Nothing Special   »   [go: up one dir, main page]

WO2014109528A1 - Method for continuous processing of semiconductor wafer - Google Patents

Method for continuous processing of semiconductor wafer Download PDF

Info

Publication number
WO2014109528A1
WO2014109528A1 PCT/KR2014/000156 KR2014000156W WO2014109528A1 WO 2014109528 A1 WO2014109528 A1 WO 2014109528A1 KR 2014000156 W KR2014000156 W KR 2014000156W WO 2014109528 A1 WO2014109528 A1 WO 2014109528A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
chamber
space
isolated
susceptor
Prior art date
Application number
PCT/KR2014/000156
Other languages
French (fr)
Korean (ko)
Inventor
이원구
서현모
안현환
류수렬
최우진
Original Assignee
(주)에스티아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에스티아이 filed Critical (주)에스티아이
Priority to CN201480004275.0A priority Critical patent/CN104903992A/en
Publication of WO2014109528A1 publication Critical patent/WO2014109528A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/06Solder feeding devices; Solder melting pans
    • B23K3/0607Solder feeding devices
    • B23K3/0623Solder feeding devices for shaped solder piece feeding, e.g. preforms, bumps, balls, pellets, droplets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67748Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a single workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68771Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/742Apparatus for manufacturing bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/11848Thermal treatments, e.g. annealing, controlled cooling
    • H01L2224/11849Reflowing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L2224/742Apparatus for manufacturing bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector

Definitions

  • the present invention relates to a continuous processing method of a semiconductor wafer, and more particularly, to a continuous processing method of a semiconductor wafer capable of reducing the process step and preventing the rupture of the solder ball.
  • solder protrusions are formed on semiconductor wafers for connection of wires, conductors, and the like.
  • the reflow process which is one of manufacturing processes of the solder part (bump), is a process of melting solder balls, solder creams, and the like to adhere to the wafer and to have an appropriate profile.
  • the processing wafer is processed in a continuous process using an apparatus having a continuous chamber without taking the wafer out into the atmosphere.
  • Prior Art 1 US Pat. No. 7,358,175
  • Prior Art 2 US Pat. No. 6,827,789
  • FIG. 1 is a block diagram of the reflow apparatus described in the prior art 1.
  • a processing apparatus 10 including first to sixth stations # 1 to # 6, and a turntable 12 for rotating and transporting the wafer W to each station. The process proceeds.
  • the wafer W is loaded into the sixth station # 6 and then purged inside the sixth station # 6 by nitrogen gas, and the turntable 12 rotates to move the wafer W to the first station (6). Move to # 1).
  • the first station # 1 is supplied with nitrogen or formic acid vapor and nitrogen at atmospheric pressure, and the water, organic contaminants, and surface oxides on the wafer are removed by heating.
  • the wafer W of the first station # 1 is moved to the second station # 2 by the turntable 12, and nitrogen or formic acid vapor and nitrogen are supplied at atmospheric pressure, and the wafer W is heated. ) Solder melts.
  • the wafer W is transferred from the second station # 2 to the third station # 3 by the turntable 12, and then heated to a temperature of 200 to 400 ° C. in a pressure atmosphere of 1 torr or less. This eliminates voids in the solder on the phase.
  • the wafer W is heated in a state in which a mixed gas of formic acid vapor and nitrogen or nitrogen is supplied in an atmospheric pressure atmosphere to form solder bumps, thereby reducing the roughness of the solder surface.
  • the wafer W transferred to the fifth station # 5 is supplied with nitrogen in an atmospheric pressure atmosphere and heated to control grain formation of solder bumps.
  • the wafer W is transferred to the sixth station # 6, and the wafer W cools the solder bump in an atmospheric pressure atmosphere, and then the wafer W is unloaded to the outside.
  • the reflow method of the conventional wafer W is sequentially performed in all six steps, and there is a problem in that the productivity is relatively lowered when considering the time for transferring the wafer W in addition to the progress time of each process step.
  • the solder ruptures in the process of removing voids in the solder in a pressure atmosphere of 1 torr or less, which causes a problem that the surface is not uniformly recovered by the post-treatment at the fourth station # 4.
  • FIG. 1 of the prior art 2 shows a total of six chambers including a loading chamber and an unloading chamber, and sequentially moves the loaded wafer to the next process chamber using a turntable, and finally unloads the wafer. It transfers to a chamber and is configured to unload the processed wafer by a robot.
  • the station of the prior art 1 and the chamber of the prior art 2 are used as the same meanings and are also the same in the following description.
  • the processing plate and the lower isolation chamber are configured to be movable up and down, and the process is performed by isolating the wafer transferred by the turntable.
  • the treatment plate is generally referred to as a susceptor, and includes a heater therein, and a structure for vacuum adsorption of the wafer is formed, which is a relatively heavy material, which requires a large amount of energy to move the device up and down, and increases the volume of the device. There was this.
  • the wafer ring is lowered together with the wafer and seated on the turntable, so that the wafer is separated from the processing plate, and the wafer is processed while the process is being performed in another chamber.
  • the contact plate may be prevented from contacting the treatment plate, thereby preventing a problem of a process failure caused by continuous heating from the treatment plate.
  • the wafer can no longer remain isolated and the wafer is exposed to the space outside the isolated chamber. Therefore, when the wafer is processed by a heating process and exposed to an external space until the process proceeds in the next chamber, there is a problem that a process defect may occur due to a drop in wafer temperature.
  • a groove for accommodating the wafer support pin is formed on the upper surface of the processing plate, and when heat is applied to the wafer while the wafer is supported on the processing plate, the groove is transferred to the bottom surface of the wafer. Uneven heat can lead to process defects.
  • the wafer cannot be maintained at a desired temperature while being transferred from one chamber to the next chamber, and thermal shock is applied to the wafer, thereby degrading quality.
  • An object of the present invention for solving the above problems is to provide a continuous processing method of a semiconductor wafer that can reduce the process step.
  • another object of the present invention is to provide a continuous processing method of a semiconductor wafer that can prevent the solder from bursting during the void removal process, thereby improving the stability of the process.
  • another object of the present invention is to provide a continuous processing method of a semiconductor wafer that can be separated from the susceptor and separated from the susceptor until the process in the other chamber is completed, the process is completed.
  • another object of the present invention is to provide a continuous processing method for a semiconductor wafer which can ensure uniformity in processing by heating the process gas injected onto the wafer immediately before injecting the wafer.
  • another object of the present invention is to provide a continuous processing method of a semiconductor wafer that can stably form the shape of the solder ball by simultaneously heating the upper and lower surfaces of the wafer in the solder ball forming step.
  • the continuous processing method of the semiconductor wafer of the present invention for achieving the above object is a continuous processing method of a semiconductor wafer for processing a wafer in an apparatus having a plurality of chambers, the outer body surrounding the outside of the chamber.
  • the method of claim 1 wherein the plurality of chambers comprises first to fifth chambers, and the first step of injecting and purging the inert gas after loading the wafer into the first chamber; A second step of transferring the wafer having completed the first step to a second chamber, injecting a process gas into the second chamber, and then heating the wafer; A third step of transferring the wafer, in which the second step is completed, to a third chamber, injecting a process gas into the third chamber, and then heating the wafer; A fourth step of transferring the wafer, in which the third step is completed, to a fourth chamber, and heating the wafer when the inside of the fourth chamber is at a pressure below atmospheric pressure; A fifth step of transferring the wafer where the fourth step is completed to a fifth chamber, injecting
  • the process gas injected in the second to fifth steps may be composed of formic acid vapor and nitrogen.
  • the isolated process space inside the chamber and the connection space portion inside the outer body may be supplied with heated nitrogen in the process of transferring the wafer to minimize the temperature change of the wafer.
  • the heated nitrogen may be supplied at a temperature higher than the ambient temperature of the connection space part when the process is performed in a state where the chamber is isolated.
  • the pressure in the fourth step may be 100 to 760 torr.
  • the fourth step may be to process the wafer for a time of 1 to 300 seconds by supplying formic acid vapor using nitrogen as a delivery gas at a temperature of 100 to 500 °C.
  • the fifth step may be to process the wafer for 1 to 300 seconds by supplying formic acid vapor using nitrogen as a delivery gas in an atmospheric pressure and a temperature atmosphere of 20 to 400 °C.
  • the fourth and fifth steps may be heated by a heater provided in a susceptor for supporting the lower surface of the wafer, and simultaneously heated by an upper heater installed on the upper surface of the wafer, thereby uniformly heating the upper and lower surfaces of the wafer. It may be.
  • Formic acid injected into the wafer may be heated by the upper heater.
  • a buffer space into which the formic acid is introduced is formed therein, and a shower head having a plurality of injection holes for uniformly injecting the formic acid onto the upper surface of the wafer is provided below the buffer space.
  • the formic acid may be heated in the buffer space.
  • the inert gas injected into the first chamber in the first step may be injected in a heated state to evaporate moisture in the internal space.
  • the first to fifth chambers are fixed to support a wafer, a susceptor for applying heat to the wafer, and a lower housing fixed to the outside of the susceptor to form a process space isolated under the wafer.
  • An upper housing moving up and down to form an isolated process space on the upper portion of the wafer, a hole provided between the upper housing and the lower housing and exposing an upper portion of the susceptor, wherein the wafer is formed between the plurality of chambers;
  • a turntable which rotates to transfer the wafer and moves the wafer up and down in the upper part of the susceptor, and includes a seating ring inserted into the hole so as to be separated upwardly and seated on which the wafer is seated, and a lower end of the upper housing moves downward.
  • the processing of the wafer is performed while forming a process space that is isolated between the upper and lower portions of the wafer. It may be done.
  • the wafer of the chamber in which the process is completed among the first to fifth chambers is completed in a process space in which the wafer is spaced apart from the upper surface of the susceptor in a process space isolated by the upper housing. May be waiting until
  • the lower housing provides a lower side of an isolated process space with the turntable in contact with an upper end thereof;
  • the upper housing may have a lower end portion moving downward to provide an upper side of an isolated process space in contact with an upper portion of the turntable.
  • the lower housing provides a lower side of the isolated process space with the seating ring in contact with the upper end;
  • the upper housing may have a lower end portion moved downward to provide an upper side of the isolated process space in contact with the upper portion of the seating ring.
  • the upper housing includes a fixed part fixed to an upper plate and a moving part moved up and down by a driving part under the fixed part;
  • the isolated process space may be formed by moving the moving part downward by driving the driving part.
  • the upper housing may be formed in a bellows shape so that the lower end thereof is moved up and down by the driving unit to form the isolated process space.
  • the present invention by simplifying the process step to reduce the number of chambers of the semiconductor continuous processing apparatus, it is possible to reduce the process time to improve productivity, reduce the size of the device and reduce the cost.
  • the present invention can effectively remove the organic contaminants, while preventing the burst of the solder ball, there is an effect that can improve the stability of the process.
  • the wafer in a specific chamber where the process is completed can be separated from the susceptor and maintained in isolation while the process in another chamber is completed, thereby preventing the wafer from further heating in the atmosphere, thereby increasing the reliability of the process. It is possible to improve the process reliability and further improve the process reliability by keeping the wafers isolated when waiting for the process in another chamber to complete.
  • the uniformity of the processing can be ensured by heating the process gas injected onto the wafer just before the injection onto the wafer, and the solder ball shape is stably formed by simultaneously heating the upper and lower surfaces of the wafer in the solder ball forming step. can do.
  • FIG. 1 is a block diagram of a conventional reflow apparatus
  • FIG. 2 is a configuration diagram of an apparatus to which a semiconductor wafer continuous processing method is applied according to a preferred embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view taken along the direction of A-A in FIG.
  • Figure 4 is a detailed cross-sectional configuration of the seating ring applied to the present invention
  • 5 to 14 is a schematic cross-sectional configuration of the present invention shown in accordance with the movement and processing of the wafer
  • FIG. 15 is a cross-sectional configuration diagram of a first process chamber according to another embodiment of the present invention.
  • 16 is a cross-sectional view illustrating an apparatus for continuously processing a semiconductor wafer according to another embodiment of the present invention.
  • 17 is a cross-sectional view illustrating a state in which the upper housing is raised in the state of FIG. 16.
  • FIG. 18 is a cross-sectional view illustrating a state in which the turntable and the seating ring are raised in the state of FIG. 17.
  • FIG. 19 is a plan view illustrating a wafer in a susceptor and a mounting ring provided in the continuous processing apparatus of FIG. 16.
  • FIG. 19 is a plan view illustrating a wafer in a susceptor and a mounting ring provided in the continuous processing apparatus of FIG. 16.
  • first chamber 110, 210, 310 susceptor
  • the outer body 610 lower plate
  • FIG. 2 is a block diagram of a reflow apparatus to which a semiconductor wafer continuous processing method according to a preferred embodiment of the present invention is applied.
  • a semiconductor wafer continuous processing apparatus to which the present invention is applied includes first to fifth chambers 100, 200, 300, 400, and 500, and includes first to fifth chambers based on the center of the outer body 600.
  • the fifth chamber (100, 200, 300, 400, 500) is arranged in a circular shape, the turntable 700 for transferring the wafer (W) between the first to fifth chamber (100, 200, 300, 400, 500) It is configured to include).
  • Such a configuration can reduce the number of transfer steps of the wafer W as compared to the prior art of FIG. 1 and can improve productivity through the simplification of the process steps.
  • the size of the device can be reduced, the effect of reducing the manufacturing cost of the device can be expected.
  • the oxygen content remaining in the inside of the first chamber 100 is purged by introducing nitrogen as an inert gas into the first chamber 100 in an atmospheric pressure atmosphere.
  • moisture particles generated by heating the formic acid vapor in the previous process are attached to the inner wall of the chamber due to the temperature difference between the inside and the outside of the chamber, and other process particles or foreign substances adhere to the moisture particles. Particles can form when attached to a wall.
  • the nitrogen may prevent the generation of particles by evaporating the moisture particles on the inner wall of the chamber by using nitrogen heated to a temperature capable of vaporizing the moisture particles.
  • the wafer W is moved to the second chamber 200 by the turntable 700, and the inside of the second chamber 200 is at atmospheric pressure of 760torr and 100 to 400 ° C.
  • the formic acid and nitrogen are supplied and treated for 1 to 300 seconds to remove moisture, organic contaminants and surface oxides present in the wafer (W).
  • formic acid vapor and nitrogen are supplied at a pressure of 760 torr and a temperature of 100 to 500 ° C., for a time of 1 to 300 seconds. During the process, the solder on the wafer melts.
  • the heated nitrogen may be supplied while the turntable 700 rotates to transfer the wafer W, thereby preventing the solder ball temperature of the wafer W from lowering, thereby stably maintaining the shape of the solder ball. .
  • nitrogen and formic acid vapor at a pressure of 100 to 760 torr and a temperature of 100 to 500 ° C. It is supplied and treated for a time of 1 to 300 seconds.
  • the pore removal may be performed at a pressure of 100 to 760 torr differently from the prior art, and the pore removal rate may be reduced as compared with the pore removal process performed at a pressure of 1 torr or less.
  • the vacuum process is performed to remove the voids, a problem may occur in that the solder balls are ruptured.
  • the process may be performed under a pressure of 100 to 760torr for a stable process. Stability can be improved.
  • pore removal rate only a difference that does not affect the product quality occurs as compared with the case of proceeding at a pressure of 1 torr or less conventional.
  • the fourth chamber 400 When the wafer previously supplied from the fifth chamber 500 is being processed while the processing in the fourth chamber 400 is completed, the fourth chamber 400 is provided in the fourth chamber 400 to support the wafer W.
  • the wafer W is lifted from the surface of the acceptor to be in a waiting state.
  • the standby state is because a process abnormality may occur if the contactor is kept in contact with a susceptor having a heater therein even after the process is completed. In this standby state, the fourth chamber 400 maintains an isolated state, and the standby state may be applied to all chambers.
  • the wafer W is treated at a pressure of 760 torr and a temperature of 20 to 400 ° C. for 1 to 300 seconds in a supply atmosphere of a mixed gas of formic acid vapor and nitrogen, and solder bumps. To form and relieve the surface roughness of the solder.
  • the fourth chamber 400 and the fifth chamber 500 further include an upper heater 370 to be described later on the upper side to facilitate temperature control. It is possible to uniformly heat the top and bottom of the wafer to form a stable shape of the solder ball.
  • the wafer W transferred to the first chamber 100 is treated at a pressure of 760 torr and a temperature of 20 to 30 ° C. for 1 to 300 seconds in a supply atmosphere of air or nitrogen, so that the grains of the solder bumps Form and cool the grain.
  • the cooled wafer W is unloaded to the outside in the first chamber 100.
  • the first chamber 100 provides a space in which the loading and unloading of the wafer W can be performed together.
  • the present invention does not use a very low vacuum atmosphere to remove the voids in the solder, thereby improving the stability of the process and reducing the number of stations used to simplify the structure of the apparatus.
  • Figure 3 is a schematic cross-sectional view of the A-A direction in Figure 2
  • Figure 4 is a detailed cross-sectional configuration of the seating ring.
  • the outer body 600 is a disk-shaped lower plate 610, the disk-shaped upper plate 620 provided on the upper side of the lower plate 610, and the lower
  • the edge of the plate 610 and the edge of the upper plate 620 is composed of a side housing 630 connected to the top and bottom.
  • the upper plate 620 includes components such as piping for supplying a process gas at an upper position of each chamber 100, 200, 300, 400, 500, and a side housing 630 in which the first chamber 100 is located. Openings may be formed in the robot arm to allow entry / retraction of the robot arm for loading or unloading the wafer.
  • the first to fifth chambers 100, 200, 300, 400, and 500 are connected to the connection space 800, which is an inner space surrounded by the lower plate 610, the upper plate 620, and the side housing 630.
  • a turntable 700 having a rotation axis in the center is provided.
  • the turntable 700 is formed with the same number of openings 710 of the chamber (100, 200, 300, 400, 500).
  • the hole 710 is provided with a seating ring 720 on which a wafer is seated.
  • the seating ring 720 may be separated from the turntable 700 together with the wafer in a state where the wafer is seated by the vertical movement of the lift pin 240 to be described later.
  • the seating ring 720 is a stepped shape, as shown in Figure 4, the inner seating end 722 formed around the inner diameter portion so that the wafer (W) is seated, and the seating ring 720 is the turntable 700 It consists of an outer seating end 723 formed around the outer diameter portion so as to be seated in the hole 710 of the through, and through the up and down to allow gas to pass between the inner seating end 722 and the outer seating end 723 A gas through hole 721 is formed.
  • the gas evenly injected from the shower heads 160 and 260 described later to the upper front surface of the wafer W is exhausted to the exhaust ports 150 and 250 through the gas through hole 721. In this way, since the exhaust flow of the process gas is formed from the top to the bottom of the wafer W, less residue of the process gas is generated in the chamber.
  • the seating ring 720 is in contact with the wafer (W), the seating ring 720 is in contact with the turntable 700.
  • the turntable 700 is exposed to the connection space portion 800 outside the chamber, so that the temperature of the connection space portion 800 is transferred to the wafer W through the turntable 700 and the seating ring 720, and at a process temperature. Will be affected. Therefore, in order to block heat from being transferred to the wafer W, the seating ring 720 preferably uses a non-metallic material.
  • the seating ring 720 may be a ceramic having heat resistance because it is exposed to a high process temperature, and any other non-metallic material having low heat resistance and low conductivity may be applied.
  • the first to fifth chambers 100, 200, 300, 400, and 500 define an isolated space in which the wafer is processed, and components for setting a temperature and pressure for processing the wafer are provided for each chamber.
  • Each chamber may be isolated from the connection space 800 during the process so that the wafer may be processed under different conditions for each chamber.
  • the first chamber 100 is for loading the wafer by an external robot, and unloading the wafer to the external robot from the wafer which has been processed in the fifth chamber 500. Referring to 3, the detailed configuration will be described.
  • the first chamber 100 includes a susceptor 110 for supporting a bottom surface of the wafer, and a lower housing installed outside the susceptor 110 and fixed to the lower plate 610. 120, an upper housing 130 provided on the upper side of the lower housing 120 and fixed to the upper plate 620, a lift pin 140 that moves up and down to support a bottom surface of the wafer, and the lower plate.
  • An exhaust port 150 formed at 610 and communicating with an inner space of the lower housing 120, and a shower head 160 provided inside the upper housing 130 to process gas by spraying the wafer. It is configured to include.
  • the susceptor 110 is provided with a configuration for vacuum adsorption in order to fix the wafer on its upper surface, and cooling means for cooling the wafer before unloading the wafer having been processed in the fifth chamber 500 to the outside ( Not shown) may be provided.
  • cooling means for cooling the wafer before unloading the wafer having been processed in the fifth chamber 500 to the outside ( Not shown) may be provided.
  • the susceptor 110 is fixed on the lower plate 610 instead of being moved up and down, the structure is simplified since the connection line for vacuum suction and the connection line for wafer cooling means are fixed. .
  • the lower housing 120 has a cylindrical shape, and the inner space 120a is insulated from the connection space 800 during the process to form a lower side of the isolated process space, and the inner space 120a is
  • the exhaust port 150 is connected to an exhaust passage (not shown).
  • the upper housing 130 has an inner space (130a) is insulated from the connection space portion 800 during the process to form an upper side of the isolated process space, the gas through hole of the seating ring (720) It communicates with the inner space 120a of the lower housing 130 through 721.
  • the upper housing 130 is formed in a cylindrical shape in order to maintain the isolated state of the wafer during the process and to communicate with the connection space 800 when moving to the next chamber, the upper plate 620 It is composed of a fixed part 131 fixed to the moving part 132 provided on the lower side of the fixing part 131 to move up and down.
  • the moving part 132 moves the moving part 132 downward by the driving part 133 so that the lower end of the moving part 132 is in contact with the upper part of the turntable 700.
  • a lower end of the moving part 132 may be provided with an airtight member (not shown) made of a material such as rubber, silicon.
  • an airtight member (not shown) may be provided to maintain airtightness on a surface where the fixing part 131 and the moving part 132 contact each other.
  • the lift pin 140 is provided to penetrate the susceptor 710 up and down, and supports a bottom surface of the wafer loaded by the robot to mount the wafer on the top surface of the susceptor 110. Vertical movement is possible.
  • the bottom surface of the wafer seated on the seating ring 720 is supported and separated from the seating ring 720, and then moved up and down to take over to the robot.
  • the shower head 160 uniformly injects gas for cooling or heated nitrogen gas onto the upper surface of the wafer, and includes a buffer space 161 in which the inflowed gas is collected, and the wafer in the buffer space 161.
  • a plurality of injection holes are formed on the bottom of the shower head 160 at regular intervals so that the gas is injected downward in the direction of W).
  • connection space 800 is a space surrounding the outside of each of the chambers 100, 200, 300, 400, and 500, and an exhaust port 810 for exhausting gas remaining in the connection space 800 is provided.
  • the second chamber 200 is the same configuration as the first chamber 100, the susceptor 210, the lower housing 220, the upper housing 230, the lift pin 240, the exhaust port 250 and the shower head And 260.
  • the susceptor 210 is provided with a heater (not shown) for applying heat to the wafer, and the wafer is vacuum adsorbed on the upper surface of the susceptor 210 to be processed.
  • the lift pin 140 of the first chamber 100 directly supports the bottom of the wafer, but the lift pin 240 of the second chamber 200 supports the bottom of the seating ring 720 to seat the seat 720. ) And the wafer seated on the seating ring 720 can be moved up and down together. To this end, the lift pin 140 is positioned to move up and down on the outside of the susceptor 210.
  • this configuration is the same configuration of the third to fifth chamber (300, 400, 500) of the other chamber.
  • 5 to 14 is a schematic cross-sectional configuration of the present invention shown in accordance with the movement and processing of the wafer.
  • FIG. 5 a process in which the wafer W is loaded into the first chamber 100 by the robot 2 is illustrated.
  • the turntable 700 is moved downward, so that the bottom surface of the turntable 700 is moved.
  • the upper surface of the susceptor 110 is exposed to an upper portion of the lower housing 120 through the hole 710 of the turntable 700.
  • the lift pin 140 moves upward to support the bottom surface of the wafer W while the wafer W is placed on the upper surface of the arm Arm.
  • the lift pin 140 moves upward in the state in which the robot 2 moves the wafer W in the correct position.
  • the robot 2 moves in the standby state. It is also possible to transfer the wafer (W) to load the wafer (W) on the lift pin (140).
  • the first chamber 100 is a chamber in which the wafer W is loaded from the outside. As described later, the first chamber 100 moves the wafer W moved from the fifth chamber 500 to the outside. Used as an unloading chamber. That is, the first chamber 100 becomes a loading and unloading chamber in which the wafer W is loaded and unloaded.
  • the robot 2 retreats while the wafer W is placed on the lift pin 140 to move out of the loading and unloading chamber 100. At this time, the robot 2 moves downward to retreat while the wafer W is completely placed on the lift pin 140. On the contrary, the robot 2 may retreat in a state in which the lift pin 140 moves upward while the wafer W is seated without moving downward.
  • the turntable 700 moves upward while the robot 2 is completely moved to move the bottom edge of the bottom surface of the wafer W into an inner seating end 722 of the seating ring 720. Settle on
  • the turntable 700 is rotated while the turntable 700 moves upward, and the rotation angle is determined according to the number of chambers.
  • the turntable 700 moves downward to seat the wafer W on the susceptor 210 of the second chamber 200, and the turntable 700 moves further downward.
  • the bottom surface is in contact with the upper end of the lower housing 220.
  • the driving unit 233 is driven to move the moving unit 232 downward so that the lower end of the moving unit 232 contacts the upper surface of the turntable 700.
  • the inner space 230a surrounded by the upper housing 230 and the turntable 700 forms an upper side of an isolated process space, and the inner space 220a surrounded by the lower housing 220 and the turntable 700 is formed.
  • the lower side of the isolated process space is formed, and necessary processing of the wafer W is performed in the isolated process space.
  • Process gas is supplied to the inner space 230a of the upper housing 230 through the shower head 260 to process the wafer W, and the susceptor 210 is vacuum-adsorbed on the wafer W. Heating to a specific temperature.
  • the internal space 220a of the lower housing 220 After the process gas is processed on the wafer W, the internal space 220a of the lower housing 220 through the gas through hole 721 of the seating ring 720 inserted into the hole 710 of the turntable 700. After moving to the exhaust through the exhaust port 250.
  • the lift pin 240 since the lift pin 240 does not penetrate the susceptor 210, there is no need to form a separate groove or hole for vertical movement of the lift pin 240 in the susceptor 210, Since the area of the susceptor 210 in contact with the wafer W is formed wide, the wafer W can be uniformly heated.
  • FIG. 11 is a cross-sectional configuration diagram of a state in which the wafer W waits when the process is not completed in the other chambers 300, 400, and 500 while the process is completed in the second chamber 200.
  • the wafer is waited for 100 seconds after the process in the second chamber 200 is completed. W) must be transferred to the third chamber 300.
  • the third chamber 300 may not be moved immediately to the third chamber 300. It may be understood that the process waits at 300 until the turntable 700 is in a rotatable state.
  • the lift pin 240 is moved upward to move the lift ring 240 upward.
  • the wafer W seated on the seating ring 720 is lifted up, and the wafer W is separated from the susceptor 210 upward.
  • the temperature inside the isolated process space becomes higher than the temperature of the connection space 800 outside the chamber.
  • the connection space portion having a low temperature The thermal shock may be applied to the wafer W by being exposed to the 800.
  • the process space surrounded by the upper housing 230, the turntable 700, and the lower housing 220 may be isolated from the connection space 800 even in the standby state of the wafer W. Therefore, the heated state of the wafer W can be maintained and the process quality of the wafer W can be improved.
  • the moving part 232 of the upper housing 230 moves upward to transfer the wafer W from the second chamber 200 to the third chamber 300.
  • the turntable 700 is moved upward so that the seat ring 720 is inserted into the hole 710 of the turntable 700 together with the wafer W so that the outer seat end 723 of the seat ring 720 is moved. It is to be seated on the upper surface of the turntable (700).
  • the lift pin 240 moves downward to space the bottom surface of the seating ring 720 from the top of the lift pin 240, and then the turntable 700 rotates to transfer the wafer to the third chamber 300. Done.
  • each of the second chamber 200, the third chamber 300, the fourth chamber 400, and the fifth chamber 500 is configured in the same manner so that the turntable 700 may be used to process the wafer W.
  • the moving part 232 of the upper housing 230 is moved downward along the fixing part 231 to form an isolated process space, and the upper housing 230 is moved when the wafer W is moved.
  • an inert gas such as heated nitrogen is supplied to the connection space 800 where the wafer W moves to maintain the temperature of the wafer.
  • the introduced process gas including the inert gas may be exhausted through the exhaust unit 810.
  • FIG. 12 illustrates that the turntable 700 rotates in the state shown in FIG. 11 to transfer the wafer W to the first chamber 100, and then the turntable 700 moves downward to susceptor the wafer W.
  • the state seated at 110 is shown.
  • the actual operation is moved to the first chamber 100 in order to unload the wafer W, which has been processed in the fifth chamber 500, out of the continuous processing apparatus.
  • the wafer W may be naturally cooled in the state moved to the first chamber 100 without any processing, and then unloaded to the outside by the robot 2 to be described later. W) may be forced to cool.
  • Such a cooling process is also performed in an isolated state of the process spaces 120a and 130a.
  • the turntable 700 first moves downward so that the bottom thereof is in contact with the upper end of the lower housing 120.
  • the shower head 160 sprays cooling gas onto the wafer W to form the wafer W.
  • the wafer W is placed on the susceptor 110 in which the coolant is circulated, and left in the other chambers until the process is completed.
  • the lift pin 140 moves upward to release the wafer W from the susceptor 110, and then the robot 2 enters and supports the bottom surface of the wafer W. As shown in FIG. In this state, the wafer W is unloaded. Then, as described above, a new wafer is loaded into the first chamber 100 to perform the same process.
  • the present invention is fixed without having to move the lower housing 120 to form a lower side of the process space, which is separated from the plurality of susceptors, which are heavy materials provided in each chamber, and move the turntable 700 up and down.
  • the mechanical configuration can be simplified and the load of the driving part can be reduced, thereby reducing the power consumption.
  • FIG. 15 is a cross-sectional view of the third chamber 300 according to another embodiment of the present invention.
  • the upper heater 370 is further provided on the upper side of the upper plate 620 to effectively control the process temperature.
  • the upper heater 370 When the upper heater 370 is provided on the upper side of the wafer W as described above, the lower surface of the wafer W is heated by the heat transferred from the susceptor 310, and the heat is transferred to the heat transferred through the upper heater 370. Since the upper surface of the wafer W is also heated at the same time, the upper and lower surfaces of the wafer W can be heated to a uniform temperature.
  • the shape of the solder ball is very important, and the upper and lower parts of the solder ball can be uniformly heated by the heater provided in the susceptor 310 and the upper heater 370 of the upper side, thereby maintaining the shape of the solder ball. To be advantageous.
  • the upper heater 370 may be selectively added to the second to fifth chambers 200 to 500, and may be variably installed according to the type of wafer processing process to which the present invention is applied.
  • the residue of the process gas is stuck to the inner wall surface of the upper housing 230 in the inner space 230a of the upper housing 230.
  • the residue of the process gas is the upper housing ( 230) It can be prevented to stick to the inner wall surface can reduce the generation of particles.
  • the process gas introduced into the buffer space 361 is heated by the heat of the upper heater 370, so that the shower The temperature of the process gas supplied through the head 360 may be quickly increased, and the stability of the process may be further improved.
  • the formic acid vapor used in the reflow process is heated to a high temperature and then fed into the chamber.
  • the formic acid vapor when it is preheated and introduced into the chamber, the formic acid vaporizes when it reaches the wafer, resulting in a loss, thereby lowering uniformity of the process.
  • the heating jacket on the outer surface of the pipe provided on the outside of the reflow equipment to make the formic acid vapor at a high temperature, there is a problem that the formic acid vapor is stuck to the inner surface of the pipe.
  • the formic acid vapor is heated to the upper heater 370 while the formic acid is introduced into the buffer space 361 as in the present embodiment, it is heated just before being injected onto the wafer W, thereby preventing a loss due to vaporization of the formic acid.
  • the problem that the formic acid vapor is stuck to the inner surface of the pipe can be prevented.
  • FIG. 16 is a cross-sectional view showing a continuous processing apparatus of a semiconductor wafer according to another embodiment of the present invention
  • FIG. 17 is a cross-sectional view showing a state in which the upper housing is raised in the state of FIG. 16
  • FIG. 18 is a turntable and a seating ring in the state of FIG. 19 is a plan view showing a state in which a wafer is seated in a susceptor and a mounting ring provided in the continuous processing apparatus of FIG. 16.
  • the susceptor 1100 is fixedly installed to support the wafer W while the process is in progress, and is fixed to the outside of the susceptor 1100 so that the lower portion of the wafer W is fixed.
  • a lower housing 1200 forming a process space 1200a isolated from the upper housing, an upper housing 1300 moving up and down to form an isolated process space 1300a on the upper portion of the wafer W, and the upper housing 1300.
  • the turntable 7000 is provided between the lower housing 1200 and rotates to transfer the wafer W between a plurality of chambers and simultaneously moves the wafer W up and down on the susceptor 1100. It is composed of a seating ring 7200 is inserted into the hole 7100 of the turntable 7000 to be detached upwards to seat the wafer (W).
  • the upper housing 1300 is formed in a bellows shape, and the lower portion 1301 of the upper housing 1300 and the upper portion of the seating ring 7200 are simultaneously in contact with each other.
  • the upper portion 1201 and the lower portion of the seating ring 7200 are in contact with each other, and there is a difference in that a support pin 7210 is formed inside the seating ring 7200 to support the bottom surface of the wafer W. .
  • the outer end 7201 of the seating ring 7200 is formed in a stepped shape with an upper part protruding, and the inner end 7001 of the turntable 7000 is formed in a stepped shape with a lower part protruding in the center direction.
  • the outer end 7201 is engaged with the inner end 7001 and is seated to allow upward detachment.
  • the upper side of the upper plate 6200 is provided with a driving unit 1330 for providing a driving force to move the lower end 1301 of the upper housing 1300 up and down.
  • a shaft 1335 that moves up and down is connected to the driving unit 1330, and a lower end 1301 of the upper housing 1300 is connected to a lower end of the shaft 1335.
  • the driving unit 1330 may be configured as a cylinder, and when the cylinder is driven, the lower end 1301 of the shaft 1335 and the upper housing 1300 may be moved up and down, and the lower end 1301 may be seated when moved downward.
  • the upper side of the isolated process space 1300a can be formed by contacting the top of the ring 7200.
  • the airtight member 1302 is interposed between the bottom surface of the lower end portion 1301 and the top surface of the seating ring 7200 to maintain airtightness.
  • the upper end 1201 of the lower housing 1200 may contact the lower portion of the seating ring 7200 to form a lower side of the isolated process space 1200a.
  • the airtight member 1202 is interposed between the top surface of the upper end portion 1201 and the bottom surface of the seating ring 7200 to maintain airtightness.
  • a plurality of support pins 7210 protruding toward the center of the seating ring 7200 to support the bottom surface of the wafer W.
  • the number of the support pins 7210 is illustrated as three, but may be modified.
  • a groove 1110 having a slot shape is formed on the upper surface of the susceptor 1100 so that the support pin 7210 is inserted into the upper surface of the susceptor 1100, and the support pin 7210 is positioned inside the groove 1110.
  • the bottom surface of the wafer W is supported by the support pins 7210 so that the wafers W move upward together.
  • the lower portion of the seating ring 7200 is provided with a ring-shaped baffle plate 6500 having holes 6510 uniformly formed along the circumference of the hole 6510 to uniformly pass the process gas, and the holes of the baffle plate 6500.
  • the process gas passed through the 6510 is exhausted through the exhaust port 1500 provided in the lower portion of the process chamber.
  • the baffle plate 6500 is positioned at an outer circumference of the susceptor 1100, and an outer edge thereof is locked to the lower housing 1200.
  • the turntable 7000 When the turntable 7000 is rotated in the state of FIG. 18, the wafer W is transferred to the next chamber, and then the necessary wafer W is processed.
  • the present invention can simplify the steps of a process of continuously processing semiconductor wafers, thereby reducing the process time and improving the productivity by shortening the process time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

