すなわち、表10に示す通り、CFP-T7-H28、およびCFP-T7-H29はCFP-T7-H26よりもαF6P酸化活性が向上していることが明らかとなった。
 CFP-T7-H26、又はCFP-T7-H28、若しくはCFP-T7-H29を含む粗酵素液を用いて、上記B:活性測定法に示した方法によりαFV、αFVH、αF6Pに対する酸化活性を測定した。それぞれのアマドリアーゼについて、αFVH酸化活性を100とした場合の、各基質に対する酸化活性、ならびにαF6P/αFVHおよびαF6P/αFVは表11の通りとなった。
Figure JPOXMLDOC01-appb-T000014
 すなわち、表11に示す通り、CFP-T7-H28、及びCFP-T7-H29はCFP-T7-H26よりもαF6Pに対する反応性(基質特異性)が向上していることが明らかとなった。
 続いて、組換え体プラスミドpKK223-3-CFP-T7-H28 DNAを鋳型として、配列番号34~35のオリゴヌクレオチド、及びKOD -Plus- を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、かつ63位のロイシンがヒスチジンに、かつ102位のグルタミン酸がリジンに、かつ106位のアスパラギン酸がリジンに、かつ110位のグルタミンがロイシンに、かつ113位のアラニンがリジンに置換され、さらに355位のアラニンがセリンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-H35)を得た。
 pKK223-3-CFP-T7-H35を形質導入した大腸菌JM109株を、上記(3)記載の方法で培養して改変型アマドリアーゼであるCFP-T7-H35を含む粗酵素液0.6mlを調製した。
 このようにして調製した粗酵素液を用いて、上記B:活性測定法に示した方法によりαF6Pに対する酸化活性を測定した。また、比較のために、大腸菌JM109(pKK223-3-CFP-T7-H28)株から生産したCFP-T7-H20を含む酵素液を用いて同様の測定を行った。CFP-T7-H26を含む粗酵素液のαF6P酸化活性を100とした場合の、それぞれのアマドリアーゼを含む粗酵素液のαF6P酸化活性は表12の通りとなった。
Figure JPOXMLDOC01-appb-T000015
 すなわち、表12に示す通り、CFP-T7-H35はCFP-T7-H28よりもαF6P酸化活性が向上していることが明らかとなった。
 続いて、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、配列番号4、10のオリゴヌクレオチド、及びKOD -Plus- を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-62D)を得た。続いて、pKK223-3-CFP-T7-62Dを形質導入した大腸菌JM109株を作製した。
 続いて、組換え体プラスミドpKK223-3-CFP-T7-H35 DNAを鋳型として、配列番号193、配列番号194のオリゴヌクレオチド、およびKOD -Plus- を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、かつ63位のロイシンがヒスチジンに、かつ102位のグルタミン酸がリジンに、かつ106位のアスパラギン酸がリジンに、かつ110位のグルタミンがロイシンに、かつ113位のアラニンがリジンに、かつ355位のアラニンがセリンに置換され、さらに68位のアスパラギン酸がアスパラギンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-H36)を得た。
 続いて、組換え体プラスミドpKK223-3-CFP-T7-H36 DNAを鋳型として、配列番号195、配列番号196のオリゴヌクレオチド、およびKOD -Plus- を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、かつ63位のロイシンがヒスチジンに、かつ102位のグルタミン酸がリジンに、かつ106位のアスパラギン酸がリジンに、かつ110位のグルタミンがロイシンに、かつ113位のアラニンがリジンに、かつ355位のアラニンがセリンに置換され、かつ68位のアスパラギン酸がアスパラギンに置換され、さらに356位のアラニンがスレオニンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-H37)を得た。
 CFP-T7-H36の安定性を向上させた変異体を得るために、安定性向上効果のある変異を導入し、かつC末端から3アミノ酸を除いた、配列番号199で示す434アミノ酸からなる改変型CFP-T7-H36(以降、CFP-DH1と称する)を大腸菌で発現させることを試みた。そこで、配列番号199のアミノ酸配列をコードし、かつ大腸菌発現用にコドンを最適化した、配列番号200で示す1305bpの遺伝子(終止コドンTAAを含む)を、定法である遺伝子断片のPCRによる全合成により取得した。このとき、配列番号200の5´末端、3´末端にはそれぞれEcoRIサイトとHindIIIサイトを付加した。
 続いて、取得したCFP-DH1の遺伝子を大腸菌発現用のプラスミドにサブクローニングするために以下の手順を行った。まず、上記で全合成した遺伝子、およびpKK223-3 Vector(ノバジェン社製)をEcoRIサイトとHindIII(タカラバイオ社製)の2種類の制限酵素で処理した後にライゲーションし、pKK223-3 VectorのマルチクローニングサイトにCFP-DH1の遺伝子が挿入された組換え体プラスミドpKK223-3-CFP-DH1 DNAを取得した。得られた組換え体プラスミドで大腸菌JM109を形質転換し、LB-amp寒天培地に展開した。生育したコロニーをLB-amp培地に接種して振とう培養し、上記(1)と同様の方法でプラスミドDNAを単離した。該プラスミド中のアマドリアーゼをコードするDNAの塩基配列を、マルチキャピラリーDNA解析システムApplied Biosystems 3130xlジェネティックアナライザ(Life Technologies社製)を用いて決定し、実際に、pKK223-3ベクターのマルチクローニングサイトにCFP-DH1遺伝子が挿入された組換え体プラスミドpKK223-3-CFP-DH1 DNAが得られたことを確認した。
 続いて、組換え体プラスミドpKK223-3-CFP-DH1 DNAを鋳型として、配列番号201、配列番号202のオリゴヌクレオチド、およびKOD -Plus- を用い、上記(2)と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号199記載のアミノ酸配列の356位のアラニンがスレオニンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-DH2)を得た。
[実施例2]
(各種アマドリアーゼの生産および精製)
(Coniochaeta属由来改変型アマドリアーゼの生産および精製)
 Coniochaeta属由来の野生型アマドリアーゼ、および上記のようにして得られた改変型アマドリアーゼを生産する大腸菌JM109(pKK223-3-CFP-T7)、大腸菌JM109(pKK223-3-CFP-T7-62D)、大腸菌JM109(pKK223-3-CFP-T7-H20)、および大腸菌JM109(pKK223-3-CFP-T7-H21)、および大腸菌JM109(pKK223-3-CFP-T7-H35)を、終濃度0.1mMとなるようにIPTGを添加したLB-amp培地120mlに植菌し、25℃で16時間培養した。得られた各培養菌体を10mM リン酸カリウム緩衝液(pH7.0)で洗浄した後、同緩衝液に菌体を懸濁して超音波破砕処理を行い、20,000×gで10分間遠心分離し、粗酵素液24mlを調製した。
 調製した粗酵素液を1.35M (NH)2SOを含む10mM リン酸カリウム緩衝液(pH7.0)で平衡化した12mlのButyl Toyopearl 650C樹脂(東ソー社製)に吸着させ、次に120mlの同緩衝液で樹脂を洗浄し、続いて84mlの1.05M (NH)2SOを含む10mM リン酸カリウム緩衝液(pH7.0)で樹脂に吸着していたアマドリアーゼを溶出させ回収した。
 得られたアマドリアーゼを含む粗酵素液を透析チューブ(Spectra/Por MWCO: 12,000-14,000)に移し、10倍量の5mM リン酸カリウム緩衝液(pH7.5)中で透析する操作を三度繰り返し、アマドリアーゼを含む粗酵素液から(NH)2SOを完全に除去した。続いて、10mM リン酸カリウム緩衝液(pH7.5)で平衡化したHiScreen Capto Q ImpRes(GEヘルスケア社製)にアマドリアーゼを含む粗酵素液をアプライしてアマドリアーゼを陰イオン交換樹脂に結合させた。その後、10mM リン酸カリウム緩衝液(pH7.5)に含まれるNaCl濃度を0mMから160mMまで直線的に増加させることにより、樹脂に結合したタンパク質を溶出させ、アマドリアーゼ活性を示す画分を回収した。得られたアマドリアーゼ活性を示す画分をSDS-PAGEによる分析により、他の夾雑タンパク質を含まない純度まで精製されていることを確認し、CFP-T7、CFP-T7-62D、CFP-T7-H20、CFP-T7-H21、およびpKK223-3-CFP-T7-H35の精製標品とした。
 [実施例1]で得られた改変型アマドリアーゼを生産する大腸菌JM109(pKK223-3-CFP-T7-H36)、大腸菌JM109(pKK223-3-CFP-T7-H37)、および大腸菌JM109(pKK223-3-CFP-DH2)を、終濃度0.1mMとなるようにIPTGを添加したLB-amp培地200mlに植菌し、25℃で16時間培養した。得られた各培養菌体を10mM リン酸カリウム緩衝液(pH7.0)で洗浄した後、同緩衝液に菌体を懸濁して超音波破砕処理を行い、20,000×gで10分間遠心分離し、粗酵素液40mlを調製した。大腸菌JM109(pKK223-3-CFP-DH2)の培養菌体のみ、2mM リン酸カリウム緩衝液(pH8.0)で洗浄した後、同緩衝液に菌体を懸濁して超音波破砕処理を行い、20,000×gで10分間遠心分離し、粗酵素液40mlを調製した。
 Q-sepharose FF(GEヘルスケア社製)を充てんしたカラムを10mM リン酸カリウム緩衝液(pH7.5)で平衡化した後、調製したCFP-T7-H36およびCFP-T7-H37を含む各粗酵素液をアプライしてアマドリアーゼを陰イオン交換樹脂に結合させた。その後、30mMのNaCl濃度を含む10mM リン酸カリウム緩衝液(pH7.5)で20カラム体積分送液し、夾雑タンパク質を溶出させた後、80mMのNaClを含む10mM リン酸カリウム緩衝液(pH7.5)で樹脂に結合したタンパク質を溶出させ、アマドリアーゼ活性を示す画分を回収した。
 Q-sepharose FF(GEヘルスケア社製)を充てんしたカラムを2mM リン酸カリウム緩衝液(pH8.0)で平衡化した後、調製したCFP-DH2を含む粗酵素液をアプライしてアマドリアーゼを陰イオン交換樹脂に結合させた。その後、4mM リン酸カリウム緩衝液(pH8.0)を20カラム体積分送液し、夾雑タンパク質を溶出させた後、30mMのNaClを含む4mM リン酸カリウム緩衝液(pH8.0)で樹脂に結合したタンパク質を溶出させ、アマドリアーゼ活性を示す画分を回収した。
 得られたそれぞれのアマドリアーゼ活性を示す画分を、Amicon Ultra Ultracel-30K(ミリポア社製)により濃縮し、HiLoad 26/60 Superdex200により精製した。樹脂の平衡化、溶出には150mMのNaClを含む10mM リン酸カリウム緩衝液(pH6.5)を用いた。溶出した各フラクションの純度をSDS-PAGEにより評価し、夾雑タンパク質を含んでいないフラクションを回収し、CFP-T7-H36、CFP-T7-H37およびCFP-DH2の精製標品とした。
(Aspergillus oryzae RIB40由来フルクトシルアミノ酸オキシダーゼの生産および精製)
 配列番号36はAspergillus oryzae RIB40由来フルクトシルアミノ酸オキシダーゼ(以降FAOAo2と称する)のアミノ酸配列であり、配列番号36のアミノ酸配列をコードする遺伝子(配列番号37)を挿入した組換え体プラスミド(以降pUC19-FAOAo2と称する)を大腸菌DH5αで発現させることにより、FAOAo2が生産され、FAOAo2がフルクトシルヘキサペプチドに対して作用することが示されている(国際公開第2008/108385号公報参照)。
 上記FAOAo2生産能を有する大腸菌DH5α(pUC19-FAOAo2)を、終濃度0.1mMとなるようにIPTGを添加したLB-amp培地に植菌し、25℃で16時間培養した。得られた各培養菌体を10mM Tris-HCl緩衝液(pH8.5)で洗浄した後、同緩衝液に菌体を懸濁して超音波破砕処理を行い、20,000×gで10分間遠心分離し、粗酵素液を調製した。
 調製した粗酵素液を10mM Tris-HCl緩衝液(pH8.5)で平衡化したQ Sepharose Fast Flow樹脂(GEヘルスケア社製)に吸着させ、次に50mM NaClを含む10mM Tris-HCl緩衝液(pH8.5)で樹脂を洗浄し、続いて100mM NaClを含む10mM Tris-HCl緩衝液(pH8.5)で樹脂に吸着していたFAOAo2を溶出させ回収した。
 得られたFAOAo2粗酵素液を、150mM NaClを含む20mM MES-NaOH緩衝液(pH7.0)で平衡化したHiLoad 26/600 Superdex 200カラムにアプライして同緩衝液でFAOAo2を溶出させ、アマドリアーゼ活性を示す画分を回収した。得られた画分をSDS-PAGEにより分析し、他の夾雑タンパク質を含まない純度まで精製されていることを確認し、FAOAo2の精製標品とした。
(Phaeosphaeria nodorum由来フルクトシルペプチドオキシダーゼの生産株の作製)
 配列番号38はPhaeosphaeria nodorum由来フルクトシルペプチドオキシダーゼ(以降PnFXと称する)のアミノ酸配列である(Biotechnology and Bioengineering, 106, 358-366, 2010参照)。配列番号38のアミノ酸配列をコードする遺伝子(配列番号39)を、定法である遺伝子断片のPCRによる全合成によりcDNAを全合成することで取得した。このとき、配列番号39の5´末端、3´末端にはそれぞれNdeIサイトとBamHIサイトを付加した。また、クローニングした遺伝子配列から予想されるアミノ酸配列全長は図1のPnFXの配列と一致していることを確認した。
 続いて、取得した配列番号39の遺伝子を大腸菌で発現させるために、以下の手順を行った。まず、上記で全合成した遺伝子をNdeIサイトとBamHI(タカラバイオ社製)の2種類の制限酵素で処理し、pET-22b(+) Vector(ノバジェン社製)のNdeI-BamHIサイトに挿入することで、組換え体プラスミドpET22b-PnFXを取得し、上記と同様の条件で大腸菌BL21(DE3)株を形質転換し、大腸菌BL21(DE3)(pET22b-PnFX)株を得た。
(Phaeosphaeria nodorum由来フルクトシルペプチドオキシダーゼの生産および精製)
 上記のようにして得られたPnFX生産能を有する大腸菌BL21(DE3)(pET22b-PnFX)株を、終濃度0.1mMとなるようにIPTGを添加したLB-amp培地に植菌し、25℃で16時間培養した。得られた各培養菌体を10mM リン酸カリウム緩衝液(pH8.0)で洗浄した後、同緩衝液に菌体を懸濁して超音波破砕処理を行い、20,000×gで10分間遠心分離し、粗酵素液を調製した。
 調製したPnFXの粗酵素液を前述の非特許文献(Biotechnology and Bioengineering, 106, 358-366, 2010)記載の方法に従い、精製した。すなわち、粗酵素液を硫酸アンモニウムにより分画し、10mM リン酸カリウム緩衝液(pH8.0)で透析し、陰イオン交換クロマトグラフィー(本実施例ではQ Sepharose Fast Flowを用いた)により精製し、ゲルろ過クロマトグラフィー(本実施例ではHiLoad 26/600 Sueprdex 200を用いた)により精製した。得られた画分をSDS-PAGEにより分析し、他の夾雑タンパク質を含まない純度まで精製されていることを確認し、PnFXの精製標品とした。
