WO2014122850A1 - 基地局装置、プリコーディング方法、集積回路、無線通信システム - Google Patents
基地局装置、プリコーディング方法、集積回路、無線通信システム Download PDFInfo
- Publication number
- WO2014122850A1 WO2014122850A1 PCT/JP2013/082996 JP2013082996W WO2014122850A1 WO 2014122850 A1 WO2014122850 A1 WO 2014122850A1 JP 2013082996 W JP2013082996 W JP 2013082996W WO 2014122850 A1 WO2014122850 A1 WO 2014122850A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base station
- linear filter
- unit
- transmission
- station apparatus
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0417—Feedback systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03343—Arrangements at the transmitter end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03891—Spatial equalizers
- H04L25/03898—Spatial equalizers codebook-based design
Definitions
- the present invention relates to a technique for performing multiuser multiple input multiple output transmission.
- MIMO Multiple input multiple output
- MU-MIMO Multi User-MIMO
- inter-user interference For example, in the Long term evolution adopted as one of the 3.9th generation mobile radio communication systems, the base station device pre-multiplies a linear filter calculated based on the propagation path information notified from each terminal device. Thus, linear precoding that suppresses the IUI is employed.
- MU-MIMO technology using nonlinear precoding in which nonlinear processing is performed on the base station apparatus side is attracting attention.
- a perturbation vector having a complex number (perturbation term) obtained by multiplying an arbitrary Gaussian integer by a constant real number can be added to a transmission signal. It becomes.
- Non-Patent Document 1 Vector perturbation (VP) described in Non-Patent Document 1 and Tomlinson Harashima precoding (THP) described in Non-Patent Document 2 are well known.
- VP Vector perturbation
- THP Tomlinson Harashima precoding
- FIG. 13 is a sequence chart showing a state of communication between the base station apparatus that performs nonlinear precoding and the terminal apparatus.
- the base station apparatus generates a reference signal for estimating CSI for the terminal apparatus (step S101).
- the base station apparatus generates transmission data and a demodulation reference signal (step S102).
- the base station apparatus transmits a reference signal for estimating CSI to the terminal apparatus (step S103).
- the base station apparatus may simultaneously transmit a data signal and a demodulation length reference signal associated with a reference signal for estimating another CSI to the base station apparatus. Shall be sent separately. Since the reference signal for estimating CSI is known between the base station apparatus and the terminal apparatus, the terminal apparatus can estimate CSI based on the received reference signal (step S104).
- the terminal device converts the estimated CSI into information that can be notified to the base station device (step S105), and notifies the base station device (step S106).
- Examples of information that can be notified include information obtained by directly quantizing estimated information into digital information, and a number indicating a code described in a code book shared by a base station device and a terminal device.
- the base station apparatus performs precoding on the data and the demodulation reference signal based on the restored CSI (step S107), and transmits it to the terminal apparatus (step S108).
- the terminal apparatus When the terminal apparatus receives the data and the demodulation reference signal from the base station apparatus, the terminal apparatus performs propagation path estimation based on the demodulation reference signal (step S109). Equalization (spatial signal detection processing) is performed (step S110).
- the terminal apparatus needs to perform a modulo operation (step S111) on the channel-equalized signal.
- the modulo operation is signal processing in which the real part and the imaginary part of the input complex signal are within [ ⁇ , ⁇ ] with respect to a given real constant 2 ⁇ .
- 2 ⁇ is called a modulo width.
- the terminal apparatus demodulates transmission data from the signal after the modulo calculation (step S112).
- the terminal device since the modulo width of the modulo operation performed on the receiving side depends on the propagation path state, the terminal device needs to estimate based on the demodulation reference signal. However, depending on the precoding performed in the base station apparatus, an error may occur between the modulo width estimated by the terminal apparatus based on the demodulation reference signal and the true optimum modulo width.
- Non-Patent Document 3 discloses a method for correcting a modulo width estimated based on a demodulation reference signal.
- it is necessary to optimize parameters for correction in accordance with the propagation path environment. Therefore, parameter calibration is required for each propagation path environment, and optimal transmission characteristics cannot be realized in a propagation path environment where calibration is not possible.
- a terminal apparatus estimates a modulo width based on a demodulation reference signal
- the terminal apparatus estimates a modulo based on a demodulation reference signal.
- An error occurs between the width and the optimum modulo width, and transmission characteristics are greatly degraded.
- the method of realizing this error suppression without performing prior calibration is still unclear.
- the present invention has been made in view of such circumstances, and in a wireless communication system in which a base station apparatus performs MU-MIMO transmission based on nonlinear precoding, a terminal apparatus can accurately perform a process based on a demodulation reference signal. It is an object of the present invention to provide a base station apparatus, a wireless communication system, and an integrated circuit that can estimate a modulo width.
- the base station apparatus of the present invention is a base station apparatus that includes a plurality of antennas, performs non-linear precoding on a signal addressed to a plurality of terminal apparatuses, performs spatial multiplexing, and performs radio transmission.
- a channel information acquisition unit for acquiring channel information, a mapping unit for multiplexing the data signals addressed to the plurality of terminal devices and a demodulation reference signal, and the data signal and the demodulation reference signal based on the channel information
- a precoding unit that performs precoding on the first linear filter that multiplies the data signal based on the propagation path information, and a second that multiplies the reference signal for demodulation.
- a linear filter generation unit that generates different linear filters.
- the precoding method of the present invention can be applied to data signals and demodulation reference signals transmitted from a base station apparatus having a plurality of antennas to a plurality of terminal apparatuses, and to propagation path information between the plurality of terminal apparatuses.
- the precoding method of the present invention can be applied to data signals and demodulation reference signals transmitted from a base station apparatus having a plurality of antennas to a plurality of terminal apparatuses, and to propagation path information between the plurality of terminal apparatuses.
- a precoding method for performing preliminary processing based on the propagation path information a step of calculating a first linear filter and a second linear filter, the data signal, and the first signal Searching a perturbation vector based on a linear filter, calculating a transmission data signal and a power normalization coefficient based on the data signal, the first linear filter and the perturbation vector, and the demodulation reference
- a step of calculating a transmission demodulation reference signal based on the signal, the second linear filter, and the power normalization coefficient; and the transmission data signal and the transmission demodulation reference It characterized by having a a process of adjusting the transmit power of the No..
- the integrated circuit of the present invention includes a plurality of antennas, is mounted in a base station apparatus that performs non-linear precoding and spatial multiplexing on signals addressed to a plurality of terminal apparatuses, and performs a plurality of radio transmissions on the base station apparatus.
- An integrated circuit that exhibits a function, a function of acquiring propagation path information with the terminal device, a function of multiplexing data signals addressed to the plurality of terminal devices and a demodulation reference signal, and the propagation path information
- Different linear filters of a first linear filter and a second linear filter that multiplies the demodulation reference signal are generated.
- a terminal apparatus in a wireless communication system in which a base station apparatus performs MU-MIMO transmission based on nonlinear precoding, can estimate a modulo width with high accuracy based on a demodulation reference signal.
- the characteristic deterioration due to the width estimation error is suppressed, which can contribute to a significant improvement in frequency utilization efficiency.
- AT is a transposed matrix of matrix A
- a H is an adjoint (Hermitian transposed) matrix of matrix A
- a ⁇ 1 is an inverse matrix of matrix A
- diag (A) is a diagonal of matrix A Diagonal matrix from which only components are extracted or diagonal matrix in which elements in parentheses are arranged as diagonal components
- I N is an N ⁇ N unit matrix
- 0 N is an N ⁇ N zero matrix
- floor (c) Is the floor function that returns the largest Gaussian integer whose real part and imaginary part do not exceed the values of the real part and imaginary part of the complex number c respectively
- E [x] is the ensemble average of the random variable x
- [A, B] represents a matrix obtained by combining the matrices A and B in the column direction.
- Z [i] represents a set of all Gaussian integers.
- the Gaussian integer is a complex number in which the real part and the imaginary part are each represented by an integer.
- FIG. 1 is a diagram illustrating an example of an outline of a wireless communication system according to the first embodiment of the present invention.
- N t has transmit antennas, relative to the non-linear precoding capable base station apparatus 1 (also referred to as a wireless transmitting device), the terminal apparatus 2 having the receive antennas N r the
- the target is MU-MIMO transmission in which U (also referred to as radio receiving apparatuses) are connected (four terminals 4-1 to 2-4 in FIG. 1).
- U also referred to as radio receiving apparatuses
- the number of reception antennas and the number of ranks differ for each terminal device 2. It doesn't matter. Further, as long as U ⁇ L ⁇ Nt and L ⁇ Nr are satisfied, the number of ranks and the number of reception antennas do not need to be the same between the terminal apparatuses 2.
- orthogonal frequency division multiplexing OFDM
- Nc subcarriers subcarriers
- signal processing described below is performed for each subcarrier.
- the base station apparatus 1 obtains CSI from the base station apparatus 1 to each terminal apparatus 2 based on the control information notified from each terminal apparatus 2, and precodes transmission data for each subcarrier based on the propagation path information. Shall be performed.
- the duplex scheme is assumed to be frequency division duplex, but time division duplex is also included in this embodiment.
- CSI between the base station device 1 and the terminal device 2 is defined.
- a quasi-static frequency selective fading channel is assumed.
- quasi-static means that the propagation path does not vary within one OFDM signal.
- the complex channel gain of the carrier is set to hu, m, n (k, t)
- the propagation path matrix H (k, t) is defined as in Expression (1).
- h u (k, t) represents an N r ⁇ N t matrix composed of complex channel gains observed by the u-th terminal apparatus 2-u.
- CSI refers to a matrix composed of complex channel gains.
- a spatial correlation matrix or a matrix in which linear filters described in a code book shared in advance between the base station apparatus 1 and each terminal apparatus 2 are regarded as CSI, and signal processing described later can be performed.
- the base station device 1 displays a matrix in which eigenvectors are arranged as CSI. May be considered.
- the u-th terminal apparatus 2-u estimates h u (k, t 1 ) that is CSI at time t 1, performs quantization, and notifies the base station apparatus 1 of it.
- the CSI actually notified to the base station apparatus 1 by the u-th terminal apparatus 2-u is defined as h FB, u (k, t 1 ).
- h FB, u (k, t 1 ) is a matrix of N r ⁇ N t like h u (k, t 1 ), but it is not necessarily required to be N r ⁇ N t. Absent.
- the u terminal device 2-u to a receiving antenna of the N r this is considered the case so as to notify only CSI about (N r -1) receive antennas.
- h FB, u (k, t 1 ) is a matrix of (N r ⁇ 1) ⁇ N t .
- the base station apparatus 1 may perform transmission signal processing such as precoding, which will be described later, assuming that the number of reception antennas provided in the u-th terminal apparatus 2-u is (N r ⁇ 1).
- the eigenvectors will be a column vector of the element number N t is the N t exist.
- the eigenvector calculated here includes a vector that can be a linear filter that directs a null beam to the u-th terminal apparatus 2-u.
- the u-th terminal device 2-u can also perform control so as to notify an arbitrary number of column vectors among a plurality of eigenvectors.
- the base station apparatus 1 assumes that the u-th terminal apparatus 2-u has Q reception antennas. Transmission signal processing such as precoding described later may be performed.
- the method by which the u-th terminal apparatus 2-u notifies h FB, u (k, t 1 ) to the base station apparatus 1 is not limited to anything.
- the u-th terminal apparatus 2-u directly quantizes h u (k, t 1 ) and notifies the base station apparatus 1.
- an error occurs between h u (k, t 1 ) and h FB, u (k, t 1 ) according to the number of quantization bits.
- h u (k, t 1 ) h FB, u (k, t 1 ) Will be described.
- FIG. 2 is a block diagram showing a configuration example of the base station apparatus 1 according to the first embodiment of the present invention.
- the base station apparatus 1 includes a channel encoding unit 21, a data modulation unit 23, a mapping unit 25, a precoding unit 27, an antenna unit 29, a control information acquisition unit 31, and a propagation. And a road information acquisition unit 33.
- the precoding unit 27 exists as many as the number of subcarriers N c
- the antenna unit 29 exists as many as the number of transmission antennas N t .
- the control information acquisition unit 31 acquires control information notified from each connected terminal device 2, and outputs information associated with the propagation path information to the propagation path information acquisition unit 33.
- the propagation path information acquisition unit 33 acquires h FB, u (k, t 1 ) notified from each terminal device 2 based on the information input from the control information acquisition unit 31. Then, based on h FB, u (k, t 1 ), a quantized propagation path matrix H FB (k, t 1 ) represented by Expression (2) is calculated.
- H FB (k, t 1 ) H (k, t 1 ).
- N r 1 is assumed, H FB (k, t 1 ) is a U ⁇ N t matrix.
- the propagation path information acquisition unit 33 outputs the calculated H FB (k, t 1 ) to the precoding unit 27.
- the data modulation unit 23 performs QPSK (Quadrature Phase Shift Keying), 16QAM (Quadrature Amplitude). digital data modulation such as ude Modulation).
- QPSK Quadrature Phase Shift Keying
- 16QAM Quadrature Amplitude
- digital data modulation such as ude Modulation
- the data modulation unit 23 inputs the data signal subjected to data modulation to the mapping unit 25.
- the mapping unit 25 performs mapping (also referred to as scheduling or resource allocation) in which each data is allocated to a specified radio resource (also referred to as resource element or simply resource).
- the radio resource mainly refers to frequency, time, code, and space.
- the radio resource to be used is determined based on the reception quality observed by the terminal apparatus 2, the orthogonality of the propagation path between the spatially multiplexed terminals, and the like. In the present embodiment, it is assumed that radio resources to be used are determined in advance and can be grasped by both the base station apparatus 1 and each terminal apparatus 2.
- the mapping unit 25 also performs multiplexing of a known reference signal sequence for performing propagation path estimation in each terminal device 2.
- the reference signals addressed to the terminal devices 2 are multiplexed so as to be orthogonal to each other so that they can be separated in the received terminal device 2.
- the reference signal includes two reference signals: a CSI-reference signal (CSI-RS) that is a reference signal for channel estimation, and a demodulation reference signal (DMRS) that is a demodulation reference signal (also referred to as a unique reference signal). Is multiplexed, but another reference signal may be further multiplexed.
- CSI-RS is for estimating CSI observed in each terminal apparatus 2. That is, the u-th terminal apparatus 2-u estimates h u (k, t 1 ) based on CSI-RS.
- DMRS is for estimating propagation path information reflecting the result of precoding described later.
- the mapping unit 25 performs mapping so that the data signal, DMRS, and CSI-RS are transmitted at different times, frequencies, or codes, respectively.
- the mapping unit 25 arranges the CSI-RS so as to be orthogonal between the transmission antennas.
- the mapping unit 25 arranges DMRSs so as to be orthogonal between terminal apparatuses and associated data streams.
- the mapping unit 25 inputs the mapped data information or the like to the corresponding subcarrier precoding unit 27.
- FIG. 3 is a block diagram showing an example of a device configuration of the precoding unit 27 according to the first embodiment of the present invention.
- the precoding unit 27 includes a switch unit 27-1, a linear filter generation unit 27-2, a THP unit 27-4, a transmission data signal generation unit 27-5, and a transmission DMRS generation unit 27-6. And a transmission signal generator 27-7.
- a switch unit 27-1 As shown in FIG. 3, the precoding unit 27 includes a switch unit 27-1, a linear filter generation unit 27-2, a THP unit 27-4, a transmission data signal generation unit 27-5, and a transmission DMRS generation unit 27-6. And a transmission signal generator 27-7.
- the CSI-RS is not subjected to precoding processing based on propagation path information in the precoding unit, and only transmission power control is performed, and thus the description thereof is omitted.
- the signal input to the precoding unit 27 is first divided into a data signal and a DMRS in the switch unit 27-1.
- the linear filter generation unit 27-2 generates a linear filter W (k, t 1 ) based on the propagation path information H FB (k, t 1 ) input from the propagation path information acquisition unit 33.
- H FB (k, t 1 ) H (k, t 1 )
- the base station apparatus 1 since there is time selectivity in the actual propagation path, even if the base station apparatus 1 performs precoding, the IUI cannot be completely removed. However, the method of the present embodiment itself has a size of the residual IUI. In the following description, this effect is ignored.
- the precoding performed by the precoding unit 27 assumes THP based on the MMSE (Minimum Mean Square Error) standard that minimizes the mean square error between the transmission data signal and the reception data signal of each terminal apparatus 2.
- THP eg, Zero-forcing norms that minimize IUI
- the linear filter used in MMSE-THP basically converts a propagation path matrix into a lower triangular matrix. There are several methods for generating a linear filter. In this embodiment, a method based on QR decomposition is assumed.
- ⁇ is an interference control term, and may be set to the square root of the reciprocal of the received signal-to-interference + noise power ratio (SINR) observed by each terminal device 2, for example.
- Linear filter generating unit 27-2 by performing relative G H, QR decomposition, decompose G H as G H QR.
- Q [Q 11 , Q 12 ; Q 21 , Q 22 ]
- Q 11 , Q 12 , Q 21, and Q 22 are each a matrix of U rows and U columns.
- Q 11 Q L.
- R [R L ; 0 U ] can be expressed, and R L is a lower triangular matrix of U rows and U columns.
- R L is a lower triangular matrix of U rows and U columns.
- the Hermitian transposed matrix of R L and L L That is, L L is a lower triangular matrix of U rows and U columns.
- W Q L ⁇ diag (HQ L ) ⁇ ⁇ 1 is a linear filter.
- this linear filter is a filter that converts the expanded propagation path matrix G into a lower triangular matrix, but is also a filter that uses H, which is an actual propagation path matrix, as a lower triangular matrix according to the MMSE standard.
- ⁇ diag (HQ L ) ⁇ ⁇ 1 is a power distribution control term for making the received SINR for the data signal of each terminal apparatus 2 constant, and may not be multiplied depending on the precoding technique. .
- the linear filter used for the data signal also referred to as the first linear filter
- the linear filter for multiplying the DMRS also referred to as the second linear filter
- W d is also used for DMRS, but in this embodiment, different linear filters are used for the data signal and DMRS.
- the diagonal component of HW d is information associated with the amplitude information of the desired signal included in the received signal of each terminal device 2.
- ⁇ diag (HW d ) ⁇ ⁇ 1 is also referred to as a first diagonal matrix.
- THP section 27-4 a data signal among the signals input from the mapping section 25 is input, and a part of inter-user interference (IUI) included in the received signal received by each terminal apparatus 2 is suppressed. Interference suppression is performed.
- IUI inter-user interference
- the terminal devices 2-1 to 2-4 are connected to the base station device 1 as shown in FIG. 1, and the data addressed to each terminal device 2 is stored in the THP section 27-4.