The present invention relates to a reflow method for a semiconductor wafer, in which an apparatus, provided with a plurality of chambers and an outer body surrounding the exterior thereof, processes a wafer, the plurality of chambers comprising 1-5 chambers, and the method for continuous processing of a wafer comprising: a first step of injecting an inactive gas into a first chamber after loading a wafer therein and purging; a second step of transporting the wafer, for which the first step has been completed, to a second chamber, and then heating the wafer after injecting a process gas into the interior thereof; a third step of transporting the wafer, for which the second step has been completed, to a third chamber, and heating the wafer after injecting a process gas into the interior thereof; a forth step of transporting the wafer, for which the third step has been completed, to a forth chamber, and heating the wafer under the internal pressure below the atmospheric pressure; a fifth step of transporting the wafer, for which the fourth step has been completed, to a fifth chamber, and heating the wafer after injecting a process gas thereinfo; and a sixth step of transporting the wafer, for which the fifth step has been completed, to the first chamber and unloading the wafer to the outside after cooling, and loading a different wafer in the first chamber. The present invention simplifies the processing steps so as to allow reducing the number of stations in the reflow apparatus, thereby enhancing productivity by reducing the processing time, allowing the size of the reflow apparatus to be smaller and expenses to be reduced.

Description

반도체 웨이퍼의 연속 처리방법Continuous processing method of semiconductor wafer
본 발명은 반도체 웨이퍼의 연속 처리방법에 관한 것으로, 보다 상세하게는 공정단계를 줄이며, 납땜 볼의 파열을 방지할 수 있는 반도체 웨이퍼의 연속 처리방법에 관한 것이다.The present invention relates to a continuous processing method of a semiconductor wafer, and more particularly, to a continuous processing method of a semiconductor wafer capable of reducing the process step and preventing the rupture of the solder ball.
일반적으로 반도체 웨이퍼에는 와이어, 컨덕터 등의 연결을 위하여 솔더 돌출부가 형성된다. 이러한 솔더부(범프)의 제조과정 중 하나인 리플로우(reflow) 공정은 솔더 볼, 솔더 크림 등을 용융시켜 웨이퍼에 밀착시키며, 적당한 프로파일을 가지도록 하는 공정이다.In general, solder protrusions are formed on semiconductor wafers for connection of wires, conductors, and the like. The reflow process, which is one of manufacturing processes of the solder part (bump), is a process of melting solder balls, solder creams, and the like to adhere to the wafer and to have an appropriate profile.
리플로우 과정에서는 특정한 온도 분위기와 대기 조건 및 공정시간에 의해 원하는 프로파일의 솔더부를 제작할 수 있게 된다. 이러한 온도 분위기나 기타의 조건을 유지하기 위하여, 처리중인 웨이퍼를 대기중으로 인출하지 않고 연속된 챔버를 가지는 장치를 사용하여 연속공정으로 처리된다.In the reflow process, it is possible to fabricate the solder part of the desired profile according to the specific temperature atmosphere, atmospheric conditions and processing time. In order to maintain such a temperature atmosphere or other conditions, the processing wafer is processed in a continuous process using an apparatus having a continuous chamber without taking the wafer out into the atmosphere.
이와 같은 리플로우 방법의 예로서, 미국특허 07358175호(이하 종래기술 1)를 들 수 있고, 이를 구현하기 위한 장치로서 미국특허 US6,827,789호(이하 종래기술 2)를 들 수 있다.As an example of such a reflow method, US Pat. No. 7,358,175 (hereinafter referred to as Prior Art 1) may be cited, and US Pat. No. 6,827,789 (hereinafter referred to as Prior Art 2) may be mentioned as an apparatus for implementing the same.
도 1은 상기 종래기술 1에 기재된 리플로우 장치의 구성도이다.1 is a block diagram of the reflow apparatus described in the prior art 1.
도 1에 도시한 바와 같이 제1 내지 제6스테이션(#1~#6)과, 상기 각 스테이션에 웨이퍼(W)를 회전시켜 이송시키는 턴테이블(12)을 포함하는 처리장치(10)를 이용하여 공정이 진행된다.As shown in FIG. 1, using a processing apparatus 10 including first to sixth stations # 1 to # 6, and a turntable 12 for rotating and transporting the wafer W to each station. The process proceeds.
종래 기술의 상세한 설명 등에는 제1 내지 제6스테이션(#1~#6) 각각에서 진행되는 공정에 대하여 기재되어 있다. 이를 각 단계별로 정리하면 다음과 같다.The detailed description of the prior art and the like describe the processes carried out in each of the first to sixth stations # 1 to # 6. This is summarized as follows.
먼저 웨이퍼(W)가 제6스테이션(#6)에 로딩 된 후 질소가스에 의해 제6스테이션(#6) 내부를 퍼지하고, 상기 턴테이블(12)이 회전하여 웨이퍼(W)를 제1스테이션(#1)으로 이동시킨다. 이때 제1스테이션(#1)에서는 대기압에서 질소 또는 포름산 증기와 질소가 공급되어, 가열에 의해 웨이퍼 상의 수분, 유기 오염물, 표면 산화물이 제거된다.First, the wafer W is loaded into the sixth station # 6 and then purged inside the sixth station # 6 by nitrogen gas, and the turntable 12 rotates to move the wafer W to the first station (6). Move to # 1). At this time, the first station # 1 is supplied with nitrogen or formic acid vapor and nitrogen at atmospheric pressure, and the water, organic contaminants, and surface oxides on the wafer are removed by heating.
그 다음, 턴테이블(12)에 의해 제1스테이션(#1)의 웨이퍼(W)는 제2스테이션(#2)으로 이동되어, 대기압에서 질소 또는 포름산 증기와 질소가 공급되어, 가열함으로써 웨이퍼(W)상의 솔더가 융해된다.Then, the wafer W of the first station # 1 is moved to the second station # 2 by the turntable 12, and nitrogen or formic acid vapor and nitrogen are supplied at atmospheric pressure, and the wafer W is heated. ) Solder melts.
그 다음, 턴테이블(12)에 의해 제2스테이션(#2)에서 제3스테이션(#3)으로 웨이퍼(W)가 이송된 후, 1torr 이하의 압력분위기에서 200 내지 400℃의 온도로 가열하여 웨이퍼 상의 솔더에 포함된 공극(void)을 제거하게 된다. Then, the wafer W is transferred from the second station # 2 to the third station # 3 by the turntable 12, and then heated to a temperature of 200 to 400 ° C. in a pressure atmosphere of 1 torr or less. This eliminates voids in the solder on the phase.
그 다음, 제4스테이션(#4)에서는 웨이퍼(W)를 대기압 분위기에서 포름산 증기와 질소의 혼합가스 또는 질소를 공급한 상태에서 가열하여, 솔더 범프를 형성하고, 상기 솔더 표면의 거칠기를 완화한다.Next, in the fourth station # 4, the wafer W is heated in a state in which a mixed gas of formic acid vapor and nitrogen or nitrogen is supplied in an atmospheric pressure atmosphere to form solder bumps, thereby reducing the roughness of the solder surface. .
그 다음, 제5스테이션(#5)으로 이송된 웨이퍼(W)는 대기압 분위기에서 질소를 공급하고, 가열하여 솔더 범프의 그레인(grain) 형성을 제어한다.Then, the wafer W transferred to the fifth station # 5 is supplied with nitrogen in an atmospheric pressure atmosphere and heated to control grain formation of solder bumps.
그 다음, 제6스테이션(#6)으로 웨이퍼(W)를 이송시키고, 그 웨이퍼(W)는 대기압 분위기에서 솔더 범프를 냉각시킨 후, 웨이퍼(W)는 외부로 언로딩 된다. Then, the wafer W is transferred to the sixth station # 6, and the wafer W cools the solder bump in an atmospheric pressure atmosphere, and then the wafer W is unloaded to the outside.
이처럼 종래 웨이퍼(W)의 리플로우 방법은 모두 6개의 단계로 순차 진행되며, 각 공정단계의 진행시간 이외에 웨이퍼(W)를 이송하는 시간을 더 고려할 때 상대적으로 생산성이 저하되는 문제점이 있었다.As described above, the reflow method of the conventional wafer W is sequentially performed in all six steps, and there is a problem in that the productivity is relatively lowered when considering the time for transferring the wafer W in addition to the progress time of each process step.
또한 앞서 설명한 바와 같이 1torr 이하의 압력분위기에서 솔더 내의 공극을 제거하는 과정에서 솔더가 파열되며, 이는 제4스테이션(#4)에서의 후처리에 의해서도 표면이 균일하게 회복되지 않는 문제점이 있었다.In addition, as described above, the solder ruptures in the process of removing voids in the solder in a pressure atmosphere of 1 torr or less, which causes a problem that the surface is not uniformly recovered by the post-treatment at the fourth station # 4.
한편, 종래기술 2의 도면 1에는 로딩챔버와 언로딩챔버를 포함하는 총 6개의 챔버가 도시되어 있으며, 턴테이블을 사용하여 로딩된 웨이퍼를 다음의 공정챔버로 순차 이동시키며, 최종적으로 웨이퍼를 언로딩챔버로 이송하여, 처리가 완료된 웨이퍼를 로봇에 의해 언로딩 시키도록 구성되어 있다.Meanwhile, FIG. 1 of the prior art 2 shows a total of six chambers including a loading chamber and an unloading chamber, and sequentially moves the loaded wafer to the next process chamber using a turntable, and finally unloads the wafer. It transfers to a chamber and is configured to unload the processed wafer by a robot.
종래기술 1의 스테이션과 종래기술 2의 챔버는 동일한 의미로서 사용되고, 이하 설명에서도 동일하다.The station of the prior art 1 and the chamber of the prior art 2 are used as the same meanings and are also the same in the following description.
종래기술 2에는 처리플레이트와 하부격리챔버를 상하로 이동 가능하게 구성하여, 턴테이블에 의해 이송되어진 웨이퍼를 격리시켜 공정을 진행하게 된다. In the prior art 2, the processing plate and the lower isolation chamber are configured to be movable up and down, and the process is performed by isolating the wafer transferred by the turntable.
상기 처리플레이트는 통상 서셉터로 통칭되며, 내부에 히터를 포함하고, 웨이퍼를 진공 흡착시키는 구조가 형성되어 있어 상대적으로 중량물이며, 이를 상하로 이동시키기 위하여 에너지 소모량이 많고, 장치의 부피가 커지는 문제점이 있었다.The treatment plate is generally referred to as a susceptor, and includes a heater therein, and a structure for vacuum adsorption of the wafer is formed, which is a relatively heavy material, which requires a large amount of energy to move the device up and down, and increases the volume of the device. There was this.
아울러 처리플레이트와 하부격리챔버를 상하 이동시키기 위한 구동부와 동력전달구조가 복잡하여 제조원가가 증가하게 되는 문제점이 있었다. In addition, there is a problem that the manufacturing cost is increased because the drive unit and the power transmission structure for moving the processing plate and the lower isolation chamber up and down are complicated.
또한 종래기술 2는 다수의 챔버 각각이 밀폐된 상태에서는 항상 웨이퍼가 처리플레이트에 안착 되는 구조이기 때문에 다른 챔버에서 공정이 진행되고 있는 상태에서 특정 챔버에서 공정이 완료된 경우에도 웨이퍼가 처리플레이트에 안착 되어 있어 지속적으로 가열되어 공정 불량이 발생할 수 있는 문제점이 있다.In addition, in the prior art 2, since the wafer is always seated on the processing plate when each of the chambers is closed, the wafer is seated on the processing plate even when the process is completed in a specific chamber while the process is being performed in another chamber. There is a problem that can be caused by the continuous heating process defects.
종래기술 2의 경우 처리플레이트와 하부격리챔버를 함께 하향이동하면 웨이퍼와 함께 웨이퍼 링이 하강하여 턴테이블에 안착됨으로써 웨이퍼는 처리플레이트로부터 이격되어, 다른 챔버에서 공정이 진행되고 있는 동안 공정이 완료된 웨이퍼를 처리플레이트에 접촉하지 않도록 할 수 있어 처리플레이트로부터의 지속적인 가열에 의해 공정 불량이 발생하는 문제점은 방지할 수 있다. In case of the prior art 2, when the processing plate and the lower isolation chamber are moved downward together, the wafer ring is lowered together with the wafer and seated on the turntable, so that the wafer is separated from the processing plate, and the wafer is processed while the process is being performed in another chamber. The contact plate may be prevented from contacting the treatment plate, thereby preventing a problem of a process failure caused by continuous heating from the treatment plate.
그러나 이 경우 웨이퍼는 더 이상 격리된 상태를 유지할 수 없고, 웨이퍼는 격리된 챔버 외부 공간에 노출된다. 따라서 웨이퍼가 가열 공정에 의해 처리가 된 후 다음 챔버에서 공정이 진행되기까지 외부 공간에 노출되면 웨이퍼 온도가 떨어져 공정불량이 발생할 수 있는 문제점이 있다.In this case, however, the wafer can no longer remain isolated and the wafer is exposed to the space outside the isolated chamber. Therefore, when the wafer is processed by a heating process and exposed to an external space until the process proceeds in the next chamber, there is a problem that a process defect may occur due to a drop in wafer temperature.
또한 종래기술 2의 경우 처리플레이트의 상면에 웨이퍼 지지핀을 수용하기 위한 홈이 형성되어 있어, 처리플레이트 상에 웨이퍼가 지지된 상태에서 웨이퍼에 열을 가하게 되면, 홈으로 인해 웨이퍼의 저면에 전달되는 열이 불균일하여 공정불량이 발생할 수 있다.In addition, in the case of the prior art 2, a groove for accommodating the wafer support pin is formed on the upper surface of the processing plate, and when heat is applied to the wafer while the wafer is supported on the processing plate, the groove is transferred to the bottom surface of the wafer. Uneven heat can lead to process defects.
또한 종래기술 2의 경우 웨이퍼가 하나의 챔버에서 다음 챔버로 이송되는 도중에는 원하는 온도를 유지할 수 없어 웨이퍼에 열충격이 가해져 품질이 저하되는 문제점이 있다.In addition, in the case of the prior art 2, the wafer cannot be maintained at a desired temperature while being transferred from one chamber to the next chamber, and thermal shock is applied to the wafer, thereby degrading quality.
상기와 같은 문제점을 해결하기 위한 본 발명의 과제는, 공정단계를 줄일 수 있는 반도체 웨이퍼의 연속 처리방법을 제공함에 있다.An object of the present invention for solving the above problems is to provide a continuous processing method of a semiconductor wafer that can reduce the process step.
또한 본 발명의 다른 과제는 공극 제거 과정에서 솔더가 파열되는 것을 방지하여, 공정의 안정성을 향상시킬 수 있는 반도체 웨이퍼의 연속 처리방법을 제공함에 있다.In addition, another object of the present invention is to provide a continuous processing method of a semiconductor wafer that can prevent the solder from bursting during the void removal process, thereby improving the stability of the process.
또한 본 발명의 다른 과제는, 공정이 완료된 특정 챔버내의 웨이퍼를 다른 챔버의 공정이 완료될 때까지 서셉터로부터 이격시킴과 동시에 격리된 상태를 유지할 수 있는 반도체 웨이퍼의 연속 처리방법을 제공함에 있다.In addition, another object of the present invention is to provide a continuous processing method of a semiconductor wafer that can be separated from the susceptor and separated from the susceptor until the process in the other chamber is completed, the process is completed.
또한 본 발명의 다른 과제는, 웨이퍼에 분사되는 공정가스를 웨이퍼에 분사하기 직전에 가열함으로써 공정 처리의 균일성을 확보할 수 있는 반도체 웨이퍼의 연속 처리방법을 제공함에 있다.In addition, another object of the present invention is to provide a continuous processing method for a semiconductor wafer which can ensure uniformity in processing by heating the process gas injected onto the wafer immediately before injecting the wafer.
또한 본 발명의 다른 과제는, 솔더 볼의 형성단계에서 웨이퍼의 상면과 하면을 동시에 가열함으로써 솔더 볼의 형상을 안정적으로 형성할 수 있는 반도체 웨이퍼의 연속 처리방법을 제공함에 있다.In addition, another object of the present invention is to provide a continuous processing method of a semiconductor wafer that can stably form the shape of the solder ball by simultaneously heating the upper and lower surfaces of the wafer in the solder ball forming step.
상기와 같은 과제를 달성하기 위한 본 발명 반도체 웨이퍼의 연속 처리방법은, 다수의 챔버를 구비하고, 상기 챔버의 외부를 둘러싸는 외부몸체가 구비된 장치에서 웨이퍼를 처리하는 반도체 웨이퍼의 연속 처리방법에 있어서, 상기 다수의 챔버는 제1 내지 제5챔버로 이루어지고, 상기 제1챔버에 웨이퍼를 로딩한 후 불활성 가스를 주입하여 퍼지하는 제1단계; 상기 제1단계가 완료된 상기 웨이퍼를 제2챔버에 이송하고, 상기 제2챔버 내부에 공정가스를 주입한 후 웨이퍼를 가열하는 제2단계; 상기 제2단계가 완료된 상기 웨이퍼를 제3챔버로 이송하고, 상기 제3챔버 내부에 공정가스를 주입한 후 웨이퍼를 가열하는 제3단계; 상기 제3단계가 완료된 상기 웨이퍼를 제4챔버에 이송하고, 상기 제4챔버의 내부가 대기압 이하의 압력 상태에서 상기 웨이퍼를 가열하는 제4단계; 상기 제4단계가 완료된 상기 웨이퍼를 제5챔버에 이송하고, 상기 제5챔버의 내부에 공정가스를 주입한 후 웨이퍼를 가열하는 제5단계; 상기 제5단계가 완료된 상기 웨이퍼를 제1챔버에 이송하고 상기 웨이퍼를 냉각시킨 후 외부로 언로딩하고, 다른 웨이퍼를 상기 제1챔버에 로딩시키는 제6단계를 포함한다.The continuous processing method of the semiconductor wafer of the present invention for achieving the above object is a continuous processing method of a semiconductor wafer for processing a wafer in an apparatus having a plurality of chambers, the outer body surrounding the outside of the chamber. The method of claim 1, wherein the plurality of chambers comprises first to fifth chambers, and the first step of injecting and purging the inert gas after loading the wafer into the first chamber; A second step of transferring the wafer having completed the first step to a second chamber, injecting a process gas into the second chamber, and then heating the wafer; A third step of transferring the wafer, in which the second step is completed, to a third chamber, injecting a process gas into the third chamber, and then heating the wafer; A fourth step of transferring the wafer, in which the third step is completed, to a fourth chamber, and heating the wafer when the inside of the fourth chamber is at a pressure below atmospheric pressure; A fifth step of transferring the wafer where the fourth step is completed to a fifth chamber, injecting a process gas into the fifth chamber, and then heating the wafer; And transferring the wafer, in which the fifth step is completed, to the first chamber, cooling the wafer, unloading it to the outside, and loading another wafer into the first chamber.
상기 제2단계 내지 제5단계에 주입되는 공정가스는, 포름산 증기와 질소로 구성될 수 있다.The process gas injected in the second to fifth steps may be composed of formic acid vapor and nitrogen.