 得られたCFP-T7、CFP-T7-62D、CFP-T7-H20、CFP-T7-H21、CFP-T7-H35、およびFAOAo2、およびPnFXの精製標品を用いて、αFV、αFVH、αF6Pを基質とした時の比活性を測定した。結果を表13-1に示す。なお、比活性の算出に用いたタンパク質濃度は、280nmにおける吸光度を利用した紫外吸収法により測定した(Protein Sci. 4,  2411-23, 1995参照)。
Figure JPOXMLDOC01-appb-T000016
 得られたCFP-T7-H36、CFP-T7-H37およびCFP-DH2の精製標品を用いて、αF6Pを基質とした時の比活性を測定した。結果を表13-2に示す。なお、比活性の算出に用いたタンパク質濃度は、280nmにおける吸光度を利用した紫外吸収法により測定した(Protein Sci. 4,  2411-23, 1995参照)。
Figure JPOXMLDOC01-appb-T000017
 精製したCFP-T7はαFV、αFVHを酸化する活性を示したが、αF6Pを酸化する活性は示さなかった。それに対し、CFP-T7-H35はαFV、αFVHに加えてαF6Pの酸化活性も示し、αF6P酸化反応の比活性は4.27U/mgという高い水準に達した。
 CFP-T7-62D、CFP-T7-H20、CFP-T7-H21のαF6Pに対する比活性はそれぞれ0.018U/mg、0.850U/mg、0.795U/mgであり、宿主である大腸菌由来のプロテアーゼ/ペプチダーゼの影響を排除した測定方法においても、αF6Pに対する十分に高い反応性が示された。
 また、既報のαF6Pに対して反応性を示すアマドリアーゼである、FAOAo2(国際公開第2008/108385号参照)、およびPnFX(国際公開第2011/15326号参照、該当文献中ではP.n FPOXと記載されている)のαF6Pに対する比活性は、それぞれ0.0022U/mg、0.0091U/mgであった。本明細書に記載の手順で作製したConiochaeta属由来アマドリアーゼの改変体はこれら既報のαF6Pに対して反応性を示すアマドリアーゼの2倍(アマドリアーゼ26/比較例3)から1940倍(アマドリアーゼ25/比較例2)もの比活性を示した。すなわち、本明細書に記載の手順でαF6Pに対して高い反応性を示すアマドリアーゼを得ることができた。
 なお、CFP-T7-H20、CFP-T7-H21が示すαF6P/αFVHの値は、粗酵素液を用いて測定した場合と、精製酵素を用いて測定した場合の間で、大きな乖離は確認できなかった。
 CFP-T7-H36、CFP-T7-H37のαF6Pに対する比活性はそれぞれ4.65U/mg、7.19U/mgであり、アミノ酸置換導入前のCFP-T7-H35の比活性(4.27U/mg)と比較すると、アミノ酸置換を追加するごとに向上した。また、CFP-DH2もまたCFP-T7-H35よりも高い比活性(5.30U/mg)を示した(表13-2)。
 なお、CFP-DH2に導入した変異(E44P/E133A/E253K/V257C/N262H/Q337K/E340P)について、本発明者らは、これがアマドリアーゼの界面活性剤耐性を向上させることを確認している。具体的には20mM リン酸カリウム緩衝液(pH7.0)中の当該アマドリアーゼに0.04%のテトラデシルトリメチルアンモニウムクロリド(TTAC)を作用させても、変異を有しないCFP由来酵素の残存活性が29.2%となるのに対し、変異(E44P/E133A/E253K/V257C/N262H/Q337K/E340P)を導入したものが100%の残存活性を有することを確認している。これらの変異の効果は、特願2013-221515号及びPCT/JP2014/071036号明細書に記載されており、これらの文献は参照によりその全内容を本明細書に組み入れるものとする。またCFP-DH2におけるカルボキシル末端のアミノ酸配列の欠失について、本発明者らは、これがアマドリアーゼの熱安定性を向上させることを報告した。該欠失の効果は国際公開第2013/100006号明細書に記載されている。
 こうした変異を有しないアマドリアーゼは、界面活性剤処理後であっても活性が残存しており、適切な量の酵素を用いればHbA1cを測定することができる。また、界面活性剤耐性の向上したアマドリアーゼや熱安定性の向上したアマドリアーゼを用いれば、測定に必要な酵素量を低減することもできる。
[実施例3]
(各種アマドリアーゼへの点変異導入)
 上記の変異を導入することによりConiochaeta属由来のアマドリアーゼのαF6Pに対する反応性が上昇した。このことから、配列同一性に基づく公知の整列処理による情報を参考にして、その他の生物種由来のアマドリアーゼのアミノ酸配列における対応する位置に同様な変異を導入することにより、同様にαF6Pに対する反応性の上昇が期待できる。そこで、実際にConiochaeta属由来のアマドリアーゼ以外の複数のアマドリアーゼにも対応する位置に変異を導入した。
1.Eupenicillium terrenum由来フルクトシルペプチドオキシダーゼ遺伝子への点変異導入
 配列番号40はEupenicillium terrenum由来フルクトシルペプチドオキシダーゼ(以降EFP-T5と称する)のアミノ酸配列であり、配列番号40のアミノ酸配列をコードする遺伝子(配列番号41)を挿入した組換え体プラスミドpUTE100K’-EFP-T5を保持する大腸菌により生産でき、EFP-T5はαFVおよびαFVH酸化活性を示すことが確認されている(国際公開第2007/125779号公報および国際公開第2008/018094号公報参照)。
 EFP-T5に基質特異性改善型変異を導入するために、組換え体プラスミドpUTE100K’-EFP-T5を鋳型にして、配列番号42、43の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、実施例1と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のEFP-T5変異体をコードするDNAの塩基配列決定を行った。その結果、配列番号40記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に置換されたEFP-T5遺伝子をコードする組換え体プラスミド(pUTE100K’-EFP-T5-62D)を得た。
 続いて、上記と同様にして、pUTE100K’-EFP-T5-62Dを鋳型とし、配列番号44,45の合成オリゴヌクレオチドを使用して、配列番号40記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、106位のアスパラギンがリジンに置換されたEFP-T5遺伝子をコードする組換え体プラスミド(pUTE100K’-EFP-T5-62D/106K)を得た。
 続いて、上記と同様にして、pUTE100K’-EFP-T5-62D/106Kを鋳型とし、配列番号46、47の合成オリゴヌクレオチドを使用して、配列番号40記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、106位のアスパラギンがリジンに、110位のリジンがロイシンに置換されたEFP-T5遺伝子をコードする組換え体プラスミド(pUTE100K’-EFP-T5-62D/106K/110L)を得た。
 続いて、上記と同様にして、pUTE100K’-EFP-T5-62D/106K/110Lを鋳型とし、配列番号48,49の合成オリゴヌクレオチドを使用して、配列番号40記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、106位のアスパラギンがリジンに、110位のリジンがロイシンに、113位のスレオニンがリジンに置換されたEFP-T5遺伝子をコードする組換え体プラスミド(pUTE100K’-EFP-T5-62D/106K/110L/113K)を得た。
 続いて、上記と同様にして、pUTE100K’-EFP-T5-62D/106K/110L/113Kを鋳型とし、配列番号50,51の合成オリゴヌクレオチドを使用して、配列番号40記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、106位のアスパラギンがリジンに、110位のリジンがロイシンに、113位のスレオニンがリジンに、355位のアラニンがセリンに置換されたEFP-T5遺伝子をコードする組換え体プラスミド(pUTE100K’-EFP-T5-62D/106K/110L/113K/355S)を得た。
 さらに、上記と同様にして、pUTE100K’-EFP-T5-62D/106K/110L/113K/355Sを鋳型とし、配列番号52,53の合成オリゴヌクレオチドを使用して、配列番号40記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、63位のロイシンがヒスチジンに、106位のアスパラギンがリジンに、110位のリジンがロイシンに、113位のスレオニンがリジンに、355位のアラニンがセリンに置換されたEFP-T5遺伝子をコードする組換え体プラスミド(pUTE100K’-EFP-T5-62D/63H/106K/110L/113K/355S)を得た。
2.Neocosmospora vasinfecta由来のケトアミンオキシダーゼ遺伝子への点変異導入
 配列番号54はNeocosmospora vasinfecta由来ケトアミンオキシダーゼ(以降NvFXと称する)のアミノ酸配列であり、配列番号54のアミノ酸配列をコードする遺伝子(配列番号55)を挿入した組換え体プラスミドpET22b―NvFXを保持する大腸菌により生産でき、NvFXはαFVおよびαFVH酸化活性を示すことが確認されている(国際公開第2012/018094号公報参照)。
 NvFXに基質特異性改善型変異を導入するために、組換え体プラスミドpET22b―NvFXを鋳型にして、配列番号56、57の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、実施例1と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のNvFX変異体をコードするDNAの塩基配列決定を行った。その結果、配列番号54記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に置換されたNvFX遺伝子をコードする組換え体プラスミド(pET22b-NvFX-62D)を得た。
 続いて、上記と同様にして、pET22b―NvFX-62Dを鋳型とし、配列番号58,59の合成オリゴヌクレオチドを使用して、配列番号54記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、106位のグリシンがリジンに置換されたNvFX遺伝子をコードする組換え体プラスミド(pET22b―NvFX-62D/106K)を得た。
 さらに、上記と同様にして、pET22b―NvFX-62D/106Kを鋳型とし、配列番号60,61の合成オリゴヌクレオチドを使用して、配列番号54記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、106位のアルギニンがリジンに、110位のグルタミン酸がロイシンに置換されたNvFX遺伝子をコードする組換え体プラスミド(pET22b―NvFX-62D/106K/110L)を得た。
 そして、実施例1と同様の条件で大腸菌BL21(DE3)株を形質転換し、大腸菌BL21(DE3)(pET22b―NvFX-62D/106K/110L)株を得た。
3.Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼ遺伝子への点変異導入
 配列番号62はフルクトシルペプチドオキシダーゼ活性を付与するために59位のセリンをグリシンへ置換したAspergillus nidulans由来フルクトシルアミノ酸オキシダーゼ(以降AnFXと称する)のアミノ酸配列であり、配列番号62のアミノ酸配列をコードする遺伝子(配列番号63)を挿入した組換え体プラスミドpET22b―AnFXを保持する大腸菌により生産でき、AnFXはαFVおよびαFVH酸化活性を示すことが確認されている(国際公開第2012/018094号公報参照)。
 AnFXに基質特異性改善型変異を導入するために、組換え体プラスミドpET22b―AnFXを鋳型にして、配列番号64、65の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、実施例1と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のAnFX変異体をコードするDNAの塩基配列決定を行った。その結果、配列番号62記載のアミノ酸配列の61位のアルギニンがアスパラギン酸に置換されたAnFX遺伝子をコードする組換え体プラスミド(pET22b―AnFX-61D)を得た。
 続いて、上記と同様にして、pET22b―AnFX-61Dを鋳型とし、配列番号66,67の合成オリゴヌクレオチドを使用して、配列番号62記載のアミノ酸配列の61位のアルギニンがアスパラギン酸に、105位のグリシンがリジンに置換されたAnFX遺伝子をコードする組換え体プラスミド(pET22b―AnFX-61D/105K)を得た。
 続いて、上記と同様にして、pET22b―AnFX-61D/105Kを鋳型とし、配列番号68,69の合成オリゴヌクレオチドを使用して、配列番号62記載のアミノ酸配列の61位のアルギニンがアスパラギン酸に、105位のグリシンがリジンに、109位のリジンがロイシンに置換されたAnFX遺伝子をコードする組換え体プラスミド(pET22b―AnFX-61D/105K/109L)を得た。
 そして、実施例1と同様の条件で大腸菌BL21(DE3)株を形質転換し、大腸菌BL21(DE3)(pET22b―AnFX-61D/105K/109L)株を得た。
 続いて、上記と同様にして、pET22b―AnFX-61D/105K/109Lを鋳型とし、配列番号112,70の合成オリゴヌクレオチドを使用して、配列番号62記載のアミノ酸配列の61位のアルギニンがアスパラギン酸に、105位のグリシンがリジンに、109位のリジンがロイシンに、112位のセリンがリジンに置換されたAnFX遺伝子をコードする組換え体プラスミド(pET22b―AnFX-61D/105K/109L/112K)を得た。
 続いて、上記と同様にして、pET22b―AnFX-61D/105K/109L/112Kを鋳型とし、配列番号71,72の合成オリゴヌクレオチドを使用して、配列番号62記載のアミノ酸配列の61位のアルギニンがアスパラギン酸に、105位のグリシンがリジンに、109位のリジンがロイシンに、112位のセリンがリジンに、355位のアラニンがセリンに置換されたAnFX遺伝子をコードする組換え体プラスミド(pET22b―AnFX-61D/105K/109L/112K/355S)を得た。
 続いて、上記と同様にして、pET22b―AnFX-61D/105K/109L/112K/355Sを鋳型とし、配列番号73,74の合成オリゴヌクレオチドを使用して、配列番号62記載のアミノ酸配列の61位のアルギニンがアスパラギン酸に、62位のロイシンがヒスチジンに、105位のグリシンがリジンに、109位のリジンがロイシンに、112位のセリンがリジンに、355位のアラニンがセリンに置換されたAnFX遺伝子をコードする組換え体プラスミド(pET22b―AnFX-61D/62H/105K/109L/112K/355S)を得た。
 続いて、上記と同様にして、pET22b―AnFX-61D/62H/105K/109L/112K/355Sを鋳型とし、配列番号75,76の合成オリゴヌクレオチドを使用して、配列番号62記載のアミノ酸配列の61位のアルギニンがアスパラギン酸に、62位のロイシンがヒスチジンに、101位のグルタミン酸がリジンに、105位のグリシンがリジンに、109位のリジンがロイシンに、112位のセリンがリジンに、355位のアラニンがセリンに置換された置換されたAnFX遺伝子をコードする組換え体プラスミド(pET22b―AnFX-61D/62H/101K/105K/109L/112K/355S)を得た。
 そして、実施例1と同様の条件で大腸菌BL21(DE3)株を形質転換し、大腸菌BL21(DE3)(pET22b―AnFX-61D/62H/101K/105K/109L/112K/355S)株を得た。
4.Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼ遺伝子への点変異導入