- a transmission data vector d [d 1 , d 2 , d 3 , d 4 ] T composed of signals is input.
- the received signal of each terminal device 2 includes an IUI in addition to a desired signal addressed to the own device. For example, the received signal of the second terminal device 2-2 is given by equation (3).
- W d [w d, 1 , w d, 2 , w d, 3 , w d, 4 ], and w d, u is multiplied by the data signal addressed to the u-th terminal device 2-u.
- This is an eigenlinear filter of N t rows and 1 column.
- the second term and the third term on the right side of Equation (3) are IUI.
- W d is a filter that converts the propagation path matrix H into a lower triangular matrix based on the MMSE norm
- the IUI of the third term that is, the third terminal apparatus 2-3 and the fourth terminal apparatus 2- While the IUI caused by the data signal addressed to 4 is sufficiently suppressed, the IUI caused by the data signal addressed to the first terminal device 2-1 is not suppressed at all.
- THP unit 27-4 performs interference suppression processing for previously suppressed IUI not suppressed by W d to the data signals for each terminal device 2 addressed.
- signal processing in the conventional MMSE-THP will be described. For example, when the interference suppression signal after the second terminal device destined 2-2 (referred to as transmission code) was x 2, x 2 is given by equation (4).
- the base station apparatus 1 transmits the transmission code given by the equation (4) to the second terminal apparatus 2-2
- the second terminal apparatus 2-2 is caused by the transmission signal addressed to the first terminal apparatus 2-1. Therefore, the generated IUI is not received.
- the magnitude of x 2 may be much larger than d 2, which may require enormous transmission power. Therefore, performing nonlinear signal processing called modulo operation on x 2 in THP unit 27-4. The modulo operation is also performed by the THP unit 27-4 of the present embodiment described below.
- the modulo operation Mod 2 ⁇ (x) is such that, for a certain input signal x, the real part and the imaginary part of its output fall within ⁇ and less than ⁇ , respectively.
- z 2 is a Gaussian integer, and by using z 2 given by the second expression of Equation (5), the real part and the imaginary part of the right side of the first expression are each greater than ⁇ , and ⁇ Fits below.
- This z 2 or 2 ⁇ z 2 is called a perturbation term in the present invention.
- the THP unit 27-4 performs interference suppression and modulo calculation on the data signals addressed to the third terminal apparatus 2-3 and the fourth terminal apparatus 2-4.
- a vector z [z 1 , z 2 , z 3 , z 4 ] T in which perturbation terms obtained by the sequential signal processing described above are collected is referred to as a perturbation vector in this embodiment.
- F is a feedback filter. That is, the interference suppression process performed by the THP unit 27-4 is performed based on the data signal and the feedback filter F.
- F is given by the lower triangular matrix portion of I- (diag (HW d )) ⁇ 1 HW d in the conventional MMSE-THP.
- the conventional MMSE-THP based on the calculated linear filter W d, it performs THP treatment to calculate the feedback filter F.
- the interference suppression by the interference suppression and THP by linear filter W d are both MMSE criterion can be realized averagely good transmission characteristics.
- modulo loss occurs in non-linear precoding in which modulo operation is performed on the receiving side.
- the modulo loss is particularly noticeable in a low received signal power to noise power ratio (SNR) environment. Therefore, in order to suppress the influence of the modulo loss, it may be more effective that the base station apparatus 1 performs precoding close to the MRC standard that maximizes the reception SNR instead of the MMSE standard.
- an error occurs between the IUI grasped by the THP unit 27-4 and the IUI actually observed by each terminal device 2. This means that the received SINR is degraded.
- the signal processing is performed assuming that the amplitude of the desired signal in the received signal of each terminal device 2 is given by the diagonal component of L L , the received signal vs. noise is compared with the conventional MMSE-THP.
- the power ratio (SNR) can be improved. Therefore, in the low SNR environment, the method according to this embodiment has better transmission characteristics.
- the signal processing in the THP unit 27-4 of this embodiment is the same as that of the conventional THP except that the shape of the feedback filter is different.
- the THP unit 27-4 outputs the calculated transmission code vector x to the transmission data signal generation unit 27-5.
- the transmission data signal generation unit 27-5 multiplies the transmission code vector x input from the THP unit 27-4 by the linear filter W d input from the linear filter generation unit 27-2 to obtain the transmission data signal vector s d . Generate. At this time, power normalization is performed to keep the transmission power constant. In the present embodiment, the transmission data signal generating unit 27-5 performs power normalized by multiplying the power normalization term ⁇ in the transmission data signal vector s d.
- the transmission data signal vector s d is given by equation (6).
- P x is a covariance matrix of transmission code vectors.
- the transmission data signal generation unit 27-5 outputs s d to the transmission signal generation unit 27-7, and outputs the calculated power normal term ⁇ to the transmission DMRS generation unit 27-6.
- the DMRS is input to the transmission DMRS generation unit 27-6.
- the base station apparatus 1 shall transmit DMRS addressed to each terminal device 2 in order to each terminal device 2 in a continuous radio
- s p [s p, 1, s p, 2, s p, 3, s p, 4] T
- W p [w p, 1, w p, 2, w p, 3, w p, 4 ].
- W p is input from the linear filter generation unit 27-2
- the power normalization term ⁇ is input from the transmission data signal generation unit 27-5.
- Transmission signal generating unit 27-7 after giving a proper transmission power to the transmission signal vector s d and s p is inputted from the transmit data signal generating unit 27-5 and transmitting DMRS generating section 27-6, the antenna portion Output to 29.
- the transmission power may be controlled so as to be adjusted by a wireless transmission unit 29-3 of the antenna unit 29 described later.
- FIG. 4 is a flowchart illustrating an example of signal processing in the precoding unit 27 according to the first embodiment of the present invention.
- the switch unit 27-1 divides a signal input from the mapping unit into a data signal and a DMRS (step S201).
- the linear filter generation unit 27-2 calculates the first linear filter Wd , the second linear filter Wp, and the feedback filter F based on the propagation path information input from the propagation path information acquisition unit 33 (Ste S202).
- the THP unit 27-4 performs interference suppression and modulo operation on the data signal based on the feedback filter F, and calculates a transmission code vector x (step S203).
- the transmission data signal generation unit 27-5 calculates the power normalization coefficient ⁇ and the transmission data signal vector s d based on the transmission code vector x and the first linear filter W d (step S204). Then, transmitting DMRS generating unit 27-6, DMRS and based on a second linear filter W p and power normalization coefficient ⁇ and the power adjustment term, to calculate the s p is the transmission DMRS (step S205). Finally, the transmission signal generation unit 27-7 adjusts the transmission power of s d and s p, is output to the antenna unit 29 (step S206).
- the precoding unit 27 performs the precoding process for each subband including a plurality of subcarriers and OFDM signals. May be applied.
- the linear filter generation unit 27-2 calculates one each of the first and second linear filters and the feedback filter for each subband, and applies them to each subcarrier in the subband. You may control.
- the transmission data signal generation unit 27-5 may perform control so as to obtain the power normalization coefficient ⁇ so that the transmission power becomes constant for each subband.
- the precoding unit 27 may perform a series of signal processing after preliminarily performing preliminary processing on the channel information (propagation channel matrix) input from the channel information acquisition unit 33.
- the preliminary processing for example, an ordering (order change) technique for the propagation path matrix and a lattice base reduction technique can be considered.
- the precoding unit 27 performs processing corresponding thereto on the data signal input from the mapping unit and the demodulation reference signal. For example, when the ordering is performed on the channel matrix, the same ordering process is performed on the data signal and the demodulation reference signal (the demodulation reference signal may not be performed).
- FIG. 5 is a block diagram illustrating an example of a device configuration of the antenna unit 29 according to the first embodiment of the present invention.
- the antenna unit 29 includes an IFFT unit 29-1, a GI insertion unit 29-2, a wireless transmission unit 29-3, a wireless reception unit 29-4, and an antenna 29-5. It consists of In each antenna unit 29, first, the IFFT unit 29-1 performs N c -point inverse fast Fourier transform (IFFT) or inverse discrete Fourier transform (IDFT) on the signal output from the corresponding precoding unit 27. ) To generate an OFDM signal having Nc subcarriers, and input it to the GI insertion unit 29-2.
- IFFT inverse fast Fourier transform
- IDFT inverse discrete Fourier transform
- the GI insertion unit 29-2 gives a guard interval to the input OFDM signal, and then inputs it to the radio transmission unit 29-3.
- the radio transmission unit 29-3 converts the input baseband transmission signal into a radio frequency (RF) transmission signal and inputs it to the antenna 29-5.
- the antenna 29-5 transmits the input transmission signal in the RF band.
- a signal transmitted from each terminal apparatus 2 to the base station apparatus 1 is input to the wireless reception unit 29-4.
- the radio reception unit 29-4 performs a process of demodulating the transmission signal from each terminal apparatus 2 from the received signal, and a signal related to the control information is output to the control information acquisition unit 31. Will be.
- FIG. 6 is a block diagram illustrating a configuration example of the terminal device 2 according to the first embodiment of the present invention.
- the terminal device 2 includes a terminal antenna unit 51, a propagation path estimation unit 53, a feedback information generation unit 55, a channel equalization unit 57, a demapping unit 59, a data demodulation unit 61, a channel And a decoding unit 63.
- FIG. 7 is a block diagram showing a configuration example of the terminal antenna unit 51 according to the first embodiment of the present invention.
- the terminal antenna unit 51 includes a radio reception unit 51-1, a radio transmission unit 51-2, a GI removal unit 51-3, an FFT unit 51-4, and a reference signal separation unit 51-. 5 and an antenna 51-6.
- the transmission signal transmitted from the base station apparatus 1 is first received by the antenna 51-6 of the terminal antenna unit 51 and then input to the radio reception unit 51-1.
- the radio reception unit 51-1 converts the input signal into a baseband signal and inputs the signal to the GI removal unit 51-3.
- the GI removal unit 51-3 removes the guard interval from the input signal and inputs it to the FFT unit 51-4.
- the FFT unit 51-4 applies N c -point fast Fourier transform (FFT) or discrete Fourier transform (DFT) to the input signal, converts it to N c subcarrier components, and then separates the reference signal Input to section 51-5.
- the reference signal separation unit 51-5 separates the input signal into a data signal component, a CSI-RS component, and a DMRS component.
- the reference signal separation unit 51-5 inputs the data signal component to the channel equalization unit 57, and inputs the CSI-RS and DMRS to the propagation path estimation unit 53.
- the signal processing described below is basically performed for each subcarrier.
- the propagation path estimation unit 53 performs propagation path estimation based on the input known reference signals CSI-RS and DMRS. First, propagation path estimation using CSI-RS will be described.
- the CSI-RS Since the CSI-RS is transmitted without applying precoding, the CSI-RS corresponds to the u-th terminal apparatus 2-u in the channel matrix H (k, t 1 ) represented by the equation (1). It is possible to estimate the matrix h u (k, t 1 ). Normally, since CSI-RS is periodically multiplexed with respect to radio resources, propagation path information of all subcarriers cannot be estimated directly. However, if the CSI-RS is transmitted at a time interval and a frequency interval that satisfy the sampling theorem, the terminal device 2 can estimate the propagation path information of all subcarriers by appropriate interpolation.
- a specific propagation path estimation method is not particularly limited. For example, two-dimensional MMSE propagation path estimation may be used.
- the propagation path estimation unit 53 of the u-th terminal apparatus 2-u inputs the propagation path information h u (k, t 1 ) estimated based on the CSI-RS to the feedback information generation unit 55.
- the feedback information generation unit 55 provides information to be fed back to the base station apparatus 1 according to the input propagation path information and the propagation path information format fed back by each terminal apparatus 2, that is, h FB, u (k, t 1 ). Is generated.
- the propagation path information format is not limited to anything. For example, a method may be considered in which each element of the estimated propagation path information h u (k, t 1 ) is quantized with a finite number of bits and the quantization information is fed back. Further, feedback may be performed based on a code book that has been agreed with the base station apparatus 1 in advance.
- h u (k, t 1 ) may not be directly quantized, but may be quantized after some signal conversion.
- signal conversion for example, a method of performing singular value decomposition is conceivable.
- the feedback information generation unit 55 generates information to be notified to the base station apparatus 1 by quantizing the eigenvector obtained by the singular value decomposition or both the eigenvector and the singular value.
- the propagation path estimation unit 53 performs propagation path estimation based on the DMRS. This will be described later, and signal processing in the channel equalization unit 57 will be described first.
- Received signal r u received by the u terminal device 2-u is input to the channel equalizer 57 is given by Equation (7).
- the modulo width to be estimated by the propagation path estimation unit 53 is (2P r ) 1/2 ⁇ 2 ⁇ , and h u w d, u is not included. This modulo width can be estimated by channel estimation based on DMRS in the channel estimation unit 53.
- DMRSr p, u currently received by the u-th terminal apparatus 2- u is given by equation (8).
- the propagation path estimation unit 53 performs inverse modulation on r p, u using a known reference signal p u .
- the output is (2P r ) 1/2 ⁇ h u w d, u .
- the terminal device 2 estimates the modulo width as (2P r ) 1/2 ⁇ h u w d, u 2 ⁇ , and the estimated value does not match the desired modulo width. I understand. If the terminal device 2 estimates a modulo width different from the desired value, a large error occurs in the modulo calculation result, and the transmission characteristics are greatly degraded. As this embodiment has been targeted, it is possible to avoid such deterioration of transmission characteristics by using different linear filters for the DMRS and the data signal.
- the propagation path estimation unit 53 outputs the inverse modulation output obtained based on the above-described method to the channel equalization unit 57 as a propagation path estimation value.
- the channel estimation method is based on simple inverse modulation.
- the channel estimation method applied to the DMRS by the channel estimation unit 53 is limited to something. Instead, the channel estimation value may be obtained based on another channel estimation method as in the channel estimation method for CSI-RS.
- Channel equalizer 57 for the received signal r u, subjected to channel equalization based on the channel estimation value input from channel estimator 53.
- the received signal r u input from the terminal antenna portion may be divided by the input from the channel estimator 53 channel estimates.
- the channel equalization unit 57 performs a modulo operation with a modulo width of 2 ⁇ on the received signal after channel equalization, and outputs the result to the demapping unit 59.
- the terminal device 2 extracts transmission data addressed to itself from radio resources used for transmission of transmission data addressed to itself.
- the output of the reference signal separation unit 51-5 may be input to the demapping unit 59 first, and only the radio resource component corresponding to the own device may be input to the channel equalization unit 57.
- the output of the demapping unit 59 is then input to the data demodulating unit 61 for data demodulation, and the data demodulation result is input to the channel decoding unit 63 for channel decoding.
- the channel equalizer 57 may not perform the modulo operation.
- OFDM signal transmission is performed and precoding is performed for each subcarrier, but there is no limitation on the transmission scheme (or access scheme) and the precoding application unit.
- the present embodiment is also applicable when precoding is performed for each resource block in which a plurality of subcarriers are grouped, and similarly, a single carrier based access scheme (for example, single carrier frequency division multiple access (SC ⁇ ) (FDMA) system).
- SC ⁇ single carrier frequency division multiple access
- each terminal apparatus 2 estimates an apparent MIMO channel based on the demodulation reference signal transmitted from the base station apparatus, and based on the obtained MIMO channel estimated value, A space separation process may be performed. At this time, each terminal device 2 may use only the demodulation reference signal addressed to its own device, or may also use the demodulation reference signal addressed to another device, but this embodiment includes both cases.
- the terminal device 2 can estimate the modulo width with high accuracy based on the demodulation reference signal, and realizes better transmission characteristics than the conventional MMSE-THP in a low SNR environment. Possible non-linear MU-MIMO transmission can be realized.
- the non-linear precoding performed by the base station apparatus 1 is assumed to be MMSE-THP.
- the second embodiment is directed to the case where the base station apparatus 1 performs MMSE-VP as nonlinear precoding.
- Base station apparatus 1 One configuration example of the base station apparatus 1 according to the second embodiment of the present invention is the same as that of FIG. However, the precoding unit 27 is configured to replace the precoding unit 35. Since the signal processing in each component device other than the precoding unit 35 to be replaced is the same as that in the first embodiment, the description thereof will be omitted, and the signal processing in the precoding unit 35 will be described below.
- FIG. 8 is a block diagram showing an example of a device configuration of the precoding unit 35 according to the second embodiment of the present invention.
- the precoding unit 35 includes a switch unit 35-1, a linear filter generation unit 35-2, a perturbation vector search unit 35-3, a transmission data signal generation unit 35-5, and a transmission DMRS generation unit 35. -6 and a transmission signal generator 35-7.
- the signal processing of the switch unit 35-1, the transmission DMRS generation unit 35-6, and the transmission signal generation unit 35-7 is the same as that of the switch unit 27-1 of the precoding unit 27 of FIG. 3 in the first embodiment. Since this is the same as the transmission DMRS generator 27-6 and the transmission signal generator 27-7, a description thereof will be omitted.
- the linear filter generation unit 35-2 calculates a linear filter.
- the linear filters W d and W p generated by the linear filter generation unit 27-2 are both filters that convert the channel matrix H into a lower triangular matrix based on the MMSE norm, and each terminal A part of the IUI received by the device 2 can be suppressed.
- the linear filter calculated by the linear filter generation unit 35-2 suppresses all IUIs received by each terminal apparatus 2.
- a linear filter based on the MMSE standard is used.
- the linear filter W d that multiplies the data signal generated by the linear filter generation unit 35-2 is given by Expression (10).
- the same linear filter W p that multiplies DMRS as W d is used.
- the linear filter that multiplies the data signal is different from the linear filter that multiplies the DMRS.
- the linear filter W p generated by the linear filter generation unit 35-2 and multiplied by DMRS is given by Expression (11).
- Linear filter generating unit 35-2 inputs the W d perturbation vector search unit 35-3 to the transmission data signal generating unit 35-5 inputs the W p in transmitting DMRS generating unit 35-6.
- the perturbation vector search unit 35-3 searches for a perturbation vector z to be added to the data signal d.
- the perturbation vector z is obtained using a modulo operation.
- the perturbation vector is searched by solving the minimization problem given by equation (12), not by the modulo operation.
- Equation (12) suggests that the desired perturbation vector minimizes the transmission power of the transmission signal after the linear filter multiplication.
- the perturbation terms constituting the perturbation vector are given by arbitrary Gaussian integers, it is not realistic to examine all combinations. Therefore, even in the study on the conventional MMSE-VP, it is assumed that a calculation amount reduction technique such as Sphere encoding is used.
- the perturbation vector search method is not limited to anything. Further, it does not have to be a norm that minimizes transmission power.
- the perturbation vector search unit 35-3 searches for a perturbation vector based on the minimum mean square error norm, the minimum interference power norm, or the maximum transmission to interference + noise power ratio (SLNR) norm, not the minimum transmit power norm.