상기 챔버 내부의 격리된 공정공간과, 상기 외부몸체 내부의 연결공간부에는 상기 웨이퍼가 이송되는 과정에서 가열된 질소가 공급되어 웨이퍼의 온도 변화를 최소화하는 것일 수 있다.The isolated process space inside the chamber and the connection space portion inside the outer body may be supplied with heated nitrogen in the process of transferring the wafer to minimize the temperature change of the wafer.
상기 가열된 질소는, 상기 챔버가 격리된 상태에서 공정이 진행되는 경우의 상기 연결공간부의 분위기 온도보다 더 높은 온도로 공급되는 것일 수 있다.The heated nitrogen may be supplied at a temperature higher than the ambient temperature of the connection space part when the process is performed in a state where the chamber is isolated.
상기 제4단계에서의 압력은 100 ~ 760torr인 것일 수 있다.The pressure in the fourth step may be 100 to 760 torr.
상기 제4단계는, 100 내지 500℃의 온도에서, 질소를 전달 가스로 사용하여 포름산 증기를 공급하여, 1 내지 300초의 시간 동안 상기 웨이퍼를 처리하는 것일 수 있다.The fourth step may be to process the wafer for a time of 1 to 300 seconds by supplying formic acid vapor using nitrogen as a delivery gas at a temperature of 100 to 500 ℃.
상기 제5단계는, 상기 웨이퍼를 대기압과 20 내지 400℃의 온도 분위기에서, 질소를 전달 가스로 사용하여 포름산 증기를 공급하여, 1 내지 300초의 시간 동안 처리하는 것일 수 있다.The fifth step may be to process the wafer for 1 to 300 seconds by supplying formic acid vapor using nitrogen as a delivery gas in an atmospheric pressure and a temperature atmosphere of 20 to 400 ℃.
상기 제4단계 및 제5단계는, 상기 웨이퍼의 하면을 지지하는 서셉터에 구비된 히터에 의해 가열됨과 동시에 상기 웨이퍼의 상부에 설치된 상부히터에 의해 가열됨으로써, 웨이퍼의 상면과 하면이 균일하게 가열되는 것일 수 있다.The fourth and fifth steps may be heated by a heater provided in a susceptor for supporting the lower surface of the wafer, and simultaneously heated by an upper heater installed on the upper surface of the wafer, thereby uniformly heating the upper and lower surfaces of the wafer. It may be.
상기 웨이퍼에 분사되는 포름산은 상기 상부히터에 의해 가열되는 것일 수 있다.Formic acid injected into the wafer may be heated by the upper heater.
상기 상부히터의 하부에는, 내부에 상기 포름산이 유입되는 버퍼공간이 형성되고, 상기 버퍼공간의 하부에 상기 포름산을 상기 웨이퍼의 상면에 균일하게 분사하기 위한 분사구가 다수개 형성된 샤워헤드가 구비되어, 상기 버퍼공간에서 상기 포름산이 가열되는 것일 수 있다.In the lower portion of the upper heater, a buffer space into which the formic acid is introduced is formed therein, and a shower head having a plurality of injection holes for uniformly injecting the formic acid onto the upper surface of the wafer is provided below the buffer space. The formic acid may be heated in the buffer space.
상기 제1단계에서 제1챔버에 주입되는 불활성 가스는 내부 공간의 수분을 증발시키기 위해 가열된 상태로 주입되는 것일 수 있다.The inert gas injected into the first chamber in the first step may be injected in a heated state to evaporate moisture in the internal space.
상기 제1 내지 제5챔버는, 웨이퍼를 지지하기 위해 고정 설치되어 상기 웨이퍼에 열을 인가하는 서셉터, 상기 서셉터의 외측에 고정 설치되어 상기 웨이퍼의 하부에 격리된 공정 공간을 형성하는 하부하우징, 상기 웨이퍼의 상부에 격리된 공정 공간을 형성하기 위해 상하 이동하는 상부하우징, 상기 상부하우징과 하부하우징 사이에 구비되고 상기 서셉터의 상부를 노출시키는 홀이 형성되고 상기 다수의 챔버 사이에서 상기 웨이퍼를 이송하기 위해 회전하며 상기 서셉터 상부에서 상기 웨이퍼를 상하 이동시키는 턴테이블, 상기 홀에 상향으로 이탈이 가능하도록 삽입되어 상기 웨이퍼가 안착되는 안착링을 포함하되, 상기 상부하우징의 하단부가 하향 이동하여 상기 웨이퍼의 상부와 하부에 격리된 공정공간을 형성한 상태에서 상기 웨이퍼의 처리가 이루어지는 것일 수 있다.The first to fifth chambers are fixed to support a wafer, a susceptor for applying heat to the wafer, and a lower housing fixed to the outside of the susceptor to form a process space isolated under the wafer. An upper housing moving up and down to form an isolated process space on the upper portion of the wafer, a hole provided between the upper housing and the lower housing and exposing an upper portion of the susceptor, wherein the wafer is formed between the plurality of chambers; A turntable which rotates to transfer the wafer and moves the wafer up and down in the upper part of the susceptor, and includes a seating ring inserted into the hole so as to be separated upwardly and seated on which the wafer is seated, and a lower end of the upper housing moves downward. The processing of the wafer is performed while forming a process space that is isolated between the upper and lower portions of the wafer. It may be done.
상기 제1 내지 제5챔버 중 공정이 완료된 챔버의 상기 웨이퍼는, 상기 상부하우징에 의해 격리된 공정공간 내에서, 상기 웨이퍼를 상기 서셉터의 상면으로부터 이격시킨 상태로 공정이 진행중인 챔버의 공정이 완료될 때까지 대기하는 것일 수 있다.The wafer of the chamber in which the process is completed among the first to fifth chambers is completed in a process space in which the wafer is spaced apart from the upper surface of the susceptor in a process space isolated by the upper housing. May be waiting until
상기 하부하우징은, 상기 턴테이블이 상단에 접한 상태에서 격리된 공정공간의 하부측을 제공하며; 상기 상부하우징은, 그 하단부가 하향 이동하여 상기 턴테이블의 상부에 접하여 격리된 공정 공간의 상부측을 제공하는 것일 수 있다.The lower housing provides a lower side of an isolated process space with the turntable in contact with an upper end thereof; The upper housing may have a lower end portion moving downward to provide an upper side of an isolated process space in contact with an upper portion of the turntable.
상기 하부하우징은, 상기 안착링이 상단에 접한 상태에서 격리된 공정공간의 하부측을 제공하며; 상기 상부하우징은, 그 하단부가 하향 이동하여 상기 안착링의 상부에 접하여 격리된 공정 공간의 상부측을 제공하는 것일 수 있다.The lower housing provides a lower side of the isolated process space with the seating ring in contact with the upper end; The upper housing may have a lower end portion moved downward to provide an upper side of the isolated process space in contact with the upper portion of the seating ring.
상기 상부하우징은, 상부플레이트에 고정된 고정부와, 상기 고정부의 하측에서 구동부에 의해 상하 이동되는 이동부로 이루어지고; 상기 구동부의 구동에 의해 상기 이동부가 하향 이동함으로써 상기 격리된 공정 공간이 형성되는 것일 수 있다.The upper housing includes a fixed part fixed to an upper plate and a moving part moved up and down by a driving part under the fixed part; The isolated process space may be formed by moving the moving part downward by driving the driving part.
상기 상부하우징은 벨로우즈 형상으로 이루어져 그 하단부가 구동부에 의해 상하 이동됨으로써 상기 격리된 공정 공간을 형성하는 것일 수 있다.The upper housing may be formed in a bellows shape so that the lower end thereof is moved up and down by the driving unit to form the isolated process space.
본 발명은, 반도체 연속 처리장치의 챔버 수를 줄일 수 있도록 공정단계를 단순화함으로써, 공정시간을 줄여 생산성을 향상시키며, 장치의 크기를 줄이고 비용을 절감할 수 있는 효과가 있다.The present invention, by simplifying the process step to reduce the number of chambers of the semiconductor continuous processing apparatus, it is possible to reduce the process time to improve productivity, reduce the size of the device and reduce the cost.
또한 본 발명은 솔더 볼의 파열을 방지하면서, 효과적으로 유기오염물을 제거할 수 있게 되어, 공정의 안정성을 향상시킬 수 있는 효과가 있다.In addition, the present invention can effectively remove the organic contaminants, while preventing the burst of the solder ball, there is an effect that can improve the stability of the process.
또한 공정이 완료된 특정 챔버내의 웨이퍼를 다른 챔버의 공정이 완료될 때까지 서셉터로부터 이격시킴과 동시에 격리된 상태를 유지할 수 있어, 웨이퍼가 대기상태에서 추가로 가열되는 것을 방지하여 공정의 신뢰성을 보다 향상시킬 수 있고, 다른 챔버의 공정이 완료될 때까지 대기하는 경우 웨이퍼가 격리된 상태를 유지할 수 있어 공정의 신뢰성을 더욱 향상시킬 수 있다.In addition, the wafer in a specific chamber where the process is completed can be separated from the susceptor and maintained in isolation while the process in another chamber is completed, thereby preventing the wafer from further heating in the atmosphere, thereby increasing the reliability of the process. It is possible to improve the process reliability and further improve the process reliability by keeping the wafers isolated when waiting for the process in another chamber to complete.
또한 웨이퍼에 분사되는 공정가스를 웨이퍼에 분사하기 직전에 가열함으로써 공정 처리의 균일성을 확보할 수 있고, 솔더 볼의 형성단계에서 웨이퍼의 상면과 하면을 동시에 가열함으로써 솔더 볼의 형상을 안정적으로 형성할 수 있다.In addition, the uniformity of the processing can be ensured by heating the process gas injected onto the wafer just before the injection onto the wafer, and the solder ball shape is stably formed by simultaneously heating the upper and lower surfaces of the wafer in the solder ball forming step. can do.
도 1은 종래 리플로우 장치의 구성도1 is a block diagram of a conventional reflow apparatus
도 2는 본 발명의 바람직한 실시예에 따른 반도체 웨이퍼 연속처리 방법이 적용되는 장치의 구성도2 is a configuration diagram of an apparatus to which a semiconductor wafer continuous processing method is applied according to a preferred embodiment of the present invention.
도 3은 도 2에서 A-A 방향의 개략적인 단면도3 is a schematic cross-sectional view taken along the direction of A-A in FIG.
도 4는 본 발명에 적용되는 안착링의 상세 단면 구성도Figure 4 is a detailed cross-sectional configuration of the seating ring applied to the present invention
도 5 내지 도 14은 웨이퍼의 이동과 처리 과정에 따라 도시한 본 발명의 개략적인 단면 구성도5 to 14 is a schematic cross-sectional configuration of the present invention shown in accordance with the movement and processing of the wafer
도 15는 본 발명의 다른 실시예에 따른 제1공정챔버의 단면 구성도15 is a cross-sectional configuration diagram of a first process chamber according to another embodiment of the present invention;
도 16은 본 발명의 다른 실시예에 의한 반도체 웨이퍼의 연속 처리장치를 보여주는 단면도16 is a cross-sectional view illustrating an apparatus for continuously processing a semiconductor wafer according to another embodiment of the present invention.
도 17은 도 16의 상태에서 상부하우징이 상승한 상태를 보여주는 단면도17 is a cross-sectional view illustrating a state in which the upper housing is raised in the state of FIG. 16.
도 18은 도 17의 상태에서 턴테이블과 안착링이 상승한 상태를 보여주는 단면도18 is a cross-sectional view illustrating a state in which the turntable and the seating ring are raised in the state of FIG. 17.
도 19는 도 16의 연속 처리장치에 구비된 서셉터 및 안착링에 웨이퍼가 안착된 상태를 보여주는 평면도FIG. 19 is a plan view illustrating a wafer in a susceptor and a mounting ring provided in the continuous processing apparatus of FIG. 16. FIG.
-부호의 설명-Explanation of sign
100:제1챔버 110,210,310:서셉터100: first chamber 110, 210, 310: susceptor
120,220,330:하부하우징 130,230,330:상부하우징120,220,330: lower housing 130,230,330: upper housing
140,240,340:리프트핀 150,250,350:배기구140,240,340: Lift pin 150,250,350: Exhaust vent
160,260,360:샤워헤드 200:제2챔버160,260,360: Showerhead 200: Second chamber
370:상부히터 300:제3챔버370: upper heater 300: third chamber
400:제4챔버 500:제5챔버400: fourth chamber 500: fifth chamber
600:외부몸체 610:하부플레이트600: the outer body 610: lower plate
620:상부플레이트 700:턴테이블620: upper plate 700: turntable
710:홀 720:안착링710: Hole 720: seat ring
721:가스통공 722:상부안착단721: gas through hole 722: upper seat
723:하부안착단 1100:서셉터723: lower seat 1100: susceptor
1200:하부하우징 1300:상부하우징1200: lower housing 1300: upper housing
1202,1302:기밀부재 1330:구동부1202,1302: airtight member 1330: drive unit
1335:샤프트 7000:턴테이블1335: shaft 7000: turntable
7100;홀 7200:안착링7100; hole 7200: seating ring
7210:지지핀7210: support pin
이하, 본 발명의 바람직한 실시예에 따른 반도체 웨이퍼의 연속처리 방법에 대하여 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, a method of continuously processing a semiconductor wafer according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명의 바람직한 실시예에 따른 반도체 웨이퍼 연속처리 방법이 적용되는 리플로우 장치의 구성도이다.2 is a block diagram of a reflow apparatus to which a semiconductor wafer continuous processing method according to a preferred embodiment of the present invention is applied.
도 2를 참조하면 본 발명이 적용되는 반도체 웨이퍼 연속처리 장치는 제1 내지 제5챔버(100, 200, 300, 400, 500)를 포함하고, 외부몸체(600)의 중앙을 기준으로 제1 내지 제5챔버(100, 200, 300, 400, 500)가 원형으로 배치되며, 제1 내지 제5챔버(100, 200, 300, 400, 500)의 사이에서 웨이퍼(W)를 이송하는 턴테이블(700)을 포함하여 구성된다.Referring to FIG. 2, a semiconductor wafer continuous processing apparatus to which the present invention is applied includes first to fifth chambers 100, 200, 300, 400, and 500, and includes first to fifth chambers based on the center of the outer body 600. The fifth chamber (100, 200, 300, 400, 500) is arranged in a circular shape, the turntable 700 for transferring the wafer (W) between the first to fifth chamber (100, 200, 300, 400, 500) It is configured to include).
이와 같은 구성은 도 1의 종래 기술에 비하여 웨이퍼(W)의 이송단계의 수를 줄이고, 그 공정단계의 간소화를 통해 생산성을 향상시킬 수 있다. 또한 장치의 크기를 줄일 수 있기 때문에 장치의 제조원가를 절감할 수 있는 효과를 기대할 수 있다.Such a configuration can reduce the number of transfer steps of the wafer W as compared to the prior art of FIG. 1 and can improve productivity through the simplification of the process steps. In addition, since the size of the device can be reduced, the effect of reducing the manufacturing cost of the device can be expected.
이하, 상기 제1 내지 제5챔버(100~500)에서 각각 진행되는 본 발명 반도체 웨이퍼 연속처리 방법의 일례로서, 웨이퍼 리플로우 방법의 구성과 작용을 보다 상세히 설명한다.Hereinafter, the structure and operation of the wafer reflow method will be described in more detail as an example of the semiconductor wafer continuous processing method of the present invention, which proceeds in the first to fifth chambers 100 to 500, respectively.
먼저, 웨이퍼(W)가 제1챔버(100)에 로딩되면, 대기압 분위기의 제1챔버(100) 내부에 불활성 가스인 질소를 투입하여 퍼지(Purge)함으로써 내부에 잔존하는 산소 함량을 줄이게 된다. First, when the wafer W is loaded in the first chamber 100, the oxygen content remaining in the inside of the first chamber 100 is purged by introducing nitrogen as an inert gas into the first chamber 100 in an atmospheric pressure atmosphere.
상기 제1챔버(100) 내부에는 이전 공정에서 포름산 증기를 가열하여 생성된 수분 입자가 챔버 내외부의 온도 차로 인해 챔버 내부 벽면에 부착되어 있고, 이러한 수분 입자에 다른 공정 입자 또는 이물질이 달라붙어 챔버 내부 벽면에 부착되면 파티클이 발생할 수 있다.In the first chamber 100, moisture particles generated by heating the formic acid vapor in the previous process are attached to the inner wall of the chamber due to the temperature difference between the inside and the outside of the chamber, and other process particles or foreign substances adhere to the moisture particles. Particles can form when attached to a wall.
이러한 문제점을 방지하기 위해 상기 질소는 상기 수분 입자를 기화시킬 수 있는 온도로 가열된 질소를 사용하여 챔버 내부 벽면에 수분 입자가 증발시켜 파티클의 발생을 방지할 수 있다.In order to prevent such a problem, the nitrogen may prevent the generation of particles by evaporating the moisture particles on the inner wall of the chamber by using nitrogen heated to a temperature capable of vaporizing the moisture particles.
웨이퍼(W)의 퍼지가 완료되면, 턴테이블(700)에 의해 웨이퍼(W)가 제2챔버(200)로 이동하고, 제2챔버(200)의 내부는 대기압인 760torr의 압력과 100 내지 400℃의 온도를 유지하게 되며, 포름산과 질소가 공급되어, 1 내지 300초의 시간 동안 처리되어, 웨이퍼(W)에 존재하는 수분, 유기 오염물, 표면 산화물을 제거하게 된다. When the purge of the wafer W is completed, the wafer W is moved to the second chamber 200 by the turntable 700, and the inside of the second chamber 200 is at atmospheric pressure of 760torr and 100 to 400 ° C. The formic acid and nitrogen are supplied and treated for 1 to 300 seconds to remove moisture, organic contaminants and surface oxides present in the wafer (W).
그 다음, 턴테이블(700)에 의해 제3챔버(300)로 웨이퍼(W)가 이송된 후, 760torr의 압력과 100 내지 500℃의 온도에서, 포름산 증기와 질소가 공급되어, 1 내지 300초의 시간 동안 처리되어, 웨이퍼 상의 솔더가 융해된다.Then, after the wafer W is transferred to the third chamber 300 by the turntable 700, formic acid vapor and nitrogen are supplied at a pressure of 760 torr and a temperature of 100 to 500 ° C., for a time of 1 to 300 seconds. During the process, the solder on the wafer melts.
이 경우 상기 턴테이블(700)이 회전하여 웨이퍼(W)를 이송하는 동안에도 상기 가열된 질소를 공급하여, 웨이퍼(W)의 솔더볼의 온도가 낮아지는 것을 방지하여 솔더볼의 형상을 안정적으로 유지할 수 있다. In this case, the heated nitrogen may be supplied while the turntable 700 rotates to transfer the wafer W, thereby preventing the solder ball temperature of the wafer W from lowering, thereby stably maintaining the shape of the solder ball. .
그 다음, 턴테이블(700)에 의해 제3챔버(300)에서 제4챔버(400)로 웨이퍼(W)가 이송된 후, 100 ~ 760torr의 압력과 100 내지 500℃의 온도에서, 질소와 포름산 증기를 공급하여, 1 내지 300초의 시간 동안 처리한다.Then, after the wafer W is transferred from the third chamber 300 to the fourth chamber 400 by the turntable 700, nitrogen and formic acid vapor at a pressure of 100 to 760 torr and a temperature of 100 to 500 ° C. It is supplied and treated for a time of 1 to 300 seconds.