 PnFXに基質特異性改善型変異を導入するために、前述の様に調製した組換え体プラスミドpET22b-PnFXを鋳型にして、配列番号77、78の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、実施例1と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のPnFX変異体をコードするDNAの塩基配列決定を行った。その結果、配列番号38記載のアミノ酸配列の62位のセリンがアスパラギン酸に置換されたPnFX遺伝子をコードする組換え体プラスミド(pET22b-PnFX-62D)を得た。
 続いて、上記と同様にして、pET22b-PnFX-62Dを鋳型とし、配列番号79、80の合成オリゴヌクレオチドを使用して、配列番号38記載のアミノ酸配列の62位のセリンがアスパラギン酸に、106位のアスパラギン酸がリジンに置換されたPnFX遺伝子をコードする組換え体プラスミド(pET22b-PnFX-62D/106K)を得た。
 続いて、上記と同様にして、pET22b-PnFX-62D/106Kを鋳型とし、配列番号81、82の合成オリゴヌクレオチドを使用して、配列番号38記載のアミノ酸配列の62位のセリンがアスパラギン酸に、106位のアスパラギン酸がリジンに、110位のグリシンがロイシンに置換されたPnFX遺伝子をコードする組換え体プラスミド(pET22b-PnFX-62D/106K/110L)を得た。
 さらに、上記と同様にして、pET22b-PnFX-62D/106K/110Lを鋳型とし、配列番号83、84の合成オリゴヌクレオチドを使用して、配列番号38記載のアミノ酸配列の62位のセリンがアスパラギン酸に、106位のアスパラギン酸がリジンに、110位のグリシンがロイシンに、113位のアラニンがリジンに置換されたPnFX遺伝子をコードする組換え体プラスミド(pET22b-PnFX-62D/106K/110L/113K)を得た。
 そして、実施例1と同様の条件で大腸菌BL21(DE3)株を形質転換し、大腸菌BL21(DE3)(pET22b-PnFX-62D/106K/110L/113K)株を得た。
 さらに、上記と同様にして、pET22b-PnFX-62D/106K/110L/113Kを鋳型とし、配列番号85,86の合成オリゴヌクレオチドを使用して、配列番号38記載のアミノ酸配列の62位のセリンがアスパラギン酸に、106位のアスパラギン酸がリジンに、110位のグリシンがロイシンに、113位のアラニンがリジンに、351位のアラニンがセリンに置換されたPnFX遺伝子をコードする組換え体プラスミド(pET22b-PnFX-62D/106K/110L/113K/351S)を得た。
 さらに、上記と同様にして、pET22b-PnFX-62D/106K/110L/113K/351Sを鋳型とし、配列番号87,88の合成オリゴヌクレオチドを使用して、配列番号38記載のアミノ酸配列の62位のセリンがアスパラギン酸に、63位のロイシンがヒスチジンに、106位のアスパラギン酸がリジンに、110位のグリシンがロイシンに、113位のアラニンがリジンに、351位のアラニンがセリンに置換されたPnFX遺伝子をコードする組換え体プラスミド(pET22b-PnFX-62D/63H/106K/110L/113K/351S)を得た。
 そして、実施例1と同様の条件で大腸菌BL21(DE3)株を形質転換し、大腸菌BL21(DE3)(pET22b-PnFX-62D/63H/106K/110L/113K/351S)株を得た。
5.Cryptococcus neoformans由来のフルクトシルペプチドオキシダーゼ遺伝子への点変異導入
 配列番号89はCryptococcus neoformans由来フルクトシルアミノ酸オキシダーゼ(以降CnFXと称する)のアミノ酸配列であり、配列番号89のアミノ酸配列をコードする遺伝子(配列番号90)を挿入した組換え体プラスミドpET22b―CnFXを保持する大腸菌により生産でき、CnFXはαFVおよびαFVH酸化活性を示すことが確認されている(国際公開第2012/018094号公報参照)。
 CnFXに基質特異性改善型変異を導入するために、前述の様に調製した組換え体プラスミドpET22b-CnFXを鋳型にして、配列番号91、92の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、実施例1と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のCnFX変異体をコードするDNAの塩基配列決定を行った。その結果、配列番号89記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に置換されたCnFX遺伝子をコードする組換え体プラスミド(pET22b-CnFX-62D)を得た。
 続いて、上記と同様にして、pET22b-CnFX-62Dを鋳型とし、配列番号93、94の合成オリゴヌクレオチドを使用して、配列番号89記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、106位のセリンがリジンに置換されたCnFX遺伝子をコードする組換え体プラスミド(pET22b-CnFX-62D/106K)を得た。
 続いて、上記と同様にして、pET22b-CnFX-62D/106Kを鋳型とし、配列番号95、96の合成オリゴヌクレオチドを使用して、配列番号89記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、106位のセリンがリジンに、110位のセリンがロイシンに置換されたCnFX遺伝子をコードする組換え体プラスミド(pET22b-CnFX-62D/106K/110L)を得た。
 続いて、上記と同様にして、pET22b-PnFX-62D/106K/110Lを鋳型とし、配列番号97、98の合成オリゴヌクレオチドを使用して、配列番号89記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、106位のセリンがリジンに、110位のセリンがロイシンに、113位のアラニンがリジンに置換されたCnFX遺伝子をコードする組換え体プラスミド(pET22b-CnFX-62D/106K/110L/113K)を得た。
 そして、実施例1と同様の条件で大腸菌BL21(DE3)株を形質転換し、大腸菌BL21(DE3)(pET22b-CnFX-62D/106K/110L/113K)株を得た。
6.Curvularia clavata由来ケトアミンオキシダーゼと95%の配列同一性を示すアマドリアーゼ遺伝子への点変異導入
(Curvularia clavata由来ケトアミンオキシダーゼと95%の配列同一性を示すアマドリアーゼの生産株の作製)
 配列番号99はCurvularia clavata由来ケトアミンオキシダーゼと95%の配列同一性を示すアミノ酸配列を有するアマドリアーゼである(以降Cc95FXと称する)。配列番号99のアミノ酸配列をコードする遺伝子(配列番号100)を、定法である遺伝子断片のPCRによる全合成によりcDNAを全合成することで取得した。このとき、配列番号100の5´末端、3´末端にはそれぞれNdeIサイトとBamHIサイトを付加した。
 続いて、取得した配列番号100の遺伝子を大腸菌で発現させるために、以下の手順を行った。まず、上記で全合成した遺伝子をNdeIサイトとBamHI(タカラバイオ社製)の2種類の制限酵素で処理し、pET-22b(+) Vector(ノバジェン社製)のNdeI-BamHIサイトに挿入することで、組換え体プラスミドpET22b-Cc95FXを取得し、上記と同様の条件で大腸菌BL21(DE3)株を形質転換し、大腸菌BL21(DE3)(pET22b-Cc95FX)株を得た。
(Curvularia clavata由来ケトアミンオキシダーゼと95%の配列同一性を示すアマドリアーゼ遺伝子への点変異導入)
 Cc95FXに基質特異性改善型変異を導入するために、前述の様に調製した組換え体プラスミドpET22b-Cc95FXを鋳型にして、配列番号101、102の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、実施例1と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のCc95FX変異体をコードするDNAの塩基配列決定を行った。その結果、配列番号99記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に置換されたCc95FX遺伝子をコードする組換え体プラスミド(pET22b-Cc95FX-62D)を得た。
 続いて、上記と同様にして、pET22b-Cc95FX-62Dを鋳型とし、配列番号103、104の合成オリゴヌクレオチドを使用して、配列番号99記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、106位のアスパラギン酸がリジンに置換されたCc95FX遺伝子をコードする組換え体プラスミド(pET22b-Cc95FX-62D/106K)を得た。
 続いて、上記と同様にして、pET22b-Cc95FX-62D/106Kを鋳型とし、配列番号105、106の合成オリゴヌクレオチドを使用して、配列番号99記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、106位のアスパラギン酸がリジンに、110位のアラニンがロイシンに置換されたCc95FX遺伝子をコードする組換え体プラスミド(pET22b-Cc95FX-62D/106K/110L)を得た。
 続いて、上記と同様にして、pET22b-Cc95FX-62D/106K/110Lを鋳型とし、配列番号107、108の合成オリゴヌクレオチドを使用して、配列番号99記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、106位のアスパラギン酸がリジンに、110位のアラニンがロイシンに、113位のアラニンがリジンに置換されたCc95FX遺伝子をコードする組換え体プラスミド(pET22b-Cc95FX-62D/106K/110L/113K)を得た。
 続いて、上記と同様にして、pET22b-Cc95FX-62D/106K/110L/113Kを鋳型とし、配列番号109、110の合成オリゴヌクレオチドを使用して、配列番号99記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、106位のアスパラギン酸がリジンに、110位のアラニンがロイシンに、113位のアラニンがリジンに、353位のアラニンがセリンに置換されたCc95FX遺伝子をコードする組換え体プラスミド(pET22b-Cc95FX-62D/106K/110L/113K/353S)を得た。
 続いて、上記と同様にして、pET22b-Cc95FX-62D/106K/110L/113K/353Sを鋳型とし、配列番号111、102の合成オリゴヌクレオチドを使用して、配列番号99記載のアミノ酸配列の62位のアルギニンがアスパラギン酸に、63位のロイシンがヒスチジンに、106位のアスパラギン酸がリジンに、110位のアラニンがロイシンに、113位のアラニンがリジンに、353位のアラニンがセリンに置換されたCc95FX遺伝子をコードする組換え体プラスミド(pET22b-Cc95FX-62D/63H/106K/110L/113K/353S)を得た。
 そして、実施例1と同様の条件で大腸菌BL21(DE3)株を形質転換し、大腸菌BL21(DE3)(pET22b-Cc95FX-62D/63H/106K/110L/113K/353S)株を得た。
[実施例4]
(各種アマドリアーゼの生産および精製)
(Eupenicillium terrenum由来フルクトシルペプチドオキシダーゼの生産および精製)
 野生型のEFP-T5、および前述の様にして得られた改変型EFP-T5を生産する大腸菌JM109(pUTE100K’-EFP-T5)、大腸菌JM109(pUTE100K’-EFP-T5-62D)、大腸菌JM109(pUTE100K’-EFP-T5-62D/63H/106K/110L/113K/355S)を、終濃度0.1mMとなるようにIPTGを添加したLB-amp培地に植菌し、25℃で16時間培養した。得られた各培養菌体を10mM リン酸カリウム緩衝液(pH7.0)で洗浄した後、同緩衝液に菌体を懸濁して超音波破砕処理を行い、20,000×gで10分間遠心分離し、粗酵素液を調製した。
 調製した野生型または改変型EFP-T5の粗酵素液に硫酸アンモニウムを35%飽和濃度になるように添加して攪拌し、20,000×gで10分間遠心分離して上清を回収した。続いて、得られた上清に硫酸アンモニウムを70%飽和濃度になるように追加添加して攪拌し、20,000×gで10分間遠心分離して上清を廃棄し、沈殿物を10mM リン酸カリウム緩衝液(pH7.0)に溶解させた。
 得られた野生型または改変型EFP-T5の粗酵素液を10mM リン酸カリウム緩衝液(pH6.5)で透析した後、同緩衝液で平衡化した4mlのQ Sepharose Fast Flow樹脂(GEヘルスケア社製)に供し、同緩衝液で樹脂に吸着しないタンパク質を溶出させた。続いて、得られた野生型または改変型EFP-T5Mの粗酵素液を10mM リン酸カリウム緩衝液(pH8.0)で透析した後、同緩衝液で平衡化したHiLoad 26/10 Q Sepharose HPカラム(GEヘルスケア社製)に吸着させ、次に同緩衝液で樹脂を洗浄し、続いて同緩衝液中のNaClの濃度を0mMから100mMまで直線的に増加させながら樹脂に吸着していた野生型または改変型EFP-T5を溶出させ回収した。
 得られた野生型、または改変型EFP-T5を含む粗酵素液を、150mM NaClを含む10mM リン酸カリウム緩衝液(pH7.0)で平衡化したHiLoad 26/600 Superdex 200カラムにアプライして同緩衝液で野生型または改変型EFP-T5を溶出させ、フルクトシルアミノ酸オキシダーゼ活性(アマドリアーゼ活性)を示す画分を回収した。得られた画分をSDS-PAGEにより分析し、他の夾雑タンパク質を含まない純度まで精製されていることを確認し、野生型または改変型EFP-T5の精製標品とした。
(Neocosmospora vasinfecta由来ケトアミンオキシダーゼの生産および精製)
 野生型のNvFX、および前述の様にして得られた改変型NvFXを生産する大腸菌BL21(DE3)(pET22b-NvFX)、大腸菌BL21(DE3)(pET22b―NvFX-62D/106K/110L)を、終濃度0.1mMとなるようにIPTGを添加したLB-amp培地に植菌し、25℃で16時間培養した。得られた各培養菌体を10mM リン酸カリウム緩衝液(pH8.0)で洗浄した後、同緩衝液に菌体を懸濁して超音波破砕処理を行い、20,000×gで10分間遠心分離し、粗酵素液を調製した。
 調製した粗酵素液を10mM リン酸カリウム緩衝液(pH8.0)で平衡化したQ Sepharose Fast Flow樹脂(GEヘルスケア社製)に吸着させ、次に20mM NaClを含む10mM リン酸カリウム緩衝液(pH8.0)で樹脂を洗浄し、続いて300mM NaClを含む10mM リン酸カリウム緩衝液(pH8.0)で樹脂に吸着していた野生型または改変型NvFXを溶出させ回収した。
 得られた野生型NvFX、または改変型NvFXを含む粗酵素液を、150mM NaClを含む20mM MES-NaOH緩衝液(pH7.0)で平衡化したHiLoad 26/600 Superdex 200カラムにアプライして同緩衝液で野生型NvFX、または改変型NvFXを溶出させ、フルクトシルアミノ酸オキシダーゼ活性(アマドリアーゼ活性)を示す画分を回収した。得られた画分をSDS-PAGEにより分析し、他の夾雑タンパク質を含まない純度まで精製されていることを確認し、野生型または改変型NvFXの精製標品とした。
(Aspergillus nidulans由来フルクトシルアミノ酸オキシダーゼの生産および精製)
 野生型のAnFX、および前述の様にして得られた改変型AnFXを生産する大腸菌BL21(DE3)(pET22b―AnFX-61D/105K/109L)および大腸菌BL21(DE3)(pET22b―AnFX-61D/62H/101K/105K/109L/112K/355S)を、終濃度0.1mMとなるようにIPTGを添加したLB-amp培地に植菌し、25℃で16時間培養した。得られた各培養菌体を10mM リン酸カリウム緩衝液(pH6.0)で洗浄した後、同緩衝液に菌体を懸濁して超音波破砕処理を行い、20,000×gで10分間遠心分離し、粗酵素液を調製した。