- the perturbation vector may be searched based on the lattice basis reduction technique.
- the present embodiment includes a case where the perturbation vector search unit 35-3 randomly selects a perturbation vector. In the following description, it is assumed that the perturbation vector search unit 35-3 searches for the perturbation vector z based on some standard and search method, and outputs it to the transmission data signal generation unit 35-5.
- the transmission data signal generation unit 35-5 the data signal vector d input from the switch unit 35-1, the linear filter W d input from the linear filter generation unit 35-2, and the perturbation vector search unit 35-3.
- a transmission data signal vector s d is generated based on the input perturbation vector z. s d is given by equation (13).
- the transmission data signal generation unit 35-5 outputs the calculated transmission data signal vector s d to the transmission signal generation unit 35-7, while the power normalization term ⁇ is output to the transmission DMRS generation unit 35-6. Output.
- FIG. 9 is a flowchart illustrating an example of signal processing in the precoding unit 35 according to the second embodiment of the present invention.
- the switch unit 35-1 divides the signal input from the mapping unit 25 into a data signal and a DMRS (step S301).
- the linear filter generation unit 35-2 based on the channel information inputted from the propagation path information acquiring unit 33 calculates a first linear filter W d and the second linear filter W p (step S302).
- the perturbation vector search unit 35-3 searches for the perturbation vector z based on the data signal and the first linear filter (step S303).
- the transmission data signal generator 35-5 calculates a power normalization coefficient ⁇ and a transmission data signal vector s d based on the data signal, the first linear filter, and the perturbation vector (step S304). Then, transmitting DMRS generating unit 35-6, DMRS and based on a second linear filter W p and power normalization coefficient ⁇ and the power adjustment term, to calculate the s p is the transmission DMRS (step S305). Finally, the transmission signal generation unit 35-7 adjusts the transmission power of s d and s p, is output to the antenna unit 29 (step S306).
- Terminal device 2 The device configuration of the terminal device 2 in this embodiment is the same as that of the first embodiment. Since the signal processing in the other constituent devices is the same, the description thereof is omitted.
- the case where the base station apparatus 1 uses MMSE-VP as a precoding method is targeted.
- the method of the present invention was effective in a low SNR environment, whereas the MMSE-VP targeted by the present embodiment is better than the conventional method regardless of the SNR value. Transmission characteristics can be realized, which can contribute to improvement of frequency utilization efficiency of the radio communication system.
- the first and second embodiments it is assumed that all terminal devices 2 connected to the base station device 1 can perform modulo arithmetic. However, in an actual wireless communication system, there may be a case where terminal devices 3 that do not perform a modulo calculation coexist. In addition, in nonlinear precoding transmission based on modulo computation, there is a specific transmission characteristic deterioration factor called modulo loss. Therefore, depending on the propagation path environment, the frequency utilization efficiency may be improved when the base station apparatus generates a transmission signal that does not require the terminal apparatus to perform a modulo operation.
- the third embodiment is directed to a case where a terminal device 2 that performs a modulo operation and a terminal device 3 that does not perform a modulo operation coexist.
- FIG. 10 is a diagram illustrating an example of an outline of a wireless communication system according to the third embodiment of the present invention.
- a base station apparatus 1b having N t transmission antennas is compared with a terminal apparatus 2 having N r reception antennas (in FIG. 10, terminal apparatuses 2-1 to 2-2 are connected). and two), two of the terminal device 3 (in FIG. 10 the terminal devices 3-1 to 3-2 having a reception antenna of the N r present) is directed to a wireless communication system for multiple connections.
- wireless parameters such as the number of transmission ranks are the same as those in the first embodiment unless otherwise specified.
- the terminal device 2 is a terminal device (also referred to as a non-linear terminal device) that performs a modulo operation on the received signal targeted in the first and second embodiments, and the terminal device 3 that does not perform a modulo operation on the received signal ( Also called a linear terminal device).
- the base station apparatus 1b can control so as not to perform a modulo operation on the signal.
- the present embodiment includes such a case.
- the structure of the base station apparatus 1b which concerns on the 3rd Embodiment of this invention is the same as that of FIG.
- the precoding unit 27 is configured to replace the precoding unit 37. Since the signal processing in each component device other than the precoding unit 37 to be replaced is the same as that in the first embodiment, the description thereof will be omitted, and the signal processing in the precoding unit 37 will be described below.
- FIG. 11 is a block diagram showing an example of a device configuration of the precoding unit 37 according to the third embodiment of the present invention.
- the precoding unit 37 includes a switch unit 37-1, a linear filter generation unit 37-2, a perturbation vector search unit 37-3, a transmission data signal generation unit 37-5, and a transmission DMRS generation unit 37. ⁇ 6 and a transmission signal generator 37-7.
- the signal processing in each component device except the linear filter generation unit 37-2 and the perturbation vector search unit 37-3 is performed by the corresponding component device (for example, the switch unit 37) in the precoding unit 35 according to the second embodiment.
- ⁇ 1 is the same as the signal processing in the switch unit 35-1), and thus the description thereof is omitted.
- signal processing in the linear filter generation unit 37-2 and the perturbation vector search unit 37-3 will be described.
- the linear filter generation section 37-2 calculates a linear filter W d that multiplies the data signal and a linear filter W p that multiplies the DMRS.
- the precoding unit 37 considers that MMSE-VP is applied to each data signal, but other nonlinear precoding such as MMSE-THP targeted by the first embodiment. Is also included in this embodiment.
- the linear filter W d in MMSE-VP is already given by equation (10).
- the linear filter generation unit 35-2 corrects W d so that the error between the modulo width estimated by each terminal apparatus 2 based on DMRS and the desired modulo width becomes small. by performing, I had to calculate the W p.
- the linear terminal device is included in the plurality of terminal devices connected to the base station device 1b. Since the linear terminal device does not perform a modulo operation on the received signal, it is not necessary to estimate the modulo width. Therefore, the linear filter generation unit 37-2 in the present embodiment can use the same linear filter that multiplies the data signal as the linear filter that multiplies the DMRS addressed to the linear terminal device, as in the conventional method. .
- W d, u is a linear filter by which the data signal addressed to the u-th terminal device is multiplied.
- the linear filter generation unit 37-2 outputs the calculated linear filter W d to the perturbation vector search unit 37-3 and the transmission data signal generation unit 37-5, and outputs the linear filter W p to the transmission DMRS generation unit 37-6. Output toward.
- the perturbation vector search unit 37-3 calculates the perturbation vector z on the basis of the transmission data vector d to be inputted from the linear filter W d and the switch 37-1 is input from the linear filter generating unit 37-2.
- the perturbation vector searched by the perturbation vector search unit 37-3 searches for the one that minimizes the transmission power, as in the case of the perturbation vector search unit 35-3 in the second embodiment (see Expression (12)).
- the first terminal device 3-1 and the second terminal device 3-2 do not perform a modulo operation on the received signal. Therefore, when a perturbation term is added to d 1 and d 2 , the first terminal device 3-1 and the second terminal device 3-2 cannot remove the perturbation term included in the received signal and transmit The characteristics are greatly degraded.
- the perturbation term added to the data signals addressed to the first terminal device 3-1 and the second terminal device 3-2 is always 0. Search for perturbation vectors. That is, the perturbation vector search unit 37-3 searches for the perturbation vector by solving the minimization problem given by the equation (15).
- the perturbation vector search unit 37-3 outputs the perturbation vector searched based on the equation (15) to the transmission data signal generation unit 37-5. Note that the perturbation vector search unit 37-3 searches for the perturbation vector, assuming that all the terminal devices connected to the base station device 1 are nonlinear terminal devices, as in the second embodiment. Of the perturbation vectors z thus obtained, only the perturbation term to be added to the data signal addressed to the linear terminal device may be controlled to be replaced with zero.
- all perturbation terms added to the data signal addressed to the linear terminal device are set to zero.
- a perturbation term other than 0 may be added as long as it does not affect the demodulation processing for the received signal of the linear terminal device.
- the modulation method is QPSK modulation and a modulation symbol in the first quadrant is transmitted as a data signal addressed to the linear terminal apparatus.
- the base station apparatus 1b adds a perturbation term given by a Gaussian integer (for example, (1 + j)) in the first quadrant as a perturbation term to the data signal.
- the base station device 1b may add the perturbation term to the data signal addressed to the linear terminal device as far as the perturbation term exists in the same quadrant.
- Terminal device 3 Since the device configuration and signal processing of the terminal device 2 that is a nonlinear terminal device are the same as those in the first and second embodiments, the description thereof is omitted. Below, the terminal device 3 which is a linear terminal device is demonstrated.
- FIG. 12 is a block diagram showing a configuration example of the terminal device 3 according to the third embodiment of the present invention. As shown in FIG. 12, the configuration of the terminal device 3 is almost the same as the configuration of the terminal device 2 shown in FIG. 6, except that the channel equalization unit 57 is replaced with a channel equalization unit 67.
- the channel equalization unit 57 performs channel equalization on the received data signal based on the channel estimation value estimated by the channel estimation unit 53 based on DMRS.
- the channel equalization unit 57 performs a modulo operation on the channel-equalized signal, and then outputs the signal to the demapping unit 59.
- the channel equalization unit 67 outputs the channel equalization output to the demapping unit 59 without performing a modulo operation.
- the terminal device 2 can remove the influence of the perturbation term by performing demodulation with the perturbation term in the channel decoding unit without performing the modulo operation in the channel equalization unit 57.
- the difference between the terminal device 2 and the terminal device 3 is signal processing in the channel decoding unit 63.
- the terminal device 2 performs channel decoding taking into account the perturbation term, whereas the terminal device 3 uses the perturbation term. Channel decoding without consideration is performed.
- the signal processing in other constituent devices except the channel equalization unit 67 is the same as that of the terminal device 2, the description thereof is omitted. Note that the signal processing in other constituent devices may be different between the terminal device 2 and the terminal device 3. For example, the case where the terminal device 2 and the terminal device 3 differ in the control information generation method associated with the propagation path information generated by the feedback information generation unit 55 is also included in the present embodiment.
- a terminal device connected to the base station device 1 there are a non-linear terminal device that performs a modulo operation on a received signal and a linear terminal device that does not perform a modulo operation on the received signal. Targeted for mixed cases. According to the method of the present embodiment, it is possible to multiplex terminals having different signal processing that can be performed on a received signal with high efficiency, so communication while reducing the burden of user scheduling and the like. It becomes possible to improve the frequency utilization efficiency of the system.
- the terminal device 2 and the terminal device 3 of the present invention are not limited to application to a terminal device such as a cellular system, but are stationary or non-movable electronic devices installed indoors and outdoors, such as AV devices. Needless to say, it can be applied to kitchen equipment, cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other daily life equipment.
- a program that operates on the terminal device 2, the terminal device 3, the base station device 1, and the base station device 1b according to the present invention is a program (computer) that controls the CPU and the like so as to realize the functions of the above-described embodiments according to the present invention Is a program that functions).
- Information handled by these devices is temporarily stored in the RAM at the time of processing, then stored in various ROMs and HDDs, read out by the CPU, and corrected and written as necessary.
- a recording medium for storing the program a semiconductor medium (for example, ROM, nonvolatile memory card, etc.), an optical recording medium (for example, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (for example, magnetic tape, Any of a flexible disk etc. may be sufficient.
- the processing is performed in cooperation with the operating system or other application programs.
- the functions of the invention may be realized.
- the program when distributing to the market, can be stored and distributed on a portable recording medium, or transferred to a server computer connected via a network such as the Internet.
- the storage device of the server computer is also included in the present invention.
- LSI which is typically an integrated circuit.
- Each functional block of the terminal device 2, the terminal device 3, the base station device 1, and the base station device 1b may be individually made into a processor, or a part or all of them may be integrated into a processor.
- the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
- an integrated circuit based on the technology can also be used.
- the base station apparatus of the present invention is a base station apparatus that includes a plurality of antennas, performs non-linear precoding on a signal addressed to a plurality of terminal apparatuses, performs spatial multiplexing, and performs radio transmission.
- a channel information acquisition unit for acquiring channel information, a mapping unit for multiplexing the data signals addressed to the plurality of terminal devices and a demodulation reference signal, and the data signal and the demodulation reference signal based on the channel information
- a precoding unit that performs precoding on the first linear filter that multiplies the data signal based on the propagation path information, and a second that multiplies the reference signal for demodulation.
- a linear filter generation unit that generates different linear filters.
- Such a base station apparatus can use a linear filter different from the first linear filter that multiplies the data signal addressed to the terminal apparatus as the second linear filter that multiplies the demodulation reference signal addressed to the terminal apparatus. . Therefore, the terminal apparatus can estimate the modulo width with high accuracy based on the demodulation reference signal transmitted from the base station apparatus. As a result, frequency utilization efficiency can be improved.
- the first linear filter is a mean square between a reception signal received by each of the plurality of terminal apparatuses and the data signal addressed to the plurality of terminal apparatuses. It is calculated based on a standard that minimizes the error.
- the first station is based on a standard that minimizes a mean square error between received signals respectively received by the plurality of terminal apparatuses and the data signals addressed to the plurality of terminal apparatuses.
- a linear filter can be generated. Therefore, the terminal device can demodulate the data signal transmitted from the base station device with high accuracy. As a result, frequency utilization efficiency can be improved.
- the linear filter generation unit calculates a first diagonal matrix based on the first linear filter and the propagation path information, and The second linear filter is generated based on a diagonal matrix and the first linear filter.
- Such a base station apparatus calculates a first diagonal matrix based on the first linear filter and the propagation path information, and adds the first diagonal matrix and the first linear filter to the first diagonal filter. Based on this, the second linear filter can be generated. Therefore, the terminal apparatus can estimate the modulo width with high accuracy based on the demodulation reference signal transmitted from the base station apparatus. As a result, frequency utilization efficiency can be improved.
- the first diagonal matrix is configured by an inverse of a diagonal component of a matrix represented by a product of the first linear filter and the propagation path matrix. It is a diagonal matrix.
- Such a base station apparatus uses, as the first diagonal matrix, a diagonal matrix composed of the inverse of the diagonal component of the matrix represented by the product of the first linear filter and the propagation path matrix. And the second linear filter can be generated based on the first diagonal matrix. Therefore, the terminal apparatus can estimate the modulo width with high accuracy based on the demodulation reference signal transmitted from the base station apparatus. As a result, frequency utilization efficiency can be improved.
- the linear filter generation unit includes the feedback filter and the first filter based on LQ decomposition or QR decomposition on the expanded channel matrix calculated based on the channel information.
- a linear filter is generated, and the precoding unit further includes a THP unit that performs interference suppression and modulo operation on the data signal based on the feedback filter.
- Such a base station device generates a feedback filter and the first linear filter based on LQ decomposition or QR decomposition on the expanded channel matrix calculated based on the channel information, and based on the feedback filter
- the data signal can be subjected to interference suppression and modulo arithmetic. Therefore, the terminal device can demodulate the data signal transmitted from the base station device with high accuracy. As a result, frequency utilization efficiency can be improved.
- the precoding unit further includes a perturbation vector search unit that searches for a perturbation vector based on the first linear filter and the data signal.
- a perturbation vector search unit that searches for a perturbation vector based on the first linear filter and the data signal.
- Such a base station apparatus can search for a perturbation vector based on the first linear filter and the data signal. Therefore, the required transmission power of the base station device can be reduced. As a result, frequency utilization efficiency can be improved.
- the precoding unit adds a perturbation vector to a non-linear terminal apparatus that can remove a perturbation vector from a received signal among the plurality of terminal apparatuses to be spatially multiplexed.
- Such a base station apparatus generates a data signal obtained by adding a perturbation vector to a non-linear terminal apparatus that can remove a perturbation vector from a received signal among a plurality of spatially multiplexed terminal apparatuses, and generates a perturbation vector from the received signal. It is possible to generate a data signal that does not add a perturbation vector to a linear terminal device that cannot be removed. Therefore, the base station apparatus can flexibly determine a combination of a plurality of terminal apparatuses that transmit the data signal and the demodulation reference signal. As a result, frequency utilization efficiency can be improved.
- the base station apparatus of the present invention is the base station apparatus according to (7), wherein the precoding unit adds a perturbation vector to a part of the data signal addressed to the linear terminal apparatus. It is characterized by.
- Such a base station device can add a perturbation vector to a part of the data signal addressed to the linear terminal device. Therefore, the required transmission power of the base station apparatus can be reduced. As a result, frequency utilization efficiency can be improved.
- the precoding method of the present invention is a method of propagating data signals and demodulation reference signals transmitted from a base station apparatus having a plurality of antennas to a plurality of terminal apparatuses between the plurality of terminal apparatuses.
- Such a precoding method is based on data signals and demodulation reference signals transmitted from a base station apparatus having a plurality of antennas to a plurality of terminal apparatuses based on propagation path information between the plurality of terminal apparatuses. Preliminary processing can be performed. Therefore, the terminal apparatus can estimate the modulo width with high accuracy based on the demodulation reference signal transmitted from the base station apparatus. Further, the terminal device can demodulate the data signal transmitted from the base station device with high accuracy. As a result, frequency utilization efficiency can be improved.
- the precoding method of the present invention propagates data signals and demodulation reference signals transmitted from a base station apparatus having a plurality of antennas to a plurality of terminal apparatuses between the plurality of terminal apparatuses.
- a process of calculating a reference signal for transmission demodulation based on the demodulation reference signal, the second linear filter, and the power normalization coefficient, and the transmission data signal and the transmission recovery signal A process of adjusting the transmit power of the use reference signals, that has the features.
- Such a precoding method is based on data signals and demodulation reference signals transmitted from a base station apparatus having a plurality of antennas to a plurality of terminal apparatuses based on propagation path information between the plurality of terminal apparatuses. Preliminary processing can be performed. Therefore, the base station apparatus can reduce the required transmission power. Further, the terminal apparatus can estimate the modulo width with high accuracy based on the demodulation reference signal transmitted from the base station apparatus. As a result, frequency utilization efficiency can be improved.
- an integrated circuit according to the present invention is mounted on a base station apparatus that includes a plurality of antennas, performs non-linear precoding on signals addressed to a plurality of terminal apparatuses, performs spatial transmission, and performs radio transmission.
- An integrated circuit that exhibits a plurality of functions, a function of acquiring propagation path information between the terminal devices, a function of multiplexing data signals and demodulation reference signals addressed to the terminal devices, A function of performing precoding on the data signal and the demodulation reference signal based on propagation path information, and the function of performing the precoding is based on the propagation path information.
- the first linear filter for multiplying and the second linear filter for multiplying the demodulation reference signal are generated differently.