이러한 처리에 의해 솔더볼 내의 공극을 제거할 수 있다. 이때의 공극 제거가 종래와는 다르게 100 ~ 760torr의 압력에서 이루어져, 종래의 1torr 이하의 압력에서 진행되는 공극 제거공정에 비하여 공극 제거율은 감소할 수 있다. 그러나 공극의 제거를 위하여 진공 공정을 진행하는 경우, 솔더볼이 파열되는 문제점이 발생할 수 있으며, 본 발명에서는 공극의 제거율은 상대적으로 낮더라도 안정적인 공정의 진행을 위하여 100 ~ 760torr의 압력하에서 공정하여, 공정 안정성을 향상시킬 수 있게 된다. 또한 공극 제거율의 측면에서도 종래의 1torr 이하의 압력에서 진행되는 경우와 비교하여 제품 품질에 영향을 미치지 않는 정도의 차이만 발생한다.By this treatment, voids in the solder ball can be removed. At this time, the pore removal may be performed at a pressure of 100 to 760 torr differently from the prior art, and the pore removal rate may be reduced as compared with the pore removal process performed at a pressure of 1 torr or less. However, when the vacuum process is performed to remove the voids, a problem may occur in that the solder balls are ruptured. In the present invention, although the removal rate of the voids is relatively low, the process may be performed under a pressure of 100 to 760torr for a stable process. Stability can be improved. In addition, in terms of pore removal rate, only a difference that does not affect the product quality occurs as compared with the case of proceeding at a pressure of 1 torr or less conventional.
상기 제4챔버(400)에서의 처리 과정이 완료된 상태에서, 제5챔버(500)에서 이전에 공급된 웨이퍼가 처리 중인 경우, 제4챔버(400)에 구비되어 웨이퍼(W)를 지지하는 서셉터의 표면으로부터 웨이퍼(W)를 들어올려 대기하는 상태가 되도록 한다. 상기 대기상태는 공정이 완료된 후에도 계속 내부에 히터가 구비된 서셉터에 접촉시켜 둘 경우 공정 이상이 발생할 수 있기 때문이다. 이와 같은 대기상태에서 상기 제4챔버(400)는 격리된 상태를 유지하며, 상기 대기상태는 모든 챔버에 적용될 수 있다.When the wafer previously supplied from the fifth chamber 500 is being processed while the processing in the fourth chamber 400 is completed, the fourth chamber 400 is provided in the fourth chamber 400 to support the wafer W. The wafer W is lifted from the surface of the acceptor to be in a waiting state. The standby state is because a process abnormality may occur if the contactor is kept in contact with a susceptor having a heater therein even after the process is completed. In this standby state, the fourth chamber 400 maintains an isolated state, and the standby state may be applied to all chambers.
그 다음, 제5챔버(500)에서는 웨이퍼(W)를 760torr의 압력과 20 내지 400℃의 온도에서, 포름산 증기와 질소의 혼합가스의 공급분위기에서, 1 내지 300초의 시간 동안 처리하여, 솔더 범프를 형성하고 솔더의 표면 거칠기를 완화한다.Subsequently, in the fifth chamber 500, the wafer W is treated at a pressure of 760 torr and a temperature of 20 to 400 ° C. for 1 to 300 seconds in a supply atmosphere of a mixed gas of formic acid vapor and nitrogen, and solder bumps. To form and relieve the surface roughness of the solder.
상기 제4챔버(400)와 제5챔버(500)에는 웨이퍼(W)를 지지하는 서셉터에 마련된 히터 이외에도, 상부측에 후술하는 상부히터(370)를 더 포함하여 온도의 조절이 용이하도록 할 수 있으며, 웨이퍼의 상부와 하부를 균일하게 가열하여 솔더볼의 형상의 안정적으로 형성하는 것이 가능하다. In addition to the heater provided in the susceptor for supporting the wafer W, the fourth chamber 400 and the fifth chamber 500 further include an upper heater 370 to be described later on the upper side to facilitate temperature control. It is possible to uniformly heat the top and bottom of the wafer to form a stable shape of the solder ball.
그 다음, 제1챔버(100)로 이송된 웨이퍼(W)는 760torr의 압력과 20 내지 30℃의 온도에서, 공기 또는 질소의 공급분위기에서, 1 내지 300초의 시간 동안 처리되어, 솔더 범프의 그레인(grain)을 형성하고 냉각시킨다. 상기 냉각된 웨이퍼(W)는 제1챔버(100)에서 외부로 언로딩 된다. Subsequently, the wafer W transferred to the first chamber 100 is treated at a pressure of 760 torr and a temperature of 20 to 30 ° C. for 1 to 300 seconds in a supply atmosphere of air or nitrogen, so that the grains of the solder bumps Form and cool the grain. The cooled wafer W is unloaded to the outside in the first chamber 100.
즉, 상기 제1챔버(100)에서는 웨이퍼(W)의 로딩과 언로딩이 함께 수행될 수 있는 공간을 제공한다.That is, the first chamber 100 provides a space in which the loading and unloading of the wafer W can be performed together.
상기한 바와 같이 본 발명은 솔더 내의 공극의 제거를 위하여 매우 낮은 진공 분위기를 사용하지 않아 공정의 안정성을 향상시킬 수 있는 효과가 있으며, 사용되는 스테이션의 수를 줄여 장치의 구조를 단순화 할 수 있다.As described above, the present invention does not use a very low vacuum atmosphere to remove the voids in the solder, thereby improving the stability of the process and reducing the number of stations used to simplify the structure of the apparatus.
이하 상기한 방법을 구현하기 위한 반도체 웨이퍼 연속 처리 장치의 일례를 도 3 내지 도 15를 참조하여 설명한다.Hereinafter, an example of a semiconductor wafer continuous processing apparatus for implementing the above method will be described with reference to FIGS. 3 to 15.
도 3은 도 2에서 A-A 방향의 개략적인 단면도, 도 4는 안착링의 상세 단면 구성도이다. Figure 3 is a schematic cross-sectional view of the A-A direction in Figure 2, Figure 4 is a detailed cross-sectional configuration of the seating ring.
도 2와 도 3을 각각 참조하면, 상기 외부몸체(600)는 원판형의 하부플레이트(610)와, 상기 하부플레이트(610)의 상측에 구비된 원판형의 상부플레이트(620)와, 상기 하부플레이트(610)의 가장자리와 상부플레이트(620)의 가장자리에 상단과 하단이 연결된 측면하우징(630)으로 구성된다. 2 and 3, the outer body 600 is a disk-shaped lower plate 610, the disk-shaped upper plate 620 provided on the upper side of the lower plate 610, and the lower The edge of the plate 610 and the edge of the upper plate 620 is composed of a side housing 630 connected to the top and bottom.
도면에는 도시되어 있지 않지만 상기 상부플레이트(620)에는 공정가스를 공급하기 위한 배관 등의 부품들이 각 챔버(100,200,300,400,500)의 상부 위치에 구비되고, 상기 제1챔버(100)가 위치한 측면하우징(630)에는 웨이퍼를 로딩 또는 언로딩을 위해 로봇 아암(Arm)의 진입/후퇴가 가능하도록 개구부가 형성될 수 있다.Although not shown in the drawing, the upper plate 620 includes components such as piping for supplying a process gas at an upper position of each chamber 100, 200, 300, 400, 500, and a side housing 630 in which the first chamber 100 is located. Openings may be formed in the robot arm to allow entry / retraction of the robot arm for loading or unloading the wafer.
상기 하부플레이트(610)와 상부플레이트(620) 및 측면하우징(630)으로 둘러싸인 내부공간인 연결공간부(800)에는 상기 제1 내지 제5챔버(100, 200, 300, 400, 500)와, 중앙에 회전축을 가지는 턴테이블(700)이 구비되어 있다. The first to fifth chambers 100, 200, 300, 400, and 500 are connected to the connection space 800, which is an inner space surrounded by the lower plate 610, the upper plate 620, and the side housing 630. A turntable 700 having a rotation axis in the center is provided.
상기 턴테이블(700)에는 개구된 형상의 홀(710)이 챔버(100,200,300,400,500)의 수와 동수로 형성되어 있다. The turntable 700 is formed with the same number of openings 710 of the chamber (100, 200, 300, 400, 500).
상기 홀(710)에는 웨이퍼가 안착되는 안착링(720)이 구비된다. 상기 안착링(720)은 후술하는 리프트핀(240)의 상하 운동에 의해 웨이퍼가 안착된 상태에서 웨이퍼와 함께 턴테이블(700)로부터 분리 가능하다.The hole 710 is provided with a seating ring 720 on which a wafer is seated. The seating ring 720 may be separated from the turntable 700 together with the wafer in a state where the wafer is seated by the vertical movement of the lift pin 240 to be described later.
또한 상기 안착링(720)은 도 4에 도시한 바와 같이 단차진 형상으로서, 웨이퍼(W)가 안착되도록 내경부 주변에 형성된 내부 안착단(722)과, 안착링(720)이 턴테이블(700)의 홀(710)에 안착될 수 있도록 외경부 주변에 형성된 외부 안착단(723)으로 이루어지고, 상기 내부 안착단(722)과 외부 안착단(723) 사이에는 가스가 통과할 수 있도록 상하로 관통된 가스통공(721)이 형성되어 있다. In addition, the seating ring 720 is a stepped shape, as shown in Figure 4, the inner seating end 722 formed around the inner diameter portion so that the wafer (W) is seated, and the seating ring 720 is the turntable 700 It consists of an outer seating end 723 formed around the outer diameter portion so as to be seated in the hole 710 of the through, and through the up and down to allow gas to pass between the inner seating end 722 and the outer seating end 723 A gas through hole 721 is formed.
따라서 후술하는 샤워헤드(160,260)에서 웨이퍼(W)의 상부 전면으로 고르게 분사된 가스는 상기 가스통공(721)을 통해서 배기구(150,250) 측으로 배기된다. 이와 같이 공정 가스의 배기 흐름이 웨이퍼(W)를 기준으로 상부에서 하부로 흐름이 형성되므로, 챔버 내부에 공정 가스의 잔유물이 적게 발생한다.Therefore, the gas evenly injected from the shower heads 160 and 260 described later to the upper front surface of the wafer W is exhausted to the exhaust ports 150 and 250 through the gas through hole 721. In this way, since the exhaust flow of the process gas is formed from the top to the bottom of the wafer W, less residue of the process gas is generated in the chamber.
상기 안착링(720)은 웨이퍼(W)가 접촉하게 되고, 상기 안착링(720)은 턴테이블(700)과 접촉하게 된다. 상기 턴테이블(700)은 챔버 외부의 연결공간부(800)에 노출되어 있어 연결공간부(800)의 온도가 턴테이블(700)과 안착링(720)을 통해 웨이퍼(W)에 전달되어 공정온도에 영향을 미치게 된다. 따라서 웨이퍼(W)에 열이 전달되는 것을 차단하기 위해 상기 안착링(720)은 비금속재질을 사용하는 것이 바람직하다. The seating ring 720 is in contact with the wafer (W), the seating ring 720 is in contact with the turntable 700. The turntable 700 is exposed to the connection space portion 800 outside the chamber, so that the temperature of the connection space portion 800 is transferred to the wafer W through the turntable 700 and the seating ring 720, and at a process temperature. Will be affected. Therefore, in order to block heat from being transferred to the wafer W, the seating ring 720 preferably uses a non-metallic material.
또한 안착링(720)은 고온의 공정온도에 노출되므로 내열성을 갖춘 세라믹(Ceramic)이 될 수 있고, 그 이외에도 내열성과 열의 전도성이 낮은 비금속재질이면 무엇이든 적용 가능하다.In addition, the seating ring 720 may be a ceramic having heat resistance because it is exposed to a high process temperature, and any other non-metallic material having low heat resistance and low conductivity may be applied.
상기 제1 내지 제5챔버(100, 200, 300, 400, 500)는 웨이퍼가 처리되는 격리된 공간을 규정하는 것으로서, 웨이퍼를 처리하기 위한 온도, 압력을 설정하기 위한 구성들이 각각의 챔버마다 구비되며, 각 챔버마다 서로 다른 조건으로 웨이퍼를 처리할 수 있도록 각 챔버는 공정 진행 중 연결공간부(800)에 대하여 격리된 상태를 유지할 수 있다.The first to fifth chambers 100, 200, 300, 400, and 500 define an isolated space in which the wafer is processed, and components for setting a temperature and pressure for processing the wafer are provided for each chamber. Each chamber may be isolated from the connection space 800 during the process so that the wafer may be processed under different conditions for each chamber.
상기 제1 챔버(100)는 외부의 로봇에 의해 웨이퍼가 로딩(Loading)되는 한편, 제5챔버(500)에서 처리가 완료된 웨이퍼를 외부의 로봇에 웨이퍼를 언로딩(Unloading)하기 위한 것으로서, 도 3을 참조하여 상세한 구성을 설명한다.The first chamber 100 is for loading the wafer by an external robot, and unloading the wafer to the external robot from the wafer which has been processed in the fifth chamber 500. Referring to 3, the detailed configuration will be described.
도 3에 도시한 바와 같이 제1챔버(100)는, 웨이퍼의 저면을 지지하는 서셉터(110)와, 상기 서셉터(110)의 외측에 설치되어 하부플레이트(610) 상에 고정 설치된 하부하우징(120)과, 상기 하부하우징(120)의 상측에 구비되어 상부플레이트(620)에 고정설치된 상부하우징(130)과, 상하 이동되어 웨이퍼의 저면을 지지하는 리프트핀(140)과, 상기 하부플레이트(610)에 형성되어 상기 하부하우징(120)의 내측 공간과 연통 되는 배기구(150)와, 웨이퍼에 가스를 분사하여 처리하기 위하여 상기 상부하우징(130)의 내측에 구비된 샤워헤드(160)를 포함하여 구성된다.As shown in FIG. 3, the first chamber 100 includes a susceptor 110 for supporting a bottom surface of the wafer, and a lower housing installed outside the susceptor 110 and fixed to the lower plate 610. 120, an upper housing 130 provided on the upper side of the lower housing 120 and fixed to the upper plate 620, a lift pin 140 that moves up and down to support a bottom surface of the wafer, and the lower plate. An exhaust port 150 formed at 610 and communicating with an inner space of the lower housing 120, and a shower head 160 provided inside the upper housing 130 to process gas by spraying the wafer. It is configured to include.
상기 서셉터(110)는 웨이퍼를 그 상면에 고정시키기 위해 진공 흡착을 위한 구성이 구비되고, 제5챔버(500)에서 공정이 완료된 웨이퍼를 외부로 언로딩하기 전에 웨이퍼를 냉각하기 위한 냉각수단(미도시)이 구비될 수 있다. 또한 서셉터(110)는 상하 이동되는 것이 아니라 하부플레이트(610) 상에 고정된 상태로 있으므로, 상기 진공 흡착을 위한 연결라인 및 웨이퍼 냉각수단을 위한 연결라인 등이 고정된 있으면 되므로 구조가 간단해진다.The susceptor 110 is provided with a configuration for vacuum adsorption in order to fix the wafer on its upper surface, and cooling means for cooling the wafer before unloading the wafer having been processed in the fifth chamber 500 to the outside ( Not shown) may be provided. In addition, since the susceptor 110 is fixed on the lower plate 610 instead of being moved up and down, the structure is simplified since the connection line for vacuum suction and the connection line for wafer cooling means are fixed. .
상기 하부하우징(120)은 원통 형상으로 이루어져 내부공간(120a)이 공정 진행 중 연결공간부(800)에 대하여 격리된 상태가 되어 격리된 공정공간의 하측을 형성하고, 상기 내측공간(120a)은 배기구(150)를 통해 배기통로(미도시)로 연결되어 있다.The lower housing 120 has a cylindrical shape, and the inner space 120a is insulated from the connection space 800 during the process to form a lower side of the isolated process space, and the inner space 120a is The exhaust port 150 is connected to an exhaust passage (not shown).
상기 상부하우징(130)은 그 내부공간(130a)이 공정 진행 중 연결공간부(800)에 대하여 격리된 상태가 되어 격리된 공정공간의 상측을 형성하고, 상기 안착링(720)의 가스통공(721)을 통해 하부하우징(130)의 내측공간(120a)과 연통하도록 되어 있다.The upper housing 130 has an inner space (130a) is insulated from the connection space portion 800 during the process to form an upper side of the isolated process space, the gas through hole of the seating ring (720) It communicates with the inner space 120a of the lower housing 130 through 721.
상기 상부하우징(130)은 공정 진행 중 웨이퍼의 격리된 상태를 유지하고 다음 챔버로 이동하는 경우에는 연결공간부(800)와 연통하는 상태를 구현하기 위해, 원통 형상으로 이루어져 상기 상부플레이트(620)에 고정된 고정부(131)와, 상기 고정부(131)의 하측에 구비되어 상하로 이동할 수 있는 이동부(132)로 구성된다. The upper housing 130 is formed in a cylindrical shape in order to maintain the isolated state of the wafer during the process and to communicate with the connection space 800 when moving to the next chamber, the upper plate 620 It is composed of a fixed part 131 fixed to the moving part 132 provided on the lower side of the fixing part 131 to move up and down.
상기 이동부(132)는 구동부(133)에 의해 상기 이동부(132)가 하향으로 이동되어 상기 이동부(132)의 하단이 상기 턴테이블(700)의 상부에 접하게 된다. 상기 이동부(132)와 턴테이블(700)이 접하는 면의 기밀을 유지하기 위해 상기 이동부(132)의 하단에는 고무, 실리콘 등의 재질로 이루어진 기밀부재(미도시)가 구비될 수 있다. 또한 상기 고정부(131)와 이동부(132)가 접하는 면에도 기밀을 유지하기 위한 기밀부재(미도시)가 구비될 수 있다.The moving part 132 moves the moving part 132 downward by the driving part 133 so that the lower end of the moving part 132 is in contact with the upper part of the turntable 700. In order to maintain the airtightness of the surface in contact with the moving part 132 and the turntable 700, a lower end of the moving part 132 may be provided with an airtight member (not shown) made of a material such as rubber, silicon. In addition, an airtight member (not shown) may be provided to maintain airtightness on a surface where the fixing part 131 and the moving part 132 contact each other.
상기 리프트핀(140)은, 서셉터(710)를 상하로 관통하도록 구비되어, 로봇에 의해 로딩된 웨이퍼의 저면을 지지하여 그 웨이퍼를 서셉터(110)의 상면에 안착시키기 위해 구동부(미도시)에 의해 상하 이동이 가능하도록 되어 있다. The lift pin 140 is provided to penetrate the susceptor 710 up and down, and supports a bottom surface of the wafer loaded by the robot to mount the wafer on the top surface of the susceptor 110. Vertical movement is possible.
또한 웨이퍼를 언로딩하는 경우에는 안착링(720)에 안착된 웨이퍼의 저면을 지지하여 안착링(720)으로부터 분리시킨 후 로봇에 인계하기 위해 상하 이동된다.In addition, when the wafer is unloaded, the bottom surface of the wafer seated on the seating ring 720 is supported and separated from the seating ring 720, and then moved up and down to take over to the robot.
상기 샤워헤드(160)는 냉각을 위한 가스 또는 가열된 질소가스를 웨이퍼의 상면에 균일하게 분사하기 위한 것으로, 유입된 가스가 모이는 버퍼공간(161)과, 그 버퍼공간(161)에서 상기 웨이퍼(W)의 방향인 하향으로 가스가 분사되도록 샤워헤드(160)의 저면에 다수의 분사구가 일정 간격으로 형성된다.The shower head 160 uniformly injects gas for cooling or heated nitrogen gas onto the upper surface of the wafer, and includes a buffer space 161 in which the inflowed gas is collected, and the wafer in the buffer space 161. A plurality of injection holes are formed on the bottom of the shower head 160 at regular intervals so that the gas is injected downward in the direction of W).
상기 연결공간부(800)는 각 챔버(100,200,300,400,500)의 외측을 둘러싸는 공간이고, 상기 연결공간부(800) 내부에 잔존하는 가스의 배기를 위한 배기구(810)가 구비된다. The connection space 800 is a space surrounding the outside of each of the chambers 100, 200, 300, 400, and 500, and an exhaust port 810 for exhausting gas remaining in the connection space 800 is provided.
이와 같은 구성에 의하면 격리된 공정공간을 형성하기 위해 서셉터(110)와 하부하우징(120)을 상하 이동시키기 위해 벨로우즈와 같은 구성을 구비할 필요가 없어 장치의 내구성을 향상시키고, 보수비용을 절감할 수 있다.According to this configuration, it is not necessary to have a bellows-like configuration to move the susceptor 110 and the lower housing 120 up and down to form an isolated process space, thereby improving durability of the apparatus and reducing maintenance costs. can do.