 調製した粗酵素液を10mM リン酸カリウム緩衝液(pH6.0)で平衡化したSP Sepharose Fast Flow樹脂(GEヘルスケア社製)に吸着させ、次に20mM NaClを含む10mM リン酸カリウム緩衝液(pH6.0)で樹脂を洗浄し、続いて100mM NaClを含む10mM リン酸カリウム緩衝液(pH6.0)で樹脂に吸着していた改変型AnFXを溶出させ回収した。
 得られた改変型AnFXを含む粗酵素液を、150mM NaClを含む20mM MES-NaOH緩衝液(pH7.0)で平衡化したHiLoad 26/600 Superdex 200カラムにアプライして同緩衝液で改変型AnFXを溶出させ、フルクトシルアミノ酸オキシダーゼ活性(アマドリアーゼ活性)を示す画分を回収した。得られた画分をSDS-PAGEにより分析し、他の夾雑タンパク質を含まない純度まで精製されていることを確認し、改変型AnFXの精製標品とした。
(Phaeosphaeria nodorum由来フルクトシルペプチドオキシダーゼの生産および精製)
 前述の様にして得られた改変型AnFXを生産する大腸菌BL21(DE3)(pET22b―PnFX-62D/106K/110L/113K)および大腸菌BL21(DE3)(pET22b―PnFX-62D/63H/106K/110L/113K/351S)を、前述の、野生型PnFXの精製方法に従い精製した。HiLoad 26/600 Superdex 200カラムによる精製終了後、SDS-PAGEにより純度を分析し、他の夾雑タンパク質を含まない純度まで精製されていることを確認し、改変型PnFXの精製標品とした。
(Cryptococcus neoformans由来ケトアミンオキシダーゼの生産および精製)
 野生型のCnFX、および前述の様にして得られた改変型CnFXを生産する大腸菌BL21(DE3)(pET22b-CnFX)、大腸菌BL21(DE3)(pET22b―CnFX-62D/106K/110L/113K)を、終濃度0.1mMとなるようにIPTGを添加したLB-amp培地に植菌し、25℃で16時間培養した。得られた各培養菌体を10mM リン酸カリウム緩衝液(pH8.0)で洗浄した後、同緩衝液に菌体を懸濁して超音波破砕処理を行い、20,000×gで10分間遠心分離し、粗酵素液を調製した。
 調製した粗酵素液を10mM リン酸カリウム緩衝液(pH8.0)で平衡化したQ Sepharose Fast Flow樹脂(GEヘルスケア社製)に吸着させ、次に20mM NaClを含む10mM リン酸カリウム緩衝液(pH8.0)で樹脂を洗浄し、続いて300mM NaClを含む10mM リン酸カリウム緩衝液(pH8.0)で樹脂に吸着していた野生型または改変型CnFXを溶出させ回収した。
 得られた野生型CnFX、または改変型CnFXを含む粗酵素液を、150mM NaClを含む20mM MES-NaOH緩衝液(pH7.0)で平衡化したHiLoad 26/600 Superdex 200カラムにアプライして同緩衝液で野生型CnFX、または改変型CnFXを溶出させ、フルクトシルアミノ酸オキシダーゼ活性(アマドリアーゼ活性)を示す画分を回収した。得られた画分をSDS-PAGEにより分析し、他の夾雑タンパク質を含まない純度まで精製されていることを確認し、野生型または改変型CnFXの精製標品とした。
(Curvularia clavata由来ケトアミンオキシダーゼと95%の配列同一性を示すアマドリアーゼの生産)
 野生型のCc95FX、および前述の様にして得られた改変型Cc95FXを生産する大腸菌JM109(pET22b-Cc95FX)、および大腸菌JM109(pET22b-Cc95FX-62D/63H/106K/110L/113K/355S)を、終濃度0.1mMとなるようにIPTGを添加したLB-amp培地に植菌し、25℃で16時間培養した。得られた各培養菌体を10mM リン酸カリウム緩衝液(pH7.0)で洗浄した後、同緩衝液に菌体を懸濁して超音波破砕処理を行い、20,000×gで10分間遠心分離し、粗酵素液を調製した。
 得られた各種アマドリアーゼの野生型酵素、および改変型酵素の精製標品を用いて、αF6Pを基質とした時の比活性を測定した。結果を表14に示す。なお、比活性の算出に用いたタンパク質濃度は、280nmにおける吸光度を利用した紫外吸収法により測定した(Protein Sci. 4,  2411-23, 1995参照)。
 また、Cc95FX、またはCc95FX-62D/63H/106K/110L/113K/355Sを含む粗酵素液を用いて、上記B:活性測定法に示した方法によりαFV、αFVH、αF6Pに対する酸化活性を測定した。それぞれのアマドリアーゼについて、αFVH酸化活性を100とした場合の、各基質に対する酸化活性、ならびにαF6P/αFVHおよびαF6P/αFVは表15の通りとなった。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 本明細書に記載の手順で作製した、Coniochaeta由来アマドリアーゼ(CFP-T7;比較例1)と比較してαF6Pに対する反応性を付与または増強するアミノ酸置換を各種のアマドリアーゼに導入した結果、予想通り、EFP-T5、NvFX、AnFX、CnFXにはαF6Pに対する反応性が新たに付与された。また、PnFXは従来よりαF6Pに対する反応を僅かながら示したが、本明細書に記載のアミノ酸置換の導入によりαF6Pに対する比活性が13.7倍向上した。
 また、本明細書に記載の手順で作製した、Coniochaeta由来アマドリアーゼ(CFP-T7;比較例1)と比較してαF6Pに対する反応性を付与または増強するアミノ酸置換を、本明細書に記載の手順で作製した、Curvularia clavata由来ケトアミンオキシダーゼと95%の配列同一性を示すアマドリアーゼ(Cc95FX;比較例8)に導入した結果、予想通り、Cc95FXにはαF6Pに対する反応性が新たに付与され、Cc95FX-62D/63H/106K/110L/113K/355Sでは、αF6P酸化活性がαFVH酸化活性を上回った。
 すなわち、本明細書に記載のConiochaeta由来アマドリアーゼに対してαF6Pに対する反応性を付与または増強するするアミノ酸置換の効果は、Coniochaeta由来アマドリアーゼに対してのみ限定される訳ではなく、図1および図2に示した様なConiochaeta由来アマドリアーゼと74%以上の配列同一性を示すアマドリアーゼであれば、普遍的に同様にαF6Pに対する反応性が付与または増強された。
 表14より、AnFXに変異61D/105K/110Lを導入したアマドリアーゼ30はαF6Pに対して0.1以上の比活性を示した。すなわち、酵素に3重変異を導入することによりαF6Pに対して0.1以上の比活性を示す改変アマドリアーゼを取得することができた。またPnFXに62D/106K/110L/113Kを導入したアマドリアーゼ32もαF6Pに対して0.1以上の比活性を示した。すなわち、酵素に4重変異を導入することによりαF6Pに対して0.1以上の比活性を示す改変アマドリアーゼを取得することができた。また、変異をさらに導入することによりαF6Pに対する比活性をさらに向上させることができた。
 本明細書では、導入する置換の効果が累積することを示した。したがってアマドリアーゼのαF6Pに対する活性を向上させる変異は、ある特定の変異に限定されず、またある特定の組合せに限定されず、本明細書に示した62位、63位、102位、106位、110位、113位、355位、419位、68位及び356位、さらにはαF6Pに対する活性を向上させるこれ以外の位置の変異が任意の組合せとして使用可能である、と当業者であれば理解する。また実施例5~7において後述するように、こうした、αF6Pに対する活性を有するアマドリアーゼが、本発明のHbA1c測定方法に使用できる、と当業者であれば理解する。
 以下の表に比較例と、本発明の変異体の、62位、63位、102位、106位、110位、113位、355位及び419位のアミノ酸及び置換があれば置換後のアミノ酸の関係を示す。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
[実施例5]
(HbA1cの定量)
 以下の組成を有するHbA1c測定用試薬を調製し、Bio Majesty JCA-BM1650(日本電子製)を利用して下記の通りHbA1cの測定を実施した。
試料:HbA1c溶液
HbA1c認証実用標準物質JCCRM423-8(検査医学標準物質機構製)
総ヘモグロビン濃度133g/l、
HbA1c濃度3レベル(NGSP値 5.56%、7.74%、10.48%)
試薬A1:試料前処理液
5.0% n-ドデシル-β-D-マルトシド(同仁化学研究所製)
試薬A2:試料前処理液
5.0% n-テトラデシル-β-D-マルトシド(シグマアルドリッチ社製)
試薬B:ロイコ色素、パーオキシダーゼ溶液
150mM リン酸カリウム緩衝液 pH6.5
0.30mM N-(カルボキシメチルアミノカルボニル)-4,4′- ビス(ジメチルアミノ)ジフェニルアミンナトリウム(DA-64、和光純薬工業製)
15U/ml パーオキシダーゼ(キッコーマン製)
試薬C1:CFP-T7-H35溶液
120mM リン酸カリウム緩衝液 pH6.5
120U/ml(28mg/ml)CFP-T7-H35(アマドリアーゼ25)
試薬C2:CFP-T7溶液
120mM リン酸カリウム緩衝液 pH6.5
28mg/ml CFP-T7(比較例1)
 試薬A1もしくは試薬A2で30倍希釈した試料(以降試料希釈液と表記する)を98℃で2分間インキュベートした後、試料希釈液25μlを50μlの試薬Bに添加して37℃で5分間インキュベートした後、25μlの試薬C1または試薬C2を添加してHbA1cのβ鎖アミノ末端の酸化により生じる過酸化水素の定量反応を37℃で5分間進行させた。溶液中に過酸化水素が生じた場合、パーオキシダーゼの作用によりロイコ色素が発色し、751nmの光の吸光度が増加する。一例として、試薬A2と試薬C1を使用して測定を行った場合の、試料希釈液と試薬Bを混合してからの経過時間と吸光度の関係を図3に示したが、この場合、CFP-T7-H35溶液(試薬C1)の添加直後から過酸化水素の生成に伴う吸光度上昇が確認できた。試料のHbA1c濃度に応じて得られた結果を基に、試料のHbA1c濃度(NGSP値)を横軸に、過酸化水素の定量反応前後の751nmの光の吸光度差ΔAを縦軸にプロットしたグラフを作成した。
 なお、ΔAは下記の式に従って算出した。
ΔA=(試薬C1または試薬C2添加5分後の吸光度)-(試薬C1または試薬C2添加直前の吸光度×0.75)
 ここでは、試薬C1または試薬C2添加により、反応液の容積が1.33倍となるため、試薬C1または試薬C2添加直前の吸光度に0.75を掛けたものを、試薬C1または試薬C2添加直後の吸光度と見なした。試薬A1を用いて試料を希釈した場合の結果を図4-1に、試薬A2を用いて試料を希釈した場合の結果を図4-2に示した。
 試薬C1を用いた場合、HbA1c濃度とΔAの間に良好な相関関係が成立した。それに対し、試薬C2を用いた場合、HbA1c濃度とΔAの間に相関性は認められなかった。また、この傾向は試薬前処理液(試薬A1、A2)の種類によって影響を受けることはなかった。したがって、αF6P酸化活性を示すアマドリアーゼはHbA1cのβ鎖に対しても酸化活性を示し、プロテアーゼ等を処方することなく迅速かつ精確にHbA1cの定量を行えることが示された。
[実施例6]
(酸で前処理したHbA1cの定量)
 以下の組成を有するHbA1c測定用試薬を調製し、Bio Majesty JCA-BM1650(日本電子製)を利用して下記の通りHbA1cの測定を実施した。本実施例では、HbA1c試料の前処理液として酸性に調整した非イオン性界面活性剤溶液を用いた。 
試料:HbA1c溶液
HbA1c認証実用標準物質JCCRM423-8(検査医学標準物質機構製)
総ヘモグロビン濃度133g/l、
HbA1c濃度3レベル(NGSP値 5.56%、7.74%、10.48%)
または
HbA1c認証実用標準物質JCCRM423-9b(検査医学標準物質機構製)
総ヘモグロビン濃度133g/l、
HbA1c濃度3レベル(NGSP値 5.61%、7.71%、10.55%)
試薬D1:試料前処理液
8.3% n-ドデシル-β-D-マルトシド(同仁化学研究所製)
0.1M 塩酸
試薬D2:試料前処理液
8.3% ポリオキシエチレン(20)セチルエーテル(Brij58、和光純薬工業製)
0.1M 塩酸
試薬E:ロイコ色素溶液
30mM Tris-リン酸カリウム緩衝液 pH9.0
290mM リン酸カリウム緩衝液 pH6.5
0.16mM N-(カルボキシメチルアミノカルボニル)-4,4′- ビス(ジメチルアミノ)ジフェニルアミンナトリウム(DA-64、和光純薬工業製)
試薬F1:パーオキシダーゼ、CFP-T7-H35溶液
100mM リン酸カリウム緩衝液 pH6.5
40U/ml パーオキシダーゼ(キッコーマン製)
180U/ml(42mg/ml)CFP-T7-H35(アマドリアーゼ25)
試薬F2 :パーオキシダーゼ、EFP-T5―62D/63H/106K/110L/113K/355S
100mM リン酸カリウム緩衝液 pH6.5
40U/ml パーオキシダーゼ(キッコーマン製)
30U/ml(27mg/ml)EFP-T5―62D/63H/106K/110L/113K/355S溶液(アマドリアーゼ28)
 試薬D1もしくは試薬D2で30倍希釈した試料25μlを、125μlの試薬Eに添加して37℃で5分間インキュベートした後、50μlの試薬F1を添加してHbA1cのβ鎖アミノ末端の酸化により生じる過酸化水素の定量反応を37℃で5分間進行させた。また、試薬D1で30倍希釈した試料25μlを、125μlの試薬Eに添加して37℃で5分間インキュベートした後、50μlの試薬F2を添加してHbA1cのβ鎖アミノ末端の酸化により生じる過酸化水素の定量反応を37℃で5分間進行させた。一例として、試薬D1で希釈した試料と試薬Eを混合してからの経過時間と吸光度の関係を図5-1に示したが、この場合、CFP-T7-H35溶液(試薬F1)の添加直後から過酸化水素の生成に伴う吸光度上昇が確認できた。各HbA1c試料の測定結果から、試料のHbA1c濃度(NGSP値)を横軸に、過酸化水素の定量反応前後の751nmの光の吸光度差ΔAを縦軸にプロットしたグラフを作成した。
 なお、ΔAは下記の式に従って算出した。
ΔA=(試薬F1まはたF2添加5分後の吸光度)-(試薬F1まはたF2添加直前の吸光度×0.75)
 ここでは、試薬F1またはF2添加により、反応液の容積が1.33倍となるため、試薬F1またはF2添加直前の吸光度に0.75を掛けたものを、試薬F1またはF2添加直後の吸光度と見なした。試薬D1およびF1を用いて試料を測定した場合の結果を図6-1に、試薬D2およびF1を用いて試料を測定した場合の結果を図6-2に、試薬D1およびF2を用いて試料を測定した場合の結果を図6-3に示した。
 試料の希釈に試薬D1および試薬D2のどちらを用いた場合でも、HbA1c濃度とΔAの間に良好な相関関係が成立した。したがって、αF6P酸化活性を示すアマドリアーゼを用いて、変性させたHbA1cを測定する場合には、HbA1cを酸処理により変性させても、迅速かつ精確にHbA1cの定量を行えることが示された。また、変性用の酸性溶液中に非イオン性界面活性剤を共存させる場合、非イオン性界面活性剤の種類は限定されないことも示された。さらに、異なる種に由来する改変アマドリアーゼを用いてHbA1cを直接測定することができたことから、HbA1cを直接測定するためのアマドリアーゼは、αF6Pに対して一定の反応性を示すものであれば、特に限定されないこともまた示された。
[実施例7]
(イオン性界面活性剤で前処理したHbA1cの定量)
 以下の組成を有するHbA1c測定用試薬を調製し、Bio Majesty JCA-BM1650(日本電子製)を利用して下記の通りHbA1cの測定を実施した。本実施例では、HbA1c試料の前処理液としてイオン性界面活性剤溶液を用いた。 
試料:HbA1c溶液
HbA1c認証実用標準物質JCCRM423-9b(検査医学標準物質機構製)
総ヘモグロビン濃度133g/l、
HbA1c濃度3レベル(NGSP値 5.61%、7.71%、10.55%)
試薬G1:試料前処理液
0.80% テトラデシルトリメチルアンモニウムブロマイド(東京化成工業製)
試薬G2:試料前処理液
0.70% ヘキサデシルトリメチルアンモニウムブロマイド(東京化成工業製)
試薬H1:ロイコ色素溶液
120mM MOPS-NaOH緩衝液 pH6.5
1.6% n-ドデシル-β-D-マルトシド(同仁化学研究所製)
0.16mM N-(カルボキシメチルアミノカルボニル)-4,4′- ビス(ジメチルアミノ)ジフェニルアミンナトリウム(DA-64、和光純薬工業製)
試薬H2:ロイコ色素溶液
120mM PIPES-NaOH緩衝液 pH6.5
1.6% n-ドデシル-β-D-マルトシド(同仁化学研究所製)
0.16mM N-(カルボキシメチルアミノカルボニル)-4,4′- ビス(ジメチルアミノ)ジフェニルアミンナトリウム(DA-64、和光純薬工業製)
試薬I1:パーオキシダーゼ、CFP-DH2溶液
100mM MOPS-NaOH緩衝液 pH6.5
40U/ml パーオキシダーゼ(キッコーマン製)
160U/ml(51mg/ml)CFP-DH2(アマドリアーゼ39)
試薬I2:パーオキシダーゼ、CFP-DH2溶液
100mM PIPES-NaOH緩衝液 pH6.5
40U/ml パーオキシダーゼ(キッコーマン製)
160U/ml CFP-DH2
 試薬G1で25倍希釈した試料25μlを、125μlの試薬H1に添加して37℃で5分間インキュベートした後、50μlの試薬I1を添加してHbA1cのβ鎖アミノ末端の酸化により生じる過酸化水素の定量反応を37℃で5分間進行させた。また、試料を試薬G2で25倍希釈した場合は、希釈試料25μlを、125μlの試薬H2に添加して37℃で5分間インキュベートした後、50μlの試薬I2を添加してHbA1cのβ鎖アミノ末端の酸化により生じる過酸化水素の定量反応を37℃で5分間進行させた。一例として、試薬G1で希釈した試料を試薬H1を混合してからの経過時間と吸光度の関係を図7-1に示したが、この場合、CFP-DH2溶液(試薬I1)の添加直後から過酸化水素の生成に伴う吸光度上昇が確認できた。各HbA1c試料の測定結果から、試料のHbA1c濃度(NGSP値)を横軸に、過酸化水素の定量反応前後の751nmの光の吸光度差ΔAを縦軸にプロットしたグラフを作成した。
 なお、ΔAは下記の式に従って算出した。
ΔA=(試薬I1またはI2添加5分後の吸光度)-(試薬I1またはI2添加直前の吸光度×0.75)
 ここでは、試薬I1またはI2の添加により、反応液の容積が1.33倍となるため、試薬I1またはI2添加直前の吸光度に0.75を掛けたものを、試薬I1またはI2添加直後の吸光度と見なした。試薬G1を用いて試料を希釈した場合の結果を図8-1に、試薬G2を用いて試料を希釈した場合の結果を図8-2に示した。
 試料の希釈に試薬G1および試薬G2のどちらを用いた場合でも、HbA1c濃度とΔAの間に良好な相関関係が成立した。したがって、αF6P酸化活性を示すアマドリアーゼを用いて、変性させたHbA1cを測定する場合には、HbA1cをイオン性界面活性剤により変性させても、迅速かつ精確にHbA1cの定量を行えることが示された。また、本測定を実施する際にはHbA1cの変性に用いるイオン性界面活性剤の種類は限定されないことも示された。
 上記のようにCFP-T7-H35は、野生型酵素(CFP-T7)では基質とすることができなかったペプチド鎖長の長い糖化ペプチド(αF6P)も基質とした。このCFP-T7-H35を用いて、HbA1cからαF6Pを切り出すためのプロテアーゼ等での処理工程を経ずに、HbA1cの直接測定を試みたところ、驚くべきことに、実施例5に記載のとおり試料中のHbA1c濃度を決定することができた。HbA1cに直接作用するアマドリアーゼは現在までに発見されておらず、その報告例は全くない。したがって、αF6Pを基質とするアマドリアーゼがHbA1cに直接作用することは驚くべき知見である。
 しかしながら、αF6Pを基質とするアマドリアーゼがHbA1cに直接作用する例が上記実施例において実証された以上、CFP-T7-H35と同様にαF6Pに対する活性を有する他のアマドリアーゼもまた、直接HbA1cのβ鎖を基質とする可能性が示唆される。特にαF6Pに対する比活性の高いアマドリアーゼであれば、本発明のアマドリアーゼと同様にHbA1cに直接作用し、したがってHbA1cの定量測定に用いることができる蓋然性が高いと考えられる。
 これを検証したところ、実施例6に示すように、αF6Pに対する比活性が高いEFP-T5由来のアマドリアーゼ28を用いた結果、この酵素もまたHbA1cに直接作用した(図6-3)。よってαF6Pに対する活性の高い本発明のアマドリアーゼと同様にHbA1cに直接作用し、したがってHbA1cの定量測定に用いることができることが実証された。他のαF6Pに対する比活性の高いアマドリアーゼについても同様と考えられる。上記では実験の便宜のために比活性が1.0U/mg以上の酵素を用いたが、当業者であれば、0.1U/mgの比活性の酵素を10倍量にて使用することもできる、と理解する。
 また、本発明の知見はαF6P活性を有するアマドリアーゼがHbA1cに直接作用しうることを示すに留まるものではなく、同様に、α-フルクトシルオリゴペプチド、例えばαF3P、αF4P、αF5P、αF7P、αF8P、αF10P、αF16P等に対する活性を示すアマドリアーゼであれば同様にHbA1cに直接作用する可能性がある。
 以上のとおり、本発明のアマドリアーゼを用いたHbA1c測定方法は、HbA1cのプロテアーゼ等での処理を必要とせず、HbA1cを迅速、簡便に、かつ、精度よく良好に定量できる。また、変性させたHbA1cを測定する場合、HbA1cを変性させる手法は特に制限を受けることはない。これにより酵素法によるHbA1cの直接測定が実現し、産業上の利用価値が期待される。
配列表の簡単な説明
配列番号1 Coniochaeta sp. NISL 9330アマドリアーゼのアミノ酸配列
配列番号2 配列番号1のアマドリアーゼの塩基配列
配列番号3-33 PCRプライマー
配列番号34 PCRプライマー
配列番号35 PCRプライマー
配列番号36 Aspergillus oryzae RIB40 (FAOAo2) アミノ酸配列
配列番号37: FAOAo2塩基配列
配列番号38 Phaeosphaeria nodorum(PnFX) アミノ酸配列
配列番号39 PnFX塩基配列
配列番号40 Eupenicillium terrenum(EFP-T5)アミノ酸配列
配列番号41 EFP-T5塩基配列
配列番号42-53 PCRプライマー
配列番号54 Neocosmospora vasinfecta(NvFX)アミノ酸配列
配列番号55 NvFX塩基配列
配列番号56-61 PCRプライマー
配列番号62 S59G置換 Aspergillus nidulans(AnFX) アミノ酸配列
配列番号63 AnFX塩基配列
配列番号64-88 PCRプライマー
配列番号89 Cryptococcus neoformans (CnFX) アミノ酸配列
配列番号90 CnFX塩基配列
配列番号91-98 PCRプライマー
配列番号99 Curvularia clavataケトアミンオキシダーゼと95%の配列同一性を示すアマドリアーゼ(Cc95FX) アミノ酸配列
配列番号100 Cc95FX塩基配列
配列番号101-112 PCRプライマー
配列番号113 Pyrenochaeta sp.(Py)アマドリアーゼのアミノ酸配列
配列番号114 Pyrenochaeta sp.(Py)アマドリアーゼの塩基配列
配列番号115 Arthrinium sp.(Ar)アマドリアーゼのアミノ酸配列
配列番号116 Arthrinium sp.(Ar)アマドリアーゼの塩基配列
配列番号117 Curvularia clavata(Cc)アマドリアーゼのアミノ酸配列
配列番号118 Curvularia clavata(Cc)アマドリアーゼの塩基配列
配列番号119 Emericella nidulans(En)アマドリアーゼのアミノ酸配列
配列番号120 Emericella nidulans(En)アマドリアーゼの塩基配列
配列番号121 Ulocladium sp.(Ul)アマドリアーゼのアミノ酸配列
配列番号122 Ulocladium sp.(Ul)アマドリアーゼの塩基配列
配列番号123 Penicillium janthinellum(Pj)アマドリアーゼのアミノ酸配列
配列番号124 Penicillium janthinellum(Pj)アマドリアーゼの塩基配列
配列番号125 Aspergillus fumigatus Amadoriase Iのアミノ酸配列
配列番号126 Amadoriase I塩基配列
配列番号127 Aspergillus oryzae FAOAo1アミノ酸配列
配列番号128 FAOAo1塩基配列
配列番号129 Aspergillus fumigatus Amadoriase IIアミノ酸配列
配列番号130 Amadoriase II塩基配列
配列番号131 Aspergillus terreus FAOD-Aアミノ酸配列
配列番号132 FAOD-A塩基配列
配列番号133 CFP-T7-H20(R62D、D106K、Q110L、A113K)Coniochaeta sp.アミノ酸配列
配列番号134 CFP-T7-H20塩基配列
配列番号135 PnFPOX(S62D、D106K、G110L、A113K)Phaeosphaeria nodorum アミノ酸配列
配列番号136 配列番号135のアミノ酸配列をコードする塩基配列
配列番号137 (アマドリアーゼ29)NvFX-62D/106K/110L(R62D、G106K、E110L)Neocosmospora vasinfectaアミノ酸配列
配列番号138 配列番号137のアミノ酸配列をコードする塩基配列
配列番号139 (アマドリアーゼ30)AnFX-61D/105K/109L(S59G、R61D、G105K、K1091L)Aspergillus nidulans アミノ酸配列
配列番号140 配列番号139のアミノ酸配列をコードする塩基配列
配列番号141 (アマドリアーゼ25)CFP-T7-H35(R62D、L63H、E102K、D106K、Q110L、A113K、A355S)Coniochaeta sp.アミノ酸配列
配列番号142 CFP-T7-H35塩基配列
配列番号143 (アマドリアーゼ28)EFP-T5-62D/63H/106K/110L/113K/355S Eupenicillium terrenumアミノ酸配列
配列番号144 配列番号143のアミノ酸配列をコードする塩基配列
配列番号145 Eupenicillium terrenum野生型アマドリアーゼのアミノ酸配列
配列番号146 Eupenicillium terrenum野生型アマドリアーゼの塩基配列
配列番号147 AnFX 野生型アマドリアーゼのアミノ酸配列
配列番号148 AnFX 野生型アマドリアーゼの塩基配列
配列番号149 CnFX 野生型アマドリアーゼのアミノ酸配列
配列番号150 CnFX 野生型アマドリアーゼの塩基配列
配列番号151 (アマドリアーゼ1)CFP-T7-H1(R62A)Coniochaeta sp. アミノ酸配列
配列番号152 CFP-T7-H1塩基配列
配列番号153 (アマドリアーゼ26)CFP-T7-62D(R62D)Coniochaeta sp. アミノ酸配列
配列番号154 CFP-T7-62D塩基配列
配列番号155(アマドリアーゼ27)EFP-T5-R62D(R62D) Eupenicillium terrenum アミノ酸配列
配列番号156 EFP-T5-R62D塩基配列
配列番号157 (アマドリアーゼ2)CFP-T7-H2(R62A、Q110L)Coniochaeta sp. アミノ酸配列
配列番号158 CFP-T7-H2塩基配列
配列番号159 (アマドリアーゼ4)CFP-T7-H4(R62A、Q110Y)Coniochaeta sp.アミノ酸配列
配列番号160 CFP-T7-H4塩基配列
配列番号161 (アマドリアーゼ5)CFP-T7-H2-62N(R62N、Q110L)Coniochaeta sp.アミノ酸配列
配列番号162 CFP-T7-H2-62N塩基配列
配列番号163 (アマドリアーゼ6)CFP-T7-H6(R62D、Q110L)Coniochaeta sp.アミノ酸配列
配列番号164 CFP-T7-H6塩基配列
配列番号165 (アマドリアーゼ12)CFP-T7-H10(R62D、D106A、Q110L)Coniochaeta sp.アミノ酸配列
配列番号166 CFP-T7-H10塩基配列
配列番号167 (アマドリアーゼ13)CFP-T7-H11(R62D、D106K、Q110L)Coniochaeta sp.アミノ酸配列
配列番号168 CFP-T7-H11塩基配列
配列番号169 (アマドリアーゼ14)CFP-T7-H12(R62D、D106R、Q110L)Coniochaeta sp.アミノ酸配列
配列番号170 CFP-T7-H12塩基配列
配列番号171 (アマドリアーゼ15)CFP-T7-H13(R62D、Q110L、A113K)Coniochaeta sp.アミノ酸配列
配列番号172 CFP-T7-H13塩基配列
配列番号173 (アマドリアーゼ16)CFP-T7-H14(R62D、Q110L、A113R)Coniochaeta sp.アミノ酸配列
配列番号174 CFP-T7-H14塩基配列
配列番号175 (アマドリアーゼ18)CFP-T7-H21(R62D、D106K、Q110L、A113R)Coniochaeta sp.アミノ酸配列
配列番号176 CFP-T7-H21塩基配列
配列番号177 (アマドリアーゼ19)CFP-T7-H24(R62D、L63A、D106K、Q110L、A113K)Coniochaeta sp.アミノ酸配列
配列番号178 CFP-T7-H24塩基配列
配列番号179 (アマドリアーゼ21)CFP-T7-H26(R62D、L63H、D106K、Q110L、A113K)Coniochaeta sp.アミノ酸配列
配列番号180 CFP-T7-H26塩基配列
配列番号181 (アマドリアーゼ23)CFP-T7-H28(R62D、L63H、E102K、D106K、Q110L、A113K) Coniochaeta sp.アミノ酸配列
配列番号182 CFP-T7-H28塩基配列
配列番号183 (アマドリアーゼ24)CFP-T7-H29(R62D、L63H、D106K、Q110L、A113K、A419K) Coniochaeta sp.アミノ酸配列
配列番号184 CFP-T7-H29塩基配列
配列番号185 (アマドリアーゼ31)(AnFX-61D/62H/101K/105K/109L/112K/355S)Aspergillus nidulansアミノ酸配列
配列番号186 配列番号185のアミノ酸配列をコードする塩基配列
配列番号187 (アマドリアーゼ33)(PnFX-62D/63H/106K/110L/113K/351S)Phaeosphaeria nodorumアミノ酸配列
配列番号188 配列番号187のアミノ酸配列をコードする塩基配列
配列番号189 (アマドリアーゼ34)(CnFX-62D/106K/110L/113K)Cryptococcus neoformansアミノ酸配列
配列番号190 配列番号189のアミノ酸配列をコードする塩基配列
配列番号191 (アマドリアーゼ35)(Cc95FX-62D/63H/106K/110L/113K/353S)Curvularia clavataアミノ酸配列
配列番号192 配列番号191のアミノ酸配列をコードする塩基配列
配列番号193-198 PCRプライマー
配列番号199 CFP-DH1(Coniochaeta sp. NISL 9330由来)(改変型アマドリアーゼ36、CFP-T7-H36)(CFP-T7-R62D/L63H/D68N/E102K/D106K/Q110L/A113K/A355S/E44P/E133A/E253K/V257C/N262H/Q337K/E340P/ΔP435/ΔK436/ΔL437)のアミノ酸配列
配列番号200 配列番号199のアミノ酸配列をコードする塩基配列
配列番号201-202 PCRプライマー
配列番号203 CFP-DH2(Coniochaeta sp. NISL 9330由来)(アマドリアーゼ39)のアミノ酸配列
配列番号204 配列番号203のアミノ酸配列をコードする塩基配列。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (26)

  1.  試料にヘモグロビンA1cに直接作用するアマドリアーゼを作用させ、その作用によって生じる過酸化水素もしくは消費される酸素を測定することを特徴とする、試料中のヘモグロビンA1cの測定方法。
  2.  前記ヘモグロビンA1cに直接作用するアマドリアーゼが、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するものである、請求項1に記載の方法。
  3.  前記ヘモグロビンA1cに直接作用するアマドリアーゼが、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有し、かつ、以下の(i)~(iii)からなる群より選択されるアマドリアーゼ、
    (i) アマドリアーゼのアミノ酸配列を、配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸配列の以下(a)から(j)よりなる群から選択される位置に対応する位置で当該アマドリアーゼのアミノ酸配列が1つまたはそれ以上のアミノ酸残基の置換を有するアマドリアーゼ、
    (a)配列番号1の62位、
    (b)配列番号1の63位、
    (c)配列番号1の102位、
    (d)配列番号1の106位、
    (e)配列番号1の110位、
    (f)配列番号1の113位、
    (g)配列番号1の355位、
    (h)配列番号1の419位、
    (i)配列番号1の68位、
    (j)配列番号1の356位、
    (ii) 前記(i)のアマドリアーゼにおいて、配列番号1に示すアミノ酸配列における62位、63位、102位、106位、110位、113位、355位、419、68位及び356位に対応する位置以外の位置における1又は数個のアミノ酸が置換、欠失又は付加されたアミノ酸配列からなるアマドリアーゼ、
    (iii) 前記(i)のアマドリアーゼにおいて、当該アマドリアーゼの全長アミノ酸配列が配列番号1のアミノ酸配列と70%以上の配列同一性を有し、配列番号1の第10位~32位、36~41位、49~52位、54~58位、63~65位、73~75位、84~86位、88~90位、120~122位、145~150位、156~162位、164~170位、180~182位、202~205位、207~211位、214~224位、227~230位、236~241位、243~248位、258~261位、266~268位、270~273位、275~287位、295~297位、306~308位、310~316位、324~329位、332~334位、341~344位、346~355位、357~363位、370~383位、385~387位、389~394位、405~410位及び423~431位のアミノ酸配列からなる相同性領域におけるアミノ酸配列と当該アマドリアーゼの対応する位置の相同性領域におけるアミノ酸配列とが90%以上の配列同一性を有するアマドリアーゼ、
    である、請求項1又は2に記載の方法。
  4.  前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の以下(a)から(j)よりなる群から選択される1つまたはそれ以上の位置に対応する位置のアミノ酸が以下の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼ、
    (a)配列番号1の62位に対応する位置のアミノ酸がアラニン、アスパラギン酸、アスパラギン、グルタミン、グルタミン酸、グリシン、バリン、ロイシン、イソロイシン、システイン、セリン、スレオニン又はプロリンである、
    (b)配列番号1の63位に対応する位置のアミノ酸がアラニン又はヒスチジンである、
    (c)配列番号1の102位に対応する位置のアミノ酸がリジンである、
    (d)配列番号1の106位に対応する位置のアミノ酸がアラニン、リジン又はアルギニンである、
    (e)配列番号1の110位に対応する位置のアミノ酸がロイシン又はチロシンである、
    (f)配列番号1の113位に対応する位置のアミノ酸がリジン又はアルギニンである、
    (g)配列番号1の355位に対応する位置のアミノ酸がセリンである、
    (h)配列番号1の419位に対応する位置のアミノ酸がリジンである、
    (i) 配列番号1の68位に対応する位置のアミノ酸がアスパラギンである、
    (j) 配列番号1の356位に対応する位置のアミノ酸がスレオニンである、
    である、請求項3に記載の方法。
  5.  前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の(a)から(j)よりなる群から選択される2以上の位置に対応する位置のアミノ酸が、当該(a)から(j)の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼである、請求項4に記載の方法。
  6.  前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の(a)から(j)よりなる群から選択される3以上の位置に対応する位置のアミノ酸が、当該(a)から(j)の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼである、請求項5に記載の方法。
  7.  前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の(a)から(j)よりなる群から選択される4以上の位置に対応する位置のアミノ酸が、当該(a)から(j)の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼである、請求項6に記載の方法。
  8.  前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の(a)から(j)よりなる群から選択される5以上の位置に対応する位置のアミノ酸が、当該(a)から(j)の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼである、請求項7に記載の方法。
  9.  前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の(a)から(j)よりなる群から選択される6以上の位置に対応する位置のアミノ酸が、当該(a)から(j)の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼである、請求項8に記載の方法。
  10.  ヘモグロビンA1cに直接作用するアマドリアーゼがコニオカエタ(Coniochaeta)属、ユーペニシリウム(Eupenicillium)属、ピレノケータ(Pyrenochaeta)属、アルスリニウム(Arthrinium)属、カーブラリア(Curvularia)属、ネオコスモスポラ(Neocosmospora)属、クリプトコッカス(Cryptococcus)属、フェオスフェリア(Phaeosphaeria)属、アスペルギルス(Aspergillus)属、エメリセラ(Emericella)属、ウロクラディウム(Ulocladium)属、またはペニシリウム(Penicillium)属由来である、請求項1~9のいずれか1項に記載の試料中のヘモグロビンA1cの測定方法。
  11.  ヘモグロビンA1cに直接作用するアマドリアーゼがコニオカエタ エスピー(Coniochaeta sp.)、ユーペニシリウム テレナム(Eupenicillium terrenum)、ピレノケータ エスピー(Pyrenochaeta sp.)、アルスリニウム エスピー(Arthrinium sp.)、カーブラリア クラベータ(Curvularia clavata)、ネオコスモスポラ バシンフェクタ(Neocosmospora vasinfecta)、クリプトコッカス ネオフォルマンス(Cryptococcus neoformans)、フェオスフェリア ノドラム(Phaeosphaeria nodorum)、アスペルギルス ニードランス(Aspergillus nidulans)、エメリセラ ニードランス(Emericella nidulans)属、ウロクラディウム エスピー(Ulocladium sp.)、またはペニシリウム ヤンシネラム(Penicillium janthinelum)もしくはペニシリウム クリソゲナム(Penicillium chrysogenum)由来である、請求項1~10のいずれか1項に記載の試料中のヘモグロビンA1cの測定方法。
  12.  ヘモグロビンA1cに直接作用するアマドリアーゼが、以下からなる群より選択されるアマドリアーゼである、請求項1に記載の試料中のヘモグロビンA1cの測定方法。 
    (i) 配列番号141又は143に示すアミノ酸配列に1又は数個のアミノ酸の置換、欠失又は付加がなされたアミノ酸配列を有するアマドリアーゼ。 
    (ii) 前記(i)のアマドリアーゼにおいて、当該アマドリアーゼの全長アミノ酸配列が配列番号141又は143のアミノ酸配列と70%以上の配列同一性を有し、配列番号141の第10位~32位、36~41位、49~52位、54~58位、73~75位、84~86位、88~90位、120~122位、145~150位、156~162位、164~170位、180~182位、202~205位、207~211位、214~224位、227~230位、236~241位、243~248位、258~261位、266~268位、270~273位、275~287位、295~297位、306~308位、310~316位、324~329位、332~334位、341~344位、346~355位、357~363位、370~383位、385~387位、389~394位、405~410位及び423~431位のアミノ酸配列からなる相同性領域におけるアミノ酸配列と当該アマドリアーゼの対応する位置の相同性領域におけるアミノ酸配列とが90%以上の配列同一性を有するアマドリアーゼ。
  13.  アマドリアーゼがさらに、配列番号1に示すアミノ酸配列における以下のアミノ酸、
    (i)262位のアスパラギン、
    (ii)257位のバリン、
    (iii)249位のグルタミン酸
    (iv)253位のグルタミン酸、
    (v)337位のグルタミン、
    (vi)340位のグルタミン酸、
    (vii)232位のアスパラギン酸、
    (viii)129位のアスパラギン酸、
    (ix)132位のアスパラギン酸、
    (x)133位のグルタミン酸、
    (xi)44位のグルタミン酸、
    (xii)256位のグリシン、
    (xiii)231位のグルタミン酸、及び
    (xiv)81位のグルタミン酸、
    よりなる群から選択されるアミノ酸に対応する位置で1つまたはそれ以上のアミノ酸残基の置換を有し、かつ
     場合によりカルボキシル末端からの3アミノ酸残基を欠失していてもよい、請求項3~12のいずれか1項に記載の測定方法。
  14.  以下の(1)および(2)の成分を含むことを特徴とする、試料中のヘモグロビンA1cの測定用試薬キット。
    (1)ヘモグロビンA1cに直接作用して、過酸化水素を生成する作用を有するアマドリアーゼ。
    (2)過酸化水素を測定するための試薬。
  15.  前記ヘモグロビンA1cに直接作用するアマドリアーゼが、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するものである、請求項14に記載のキット。
  16.  前記ヘモグロビンA1cに直接作用するアマドリアーゼが、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有し、かつ、以下の(i)~(iii)からなる群より選択されるアマドリアーゼ、
    (i) アマドリアーゼのアミノ酸配列を、配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸配列の以下(a)から(j)よりなる群から選択される位置に対応する位置で当該アマドリアーゼのアミノ酸配列が1つまたはそれ以上のアミノ酸残基の置換を有するアマドリアーゼ、
    (a)配列番号1の62位、
    (b)配列番号1の63位、
    (c)配列番号1の102位、
    (d)配列番号1の106位、
    (e)配列番号1の110位、
    (f)配列番号1の113位、
    (g)配列番号1の355位、
    (h)配列番号1の419位、
    (i)配列番号1の68位、
    (j)配列番号1の356位、
    (ii) 前記(i)のアマドリアーゼにおいて、配列番号1に示すアミノ酸配列における62位、63位、102位、106位、110位、113位、355位、419、68位及び356位に対応する位置以外の位置における1又は数個のアミノ酸が置換、欠失又は付加されたアミノ酸配列からなるアマドリアーゼ、
    (iii) 前記(i)のアマドリアーゼにおいて、当該アマドリアーゼの全長アミノ酸配列が配列番号1のアミノ酸配列と70%以上の配列同一性を有し、配列番号1の第10位~32位、36~41位、49~52位、54~58位、63~65位、73~75位、84~86位、88~90位、120~122位、145~150位、156~162位、164~170位、180~182位、202~205位、207~211位、214~224位、227~230位、236~241位、243~248位、258~261位、266~268位、270~273位、275~287位、295~297位、306~308位、310~316位、324~329位、332~334位、341~344位、346~355位、357~363位、370~383位、385~387位、389~394位、405~410位及び423~431位のアミノ酸配列からなる相同性領域におけるアミノ酸配列と当該アマドリアーゼの対応する位置の相同性領域におけるアミノ酸配列とが90%以上の配列同一性を有するアマドリアーゼ、
    である、請求項14又は15に記載のキット。
  17.  前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の以下(a)から(j)よりなる群から選択される1つまたはそれ以上の位置に対応する位置のアミノ酸が以下の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼ、
    (a)配列番号1の62位に対応する位置のアミノ酸がアラニン、アスパラギン酸、アスパラギン、グルタミン、グルタミン酸、グリシン、バリン、ロイシン、イソロイシン、システイン、セリン、スレオニン又はプロリンである、
    (b)配列番号1の63位に対応する位置のアミノ酸がアラニン又はヒスチジンである、
    (c)配列番号1の102位に対応する位置のアミノ酸がリジンである、
    (d)配列番号1の106位に対応する位置のアミノ酸がアラニン、リジン又はアルギニンである、
    (e)配列番号1の110位に対応する位置のアミノ酸がロイシン又はチロシンである、
    (f)配列番号1の113位に対応する位置のアミノ酸がリジン又はアルギニンである、
    (g)配列番号1の355位に対応する位置のアミノ酸がセリンである、
    (h)配列番号1の419位に対応する位置のアミノ酸がリジンである、
    (i) 配列番号1の68位に対応する位置のアミノ酸がアスパラギンである、
    (j) 配列番号1の356位に対応する位置のアミノ酸がスレオニンである、
    である、請求項16に記載のキット。
  18.  前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の(a)から(j)よりなる群から選択される2以上の位置に対応する位置のアミノ酸が、当該(a)から(j)の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼである、請求項17に記載のキット。
  19.  前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の(a)から(j)よりなる群から選択される3以上の位置に対応する位置のアミノ酸が、当該(a)から(j)の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼである、請求項18に記載のキット。
  20.  前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の(a)から(j)よりなる群から選択される4以上の位置に対応する位置のアミノ酸が、当該(a)から(j)の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼである、請求項19に記載のキット。
  21.  前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の(a)から(j)よりなる群から選択される5以上の位置に対応する位置のアミノ酸が、当該(a)から(j)の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼである、請求項20に記載のキット。
  22.  前記ヘモグロビンA1cに直接作用するアマドリアーゼが、アマドリアーゼのアミノ酸配列を配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1記載のアミノ酸の(a)から(j)よりなる群から選択される6以上の位置に対応する位置のアミノ酸が、当該(a)から(j)の各々に記載されるアミノ酸残基であり、かつ、α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸(αF6P)に対し0.1U/mg以上の比活性を有するアマドリアーゼである、請求項21に記載のキット。
  23.  前記ヘモグロビンA1cに直接作用して、過酸化水素を生成する作用を有するアマドリアーゼが、コニオカエタ(Coniochaeta)属、ユーペニシリウム(Eupenicillium)属、ピレノケータ(Pyrenochaeta)属、アルスリニウム(Arthrinium)属、カーブラリア(Curvularia)属、ネオコスモスポラ(Neocosmospora)属、クリプトコッカス(Cryptococcus)属、フェオスフェリア(Phaeosphaeria)属、アスペルギルス(Aspergillus)属、エメリセラ(Emericella)属、ウロクラディウム(Ulocladium)属、またはペニシリウム(Penicillium)属由来である、請求項14~22のいずれか1項に記載のキット。
  24.  前記ヘモグロビンA1cに直接作用して、過酸化水素を生成する作用を有するアマドリアーゼが、
    (i) 配列番号141又は143に示すアミノ酸配列に1又は数個のアミノ酸の置換、欠失又は付加がなされたアミノ酸配列を有するアマドリアーゼ、または
    (ii) 前記(i)のアマドリアーゼにおいて、当該アマドリアーゼの全長アミノ酸配列が配列番号141又は143のアミノ酸配列と70%以上の配列同一性を有し、配列番号141の第10位~32位、36~41位、49~52位、54~58位、73~75位、84~86位、88~90位、120~122位、145~150位、156~162位、164~170位、180~182位、202~205位、207~211位、214~224位、227~230位、236~241位、243~248位、258~261位、266~268位、270~273位、275~287位、295~297位、306~308位、310~316位、324~329位、332~334位、341~344位、346~355位、357~363位、370~383位、385~387位、389~394位、405~410位及び423~431位のアミノ酸配列からなる相同性領域におけるアミノ酸配列と当該アマドリアーゼの対応する位置の相同性領域におけるアミノ酸配列とが90%以上の配列同一性を有するアマドリアーゼ
    である、請求項14~23のいずれか1項に記載のキット。
  25.  前記ヘモグロビンA1cに直接作用して、過酸化水素を生成する作用を有するアマドリアーゼがさらに配列番号1に示すアミノ酸配列における以下のアミノ酸、
    (i)262位のアスパラギン、
    (ii)257位のバリン、
    (iii)249位のグルタミン酸
    (iv)253位のグルタミン酸、
    (v)337位のグルタミン、
    (vi)340位のグルタミン酸、
    (vii)232位のアスパラギン酸、
    (viii)129位のアスパラギン酸、
    (ix)132位のアスパラギン酸、
    (x)133位のグルタミン酸、
    (xi)44位のグルタミン酸、
    (xii)256位のグリシン、
    (xiii)231位のグルタミン酸、及び
    (xiv)81位のグルタミン酸、
    よりなる群から選択されるアミノ酸に対応する位置で1つまたはそれ以上のアミノ酸残基の置換を有し、かつ
     場合によりカルボキシル末端からの3アミノ酸残基を欠失していてもよい、請求項16~24のいずれか1項に記載のキット。
  26.  以下からなる群より選択されるアマドリアーゼ、
    (i) アマドリアーゼのアミノ酸配列を、配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1に示すアミノ酸配列における68位に対応する位置のアミノ酸がアスパラギンであるか、配列番号1に示すアミノ酸配列における356位に対応する位置のアミノ酸がスレオニンであり、かつα-フルクトシルヘキサペプチド(αF6P)に対する活性を有するアマドリアーゼ、
    (ii) 前記(i)のアマドリアーゼにおいて、配列番号1に示すアミノ酸配列における68位又は356位に対応する位置以外の位置における1又は数個のアミノ酸が置換、欠失又は付加されたアミノ酸配列からなり、かつαF6Pに対する活性を有するアマドリアーゼ、
    (iii) 前記(i)のアマドリアーゼにおいて、配列番号1に示すアミノ酸配列における68位に対応する位置のアミノ酸がアスパラギンであるか、配列番号1に示すアミノ酸配列における356位に対応する位置のアミノ酸がスレオニンであり、かつ、当該アマドリアーゼの全長アミノ酸配列が配列番号1のアミノ酸配列と70%以上の配列同一性を有し、配列番号1の第10位~32位、36~41位、49~52位、54~58位、63~65位、73~75位、84~86位、88~90位、120~122位、145~150位、156~162位、164~170位、180~182位、202~205位、207~211位、214~224位、227~230位、236~241位、243~248位、258~261位、266~268位、270~273位、275~287位、295~297位、306~308位、310~316位、324~329位、332~334位、341~344位、346~355位、357~363位、370~383位、385~387位、389~394位、405~410位及び423~431位のアミノ酸配列からなる相同性領域におけるアミノ酸配列と当該アマドリアーゼの対応する位置の相同性領域におけるアミノ酸配列とが90%以上の配列同一性を有し、αF6Pに対する活性を有するアマドリアーゼ。
PCT/JP2014/078363 2013-10-25 2014-10-24 ヘモグロビンA1cの測定方法および測定キット WO2015060429A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14856134.3A EP3061819B1 (en) 2013-10-25 2014-10-24 HEMOGLOBIN A1c MEASUREMENT METHOD AND MEASUREMENT KIT
CN201480058684.9A CN105683374A (zh) 2013-10-25 2014-10-24 血红蛋白A1c的测定方法和测定试剂盒
US15/031,037 US11078517B2 (en) 2013-10-25 2014-10-24 Hemoglobin A1c measurement method and measurement kit
JP2015543924A JP6542671B2 (ja) 2013-10-25 2014-10-24 ヘモグロビンA1cの測定方法および測定キット
KR1020167013254A KR102390390B1 (ko) 2013-10-25 2014-10-24 헤모글로빈 A1c의 측정 방법 및 측정 키트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-222774 2013-10-25
JP2013222774 2013-10-25

Publications (1)

Publication Number Publication Date
WO2015060429A1 true WO2015060429A1 (ja) 2015-04-30

Family

ID=52993014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078363 WO2015060429A1 (ja) 2013-10-25 2014-10-24 ヘモグロビンA1cの測定方法および測定キット

Country Status (6)

Country Link
US (1) US11078517B2 (ja)
EP (1) EP3061819B1 (ja)
JP (2) JP6542671B2 (ja)
KR (1) KR102390390B1 (ja)
CN (1) CN105683374A (ja)
WO (1) WO2015060429A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015060431A1 (ja) * 2013-10-25 2017-03-09 キッコーマン株式会社 糖化ペプチドに作用するアマドリアーゼを用いたHbA1c測定法
WO2017183717A1 (ja) * 2016-04-22 2017-10-26 キッコーマン株式会社 HbA1cデヒドロゲナーゼ
EP3216865A4 (en) * 2014-11-07 2018-05-23 Kikkoman Corporation Amadoriase having improved anionic-surfactant resistance
WO2018101389A1 (ja) 2016-11-30 2018-06-07 東洋紡株式会社 ヘモグロビンの糖化率測定方法
WO2018221446A1 (ja) 2017-05-30 2018-12-06 協和メデックス株式会社 糖化ヘモグロビンの測定方法
WO2019045052A1 (ja) 2017-08-31 2019-03-07 キッコーマン株式会社 糖化ヘモグロビンオキシダーゼ改変体及び測定方法
EP3461907A1 (en) 2017-10-02 2019-04-03 ARKRAY, Inc. Measurement of glycoprotein
EP3461908A1 (en) 2017-10-02 2019-04-03 ARKRAY, Inc. Measurement of glycoprotein
JPWO2018021530A1 (ja) * 2016-07-29 2019-05-23 協和メデックス株式会社 糖化ヘモグロビンの測定方法
US11384381B2 (en) 2016-07-13 2022-07-12 Kikkoman Corporation Reaction accelerating agent
US11634745B2 (en) 2017-03-03 2023-04-25 Polymer Technology Systems, Inc. Systems and methods for sample preparation for enzymatic A1C detection and quantification
US11703513B2 (en) 2017-08-07 2023-07-18 Polymer Technology Systems, Inc. Systems and methods for enzymatic A1C detection and quantification

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533997B2 (ja) 1985-06-04 1993-05-20 Noda Sangyo Kagaku Kenkyusho
WO1997013872A1 (fr) 1995-10-12 1997-04-17 Kyoto Daiichi Kagaku Co., Ltd. Procede pour doser les composes d'amadori
JPH11127895A (ja) 1991-07-29 1999-05-18 Genzyme Ltd 非酵素的グリコシル化タンパク質の測定方法
JP2001095598A (ja) 1999-10-01 2001-04-10 Kikkoman Corp 糖化蛋白質の測定方法
JP2003235585A (ja) 2001-09-04 2003-08-26 Kikkoman Corp 新規なフルクトシルペプチドオキシダーゼ
WO2004038033A1 (ja) * 2002-10-23 2004-05-06 Daiichi Pure Chemicals Co., Ltd. 脱フルクトシル化方法
JP2004275013A (ja) 2003-03-12 2004-10-07 Asahi Kasei Pharma Kk 新規な酵素
JP2004275063A (ja) 2003-03-14 2004-10-07 Ichibiki Kk 新規なフルクトシルアミンオキシダーゼをコードする遺伝子及びそれを用いての該フルクトシルアミンオキシダーゼの製造方法
WO2004104203A1 (ja) 2003-05-21 2004-12-02 Asahi Kasei Pharma Corporation ヘモグロビンA1c測定法およびそれに用いる酵素とその製造法
WO2005049857A1 (ja) 2003-11-19 2005-06-02 Daiichi Pure Chemicals Co., Ltd. 糖化蛋白質の測定方法
WO2007125779A1 (ja) 2006-04-25 2007-11-08 Kikkoman Corporation 熱安定性に優れた真核型アマドリアーゼ、その遺伝子及び組換え体dna、並びに熱安定性に優れた真核型アマドリアーゼの製造法
WO2008018094A1 (en) 2006-08-07 2008-02-14 Stmicroelectronics S.R.L. Control device for power factor correction device in forced switching power supplies
WO2008108385A1 (ja) 2007-03-05 2008-09-12 Kikkoman Corporation 糖化ヘキサペプチドの測定方法
JP2010035469A (ja) 2008-08-04 2010-02-18 Toyobo Co Ltd フルクトシルバリルヒスチジン測定用酵素、およびその利用法
JP2010057474A (ja) 2008-08-04 2010-03-18 Toyobo Co Ltd フルクトシルアミノ酸オキシダーゼ、およびその利用法
WO2010041419A1 (ja) 2008-10-10 2010-04-15 東洋紡績株式会社 新規なフルクトシルバリルヒスチジンオキシダーゼ活性を有するタンパク質及びその改変体、並びにその利用
WO2010041715A1 (ja) 2008-10-09 2010-04-15 協和メデックス株式会社 新規フルクトシルペプチドオキシダーゼ
WO2011015326A2 (en) 2009-08-03 2011-02-10 Roche Diagnostics Gmbh Fructosyl amino acid oxidase
WO2011015325A1 (en) 2009-08-03 2011-02-10 Roche Diagnostics Gmbh Fructosyl peptidyl oxidase and sensor for assaying a glycated protein
JP2011229526A (ja) 2010-04-09 2011-11-17 Toyobo Co Ltd ヘモグロビンA1cの測定方法
WO2012018094A1 (ja) 2010-08-06 2012-02-09 キッコーマン株式会社 基質特異性が改変されたアマドリアーゼ
JP2013222774A (ja) 2012-04-13 2013-10-28 Sony Computer Entertainment Inc 電子機器
WO2013162035A1 (ja) * 2012-04-27 2013-10-31 キッコーマン株式会社 フルクトシルヘキサペプチドに作用する改変型アマドリアーゼ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647654A (en) * 1984-10-29 1987-03-03 Molecular Diagnostics, Inc. Peptides useful in preparing hemoglobin A1c immunogens
JPH0533997A (ja) 1991-07-26 1993-02-09 Nippondenso Co Ltd フイルムドアユニツト
JP3586500B2 (ja) 1995-06-26 2004-11-10 日本国土開発株式会社 大断面アーチ形トンネルの掘進工法
JP2004038034A (ja) 2002-07-05 2004-02-05 Ricoh Co Ltd 帯電装置、プロセスカートリッジ、画像形成装置および複写機
JP2004104203A (ja) 2002-09-05 2004-04-02 Toshiba Corp 固体撮像装置
JP2006094702A (ja) * 2002-10-23 2006-04-13 Dai Ichi Pure Chem Co Ltd フルクトシルバリンの生産方法および該生産方法により得られたフルクトシルバリンの定量方法
JP4544517B2 (ja) 2003-07-15 2010-09-15 三菱レイヨン株式会社 光源装置
JP4589909B2 (ja) 2006-10-27 2010-12-01 株式会社日立メディアエレクトロニクス 対物レンズ駆動装置
TWI405472B (zh) 2008-07-31 2013-08-11 Htc Corp 電子裝置及其電聲換能器
JP5075757B2 (ja) 2008-08-05 2012-11-21 オリンパス株式会社 画像処理装置、画像処理プログラム、画像処理方法、および電子機器
JP2011015325A (ja) 2009-07-06 2011-01-20 Mitsubishi Electric Corp 監視画像記録装置
WO2012043601A1 (ja) * 2010-09-29 2012-04-05 キッコーマン株式会社 アマドリアーゼ改変体
CN105122060A (zh) * 2013-01-16 2015-12-02 富士瑞必欧株式会社 样本中的血红蛋白A1c的免疫测定方法

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533997B2 (ja) 1985-06-04 1993-05-20 Noda Sangyo Kagaku Kenkyusho
JPH11127895A (ja) 1991-07-29 1999-05-18 Genzyme Ltd 非酵素的グリコシル化タンパク質の測定方法
WO1997013872A1 (fr) 1995-10-12 1997-04-17 Kyoto Daiichi Kagaku Co., Ltd. Procede pour doser les composes d'amadori
JP2001095598A (ja) 1999-10-01 2001-04-10 Kikkoman Corp 糖化蛋白質の測定方法
JP2003235585A (ja) 2001-09-04 2003-08-26 Kikkoman Corp 新規なフルクトシルペプチドオキシダーゼ
WO2004038033A1 (ja) * 2002-10-23 2004-05-06 Daiichi Pure Chemicals Co., Ltd. 脱フルクトシル化方法
WO2004038034A1 (ja) 2002-10-23 2004-05-06 Daiichi Pure Chemicals Co., Ltd. 新規なフルクトシルペプチドオキシダーゼとその利用
JP2004275013A (ja) 2003-03-12 2004-10-07 Asahi Kasei Pharma Kk 新規な酵素
JP2004275063A (ja) 2003-03-14 2004-10-07 Ichibiki Kk 新規なフルクトシルアミンオキシダーゼをコードする遺伝子及びそれを用いての該フルクトシルアミンオキシダーゼの製造方法
WO2004104203A1 (ja) 2003-05-21 2004-12-02 Asahi Kasei Pharma Corporation ヘモグロビンA1c測定法およびそれに用いる酵素とその製造法
WO2005049857A1 (ja) 2003-11-19 2005-06-02 Daiichi Pure Chemicals Co., Ltd. 糖化蛋白質の測定方法
WO2007125779A1 (ja) 2006-04-25 2007-11-08 Kikkoman Corporation 熱安定性に優れた真核型アマドリアーゼ、その遺伝子及び組換え体dna、並びに熱安定性に優れた真核型アマドリアーゼの製造法
WO2008018094A1 (en) 2006-08-07 2008-02-14 Stmicroelectronics S.R.L. Control device for power factor correction device in forced switching power supplies
WO2008108385A1 (ja) 2007-03-05 2008-09-12 Kikkoman Corporation 糖化ヘキサペプチドの測定方法
JP2010035469A (ja) 2008-08-04 2010-02-18 Toyobo Co Ltd フルクトシルバリルヒスチジン測定用酵素、およびその利用法
JP2010057474A (ja) 2008-08-04 2010-03-18 Toyobo Co Ltd フルクトシルアミノ酸オキシダーゼ、およびその利用法
WO2010041715A1 (ja) 2008-10-09 2010-04-15 協和メデックス株式会社 新規フルクトシルペプチドオキシダーゼ
WO2010041419A1 (ja) 2008-10-10 2010-04-15 東洋紡績株式会社 新規なフルクトシルバリルヒスチジンオキシダーゼ活性を有するタンパク質及びその改変体、並びにその利用
WO2011015326A2 (en) 2009-08-03 2011-02-10 Roche Diagnostics Gmbh Fructosyl amino acid oxidase
WO2011015325A1 (en) 2009-08-03 2011-02-10 Roche Diagnostics Gmbh Fructosyl peptidyl oxidase and sensor for assaying a glycated protein
JP2011229526A (ja) 2010-04-09 2011-11-17 Toyobo Co Ltd ヘモグロビンA1cの測定方法
WO2012018094A1 (ja) 2010-08-06 2012-02-09 キッコーマン株式会社 基質特異性が改変されたアマドリアーゼ
JP2013222774A (ja) 2012-04-13 2013-10-28 Sony Computer Entertainment Inc 電子機器
WO2013162035A1 (ja) * 2012-04-27 2013-10-31 キッコーマン株式会社 フルクトシルヘキサペプチドに作用する改変型アマドリアーゼ

Non-Patent Citations (26)

* Cited by examiner, † Cited by third party
Title
"Current Protocols in Molecular Biology", 1987
"Current Protocols in Molecular Biology", 1989, WILEY INTERSCIENCE
APPL. MICROBIOL. BIOTECHNOL, vol. 74, 2007, pages 813 - 819
BIOCHEM. BIOPHYS. RES. COMMUN., vol. 311, 2003, pages 104 - 111
BIOSCI. BIOTECHNOL. BIOCHEM., vol. 66, 2002, pages 1256 - 1261
BIOSCI. BIOTECHNOL. BIOCHEM., vol. 66, 2002, pages 2323 - 2329
BIOTECHNOL. BIOENG., vol. 106, 2010, pages 358 - 366
BIOTECHNOL. LETTERS, vol. 27, 2005, pages 27 - 32
BIOTECHNOLOGY AND BIOENGINEERING, vol. 106, 2010, pages 358 - 366
CLIN. CHEM., vol. 43, 1997, pages 1994 - 1951
EUR. J. BIOCHEM., vol. 242, 1996, pages 499 - 505
GENDAI KAGAKU, June 1989 (1989-06-01), pages 24 - 30
GENE, vol. 37, 1985, pages 73
J. BIOSCI. BIOENG., vol. 102, 2006, pages 241 - 243
JEPPSSON JO ET AL.: "Approved IFCC reference method for the measurement of HbAlc in human blood", CLIN. CHEM. LAB. MED., vol. 40, 2002, pages 78 - 89, XP002378412, DOI: doi:10.1515/CCLM.2002.016
MAR. BIOTECHNOL., vol. 6, 2004, pages 625 - 632
METHODS ENZYMOL., vol. 154, 1987, pages 350
METHODS ENZYMOL., vol. 154, 1987, pages 367
NUCLEIC ACIDS RES, vol. 14, 1986, pages 9679
NUCLEIC ACIDS RES., vol. 12, 1984, pages 9441
NUCLEIC ACIDS RES., vol. 13, 1985, pages 8749
NUCLEIC ACIDS RES., vol. 13, 1985, pages 8765
PROC. NATL. ACID. SCI. U.S.A., vol. 82, 1985, pages 488
PROTEIN SCI., vol. 4, 1995, pages 2411 - 2423
SAMBROOK ET AL.: "Molecular Cloning", vol. 2, COLD SPRING HARBOR LABORATORY PRESS
See also references of EP3061819A4

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015060431A1 (ja) * 2013-10-25 2017-03-09 キッコーマン株式会社 糖化ペプチドに作用するアマドリアーゼを用いたHbA1c測定法
US11198852B2 (en) 2014-11-07 2021-12-14 Kikkoman Corporation Amadoriase having enhanced anionic surfactant tolerance
EP3216865A4 (en) * 2014-11-07 2018-05-23 Kikkoman Corporation Amadoriase having improved anionic-surfactant resistance
EP3447132A4 (en) * 2016-04-22 2019-10-02 Kikkoman Corporation HBA1C DEHYDROGENASE
KR102596402B1 (ko) 2016-04-22 2023-10-31 기꼬만 가부시키가이샤 HbA1c 디히드로게나아제
KR20180136946A (ko) * 2016-04-22 2018-12-26 기꼬만 가부시키가이샤 HbA1c 디히드로게나아제
CN109312312A (zh) * 2016-04-22 2019-02-05 龟甲万株式会社 HbA1c脱氢酶
JPWO2017183717A1 (ja) * 2016-04-22 2019-02-28 キッコーマン株式会社 HbA1cデヒドロゲナーゼ
JP2022081510A (ja) * 2016-04-22 2022-05-31 キッコーマン株式会社 HbA1cデヒドロゲナーゼ
JP7487244B2 (ja) 2016-04-22 2024-05-20 キッコーマン株式会社 HbA1cデヒドロゲナーゼ
JP7471772B2 (ja) 2016-04-22 2024-04-22 キッコーマン株式会社 HbA1cデヒドロゲナーゼ
WO2017183717A1 (ja) * 2016-04-22 2017-10-26 キッコーマン株式会社 HbA1cデヒドロゲナーゼ
US11111517B2 (en) 2016-04-22 2021-09-07 Kikkoman Corporation HbA1c dehydrogenase
CN109312312B (zh) * 2016-04-22 2023-06-02 龟甲万株式会社 HbA1c脱氢酶
US11384381B2 (en) 2016-07-13 2022-07-12 Kikkoman Corporation Reaction accelerating agent
EP3492600A4 (en) * 2016-07-29 2020-05-13 Hitachi Chemical Diagnostics Systems Co., Ltd. METHOD FOR MEASURING GLYCOSYLATED HEMOGLOBIN
US11168349B2 (en) 2016-07-29 2021-11-09 Hitachi Chemical Diagnostics Systems Co., Ltd. Method for measuring glycated hemoglobin
JPWO2018021530A1 (ja) * 2016-07-29 2019-05-23 協和メデックス株式会社 糖化ヘモグロビンの測定方法
JP7020413B2 (ja) 2016-07-29 2022-02-16 ミナリスメディカル株式会社 糖化ヘモグロビンの測定方法
WO2018101389A1 (ja) 2016-11-30 2018-06-07 東洋紡株式会社 ヘモグロビンの糖化率測定方法
US11634745B2 (en) 2017-03-03 2023-04-25 Polymer Technology Systems, Inc. Systems and methods for sample preparation for enzymatic A1C detection and quantification
WO2018221446A1 (ja) 2017-05-30 2018-12-06 協和メデックス株式会社 糖化ヘモグロビンの測定方法
JPWO2018221446A1 (ja) * 2017-05-30 2020-04-02 日立化成ダイアグノスティックス・システムズ株式会社 糖化ヘモグロビンの測定方法
JP7020484B2 (ja) 2017-05-30 2022-02-16 ミナリスメディカル株式会社 糖化ヘモグロビンの測定方法
US11703513B2 (en) 2017-08-07 2023-07-18 Polymer Technology Systems, Inc. Systems and methods for enzymatic A1C detection and quantification
WO2019045052A1 (ja) 2017-08-31 2019-03-07 キッコーマン株式会社 糖化ヘモグロビンオキシダーゼ改変体及び測定方法
JP7157063B2 (ja) 2017-08-31 2022-10-19 キッコーマン株式会社 糖化ヘモグロビンオキシダーゼ改変体及び測定方法
JPWO2019045052A1 (ja) * 2017-08-31 2020-12-17 キッコーマン株式会社 糖化ヘモグロビンオキシダーゼ改変体及び測定方法
US20200283741A1 (en) * 2017-08-31 2020-09-10 Kikkoman Corporation Glycated hemoglobin oxidase variant and method for measurement
US11313863B2 (en) 2017-10-02 2022-04-26 Arkray, Inc. Measurement of glycoprotein
US10989714B2 (en) 2017-10-02 2021-04-27 Arkray, Inc. Measurement of glycoprotein
EP3461908A1 (en) 2017-10-02 2019-04-03 ARKRAY, Inc. Measurement of glycoprotein
EP3461907A1 (en) 2017-10-02 2019-04-03 ARKRAY, Inc. Measurement of glycoprotein

Also Published As

Publication number Publication date
KR20160074610A (ko) 2016-06-28
JP2019154447A (ja) 2019-09-19
US20160251695A1 (en) 2016-09-01
EP3061819A1 (en) 2016-08-31
CN105683374A (zh) 2016-06-15
EP3061819A4 (en) 2017-08-16
JPWO2015060429A1 (ja) 2017-03-09
KR102390390B1 (ko) 2022-04-25
US11078517B2 (en) 2021-08-03
JP6542671B2 (ja) 2019-07-10
JP6868662B2 (ja) 2021-05-12
EP3061819B1 (en) 2023-05-24

Similar Documents

Publication Publication Date Title
JP6868662B2 (ja) ヘモグロビンA1cの測定方法および測定キット
JP6726243B2 (ja) フルクトシルヘキサペプチドに作用する改変型アマドリアーゼ
JP6538101B2 (ja) 基質特異性が改変されたアマドリアーゼ
JP7158108B2 (ja) 改変型アマドリアーゼ及びその製造法、並びにアマドリアーゼの界面活性剤耐性向上剤及びこれを用いたHbA1c測定用組成物
JP2020141690A (ja) 糖化ペプチドに作用するアマドリアーゼを用いたHbA1c測定法
JP2024036589A (ja) アニオン性界面活性剤耐性が向上したアマドリアーゼ
WO2016159384A1 (ja) 比活性が向上したアマドリアーゼ
JP6068916B2 (ja) 糖化ヘモグロビン測定用試薬組成物および糖化ヘモグロビン測定方法
JP7157063B2 (ja) 糖化ヘモグロビンオキシダーゼ改変体及び測定方法
JP6764219B2 (ja) グッド緩衝液に対して安定なアマドリアーゼ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015543924

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15031037

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014856134

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014856134

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167013254

Country of ref document: KR

Kind code of ref document: A