- Such an integrated circuit includes a plurality of antennas, is implemented in a base station apparatus that performs non-linear precoding on signals addressed to a plurality of terminal apparatuses and performs spatial transmission and performs wireless transmission, and the base station apparatus has a plurality of functions. It can be demonstrated. Therefore, the terminal apparatus can estimate the modulo width with high accuracy based on the demodulation reference signal transmitted from the base station apparatus. Further, the terminal device can demodulate the data signal transmitted from the base station device with high accuracy. As a result, frequency utilization efficiency can be improved.
- the wireless communication system of the present invention includes the base station device described in (1) above and a plurality of terminal devices that respectively receive signals transmitted from the base station device.
- Such a wireless communication system can include the base station apparatus described in (1) above and a plurality of terminal apparatuses that respectively receive signals transmitted from the base station apparatus. Therefore, the terminal apparatus can estimate the modulo width with high accuracy based on the demodulation reference signal transmitted from the base station apparatus. Further, the terminal device can demodulate the data signal transmitted from the base station device with high accuracy. As a result, frequency utilization efficiency can be improved.
- the present invention is suitable for use in base station apparatuses, precoding methods, integrated circuits, and wireless communication systems.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Radio Transmission System (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本発明の基地局装置は複数のアンテナを備え、複数の端末装置宛の信号に非線形プリコーディングを施し空間多重して無線送信を行なうことが可能であり、前記端末装置との間の伝搬路情報に基づいて、前記端末装置宛のデータ信号に対して生成する第1の線形フィルタと、前記端末装置宛の復調用参照信号に対して生成する第2の線形フィルタを互いに異なるものとし、前記第1の線形フィルタと、前記第2の線形フィルタに基づいて、前記データ信号と前記復調用参照信号にプリコーディングを施して送信する。
Description
本発明は、マルチユーザ多重入力多重出力伝送を行なう技術に関する。
無線通信システムでは、多様なブロードバンド情報サービスの提供のために、伝送速度の向上が常に望まれている。伝送速度の向上は通信帯域幅の拡大により実現可能だが、利用可能な周波数帯域には限りがあるため、周波数利用効率の改善が必須となる。周波数利用効率を大幅に改善できる技術として、複数の送受信アンテナを用いて無線伝送を行なう多重入力多重出力(Multiple Input Multiple Output(MIMO))技術が注目を集めており、セルラーシステムや無線LANシステムなどで実用化されている。MIMO技術による周波数利用効率改善量は送受信アンテナ数に比例する。しかし、端末装置に配置できる受信アンテナ数には限りがある。そこで、同時接続する複数端末装置を仮想的な大規模アンテナアレーとみなし、基地局装置から各端末装置への送信信号を空間多重させるマルチユーザMIMO(Multi User-MIMO(MU-MIMO))が周波数利用効率の改善に有効である。
MU-MIMOでは、各端末装置宛ての送信信号同士がユーザ間干渉(Inter-User-Interference(IUI))として端末装置に受信されてしまうため、IUIを抑圧する必要がある。例えば、第3.9世代移動無線通信システムの一つとして採用されているLong term evolutionにおいては、各端末装置より通知される伝搬路情報に基づき算出される線形フィルタを基地局装置にて予め乗算することでIUIを抑圧する線形プリコーディングが採用されている。
また、一層の周波数利用効率の改善が望めるMU-MIMOの実現方法として、非線形処理を基地局装置側で行なう非線形プリコーディングを用いるMU-MIMO技術が注目を集めている。端末装置において、剰余(Modulo、モジュロ)演算が可能である場合、送信信号に対して、任意のガウス整数に一定の実数が乗算された複素数(摂動項)を要素とする摂動ベクトルの加算が可能となる。
そこで、基地局装置と複数の端末装置との間の伝搬路状態に応じて、摂動ベクトルを適切に設定してやれば、線形プリコーディングと比較して、所要送信電力を大幅に削減することが可能となる。非線形プリコーディングとして、非特許文献1記載のVector perturbation(VP)や、非特許文献2記載のTomlinson Harashima precoding(THP)が良く知られている。
基地局装置においてプリコーディングを行なうためには、基地局装置は各端末装置との間の伝搬路情報(Channel state information(CSI))が必要である。図13は、非線形プリコーディングを施す基地局装置と端末装置間の通信の様子を表すシーケンスチャートである。はじめに基地局装置は、端末装置に対してCSIを推定するための参照信号を生成する(ステップS101)。次いで、基地局装置は、送信データと復調用参照信号を生成する(ステップS102)。次いで、基地局装置はCSIを推定するための参照信号を端末装置に向けて送信する(ステップS103)。なお,無線フレーム構成によっては、基地局装置は別のCSIを推定するための参照信号に関連付けられたデータ信号と復調長参照信号も同時に基地局装置に向けて送信する場合もあるが、ここでは別々に送信するものとする。CSIを推定するための参照信号は、基地局装置と端末装置とでお互いに既知であるから、端末装置は受信された参照信号に基づいてCSIを推定することができる(ステップS104)。
端末装置は推定したCSIを基地局装置に通知可能な情報に変換し(ステップS105)、基地局装置に通知する(ステップS106)。通知可能な情報としては、推定された情報を直接ディジタル情報に量子化した情報や、基地局装置と端末装置とで共用しているコードブックに記載されたコードを示す番号などが挙げられる。その後、基地局装置は、復元されたCSIに基づきデータと復調用参照信号にプリコーディングを施し(ステップS107)、端末装置に対して送信する(ステップS108)。
端末装置は、基地局装置からデータと復調用参照信号を受信すると、復調用参照信号に基づいて伝搬路推定を行ない(ステップS109)、その伝搬路推定値に基づいて、データに対して、チャネル等化(空間信号検出処理)を行なう(ステップS110)
ここで、基地局装置が行なうプリコーディングが非線形プリコーディングであった場合、端末装置は、チャネル等化後の信号に対して、modulo演算(ステップS111)を施す必要がある。modulo演算は、与えられた実定数2δに対して、入力された複素信号の実部と虚部をそれぞれ[-δ,δ]以内に収める信号処理である。ここで2δはmodulo幅と呼ばれる。端末装置はmodulo演算後の信号から送信データを復調する(ステップS112)。
ここで、基地局装置が行なうプリコーディングが非線形プリコーディングであった場合、端末装置は、チャネル等化後の信号に対して、modulo演算(ステップS111)を施す必要がある。modulo演算は、与えられた実定数2δに対して、入力された複素信号の実部と虚部をそれぞれ[-δ,δ]以内に収める信号処理である。ここで2δはmodulo幅と呼ばれる。端末装置はmodulo演算後の信号から送信データを復調する(ステップS112)。
ここで、受信側で行なわれるmodulo演算のmodulo幅は伝搬路状態に依存するため、端末装置が復調用参照信号に基づいて推定する必要がある。しかし、基地局装置で行なわれるプリコーディングによっては、端末装置が復調用参照信号に基づいて推定するmodulo幅と、真の最適なmodulo幅との間に誤差が生じてしまう場合がある。
この問題を解決するために、非特許文献3では、復調用参照信号に基づいて推定されるmodulo幅を補正する方法が開示されている。しかし、開示されている方法では、伝搬路環境に応じて、補正するためのパラメータを最適化する必要がある。そのため、伝搬路環境毎にパラメータのキャリブレーションが必要となり、キャリブレーションが出来ていない伝搬路環境において最適な伝送特性を実現させることは出来ない。
B. M. Hochwald, et. al., "A vector-perturbation technique for near-capacity multiantenna multiuser communication-Part II:Perturbation," IEEE Trans. Commun., Vol. 53, No. 3, pp.537-544, March 2005.
M. Joham, et. al., "MMSE approaches to multiuser spatio-temporal Tomlinson- Harashima precoding", Proc. 5th Int. ITG Conf. on Source and Channel Coding, Erlangen, Germany, Jan. 2004.
矢野,他,"Vector perturbationにおけるストリーム間干渉を考慮したmodulo格子サイズ設定に関する一検討", 信学技法, RCS2012-225, 2012年12月
基地局装置が非線形プリコーディングに基づくMU-MIMO伝送を行なう無線通信システムにおいて、端末装置が復調用参照信号に基づいてmodulo幅を推定する場合、端末装置が復調用参照信号に基づいて推定するmodulo幅と、最適なmodulo幅との間に誤差が生じてしまい、伝送特性が大幅に劣化してしまう。しかし、この誤差の抑圧を事前のキャリブレーションを行なうことなく実現する方法は、未だ明らかとなっていないのが実状である。
本発明は、このような事情に鑑みてなされたものであり、基地局装置が非線形プリコーディングに基づくMU-MIMO伝送を行なう無線通信システムにおいて、端末装置が復調用参照信号に基づいて高精度にmodulo幅を推定することが出来る基地局装置、無線通信システム、および集積回路を提供することを目的とする。
上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の基地局装置は複数のアンテナを備え、複数の端末装置宛の信号に非線形プリコーディングを施し空間多重して無線送信を行なう基地局装置であって、前記端末装置との間の伝搬路情報を取得する伝搬路情報取得部と、前記複数の端末装置宛のデータ信号と復調用参照信号を多重するマッピング部と、前記伝搬路情報に基づいて前記データ信号と前記復調用参照信号にプリコーディングを施すプリコーディング部と、を備え、前記プリコーディング部は、前記伝搬路情報に基づいて、前記データ信号に乗算する第1の線形フィルタと、前記復調用参照信号に乗算する第2の線形フィルタとの、互いに異なる線形フィルタを生成する線形フィルタ生成部を備えることを特徴とする。
また、本発明のプリコーディング方法は、複数のアンテナを備える基地局装置から、複数の端末装置へ送信されるデータ信号と復調用参照信号に、前記複数の端末装置との間の伝搬路情報に基づいて、予備的処理を行なうプリコーディング方法であって、前記伝搬路情報に基づいて、第1の線形フィルタ、第2の線形フィルタ及びフィードバックフィルタを算出する過程と、前記フィードバックフィルタに基づいて、前記データ信号に対して、干渉抑圧とモジュロ演算を施し、送信符号を算出する過程と、前記送信符号と前記第1の線形フィルタに基づいて、送信データ信号と電力正規化係数を算出する過程と、前記復調用参照信号、前記第2の線形フィルタ、及び前記電力正規化係数に基づいて、送信復調用参照信号を算出する過程と、前記送信データ信号と前記送信復調用参照信号の送信電力を調整する過程と、を有することを特徴とする。
また、本発明のプリコーディング方法は、複数のアンテナを備える基地局装置から、複数の端末装置へ送信されるデータ信号と復調用参照信号に、前記複数の端末装置との間の伝搬路情報に基づいて、予備的処理を行なうプリコーディング方法であって、前記伝搬路情報に基づいて、第1の線形フィルタと、第2の線形フィルタを算出する過程と、前記データ信号と、前記第1の線形フィルタに基づいて、摂動ベクトルを探索する過程と、前記データ信号、前記第1の線形フィルタ及び前記摂動ベクトルに基づいて、送信データ信号と電力正規化係数を算出する過程と、前記復調用参照信号、前記第2の線形フィルタ、及び前記電力正規化係数に基づいて、送信復調用参照信号を算出する過程と、前記送信データ信号と前記送信復調用参照信号の送信電力を調整する過程と、を有することを特徴とする。
また、本発明の集積回路は、複数のアンテナを備え、複数の端末装置宛の信号に非線形プリコーディングを施し空間多重して無線送信を行なう基地局装置に実装され、前記基地局装置に複数の機能を発揮させる集積回路であって、前記端末装置との間の伝搬路情報を取得する機能と、前記複数の端末装置宛のデータ信号と復調用参照信号を多重する機能と、前記伝搬路情報に基づいて前記データ信号と前記復調用参照信号にプリコーディングを施す機能と、の一連の機能を発揮させ、前記プリコーディングを施す機能は、前記伝搬路情報に基づいて、前記データ信号に乗算する第1の線形フィルタと、前記復調用参照信号に乗算する第2の線形フィルタとの、互いに異なる線形フィルタを生成することを特徴とする。
本発明によれば、基地局装置が非線形プリコーディングに基づくMU-MIMO伝送を行なう無線通信システムにおいて、端末装置が復調用参照信号に基づいて高精度にmodulo幅を推定することが出来るから、modulo幅の推定誤差に起因する特性劣化が抑圧され、周波数利用効率の大幅な改善に寄与できる。
以下、図面を参照して本発明の無線通信システムを適用した場合における実施形態について説明する。なお、本実施形態において説明した事項は、発明を理解するための一態様であり、実施形態に限定して発明の内容が解釈されるものではない。特に断らない限り、以下では、ATは行列Aの転置行列、AHは行列Aの随伴(エルミート転置)行列、A-1は行列Aの逆行列、diag(A)は行列Aの対角成分のみを抽出した対角行列もしくは括弧内の要素を対角成分に並べた対角行列、INはN行N列の単位行列、0NはN行N列の零行列、floor(c)は実部と虚部がそれぞれ複素数cの実部と虚部の値を超えない最大のガウス整数を返す床関数、E[x]はランダム変数xのアンサンブル平均、||a||はベクトルaのノルム、をそれぞれ表すものとする。また、[A,B]は行列AおよびBを列方向に結合した行列を表すものとする。また、Z[i]はガウス整数全体の集合を表すものとする。なお、ガウス整数とは、実部と虚部がそれぞれ整数で表される複素数である。
[1.第1の実施形態]
図1は、本発明の第1の実施形態に係る無線通信システムの概略の一例を示す図である。第1の実施形態においては、Nt本の送信アンテナを有し、非線形プリコーディングが可能な基地局装置1(無線送信装置とも呼ぶ)に対して、Nr本の受信アンテナを有する端末装置2(無線受信装置とも呼ぶ)がU個(図1では端末装置2-1~2-4の4個)接続しているMU-MIMO伝送を対象とする。各端末装置2にはそれぞれL個のデータを同時に送信するものとし(同時送信するデータ数のことをランク数とも呼ぶ)、U×L=NtおよびL=Nrであるものとする。
図1は、本発明の第1の実施形態に係る無線通信システムの概略の一例を示す図である。第1の実施形態においては、Nt本の送信アンテナを有し、非線形プリコーディングが可能な基地局装置1(無線送信装置とも呼ぶ)に対して、Nr本の受信アンテナを有する端末装置2(無線受信装置とも呼ぶ)がU個(図1では端末装置2-1~2-4の4個)接続しているMU-MIMO伝送を対象とする。各端末装置2にはそれぞれL個のデータを同時に送信するものとし(同時送信するデータ数のことをランク数とも呼ぶ)、U×L=NtおよびL=Nrであるものとする。
以下では簡単のために、各端末装置2の受信アンテナ数およびランク数は全て同一で、L=Nr=1として説明を行なうが、端末装置2毎に異なる受信アンテナ数およびランク数となっていても構わない。また、U×L≦NtおよびL≦Nrが満たされているのではあれば、ランク数と受信アンテナ数が各端末装置2間で同一である必要も無い。
伝送方式としては、Nc個の副搬送波(サブキャリア)を有する直交周波数分割多重(Orthogonal frequency division multiplexing(OFDM))を仮定する。ただし、特別に断らない限り、以下で説明する信号処理は、サブキャリア毎に行なわれるものとする。基地局装置1は各端末装置2より通知される制御情報により基地局装置1から各端末装置2までのCSIを取得し、その伝搬路情報に基づき、送信データに対してサブキャリア毎にプリコーディングを行なうものとする。以下では複信方式は周波数分割複信を仮定するが、時間分割複信も本実施形態には含まれる。
はじめに基地局装置1と端末装置2の間のCSIについて定義する。本実施形態においては、準静的周波数選択性フェージングチャネルを仮定する。ここで準静的とは、1OFDM信号内で伝搬路が変動しないこととする。第n送信アンテナ(n=1~Nt)と第u端末装置2-u(u=1~U)の第m受信アンテナ(m=1~Nr)の間の第tOFDM信号における第kサブキャリアの複素チャネル利得をhu,m,n(k,t)としたとき、伝搬路行列H(k,t)を式(1)のように定義する。
hu(k,t)は第u端末装置2-uで観測される複素チャネル利得により構成されるNr×Ntの行列を表す。本実施形態において、特に断りが無い限り、CSIは複素チャネル利得により構成される行列の事を指す。ただし、空間相関行列や、基地局装置1と各端末装置2間で予め共有しているコードブック記載の線形フィルタを並べた行列をCSIとみなして、後述する信号処理を行なうことも可能である。また、端末装置2が推定した伝搬路行列に特異値分解(もしくは固有値分解)を施すことで得られる固有ベクトルを基地局装置1に通知する場合、基地局装置1は、固有ベクトルを並べた行列をCSIとみなしても良い。以下の説明では、第u端末装置2-uは時刻t1におけるCSIであるhu(k,t1)を推定し、量子化を施したのち、基地局装置1に通知するものとする。