제2챔버(200)는 상기 제1챔버(100)와 동일한 구성으로, 서셉터(210), 하부하우징(220), 상부하우징(230), 리프트핀(240), 배기구(250) 및 샤워헤드(260)을 포함하여 구성된다. The second chamber 200 is the same configuration as the first chamber 100, the susceptor 210, the lower housing 220, the upper housing 230, the lift pin 240, the exhaust port 250 and the shower head And 260.
상기 서셉터(210)에는 웨이퍼에 열을 가하기 위한 히터(미도시)가 구비되고, 웨이퍼는 서셉터(210)의 상면에 진공 흡착되어 고정된 상태에서 공정이 진행된다.The susceptor 210 is provided with a heater (not shown) for applying heat to the wafer, and the wafer is vacuum adsorbed on the upper surface of the susceptor 210 to be processed.
단 제1챔버(100)의 리프트핀(140)은 웨이퍼의 저면을 직접 지지하는 것이나, 제2챔버(200)의 리프트핀(240)은 안착링(720)의 저면을 지지하여 안착링(720)과 안착링(720)에 안착된 웨이퍼를 함께 상하로 이동시킬 수 있는 것에 차이가 있다. 이를 위해 상기 리프트핀(140)은 서셉트(210)의 외측에서 상하 이동할 수 있도록 위치시킨다.However, the lift pin 140 of the first chamber 100 directly supports the bottom of the wafer, but the lift pin 240 of the second chamber 200 supports the bottom of the seating ring 720 to seat the seat 720. ) And the wafer seated on the seating ring 720 can be moved up and down together. To this end, the lift pin 140 is positioned to move up and down on the outside of the susceptor 210.
나머지 하부하우징(220)과 상부하우징(230) 및 샤워헤드(260)의 상세 구성은 제1챔버(100)의 구성과 동일하므로 자세한 설명은 생략한다. Detailed configurations of the remaining lower housing 220, the upper housing 230, and the shower head 260 are the same as those of the first chamber 100, and thus detailed description thereof will be omitted.
또한 이와 같은 구성은 다른 챔버인 제3 내지 제5챔버(300,400,500) 역시 동일한 구성이다.In addition, this configuration is the same configuration of the third to fifth chamber (300, 400, 500) of the other chamber.
이하에서는 상기와 같이 구성되는 본 발명의 바람직한 실시예에 따른 반도체 웨이퍼 연속 처리장치의 구성과 작용을 웨이퍼의 이동과 처리 과정에 맞춰 상세히 설명한다.Hereinafter, the configuration and operation of the semiconductor wafer continuous processing apparatus according to the preferred embodiment of the present invention configured as described above will be described in detail according to the movement and processing of the wafer.
도 5 내지 도 14는 웨이퍼의 이동과 처리 과정에 따라 도시한 본 발명의 개략적인 단면 구성도이다. 5 to 14 is a schematic cross-sectional configuration of the present invention shown in accordance with the movement and processing of the wafer.
먼저, 도 5를 참조하면 로봇(2)에 의하여 웨이퍼(W)가 제1챔버(100) 내로 로딩되는 과정을 도시한 것으로, 턴테이블(700)이 하향으로 이동하여, 턴테이블(700)의 저면이 상기 하부하우징(120)의 상부에 접하며, 서셉터(110)의 상면이 상기 턴테이블(700)의 홀(710)을 통해 상부에 노출되어 있다.First, referring to FIG. 5, a process in which the wafer W is loaded into the first chamber 100 by the robot 2 is illustrated. The turntable 700 is moved downward, so that the bottom surface of the turntable 700 is moved. The upper surface of the susceptor 110 is exposed to an upper portion of the lower housing 120 through the hole 710 of the turntable 700.
로봇(2)의 아암(Arm) 상면에 웨이퍼(W)가 올려진 상태에서 리프트핀(140)이 상향으로 이동하여 웨이퍼(W)의 저면을 지지하게 된다.The lift pin 140 moves upward to support the bottom surface of the wafer W while the wafer W is placed on the upper surface of the arm Arm.
위에서는 로봇(2)이 웨이퍼(W)를 정위치에 위치시킨 상태에서 리프트핀(140)이 상향으로 이동하는 것으로 설명하였으나, 리프트핀(140)이 상향으로 이동하여 대기하는 상태에서 로봇(2)이 웨이퍼(W)를 이송하여 리프트핀(140) 상에 웨이퍼(W)를 로딩하는 것도 가능하다.In the above description, the lift pin 140 moves upward in the state in which the robot 2 moves the wafer W in the correct position. However, the robot 2 moves in the standby state. It is also possible to transfer the wafer (W) to load the wafer (W) on the lift pin (140).
이처럼 상기 제1챔버(100)는 웨이퍼(W)가 외부로부터 로딩되는 챔버이며, 이후에 설명되는 바와 같이 제1챔버(100)는 제5챔버(500)로부터 이동된 웨이퍼(W)를 외부로 언로딩하는 챔버로 사용된다. 즉, 제1챔버(100)는 웨이퍼(W)가 로딩 및 언로딩되는 로딩 및 언로딩 챔버가 된다.As described above, the first chamber 100 is a chamber in which the wafer W is loaded from the outside. As described later, the first chamber 100 moves the wafer W moved from the fifth chamber 500 to the outside. Used as an unloading chamber. That is, the first chamber 100 becomes a loading and unloading chamber in which the wafer W is loaded and unloaded.
그 다음, 도 6에 도시한 바와 같이 리프트핀(140)에 웨이퍼(W)가 올려진 상태로 로봇(2)이 후퇴하여 로딩 및 언로딩챔버(100)의 밖으로 이동한다. 이때 로봇(2)은 하향 이동하여 웨이퍼(W)가 리프트핀(140) 상에 완전히 올려진 상태에서 후퇴한다. 반대로 로봇(2)은 하향 이동하지 않고 리프트핀(140)이 웨이퍼(W)가 안착된 상태에서 상향으로 이동한 상태에서 로봇(2)이 후퇴할 수 있다.Next, as shown in FIG. 6, the robot 2 retreats while the wafer W is placed on the lift pin 140 to move out of the loading and unloading chamber 100. At this time, the robot 2 moves downward to retreat while the wafer W is completely placed on the lift pin 140. On the contrary, the robot 2 may retreat in a state in which the lift pin 140 moves upward while the wafer W is seated without moving downward.
이는 로봇(2)과 리프트핀(140)의 상대운동으로 로봇(2)이 후퇴할 때 웨이퍼(W)에 마찰 되어 웨이퍼(W)가 변위되는 것을 방지할 수 있는 방법이면 그 방법에 무관하게 적용될 수 있음을 보여준다.If the robot 2 and the lift pin 140 is a relative motion of the robot (2) when the retreat back to the wafer (W) to prevent the displacement of the wafer (W) as long as it is applicable regardless of the method Shows that it can.
그 다음, 도 7에 도시한 바와 같이 로봇(2)이 완전히 이동된 상태에서 상기 턴테이블(700)이 상향으로 이동하여 웨이퍼(W)의 저면 가장자리를 안착링(720)의 내부 안착단(722)에 안착시킨다. Next, as shown in FIG. 7, the turntable 700 moves upward while the robot 2 is completely moved to move the bottom edge of the bottom surface of the wafer W into an inner seating end 722 of the seating ring 720. Settle on
이와 같은 상태에서 리프트핀(140)이 하향 이동하여 웨이퍼(W)의 저면과 리프트핀(140)의 상단이 이격되면, 턴테이블(700)이 회전하여 도 8과 같이 안착링(720)에 안착된 상태에서 웨이퍼(W)를 제2챔버(200)로 이동시킨다.In this state, when the lift pin 140 moves downward so that the bottom surface of the wafer W and the top of the lift pin 140 are spaced apart, the turntable 700 rotates and is seated on the seating ring 720 as shown in FIG. 8. In the state, the wafer W is moved to the second chamber 200.
즉, 상기 턴테이블(700)의 회전은 그 턴테이블(700)이 상향으로 이동한 상태에서 이루어지며, 그 회전 각도는 챔버의 수에 따라 결정된다.That is, the turntable 700 is rotated while the turntable 700 moves upward, and the rotation angle is determined according to the number of chambers.
그 다음, 도 9에 도시한 바와 같이 턴테이블(700)이 하향으로 이동하여 웨이퍼(W)를 제2챔버(200)의 서셉터(210) 상에 안착시키고, 턴테이블(700)은 더 하향으로 이동하여 그 저면이 하부하우징(220)의 상단에 접하게 된다.Next, as shown in FIG. 9, the turntable 700 moves downward to seat the wafer W on the susceptor 210 of the second chamber 200, and the turntable 700 moves further downward. The bottom surface is in contact with the upper end of the lower housing 220.
그 다음, 도 10에 도시한 바와 같이 구동부(233)를 구동시켜 이동부(232)가 하향으로 이동되어 이동부(232)의 하단이 상기 턴테이블(700)의 상면에 접하게 된다. Next, as shown in FIG. 10, the driving unit 233 is driven to move the moving unit 232 downward so that the lower end of the moving unit 232 contacts the upper surface of the turntable 700.
따라서 상기 상부하우징(230)과 턴테이블(700)에 의해 둘러싸인 내부공간(230a)이 격리된 공정공간의 상측을 형성하고, 하부하우징(220)과 턴테이블(700)에 의해 둘러싸인 내부공간(220a)이 격리된 공정공간의 하측을 형성하게 되며, 상기 격리된 공정공간에서 웨이퍼(W)의 필요한 처리가 이루어진다.Therefore, the inner space 230a surrounded by the upper housing 230 and the turntable 700 forms an upper side of an isolated process space, and the inner space 220a surrounded by the lower housing 220 and the turntable 700 is formed. The lower side of the isolated process space is formed, and necessary processing of the wafer W is performed in the isolated process space.
이러한 웨이퍼(W)의 처리를 위해 샤워헤드(260)를 통해 공정 가스가 상부하우징(230)의 내부공간(230a)으로 공급되고, 서셉터(210)는 웨이퍼(W)를 진공흡착한 상태에서 특정한 온도로 가열하게 된다. 상기 공정 가스는 웨이퍼(W)를 처리한 후, 상기 턴테이블(700)의 홀(710)에 삽입된 안착링(720)의 가스통공(721)을 통해 하부하우징(220)의 내부공간(220a)으로 이동한 후 배기구(250)를 통해 배기된다.Process gas is supplied to the inner space 230a of the upper housing 230 through the shower head 260 to process the wafer W, and the susceptor 210 is vacuum-adsorbed on the wafer W. Heating to a specific temperature. After the process gas is processed on the wafer W, the internal space 220a of the lower housing 220 through the gas through hole 721 of the seating ring 720 inserted into the hole 710 of the turntable 700. After moving to the exhaust through the exhaust port 250.
또한 본 발명의 경우 리프트핀(240)은 서셉터(210)를 관통하지 않는 구조이므로 서셉터(210)에 리프트핀(240)의 상하 이동을 위한 별도의 홈이나 구멍을 형성시킬 필요가 없어, 웨이퍼(W)와 접촉하는 서셉터(210)의 면적이 넓게 형성되므로, 웨이퍼(W)를 균일하게 가열할 수 있다. In addition, in the case of the present invention, since the lift pin 240 does not penetrate the susceptor 210, there is no need to form a separate groove or hole for vertical movement of the lift pin 240 in the susceptor 210, Since the area of the susceptor 210 in contact with the wafer W is formed wide, the wafer W can be uniformly heated.
도 11은 제2챔버(200) 내에서 웨이퍼(W)가 공정이 완료된 상태에서 다른 챔버(300,400,500)에서 공정이 완료되지 않았을 때 대기하는 상태의 단면 구성도이다. 예를 들어 제2챔버(200)의 공정시간이 200초이고, 제3챔버(300)의 공정시간이 300초인 경우 제2챔버(200)에서의 공정이 완료된 후 100초 동안 대기한 후 웨이퍼(W)를 제3챔버(300)로 이송해야 한다.FIG. 11 is a cross-sectional configuration diagram of a state in which the wafer W waits when the process is not completed in the other chambers 300, 400, and 500 while the process is completed in the second chamber 200. For example, when the process time of the second chamber 200 is 200 seconds and the process time of the third chamber 300 is 300 seconds, the wafer is waited for 100 seconds after the process in the second chamber 200 is completed. W) must be transferred to the third chamber 300.
즉, 제2챔버(200)에서 이루어지는 공정시간에 비하여 제3챔버(300)에서 이루어지는 공정시간이 더 긴 경우, 웨이퍼(W)를 즉시 제3챔버(300)로 이동시킬 수 없기 때문에 제3챔버(300)에서의 공정이 완료되어 턴테이블(700)이 회전할 수 있는 상태가 될 때까지 대기하는 상태로 이해될 수 있다.That is, when the process time made in the third chamber 300 is longer than the process time made in the second chamber 200, the third chamber 300 may not be moved immediately to the third chamber 300. It may be understood that the process waits at 300 until the turntable 700 is in a rotatable state.
상기 웨이퍼(W)가 서셉터(210)에 안착된 상태로 대기하는 경우 필요 이상으로 웨이퍼(W)를 가열하게 되기 때문에, 리프트핀(240)을 상향으로 이동시켜, 상기 안착링(720)과 안착링(720)에 안착된 웨이퍼(W)를 동시에 들어올려 상향으로 서셉터(210)로부터 웨이퍼(W)를 이탈시킨 후 필요한 시간만큼 대기하게 된다.Since the wafer W is heated more than necessary when the wafer W is seated on the susceptor 210, the lift pin 240 is moved upward to move the lift ring 240 upward. At the same time, the wafer W seated on the seating ring 720 is lifted up, and the wafer W is separated from the susceptor 210 upward.
또한 웨이퍼(W)에 대한 공정 처리가 이루어지는 공정챔버(200,300,400,500)에서는 고온으로 공정이 이루어지기 때문에 격리된 공정공간 내부의 온도는 각 챔버의 외부의 연결공간부(800)의 온도보다 높은 상태가 되고, 제2챔버(200)에서 높은 온도로 공정이 완료된 웨이퍼(W)가 대기할 때 상부하우징(230)의 내부공간(230a)이 연결공간부(800)와 연통하게 되면 낮은 온도의 연결공간부(800)에 노출되어 웨이퍼(W)에 열충격이 가해질 수 있다.In addition, since the process is performed at a high temperature in the process chambers 200, 300, 400, and 500 where the process is performed on the wafer W, the temperature inside the isolated process space becomes higher than the temperature of the connection space 800 outside the chamber. When the wafer W, which has been processed at a high temperature in the second chamber 200, is waiting, when the internal space 230a of the upper housing 230 communicates with the connection space 800, the connection space portion having a low temperature The thermal shock may be applied to the wafer W by being exposed to the 800.
따라서 본 발명에서는 이와 같은 웨이퍼(W)의 대기 상태에서도 상기 상부하우징(230), 턴테이블(700) 및 하부하우징(220)에 의해 둘러싸인 공정 공간은 연결공간부(800)에 대하여 격리된 상태를 유지하기 때문에, 웨이퍼(W)의 가열된 상태를 유지할 수 있어 웨이퍼(W)의 공정 품질을 향상시킬 수 있다.Therefore, in the present invention, the process space surrounded by the upper housing 230, the turntable 700, and the lower housing 220 may be isolated from the connection space 800 even in the standby state of the wafer W. Therefore, the heated state of the wafer W can be maintained and the process quality of the wafer W can be improved.
그 다음, 도 12에 도시한 바와 같이 제2챔버(200)에서 웨이퍼(W)를 제3챔버(300)로 이송하기 위해서 상기 상부하우징(230)의 이동부(232)가 상향으로 이동한다.Next, as illustrated in FIG. 12, the moving part 232 of the upper housing 230 moves upward to transfer the wafer W from the second chamber 200 to the third chamber 300.
그 다음, 상기 턴테이블(700)이 상향으로 이동하여 웨이퍼(W)와 함께 안착링(720)이 턴테이블(700)의 홀(710)에 삽입되어 안착링(720)의 외부 안착단(723)이 턴테이블(700)의 상면에 안착되도록 한다.Then, the turntable 700 is moved upward so that the seat ring 720 is inserted into the hole 710 of the turntable 700 together with the wafer W so that the outer seat end 723 of the seat ring 720 is moved. It is to be seated on the upper surface of the turntable (700).
그 다음, 상기 리프트핀(240)이 하향 이동하여 리프트핀(240)의 상단으로부터 안착링(720)의 저면을 이격시킨 후, 턴테이블(700)이 회전하여 웨이퍼를 제3챔버(300)로 이송하게 된다.Next, the lift pin 240 moves downward to space the bottom surface of the seating ring 720 from the top of the lift pin 240, and then the turntable 700 rotates to transfer the wafer to the third chamber 300. Done.
그 다음의 기계적인 과정은 상기 제1챔버(100)로부터 제2챔버(200)로 웨이퍼(W)가 이송된 이후의 동작인 도 8 이후의 동작과 동일하게 반복된다. 앞서 설명한 바와 같이 제2챔버(200), 제3챔버(300), 제4챔버(400) 및 제5챔버(500) 각각은 모두 동일하게 구성되어 웨이퍼(W)를 처리할 때는 턴테이블(700)이 하향으로 이동된 상태에서 상부하우징(230)의 이동부(232)가 고정부(231)를 따라 하향으로 이동되어 격리된 공정공간을 형성하고, 웨이퍼(W)를 이동시킬 때는 상부하우징(230)이 원위치로 상향 이동하고, 턴테이블(700)이 상향 이동 및 회전하는 구조를 가지고 있으며, 반복 설명을 피하기 위하여 상기 제3 내지 제5챔버(300~500)의 동작을 생략하고, 상기 도 12의 상태에서 제1챔버(100)로 웨이퍼(W)가 이동하는 것으로 설명한다.The subsequent mechanical process is repeated in the same manner as the operation after FIG. 8, which is an operation after the wafer W is transferred from the first chamber 100 to the second chamber 200. As described above, each of the second chamber 200, the third chamber 300, the fourth chamber 400, and the fifth chamber 500 is configured in the same manner so that the turntable 700 may be used to process the wafer W. In the downwardly moved state, the moving part 232 of the upper housing 230 is moved downward along the fixing part 231 to form an isolated process space, and the upper housing 230 is moved when the wafer W is moved. ) Moves upward to its original position, and the turntable 700 moves upward and rotates, and the operation of the third to fifth chambers 300 to 500 is omitted in order to avoid repeated explanation, It will be described that the wafer W moves to the first chamber 100 in the state.
상기 제2 내지 제5챔버(200~500)에서는 각각 다른 공정이 진행될 수 있으며, 웨이퍼(W)가 이동하는 연결공간부(800)에도 웨이퍼의 온도 유지를 위한 가열된 질소 등의 불활성 가스가 공급될 수 있으며, 그 불활성 가스를 포함하여 유입된 공정가스는 배기부(810)를 통해 배기 될 수 있다.Different processes may be performed in each of the second to fifth chambers 200 to 500, and an inert gas such as heated nitrogen is supplied to the connection space 800 where the wafer W moves to maintain the temperature of the wafer. In addition, the introduced process gas including the inert gas may be exhausted through the exhaust unit 810.
도 12는 상기 도 11에 도시한 상태에서 턴테이블(700)이 회전하여 웨이퍼(W)가 제1챔버(100)로 이송된 후, 턴테이블(700)이 하향으로 이동하여 웨이퍼(W)를 서셉터(110)에 안착한 상태를 나타낸다. 실제 동작과정은 상기 제5챔버(500)에서 공정이 완료된 웨이퍼(W)를 연속 처리장치의 외부로 언로딩하기 위하여, 상기 제1챔버(100)로 이동된다.12 illustrates that the turntable 700 rotates in the state shown in FIG. 11 to transfer the wafer W to the first chamber 100, and then the turntable 700 moves downward to susceptor the wafer W. The state seated at 110 is shown. The actual operation is moved to the first chamber 100 in order to unload the wafer W, which has been processed in the fifth chamber 500, out of the continuous processing apparatus.
상기 웨이퍼(W)는 제1챔버(100)로 이동된 상태에서 별다른 처리 없이 자연냉각되도록 한 후 이후에 설명될 로봇(2)에 의해 외부로 언로딩 될 수도 있고, 냉각가스를 사용하여 웨이퍼(W)를 강제 냉각시킬 수도 있다. The wafer W may be naturally cooled in the state moved to the first chamber 100 without any processing, and then unloaded to the outside by the robot 2 to be described later. W) may be forced to cool.
이와 같은 냉각과정도 공정공간(120a,130a)의 격리 상태에서 이루어지는데, 이를 위해 먼저 상기 턴테이블(700)이 하향으로 이동하여 그 저면이 하부하우징(120)의 상단에 접하게 된다. Such a cooling process is also performed in an isolated state of the process spaces 120a and 130a. To this end, the turntable 700 first moves downward so that the bottom thereof is in contact with the upper end of the lower housing 120.