ここで、第u端末装置2-uが基地局装置1に実際に通知するCSIをhFB,u(k,t1)と定義する。以下では、hFB,u(k,t1)はhu(k,t1)と同様に、Nr×Ntの行列であるものとするが、必ずしもNr×Ntである必要はない。例えば、Nr本の受信アンテナを備える第u端末装置2-uが、(Nr-1)本の受信アンテナに関するCSIのみを通知するような場合も考えられる。この場合、当然hFB,u(k,t1)は(Nr-1)×Ntの行列となる。このとき、基地局装置1は第u端末装置2-uが備える受信アンテナ数は(Nr-1)本であるものとして、後述するプリコーディング等の送信信号処理を行なえば良い。
また、hu(k,t1)そのものではなく、hu(k,t1)に特異値分解を施すことによって得られる固有ベクトル、もしくは固有ベクトルと特異値の両方を通知するような場合も考えられる。この場合、固有ベクトルは要素数Ntの列ベクトルがNt個存在することになる。ただし、ここで算出される固有ベクトルには、第u端末装置2-u宛てにヌルビームを向ける線形フィルタとなり得るベクトルも含まれる。第u端末装置2-uは複数の固有ベクトルの中で任意の数の列ベクトルを通知するような制御を行なうことも可能である。例えば、第u端末装置2-uが固有ベクトルの中でQ個の固有ベクトルを通知するのであれば、基地局装置1は第u端末装置2-uが備える受信アンテナ数はQ本であるものとして、後述するプリコーディング等の送信信号処理を行なえば良い。
本実施形態において、第u端末装置2-uが基地局装置1にhFB,u(k,t1)を通知する方法については、何かに限定されるものでは無い。以下では、第u端末装置2-uはhu(k,t1)を直接量子化して基地局装置1に通知するものとする。このとき、量子化ビット数に応じて、hu(k,t1)とhFB,u(k,t1)との間には誤差が生ずることになる。しかし、本実施形態の方法自体は、誤差の大きさに影響を受けるものではないため、以下の説明では、hu(k,t1)=hFB,u(k,t1)であるものとして説明を行なう。
[1.1.基地局装置1]
図2は、本発明の第1の実施形態に係る基地局装置1の一構成例を示すブロック図である。図2に示すように、基地局装置1は、チャネル符号化部21と、データ変調部23と、マッピング部25と、プリコーディング部27と、アンテナ部29と、制御情報取得部31と、伝搬路情報取得部33と、を含んで構成されている。プリコーディング部27はサブキャリア数Nc、アンテナ部29は送信アンテナ数Ntだけ、それぞれ存在する。
図2は、本発明の第1の実施形態に係る基地局装置1の一構成例を示すブロック図である。図2に示すように、基地局装置1は、チャネル符号化部21と、データ変調部23と、マッピング部25と、プリコーディング部27と、アンテナ部29と、制御情報取得部31と、伝搬路情報取得部33と、を含んで構成されている。プリコーディング部27はサブキャリア数Nc、アンテナ部29は送信アンテナ数Ntだけ、それぞれ存在する。
初めに、制御情報取得部31は、接続している各端末装置2より通知される制御情報を取得し、そのうち、伝搬路情報に関連付けられた情報を伝搬路情報取得部33に向けて出力する。伝搬路情報取得部33では、制御情報取得部31より入力された情報に基づき、各端末装置2から通知されたhFB,u(k,t1)を取得する。そして、hFB,u(k,t1)に基づいて、式(2)で表される量子化伝搬路行列HFB(k,t1)を算出する。
ただし、既に説明したように、本実施形態の説明では、hu(k,t1)=hFB,u(k,t1)を仮定しているから、HFB(k,t1)=H(k,t1)となる。また、本実施形態においては、Nr=1が仮定されているため、HFB(k,t1)はU×Ntの行列となる。伝搬路情報取得部33は、算出したHFB(k,t1)をプリコーディング部27に向けて出力する。
次いで、チャネル符号化部21が各端末装置2宛ての送信データ系列に対してチャネル符号化を行なったのち、データ変調部23が、QPSK(Quadrature Phase Shift Keying)、16QAM(Quadrature Amplit
ude Modulation)等のディジタルデータ変調を施す。データ変調部23はデータ変調を施したデータ信号をマッピング部25に入力する。
ude Modulation)等のディジタルデータ変調を施す。データ変調部23はデータ変調を施したデータ信号をマッピング部25に入力する。
マッピング部25は、各データを指定された無線リソース(リソースエレメント、もしくは単にリソースとも呼ぶ)に配置するマッピング(スケジューリングもしくはリソースアロケーションとも呼ぶ)を行なう。ここでの無線リソースとは、周波数、時間、符号および空間を主に指す。使用される無線リソースは、端末装置2で観測される受信品質や、空間多重される端末同士の伝搬路の直交性等に基づいて決定される。本実施形態においては、使用される無線リソースは予め定められているものとし、基地局装置1と各端末装置2の双方で把握できているものとする。なお、マッピング部25は、各端末装置2において伝搬路推定を行なうための既知参照信号系列の多重も行なう。
各端末装置2宛ての参照信号については、受信した端末装置2において分離可能なように、それぞれが直交するように多重されるものとする。また、参照信号には、伝搬路推定用の参照信号であるCSI-reference signal(CSI-RS)と復調用参照信号(固有参照信号とも呼ぶ)であるDemodulation reference signal(DMRS)の2つの参照信号が多重されるものとするが、別の参照信号を更に多重する構成としても構わない。CSI-RSは、各端末装置2で観測されるCSIを推定するためのものである。つまり、第u端末装置2-uはCSI-RSに基づいてhu(k,t1)を推定する。一方、DMRSは後述するプリコーディングの結果が反映された伝搬路情報を推定するためのものである。本発明において、マッピング部25は、データ信号、DMRSおよびCSI-RSを、それぞれ異なる時間、周波数もしくは符号で送信するようにマッピングするものとする。また、マッピング部25はCSI-RSを送信アンテナ間で直交するように配置する。また、マッピング部25は、DMRSを、端末装置間および関連付けられているデータストリーム間で直交するように配置する。マッピング部25は、マッピングしたデータ情報等を、それぞれ対応するサブキャリアのプリコーディング部27に入力する。
図3は、本発明の第1の実施形態に係るプリコーディング部27の装置構成の一例を示すブロック図である。図3に示すように、プリコーディング部27は、スイッチ部27-1と線形フィルタ生成部27-2と、THP部27-4と送信データ信号生成部27-5と送信DMRS生成部27-6と送信信号生成部27-7とを含んで構成されている。なお、以下では、プリコーディング部27に入力される信号のうち、データ信号と、DMRSに対する信号処理についてのみ説明を行なう。CSI-RSについては、プリコーディング部において、伝搬路情報に基づくプリコーディング処理は施されず、送信電力制御のみが行なわれる事になるため、その説明は省略する。
プリコーディング部27に入力された信号は、はじめにスイッチ部27-1において、データ信号とDMRSとに分けられる。次いで、線形フィルタ生成部27-2は、伝搬路情報取得部33から入力される伝搬路情報HFB(k,t1)に基づいて線形フィルタW(k,t1)を生成する。なお、以下の説明では、HFB(k,t1)=H(k,t1)であるものとするとともに、データ信号とDMRSが送信されている無線リソースの伝搬路には十分に高い相関があるものとし、時間および周波数インデックスは省略して記述するものとする。また、実際の伝搬路には時間選択性が存在するため、基地局装置1がプリコーディングを行なっても、IUIは完全には除去できないが、本実施形態の方法自体は残留IUIの大きさには依存しないため、以下では、この影響は無視して説明を行なう。
本実施形態において、プリコーディング部27が施すプリコーディングは送信データ信号と各端末装置2の受信データ信号との平均二乗誤差を最小とするMMSE(Minimum mean square error)規範に基づくTHPを仮定するが、他の規範のTHP(例えばIUIを最小化するZero-forcing規範)も本実施形態には含まれる。MMSE-THPで用いられる線形フィルタは、基本的には、伝搬路行列を下三角行列に変換するものである。線形フィルタの生成方法にはいくつかの方法があるが、本実施形態では、QR分解に基づく方法を仮定する。
QR分解に基づく方法では、G=[H,αI]で与えられる拡大伝搬路行列Gを用いる。ここで、αは干渉制御項であり、例えば各端末装置2が観測する受信信号対干渉+雑音電力比(SINR)の逆数の平方根に設定すれば良い。線形フィルタ生成部27-2はGHに対して、QR分解を施すことで、GH=QRのようにGHを分解する。ここで、Q=[Q11,Q12;Q21,Q22]と表現することができ、Q11、Q12、Q21およびQ22はそれぞれU行U列の行列となる。以下では、Q11=QLと表す。また、R=[RL;0U]と表現でき、RLはU行U列の下三角行列である。以下では、RLのエルミート転置行列をLLとする。すなわち、LLはU行U列の下三角行列である。
従来のMMSE-THPでは、W=QL{diag(HQL)}-1が線形フィルタであるものとしている。つまり、この線形フィルタは拡大伝搬路行列Gを下三角行列に変換するフィルタであるが、実際の伝搬路行列であるHをMMSE規範で下三角行列とするフィルタにもなる。ここで、{diag(HQL)}-1は、各端末装置2のデータ信号に対する受信SINRを一定にするための電力配分制御項であり、プリコーディングの手法によっては乗算しなくても構わない。
本実施形態においては、線形フィルタ生成部27-2はデータ信号に対する線形フィルタWdとしてWd=QL{diag(LL)}-1を算出する。従来方式とは異なり、線形フィルタ生成部27-2は(HQL)ではなく、LLを用いて、電力配分制御項を算出する。なお、LLはHLに対するLQ分解に基づいて求めても良い。
また、従来方式においては、データ信号に用いる線形フィルタ(これを第1の線形フィルタとも呼ぶ)と、後述するDMRSに乗算する線形フィルタ(これを第2の線形フィルタとも呼ぶ)は同一であるものとしていた。そして、従来方式においては、DMRSにもWdが用いられていたが、本実施形態においては、データ信号とDMRSとで、違う線形フィルタを用いるものとする。
具体的には、線形フィルタ生成部27-2はDMRSに対する線形フィルタWpはWp=QL{diag(HWd)}-1とする。HWdの対角成分は各端末装置2の受信信号に含まれる所望信号の振幅情報に関連付けられた情報である。以下では、{diag(HWd)}-1を第1の対角行列とも呼ぶ。線形フィルタ生成部27-2はWpを送信DMRS生成部27-6に向けて出力する一方で、WdをTHP部27-4および送信データ信号生成部27-5に向けて出力する。
次いで、THP部27-4における信号処理について説明する。THP部27-4では、マッピング部25より入力される信号のうち、データ信号が入力され、各端末装置2が受信する受信信号に含まれているユーザ間干渉(IUI)の一部を抑圧する干渉抑圧が行なわれる。以下では、基地局装置1には図1に示されているように、端末装置2-1~2-4が接続されているものとし、THP部27-4には各端末装置2宛のデータ信号で構成される送信データベクトルd=[d1,d2,d3,d4]Tが入力されているものとする。
THP部27-4が、入力されたデータ信号dに対して、線形フィルタ生成部27-2より入力される線形フィルタWdを乗算して、各端末装置2に向けて送信することを考える。第u端末装置2-uの受信信号をruとした場合、システム全体の受信信号ベクトルr=[r1,r2,r3,r4]Tはr=HWddで与えられる。なお、実際の送信信号ベクトルには後述する電力正規化が行なわれるとともに、受信信号には雑音が印加されるが、ここでは省略している。各端末装置2の受信信号には、自装置宛の所望信号に加えて、IUIも含まれている。例えば、第2端末装置2-2の受信信号は式(3)で与えられる。
ここで、Wd=[wd,1,wd,2,wd,3,wd,4]であり、wd,uが第u端末装置2-u宛てのデータ信号に乗算されるNt行1列の固有線形フィルタである。式(3)の右辺の第2項および第3項がIUIとなる。ここで、WdはMMSE規範に基づいて伝搬路行列Hを下三角行列に変換するフィルタであることから、第3項のIUI、すなわち、第3端末装置2-3および第4端末装置2-4宛てのデータ信号に起因するIUIは十分に抑圧されている一方で、第1端末装置2-1宛てのデータ信号に起因するIUIは全く抑圧されていないことになる。
そこで、THP部27-4はWdによって抑圧されないIUIを予め抑圧する干渉抑圧処理を各端末装置2宛てのデータ信号に対して施す。はじめに従来のMMSE-THPにおける信号処理について説明する。例えば、第2端末装置2-2宛の干渉抑圧後の信号(送信符号と呼ぶ)をx2としたとき、x2は式(4)で与えられる。
式(4)で与えられる送信符号を基地局装置1が第2端末装置2-2に送信すれば、第2端末装置2-2には第1端末装置2-1宛ての送信信号に起因して発生するIUIが受信されないことになる。しかし、伝搬路情報Hの状態によっては、x2の大きさがd2よりも遥かに大きくなってしまい、膨大な送信電力を必要としてしまう可能性がある。そこで、THP部27-4ではx2に対してmodulo演算と呼ばれる非線形信号処理を行う。なお、modulo演算は以下で説明する本実施形態のTHP部27-4でも行なわれる。
modulo演算Mod2δ(x)は、ある入力信号xに対して、その出力の実部と虚部がそれぞれ-δ以上かつδ未満に収まるようにするものである。ここでδはmodulo幅と呼ばれ、入力される信号の変調方式等に応じて設定される。例えばQPSK変調信号が入力される場合には、2δ=2×21/2と設定される。なお、2δのことを摂動ベクトルの基本単位とも呼ぶこととする。実際に、式(4)で表される信号x2にmodulo演算を施した場合、その出力は式(5)で与えられる。
ここで、z2はガウス整数であり、式(5)の第2式で与えられるz2をもちいることで、第1式の右辺の実部と虚部がそれぞれ-δより大きく、かつδ以下に収まる。このz2、もしくは2δz2のことを本発明においては、摂動項と呼ぶこととする。modulo演算を施すことにより、伝搬路情報Hの状態に依らず、x2の大きさを常に一定とすることが出来る。このように算出されたx2(modulo演算も含む)が第2端末装置2-2宛の送信符号となる。
以下、同様にして、THP部27-4は第3端末装置2-3および第4端末装置2-4宛てのデータ信号に対して、干渉抑圧とmodulo演算を行なっていく。なお、第1端末装置2-1に受信されるIUIについては、全て線形フィルタWdによって抑圧されているから、THP部27-4はd1に対しては特に信号処理は行なわない(すなわち、x1=d1)。上述した逐次的な信号処理により求められる摂動項を纏めたベクトルz=[z1,z2,z3,z4]Tを、本実施形態において摂動ベクトルと呼ぶこととする。摂動ベクトルzを用いると、送信符号ベクトルx=[x1,x2,x3,x4]Tはx=(I-F)-1(d+2δz)で与えられる。ここで、Fはフィードバックフィルタである。つまり、THP部27-4で行なわれる干渉抑圧処理は、データ信号とフィードバックフィルタFに基づいて行なわれる事になる。Fは従来のMMSE-THPでは、I―(diag(HWd))-1HWdの下三角行列部分で与えられる。
従来のMMSE-THPでは、算出された線形フィルタWdに基づいて、フィードバックフィルタFを算出してTHP処理を行なう。この場合、線形フィルタWdによる干渉抑圧とTHPによる干渉抑圧がともにMMSE規範となるため、平均的に良好な伝送特性を実現できる。ところで、受信側でmodulo演算を施す非線形プリコーディングでは、modulo損失と呼ばれる伝送特性劣化が発生する。modulo損失は、特に低受信信号電力対雑音電力比(SNR)環境下において、影響が顕著に表れる。そのため、modulo損失の影響を抑圧するためには、MMSE規範では無く、受信SNRを最大とするMRC規範に近いプリコーディングを基地局装置1が施した方が有効な場合がある。
そこで、本実施形態において、THP部27-4は、THPで必要となるフィードバックフィルタとして、拡大伝搬路行列Gに対するQR分解に基づいて算出される下三角行列LLの対角成分を除いた下三角行列部分を用いるものとする。つまり、本実施形態における線形フィルタ生成部27-2はF=I―(diag(LL))-1LLで与えられるフィードバックフィルタを生成し、THP部27-4は、このFに基づいてTHPによる干渉抑圧を行なう。なお、線形フィルタ生成部27-2はLLの対角成分を含まない下三角行列成分のみに基づいてFを算出しても構わない。
本実施形態の方法によれば、THP部27-4が把握するIUIと実際に各端末装置2で観測されるIUIとの間に誤差が生ずることになる。このことは、受信SINRを劣化させることを意味している。一方で、各端末装置2の受信信号における所望信号の振幅はLLの対角成分で与えられるものとして信号処理を行なうことになるため、従来のMMSE-THPと比較して、受信信号対雑音電力比(SNR)を改善させることが可能となる。よって、低SNR環境下においては、本実施形態における方法の方が良好な伝送特性となる。なお、本実施形態のTHP部27-4における信号処理はフィードバックフィルタの形状が異なること以外は従来のTHPと同様である。THP部27-4は算出された送信符号ベクトルxを送信データ信号生成部27-5に向けて出力する。
送信データ信号生成部27-5はTHP部27-4より入力される送信符号ベクトルxに線形フィルタ生成部27-2より入力される線形フィルタWdを乗算することで送信データ信号ベクトルsdを生成する。このとき、送信電力を一定とするための電力正規化も行なわれる。本実施形態においては、送信データ信号生成部27-5は電力正規化項βを送信データ信号ベクトルsdに乗算することで電力正規化を行なう。送信データ信号ベクトルsdは式(6)で与えられる。
ここで、Pxは送信符号ベクトルの共分散行列である。送信データ信号生成部27-5はsdを送信信号生成部27-7に向けて出力するとともに、算出された電力正規項βを送信DMRS生成部27-6に向けて出力する。
次いで、送信DMRS生成部27-6における信号処理について説明する。送信DMRS生成部27-6にはマッピング部25より入力される信号のうち、DMRSが入力される。ここで、基地局装置1は各端末装置2宛てのDMRSを、連続する無線リソースにおいて各端末装置2に順番に送信するものとする。第u端末装置2-u宛のDMRSをpuとしたとき、送信DMRS生成部27-6が算出する第u端末装置2-u宛の送信DMRSであるsp,uはsp,u=μβwp,upuで与えられる。なお、sp=[sp,1,sp,2,sp,3,sp,4]T、Wp=[wp,1,wp,2,wp,3,wp,4]である。Wpは線形フィルタ生成部27-2より入力され、電力正規化項βは送信データ信号生成部27-5より入力される。μは、DMRSの電力調整項であり、任意の実数で与えられるが、基本的には基地局装置1と各端末装置2との間で共有されている必要がある。以下では、μ=1として説明を行なう。送信DMRS生成部27-6は算出したspを送信信号生成部27-7に向けて送信する。
送信信号生成部27-7は、送信データ信号生成部27-5および送信DMRS生成部27-6よりそれぞれ入力された送信信号ベクトルsdおよびspに適切な送信電力を与えたのち、アンテナ部29に向けて出力する。なお、送信電力は、後述するアンテナ部29の無線送信部29-3において調整するように制御しても良い。
図4は本発明の第1の実施形態に係るプリコーディング部27における信号処理の一例を説明するフローチャートである。初めに、スイッチ部27-1は、マッピング部から入力される信号をデータ信号とDMRSに分ける(ステップS201)。次いで、線形フィルタ生成部27-2は伝搬路情報取得部33から入力される伝搬路情報に基づいて、第1の線形フィルタWdと第2の線形フィルタWpとフィードバックフィルタFを算出する(ステップS202)。次いで、THP部27-4はフィードバックフィルタFに基づいて、データ信号に対して、干渉抑圧とmodulo演算を施し、送信符号ベクトルxを算出する(ステップS203)。次いで、送信データ信号生成部27-5は送信符号ベクトルxと第1の線形フィルタWdに基づき、電力正規化係数βと送信データ信号ベクトルsdを算出する(ステップS204)。次いで、送信DMRS生成部27-6は、DMRSと第2の線形フィルタWpと電力正規化係数βと電力調整項に基づいて、送信DMRSであるspを算出する(ステップS205)。最後に、送信信号生成部27-7がsdとspの送信電力を調整し、アンテナ部29に向けて出力する(ステップS206)。
以上の説明では、プリコーディング部27が施すプリコーディング処理は、サブキャリア毎に行なうことを前提としているが、複数のサブキャリアおよびOFDM信号からなるサブバンド毎に、プリコーディング部27はプリコーディング処理を施しても良い。例えは、線形フィルタ生成部27-2は、第1および第2の線形フィルタとフィードバックフィルタを、サブバンド毎にそれぞれ一つずつ算出し、サブバンド内の各サブキャリアに対して適用するように制御しても良い。
また、送信データ信号生成部27-5は、サブバンド毎に送信電力が一定となるように、電力正規化係数βを求めるように制御しても良い。
また、プリコーディング部27は、伝搬路情報取得部33より入力される伝搬路情報(伝搬路行列)に対して、予め予備処理を施してから、一連の信号処理を行なうようにしても良い。予備処理として、例えば、伝搬路行列に対するオーダリング(順序入れ替え)技術や格子基底縮小技術が考えられる。伝搬路行列に対して予備処理が行なわれる場合、プリコーディング部27は、それに準じた処理をマッピング部より入力されるデータ信号と復調用参照信号にも施すことになる。例えば、オーダリングが伝搬路行列に施される場合、同じオーダリング処理が、データ信号および復調用参照信号(復調用参照信号については行なわなくても構わない)にも行なわれることになる。
図5は、本発明の第1の実施形態に係るアンテナ部29の装置構成の一例を示すブロック図である。図5に示すように、アンテナ部29は、IFFT部29-1と、GI挿入部29-2と、無線送信部29-3と、無線受信部29-4と、アンテナ29-5とを含んで構成されている。各アンテナ部29では、初めに、IFFT部29-1が、対応するプリコーディング部27より出力される信号に対して、Ncポイントの逆高速フーリエ変換(IFFT)、もしくは逆離散フーリエ変換(IDFT)を適用し、Ncサブキャリアを有するOFDM信号を生成し、GI挿入部29-2に入力する。ここでは、サブキャリア数とIFFTのポイント数は同じものとして説明しているが、周波数領域にガードバンドを設定する場合、ポイント数はサブキャリア数よりも大きくなる。GI挿入部29-2は入力されたOFDM信号にガードインターバルを付与したのち、無線送信部29-3に入力する。無線送信部29-3は、入力されたベースバンド帯の送信信号を無線周波数(RF)帯の送信信号に変換し、アンテナ29-5に入力する。アンテナ29-5は入力されたRF帯の送信信号を送信する。
一方、無線受信部29-4には、各端末装置2から基地局装置1に送信された信号が入力されることになる。無線受信部29-4では、受信された信号から、各端末装置2からの送信信号を復調する処理が行なわれ、そのうち、制御情報に関連する信号が、制御情報取得部31に向けて出力されることになる。
[1.2.端末装置2]
図6は、本発明の第1の実施形態に係る端末装置2の一構成例を示すブロック図である。図6に示すように、端末装置2は端末アンテナ部51と、伝搬路推定部53と、フィードバック情報生成部55と、チャネル等化部57と、デマッピング部59とデータ復調部61と、チャネル復号部63と、を含んで構成されている。そのうち、端末アンテナ部51は受信アンテナ数Nrだけ存在する。ただし、以下の説明では、受信アンテナ数はNr=1であるものとする。
図6は、本発明の第1の実施形態に係る端末装置2の一構成例を示すブロック図である。図6に示すように、端末装置2は端末アンテナ部51と、伝搬路推定部53と、フィードバック情報生成部55と、チャネル等化部57と、デマッピング部59とデータ復調部61と、チャネル復号部63と、を含んで構成されている。そのうち、端末アンテナ部51は受信アンテナ数Nrだけ存在する。ただし、以下の説明では、受信アンテナ数はNr=1であるものとする。
図7は、本発明の第1の実施形態に係る端末アンテナ部51の一構成例を示すブロック図である。図7に示すように、端末アンテナ部51は、無線受信部51-1と、無線送信部51-2と、GI除去部51-3と、FFT部51-4と、参照信号分離部51-5と、アンテナ51-6と、を含んで構成されている。基地局装置1より送信された送信信号は、はじめに端末アンテナ部51のアンテナ51-6で受信されたのち、無線受信部51-1に入力される。無線受信部51-1は、入力された信号をベースバンド帯の信号に変換し、GI除去部51-3に入力する。GI除去部51-3は、入力された信号からガードインターバルを取り除き、FFT部51-4に入力する。FFT部51-4は、入力された信号に対してNcポイントの高速フーリエ変換(FFT)もしくは離散フーリエ変換(DFT)を適用し、Nc個のサブキャリア成分に変換したのち、参照信号分離部51-5に入力する。参照信号分離部51-5は、入力された信号を、データ信号成分とCSI-RS成分と、DMRS成分とに分離する。参照信号分離部51-5は、データ信号成分については、チャネル等化部57に入力し、CSI-RSとDMRSについては、伝搬路推定部53に入力する。以下で説明する信号処理は基本的にはサブキャリア毎に行なわれることになる。
伝搬路推定部53は、入力された既知参照信号であるCSI-RSおよびDMRSに基づいて伝搬路推定を行なう。はじめにCSI-RSを用いた伝搬路推定について説明する。
CSI-RSは、プリコーディングを適用されずに送信されているため、式(1)で表されている伝搬路行列H(k,t1)のうち、第u端末装置2-uに対応する行列hu(k,t1)を推定することが可能である。通常、CSI-RSは無線リソースに対して周期的に多重されるため、全てのサブキャリアの伝搬路情報を直接推定することはできない。しかし、標本化定理を満たすような時間間隔、および周波数間隔でCSI-RSが送信されれば、端末装置2は、適切な補間により全サブキャリアの伝搬路情報を推定することができる。具体的な伝搬路推定方法については、特に限定しないが、例えば二次元MMSE伝搬路推定を用いれば良い。
第u端末装置2-uの伝搬路推定部53はCSI-RSに基づいて推定した伝搬路情報hu(k,t1)をフィードバック情報生成部55に入力する。フィードバック情報生成部55は、入力された伝搬路情報と各端末装置2がフィードバックする伝搬路情報形式に応じて、基地局装置1にフィードバックする情報、すなわち、hFB,u(k,t1)を生成する。本発明においては、伝搬路情報形式については何かに限定されるものではない。例えば、推定された伝搬路情報hu(k,t1)の各要素に対して、有限ビット数にて量子化を行ない、その量子化情報をフィードバックする方法が考えられる。また、基地局装置1との間で予め取り決めておいたコードブックに基づいてフィードバックを行なっても良い。
また、hu(k,t1)を直接量子化するのではなく、何らかの信号変換を施したのちに、量子化を行なっても良い。信号変換として、例えば、特異値分解を施す方法が考えられる。この場合、フィードバック情報生成部55は、特異値分解によって得られた固有ベクトル、もしくは固有ベクトルと特異値の両方を量子化することで、基地局装置1に通知する情報を生成する。
次いで、伝搬路推定部53は、DMRSに基づいて伝搬路推定を行なうが、このことについては後述するものとし、先にチャネル等化部57における信号処理について説明する。チャネル等化部57に入力される第u端末装置2-uで受信される受信信号ruは式(7)で与えられる。
ここで、Prはパスロス等の長区間変動成分も加味した平均受信電力であり、ηuは第u端末装置2-uに印加される雑音である。式(7)の第2式は、基地局装置1における非線形プリコーディングによりIUIが理想的に抑圧されていることを仮定している。基地局装置1が非線形プリコーディングを施している場合、受信側においてmodulo演算が必要であることは既に述べた。本実施形態において伝搬路推定部53が推定すべきmodulo幅は(2Pr)1/2β2δであり、huwd,uは含まれない。このmodulo幅は、伝搬路推定部53におけるDMRSに基づいた伝搬路推定によって推定することができる。
伝搬路推定部53におけるDMRSに基づいた伝搬路推定について説明する。今第u端末装置2-uに受信されているDMRSrp,uは式(8)で与えられる。
伝搬路推定部53はrp,uに対して、既知の参照信号であるpuによる逆変調を行なう。雑音の影響が無視できる場合、逆変調出力はrp,u/pu=(2Pr)1/2βとなり、2δは基地局装置1と端末装置2との間で共有されている値であるから、端末装置2は所望のmodulo幅を得ることが出来る。
一方、従来技術のように基地局装置1がDMRSに対してデータ信号と同じ線形フィルタWdを乗算した場合を考えてみる。このとき、受信信号rp,uは式(9)で与えられる。
このrp,uに対して、伝搬路推定部53がpuに基づく逆変調を施した場合、その出力は、(2Pr)1/2βhuwd,uとなる。このことは、端末装置2は、modulo幅を(2Pr)1/2βhuwd,u2δと推定することを意味しており、その推定値は所望のmodulo幅と一致していないことが分かる。もし、端末装置2が所望の値とは異なるmodulo幅を推定した場合、modulo演算結果には大きな誤差が生じてしまい、伝送特性も大幅に劣化してしまう。本実施形態が対象としたように、DMRSとデータ信号とで異なる線形フィルタを用いることで、そのような伝送特性の劣化を回避することが可能となる。
伝搬路推定部53は上述した方法に基づき求めた逆変調出力を伝搬路推定値としてチャネル等化部57に向けて出力する。なお、以上の説明では、伝搬路推定方法は単純な逆変調に基づくものとしているが、本実施形態において伝搬路推定部53がDMRSに対して施す伝搬路推定方法は何かに限定されるものではなく、CSI-RSに対する伝搬路推定方法と同様に、他の伝搬路推定方法に基づいて伝搬路推定値を求めても構わない。
チャネル等化部57は受信信号ruに対して、伝搬路推定部53より入力される伝搬路推定値に基づいてチャネル等化を施す。例えば、端末アンテナ部より入力された受信信号ruを、伝搬路推定部53より入力された伝搬路推定値で除算すれば良い。チャネル等化部57はチャネル等化後の受信信号に対して、modulo幅2δのmodulo演算を施したのち、デマッピング部59に向けて出力する。
デマッピング部59においては、端末装置2は、自装置宛ての送信データの送信に使われている無線リソースより、自装置宛ての送信データを抽出する。なお、参照信号分離部51-5の出力を、先にデマッピング部59に入力し、自装置に該当する無線リソース成分のみをチャネル等化部57に入力するような構成としても良い。デマッピング部59の出力は、その後、データ復調部61に入力されてデータ復調が行なわれ、データ復調結果は、チャネル復号部63に入力されてチャネル復号が行なわれる。
なお、チャネル復号部63が行なうチャネル復号の方法によっては、摂動項が加算された信号を用いて直接復号することも可能である。この場合、チャネル等化部57ではmodulo演算を行なわなくても構わない。
本実施形態においては、OFDM信号伝送を仮定し、プリコーディングはサブキャリア毎に行なうことを仮定したが、伝送方式(もしくはアクセス方式)やプリコーディングの適用単位に制限は無い。例えば、複数サブキャリアを一纏めとしたリソースブロック毎にプリコーディングが行なわれた場合も本実施形態は適用可能であり、同様に、シングルキャリアベースのアクセス方式(例えばシングルキャリア周波数分割多重アクセス(SC-FDMA)方式など)にも適用することが可能である。
本実施形態においては、各端末装置2が備える受信アンテナ数Nrは1、送信ランク数Lは1としていたが、受信アンテナ数および送信ランク数Lが複数であった場合も本実施形態には含まれる。この場合、各端末装置2は、基地局装置より送信される復調用参照信号に基づいて、見掛け上のMIMOチャネルを推定し、得られたMIMOチャネル推定値に基づいて、受信信号に対して、空間分離処理を施せば良い。このとき、各端末装置2は自装置宛の復調用参照信号のみを用いる場合と、他装置宛の復調用参照信号も用いる場合が考えられるが、本実施形態にはいずれの場合も含まれる。
以上、説明してきた方法により、端末装置2は復調用参照信号に基づいて高精度にmodulo幅を推定できるとともに、低SNR環境下において、従来のMMSE-THPと比較して良好な伝送特性を実現できる非線形MU-MIMO伝送を実現することが出来る。
[2.第2の実施形態]
第1の実施形態においては、基地局装置1が行なう非線形プリコーディングはMMSE-THPであるものとした。第2の実施形態においては、非線形プリコーディングとしてMMSE-VPを基地局装置1が行なう場合を対象とする。
第1の実施形態においては、基地局装置1が行なう非線形プリコーディングはMMSE-THPであるものとした。第2の実施形態においては、非線形プリコーディングとしてMMSE-VPを基地局装置1が行なう場合を対象とする。
[2.1.基地局装置1]
本発明の第2の実施形態に係る基地局装置1の一構成例は図2と同様である。ただし、プリコーディング部27は、プリコーディング部35に置き換わる構成となる。置き換わるプリコーディング部35以外の各構成装置における信号処理は第1の実施形態と同様であるから説明は省略し、以下では、プリコーディング部35における信号処理について説明を行なう。
本発明の第2の実施形態に係る基地局装置1の一構成例は図2と同様である。ただし、プリコーディング部27は、プリコーディング部35に置き換わる構成となる。置き換わるプリコーディング部35以外の各構成装置における信号処理は第1の実施形態と同様であるから説明は省略し、以下では、プリコーディング部35における信号処理について説明を行なう。
図8は、本発明の第2の実施形態に係るプリコーディング部35の装置構成の一例を示すブロック図である。図8に示すように、プリコーディング部35は、スイッチ部35-1と線形フィルタ生成部35-2と、摂動ベクトル探索部35-3と送信データ信号生成部35-5と送信DMRS生成部35-6と送信信号生成部35-7とを含んで構成されている。なお、スイッチ部35-1と送信DMRS生成部35-6と送信信号生成部35-7の信号処理は、それぞれ、第1の実施形態における図3のプリコーディング部27のスイッチ部27-1と送信DMRS生成部27-6と送信信号生成部27-7と同様であるから、説明は省略する。
線形フィルタ生成部35-2では線形フィルタを算出する。第1の実施形態においては、線形フィルタ生成部27-2が生成した線形フィルタWdおよびWpはいずれも伝搬路行列HをMMSE規範に基づいて下三角行列に変換するフィルタであり、各端末装置2が受信するIUIのうちの一部を抑圧できるものであった。本実施形態において線形フィルタ生成部35-2が算出する線形フィルタは、各端末装置2が受信するIUIを全て抑圧するものとなる。本実施形態においては、MMSE規範に基づいた線形フィルタを用いるものとする。線形フィルタ生成部35-2が生成するデータ信号に乗算する線形フィルタWdは式(10)で与えられる。
従来のMMSE-VPでは、DMRSに乗算する線形フィルタWpもWdと同じものを用いるものとしている。本実施形態においては、第1の実施形態と同様に、データ信号に乗算する線形フィルタとDMRSに乗算する線形フィルタを異なるものとする。本実施形態において線形フィルタ生成部35-2が生成する、DMRSに乗算する線形フィルタWpは式(11)で与えられる。
線形フィルタ生成部35-2はWdを摂動ベクトル探索部35-3と送信データ信号生成部35-5に入力し、Wpを送信DMRS生成部35-6に入力する。
摂動ベクトル探索部35-3では、データ信号dに加算する摂動ベクトルzを探索する。第1の実施形態が対象としたMMSE-THPでは、摂動ベクトルzはmodulo演算を用いて求めていた。本実施形態が対象とするMMSE-VPでは、摂動ベクトルはmodulo演算ではなく、式(12)で与えられる最小化問題を解くことで探索する。
式(12)は、所望の摂動ベクトルは、線形フィルタ乗算後の送信信号の送信電力を最小化するものであることを示唆している。しかし、摂動ベクトルを構成する摂動項は任意のガウス整数で与えられるから、全ての組み合わせを調べるのは現実的では無い。そこで従来のMMSE-VPに関する検討でも、Sphere encoding等の演算量削減技術を用いることを前提としている。
本実施形態の方法は、摂動ベクトルの探索方法には影響を受けないため、本実施形態において、摂動ベクトルの探索方法は何かに限定されるものではない。また、送信電力を最小とする規範でなくても構わない。例えば、摂動ベクトル探索部35-3は送信電力最小規範ではなく、平均二乗誤差最小規範や与干渉電力最小規範、もしくは送信対与干渉+雑音電力比(SLNR)最大規範に基づいて摂動ベクトルの探索を行なっても良いし、格子基底縮小技術に基づいて摂動ベクトルを探索してもよい。また、極端なことをいえば、摂動ベクトル探索部35-3がランダムに摂動ベクトルを選択した場合も、本実施形態には含まれる。以下では、何かしらの規範と探索方法に基づき摂動ベクトル探索部35-3は摂動ベクトルzを探索し、送信データ信号生成部35-5に向けて出力したものとする。
送信データ信号生成部35-5では、スイッチ部35-1から入力されるデータ信号ベクトルdと、線形フィルタ生成部35-2から入力される線形フィルタWdと、摂動ベクトル探索部35-3から入力される摂動ベクトルzに基づいて、送信データ信号ベクトルsdを生成する。sdは式(13)で与えられる。
送信データ信号生成部35-5は、算出した送信データ信号ベクトルsdを送信信号生成部35-7に向けて出力する一方で、電力正規化項βを送信DMRS生成部35-6に向けて出力する。
図9は本発明の第2の実施形態に係るプリコーディング部35における信号処理の一例を説明するフローチャートである。初めに、スイッチ部35-1は、マッピング部25から入力される信号を、データ信号とDMRSに分ける(ステップS301)。次いで、線形フィルタ生成部35-2は伝搬路情報取得部33から入力される伝搬路情報に基づいて、第1の線形フィルタWdと第2の線形フィルタWpを算出する(ステップS302)。次いで、摂動ベクトル探索部35-3は、データ信号と、第1の線形フィルタに基づいて、摂動ベクトルzを探索する(ステップS303)。次いで、送信データ信号生成部35-5はデータ信号と、第1の線形フィルタと、摂動ベクトルに基づき、電力正規化係数βと送信データ信号ベクトルsdを算出する(ステップS304)。次いで、送信DMRS生成部35-6は、DMRSと第2の線形フィルタWpと電力正規化係数βと電力調整項に基づいて、送信DMRSであるspを算出する(ステップS305)。最後に、送信信号生成部35-7がsdとspの送信電力を調整し、アンテナ部29に向けて出力する(ステップS306)。
以上が本実施形態に係るプリコーディング部35における信号処理の説明となる。基地局装置1の他の構成装置における信号処理は第1の実施形態と同様であるから説明は省略する。
[2.2.端末装置2]
本実施形態における端末装置2の装置構成は第1の実施形態と同様である。他の構成装置における信号処理も同様であるから説明は省略する。
本実施形態における端末装置2の装置構成は第1の実施形態と同様である。他の構成装置における信号処理も同様であるから説明は省略する。
以上、本実施形態では、基地局装置1がプリコーディング方式として、MMSE-VPを用いる場合を対象とした。第1の実施形態では、低SNR環境下において本発明の方法が有効であったのに対して、本実施形態が対象としたMMSE-VPでは、SNRの値に依らず、従来方式よりも良好な伝送特性を実現することが可能であり、無線通信システムの周波数利用効率の改善に寄与できる。
[3.第3の実施形態]
第1および第2の実施形態では、基地局装置1に接続される端末装置2は全てmodulo演算が可能であることを前提としていた。しかし、実際の無線通信システムにおいては、modulo演算を行なわない端末装置3が混在する場合が考えられる。また、modulo演算を前提とする非線形プリコーディング伝送では、modulo損失と呼ばれる特有の伝送特性劣化要因が存在する。よって、伝搬路環境によっては、端末装置がmodulo演算を必要としない送信信号を基地局装置が生成した方が、周波数利用効率が向上する場合がある。第3の実施形態では、modulo演算を行なう端末装置2とmodulo演算を行なわない端末装置3とが混在する場合を対象とする。