그 다음, 상기 상부하우징(130)의 이동부(132)가 하향으로 이동하여 격리된 공정 공간을 형성한 후, 샤워헤드(160)에서는 냉각가스를 웨이퍼(W)에 분사하여 웨이퍼(W)를 냉각시키거나, 아니면 웨이퍼(W)를 냉각수가 순환되는 서셉터(110) 상에 안착시킨 상태로 다른 챔버들에서 공정이 완료될 때까지 두어 냉각시킨다.Next, after the moving part 132 of the upper housing 130 moves downward to form an isolated process space, the shower head 160 sprays cooling gas onto the wafer W to form the wafer W. Alternatively, the wafer W is placed on the susceptor 110 in which the coolant is circulated, and left in the other chambers until the process is completed.
그 다음, 도 14에 도시한 바와 같이 리프트핀(140)이 상향으로 이동하여 웨이퍼(W)를 서셉터(110)로부터 이탈시킨 후, 로봇(2)이 진입하여 웨이퍼(W)의 저면을 지지한 상태로 웨이퍼(W)를 언로딩하게 되고, 그 후 앞서 설명한 바와 같이 제1챔버(100)에는 새로운 웨이퍼가 로딩되어 동일한 공정이 이루어지게 된다.Then, as shown in FIG. 14, the lift pin 140 moves upward to release the wafer W from the susceptor 110, and then the robot 2 enters and supports the bottom surface of the wafer W. As shown in FIG. In this state, the wafer W is unloaded. Then, as described above, a new wafer is loaded into the first chamber 100 to perform the same process.
앞서 설명한 웨이퍼(W)의 로딩 과정과 동일하게 로봇(2)과 리프트핀(140) 사이에는 간섭이 발생하지 않도록 상대 운동을 하게 된다. 즉, 로봇(2)이 이탈하기 전에 리프트핀(140)이 하향으로 이동하거나, 로봇(2)이 상향으로 이동하여 웨이퍼(W)의 저면을 지지한 상태에서 외부로 언로딩하게 된다.In the same manner as the loading process of the wafer W described above, relative movement is performed so that no interference occurs between the robot 2 and the lift pin 140. That is, the lift pin 140 moves downward or the robot 2 moves upward before the robot 2 detaches, and unloads to the outside in a state in which the bottom surface of the wafer W is supported.
이처럼 본 발명은 각 챔버마다 마련된 중량물인 다수의 서셉터와 격리된 공정공간의 하측을 형성하기 위한 하부하우징(120)을 상하로 이동시킬 필요 없이 고정시키고, 턴테이블(700)을 회전 및 상하로 이동할 수 있도록 구성함으로써, 기구적인 구성을 단순화하고 구동부의 부하를 줄여 소비전력을 낮출 수 있는 효과가 있다.As described above, the present invention is fixed without having to move the lower housing 120 to form a lower side of the process space, which is separated from the plurality of susceptors, which are heavy materials provided in each chamber, and move the turntable 700 up and down. By configuring it so that the mechanical configuration can be simplified and the load of the driving part can be reduced, thereby reducing the power consumption.
도 15는 본 발명의 다른 실시예에 따른 제3챔버(300)의 단면 구성도이다.15 is a cross-sectional view of the third chamber 300 according to another embodiment of the present invention.
도 15를 참조하면 공정온도의 효과적인 조절을 위하여 상부플레이트(620)의 상부측에 상부히터(370)를 더 구비한 것이다.Referring to FIG. 15, the upper heater 370 is further provided on the upper side of the upper plate 620 to effectively control the process temperature.
이와 같이 웨이퍼(W)의 상부측에 상부히터(370)를 구비하게 되면, 웨이퍼(W)는 서셉터(310)로부터 전달된 열에 의해 하면이 가열되고, 상부히터(370)를 통해 전달된 열에 의해 웨이퍼(W)의 상면도 동시에 가열되므로, 웨이퍼(W)의 상하면이 균일한 온도로 가열될 수 있다.When the upper heater 370 is provided on the upper side of the wafer W as described above, the lower surface of the wafer W is heated by the heat transferred from the susceptor 310, and the heat is transferred to the heat transferred through the upper heater 370. Since the upper surface of the wafer W is also heated at the same time, the upper and lower surfaces of the wafer W can be heated to a uniform temperature.
특히 리플로우 공정에서는 솔더볼의 형상이 매우 중요하며, 서셉터(310)에 마련된 히터와 상기 상부측의 상부히터(370)에 의해 솔더볼의 상부와 하부를 균일하게 가열할 수 있어, 솔더볼의 형상 유지에 유리하게 된다.In particular, in the reflow process, the shape of the solder ball is very important, and the upper and lower parts of the solder ball can be uniformly heated by the heater provided in the susceptor 310 and the upper heater 370 of the upper side, thereby maintaining the shape of the solder ball. To be advantageous.
상기 상부히터(370)는 제2챔버 내지 제5챔버(200~500)에 선택적으로 부가될 수 있는 것으로, 본 발명이 적용되는 웨이퍼 처리 공정의 종류에 따라 가변적으로 설치될 수 있다.The upper heater 370 may be selectively added to the second to fifth chambers 200 to 500, and may be variably installed according to the type of wafer processing process to which the present invention is applied.
또한 상부하우징(230)의 내부공간(230a)에는 공정가스의 잔유물이 상부하우징(230) 내측 벽면에 들러붙게 되는데, 상기 상부히터(370)를 이용하여 가열하게 되면 공정가스의 잔유물이 상부하우징(230) 내측 벽면에 들러붙는 것을 방지할 수 있어 파티클의 발생을 줄일 수 있다.In addition, the residue of the process gas is stuck to the inner wall surface of the upper housing 230 in the inner space 230a of the upper housing 230. When the heating is performed using the upper heater 370, the residue of the process gas is the upper housing ( 230) It can be prevented to stick to the inner wall surface can reduce the generation of particles.
또한 버퍼공간(361)이 형성된 샤워헤드(360)를 상부히터(370)의 하부에 구비하게 되면, 상부히터(370)의 열에 의해 버퍼공간(361)에 유입된 공정가스를 가열하게 되므로, 샤워헤드(360)를 통해 공급되는 공정 가스의 온도를 신속하게 상승시킬 수 있으며, 공정의 안정성을 보다 향상시킬 수 있게 된다.In addition, when the shower head 360 having the buffer space 361 is formed below the upper heater 370, the process gas introduced into the buffer space 361 is heated by the heat of the upper heater 370, so that the shower The temperature of the process gas supplied through the head 360 may be quickly increased, and the stability of the process may be further improved.
리플로우 공정에 사용되는 포름산 증기는 고온으로 가열된 후 챔버 내부로 공급된다. 이 경우 포름산 증기를 미리 가열시킨 후 챔버로 유입시키면 포름산이 웨이퍼에 도달할 때 기화되어 손실이 발생하게 되어 공정 처리의 균일성이 저하된다. 또한 포름산 증기를 고온으로 하기 위해 리플로우 장비의 외부에 구비된 배관 외면에 히팅 자켓을 감싸는 것으로 하여 미리 가열하게 되면 배관 내면에 포름산 증기가 들러붙게 되는 문제점도 있다. The formic acid vapor used in the reflow process is heated to a high temperature and then fed into the chamber. In this case, when the formic acid vapor is preheated and introduced into the chamber, the formic acid vaporizes when it reaches the wafer, resulting in a loss, thereby lowering uniformity of the process. In addition, by heating the heating jacket on the outer surface of the pipe provided on the outside of the reflow equipment to make the formic acid vapor at a high temperature, there is a problem that the formic acid vapor is stuck to the inner surface of the pipe.
따라서 본 실시예와 같이 포름산 증기가 버퍼공간(361)에 유입되는 과정에서 상부히터(370)로 가열하게 되면, 웨이퍼(W)에 분사되기 직전에 가열되므로 포름산의 기화로 인한 손실을 방지하게 되고, 포름산 증기가 배관 내면에 들러붙게 되는 문제점도 방지할 수 있다.Therefore, when the formic acid vapor is heated to the upper heater 370 while the formic acid is introduced into the buffer space 361 as in the present embodiment, it is heated just before being injected onto the wafer W, thereby preventing a loss due to vaporization of the formic acid. In addition, the problem that the formic acid vapor is stuck to the inner surface of the pipe can be prevented.
도 16은 본 발명의 다른 실시예에 의한 반도체 웨이퍼의 연속 처리장치를 보여주는 단면도, 도 17은 도 16의 상태에서 상부하우징이 상승한 상태를 보여주는 단면도, 도 18은 도 17의 상태에서 턴테이블과 안착링이 상승한 상태를 보여주는 단면도, 도 19는 도 16의 연속 처리장치에 구비된 서셉터 및 안착링에 웨이퍼가 안착된 상태를 보여주는 평면도이다.16 is a cross-sectional view showing a continuous processing apparatus of a semiconductor wafer according to another embodiment of the present invention, FIG. 17 is a cross-sectional view showing a state in which the upper housing is raised in the state of FIG. 16, FIG. 18 is a turntable and a seating ring in the state of FIG. 19 is a plan view showing a state in which a wafer is seated in a susceptor and a mounting ring provided in the continuous processing apparatus of FIG. 16.
본 실시예의 반도체 웨이퍼 연속 처리장치는, 공정이 진행되는 동안 웨이퍼(W)를 지지하기 위해 고정 설치된 서셉터(1100), 상기 서셉터(1100)의 외측에 고정 설치되어 상기 웨이퍼(W)의 하부에 격리된 공정 공간(1200a)을 형성하는 하부하우징(1200), 상기 웨이퍼(W)의 상부에 격리된 공정 공간(1300a)을 형성하기 위해 상하 이동하는 상부하우징(1300), 상기 상부하우징(1300)과 하부하우징(1200) 사이에 구비되어 다수의 챔버 사이에서 상기 웨이퍼(W)를 이송하기 위해 회전하는 동시에 상기 서셉터(1100) 상부에서 상기 웨이퍼(W)를 상하 이동시키는 턴테이블(7000), 상기 턴테이블(7000)의 홀(7100)에 상향으로 이탈이 가능하도록 삽입되어 상기 웨이퍼(W)가 안착되는 안착링(7200)으로 이루어져 있다.In the semiconductor wafer continuous processing apparatus of the present embodiment, the susceptor 1100 is fixedly installed to support the wafer W while the process is in progress, and is fixed to the outside of the susceptor 1100 so that the lower portion of the wafer W is fixed. A lower housing 1200 forming a process space 1200a isolated from the upper housing, an upper housing 1300 moving up and down to form an isolated process space 1300a on the upper portion of the wafer W, and the upper housing 1300. The turntable 7000 is provided between the lower housing 1200 and rotates to transfer the wafer W between a plurality of chambers and simultaneously moves the wafer W up and down on the susceptor 1100. It is composed of a seating ring 7200 is inserted into the hole 7100 of the turntable 7000 to be detached upwards to seat the wafer (W).
본 실시예는 앞서 설명한 실시예와 달리, 상부하우징(1300)이 벨로우즈 형상으로 이루어지고, 상부하우징(1300)의 하단부(1301)와 안착링(7200)의 상부가 접하는 동시에 하부하우징(1200)의 상단부(1201)와 안착링(7200)의 하부가 접하도록 되어 있으며, 안착링(7200)의 내측에는 웨이퍼(W)의 저면을 지지하기 위한 지지핀(7210)이 형성되어 있다는 점에서 차이가 있다.In the present embodiment, unlike the above-described embodiment, the upper housing 1300 is formed in a bellows shape, and the lower portion 1301 of the upper housing 1300 and the upper portion of the seating ring 7200 are simultaneously in contact with each other. The upper portion 1201 and the lower portion of the seating ring 7200 are in contact with each other, and there is a difference in that a support pin 7210 is formed inside the seating ring 7200 to support the bottom surface of the wafer W. .
상기 안착링(7200)의 외측단(7201)은 상부가 돌출된 단차진 형상으로 이루어지고, 상기 턴테이블(7000)의 내측단(7001)은 하부가 중심방향으로 돌출되어 단차진 형상으로 이루어져, 상기 외측단(7201)이 내측단(7001)에 걸림되어 상향 이탈이 가능하도록 안착되어 있다.The outer end 7201 of the seating ring 7200 is formed in a stepped shape with an upper part protruding, and the inner end 7001 of the turntable 7000 is formed in a stepped shape with a lower part protruding in the center direction. The outer end 7201 is engaged with the inner end 7001 and is seated to allow upward detachment.
상부플레이트(6200)의 상측에는 상기 상부하우징(1300)의 하단부(1301)가 상하 이동될 수 있도록 구동력을 제공하는 구동부(1330)가 구비된다. 상기 구동부(1330)에는 상하 이동하는 샤프트(1335)가 연결되고, 상기 샤프트(1335)의 하단부에는 상기 상부하우징(1300)의 하단부(1301)가 연결된다.The upper side of the upper plate 6200 is provided with a driving unit 1330 for providing a driving force to move the lower end 1301 of the upper housing 1300 up and down. A shaft 1335 that moves up and down is connected to the driving unit 1330, and a lower end 1301 of the upper housing 1300 is connected to a lower end of the shaft 1335.
상기 구동부(1330)는 실린더로 구성될 수 있고, 상기 실린더를 구동시키면 상기 샤프트(1335) 및 상부하우징(1300)의 하단부(1301)가 상하 이동될 수 있고, 하향 이동시 상기 하단부(1301)가 안착링(7200)의 상부에 접함으로써 격리된 공정 공간(1300a)의 상부측을 형성할 수 있다. 이 경우 상기 하단부(1301)의 하면과 상기 안착링(7200)의 상면 사이에는 기밀부재(1302)가 개재되어 기밀이 유지된다.The driving unit 1330 may be configured as a cylinder, and when the cylinder is driven, the lower end 1301 of the shaft 1335 and the upper housing 1300 may be moved up and down, and the lower end 1301 may be seated when moved downward. The upper side of the isolated process space 1300a can be formed by contacting the top of the ring 7200. In this case, the airtight member 1302 is interposed between the bottom surface of the lower end portion 1301 and the top surface of the seating ring 7200 to maintain airtightness.
한편, 상기 턴테이블(7000)의 하향 이동시 상기 하부하우징(1200)의 상단부(1201)가 상기 안착링(7200)의 하부에 접함으로써 격리된 공정 공간(1200a)의 하부측을 형성할 수 있다. 이 경우 상기 상단부(1201)의 상면과 상기 안착링(7200)의 하면 사이에는 기밀부재(1202)가 개재되어 기밀이 유지된다.Meanwhile, when the turntable 7000 moves downward, the upper end 1201 of the lower housing 1200 may contact the lower portion of the seating ring 7200 to form a lower side of the isolated process space 1200a. In this case, the airtight member 1202 is interposed between the top surface of the upper end portion 1201 and the bottom surface of the seating ring 7200 to maintain airtightness.
상기 안착링(7200)의 내측에는 상기 웨이퍼(W)의 저면을 지지하기 위한 다수의 지지핀(7210)이 안착링(7200)의 중심 방향으로 돌출 형성되어 있다. 도 19에서는 상기 지지핀(7210)의 개수를 3개로 예시하였으나, 변형 실시 가능하다.Inside the seating ring 7200, a plurality of support pins 7210 protruding toward the center of the seating ring 7200 to support the bottom surface of the wafer W. In FIG. 19, the number of the support pins 7210 is illustrated as three, but may be modified.
상기 서셉터(1100)의 상면에는 상기 지지핀(7210)이 삽입되도록 슬롯 형상으로 이루어진 홈(1110)이 형성되어 있고, 상기 지지핀(7210)이 상기 홈(1110)의 내부에 위치한 상태에서 상방향으로 이동하면 상기 지지핀(7210)에 의해 웨이퍼(W)의 저면이 지지되어 웨이퍼(W)가 함께 상방향으로 이동하게 된다.A groove 1110 having a slot shape is formed on the upper surface of the susceptor 1100 so that the support pin 7210 is inserted into the upper surface of the susceptor 1100, and the support pin 7210 is positioned inside the groove 1110. When moved in the direction, the bottom surface of the wafer W is supported by the support pins 7210 so that the wafers W move upward together.
상기 안착링(7200)의 하부에는, 공정가스를 균일하게 통과시키기 위한 홀(6510)이 원주 둘레를 따라 균일하게 형성된 링 형상의 배플플레이트(6500)가 구비되고, 상기 배플플레이트(6500)의 홀(6510)을 통과한 공정가스는 상기 공정챔버의 하부에 구비된 배기구(1500)를 통해 배기된다.The lower portion of the seating ring 7200 is provided with a ring-shaped baffle plate 6500 having holes 6510 uniformly formed along the circumference of the hole 6510 to uniformly pass the process gas, and the holes of the baffle plate 6500. The process gas passed through the 6510 is exhausted through the exhaust port 1500 provided in the lower portion of the process chamber.
상기 배플플레이트(6500)는 서셉터(1100)의 외측 둘레에 위치하고, 상기 하부하우징(1200)에 외측 가장자리가 걸림된다.The baffle plate 6500 is positioned at an outer circumference of the susceptor 1100, and an outer edge thereof is locked to the lower housing 1200.
공정이 진행되는 동안에는 도 16에 나타난 바와 같이, 상부하우징(1300)과 안착링(7200) 및 하부하우징(1200)이 서로 접하도록 되어 있어 웨이퍼(W)의 상부 공간(1300a)과 하부 공간(1200a)이 격리된 상태가 된다.While the process is in progress, as shown in FIG. 16, the upper housing 1300, the seating ring 7200, and the lower housing 1200 are in contact with each other, such that the upper space 1300a and the lower space 1200a of the wafer W are in contact with each other. ) Becomes isolated.
이 상태에서 도 17에 나타난 바와 같이, 구동부(1330)를 구동시키면 샤프트(1335)와 함께 벨로우즈 형상으로 이루어진 상부하우징(1300)은 압축되고 그 하단부(1301)가 상방향으로 이동하게 된다. In this state, as shown in FIG. 17, when the driving unit 1330 is driven, the upper housing 1300 having a bellows shape together with the shaft 1335 is compressed and the lower end 1301 is moved upward.
그 후 도 18에 나타난 바와 같이, 턴테이블(7000)을 상방향으로 이동시키면 턴테이블(7000)과 함께 안착링(7200) 및 웨이퍼(W)가 상방향으로 이동되어, 서셉터(1100) 상면으로부터 웨이퍼(W)가 이격된다.Then, as shown in FIG. 18, when the turntable 7000 is moved upward, the seating ring 7200 and the wafer W move upward with the turntable 7000, and the wafer is moved from the upper surface of the susceptor 1100. (W) is spaced apart.
도 18의 상태에서 턴테이블(7000)을 회전시키면 웨이퍼(W)는 다음 챔버로 이송된 후 필요한 웨이퍼(W)의 처리가 이루어진다.When the turntable 7000 is rotated in the state of FIG. 18, the wafer W is transferred to the next chamber, and then the necessary wafer W is processed.
전술한 바와 같이 본 발명에 대하여 바람직한 실시예를 들어 상세히 설명하였지만, 본 발명은 전술한 실시예들에 한정되는 것이 아니고, 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명에 속한다.As described above, the present invention has been described in detail with reference to preferred embodiments, but the present invention is not limited to the above-described embodiments, and various modifications are made within the scope of the claims and the detailed description of the invention and the accompanying drawings. It is possible to carry out by this and this also belongs to the present invention.
본 발명은 반도체 웨이퍼를 연속으로 처리하는 공정의 단계를 단순화하여, 공정시간을 줄일 수 있으며, 공정시간의 단축에 따라 생산성을 향상시킬 수 있는 것으로 산업상 이용 가능성이 있다.Industrial Applicability The present invention can simplify the steps of a process of continuously processing semiconductor wafers, thereby reducing the process time and improving the productivity by shortening the process time.

Claims (18)

  1. 다수의 챔버를 구비하고, 상기 챔버의 외부를 둘러싸는 외부몸체가 구비된 장치에서 웨이퍼를 처리하는 반도체 웨이퍼의 연속 처리방법에 있어서, In the continuous processing method of a semiconductor wafer for processing a wafer in a device provided with a plurality of chambers, the outer body surrounding the outside of the chamber,
    상기 다수의 챔버는 제1 내지 제5챔버로 이루어지고, 상기 제1챔버에 웨이퍼를 로딩한 후 불활성 가스를 주입하여 퍼지하는 제1단계; The plurality of chambers are composed of first to fifth chambers, the first step of loading the wafer into the first chamber and injecting an inert gas purge;
    상기 제1단계가 완료된 상기 웨이퍼를 제2챔버에 이송하고, 상기 제2챔버 내부에 공정가스를 주입한 후 웨이퍼를 가열하는 제2단계;A second step of transferring the wafer having completed the first step to a second chamber, injecting a process gas into the second chamber, and then heating the wafer;
    상기 제2단계가 완료된 상기 웨이퍼를 제3챔버로 이송하고, 상기 제3챔버 내부에 공정가스를 주입한 후 웨이퍼를 가열하는 제3단계;A third step of transferring the wafer, in which the second step is completed, to a third chamber, injecting a process gas into the third chamber, and then heating the wafer;
    상기 제3단계가 완료된 상기 웨이퍼를 제4챔버에 이송하고, 상기 제4챔버의 내부가 대기압 이하의 압력 상태에서 상기 웨이퍼를 가열하는 제4단계;A fourth step of transferring the wafer, in which the third step is completed, to a fourth chamber, and heating the wafer when the inside of the fourth chamber is at a pressure below atmospheric pressure;
    상기 제4단계가 완료된 상기 웨이퍼를 제5챔버에 이송하고, 상기 제5챔버의 내부에 공정가스를 주입한 후 웨이퍼를 가열하는 제5단계;A fifth step of transferring the wafer where the fourth step is completed to a fifth chamber, injecting a process gas into the fifth chamber, and then heating the wafer;
    상기 제5단계가 완료된 상기 웨이퍼를 제1챔버에 이송하고 상기 웨이퍼를 냉각시킨 후 외부로 언로딩하고, 다른 웨이퍼를 상기 제1챔버에 로딩시키는 제6단계를 포함하는 반도체 웨이퍼의 연속 처리방법.And transferring the wafer, in which the fifth step is completed, to the first chamber, cooling the wafer, unloading it to the outside, and loading another wafer into the first chamber.
  2. 제1항에 있어서,The method of claim 1,
    제2단계 내지 제5단계에 주입되는 공정가스는, 포름산 증기와 질소인 것을 특징으로 하는 반도체 웨이퍼의 연속 처리방법.The process gas injected in the second to fifth steps is formic acid vapor and nitrogen, the continuous processing method of a semiconductor wafer.
  3. 제1항에 있어서,The method of claim 1,
    상기 챔버 내부의 격리된 공정공간과, 상기 외부몸체 내부의 연결공간부에는 상기 웨이퍼가 이송되는 과정에서 가열된 질소가 공급되어 웨이퍼의 온도 변화를 최소화하는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리방법.The process chamber for processing semiconductor wafers, characterized in that the nitrogen is heated in the process of transferring the wafer to the isolated process space in the chamber and the connection space in the outer body to minimize the temperature change of the wafer.
  4. 제3항에 있어서,The method of claim 3,
    상기 가열된 질소는, 상기 챔버가 격리된 상태에서 공정이 진행되는 경우의 상기 연결공간부의 분위기 온도보다 더 높은 온도로 공급되는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리방법.Wherein the heated nitrogen is supplied at a temperature higher than the ambient temperature of the connection space portion when the process is performed in a state where the chamber is isolated.
  5. 제3항에 있어서,The method of claim 3,
    상기 가열된 질소는, 상기 제2 단계 내지 제5 단계에서 웨이퍼를 가열하는 온도로 공급되는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리방법.Wherein the heated nitrogen is supplied at a temperature for heating the wafer in the second to fifth steps.
  6. 제1항에 있어서,The method of claim 1,
    상기 제4단계에서의 압력은 100 ~ 760torr인 것을 특징으로 하는 반도체 웨이퍼의 연속 처리방법.And the pressure in the fourth step is 100 to 760 torr.
  7. 제6항에 있어서,The method of claim 6,
    상기 제4단계는,The fourth step,
    100 내지 500℃의 온도에서, 질소를 전달 가스로 사용하여 포름산 증기를 공급하여, 1 내지 300초의 시간 동안 상기 웨이퍼를 처리하는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리방법.A method of continuous processing of a semiconductor wafer, wherein the wafer is processed for 1 to 300 seconds by supplying formic acid vapor using nitrogen as a delivery gas at a temperature of 100 to 500 ° C.
  8. 제1항에 있어서,The method of claim 1,
    상기 제5단계는,The fifth step,
    상기 웨이퍼를 대기압과 20 내지 400℃의 온도 분위기에서, 질소를 전달 가스로 사용하여 포름산 증기를 공급하여, 1 내지 300초의 시간 동안 처리하는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리방법.And processing the wafer for 1 to 300 seconds by supplying formic acid vapor using nitrogen as a delivery gas at an atmospheric pressure and a temperature atmosphere of 20 to 400 ° C.
  9. 제1항에 있어서,The method of claim 1,
    상기 제4단계 및 제5단계는,The fourth step and the fifth step,
    상기 웨이퍼의 하면을 지지하는 서셉터에 구비된 히터에 의해 가열됨과 동시에 상기 웨이퍼의 상부에 설치된 상부히터에 의해 가열됨으로써, 웨이퍼의 상면과 하면이 균일하게 가열되는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리방법.Heated by a heater provided in the susceptor for supporting the lower surface of the wafer and at the same time by the upper heater installed on the wafer, the upper and lower surfaces of the wafer is uniformly heated, the continuous processing of the semiconductor wafer Way.
  10. 제9항에 있어서,The method of claim 9,
    상기 웨이퍼에 분사되는 포름산은 상기 상부히터에 의해 가열되는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리방법.The formic acid injected into the wafer is heated by the upper heater.
  11. 제10항에 있어서,The method of claim 10,
    상기 상부히터의 하부에는, 내부에 상기 포름산이 유입되는 버퍼공간이 형성되고, 상기 버퍼공간의 하부에 상기 포름산을 상기 웨이퍼의 상면에 균일하게 분사하기 위한 분사구가 다수개 형성된 샤워헤드가 구비되어, 상기 버퍼공간에서 상기 포름산이 가열되는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리방법.In the lower portion of the upper heater, a buffer space into which the formic acid is introduced is formed therein, and a shower head having a plurality of injection holes for uniformly injecting the formic acid onto the upper surface of the wafer is provided below the buffer space. And the formic acid is heated in the buffer space.
  12. 제1항에 있어서,The method of claim 1,
    상기 제1단계에서 제1챔버에 주입되는 불활성 가스는 내부 공간의 수분을 증발시키기 위해 가열된 상태로 주입되는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리방법.The inert gas injected into the first chamber in the first step is injected in a heated state to evaporate the moisture in the internal space.
  13. 제1항에 있어서,The method of claim 1,
    상기 제1 내지 제5챔버는, 웨이퍼를 지지하기 위해 고정 설치되어 상기 웨이퍼에 열을 인가하는 서셉터, 상기 서셉터의 외측에 고정 설치되어 상기 웨이퍼의 하부에 격리된 공정 공간을 형성하는 하부하우징, 상기 웨이퍼의 상부에 격리된 공정 공간을 형성하기 위해 상하 이동하는 상부하우징, 상기 상부하우징과 하부하우징 사이에 구비되고 상기 서셉터의 상부를 노출시키는 홀이 형성되고 상기 다수의 챔버 사이에서 상기 웨이퍼를 이송하기 위해 회전하며 상기 서셉터 상부에서 상기 웨이퍼를 상하 이동시키는 턴테이블, 상기 홀에 상향으로 이탈이 가능하도록 삽입되어 상기 웨이퍼가 안착되는 안착링을 포함하되,The first to fifth chambers are fixed to support a wafer, a susceptor for applying heat to the wafer, and a lower housing fixed to the outside of the susceptor to form a process space isolated under the wafer. An upper housing moving up and down to form an isolated process space on the upper portion of the wafer, a hole provided between the upper housing and the lower housing and exposing an upper portion of the susceptor, wherein the wafer is formed between the plurality of chambers; A turntable rotates to transfer the wafer and moves the wafer up and down in the upper part of the susceptor, and includes a seating ring inserted into the hole so that the wafer is separated upwardly and seated on the wafer.
    상기 상부하우징의 하단부가 하향 이동하여 상기 웨이퍼의 상부와 하부에 격리된 공정공간을 형성한 상태에서 상기 웨이퍼의 처리가 이루어지는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리방법.And the lower surface of the upper housing moves downward to form a process space isolated between the upper and lower portions of the wafer to process the wafer.
  14. 제13항에 있어서,The method of claim 13,
    상기 제1 내지 제5챔버 중 공정이 완료된 챔버의 상기 웨이퍼는, The wafer of the chamber in which the process is completed among the first to fifth chambers,
    상기 상부하우징에 의해 격리된 공정공간 내에서, 상기 웨이퍼를 상기 서셉터의 상면으로부터 이격시킨 상태로 공정이 진행중인 챔버의 공정이 완료될 때까지 대기하는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리방법.In the process space isolated by the upper housing, the wafer is spaced apart from the upper surface of the susceptor and waited until the process of the chamber in which the process is in progress is completed.
  15. 제13항에 있어서,The method of claim 13,
    상기 하부하우징은, 상기 턴테이블이 상단에 접한 상태에서 격리된 공정공간의 하부측을 제공하며; The lower housing provides a lower side of an isolated process space with the turntable in contact with an upper end thereof;
    상기 상부하우징은, 그 하단부가 하향 이동하여 상기 턴테이블의 상부에 접하여 격리된 공정 공간의 상부측을 제공하는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리방법.And the upper housing has a lower end portion moving downward to provide an upper side of an isolated process space in contact with an upper portion of the turntable.
  16. 제13항에 있어서,The method of claim 13,
    상기 하부하우징은, 상기 안착링이 상단에 접한 상태에서 격리된 공정공간의 하부측을 제공하며; The lower housing provides a lower side of the isolated process space with the seating ring in contact with the upper end;
    상기 상부하우징은, 그 하단부가 하향 이동하여 상기 안착링의 상부에 접하여 격리된 공정 공간의 상부측을 제공하는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리방법.The upper housing has a lower end portion moving downward to provide an upper side of an isolated process space in contact with an upper portion of the seating ring.
  17. 제13항에 있어서,The method of claim 13,
    상기 상부하우징은, 상부플레이트에 고정된 고정부와, 상기 고정부의 하측에서 구동부에 의해 상하 이동되는 이동부로 이루어지고; The upper housing includes a fixed part fixed to an upper plate and a moving part moved up and down by a driving part under the fixed part;
    상기 구동부의 구동에 의해 상기 이동부가 하향 이동함으로써 상기 격리된 공정 공간이 형성되는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리방법.And the moving part moves downward by driving the driving part to form the isolated process space.
  18. 제13항에 있어서,The method of claim 13,
    상기 상부하우징은 벨로우즈 형상으로 이루어져 그 하단부가 구동부에 의해 상하 이동됨으로써 상기 격리된 공정 공간을 형성하는 것을 특징으로 하는 반도체 웨이퍼의 연속 처리방법.The upper housing has a bellows shape, and a lower end thereof is moved up and down by a driving unit to form the isolated process space.
PCT/KR2014/000156 2013-01-08 2014-01-07 Method for continuous processing of semiconductor wafer WO2014109528A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480004275.0A CN104903992A (en) 2013-01-08 2014-01-07 Method for continuous processing of semiconductor wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130002208A KR101491992B1 (en) 2013-01-08 2013-01-08 Continuous treatment method of semiconductor wafer
KR10-2013-0002208 2013-01-08

Publications (1)

Publication Number Publication Date
WO2014109528A1 true WO2014109528A1 (en) 2014-07-17

Family

ID=51167123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000156 WO2014109528A1 (en) 2013-01-08 2014-01-07 Method for continuous processing of semiconductor wafer

Country Status (4)

Country Link
KR (1) KR101491992B1 (en)
CN (1) CN104903992A (en)
TW (1) TWI531017B (en)
WO (1) WO2014109528A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998813A (en) * 2017-08-07 2020-04-10 波士顿制程技术有限公司 Hot wall fluxing-free solder ball processing device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101770221B1 (en) * 2016-05-03 2017-08-22 (주)에스티아이 Substrate holding apparatus
KR101796647B1 (en) * 2016-05-03 2017-11-10 (주)에스티아이 Substrate processing apparatus and substrate processing method
TW201740466A (en) * 2016-05-03 2017-11-16 系統科技公司 Substrate processing apparatus and substrate processing method processing two substrates at the same time by the same process, so as to simplify the heat treatment step and improve the productivity
CN108213016B (en) * 2017-12-28 2020-07-24 德淮半导体有限公司 Wafer cleaning device and wafer cleaning method
CN108878331B (en) * 2018-08-20 2024-05-31 度亘激光技术(苏州)有限公司 Batch semiconductor wet oxidation device
CN109355710A (en) * 2018-09-19 2019-02-19 上海迈铸半导体科技有限公司 The controllable rapid cooling system and method for semiconductor crystal wafer in vacuum chamber
CN111326403A (en) * 2018-12-13 2020-06-23 夏泰鑫半导体(青岛)有限公司 Wafer pretreatment method and semiconductor device
KR102259121B1 (en) * 2019-12-23 2021-06-01 (주)에스티아이 Substrate processing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3378852B2 (en) * 1999-12-20 2003-02-17 富士通株式会社 Heat melting processing equipment
US20040000378A1 (en) * 2002-07-01 2004-01-01 Chunghsin Lee Isolation chamber arrangement for serial processing of semiconductor wafers for the electronic industry
US20060032079A1 (en) * 2004-06-10 2006-02-16 Jian Zhang Serial thermal processor arrangement
KR20110018873A (en) * 2008-04-28 2011-02-24 에르사 게엠베하 Device and method for thermally treating workpieces in particular by convective heat transfer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168672B1 (en) * 1998-03-06 2001-01-02 Applied Materials Inc. Method and apparatus for automatically performing cleaning processes in a semiconductor wafer processing system
JP4388859B2 (en) * 2004-06-14 2009-12-24 ミナミ株式会社 Reflow device
JP2007324350A (en) * 2006-05-31 2007-12-13 Tokyo Electron Ltd Heat treatment method, heat treatment apparatus and substrate processing apparatus
JP2010287635A (en) * 2009-06-09 2010-12-24 Tamura Seisakusho Co Ltd Reflow device
JP5731230B2 (en) * 2011-02-22 2015-06-10 株式会社Screenホールディングス Heat treatment equipment
CN202571519U (en) * 2012-03-26 2012-12-05 上海飞恩微电子有限公司 Rotary reflow soldering furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3378852B2 (en) * 1999-12-20 2003-02-17 富士通株式会社 Heat melting processing equipment
US20040000378A1 (en) * 2002-07-01 2004-01-01 Chunghsin Lee Isolation chamber arrangement for serial processing of semiconductor wafers for the electronic industry
US20060032079A1 (en) * 2004-06-10 2006-02-16 Jian Zhang Serial thermal processor arrangement
KR20110018873A (en) * 2008-04-28 2011-02-24 에르사 게엠베하 Device and method for thermally treating workpieces in particular by convective heat transfer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998813A (en) * 2017-08-07 2020-04-10 波士顿制程技术有限公司 Hot wall fluxing-free solder ball processing device
CN110998813B (en) * 2017-08-07 2023-12-01 柏锐科技有限公司 Hot wall soldering flux-free solder ball treatment device

Also Published As

Publication number Publication date
CN104903992A (en) 2015-09-09
KR20140090011A (en) 2014-07-16
KR101491992B1 (en) 2015-02-10
TWI531017B (en) 2016-04-21
TW201428867A (en) 2014-07-16

Similar Documents

Publication Publication Date Title
WO2014109528A1 (en) Method for continuous processing of semiconductor wafer
WO2014109526A1 (en) Apparatus and method for continuous processing of semiconductor wafer
WO2016204424A1 (en) Hybrid substrate processing system for dry and wet process and substrate processing method thereof
WO2010011013A1 (en) Multi-workpiece processing chamber and workpiece processing system including the same
WO2010008211A2 (en) Batch-type heat treatment device and heater used therein
WO2011132885A2 (en) Substrate processing apparatus
WO2020218813A1 (en) Etching device
WO2013095030A1 (en) Substrate-processing apparatus and substrate-processing method
WO2013191421A1 (en) Substrate-treating apparatus
WO2016148327A1 (en) In-line sputtering system having plurality of rotatable tray holders, and package shielding manufacturing method using same
WO2019093609A1 (en) Chuck plate, chuck structure having chuck plate, and bonding device having chuck structure
WO2017030414A1 (en) Substrate treatment device and substrate treatment method
WO2019194327A1 (en) Wafer storage container
WO2017010663A1 (en) Substrate liquid processing apparatus and method
WO2011019215A2 (en) Apparatus for forming layer
WO2022124780A1 (en) Bonding head and bonding device having same
WO2011002204A2 (en) Laminating system and method
WO2011065776A2 (en) Tray and substrate processing apparatus using same and method for manufacturing tray
WO2023085662A1 (en) Support unit and substrate processing apparatus comprising same
WO2016186389A1 (en) In-line production system for organic light emitting device, in-line production method, organic film apparatus, and donor substrate set
WO2015130140A1 (en) Atomic layer deposition apparatus and atomic layer deposition system
WO2020235823A1 (en) Dry cleaning method using plasma and steam
WO2024071693A1 (en) Substrate raising/lowering module, substrate processing module including same, and substrate processing system
WO2018230806A1 (en) Substrate treatment device
WO2020116771A1 (en) Substrate treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14738330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14738330

Country of ref document: EP

Kind code of ref document: A1