第1および第2の実施形態では、基地局装置1に接続される端末装置2は全てmodulo演算が可能であることを前提としていた。しかし、実際の無線通信システムにおいては、modulo演算を行なわない端末装置3が混在する場合が考えられる。また、modulo演算を前提とする非線形プリコーディング伝送では、modulo損失と呼ばれる特有の伝送特性劣化要因が存在する。よって、伝搬路環境によっては、端末装置がmodulo演算を必要としない送信信号を基地局装置が生成した方が、周波数利用効率が向上する場合がある。第3の実施形態では、modulo演算を行なう端末装置2とmodulo演算を行なわない端末装置3とが混在する場合を対象とする。
図10は、本発明の第3の実施形態に係る無線通信システムの概略の一例を示す図である。第3の実施形態においては、Nt本の送信アンテナを有した基地局装置1bに対して、Nr本の受信アンテナを有する端末装置2(図10では端末装置2-1~2-2の2個)と、Nr本の受信アンテナを有する端末装置3(図10では端末装置3-1~3-2の2個)が複数接続する無線通信システムを対象とする。なお、送信ランク数等の無線パラメータについては、特別に断らない限り、第1の実施形態と同様であるものとする。端末装置2は第1および第2の実施形態で対象とした受信信号にmodulo演算を行なう端末装置(非線形端末装置とも呼ぶ)であり、端末装置3が受信信号にmodulo演算を行なわない端末装置(線形端末装置とも呼ぶ)となる。
なお、第2の実施形態と同様に、基地局装置1bに接続している端末装置が全て、受信信号に対してmodulo演算を行なえる端末装置であったとしても、一部の端末装置は受信信号に対してmodulo演算を行なわないように、基地局装置1bが制御することが可能である。本実施形態は、このような場合も含む。
[3.1.基地局装置1b]
本発明の第3の実施形態に係る基地局装置1bの構成は図2と同様である。ただし、プリコーディング部27は、プリコーディング部37に置き換わる構成となる。置き換わるプリコーディング部37以外の各構成装置における信号処理は第1の実施形態と同様であるから説明は省略し、以下では、プリコーディング部37における信号処理について説明を行なう。
[3.1.基地局装置1b]
本発明の第3の実施形態に係る基地局装置1bの構成は図2と同様である。ただし、プリコーディング部27は、プリコーディング部37に置き換わる構成となる。置き換わるプリコーディング部37以外の各構成装置における信号処理は第1の実施形態と同様であるから説明は省略し、以下では、プリコーディング部37における信号処理について説明を行なう。
図11は、本発明の第3の実施形態に係るプリコーディング部37の装置構成の一例を示すブロック図である。図11に示すように、プリコーディング部37は、スイッチ部37-1と線形フィルタ生成部37-2と、摂動ベクトル探索部37-3と送信データ信号生成部37-5と送信DMRS生成部37-6と送信信号生成部37-7とを含んで構成されている。なお、線形フィルタ生成部37-2と摂動ベクトル探索部37-3を除く各構成装置における信号処理は、第2の実施形態に係るプリコーディング部35において、対応する構成装置(例えば、スイッチ部37-1に対してはスイッチ部35-1)における信号処理と同じであるため、説明は省略する。以下では、線形フィルタ生成部37-2と摂動ベクトル探索部37-3における信号処理について説明する。
線形フィルタ生成部37-2では伝搬路情報取得部33より入力される伝搬路情報Hに基づき、データ信号に乗算する線形フィルタWdとDMRSに乗算する線形フィルタWpを算出する。以下では、第2の実施形態と同様に、プリコーディング部37はMMSE-VPを各データ信号に施すことを考えるが、第1の実施形態が対象としたMMSE-THP等の他の非線形プリコーディングも本実施形態には含まれる。MMSE-VPにおける線形フィルタWdは式(10)で既に与えられている。
次いで、Wpについて説明する。第2の実施形態においては、各端末装置2がDMRSに基づいて推定するmodulo幅と、所望のmodulo幅との誤差が小さくなるように、線形フィルタ生成部35-2はWdに対して補正を行なうことで、Wpを算出していた。しかし、本実施形態においては、基地局装置1bに接続している複数の端末装置の中に線形端末装置が含まれている。線形端末装置は、受信信号に対して、modulo演算を施さないから、modulo幅を推定する必要がない。そのため、本実施形態における線形フィルタ生成部37-2は、線形端末装置宛のDMRSに乗算する線形フィルタについては、従来方式と同様に、データ信号に乗算する線形フィルタと同じものを用いることが出来る。
基地局装置1bに接続している端末装置が4つであるものとし、そのうち、第1および第2端末装置が、線形端末装置である端末装置3-1および端末装置3-2であるものとし、第3および第4端末装置が、非線形端末装置である端末装置2-1および端末装置2-2であるものとする。データ信号に乗算する線形フィルタWdはNt行4列の行列で表すことが可能であるから、Wd=[wd,1,wd,2,wd,3,wd,4]のように、Nt行1列の4つの行列で表される。ここで、Wd,uが第u端末装置宛のデータ信号に乗算される線形フィルタとなる。
同様にして、DMRSに乗算する線形フィルタWpもWp=[wp,1,wp,2,wp,3,wp,4]と表すことができる。線形フィルタ生成部37-2が算出するWpは式(14)で与えられることになる。
つまり、線形端末装置宛のDMRSに乗算される線形フィルタについては、データ信号に乗算される線形フィルタと同じものを用いる一方で、非線形端末装置宛のDMRSに乗算される線形フィルタについては、第1および第2の実施形態と同様に、データ信号に乗算される線形フィルタとは異なるものを用いることになる。線形フィルタ生成部37-2は算出した線形フィルタWdを摂動ベクトル探索部37-3と送信データ信号生成部37-5に向けて出力し、線形フィルタWpを送信DMRS生成部37-6に向けて出力する。
摂動ベクトル探索部37-3では、線形フィルタ生成部37-2より入力される線形フィルタWdとスイッチ部37-1より入力される送信データベクトルdに基づいて摂動ベクトルzを算出する。摂動ベクトル探索部37-3が探索する摂動ベクトルは、第2の実施形態における摂動ベクトル探索部35-3と同様に、送信電力を最小とするものを探索する(式(12)参照)。しかし、本実施形態では、第1端末装置3-1と第2端末装置3-2は、受信信号に対してmodulo演算を行なわない。そのため、d1およびd2に摂動項が加算された場合、第1端末装置3-1および第2端末装置3-2は、受信信号に含まれている摂動項を取り除くことができず、伝送特性は大幅に劣化してしまう。
そのため、本実施形態における摂動ベクトル探索部37-3では、第1端末装置3-1および第2端末装置3-2宛てのデータ信号に加算される摂動項については、常に0となるように、摂動ベクトルを探索する。すなわち、式(15)で与えられる最小化問題を解くことによって、摂動ベクトル探索部37-3は、摂動ベクトルを探索する。
摂動ベクトル探索部37-3は、式(15)に基づいて探索した摂動ベクトルを送信データ信号生成部37-5に向けて出力する。なお、摂動ベクトル探索部37-3は、第2の実施形態と同様に、基地局装置1に接続している端末装置が、全て非線形端末装置であると見なして、摂動ベクトルを探索し、最終的に得られた摂動ベクトルzのうち、線形端末装置宛のデータ信号に加算される事になる摂動項のみを0と置き換えるように制御しても良い。
なお、以上の説明では、線形端末装置宛のデータ信号に加算される摂動項を全て0としている。しかし、線形端末装置の受信信号に対する復調処理に影響を与えないのであれば、0以外の摂動項を加算しても構わない。例えば、変調方式がQPSK変調であり、線形端末装置宛のデータ信号として第1象限の変調シンボルが送信される場合を考える。このとき、基地局装置1bが摂動項として第1象限のガウス整数(例えば(1+j))で与えられる摂動項をデータ信号に加算することを考える。このとき、たとえ線形端末装置がmodulo演算を行なうことが出来なくても伝送特性は劣化せず、逆に良好な伝送特性を実現できる場合がある。つまり、QPSK変調の場合、同一象限に存在する摂動項に限って言えば、基地局装置1bは線形端末装置宛のデータ信号に摂動項を加算しても構わない。
なお、多値直交振幅変調において、四方が信号判定面に囲まれていない変調シンボルを基地局装置1bが線形端末装置に送信する場合も、一部の摂動項を加算することが可能である。例えば、16QAMにおいて、3/101/2+j×3/101/2)で与えられる変調シンボルであれば、第1象限に存在する摂動項を加算可能である。また、3/101/2+j×1/101/2で与えられる変調シンボルであれば、正の実数で与えられる摂動項(例えば2δ、4δなど)が加算可能である。これは、各変調シンボルにおいて、信号判定面に囲まれていない方向に信号点を遷移させても、誤り率は劣化しないという性質に基づいている。
[3.2.端末装置3]
非線形端末装置である端末装置2の装置構成、および信号処理については、第1および第2の実施形態と同様であるから、説明は省略する。以下では、線形端末装置である端末装置3について説明する。
[3.2.端末装置3]
非線形端末装置である端末装置2の装置構成、および信号処理については、第1および第2の実施形態と同様であるから、説明は省略する。以下では、線形端末装置である端末装置3について説明する。
図12は、本発明の第3の実施形態に係る端末装置3の一構成例を示すブロック図である。図12に示すように、端末装置3の構成は、図6に示す端末装置2の構成とほぼ同じであり、異なるのは、チャネル等化部57がチャネル等化部67に置き換わる点にある。
チャネル等化部57とチャネル等化部67の違いについて説明する。チャネル等化部57では、受信されたデータ信号に対して、伝搬路推定部53でDMRSに基づいて推定された伝搬路推定値に基づいたチャネル等化を行なう。そして、チャネル等化部57は、チャネル等化後の信号に対して、modulo演算を行なったのち、デマッピング部59に向けて出力している。一方、チャネル等化部67では、チャネル等化出力に対して、modulo演算を施すことなく、デマッピング部59に向けて出力することになる。
なお、端末装置2は、チャネル等化部57においては、modulo演算を行なわずに、チャネル復号部において、摂動項を加味した復調を行なうことで、摂動項の影響を取り除くことが可能であることは第1の実施形態にて既に述べた。この場合、端末装置2と端末装置3の違いは、チャネル復号部63における信号処理となり、端末装置2では、摂動項を加味したチャネル復号を行なうのに対して、端末装置3では、摂動項を加味しないチャネル復号を行なうことになる。
チャネル等化部67を除く、他の構成装置における信号処理は、端末装置2と同様であるから説明は省略する。なお、他の構成装置における信号処理が、端末装置2と端末装置3とで異なっていても構わない。例えば、フィードバック情報生成部55で生成される伝搬路情報に関連付けられた制御情報の生成方法について、端末装置2と端末装置3とで異なっている場合も、本実施形態には含まれる。
本実施形態においては、基地局装置1に接続している端末装置として、受信信号に対して、modulo演算を行なう非線形端末装置と、受信信号に対して、modulo演算を行なわない線形端末装置とが混在する場合を対象とした。本実施形態の方法によれば、受信信号に対して行なうことが出来る信号処理に違いがある端末同士を高効率に多重することが可能となるから、ユーザスケジューリング等の負担を軽減しつつ、通信システムの周波数利用効率を向上させることが可能となる。
[4.全実施形態共通]
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。
なお、本発明は上述の実施形態に限定されるものではない。本発明の端末装置2および端末装置3は、セルラーシステム等の端末装置への適用に限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などに適用できることは言うまでもない。
本発明に関わる端末装置2、端末装置3、基地局装置1および基地局装置1bで動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記録媒体(例えば、DVD、MO、MD、CD、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであってもよい。また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の機能が実現される場合もある。
また市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりすることができる。この場合、サーバコンピュータの記憶装置も本発明に含まれる。また、上述した実施形態における端末装置2、端末装置3、基地局装置1および基地局装置1bの一部、または全部を典型的には集積回路であるLSIとして実現してもよい。端末装置2、端末装置3、基地局装置1および基地局装置1bの各機能ブロックは個別にプロセッサ化してもよいし、一部、または全部を集積してプロセッサ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
〔まとめ〕
(1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の基地局装置は複数のアンテナを備え、複数の端末装置宛の信号に非線形プリコーディングを施し空間多重して無線送信を行なう基地局装置であって、前記端末装置との間の伝搬路情報を取得する伝搬路情報取得部と、前記複数の端末装置宛のデータ信号と復調用参照信号を多重するマッピング部と、前記伝搬路情報に基づいて前記データ信号と前記復調用参照信号にプリコーディングを施すプリコーディング部と、を備え、前記プリコーディング部は、前記伝搬路情報に基づいて、前記データ信号に乗算する第1の線形フィルタと、前記復調用参照信号に乗算する第2の線形フィルタとの、互いに異なる線形フィルタを生成する線形フィルタ生成部を備えることを特徴とする。
(1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の基地局装置は複数のアンテナを備え、複数の端末装置宛の信号に非線形プリコーディングを施し空間多重して無線送信を行なう基地局装置であって、前記端末装置との間の伝搬路情報を取得する伝搬路情報取得部と、前記複数の端末装置宛のデータ信号と復調用参照信号を多重するマッピング部と、前記伝搬路情報に基づいて前記データ信号と前記復調用参照信号にプリコーディングを施すプリコーディング部と、を備え、前記プリコーディング部は、前記伝搬路情報に基づいて、前記データ信号に乗算する第1の線形フィルタと、前記復調用参照信号に乗算する第2の線形フィルタとの、互いに異なる線形フィルタを生成する線形フィルタ生成部を備えることを特徴とする。
このような基地局装置は、端末装置宛の復調用参照信号に乗算する第2の線形フィルタとして、端末装置宛のデータ信号に乗算する第1の線形フィルタとは異なる線形フィルタを用いることができる。よって、端末装置は、基地局装置より送信される復調用参照信号に基づいて、高精度にmodulo幅を推定できる。その結果、周波数利用効率を向上させることが可能となる。
(2)また、本発明の基地局装置は、前記第1の線形フィルタは、前記複数の端末装置がそれぞれ受信する受信信号と、前記複数の端末装置宛の前記データ信号との間の平均二乗誤差を最小とする規範に基づいて算出されることを特徴とする。
このような基地局装置は、前記複数の端末装置がそれぞれ受信する受信信号と、前記複数の端末装置宛の前記データ信号との間の平均二乗誤差を最小とする規範に基づいて前記第1の線形フィルタを生成することができる。そのため、端末装置は、基地局装置より送信されるデータ信号を、高精度に復調することが可能となる。その結果、周波数利用効率を向上させることが可能となる。
(3)また、本発明の基地局装置は、前記線形フィルタ生成部は、前記第1の線形フィルタと、前記伝搬路情報とに基づいて第1の対角行列を算出し、前記第1の対角行列と、前記第1の線形フィルタに基づいて、前記第2の線形フィルタを生成することを特徴とする。
このような基地局装置は、前記第1の線形フィルタと、前記伝搬路情報とに基づいて第1の対角行列を算出し、前記第1の対角行列と、前記第1の線形フィルタに基づいて、前記第2の線形フィルタを生成することが可能となる。そのため、端末装置は、基地局装置より送信される復調用参照信号に基づいて、高精度にmodulo幅を推定できる。その結果、周波数利用効率を向上させることが可能となる。
(4)また、本発明の基地局装置は、前記第1の対角行列は、前記第1の線形フィルタと前記伝搬路行列との積で表される行列の対角成分の逆数から構成される対角行列であることを特徴とする。
このような基地局装置は、前記第1の線形フィルタと前記伝搬路行列との積で表される行列の対角成分の逆数から構成される対角行列を前記第1の対角行列とすることができ、前記第1の対角行列に基づいて、前記第2の線形フィルタを生成することが可能となる。そのため、端末装置は、基地局装置より送信される復調用参照信号に基づいて、高精度にmodulo幅を推定できる。その結果、周波数利用効率を向上させることが可能となる。
(5)また、本発明の基地局装置は、前記線形フィルタ生成部は、前記伝搬路情報に基づいて算出される拡大伝搬路行列に対するLQ分解もしくはQR分解に基づいてフィードバックフィルタと前記第1の線形フィルタを生成し、前記プリコーディング部は、前記フィードバックフィルタに基づいて、前記データ信号に干渉抑圧とモジュロ演算を施すTHP部を更に備えることを特徴とする。
このような基地局装置は、前記伝搬路情報に基づいて算出される拡大伝搬路行列に対するLQ分解もしくはQR分解に基づいてフィードバックフィルタと前記第1の線形フィルタを生成し、前記フィードバックフィルタに基づいて、前記データ信号に干渉抑圧とモジュロ演算を施すことができる。そのため、端末装置は、基地局装置より送信されるデータ信号を、高精度に復調することが可能となる。その結果、周波数利用効率を向上させることが可能となる。
(6)また、本発明の基地局装置は、前記プリコーディング部は、前記第1の線形フィルタと、前記データ信号に基づいて、摂動ベクトルを探索する摂動ベクトル探索部を更に備える、上記(4)に記載の基地局装置であることを特徴とする。
このような基地局装置は、前記第1の線形フィルタと、前記データ信号に基づいて、摂動ベクトルを探索することができる。そのため、基地局装置の所要送信電力を小さくすることが可能となる。その結果、周波数利用効率を向上させることが可能となる。
(7)また、本発明の基地局装置は、前記プリコーディング部は、空間多重する前記複数の端末装置のうち、受信信号から摂動ベクトルを除去可能な非線形端末装置に対しては摂動ベクトルを加算したデータ信号を生成し、受信信号から摂動ベクトルを除去不可能な線形端末装置に対しては摂動ベクトルを加算しないデータ信号を生成する、上記(4)に記載の基地局装置であることを特徴とする。
このような基地局装置は、空間多重する複数の端末装置のうち、受信信号から摂動ベクトルを除去可能な非線形端末装置に対しては摂動ベクトルを加算したデータ信号を生成し、受信信号から摂動ベクトルを除去不可能な線形端末装置に対しては摂動ベクトルを加算しないデータ信号を生成することができる。そのため、基地局装置はデータ信号および復調用参照信号を送信する複数の端末装置の組み合わせを柔軟に決定できる。その結果、周波数利用効率を向上させることが可能となる。
(8)また、本発明の基地局装置は、前記プリコーディング部は、前記線形端末装置宛のデータ信号の一部に摂動ベクトルを加算する、上記(7)に記載の基地局装置であることを特徴とする。
このような基地局装置は、線形端末装置宛のデータ信号の一部に摂動ベクトルを加算することができる。そのため、基地局装置の所要送信電力を小さくすることができる。その結果、周波数利用効率を向上させることが可能となる。
(9)また、本発明のプリコーディング方法は、複数のアンテナを備える基地局装置から、複数の端末装置へ送信されるデータ信号と復調用参照信号に、前記複数の端末装置との間の伝搬路情報に基づいて、予備的処理を行なうプリコーディング方法であって、前記伝搬路情報に基づいて、第1の線形フィルタ、第2の線形フィルタ及びフィードバックフィルタを算出する過程と、前記フィードバックフィルタに基づいて、前記データ信号に対して、干渉抑圧とモジュロ演算を施し、送信符号を算出する過程と、前記送信符号と前記第1の線形フィルタに基づいて、送信データ信号と電力正規化係数を算出する過程と、前記復調用参照信号、前記第2の線形フィルタ、及び前記電力正規化係数に基づいて、送信復調用参照信号を算出する過程と、前記送信データ信号と前記送信復調用参照信号の送信電力を調整する過程と、を有することを特徴とする。
このようなプリコーディング方法は、複数のアンテナを備える基地局装置から、複数の端末装置へ送信されるデータ信号と復調用参照信号に、前記複数の端末装置との間の伝搬路情報に基づいて、予備的処理を行なうことができる。そのため、端末装置は、基地局装置より送信される復調用参照信号に基づいて、高精度にmodulo幅を推定できる。また、端末装置は、基地局装置より送信されるデータ信号を、高精度に復調することが可能となる。その結果、周波数利用効率を向上させることが可能となる。
(10)また、本発明のプリコーディング方法は、複数のアンテナを備える基地局装置から、複数の端末装置へ送信されるデータ信号と復調用参照信号に、前記複数の端末装置との間の伝搬路情報に基づいて、予備的処理を行なうプリコーディング方法であって、前記伝搬路情報に基づいて、第1の線形フィルタと、第2の線形フィルタを算出する過程と、前記データ信号と、前記第1の線形フィルタに基づいて、摂動ベクトルを探索する過程と、前記データ信号、前記第1の線形フィルタ及び前記摂動ベクトルに基づいて、送信データ信号と電力正規化係数を算出する過程と、前記復調用参照信号、前記第2の線形フィルタ、及び前記電力正規化係数に基づいて、送信復調用参照信号を算出する過程と、前記送信データ信号と前記送信復調用参照信号の送信電力を調整する過程と、を有することを特徴とする。
このようなプリコーディング方法は、複数のアンテナを備える基地局装置から、複数の端末装置へ送信されるデータ信号と復調用参照信号に、前記複数の端末装置との間の伝搬路情報に基づいて、予備的処理を行なうことができる。そのため、基地局装置は所要送信電力を小さくできる。また、端末装置は、基地局装置より送信される復調用参照信号に基づいて、高精度にmodulo幅を推定できる。その結果、周波数利用効率を向上させることが可能となる。
(11)また、本発明の集積回路は、複数のアンテナを備え、複数の端末装置宛の信号に非線形プリコーディングを施し空間多重して無線送信を行なう基地局装置に実装され、前記基地局装置に複数の機能を発揮させる集積回路であって、前記端末装置との間の伝搬路情報を取得する機能と、前記複数の端末装置宛のデータ信号と復調用参照信号を多重する機能と、前記伝搬路情報に基づいて前記データ信号と前記復調用参照信号にプリコーディングを施す機能と、の一連の機能を発揮させ、前記プリコーディングを施す機能は、前記伝搬路情報に基づいて、前記データ信号に乗算する第1の線形フィルタと、前記復調用参照信号に乗算する第2の線形フィルタとの、互いに異なる線形フィルタを生成することを特徴とする。
このような集積回路は、複数のアンテナを備え、複数の端末装置宛の信号に非線形プリコーディングを施し空間多重して無線送信を行なう基地局装置に実装され、前記基地局装置に複数の機能を発揮させることができる。そのため、端末装置は、基地局装置より送信される復調用参照信号に基づいて、高精度にmodulo幅を推定できる。また、端末装置は、基地局装置より送信されるデータ信号を、高精度に復調することが可能となる。その結果、周波数利用効率を向上させることが可能となる。
(12)また、本発明の無線通信システムは上記(1)に記載の基地局装置と、前記基地局装置から送信される信号をそれぞれ受信する複数の端末装置とを備えることを特徴とする。
このような無線通信システムは、上記(1)に記載の基地局装置と、前記基地局装置から送信される信号をそれぞれ受信する複数の端末装置とを備えることができる。そのため、端末装置は、基地局装置より送信される復調用参照信号に基づいて、高精度にmodulo幅を推定できる。また、端末装置は、基地局装置より送信されるデータ信号を、高精度に復調することが可能となる。その結果、周波数利用効率を向上させることが可能となる。
本発明は、基地局装置やプリコーディング方法や、集積回路や、無線通信システムに用いて好適である。
1、1b 基地局装置
2、2-1、2-2、2-3、2-4、2-u、3、3-1、3-2 端末装置
21 チャネル符号化部
23 データ変調部
25 マッピング部
27、35、37 プリコーディング部
27-1、35-1、37-1 スイッチ部
27-2、35-2、37-2 線形フィルタ生成部
27-4 THP部
27-5、35-5、37-5 送信データ信号生成部
27-6、35-6、37-6 送信DMRS生成部
27-7、35-7、37-7 送信信号生成部
29 アンテナ部
29-1 IFFT部
29-2 GI挿入部
29-3 無線送信部
29-4 無線受信部
29-5 アンテナ
31 制御情報取得部
33 伝搬路情報取得部
35-3、37-3 摂動ベクトル探索部
51 端末アンテナ部
51-1 無線受信部
51-2 無線送信部
51-3 GI除去部
51-4 FFT部
51-5 参照信号分離部
51-6 アンテナ
53、71 伝搬路推定部
55 フィードバック情報生成部
57、67 チャネル等化部
59 デマッピング部
61 データ復調部
63 チャネル復号部
2、2-1、2-2、2-3、2-4、2-u、3、3-1、3-2 端末装置
21 チャネル符号化部
23 データ変調部
25 マッピング部
27、35、37 プリコーディング部
27-1、35-1、37-1 スイッチ部
27-2、35-2、37-2 線形フィルタ生成部
27-4 THP部
27-5、35-5、37-5 送信データ信号生成部
27-6、35-6、37-6 送信DMRS生成部
27-7、35-7、37-7 送信信号生成部
29 アンテナ部
29-1 IFFT部
29-2 GI挿入部
29-3 無線送信部
29-4 無線受信部
29-5 アンテナ
31 制御情報取得部
33 伝搬路情報取得部
35-3、37-3 摂動ベクトル探索部
51 端末アンテナ部
51-1 無線受信部
51-2 無線送信部
51-3 GI除去部
51-4 FFT部
51-5 参照信号分離部
51-6 アンテナ
53、71 伝搬路推定部
55 フィードバック情報生成部
57、67 チャネル等化部
59 デマッピング部
61 データ復調部
63 チャネル復号部
Claims (12)
- 複数のアンテナを備え、複数の端末装置宛の信号に非線形プリコーディングを施し空間多重して無線送信を行なう基地局装置であって、
前記端末装置との間の伝搬路情報を取得する伝搬路情報取得部と、
前記複数の端末装置宛のデータ信号と復調用参照信号を多重するマッピング部と、
前記伝搬路情報に基づいて前記データ信号と前記復調用参照信号にプリコーディングを施すプリコーディング部と、を備え、
前記プリコーディング部は、前記伝搬路情報に基づいて、前記データ信号に乗算する第1の線形フィルタと、前記復調用参照信号に乗算する第2の線形フィルタとの、互いに異なる線形フィルタを生成する線形フィルタ生成部を備えることを特徴とする基地局装置。 - 前記第1の線形フィルタは、前記複数の端末装置がそれぞれ受信する受信信号と、前記複数の端末装置宛の前記データ信号との間の平均二乗誤差を最小とする規範に基づいて算出されることを特徴とする請求項1に記載の基地局装置。
- 前記線形フィルタ生成部は、前記第1の線形フィルタと、前記伝搬路情報とに基づいて第1の対角行列を算出し、
前記第1の対角行列と、前記第1の線形フィルタに基づいて、前記第2の線形フィルタを生成することを特徴とする請求項2に記載の基地局装置。 - 前記第1の対角行列は、前記第1の線形フィルタと伝搬路行列との積で表される行列の対角成分の逆数から構成される対角行列であることを特徴とする請求項3に記載の基地局装置。
- 前記線形フィルタ生成部は、前記伝搬路情報に基づいて算出される拡大伝搬路行列に対するLQ分解もしくはQR分解に基づいてフィードバックフィルタと前記第1の線形フィルタを生成し、
前記プリコーディング部は、前記フィードバックフィルタに基づいて、前記データ信号に干渉抑圧とモジュロ演算を施すTHP部を更に備えることを特徴とする請求項4に記載の基地局装置。 - 前記プリコーディング部は、前記第1の線形フィルタと、前記データ信号に基づいて、摂動ベクトルを探索する摂動ベクトル探索部を更に備えることを特徴とする請求項4に記載の基地局装置。
- 前記プリコーディング部は、
空間多重する前記複数の端末装置のうち、
受信信号から摂動ベクトルを除去可能な非線形端末装置に対しては摂動ベクトルを加算したデータ信号を生成し、
受信信号から摂動ベクトルを除去不可能な線形端末装置に対しては摂動ベクトルを加算しないデータ信号を生成することを特徴とする請求項4に記載の基地局装置。 - 前記プリコーディング部は、
前記線形端末装置宛のデータ信号の一部に摂動ベクトルを加算することを特徴とする請求項7に記載の基地局装置。 - 複数のアンテナを備える基地局装置から、複数の端末装置へ送信されるデータ信号と復調用参照信号に、前記複数の端末装置との間の伝搬路情報に基づいて、予備的処理を行なうプリコーディング方法であって、
前記伝搬路情報に基づいて、第1の線形フィルタ、第2の線形フィルタ及びフィードバックフィルタを算出する過程と、
前記フィードバックフィルタに基づいて、前記データ信号に対して、干渉抑圧とモジュロ演算を施し、送信符号を算出する過程と、
前記送信符号と前記第1の線形フィルタに基づいて、送信データ信号と電力正規化係数を算出する過程と、
前記復調用参照信号、前記第2の線形フィルタ、及び前記電力正規化係数に基づいて、送信復調用参照信号を算出する過程と、
前記送信データ信号と前記送信復調用参照信号の送信電力を調整する過程と、を有することを特徴とするプリコーディング方法。 - 複数のアンテナを備える基地局装置から、複数の端末装置へ送信されるデータ信号と復調用参照信号に、前記複数の端末装置との間の伝搬路情報に基づいて、予備的処理を行なうプリコーディング方法であって、
前記伝搬路情報に基づいて、第1の線形フィルタと、第2の線形フィルタを算出する過程と、
前記データ信号と、前記第1の線形フィルタに基づいて、摂動ベクトルを探索する過程と、
前記データ信号、前記第1の線形フィルタ及び前記摂動ベクトルに基づいて、送信データ信号と電力正規化係数を算出する過程と、
前記復調用参照信号、前記第2の線形フィルタ、及び前記電力正規化係数に基づいて、送信復調用参照信号を算出する過程と、
前記送信データ信号と前記送信復調用参照信号の送信電力を調整する過程と、を有することを特徴とするプリコーディング方法。 - 複数のアンテナを備え、複数の端末装置宛の信号に非線形プリコーディングを施し空間多重して無線送信を行なう基地局装置に実装され、前記基地局装置に複数の機能を発揮させる集積回路であって、
前記端末装置との間の伝搬路情報を取得する機能と、
前記複数の端末装置宛のデータ信号と復調用参照信号を多重する機能と、
前記伝搬路情報に基づいて前記データ信号と前記復調用参照信号にプリコーディングを施す機能と、の一連の機能を発揮させ、
前記プリコーディングを施す機能は、前記伝搬路情報に基づいて、前記データ信号に乗算する第1の線形フィルタと、前記復調用参照信号に乗算する第2の線形フィルタとの、互いに異なる線形フィルタを生成することを特徴とする集積回路。 - 請求項1に記載の基地局装置と、前記基地局装置から送信される信号をそれぞれ受信する複数の端末装置とを備えることを特徴とする無線通信システム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013021184A JP2016066827A (ja) | 2013-02-06 | 2013-02-06 | 基地局装置、プリコーディング方法、集積回路、無線通信システム |
JP2013-021184 | 2013-09-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014122850A1 true WO2014122850A1 (ja) | 2014-08-14 |
Family
ID=51299454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/082996 WO2014122850A1 (ja) | 2013-02-06 | 2013-12-09 | 基地局装置、プリコーディング方法、集積回路、無線通信システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016066827A (ja) |
WO (1) | WO2014122850A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6153184B1 (ja) * | 2016-02-22 | 2017-06-28 | 三菱電機株式会社 | 送信装置、受信装置、制御局、通信システムおよび送信プリコーディング方法 |
JP6159839B1 (ja) * | 2016-03-08 | 2017-07-05 | ソフトバンク株式会社 | 基地局装置 |
JP2017153153A (ja) * | 2016-02-22 | 2017-08-31 | 三菱電機株式会社 | 送信装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200195317A1 (en) * | 2017-05-02 | 2020-06-18 | Ntt Docomo, Inc. | User apparatus and communication method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010053059A1 (ja) * | 2008-11-05 | 2010-05-14 | 株式会社 東芝 | 無線通信装置及び方法 |
WO2012144313A1 (ja) * | 2011-04-22 | 2012-10-26 | シャープ株式会社 | フィルタ算出装置、送信装置、受信装置、プロセッサおよびフィルタ算出方法 |
WO2012157393A1 (ja) * | 2011-05-13 | 2012-11-22 | シャープ株式会社 | 基地局装置、移動局装置、制御プログラムおよび集積回路 |
-
2013
- 2013-02-06 JP JP2013021184A patent/JP2016066827A/ja active Pending
- 2013-12-09 WO PCT/JP2013/082996 patent/WO2014122850A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010053059A1 (ja) * | 2008-11-05 | 2010-05-14 | 株式会社 東芝 | 無線通信装置及び方法 |
WO2012144313A1 (ja) * | 2011-04-22 | 2012-10-26 | シャープ株式会社 | フィルタ算出装置、送信装置、受信装置、プロセッサおよびフィルタ算出方法 |
WO2012157393A1 (ja) * | 2011-05-13 | 2012-11-22 | シャープ株式会社 | 基地局装置、移動局装置、制御プログラムおよび集積回路 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6153184B1 (ja) * | 2016-02-22 | 2017-06-28 | 三菱電機株式会社 | 送信装置、受信装置、制御局、通信システムおよび送信プリコーディング方法 |
WO2017145232A1 (ja) * | 2016-02-22 | 2017-08-31 | 三菱電機株式会社 | 送信装置、受信装置、制御局、通信システムおよび送信プリコーディング方法 |
JP2017153153A (ja) * | 2016-02-22 | 2017-08-31 | 三菱電機株式会社 | 送信装置 |
CN108702231A (zh) * | 2016-02-22 | 2018-10-23 | 三菱电机株式会社 | 发送装置、接收装置、控制站、通信系统和发送预编码方法 |
EP3422612A4 (en) * | 2016-02-22 | 2019-03-20 | Mitsubishi Electric Corporation | TRANSMITTING APPARATUS, RECEIVING APPARATUS, CONTROL STATION, COMMUNICATION SYSTEM, AND TRANSMISSION PRECODING METHOD |
CN108702231B (zh) * | 2016-02-22 | 2019-12-31 | 三菱电机株式会社 | 发送装置、接收装置、控制站、通信系统和发送预编码方法 |
US10862603B2 (en) | 2016-02-22 | 2020-12-08 | Mitsubishi Electric Corporation | Transmission apparatus, reception apparatus, control station, communication system, and transmission precoding method |
JP6159839B1 (ja) * | 2016-03-08 | 2017-07-05 | ソフトバンク株式会社 | 基地局装置 |
JP2017163242A (ja) * | 2016-03-08 | 2017-09-14 | ソフトバンク株式会社 | 基地局装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2016066827A (ja) | 2016-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9008166B2 (en) | Filter calculating device, transmitting device, receiving device, processor, and filter calculating method | |
JP5804594B2 (ja) | プリコーディング装置、プリコーディング用プログラムおよび集積回路 | |
JP5908307B2 (ja) | プリコーディング装置、無線送信装置、無線受信装置、無線通信システムおよび集積回路 | |
WO2014199989A1 (ja) | 基地局装置、端末装置、無線通信システム、集積回路 | |
JP6316205B2 (ja) | 基地局装置、端末装置、無線通信システムおよび集積回路 | |
WO2014069262A1 (ja) | 基地局装置、端末装置および無線通信システム | |
US20110244816A1 (en) | Wireless communication apparatus and method | |
JP6019298B2 (ja) | 無線通信システム、無線送信装置および無線通信方法 | |
WO2014057840A1 (ja) | 端末装置、基地局装置、無線通信システム、受信方法および集積回路 | |
WO2014122850A1 (ja) | 基地局装置、プリコーディング方法、集積回路、無線通信システム | |
JP5859913B2 (ja) | 無線受信装置、無線送信装置、無線通信システム、プログラムおよび集積回路 | |
US8976881B2 (en) | Wireless receiving apparatus and program | |
WO2011152186A1 (ja) | 送信装置、受信装置、無線通信システム、制御プログラムおよび集積回路 | |
JP5909104B2 (ja) | 無線送信装置、無線受信装置、無線通信システムおよびプリコーディング方法 | |
JP5753041B2 (ja) | 無線送信装置、無線受信装置、および無線通信システム | |
JP2013123196A (ja) | プリコーディング装置、無線送信装置、プリコーディング方法、プログラムおよび集積回路 | |
JP5802942B2 (ja) | 無線通信システム、無線送信装置および無線通信方法 | |
JP2012070172A (ja) | 送信装置、受信装置、無線通信システム、制御プログラムおよび集積回路 | |
JP5676221B2 (ja) | 送信装置、通信システム、通信方法、プロセッサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13874602 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13874602 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |