Nothing Special   »   [go: up one dir, main page]

WO2014188715A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2014188715A1
WO2014188715A1 PCT/JP2014/002655 JP2014002655W WO2014188715A1 WO 2014188715 A1 WO2014188715 A1 WO 2014188715A1 JP 2014002655 W JP2014002655 W JP 2014002655W WO 2014188715 A1 WO2014188715 A1 WO 2014188715A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor device
semiconductor layer
type
diffusion suppression
Prior art date
Application number
PCT/JP2014/002655
Other languages
English (en)
French (fr)
Inventor
雄介 木下
田村 聡之
上田 哲三
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2015518077A priority Critical patent/JP6330148B2/ja
Publication of WO2014188715A1 publication Critical patent/WO2014188715A1/ja
Priority to US14/930,628 priority patent/US9837496B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/432Heterojunction gate for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66893Unipolar field-effect transistors with a PN junction gate, i.e. JFET
    • H01L29/66916Unipolar field-effect transistors with a PN junction gate, i.e. JFET with a PN heterojunction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66893Unipolar field-effect transistors with a PN junction gate, i.e. JFET
    • H01L29/66924Unipolar field-effect transistors with a PN junction gate, i.e. JFET with an active layer made of a group 13/15 material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • H01L29/8086Thin film JFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys

Definitions

  • the present disclosure relates to a semiconductor device and a manufacturing method thereof.
  • FETs field effect transistors
  • GaN gallium nitride
  • heterojunctions can be formed in the same way as conventional arsenic semiconductor materials such as gallium arsenide (GaAs). Can be formed.
  • a heterojunction made of a nitride semiconductor has a feature that a high concentration of carriers generated by spontaneous polarization or piezo-polarization is generated at the interface of the heterojunction even without doping.
  • the FET is likely to be a depletion type (normally on type), and therefore it is difficult to obtain an enhancement type (normally off type) characteristic.
  • most devices currently used in the power electronics market are normally-off type, and normally-off type is strongly demanded for GaN-based nitride semiconductor devices.
  • JFET junction field effect transistor
  • the piezoelectric polarization generated at the first hetero interface between the channel layer made of GaN and the barrier layer made of AlGaN is caused by the second polarization between the barrier layer made of AlGaN and the p-type GaN layer thereon. It is canceled out by other piezo polarization generated at the heterointerface.
  • the two-dimensional electron gas concentration (2DEG: Two Dimensional Electron Gas) immediately below the gate formation region where the p-type GaN layer is formed can be selectively reduced, so that the JFET can realize normally-off characteristics.
  • the JFET shown in FIGS. 1 and 2 includes a GaN layer 901, an AlGaN barrier layer 902 formed on the GaN layer 901, and a source electrode 903 and a drain electrode made of Ti / Al formed on the AlGaN barrier layer 902. 904 (hereinafter, these may be referred to as Ti / Al electrodes).
  • the AlGaN represents ternary mixed crystal Al u Ga 1-u N (where u is a certain value, where 0 ⁇ u ⁇ 1).
  • the multi-element mixed crystal may be abbreviated by an arrangement of respective constituent element symbols, for example, InAlGaN, GaN, or the like.
  • a nitride semiconductor In x Al y Ga 1-xy N (x and y are certain values, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) is abbreviated as InAlGaN.
  • the JFET shown in FIG. 1 is manufactured by forming a Ti / Al electrode on an AlGaN / GaN epitaxial growth layer.
  • the JFET shown in FIG. 2 is manufactured by selectively removing only the p-type GaN layer 905 by dry etching from the p-type GaN / AlGaN / GaN epitaxial growth layer, and then forming a Ti / Al electrode. It is. That is, FIG. 1 is a cross-sectional view showing a process flow of a JFET not using dry etching, and FIG. 2 is a cross-sectional view showing a process flow of a JFET using dry etching. The final structure is the same for both.
  • FIG. 3 is a graph showing the contact resistivity of each of the two types of samples shown in FIGS. As shown in the figure, the contact resistance of the sample grown with the p-type GaN layer 905 (sample with dry etching) is higher than the contact resistance of the sample without growth of the p-type GaN layer 905 (sample without dry etching). Is getting bigger.
  • the AlGaN barrier layer 902 containing Mg becomes p-type, the contact resistance and the sheet resistance are deteriorated.
  • an Al-based material such as Ti / Al often used for the source electrode 903 and the drain electrode 904 is a metal material having a small work function for an n-type GaN-based nitride semiconductor
  • the AlGaN barrier layer 902 is made p-type. The contact resistance deteriorates.
  • the AlGaN barrier layer 902 is p-type, the carrier resistance of the two-dimensional electron gas is reduced as compared with the i-type and n-type, so that the sheet resistance is deteriorated.
  • the diffusion of the p-type dopant doped in the p-type GaN layer 905 may cause deterioration of device performance.
  • the technology in the present disclosure has been proposed to solve such problems, and an object thereof is to provide a semiconductor device that can improve contact resistance and sheet resistance, and a method for manufacturing the same.
  • a semiconductor device includes a first device including In p Al q Ga 1-pq N (0 ⁇ p + q ⁇ 1, 0 ⁇ p, 0 ⁇ q).
  • the fourth semiconductor layer Even if the p-type dopant is diffused during the growth of the p-type dopant, the amount of the p-type dopant diffused into the second semiconductor layer can be reduced. For this reason, p-type of the second semiconductor layer can be suppressed, and deterioration of contact resistance and sheet resistance can be suppressed.
  • a method for manufacturing a semiconductor device includes a first semiconductor layer formed of In p Al q Ga 1-pq N (0 ⁇ p + q ⁇ 1, 0 ⁇ p, 0 ⁇ q).
  • forming a fourth semiconductor layer comprising y) forming a gate electrode on the fourth semiconductor layer, and the fourth After the step of forming the semiconductor layer, and removing the area other than the area corresponding to the gate electrode of the third semiconductor layer and said fourth semiconductor layer.
  • a semiconductor device capable of improving contact resistance and sheet resistance can be manufactured.
  • the contact resistance and the sheet resistance can be improved.
  • FIG. 1 is a cross-sectional view showing a process flow of a JFET that does not use dry etching.
  • FIG. 2 is a cross-sectional view showing a process flow of JFET using dry etching.
  • FIG. 3 is a graph showing the contact resistivity of each of the two types of samples shown in FIGS. 1 and 2.
  • FIG. 4 is a cross-sectional view showing the configuration of the nitride semiconductor device according to the first embodiment.
  • FIGS. 5A to 5E are views showing a manufacturing process of the nitride semiconductor device according to the first embodiment.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a nitride semiconductor device according to Modification 1 of the first embodiment.
  • FIG. 7 is a cross-sectional view illustrating a configuration of a nitride semiconductor device according to Modification 2 of the first embodiment.
  • FIG. 8 is a cross-sectional view illustrating a configuration of a nitride semiconductor device according to Modification 3 of the first embodiment.
  • FIG. 9 is a cross-sectional view illustrating a configuration of a nitride semiconductor device according to Modification 4 of the first embodiment.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a nitride semiconductor device according to Modification 5 of the first embodiment.
  • FIG. 11 is a cross-sectional view showing the configuration of the nitride semiconductor device according to the second embodiment.
  • FIG. 12 is a cross-sectional view showing the configuration of the nitride semiconductor device according to the third embodiment.
  • FIG. 13 is a cross-sectional view showing the configuration of the nitride semiconductor device according to the fourth embodiment.
  • FIG. 4 is a cross-sectional view illustrating a configuration of the nitride semiconductor device 100 according to the first embodiment of the present disclosure.
  • the nitride semiconductor device 100 is an example of a semiconductor device according to the present disclosure, and is, for example, a field effect transistor.
  • the nitride semiconductor device 100 includes, for example, a Si substrate 101 having a (111) plane as a main surface, a buffer layer 102 made of AlN provided on the (111) plane of the Si substrate 101, and a buffer layer 102.
  • the barrier layer 104 has a larger band gap than the channel layer 103.
  • a two-dimensional electron gas is generated at the interface between the barrier layer 104 and the channel layer 103.
  • the band gap and the lattice constant of the second semiconductor layer can be changed by changing the combination of the In and Al compositions of the barrier layer 104 in the above structure, but the channel layer 103 and the barrier layer 104 can be changed.
  • the band gap of the barrier layer 104 needs to be larger than the band gap of the channel layer 103 so that electrons accumulate at the interface with the channel layer 103.
  • the channel layer 103, the barrier layer 104, the diffusion suppression layer 105, and the p-type conductive layer 106 are in this order, the first semiconductor layer, the second semiconductor layer, the third semiconductor layer, and the fourth semiconductor. It is an example of a layer.
  • the buffer layer 102 has a thickness of 100 nm
  • the channel layer 103 has a thickness of 2 ⁇ m
  • the barrier layer 104 has a thickness of 30 nm
  • the diffusion suppression layer 105 has a thickness of 25 nm
  • the p-type conductive layer 106 has a thickness of 200 nm. is there.
  • a gate electrode 107 made of nickel (Ni) is formed on the p-type conductive layer 106.
  • a source electrode 108 and a drain electrode 109 made of titanium (Ti) / aluminum (Al) are formed on both sides of the gate electrode 107 so as to be in contact with the barrier layer 104.
  • the p-type conductive layer 106 is doped with, for example, 5 ⁇ 10 19 / cm 3 Mg. That is, in the p-type conductive layer 106, Mg is a p-type dopant.
  • the diffusion suppression layer 105 suppresses Mg diffusion from the p-type conductive layer 106 to the barrier layer 104. Since the diffusion suppression layer 105 contains Mg diffused from the p-type conductive layer 106, the amount of change in the Mg concentration per length in the film thickness direction is greater in the diffusion suppression layer 105 than in the p-type conductive layer 106. Is big.
  • the Mg concentration of the diffusion suppression layer 105 is 1 ⁇ 10 19 / cm 3 or less at the portion in contact with the barrier layer 104.
  • the barrier layer 104 has a Mg concentration of 1 ⁇ 10 19 / cm 3 or less at a portion in contact with the diffusion suppression layer 105. Thereby, the p-type of the barrier layer 104 can be suppressed. As a result, deterioration of sheet resistance is reduced, ohmic contact with the source electrode 108 and the drain electrode 109 is obtained, and good on-resistance can be obtained.
  • the film thickness of the diffusion suppressing layer 105 may be set to such a film thickness that the Mg concentration is 1 ⁇ 10 19 / cm 3 or less in a portion in contact with the barrier layer 104.
  • the barrier layer 104 by suppressing the p-type of the barrier layer 104, a decrease in the carrier density of the two-dimensional electron gas generated at the interface between the channel layer 103 and the barrier layer 104 can be suppressed. Therefore, deterioration of sheet resistance can be suppressed.
  • the barrier layer 104 by suppressing the p-type of the barrier layer 104, it is possible to suppress deterioration of the contact resistance of the source electrode 108 and the drain electrode 109 made of an Al-based material. More specifically, since the Al-based material such as Ti / Al constituting the source electrode 108 and the drain electrode 109 is a metal material having a low work function for an n-type GaN-based nitride semiconductor, the barrier layer 104 is formed of p. When the mold is made, the contact resistance deteriorates. On the other hand, in this embodiment, since the diffusion suppression layer 105 is provided, it is possible to suppress the p-type of the barrier layer 104, and thus it is possible to suppress deterioration of contact resistance.
  • the barrier layer 104 in contact with the source electrode 108 and the drain electrode 109 is not made p-type, deterioration of contact resistance and sheet resistance can be suppressed.
  • Mg or Zn is selected as a p-type dopant, but these are known to have a low activation rate due to deep impurity levels.
  • hydrogen atoms generated by decomposition of hydrogen used for the carrier gas form Mg—H combined with magnesium, and Mg is inactive Turn into. Hydrogen can be removed to some extent by performing high-temperature annealing at about 800 ° C.
  • the activation rate of Mg in nitrides is generally estimated to be about 10%, and considering the presence of a high concentration of hydrogen in each semiconductor layer, the Mg concentration is 1 ⁇ 10 19 (/ cm 3 ) or less. If so, the barrier layer 104 is difficult to be p-type, and if it is 1 ⁇ 10 18 (/ cm 3 ) or less, it can be said that the barrier layer 104 is not p-type.
  • the barrier layer 104 has a Mg concentration of 1 ⁇ 10 18 (/ cm 3 ) or less in a portion in contact with the diffusion suppression layer 105, the barrier layer 104 in contact with the source electrode 108 and the drain electrode 109 becomes p-type. Therefore, deterioration of contact resistance and sheet resistance can be suppressed.
  • the Mg concentration of the barrier layer 104 is 1 ⁇ 10 19 (/ cm 3 ) or less, the diffusion suppression layer 105 In the portion in contact with the barrier layer 104, the Mg concentration is 1 ⁇ 10 19 (/ cm 3 ) or less.
  • the Al concentration in the barrier layer 104 is high, Mg is difficult to diffuse and easily accumulate, and therefore the Mg concentration may be high in a portion other than the portion in contact with the diffusion suppression layer 105 of the barrier layer 104.
  • the Mg concentration on the side of the diffusion suppression layer 105 in contact with the p-type conductive layer 106 outside the gate electrode formation region where the gate electrode 107 is formed is arbitrary. That is, in the manufacturing process of the nitride semiconductor device 100, the concentration of Mg in the diffusion suppression layer 105 in an area removed by, for example, plasma dry etching is arbitrary.
  • 5A to 5E are views showing a manufacturing process of the nitride semiconductor device 100 according to this embodiment.
  • the buffer layer 102, the channel layer 103, and the barrier layer 104 are formed on the Si substrate 101 in this order by the MOCVD method. Thereby, as shown to (a) of FIG. 5, Si substrate 101, the buffer layer 102, the channel layer 103, and the barrier layer 104 are formed. With this stacked structure, a two-dimensional electron gas is generated at the interface between the channel layer 103 and the barrier layer 104.
  • the diffusion suppression layer 105 is formed by the MOCVD method
  • the p-type conductive layer 106 is formed by the MOCVD method.
  • the gate electrode layer 107a to be formed is formed using a vacuum evaporation method or a sputtering method.
  • a source electrode 108 and a drain electrode 109 made of Ti / Al are formed on the barrier layer 104 by using a vacuum evaporation method or a sputtering method.
  • the nitride semiconductor device 100 is manufactured through the above steps.
  • the gate electrode 107 is formed by removing a region other than the gate electrode formation region of the gate electrode layer 107a, but the manufacturing process of the nitride semiconductor device 100 is not limited to this.
  • the diffusion suppression layer 105 and the p-type conductive layer 106 other than the gate electrode formation region are removed by the plasma dry etching method, and then the gate is formed by the lift-off method.
  • the electrode 107 may be formed.
  • the p-type conductive layer 106 is formed after the diffusion suppression layer 105 is formed. Therefore, when the p-type conductive layer 106 is formed, it is possible to suppress the diffusion of Mg as the p-type dopant from the p-type conductive layer 106 to the barrier layer 104. That is, the nitride semiconductor device 100 that can improve the contact resistance and the sheet resistance can be manufactured.
  • the diffusion suppression layer 105 and the p-type conductive layer 106 other than the gate electrode formation region can be formed using plasma dry etching at the time of manufacturing. It becomes easy to remove. Specifically, the lattice constant difference between InN, GaN, and AlN is larger than the lattice constant difference between AlN and GaN. Therefore, In t Al u Ga 1- tu N (0 ⁇ t + u ⁇ 1) in which the non-miscibility of the diffusion suppression layer 105 and the p-type conductive layer 106 can be manufactured, plasma dry etching is facilitated. Note that In does not have to be added to each of the diffusion suppression layer 105 and the p-type conductive layer 106.
  • Layer 106 is provided.
  • the nitride semiconductor device according to the present modification is an example of the semiconductor device according to the present disclosure and is substantially the same as the nitride semiconductor device 100 according to the first embodiment, but In is not added to the diffusion suppression layer. The point is different.
  • FIG. 6 is a cross-sectional view showing a configuration of a nitride semiconductor device 150 according to Modification 1 of the first embodiment.
  • “undoped” means that impurities are not intentionally introduced.
  • the film thickness of the diffusion suppression layer 110 is 25 nm.
  • the diffusion suppression layer 110 improves the immiscibility and grows a semiconductor with few crystal defects compared to the diffusion suppression layer 105 of the nitride semiconductor device 100 according to the first embodiment. Can be made.
  • the reliability of the nitride semiconductor device 150 can be improved, for example, electrostatic breakdown caused by crystal defects can be suppressed.
  • the manufacturing process of the nitride semiconductor device 150 according to the present modification is substantially the same as the manufacturing process of the nitride semiconductor device 100 according to the first embodiment, but after the barrier layer 104 is formed, the diffusion suppressing layer 105 is formed. Instead, the diffusion suppression layer 110 is formed, and the gate electrode layer 107a, the p-type conductive layer 106, and the diffusion suppression layer 110 other than the gate electrode formation region are removed by plasma dry etching. Thereby, the nitride semiconductor device 150 is manufactured.
  • the nitride semiconductor device according to the present modification is an example of the semiconductor device according to the present disclosure and is substantially the same as the nitride semiconductor device 100 according to the first embodiment, but In and Al are added to the diffusion suppression layer. Not different.
  • FIG. 7 is a cross-sectional view showing a configuration of a nitride semiconductor device 160 according to Modification 2 of the first embodiment.
  • the film thickness of the diffusion suppressing layer 111A is 25 nm.
  • In and Al are not added as compared with the diffusion suppression layer 105 in the first embodiment. That is, Al is not added as compared with the diffusion suppression layer 110 in the first modification of the first embodiment.
  • the nitride semiconductor device 160 according to this modification has the following effects.
  • the nitride semiconductor device 160 according to the second modification of the first embodiment includes the diffusion suppression layer 111A represented by undoped GaN.
  • the diffusion suppression layer 111A in the present modification is not added with Al as compared with the diffusion suppression layer 110 in Modification 1 of the first embodiment, the diffusion suppression layer with respect to the barrier layer 104 containing Al. It becomes easy to increase the selective ratio of selective etching of 111A. Therefore, the etching amount of the barrier layer 104 can be further suppressed. Therefore, a decrease in the two-dimensional electron gas concentration generated at the interface between the channel layer 103 and the barrier layer 104 can be suppressed. That is, the manufacturing yield can be improved.
  • the manufacturing process of the nitride semiconductor device 160 according to this modification is substantially the same as the manufacturing process of the nitride semiconductor device 100 according to the first embodiment, but after the barrier layer 104 is formed, the diffusion suppressing layer 105 is formed. Instead, the diffusion suppressing layer 111A is formed and the gate electrode layer 107a, the p-type conductive layer 106, and the diffusion suppressing layer 111A other than the gate electrode forming region are removed by plasma dry etching. Thereby, the nitride semiconductor device 160 is manufactured.
  • the nitride semiconductor device according to the present modification is an example of the semiconductor device according to the present disclosure and is substantially the same as the nitride semiconductor device 100 according to the second modification of the first embodiment, but the diffusion suppression layer is an n-type. Is different.
  • FIG. 8 is a cross-sectional view showing a configuration of a nitride semiconductor device 170 according to Modification 3 of the first embodiment.
  • the nitride semiconductor device 170 according to this modification has a structure in which the diffusion suppression layer 111A represented by undoped GaN shown in FIG. 8 is replaced with a diffusion suppression layer 111B represented by n-type GaN.
  • the film thickness of the diffusion suppression layer 111B is 25 nm, and the Si concentration is 1 ⁇ 10 18 / cm 3 .
  • the diffusion suppression layer 111B is n-type by being doped with Si, which is an n-type dopant, as compared with the diffusion suppression layer 111A in Modification 2 of the first embodiment.
  • Mg which is a p-type dopant diffused from the p-type conductive layer 106 can be compensated. Therefore, it becomes difficult for the barrier layer 104 to be p-type.
  • the diffusion suppression layer 111B can be removed even if the diffusion suppression layer 111B cannot be completely removed. Since Si added to 111B compensates for p-type formation by Mg, it is possible to easily obtain a low contact resistance from the diffusion suppression layer 111B, and to improve the manufacturing yield.
  • the diffusion suppression layer 111B cannot be completely removed by plasma dry etching, and the lower layer remains in the diffusion suppression layer 111B, a subsequent step of forming the source electrode 108 and the drain electrode 109 (FIG. 5).
  • the source electrode 108 and the drain electrode 109 are formed on the remaining diffusion suppression layer 111B.
  • the diffusion suppression layer 111B that remains without being removed by the plasma dry etching becomes i-type or remains n-type by compensating for Mg diffused from the p-type conductive layer 106. Therefore, the source electrode 108 and the drain electrode 109 can obtain a low contact resistance from the diffusion suppression layer 111B, and can improve the manufacturing yield.
  • the nitride semiconductor device 170 according to the third modification of the first embodiment includes the n-type diffusion suppression layer 111B having a Si concentration of 1 ⁇ 10 18 (/ cm 3 ) or more.
  • the diffusion suppression layer 111B in the present modification is n-type compared to the diffusion suppression layer 111A in Modification 2 of the first embodiment, so that Mg diffused from the p-type conductive layer 106 can be reduced. Can be compensated. Therefore, since the barrier layer 104 can be further prevented from being p-type, a low contact resistance can be obtained. Furthermore, even when the diffusion suppression layer 111B cannot be completely removed by plasma dry etching, a low contact resistance can be obtained and the manufacturing yield can be improved.
  • the manufacturing process of the nitride semiconductor device 170 according to this modification is substantially the same as the manufacturing process of the nitride semiconductor device 100 according to the first embodiment, but after the barrier layer 104 is formed, the diffusion suppressing layer 105 is formed. Instead, the diffusion suppression layer 111B is formed and the gate electrode layer 107a, the p-type conductive layer 106, and the diffusion suppression layer 111B other than the gate electrode formation region are removed by plasma dry etching. Thereby, the nitride semiconductor device 170 is manufactured.
  • the nitride semiconductor device according to the present modification is an example of the semiconductor device according to the present disclosure and is substantially the same as the nitride semiconductor device 160 according to the second modification of the first embodiment, but the channel layer is made of undoped GaN.
  • the barrier layer is made of undoped AlGaN, and the p-type conductive layer is made of p-type GaN.
  • FIG. 9 is a cross-sectional view showing a configuration of a nitride semiconductor device 180 according to Modification 4 of the first embodiment.
  • the film thickness of the diffusion suppressing layer 111A is 25 nm
  • the film thickness of the barrier layer 113 is 10 nm
  • the film thickness of the p-type conductive layer 114 is 200 nm.
  • the nitride semiconductor device 180 according to this modification has the following effects.
  • the p-type conductive layer 114 is grown without being limited to the critical film thickness due to lattice distortion caused by the addition of Al.
  • the p-type conductive layer 114 with few crystal defects can be obtained. Accordingly, variation in contact resistance with the gate electrode 107 can be suppressed, and yield can be improved.
  • the p-type conductive layer 114 and the diffusion suppression layer 111A do not contain Al, since the p-type conductive layer 114 and the diffusion suppression layer 111A do not contain Al, the p-type conductive layer 114 and The diffusion suppression layer 111 ⁇ / b> A has a plasma dry etching rate higher than that of the barrier layer 113 and can be selectively removed. As a result, the etching amount of the barrier layer 113 can be suppressed, and a decrease in the two-dimensional electron gas concentration generated at the interface between the barrier layer 113 and the channel layer 112 can be suppressed.
  • the channel layer 112 in this modification example is not added with In and Al as compared with the channel layer 103 in the modification example 2 of the first embodiment, and the barrier layer 113 in this modification example has the first structure In comparison with the barrier layer 104 in the second modification of the embodiment, In is not added.
  • the nitride semiconductor device 180 according to this modification has the following effects.
  • the nitride semiconductor device 180 according to the fourth modification of the first embodiment includes the p-type conductive layer 114 represented by p-type GaN.
  • the nitride semiconductor device 180 according to the present modification is limited to the critical film thickness due to lattice distortion caused by the addition of Al.
  • the p-type conductive layer 114 can be grown without any defects, and the p-type conductive layer 114 with few crystal defects can be obtained. Accordingly, variation in contact resistance with the gate electrode 107 can be suppressed, and yield can be improved.
  • the manufacturing process of the nitride semiconductor device 180 according to this modification is substantially the same as the manufacturing process of the nitride semiconductor device 100 according to the first embodiment.
  • the buffer layer 102, the channel layer 112, the barrier layer 113, the diffusion suppressing layer 111A, and the p-type conductive layer 114 are formed in this order on the Si substrate 101 by metal organic chemical vapor deposition (MOCVD: Metal Organic Chemical Vapor Deposition). ) Method.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • the gate electrode layer 107a is formed using a vacuum deposition method or a sputtering method, and the gate electrode layer 107a, the p-type conductive layer 114, and the diffusion suppression layer 111A other than the gate electrode formation region are removed.
  • the source electrode 108 and the drain electrode 109 are formed on the barrier layer 113 by using a vacuum evaporation method or a sputtering method. Thereby, the nitride semiconductor device 180 is manufactured.
  • the nitride semiconductor device according to this modification is an example of a semiconductor device, and is substantially the same as the nitride semiconductor device 100 according to the first embodiment, but the diffusion suppression layer is an n-type Al u Ga 1-u.
  • FIG. 10 is a cross-sectional view showing a configuration of a nitride semiconductor device 190 according to Modification 5 of the first embodiment.
  • the thickness of the diffusion suppression layer 115 made of n-type AlGaN is 5 nm, the Si concentration is 1 ⁇ 10 18 / cm 3 , and the thickness of the diffusion suppression layer 116 made of undoped AlGaN is 20 nm. Since Mg is less likely to diffuse in AlGaN than in GaN, the barrier layer is formed by the presence of the diffusion suppression layer 115 made of n-type AlGaN and the diffusion suppression layer 116 made of undoped AlGaN, compared to the case where Al is not added. Mg diffusion to 104 can be suppressed.
  • the diffusion suppression layer 115 is n-type by being doped with Si that is an n-type dopant.
  • Mg which is a p-type dopant diffused from the p-type conductive layer 106 through the diffusion suppression layer 116 made of undoped AlGaN can be compensated. Therefore, it becomes difficult for the barrier layer 104 to be p-type.
  • a diffusion suppression layer made of n-type AlGaN Even if 115 cannot be completely removed, Si added to the diffusion suppression layer 115 compensates for p-type formation by Mg, so that a low contact resistance can be easily obtained from the diffusion suppression layer 115, and the manufacturing yield can be increased. Can be improved.
  • the diffusion suppression layer 115 cannot be completely removed by plasma dry etching, and the lower layer remains in the diffusion suppression layer 115, a process of forming the subsequent source electrode 108 and drain electrode 109 (FIG. 5).
  • the source electrode 108 and the drain electrode 109 are formed on the remaining diffusion suppression layer 115.
  • the diffusion suppression layer 115 that remains without being removed by plasma dry etching becomes i-type by compensating for Mg diffused from the p-type conductive layer 106 through the diffusion suppression layer 116, or n-type. Remains. Therefore, the source electrode 108 and the drain electrode 109 can obtain a low contact resistance from the diffusion suppression layer 115, and can improve the manufacturing yield.
  • the diffusion suppression layer 115 may not be n-type. Even in such a configuration, diffusion of Mg from the p-type conductive layer 106 to the barrier layer 104 is further suppressed by adding Al to the diffusion suppression layer 115 as compared to the case where Al is not added. can do. Therefore, low contact resistance can be obtained.
  • the diffusion suppression layer 116 may be a semiconductor layer made of GaN, and the diffusion suppression layer 116 made of GaN may have a Si concentration of 1 ⁇ 10 18 (/ cm 3 ) or more.
  • the diffusion suppression layer 116 becomes n-type, Si in the diffusion suppression layer 116 compensates for p-type conversion by Mg even when the diffusion suppression layer 116 cannot be completely removed by plasma dry etching. Therefore, it is possible to easily obtain a low contact resistance from the diffusion suppressing layer 116, and to improve the manufacturing yield.
  • the manufacturing process of the nitride semiconductor device 190 according to the present modification is substantially the same as the manufacturing process of the nitride semiconductor device 100 according to the first embodiment. However, after the barrier layer 104 is formed, the diffusion suppressing layer 105 is formed. Instead, the diffusion suppression layer 115 and the diffusion suppression layer 116 are formed, and the gate electrode layer 107a, the p-type conductive layer 106, the diffusion suppression layer 115, and the diffusion suppression layer 116 other than the gate electrode formation region are removed by plasma dry etching. Is different. Thereby, the nitride semiconductor device 190 is manufactured.
  • the second embodiment will be described below with reference to FIG.
  • the nitride semiconductor device according to the present embodiment is an example of a semiconductor device, and is substantially the same as the nitride semiconductor device 100 according to the first embodiment, but further includes a cap layer formed on the barrier layer 104. The point is different.
  • components that are substantially the same as those in the first embodiment may be denoted by the same reference numerals and description thereof may be omitted.
  • FIG. 11 is a cross-sectional view illustrating a configuration of a nitride semiconductor device 200 according to the second embodiment of the present disclosure.
  • the buffer layer has a thickness of 100 nm
  • the channel layer 103 has a thickness of 2 ⁇ m
  • the barrier layer 104 has a thickness of 30 nm
  • the n-type AlGaN cap layer has a thickness of 5 nm
  • the diffusion suppression layer 105 has a thickness of 25 nm.
  • the film thickness of the p-type conductive layer 106 is 200 nm.
  • a gate electrode 107 made of nickel (Ni) is formed on the p-type conductive layer 106.
  • a source electrode 108 and a drain electrode 109 made of titanium (Ti) / aluminum (Al) are formed so as to be in contact with the cap layer 201 made of n-type AlGaN.
  • Si contained in the cap layer 201 made of n-type AlGaN can compensate for p-type conversion by Mg. As a result, deterioration of sheet resistance is reduced, ohmic contact with the source electrode 108 and the drain electrode 109 is obtained, and good on-resistance can be obtained.
  • the nitride semiconductor device 200 according to the present embodiment further includes a cap made of n-type AlGaN formed on the barrier layer 104 as compared with the nitride semiconductor device 100 according to the first embodiment.
  • Layer 201 is provided.
  • the nitride semiconductor device 200 according to the present embodiment includes a layer not doped with Si formed on the side in contact with the barrier layer 104 and a 1 ⁇ side formed on the side in contact with the source electrode 108 and the drain electrode 109.
  • the stacked structure of the barrier layer 104 and the cap layer 201 in this embodiment is an example of a second semiconductor layer.
  • the cap layer 201 which is an n-type layer is in contact with the source electrode 108 and the drain electrode 109, the contact resistance can be reduced.
  • the entire semiconductor layer (second semiconductor layer) between the channel layer 103 and the diffusion suppression layer 105 is not n-type, leakage current is suppressed and withstand voltage compared to a configuration in which the entire semiconductor layer is n-type. Can be improved.
  • the nitride semiconductor device according to the present embodiment is an example of a semiconductor device and is substantially the same as the nitride semiconductor device 100 according to the first embodiment, but further includes a diffusion suppression layer 105, a p-type conductive layer 106, and the like. And p-type conductive layers made of p-type AlGaN.
  • FIG. 12 is a cross-sectional view illustrating a configuration of a nitride semiconductor device 300 according to the third embodiment of the present disclosure.
  • the nitride semiconductor device 300 includes, for example, a Si substrate 101 having a (111) plane as a main surface, a buffer layer 102 made of AlN provided on the (111) plane of the Si substrate 101, and a buffer layer 102.
  • a gate electrode 107 made of nickel (Ni) is formed on the p-type conductive layer 106.
  • a source electrode 108 and a drain electrode 109 made of titanium (Ti) / aluminum (Al) are formed on both sides of the gate electrode 107 so as to be in contact with the barrier layer 104.
  • the p-type conductive layer 301 made of p-type AlGaN and the p-type conductive layer 106 made of p-type InAlGaN are doped with, for example, 5 ⁇ 10 19 / cm 3 Mg.
  • the diffusion suppression layer 105 includes Mg diffused from the p-type conductive layer 301 made of p-type AlGaN and the p-type conductive layer 106 made of p-type InAlGaN, but the concentration is 1 ⁇ in the portion in contact with the barrier layer 104. 10 19 / cm 3 or less.
  • the barrier layer 104 has a Mg concentration of 1 ⁇ 10 19 / cm 3 or less at a portion in contact with the diffusion suppression layer 105. Thereby, the p-type of the barrier layer 104 can be suppressed. As a result, deterioration of sheet resistance is reduced, ohmic contact with the source electrode 108 and the drain electrode 109 is obtained, and good on-resistance can be obtained.
  • the nitride semiconductor device 300 since the nitride semiconductor device 300 according to the present embodiment includes the p-type conductive layer 301 made of p-type AlGaN, compared to the case where only the p-type GaN layer is formed as the p-type semiconductor layer. Since a large built-in potential can be obtained, the threshold voltage of the gate is increased, the normally-off is facilitated, and the manufacturing yield is improved. In addition, the carrier density of the two-dimensional electron gas can be increased within a range in which normally-off can be maintained as long as the threshold voltage of the gate increases, and sheet resistance can be reduced. Resistance can be reduced.
  • the nitride semiconductor device 300 further includes the diffusion suppression layer 105 and the p-type conductive layer made of p-type InAlGaN, as compared with the nitride semiconductor device 100 according to the first embodiment.
  • a p-type conductive layer 301 made of p-type AlGaN is provided. Note that the stacked structure of the p-type conductive layer 301 and the p-type conductive layer 106 in this embodiment is an example of a fourth semiconductor layer.
  • the nitride semiconductor device 300 according to the present embodiment is compared with the nitride semiconductor device 100 according to the first embodiment.
  • Normally-off becomes easy. Specifically, since the band gap of the p-type conductive layer 301 made of p-type AlGaN is large, the position of the Fermi level can be greatly changed accordingly. In other words, the Fermi level can be made closer to the valence band. Then, since a large built-in potential is obtained, the threshold voltage of the gate is increased, and normally-off is facilitated.
  • a semiconductor layer made of GaN may be used instead of the p-type conductive layer 106 made of p-type InAlGaN. That is, as an example of the fourth semiconductor layer, the p-type conductive layer 301 made of Al z Ga 1-z N (0 ⁇ z ⁇ 1) formed on the side in contact with the diffusion suppression layer 105 is in contact with the gate electrode 107. You may provide the laminated structure with the p-type semiconductor layer which consists of GaN formed in the side.
  • the manufacturing process of the nitride semiconductor device 300 according to the present embodiment is substantially the same as the manufacturing process of the nitride semiconductor device 100 according to the first embodiment, but after forming the diffusion suppression layer 105 and p-type.
  • the p-type conductive layer 301 made of p-type AlGaN is formed by the MOCVD method, and the gate electrode layer 107a other than the gate electrode formation region and the p-type conductive layer 106 are formed by the plasma dry etching method.
  • the p-type conductive layer 301 and the diffusion suppression layer 105 are removed. Thereby, the nitride semiconductor device 300 is manufactured.
  • the nitride semiconductor device according to this embodiment is an example of a semiconductor device, and is substantially the same as the nitride semiconductor device 100 according to the first embodiment, but the upper surface of the barrier layer is formed below the gate electrode 107. The difference is that the diffusion suppression layer is formed so as to be buried in the recess.
  • FIG. 8 is a cross-sectional view illustrating a configuration of a nitride semiconductor device 400 according to the fourth embodiment of the present disclosure.
  • the nitride semiconductor device 400 includes, for example, a Si substrate 101 having a (111) plane as a main surface, a buffer layer 102 made of AlN provided on the (111) plane of the Si substrate 101, and a buffer layer 102.
  • a recess In x Al
  • a gate electrode 107 made of nickel (Ni) is formed on the p-type conductive layer 406.
  • a source electrode 108 and a drain electrode 109 made of titanium (Ti) / aluminum (Al) are formed on both sides of the gate electrode 107 so as to be in contact with the barrier layer 404.
  • the p-type conductive layer 406 is doped with 5 ⁇ 10 19 / cm 3 Mg.
  • the diffusion suppressing layer 405 includes Mg diffused from the p-type conductive layer 406, but the concentration thereof is 1 ⁇ 10 19 / cm 3 or less in a portion in contact with the barrier layer 404.
  • the barrier layer 404 has a Mg concentration of 1 ⁇ 10 19 / cm 3 or less at a portion in contact with the diffusion suppression layer 405. Thereby, the p-type of the barrier layer 404 can be suppressed. As a result, deterioration of sheet resistance is reduced, ohmic contact with the source electrode 108 and the drain electrode 109 is obtained, and good on-resistance can be obtained.
  • the recess 404a relaxes the electric field concentrated on the drain side end of the gate electrode 107 and the drain side end of the p-type conductive layer 406, thereby suppressing current collapse caused by the electric field concentration and preventing electrostatic breakdown of the device. Can be suppressed.
  • the composition and film thickness of the entire barrier layer 104 are limited in order to realize the normally-off of the device.
  • the recess 404a is formed as in the barrier layer 404 in the present embodiment, the composition and film thickness of the barrier layer 404 below the recess 404a are limited to the range in which normally-off is realized.
  • the composition and film thickness of the barrier layer 404 other than those below 404a can be set arbitrarily.
  • the sheet resistance is reduced by designing the composition and film thickness of the barrier layer 404 other than below the recess 404a so that the carrier density of the two-dimensional electron gas increases.
  • On-resistance can be reduced.
  • the composition of the barrier layer 404 other than the lower portion of the recess 404a is set to a composition that increases the band gap, or other than the lower portion of the recess 404a.
  • the thickness of the barrier layer 404 may be increased.
  • the composition and film thickness of the barrier layer 404 below the gate electrode 107 are limited to the composition and film thickness that can make the nitride semiconductor device 400 normally-off type.
  • the decrease in the carrier density of the two-dimensional electron gas causes the sheet resistance to deteriorate.
  • the recess 404a is formed in the barrier layer 404, and the lower portions of the diffusion suppression layer 405 and the p-type conductive layer 406 are embedded in the recess 404a, thereby improving the sheet resistance.
  • a normally-off type is realized.
  • the barrier layer 404 has the concave portion 404a formed on the upper surface as compared with the nitride semiconductor device 100 according to the first embodiment.
  • a diffusion suppression layer 405 is formed so as to fill 404a.
  • the nitride semiconductor device 400 according to the present embodiment has the following effects. Specifically, the electric field concentrated on the drain side end of the gate electrode 107 and the drain side end of the p-type conductive layer 406 can be reduced. Therefore, current collapse due to electric field concentration can be suppressed, and breakdown of nitride semiconductor device 400 due to electric field concentration can be prevented.
  • the composition and film thickness of the barrier layer 104 are limited in order to realize normally-off of the nitride semiconductor device 100.
  • the recess 404a is formed like the barrier layer 404 in the present embodiment, the barrier layer 404 in the region where the recess 404a is formed when the nitride semiconductor device 400 is viewed from the stacking direction.
  • the composition and film thickness are limited by the range in which normally-off of the nitride semiconductor device 400 is realized, the composition and film thickness of the barrier layer 404 other than the recess 404a can be arbitrarily set. Therefore, the nitride semiconductor device 400 according to this embodiment can reduce the sheet resistance by designing the composition and film thickness of the barrier layer 404 other than the recess 404a so that the carrier density of the two-dimensional electron gas increases. it can.
  • the diffusion suppression layer 405 may be formed so that at least a part of the recess 404a is filled when the nitride semiconductor device 400 is viewed from the stacking direction.
  • the concave portions 404a are formed so as to be filled. That is, it is more preferable that the gate electrode 107 is formed so as to cover the recess 404a when the nitride semiconductor device 400 is viewed from the stacking direction.
  • the sheet resistance is high under the concave portion 404a because the carrier density of the two-dimensional electron gas is lower than that under the concave portion 404a.
  • carriers can be induced by the gate voltage applied to the gate electrode 107, so the sheet resistance of the two-dimensional electron gas is lower than when no gate voltage is applied. It is possible to make resistance.
  • the carrier density of the two-dimensional electron gas cannot be adjusted because it is determined by the structure of the epitaxial growth layer (the channel layer 103, the barrier layer 404, the diffusion suppression layer 405, and the p-type conductive layer 406). . Accordingly, by covering the entire recess 404a with the gate electrode 107, the recess 404a is compared with the case where the entire recess 404a is not covered with the gate electrode 107, that is, compared with the case where a part of the recess 404a is covered with the gate electrode 107. The carrier density of the lower two-dimensional electron gas can be increased, and the sheet resistance can be reduced.
  • the lower portion of the p-type conductive layer 406 is embedded in the recess 404a.
  • the lower portion of the p-type conductive layer 406 may not be embedded in the recess 404a. That is, below the gate electrode 107, the distance between the interface between the channel layer 103 and the barrier layer 404 and the interface between the diffusion suppression layer 405 and the p-type conductive layer 406 is ensured as much as possible to realize the normally-off type of the nitride semiconductor device 400. It only has to be done.
  • the manufacturing process of the nitride semiconductor device 400 according to the present embodiment is substantially the same as the manufacturing process of the nitride semiconductor device 100 according to the first embodiment, but after the formation of the barrier layer 404 and the diffusion suppression layer. Before forming 405, a difference is that a recess 404 a is formed on the upper surface of the barrier layer 404 by dry etching. Thereby, the nitride semiconductor device 400 is manufactured.
  • the diffusion suppression layer 405 may have a structure in which a layer made of Al a Ga 1-a N (0 ⁇ a ⁇ 1) and a layer made of GaN are stacked. .
  • the Al a Ga 1-a N layer (0 ⁇ a ⁇ 1) of the diffusion suppression layer 405 remains in addition to the barrier layer 404 after the selective dry etching. Therefore, when the recess 404a is formed, the barrier layer 404 is etched to a depth exceeding the film thickness that is a boundary condition between normally-on and normally-off, and the diffusion is suppressed so that the film thickness satisfies the boundary condition between the normally-on and normally-off.
  • the layer 405 the carrier density of the two-dimensional electron gas in the region other than the recess 404a can be increased, so that the sheet resistance can be reduced.
  • Al a Ga 1-a N may have a Si concentration of 1 ⁇ 10 18 (/ cm 3 ) or more.
  • the layer made of GaN is 1 ⁇ 10 6. You may have Si density
  • the source electrode 108 and the drain electrode 109 can easily obtain a low contact resistance from the diffusion suppression layer 405, and the manufacturing yield can be improved.
  • the barrier layers 104, 113, and 404 may have a Si concentration of 1 ⁇ 10 18 (/ cm 3 ) or more.
  • each of the p-type conductive layers 106, 114, and 406 may be Al z Ga 1-z N (0 ⁇ z ⁇ 1).
  • the position of the Fermi level is increased accordingly. Can be changed. In other words, the Fermi level can be made closer to the valence band. Then, since a large built-in potential is obtained, the threshold voltage of the gate is increased, and normally-off is facilitated. Further, the carrier density of the two-dimensional electron gas can be increased in a range in which normally-off can be maintained corresponding to the increase in the gate threshold voltage, and the sheet resistance can be reduced. In order to increase the carrier density of the two-dimensional electron gas, the band gaps of the barrier layers 104, 113, and 404 may be increased or the film thickness may be increased.
  • the gate electrode 107 is not limited to a configuration made of Ni, and may be a metal electrode containing another metal (for example, Ti). Moreover, conductors other than metals, such as a polysilicon, may be sufficient.
  • the semiconductor device according to the present disclosure is useful as a power device such as a field effect transistor used in a power circuit of a consumer device such as a television.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

半導体装置は、InAlGa1-p-qN(0≦p+q≦1、0≦p、0≦q)からなるチャネル層と、チャネル層上に形成され、チャネル層よりバンドギャップの大きなInAlGa1-r-sN(0≦r+s≦1、0≦r)からなるバリア層と、バリア層の上に選択的に形成され、InAlGa1-t-uN(0≦t+u≦1、0≦t、s>u)からなる拡散抑制層と、拡散抑制層の上に形成され、p型の導電性を有するInAlGa1-x-yN(0≦x+y≦1、0≦x、0≦y)からなるp型導電層と、p型導電層の上に形成されたゲート電極とを備える。

Description

半導体装置及びその製造方法
 本開示は、半導体装置及びその製造方法に関する。
 近年、パワーデバイスとして窒化ガリウム(GaN)系の化合物半導体材料を用いた電界効果トランジスタ(FET:Field Effect Transistor)の研究が活発に行なわれている。
 GaN等の窒化物半導体材料は、窒化アルミニウム(AlN)及び窒化インジウム(InN)等の種々の混晶を作製できるため、従来のガリウム砒素(GaAs)等の砒素系半導体材料と同様にヘテロ接合を形成することができる。特に、窒化物半導体によるヘテロ接合には、ドーピングをしない状態でも、そのヘテロ接合の界面において自発分極又はピエゾ分極によって生じる高濃度のキャリアが発生するという特徴がある。その結果、FETを作製した場合には、該FETがデプレッション型(ノーマリオン型)になり易く、従って、エンハンスメント型(ノーマリオフ型)の特性を得ることは難しい。しかしながら、現在、パワーエレクトロニクス市場で使用されているデバイスのほとんどがノーマリオフ型であり、GaN系の窒化物半導体装置についてもノーマリオフ型が強く求められている。
 ノーマリオフ型のトランジスタには、ゲート形成領域を掘り込むことにより、ゲートの閾値電圧を正の値にシフトさせる構造(例えば、非特許文献1を参照)や、サファイアからなる基板における結晶面の面方位である(10-12)面の上にFETを作製して、窒化物半導体の結晶成長の方向に分極電界を生じないようにすることにより、ノーマリオフ型を実現する方法等がある(例えば、非特許文献2を参照)。ここで、面方位におけるミラー指数に付した負符号「-」は、該負符号に続く一の指数の反転を便宜的に表わしている。
 また、ノーマリオフ型のFETを実現する有望な構造として、ゲート形成領域にp型GaN層を設けた接合型電界効果トランジスタ(JFET:Junction Field Effect Transistor)が提案されている(例えば、特許文献1を参照)。
 JFETにおいて、GaNからなるチャネル層とAlGaNからなるバリア層との間の第1のヘテロ界面に発生するピエゾ分極は、AlGaNからなるバリア層とその上のp型GaN層との間の第2のヘテロ界面に発生する他のピエゾ分極によって打ち消される。これにより、p型GaN層が形成されたゲート形成領域の直下の2次元電子ガス濃度(2DEG:Two Dimentional Electron Gas)を選択的に小さくすることができるため、JFETはノーマリオフ特性を実現できる。また、pn接合として、金属と半導体との接合であるショットキー接合よりもビルトインポテンシャルが大きいpn接合をゲート電極に用いることにより、ゲートの立ち上がり電圧を大きくすることができる。このため、正のゲート電圧を印加してもゲートリーク電流を小さくすることができるという利点がある。
特開2005-244072号公報
T. Kawasaki et al, Solid State Devices and Materials 2005 tech. digest pp.206-207 M. Kuroda et al, Solid State Devices and Materials 2005 tech. digest pp.470-471
 図1及び図2はプロセスフローの異なるJFETの試料断面図である。
 これら図1及び図2に示すJFETは、GaN層901と、GaN層901上に形成されたAlGaNバリア層902と、AlGaNバリア層902上に形成されたTi/Alからなるソース電極903及びドレイン電極904(以下、これらをTi/Al電極と記載する場合あり)とを備える。
 ここで、上記AlGaNとは、3元混晶AlGa1-uN(uはある値、但し0≦u≦1)のことを表す。以下、多元混晶はそれぞれの構成元素記号の配列、例えばInAlGaN、GaN等でもって略記される場合がある。例えば、窒化物半導体InAlGa1-x-yN(x、yはある値、但し0≦x≦1、0≦y≦1)はInAlGaNと略記される。
 図1に示すJFETは、AlGaN/GaNエピタキシャル成長層にTi/Al電極を形成することにより製造したものである。一方、図2に示すJFETは、p型GaN/AlGaN/GaNエピタキシャル成長層に対してp型GaN層905だけをドライエッチングで選択的に除去した後、Ti/Al電極を形成することにより製造したものである。つまり、図1はドライエッチングを利用しないJFETのプロセスフローを示す断面図であり、図2はドライエッチングを利用したJFETのプロセスフローを示す断面図である。最終的な構造はどちらも同じである。
 図3は図1及び図2に示した2種類の試料のそれぞれのコンタクト抵抗率を示すグラフである。同図に示すように、p型GaN層905を成長していない試料(ドライエッチング無の試料)のコンタクト抵抗に比べ、p型GaN層905を成長した試料(ドライエッチング有の試料)のコンタクト抵抗が大きくなっている。
 図2に示した試料の二次イオン質量分析(SIMS:Secondary Ion Mass Spectrometry)法を用いた分析結果から、AlGaNバリア層902中にp型ドーパントであるMgが存在していることが分かった。AlGaNバリア層902へMgのドーピングを行っていないにも関わらずMgが検出されたということは、p型GaN層905の成長中にMgがAlGaNバリア層902へ拡散したと考えられる。通常、GaN系窒化物半導体の成長温度は1000℃以上になるため、このMgの拡散を防ぐことは難しい。
 Mgを含んだAlGaNバリア層902はp型化するため、コンタクト抵抗及びシート抵抗の悪化を引き起こす。ソース電極903及びドレイン電極904によく用いられるTi/AlなどのAl系材料は、n型GaN系窒化物半導体用の仕事関数が小さい金属材料であるため、AlGaNバリア層902がp型化した場合はコンタクト抵抗が悪化する。また、AlGaNバリア層902がp型化した場合は、i型やn型の場合に比べて2次元電子ガスのキャリア密度が減少するため、シート抵抗が悪化する。
 以上より、JFET型デバイスを作製するためにp型GaN層905を成長すると、このp型GaN層905にドープされたp型ドーパントの拡散がデバイス性能の悪化を引き起こす原因となる場合がある。
 本開示における技術はこのような問題点を解決するために提案されたものであり、コンタクト抵抗及びシート抵抗を改善できる半導体装置及びその製造方法を提供することを目的とする。
 上記課題を解決するために、本開示の一態様に係る半導体装置は、InAlGa1-p-qN(0≦p+q≦1、0≦p、0≦q)からなる第1の半導体層と、前記第1の半導体層上に形成され、前記第1の半導体層よりバンドギャップの大きなInAlGa1-r-sN(0≦r+s≦1、0≦r)からなる第2の半導体層と、前記第2の半導体層の上に選択的に形成され、InAlGa1-t-uN(0≦t+u≦1、0≦t、s>u)からなる第3の半導体層と、前記第3の半導体層の上に形成され、p型の導電性を有するInAlGa1-x-yN(0≦x+y≦1、0≦x、0≦y)からなる第4の半導体層と、前記第4の半導体層の上に形成されたゲート電極とを備える。
 この構成によれば、半導体装置のバリア層である第2の半導体層とp型の導電性を有する第4の半導体層との間に第3の半導体層が存在するため、第4の半導体層の成長中にp型ドーパントが拡散しても、第2の半導体層へ拡散するp型ドーパントの量を低減することができる。このため、第2の半導体層のp型化を抑制することができコンタクト抵抗及びシート抵抗の悪化を抑制することができる。
 また、本開示の一態様に係る半導体装置の製造方法は、InAlGa1-p-qN(0≦p+q≦1、0≦p、0≦q)からなる第1の半導体層を形成する工程と、前記第1の半導体層上に、前記第1の半導体層よりバンドギャップの大きなInAlGa1-r-sN(0≦r+s≦1、0≦r)からなる第2の半導体層を形成する工程と、前記第2の半導体層の上に、InAlGa1-t-uN(0≦t+u≦1、0≦t、s>u)からなる第3の半導体層を形成する工程と、前記第3の半導体層の上に、p型の導電性を有するInAlGa1-x-yN(0≦x+y≦1、0≦x、0≦y)からなる第4の半導体層を形成する工程と、前記第4の半導体層の上にゲート電極を形成する工程と、前記第4の半導体層を形成する工程の後、前記第3の半導体層および前記第4の半導体層のうち前記ゲート電極に対応する領域以外を除去する工程とを含む。
 この方法によれば、コンタクト抵抗及びシート抵抗を改善できる半導体装置を製造できる。
 本開示に係る半導体装置によれば、コンタクト抵抗及びシート抵抗を改善できる。
図1は、ドライエッチングを利用しないJFETのプロセスフローを示す断面図である。 図2は、ドライエッチングを利用したJFETのプロセスフローを示す断面図である。 図3は、図1及び図2に示した2種類の試料のそれぞれのコンタクト抵抗率を示すグラフである。 図4は、第1の実施形態に係る窒化物半導体装置の構成を示す断面図である。 図5(a)~(e)は、第1の実施形態に係る窒化物半導体装置の製造工程を示す図である。 図6は、第1の実施形態の変形例1に係る窒化物半導体装置の構成を示す断面図である。 図7は、第1の実施形態の変形例2に係る窒化物半導体装置の構成を示す断面図である。 図8は、第1の実施形態の変形例3に係る窒化物半導体装置の構成を示す断面図である。 図9は、第1の実施形態の変形例4に係る窒化物半導体装置の構成を示す断面図である。 図10は、第1の実施形態の変形例5に係る窒化物半導体装置の構成を示す断面図である。 図11は、第2の実施形態に係る窒化物半導体装置の構成を示す断面図である。 図12は、第3の実施形態に係る窒化物半導体装置の構成を示す断面図である。 図13は、第4の実施形態に係る窒化物半導体装置の構成を示す断面図である。
 以下、本開示の実施形態について、図面を参照しながら説明する。但し、詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、添付図面および以下の説明は当業者が本開示を十分に理解するためのものであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
 なお、以下で説明する実施形態は、いずれも本開示の一具体例を示すものである。以下の実施形態で示される数値、形状、材料、構成要素、構成要素の配置位置、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (第1の実施形態)
 以下、第1の実施形態に係る半導体装置について、図4、5を参照しながら説明する。
 <構成>
 図4は、本開示の第1の実施形態に係る窒化物半導体装置100の構成を示す断面図である。この窒化物半導体装置100は、本開示における半導体装置の一例であり、例えば電界効果トランジスタである。
 窒化物半導体装置100は、例えば(111)面を主面とするSi基板101と、Si基板101の(111)面上に設けられたAlNからなるバッファ層102と、バッファ層102の上に設けられたInAlGa1-p-qN(p=0.05,q=0.02)で表されるチャネル層103と、チャネル層103の上に設けられたInAlGa1-r-sN(r=0.09,s=0.32)で表されるバリア層104と、バリア層104の上に部分的に設けられたInAlGa1-t-uN(t=0.05,u=0.05)で表される拡散抑制層105と、拡散抑制層105の上に設けられたp型の導電性を有するInAlGa1-x-yN(x=0.05,y=0.05)で表されるp型導電層106とを備えている。
 ここで、バリア層104は、チャネル層103よりバンドギャップが大きい。これにより、窒化物半導体装置100は、バリア層104とチャネル層103との界面に、2次元電子ガスが発生する。言い換えると、上記構成においてバリア層104のIn及びAlのそれぞれの組成の組み合わせを変えることにより第2の半導体層のバンドギャップと格子定数とを変化させることができるが、チャネル層103とバリア層104との界面に電子が蓄積するように、バリア層104のバンドギャップはチャネル層103のバンドギャップより大きくする必要がある。
 なお、チャネル層103、バリア層104、拡散抑制層105、及び、p型導電層106はこの順に、第1の半導体層、第2の半導体層、第3の半導体層、及び、第4の半導体層の一例である。
 例えば、バッファ層102の膜厚は100nm、チャネル層103の膜厚は2μm、バリア層104の膜厚は30nm、拡散抑制層105の膜厚は25nm、p型導電層106の膜厚は200nmである。
 p型導電層106の上にはニッケル(Ni)からなるゲート電極107が形成されている。
 ゲート電極107の両側には、バリア層104と接触するように、それぞれチタン(Ti)/アルミニウム(Al)からなるソース電極108及びドレイン電極109が形成されている。
 p型導電層106には、例えば5×1019/cmのMgがドーピングされている。すなわち、p型導電層106においてMgはp型ドーパントである。
 拡散抑制層105は、p型導電層106からバリア層104へのMgの拡散を抑制する。拡散抑制層105には、p型導電層106から拡散してきたMgが含まれるため、膜厚方向の長さあたりのMg濃度の変化量は、p型導電層106よりも拡散抑制層105の方が大きい。拡散抑制層105のMg濃度は、バリア層104と接する部分において1×1019/cm以下となっている。バリア層104は、拡散抑制層105と接する部分においてMg濃度は1×1019/cm以下となっている。これにより、バリア層104のp型化を抑制できる。その結果、シート抵抗の悪化を低減し、ソース電極108及びドレイン電極109とオーミック接触が得られ、良好なオン抵抗を得ることができる。
 ここで、拡散抑制層105の膜厚は、バリア層104と接する部分においてMg濃度が1×1019/cm以下となるような膜厚に設定すればよい。
 以上のように、本実施形態に係る窒化物半導体装置100は、バリア層104とp型導電層106との間に形成された拡散抑制層105を備える。このような構成により、p型導電層106の成長中に、このp型導電層106からp型ドーパントであるMgが拡散しても、バリア層104へ拡散するMgの量を低減することができる。よって、バリア層104のp型化を抑制することができるので、コンタクト抵抗及びシート抵抗の悪化を抑制できる。
 具体的には、バリア層104のp型化を抑制することにより、チャネル層103とバリア層104との界面で発生している2次元電子ガスのキャリア密度の低下を抑制できる。よって、シート抵抗の悪化を抑制することができる。
 また、バリア層104のp型化を抑制することにより、Al系材料からなるソース電極108及びドレイン電極109のコンタクト抵抗の悪化を抑制できる。より具体的には、ソース電極108及びドレイン電極109を構成するTi/AlなどのAl系材料は、n型GaN系窒化物半導体用の仕事関数が小さい金属材料であるため、バリア層104がp型化した場合はコンタクト抵抗が悪化してしまう。これに対し、本実施形態では、拡散抑制層105を設けることによりバリア層104のp型化を抑制できるので、コンタクト抵抗の悪化を抑制できる。
 また、本実施形態に係る窒化物半導体装置100は、InAlGa1-p-qN(p=0.05,q=0.02)で表されるチャネル層103を備える。このようにチャネル層103にInが添加されていることにより、チャネル層103とバリア層104との界面に発生する2次元電子ガスのキャリア移動度を増加することができる。また、チャネル層103にAlが添加されていることにより、絶縁破壊電圧を大きくすることができる。このチャネル層103に添加されているAl組成が大きい程、絶縁破壊電圧は大きくなる。なお、チャネル層103には、In及びAlの少なくとも一方が添加されていなくてもよい。
 また、本実施形態において、p型導電層106のp型ドーパントはMgであり、バリア層104は、拡散抑制層105と接する部分において、1×1019(/cm)以下のMg濃度を有し、拡散抑制層105は、バリア層104と接する部分において、1×1019(/cm)以下のMg濃度を有する。
 この構成によれば、ソース電極108及びドレイン電極109と接するバリア層104がp型化しないため、コンタクト抵抗及びシート抵抗の悪化を抑制することができる。具体的には、窒化ガリウム系ではp型ドーパントとしてMgやZnが選ばれるが、これらは不純物準位が深いために活性化率が低いことで知られている。加えて、窒化ガリウム系の結晶成長に用いられるMOCVD法による結晶成長においては、キャリアガスに用いる水素などが分解して生じる水素原子が、マグネシウムと結合したMg-Hを形成し、Mgを不活性化する。水素は、結晶成長後に真空中や不活性ガスの雰囲気中で800℃程度の高温アニール処理を施すことである程度まで除去可能であるが、通常は1×1018~1019(/cm)の高い濃度で残存する。窒化物におけるMgの活性化率は一般的に大きく見積もって1割程度であり各半導体層中に高濃度の水素が存在することを考えるとMgの濃度が1×1019(/cm)以下であればバリア層104はp型化しにくく、1×1018(/cm)以下であればバリア層104はp型化しないといえる。
 よって、バリア層104が、拡散抑制層105と接する部分において、1×1018(/cm)以下のMg濃度を有することにより、ソース電極108及びドレイン電極109と接するバリア層104がp型化しないため、コンタクト抵抗及びシート抵抗の悪化を抑制することができる。
 p型半導体層であるp型導電層106からのMgの拡散は連続的に起こるため、バリア層104のMg濃度が1×1019(/cm)以下の場合には、拡散抑制層105のバリア層104と接する部分ではMg濃度は1×1019(/cm)以下となる。ただし、バリア層104中のAl濃度が高いと、Mgは拡散しづらく蓄積し易いため、バリア層104の拡散抑制層105と接する部分以外の部分ではMg濃度が高くなる場合がある。
 また、ゲート電極107が形成される領域であるゲート電極形成領域以外における拡散抑制層105のp型導電層106と接する側のMg濃度は任意である。すなわち、窒化物半導体装置100の製造工程において、例えばプラズマドライエッチングによって除去される範囲における拡散抑制層105のMgの濃度は任意である。
 <製造方法>
 次に、本実施形態に係る窒化物半導体装置の製造方法について説明する。図5の(a)~(e)は、本実施形態に係る窒化物半導体装置100の製造工程を示す図である。
 まず、Si基板101に対して、バッファ層102、チャネル層103、及び、バリア層104を、この順にMOCVD法により形成する。これにより、図5の(a)に示すように、Si基板101、バッファ層102、チャネル層103、及び、バリア層104が形成される。この積層構造により、チャネル層103とバリア層104との界面には2次元電子ガスが発生する。
 次に、図5の(b)に示すように拡散抑制層105をMOCVD法により形成し、さらに、図5の(c)に示すようにp型導電層106をMOCVD法により形成し、Niからなるゲート電極層107aを真空蒸着法あるいはスパッタリング法を用いて形成する。
 次に、図5の(d)に示すように、ゲート電極形成領域以外のゲート電極層107aを例えばAr系ガスによるプラズマを用いたプラズマドライエッチング法によって除去し、続いて、拡散抑制層105及びp型導電層106を、F系ガスやCl系ガスに酸素を添加したガスによるプラズマを用いたプラズマドライエッチング法によって除去する。
 ここで、InAlGa1-r-sN(r=0.09,s=0.32)で表されるバリア層104のAl組成とInAlGa1-t-uN(t=0.05,u=0.05)で表される拡散抑制層105のAl組成との関係は、s>uである。このようにバリア層104のAl組成が拡散抑制層105のAl組成より高いことにより、F系ガスやCl系ガスに酸素を添加したプラズマドライエッチングにおいて、バリア層104のエッチングレートが拡散抑制層105のエッチングレートより遅くなるので、拡散抑制層105を選択的に除去することができる。その結果、バリア層104の被エッチング量を抑制することができ、バリア層104とチャネル層103との界面に発生する2次元電子ガス濃度の減少を抑制することができる。
 次に、図5の(e)に示すように、バリア層104の上に、Ti/Alからなるソース電極108及びドレイン電極109を真空蒸着法あるいはスパッタリング法を用いて形成する。
 以上の工程により、窒化物半導体装置100が製造される。なお、上記製造工程では、ゲート電極層107aのゲート電極形成領域以外の領域を除去することによりゲート電極107を形成したが、窒化物半導体装置100の製造工程はこれに限らない。例えば、p型導電層106をMOCVD法により形成した工程の後で、プラズマドライエッチング法によって、ゲート電極形成領域以外の拡散抑制層105及びp型導電層106を除去し、その後、リフトオフ法によりゲート電極107を形成してもよい。
 このように、本実施形態に係る窒化物半導体装置100の製造方法では、拡散抑制層105を形成した後にp型導電層106を形成する。したがって、p型導電層106を形成する際に、p型ドーパントであるMgがp型導電層106からバリア層104へ拡散するのを抑制できる。つまり、コンタクト抵抗及びシート抵抗を改善できる窒化物半導体装置100を製造できる。
 また、本実施形態に係る窒化物半導体装置100は、InAlGa1-t-uN(t=0.05,u=0.05)で表される拡散抑制層105と、p型の導電性を有するInAlGa1-x-yN(x=0.05,0.05)で表されるp型導電層106とを備える。
 このように、拡散抑制層105及びp型導電層106にInが添加されていることにより、製造時にプラズマドライエッチングを用いて、ゲート電極形成領域以外の拡散抑制層105及びp型導電層106を除去することが容易になる。具体的には、AlNとGaNとの格子定数差に比べてInNとGaN及びAlNとの格子定数差は大きい。よって、拡散抑制層105及びp型導電層106の非混和性が高くなるInAlGa1-t-uN(0≦t+u≦1)を作製できるので、プラズマドライエッチングが容易になる。なお、拡散抑制層105及びp型導電層106のそれぞれにInが添加されていなくてもよい。
 また、本実施形態に係る窒化物半導体装置100は、p型の導電性を有するInAlGa1-x-yN(x=0.05,0.05)で表されるp型導電層106を備える。
 このように、p型導電層106にIn及びAlが添加されていることにより、p型導電層106の成長中(図5の(c))にp型ドーパントであるMgが拡散するのを抑制することができる。なお、p型導電層106にIn及びAlが添加されていなくてもよい。
 (第1の実施形態の変形例1)
 以下、第1の実施形態の変形例1について、図6を参照しながら説明する。
 本変形例に係る窒化物半導体装置は、本開示における半導体装置の一例であり、第1の実施形態に係る窒化物半導体装置100とほぼ同じであるが、拡散抑制層にInが添加されていない点が異なる。
 図6は、第1の実施形態の変形例1に係る窒化物半導体装置150の構成を示す断面図である。
 本変形例に係る窒化物半導体装置150は、図4に示した第1の実施形態に係る窒化物半導体装置100のInAlGa1-t-uN(t=0.05,u=0.05)で表される拡散抑制層105を、アンドープAlGa1-uN(u=0.03)で表される拡散抑制層110に置き換えた構造である。ここで、「アンドープ」とは、不純物が意図的に導入されていないことを意味するものとする。
 拡散抑制層110の膜厚は25nmである。この拡散抑制層110は、第1の実施形態に係る窒化物半導体装置100の拡散抑制層105と比較して、Inが添加されていないことで非混和性を改善し結晶欠陥の少ない半導体を成長させることができる。これにより結晶欠陥起因の静電破壊を抑制できるなど、窒化物半導体装置150の信頼性を高めることができる。
 また、ゲート電極形成領域以外のp型導電層106と拡散抑制層110とを除去する工程において、InAlGa1-r-sN(r=0.09,s=0.32)で表されるバリア層104に対してAlGaNで表される拡散抑制層110のAl組成が低いため、F系ガスやCl系ガスに酸素を添加したプラズマドライエッチングにおいてInAlGa1-r-sN(r=0.09,s=0.32)バリア層104に対してAlGaNで表される拡散抑制層110のエッチングレートを遅くしAlGaNで表される拡散抑制層110を選択的にエッチングすることができる。
 つまり、InAlGa1-r-sN(r=0.09,s=0.32)で表されるバリア層104のAl組成とAlGa1-uN(u=0.03)で表される拡散抑制層110のAl組成との関係は、s>uである。よって、本実施形態に係る窒化物半導体装置150は実施形態1と同様の効果を奏する。すなわち、バリア層104のAl組成が拡散抑制層110のAl組成より高いことにより、F系ガスやCl系ガスに酸素を添加したプラズマドライエッチングにおいてAlGaNで表される拡散抑制層110を選択的にエッチングすることができるので、2次元電子ガス濃度の減少を抑制することができる。
 以上のように、第1の実施形態の変形例1に係る窒化物半導体装置150は、アンドープAlGa1-uN(u=0.03)で表される拡散抑制層110を備える。このように拡散抑制層110にInが添加されていないことにより、本変形例に係る窒化物半導体装置150は、第1の実施形態に係る窒化物半導体装置100と比較して信頼性を高めることができる。
 本変形例に係る窒化物半導体装置150の製造工程は、第1の実施形態に係る窒化物半導体装置100の製造工程とほぼ同様であるが、バリア層104を形成した後、拡散抑制層105に代わり拡散抑制層110を形成する点と、プラズマドライエッチングによってゲート電極形成領域以外のゲート電極層107a、p型導電層106及び拡散抑制層110を除去する点とが異なる。これにより、窒化物半導体装置150が製造される。
 (第1の実施形態の変形例2)
 次に、第1の実施形態の変形例2について説明する。本変形例に係る窒化物半導体装置は、本開示における半導体装置の一例であり、第1の実施形態に係る窒化物半導体装置100とほぼ同じであるが、拡散抑制層にIn及びAlが添加されていない点が異なる。
 図7は第1の実施形態の変形例2に係る窒化物半導体装置160の構成を示す断面図である。
 本変形例に係る窒化物半導体装置160は、図4に示した第1の実施形態に係る窒化物半導体装置100のInAlGa1-t-uN(t=0.05,u=0.05)で表される拡散抑制層105を、アンドープGaNで表される拡散抑制層111Aに置き換えた構造である。
 拡散抑制層111Aの膜厚は25nmである。この拡散抑制層111Aは、第1の実施形態における拡散抑制層105と比較して、In及びAlが添加されていない。つまり、第1の実施形態の変形例1における拡散抑制層110と比較してAlが添加されていない。これにより、本変形例に係る窒化物半導体装置160は次のような効果を奏する。
 具体的には、ゲート電極形成領域以外のp型導電層106と拡散抑制層111Aとを除去する工程において、拡散抑制層111AがAlを含まないため、拡散抑制層111Aはバリア層104に比べてプラズマドライエッチングレートが速く選択的に除去可能である。これによりバリア層104の被エッチング量を抑制することができ、バリア層104とチャネル層103との界面に発生する2次元電子ガス濃度の減少を抑制することができる。
 以上のように、第1の実施形態の変形例2に係る窒化物半導体装置160は、アンドープGaNで表される拡散抑制層111Aを備える。このように、本変形例における拡散抑制層111Aは、第1の実施形態の変形例1における拡散抑制層110と比較してAlが添加されていないため、Alを含むバリア層104に対する拡散抑制層111Aの選択エッチングの選択比を大きくとることが容易となる。よって、バリア層104の被エッチング量を一層抑制することができる。したがって、チャネル層103とバリア層104との界面に発生する2次元電子ガス濃度の減少を抑制することができる。つまり、製造歩留まりを向上させることができる。
 本変形例に係る窒化物半導体装置160の製造工程は、第1の実施形態に係る窒化物半導体装置100の製造工程とほぼ同様であるが、バリア層104を形成した後、拡散抑制層105に代わり拡散抑制層111Aを形成する点と、プラズマドライエッチングによってゲート電極形成領域以外のゲート電極層107a、p型導電層106及び拡散抑制層111Aを除去する点とが異なる。これにより、窒化物半導体装置160が製造される。
 (第1の実施形態の変形例3)
 次に、第1の実施形態の変形例3について説明する。本変形例に係る窒化物半導体装置は、本開示における半導体装置の一例であり、第1の実施形態の変形例2に係る窒化物半導体装置100とほぼ同じであるが、拡散抑制層がn型である点が異なる。
 図8は第1の実施形態の変形例3に係る窒化物半導体装置170の構成を示す断面図である。
 本変形例に係る窒化物半導体装置170は、図8に示したアンドープGaNで表される拡散抑制層111Aをn型GaNで表される拡散抑制層111Bに置き換えた構造である。
 拡散抑制層111Bの膜厚は25nm、Si濃度は1×1018/cmとなっている。このように、拡散抑制層111Bは、第1の実施形態の変形例2における拡散抑制層111Aと比較して、n型ドーパントであるSiがドープされることによりn型となっている。これにより、p型導電層106から拡散してきたp型ドーパントであるMgを補償できる。よって、バリア層104がp型化されにくくなる。
 また、ゲート電極形成領域以外のp型導電層106と拡散抑制層111Bとを除去する工程(図5の(d))において、拡散抑制層111Bを完全に除去できなかった場合も、拡散抑制層111Bに添加されたSiがMgによるp型化を補償するため、拡散抑制層111Bから低コンタクト抵抗を得やすくすることができ、製造歩留まりを向上することができる。
 つまり、プラズマドライエッチングによって拡散抑制層111Bを完全に除去することができず、拡散抑制層111Bのうち下層が残ってしまった場合、その後のソース電極108及びドレイン電極109を形成する工程(図5の(e))では、残った拡散抑制層111B上にソース電極108及びドレイン電極109が形成される。ここで、プラズマドライエッチングによって除去されずに残っている拡散抑制層111Bは、p型導電層106から拡散してきたMgを補償することによりi型となる、あるいはn型のままである。よって、ソース電極108及びドレイン電極109は、拡散抑制層111Bから低コンタクト抵抗を得ることができ、製造歩留まりを向上することができる。
 以上のように、第1の実施形態の変形例3に係る窒化物半導体装置170は、1×1018(/cm)以上のSi濃度を有するn型の拡散抑制層111Bを備える。このように、本変形例における拡散抑制層111Bは、第1の実施形態の変形例2における拡散抑制層111Aと比較してn型であることにより、p型導電層106から拡散してきたMgを補償することができる。よって、バリア層104のp型化を一層抑制できるので、低コンタクト抵抗を得ることができる。さらに、プラズマドライエッチングによって拡散抑制層111Bを完全に除去することができない場合にも、低コンタクト抵抗を得ることができ、製造歩留まりを向上することができる。つまり、プラズマドライエッチングによって拡散抑制層111Bを完全に除去できる場合、及び、できない場合のいずれにおいても、低コンタクト抵抗を得ることができ、製造歩留まりを向上することができる。よって、高精度なエッチング精度を必要としないので、作製が容易となる。
 本変形例に係る窒化物半導体装置170の製造工程は、第1の実施形態に係る窒化物半導体装置100の製造工程とほぼ同様であるが、バリア層104を形成した後、拡散抑制層105に代わり拡散抑制層111Bを形成する点と、プラズマドライエッチングによってゲート電極形成領域以外のゲート電極層107a、p型導電層106及び拡散抑制層111Bを除去する点とが異なる。これにより、窒化物半導体装置170が製造される。
 (第1の実施形態の変形例4)
 次に、第1の実施形態の変形例4について説明する。本変形例に係る窒化物半導体装置は、本開示における半導体装置の一例であり、第1の実施形態の変形例2に係る窒化物半導体装置160とほぼ同じであるが、チャネル層がアンドープGaNからなり、バリア層がアンドープAlGaNからなり、p型導電層がp型GaNからなる点が異なる。
 図9は第1の実施形態の変形例4に係る窒化物半導体装置180の構成を示す断面図である。
 本変形例に係る窒化物半導体装置180は、図7に示した第1の実施形態の変形例2に係る窒化物半導体装置160のInAlGa1-p-qN(p=0.05,q=0.02)で表されるチャネル層103をアンドープGaNで表されるチャネル層112に、InAlGa1-r-sN(r=0.09,s=0.32)で表されるバリア層104をアンドープAlGa1-sN(s=0.3)で表されるバリア層113に、p型の導電性を有するInAlGa1-x-yN(x=0.05,0.05)で表されるp型導電層106をp型GaNで表されるp型導電層114に、それぞれ置き換えた構造である。拡散抑制層111Aの膜厚は25nm、バリア層113の膜厚は10nm、p型導電層114の膜厚は200nmである。
 このように、本変形例におけるp型導電層114は、第1の実施形態の変形例2におけるp型導電層106と比較してAlが添加されていない。これにより、本変形例に係る窒化物半導体装置180は次のような効果を奏する。
 具体的には、p型導電層114にAlが添加されていないことにより、Alが添加されることに起因する格子ひずみによる臨界膜厚に制限されることなくp型導電層114を成長させることができ、結晶欠陥の少ないp型導電層114を得ることができる。これにより、ゲート電極107とのコンタクト抵抗のばらつきを抑制することができ、歩留まりを向上させることができる。
 また、ゲート電極形成領域以外のp型導電層114と拡散抑制層111Aとを除去する工程において、p型導電層114と拡散抑制層111AとがそれぞれAlを含まないため、p型導電層114と拡散抑制層111Aとはバリア層113に比べてプラズマドライエッチングレートが速く選択的に除去可能である。これによりバリア層113の被エッチング量を抑制することができ、バリア層113とチャネル層112との界面に発生する2次元電子ガス濃度の減少を抑制することができる。
 また、本変形例におけるチャネル層112は、第1の実施形態の変形例2におけるチャネル層103と比較してInおよびAlが添加されておらず、本変形例におけるバリア層113は、第1の実施形態の変形例2におけるバリア層104と比較してInが添加されていない。これにより、本変形例に係る窒化物半導体装置180は次のような効果を奏する。
 具体的には、チャネル層112はInおよびAlが添加されていないため、結晶欠陥を抑制することができ製造歩留まりを向上することができる。さらに、バリア層113にInが添加されていないため、結晶欠陥を抑制することができ製造歩留まりを向上することができる。
 以上のように、第1の実施形態の変形例4に係る窒化物半導体装置180は、p型GaNで表されるp型導電層114を備える。このように、p型導電層114にAlが添加されていないことにより、本変形例に係る窒化物半導体装置180は、Alが添加されることに起因する格子ひずみによる臨界膜厚に制限されることなくp型導電層114を成長させることができ、結晶欠陥の少ないp型導電層114を得ることができる。これにより、ゲート電極107とのコンタクト抵抗のばらつきを抑制することができ、歩留まりを向上させることができる。
 本変形例に係る窒化物半導体装置180の製造工程は、第1の実施形態に係る窒化物半導体装置100の製造工程とほぼ同様である。すなわち、Si基板101に対して、バッファ層102、チャネル層112、バリア層113、拡散抑制層111A、及び、p型導電層114を、この順に有機金属気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法により形成する。その後、ゲート電極層107aを真空蒸着法あるいはスパッタリング法を用いて形成し、さらに、ゲート電極形成領域以外のゲート電極層107a、p型導電層114及び拡散抑制層111Aを除去する。その後、バリア層113の上に、ソース電極108及びドレイン電極109を真空蒸着法あるいはスパッタリング法を用いて形成する。これにより、窒化物半導体装置180が製造される。
 (第1の実施形態の変形例5)
 次に、第1の実施形態の変形例5について説明する。本変形例に係る窒化物半導体装置は、半導体装置の一例であり、第1の実施形態に係る窒化物半導体装置100とほぼ同じであるが、拡散抑制層が、n型AlGa1-uN(u=0.03)で表される半導体層と、アンドープAlGa1-aNで表される半導体層との積層構造である点が異なる。
 図10は第1の実施形態の変形例5に係る窒化物半導体装置190の構成を示す断面図である。
 本変形例に係る窒化物半導体装置190は、図4に示した第1の実施形態に係る窒化物半導体装置100のInAlGa1-t-uN(t=0.05,u=0.05)で表される拡散抑制層105を、n型AlGa1-uN(u=0.03)で表される拡散抑制層115とアンドープAlGa1-aN(a=0.03)で表される拡散抑制層116との積層構造に置き換えた構造である。
 n型AlGaNからなる拡散抑制層115の膜厚は5nm、Si濃度は1×1018/cmで、アンドープAlGaNからなる拡散抑制層116の膜厚は20nmとなっている。GaN中に比べてAlGaN中ではMgが拡散しづらくなるため、Alが添加されていない場合と比べて、n型AlGaNからなる拡散抑制層115およびアンドープAlGaNからなる拡散抑制層116の存在によりバリア層104へのMgの拡散を抑制することができる。
 また、拡散抑制層115は、n型ドーパントであるSiがドープされることによりn型となっている。これにより、p型導電層106からアンドープAlGaNからなる拡散抑制層116を介して拡散してきたp型ドーパントであるMgを補償できる。よって、バリア層104がp型化されにくくなる。
 また、ゲート電極形成領域以外の、p型導電層106と、n型AlGaNからなる拡散抑制層115と、アンドープAlGaNからなる拡散抑制層116とを除去する工程において、n型AlGaNからなる拡散抑制層115が完全に除去できなかった場合も、拡散抑制層115に添加されたSiがMgによるp型化を補償するため、拡散抑制層115から低コンタクト抵抗を得やすくすることができ、製造歩留まりを向上することができる。
 つまり、プラズマドライエッチングによって拡散抑制層115を完全に除去することができず、拡散抑制層115のうち下層が残ってしまった場合、その後のソース電極108及びドレイン電極109を形成する工程(図5の(e))では、残った拡散抑制層115上にソース電極108及びドレイン電極109が形成される。ここで、プラズマドライエッチングによって除去されずに残っている拡散抑制層115は、p型導電層106から拡散抑制層116を介して拡散してきたMgを補償することによりi型となる、あるいはn型のままである。よって、ソース電極108及びドレイン電極109は、拡散抑制層115から低コンタクト抵抗を得ることができ、製造歩留まりを向上することができる。
 以上のように、第1の実施形態の変形例5に係る窒化物半導体装置190は、第3の半導体層の一例として、1×1018(/cm)以上のSi濃度を有するn型AlGaNからなる拡散抑制層115と、アンドープAlGaNからなる拡散抑制層116との積層構造を備える。このように、拡散抑制層115及び拡散抑制層116にAlが添加されていることにより、Alが添加されていない場合と比較して、p型導電層106からバリア層104へのMgの拡散を一層抑制することができる。よって、低コンタクト抵抗を得ることができる。
 また、拡散抑制層115がn型であることにより、p型導電層106から拡散抑制層116を介して拡散してきたMgを補償することができる。よって、バリア層104のp型化を一層抑制できるので、低コンタクト抵抗を得ることができる。さらに、プラズマドライエッチングによって拡散抑制層115を完全に除去することができない場合にも、低コンタクト抵抗を得ることができ、製造歩留まりを向上することができる。つまり、プラズマドライエッチングによって拡散抑制層115を完全に除去できる場合、及び、できない場合のいずれにおいても、低コンタクト抵抗を得ることができ、製造歩留まりを向上することができる。よって、高精度なエッチング精度を必要としないので、デバイスの作製が容易となる。
 なお、拡散抑制層115はn型でなくてもよい。このような構成においても、拡散抑制層115にAlが添加されていることにより、Alが添加されていない場合と比較して、p型導電層106からバリア層104へのMgの拡散を一層抑制することができる。よって、低コンタクト抵抗を得ることができる。
 また、拡散抑制層116はGaNからなる半導体層であってもよく、このGaNからなる拡散抑制層116は1×1018(/cm)以上のSi濃度を有してもよい。
 これにより、拡散抑制層116がn型となるので、プラズマドライエッチングによって拡散抑制層116を完全に除去することができない場合にも、拡散抑制層116のSiがMgによるp型化を補償するため、拡散抑制層116から低コンタクト抵抗を得やすくすることができ、製造歩留まりを向上することができる。
 本変形例に係る窒化物半導体装置190の製造工程は、第1の実施形態に係る窒化物半導体装置100の製造工程とほぼ同様であるが、バリア層104を形成した後、拡散抑制層105に代わり拡散抑制層115及び拡散抑制層116を形成する点と、プラズマドライエッチングによってゲート電極形成領域以外のゲート電極層107a、p型導電層106、拡散抑制層115及び拡散抑制層116を除去する点とが異なる。これにより、窒化物半導体装置190が製造される。
 (第2の実施形態)
 以下、第2の実施形態について、図11を参照しながら説明する。本実施形態に係る窒化物半導体装置は、半導体装置の一例であり、第1の実施形態に係る窒化物半導体装置100とほぼ同じであるが、さらにバリア層104上に形成されたキャップ層を備える点が異なる。なお、以下に示す各実施形態において、上記第1の実施形態と実質的に同一の構成要素には同一の符号を付して、その説明を省略する場合がある。
 図11は、本開示の第2の実施形態に係る窒化物半導体装置200の構成を示す断面図である。
 窒化物半導体装置200は、例えば(111)面を主面とするSi基板101と、Si基板101の(111)面上に設けられたAlNからなるバッファ層102と、バッファ層102の上に設けられたInAlGa1-p-qN(p=0.05,q=0.02)で表されるチャネル層103と、チャネル層103の上に設けられたInAlGa1-r-sN(r=0.09,s=0.32)で表されるバリア層104と、バリア層104の上に設けられたn型AlGaN(Al組成20%)で表されるキャップ層201と、キャップ層201の上に部分的に設けられたInAlGa1-t-uN(t=0.05,u=0.05)で表される拡散抑制層105と、拡散抑制層105の上に設けられたp型の導電性を有するInxAlGa1-x-yN(x=0.05,0.05)で表されるp型導電層106とを備えている。
 例えば、バッファ層の膜厚は100nm、チャネル層103の膜厚は2μm、バリア層104の膜厚は30nm、n型AlGaNからなるキャップ層の膜厚は5nm、拡散抑制層105の膜厚は25nm、p型導電層106の膜厚は200nmである。
 p型導電層106の上にはニッケル(Ni)からなるゲート電極107が形成されている。ゲート電極107の両側には、n型AlGaNからなるキャップ層201と接触するように、それぞれチタン(Ti)/アルミニウム(Al)からなるソース電極108及びドレイン電極109が形成されている。
 p型層であるp型導電層106には、例えば5×1019/cmのMgがドーピングされている。拡散抑制層105には、p型導電層106から拡散したMgが含まれるが、その濃度はn型AlGaNキャップからなる層201と接する部分において1×1019/cm以下となっている。n型AlGaNからなるキャップ層201は、拡散抑制層105と接する部分においてMg濃度は1×1019/cm以下となっている。これにより、n型AlGaN層からなるキャップ層201のp型化を抑制できる。また、n型AlGaNからなるキャップ層201中に含まれるSiがMgによるp型化を補償することができる。その結果、シート抵抗の悪化を低減し、ソース電極108及びドレイン電極109とオーミック接触が得られ、良好なオン抵抗を得ることができる。
 以上のように、本実施形態に係る窒化物半導体装置200は、第1の実施形態に係る窒化物半導体装置100と比較して、さらに、バリア層104上に形成されたn型AlGaNからなるキャップ層201を備える。言い換えると、本実施形態に係る窒化物半導体装置200は、バリア層104と接する側に形成されたSiをドーピングしていない層と、ソース電極108及びドレイン電極109と接する側に形成された1×1018(/cm)以上のSi濃度を有する層とが積層された構造を備える。なお、本実施形態におけるバリア層104とキャップ層201との積層構造は、第2の半導体層の一例である。
 この構成によれば、n型化した層であるキャップ層201がソース電極108及びドレイン電極109と接するためコンタクト抵抗を低減することができる。また、チャネル層103と拡散抑制層105との間の半導体層(第2の半導体層)全体はn型にならないため、当該半導体層全体がn型である構成に比べてリーク電流を抑制し耐圧を向上させることができる。
 このように、バリア層104上にn型の半導体層であるキャップ層201が形成されていることにより、p型導電層106から拡散抑制層105を介して拡散してきたp型ドーパントであるMgを補償できる。本実施形態において、ソース電極108及びドレイン電極109はキャップ層201上に形成されるので、本実施形態に係る窒化物半導体装置200は、第1の実施形態に係る窒化物半導体装置100と比較してコンタクト抵抗及びシート抵抗の悪化を一層抑制することができる。
 本実施形態に係る窒化物半導体装置200の製造工程は、第1の実施形態に係る窒化物半導体装置100の製造工程とほぼ同様であるが、バリア層104を形成した後、かつ、拡散抑制層105を形成する前に、キャップ層201をMOCVD法により形成する点が異なる。これにより、窒化物半導体装置200が製造される。
 (第3の実施形態)
 次に、第3の実施形態について、図12を参照しながら説明する。本実施形態に係る窒化物半導体装置は、半導体装置の一例であり、第1の実施形態に係る窒化物半導体装置100とほぼ同じであるが、さらに、拡散抑制層105とp型導電層106との間に形成されたp型AlGaNからなるp型導電層を備える点が異なる。
 図12は、本開示の第3の実施形態に係る窒化物半導体装置300の構成を示す断面図である。
 窒化物半導体装置300は、例えば(111)面を主面とするSi基板101と、Si基板101の(111)面上に設けられたAlNからなるバッファ層102と、バッファ層102の上に設けられたInAlGa1-p-qN(p=0.05,q=0.02)で表されるチャネル層103と、チャネル層103の上に設けられたInAlGa1-r-sN(r=0.09,s=0.32)で表されるバリア層104と、バリア層104の上に部分的に設けられたInAlGa1-t-uN(t=0.05,u=0.05)で表される拡散抑制層105と、拡散抑制層105の上に設けられたAlGa1-aN(a=0.2)で表されるp型の導電性をもつ半導体層であるp型導電層301と、p型導電層301の上に設けられたp型の導電性を有するInAlGa1-x-yN(x=0.05,y=0.05)で表されるp型導電層106とを備えている。
 例えば、バッファ層の膜厚は100nm、チャネル層103の膜厚は2μm、バリア層104の膜厚は30nm、拡散抑制層105の膜厚は25nm、p型AlGaNからなるp型導電層301の膜厚は15nm、p型導電層106の膜厚は200nmである。
 p型導電層106の上にはニッケル(Ni)からなるゲート電極107が形成されている。
 ゲート電極107の両側には、バリア層104と接触するように、それぞれチタン(Ti)/アルミニウム(Al)からなるソース電極108及びドレイン電極109が形成されている。
 p型AlGaNからなるp型導電層301、及び、p型InAlGaNからなるp型導電層106にはそれぞれ、例えば5×1019/cmのMgがドーピングされている。
 拡散抑制層105には、p型AlGaNからなるp型導電層301とp型InAlGaNからなるp型導電層106とから拡散したMgが含まれるが、その濃度はバリア層104と接する部分において1×1019/cm以下となっている。バリア層104は、拡散抑制層105と接する部分においてMg濃度は1×1019/cm以下となっている。これにより、バリア層104のp型化を抑制できる。その結果、シート抵抗の悪化を低減し、ソース電極108及びドレイン電極109とオーミック接触が得られ、良好なオン抵抗を得ることができる。
 また、本実施形態に係る窒化物半導体装置300には、p型AlGaNからなるp型導電層301が存在するため、p型の半導体層としてp型GaN層のみが形成されている場合に比べて大きなビルトインポテンシャルが得られるため、ゲートのしきい値電圧が大きくなり、ノーマリオフ化が容易となり製造歩留まりが向上する。また、ゲートのしきい値電圧が大きくなった分に対応するだけ、ノーマリオフを保つことができる範囲で2次元電子ガスのキャリア密度を大きくすることができ、シート抵抗を低減することができるためオン抵抗を低減することができる。
 以上のように、本実施形態に係る窒化物半導体装置300は、第1の実施形態に係る窒化物半導体装置100と比較して、さらに、拡散抑制層105とp型InAlGaNからなるp型導電層106との間に形成されたp型AlGaNからなるp型導電層301を備える。なお、本実施形態におけるp型導電層301とp型導電層106との積層構造は、第4の半導体層の一例である。
 このように、p型AlGaNからなるp型導電層301が形成されていることにより、本実施形態に係る窒化物半導体装置300は、第1の実施形態に係る窒化物半導体装置100と比較して、ノーマリオフ化が容易となる。具体的には、p型AlGaNからなるp型導電層301のバンドギャップが大きいため、その分だけフェルミ準位の位置を大きく変化させることができる。言い換えれば、フェルミ準位をより価電子帯に近づけることができる。すると、大きなビルトインポテンシャルが得られるため、ゲートのしきい値電圧が大きくなり、ノーマリオフ化が容易となる。また、ゲートのしきい値電圧が大きくなった分に対応して、ノーマリオフを保つことができる範囲で2次元電子ガスのキャリア密度を大きくすることができ、シート抵抗を低減することができる。2次元電子ガスのキャリア密度を大きくするには、バリア層104のバンドギャップを大きくしたり、膜厚を厚くしたりすればよい。
 なお、本実施形態において、p型InAlGaNからなるp型導電層106に代わり、GaNからなる半導体層を用いてもよい。つまり、第4の半導体層の一例として、拡散抑制層105と接する側に形成されたAlGa1-zN(0<z≦1)からなるp型導電層301と、ゲート電極107と接する側に形成されたGaNからなるp型の半導体層との積層構造を備えてもよい。
 この構成によれば、AlGaNからなるp型導電層301がビルトインポテンシャルを大きくできるため、ノーマリオフのまま2次元電子ガス密度を大きくしてシート抵抗を低減することができる。また、このAlGaNからなるp型導電層301の上に、格子ひずみによる臨界膜厚に制限されることなくGaNからなるp型の半導体層を成長させることができる。よって、AlGaNからなるp型導電層301とGaNからなるp型の半導体層との積層構造として、結晶欠陥の少ないp型の半導体層を得ることができる。これにより、ゲート電極107とのコンタクト抵抗のばらつきを抑制することができ、歩留まりを向上させることができる。
 本実施形態に係る窒化物半導体装置300の製造工程は、第1の実施形態に係る窒化物半導体装置100の製造工程とほぼ同様であるが、拡散抑制層105を形成した後、かつ、p型導電層106を形成する前に、p型AlGaNからなるp型導電層301をMOCVD法により形成する点と、プラズマドライエッチング法によって、ゲート電極形成領域以外のゲート電極層107a、p型導電層106、p型導電層301及び拡散抑制層105を除去する点が異なる。これにより、窒化物半導体装置300が製造される。
 (第4の実施形態)
 次に、第4の実施形態について、図13を参照しながら説明する。本実施形態に係る窒化物半導体装置は、半導体装置の一例であり、第1の実施形態に係る窒化物半導体装置100とほぼ同じであるが、バリア層の上面がゲート電極107の下方に形成された凹部を有し、拡散抑制層が凹部に埋まるように形成されている点が異なる。
 図8は、本開示の第4の実施形態に係る窒化物半導体装置400の構成を示す断面図である。
 窒化物半導体装置400は、例えば(111)面を主面とするSi基板101と、Si基板101の(111)面上に設けられたAlNからなるバッファ層102と、バッファ層102の上に設けられたInAlGa1-p-qN(p=0.05,q=0.02)で表されるチャネル層103と、チャネル層103の上に設けられたInAlGa1-r-sN(r=0.09,s=0.32)で表されるバリア層404と、バリア層404の上に部分的に設けられたInAlGa1-t-uN(t=0.05,u=0.05)で表される拡散抑制層405と、拡散抑制層405の上に設けられたp型の導電性を有するInAlGa1-x-yN(x=0.05,y=0.05)で表されるp型導電層406とを備える。また、バリア層404の上面には、拡散抑制層405及びp型導電層406の下部を埋め込む凹部404aが形成されている。
 バッファ層102の膜厚は100nm、チャネル層103の膜厚は2μm、凹部404a以外におけるバリア層404の膜厚は50nm、拡散抑制層405の膜厚は25nm、p型導電層406の膜厚は200nmである。
 p型導電層406の上にはニッケル(Ni)からなるゲート電極107が形成されている。
 ゲート電極107の両側には、バリア層404と接触するように、それぞれチタン(Ti)/アルミニウム(Al)からなるソース電極108及びドレイン電極109が形成されている。
 p型導電層406には5×1019/cmのMgがドーピングされている。
 拡散抑制層405には、p型導電層406から拡散したMgが含まれるが、その濃度はバリア層404と接する部分において1×1019/cm以下となっている。バリア層404は、拡散抑制層405と接する部分においてMg濃度は1×1019/cm以下となっている。これにより、バリア層404のp型化を抑制できる。その結果、シート抵抗の悪化を低減し、ソース電極108及びドレイン電極109とオーミック接触が得られ、良好なオン抵抗を得ることができる。
 また、凹部404aにより、ゲート電極107のドレイン側端や、p型導電層406のドレイン側端に集中する電界を緩和させ、電界集中に起因する電流コラプスを抑制したり、デバイスの静電破壊を抑制することができる。
 また、第1の実施形態におけるバリア層104のように凹部が形成されていない場合は、デバイスのノーマリオフを実現するためにバリア層104全体の組成及び膜厚が制限される。これに対し、本実施形態におけるバリア層404のように凹部404aが形成されている場合は、凹部404aの下方のバリア層404の組成及び膜厚はノーマリオフを実現する範囲に制限を受けるが、凹部404aの下方以外のバリア層404の組成及び膜厚は任意に設定できる。このため、本実施形態に係る窒化物半導体装置400では、凹部404aの下方以外のバリア層404の組成及び膜厚を2次元電子ガスのキャリア密度が増加するように設計してシート抵抗を低減することができオン抵抗を低減することができる。例えば、凹部404aの下方以外で2次元電子ガスのキャリア密度を大きくするには、凹部404aの下方以外のバリア層404の組成をバンドギャップが大きくなるような組成としたり、凹部404aの下方以外のバリア層404の膜厚を厚くしたりすればよい。
 つまり、窒化物半導体装置400をノーマリオフ型とするためには、ゲート電極107下方では2次元電子ガスのキャリア密度を小さくすることが必要である。すなわち、ゲート電極107の下方において、チャネル層103とバリア層404との界面に発生するピエゾ分極を、拡散抑制層405とp型導電層406との界面に発生するピエゾ分極によって打ち消すことが必要である。よって、ゲート電極107下方におけるバリア層404の組成及び膜厚は、窒化物半導体装置400をノーマリオフ型にできる組成及び膜厚に制限される。しかしながら、2次元電子ガスのキャリア密度の減少はシート抵抗の悪化を引き起こす。
 そこで、本実施形態に係る窒化物半導体装置400は、バリア層404に凹部404aを形成し、この凹部404aに拡散抑制層405及びp型導電層406の下部を埋め込むことにより、シート抵抗の良好なノーマリオフ型を実現している。
 以上のように、本実施形態に係る窒化物半導体装置400は、第1の実施形態に係る窒化物半導体装置100と比較して、バリア層404は上面に形成された凹部404aを有し、凹部404aが埋まるように拡散抑制層405が形成されている。
 このように、ゲート電極107下方においてバリア層404に凹部404aを形成することにより、本実施形態に係る窒化物半導体装置400は次のような効果を奏する。具体的にはゲート電極107のドレイン側端や、p型導電層406のドレイン側端に集中する電界を緩和させることができる。よって、電界集中に起因する電流コラプスを抑制したり、電界集中に起因する窒化物半導体装置400の破壊を防いだりすることができる。
 また、第1の実施形態におけるバリア層104のように凹部が形成されていない場合は、窒化物半導体装置100のノーマリオフを実現するためにバリア層104の組成及び膜厚が制限される。これに対し、本実施形態におけるバリア層404のように、凹部404aが形成されている場合は、窒化物半導体装置400を積層方向から見た場合に凹部404aが形成された領域のバリア層404の組成及び膜厚は窒化物半導体装置400のノーマリオフを実現する範囲に制限を受けるが、凹部404a以外のバリア層404の組成及び膜厚は任意に設定できる。このため、本実施形態に係る窒化物半導体装置400は、凹部404a以外のバリア層404の組成及び膜厚を2次元電子ガスのキャリア密度が増加するように設計してシート抵抗を低減することができる。
 なお、本実施形態において、拡散抑制層405は、窒化物半導体装置400を積層方向から見て、凹部404aの少なくとも一部が埋まるように形成されていればよい。ただし、凹部404aの全てが埋まるように形成されていることがより好ましい。つまり、窒化物半導体装置400を積層方向から見て、ゲート電極107が凹部404aを覆うように形成されていることがより好ましい。
 このようにゲート電極107が凹部404aを覆うことにより、以下に述べる理由からプロセス要因によるオン抵抗のバラツキを抑制し、歩留まりを向上することができる。すなわち、凹部404a下方では、凹部404a下方以外に比べて、2次元電子ガスのキャリア密度が小さいため、シート抵抗が高抵抗である。しかし、ゲート電極107直下の2次元電子ガスにおいてはゲート電極107に印加されるゲート電圧によりキャリアを誘起することができるため、ゲート電圧を印加しない場合に比べて2次元電子ガスのシート抵抗を低抵抗化することが可能である。一方、ゲート電極107直下以外では、2次元電子ガスのキャリア密度はエピタキシャル成長層(チャネル層103、バリア層404、拡散抑制層405、及び、p型導電層406)の構造により決定されるため調整できない。よって、凹部404aを全てゲート電極107で覆うことにより、凹部404aの全てがゲート電極107で覆われていない場合、つまり凹部404aの一部がゲート電極107で覆われている場合に比べて凹部404a下方の2次元電子ガスのキャリア密度を増加させることができ、シート抵抗を低抵抗化することができる。
 また、本実施形態では、凹部404aにp型導電層406の下部が埋め込まれていたが、p型導電層406の下部は凹部404aに埋め込まれていなくてもよい。すなわち、ゲート電極107下方において、チャネル層103とバリア層404との界面と、拡散抑制層405とp型導電層406との界面との距離が、窒化物半導体装置400のノーマリオフ型を実現できるだけ確保されていればよい。
 本実施形態に係る窒化物半導体装置400の製造工程は、第1の実施形態に係る窒化物半導体装置100の製造工程とほぼ同様であるが、バリア層404を形成した後、かつ、拡散抑制層405を形成する前に、ドライエッチングによってバリア層404上面に凹部404aを形成する点が異なる。これにより、窒化物半導体装置400が製造される。
 以上のように、本開示における技術の例示として、実施の形態およびその変形例を説明した。そのために、添付図面および詳細な説明を提供した。
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 また、上述の実施形態及び変形例は、本開示における技術を例示するためのものであるから、必ずしも記載した内容に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施形態及び変形例に施したものや、異なる実施形態及び変形例における構成要素を組み合わせて構築される形態も、本開示の一つまたは複数の態様の範囲内に含まれてもよい。
 例えば、上記第4の実施形態において、拡散抑制層405は、AlGa1-aN(0<a≦1)からなる層と、GaNからなる層とが積層された構造であってもよい。
 この構成によれば、凹部404a以外の領域において、バリア層404に加えて拡散抑制層405のAlGa1-aN層(0<a≦1)が、選択ドライエッチング後も残る。よって、凹部404a形成時に、バリア層404を、ノーマリオンとノーマリオフとの境界条件となる膜厚を超えた深さにエッチングし、ノーマリオンとノーマリオフとの境界条件の膜厚になるように拡散抑制層405を形成することで、凹部404a以外の領域の2次元電子ガスのキャリア密度を大きくすることができるため、シート抵抗を低減することができる。
 また、例えば、上述したAlGa1-aN(0<a≦1)からなる層とGaNからなる層との積層構造により構成された拡散抑制層405において、AlGa1-aN(0<a≦1)からなる層は、1×1018(/cm)以上のSi濃度を有してもよい。
 この構成によれば、拡散抑制層405がn型ドーパントであるSi濃度を1×1018(/cm)以上含むため、低コンタクト抵抗を得ることができる。また、p型導電層406から拡散してきたMgを補償できる。よって、バリア層404がp型化されにくくなるので低コンタクト抵抗を得やすくすることができ、製造歩留まりを向上することができる。
 また、例えば、上述したAlGa1-aN(0<a≦1)からなる層とGaNからなる層との積層構造により構成された拡散抑制層405において、GaNからなる層は1×1018(/cm)以上のSi濃度を有してもよい。
 この構成によれば、ゲート電極形成領域以外でのバリア層404と拡散抑制層405との選択エッチングにおいて拡散抑制層405中のGaN層が完全に除去できなかった場合も、拡散抑制層405中のGaN層のSiがMgによるp型化を補償するため、ソース電極108及びドレイン電極109が拡散抑制層405から低コンタクト抵抗を得やすくすることができ、製造歩留まりを向上することができる。
 また、例えば、上記各実施形態及び変形例において、バリア層104、113、404は、1×1018(/cm)以上のSi濃度を有してもよい。
 この構成によれば、バリア層104、113、404がn型ドーパントであるSi濃度を1×1018(/cm)以上含むため、n型化される。このため、コンタクト抵抗を低減することができる。
 また、例えば、上記各実施形態及び変形例において、p型導電層106、114、406のそれぞれは、AlGa1-zN(0<z≦1)であってもよい。
 この構成によれば、p型導電層106、114、406をGaNで構成する場合に比べてp型導電層106、114、406のバンドギャップが大きいため、その分だけフェルミ準位の位置を大きく変化させることができる。言い換えれば、フェルミ準位をより価電子帯に近づけることができる。すると、大きなビルトインポテンシャルが得られるため、ゲートのしきい値電圧が大きくなり、ノーマリオフ化が容易となる。また、ゲートのしきい値電圧が大きくなった分に対応して、ノーマリオフを保つことができる範囲で2次元電子ガスのキャリア密度を大きくすることができ、シート抵抗を低減することができる。2次元電子ガスのキャリア密度を大きくするには、バリア層104、113、404のバンドギャップを大きくしたり、膜厚を厚くしたりすればよい。
 また、ゲート電極107は、Niからなる構成に限らず、他の金属(例えばTi)を含む金属電極であってもよい。また、ポリシリコンなどの金属以外の導電体であってもよい。
 本開示に係る半導体装置は、テレビ他の民生機器の電源回路等で用いられる、例えば電界効果トランジスタ等のパワーデバイスとして有用である。
100,150,160,170,180,190,200,300,400  窒化物半導体装置(半導体装置)
101  Si基板
102  バッファ層
103,112  チャネル層(第1の半導体層)
104,113,404  バリア層(第2の半導体層)
105,110,111A,111B,115,116,405  拡散抑制層(第3の半導体層)
106,114,301,406  p型導電層(第4の半導体層)
107  ゲート電極
107a  ゲート電極層
108,903  ソース電極
109,904  ドレイン電極
404a  凹部
901  GaN層
902  AlGaNバリア層
905  p型GaN層

Claims (16)

  1.  InAlGa1-p-qN(0≦p+q≦1、0≦p、0≦q)からなる第1の半導体層と、
     前記第1の半導体層上に形成され、前記第1の半導体層よりバンドギャップの大きなInAlGa1-r-sN(0≦r+s≦1、0≦r)からなる第2の半導体層と、
     前記第2の半導体層の上に選択的に形成され、InAlGa1-t-uN(0≦t+u≦1、0≦t、s>u)からなる第3の半導体層と、
     前記第3の半導体層の上に形成され、p型の導電性を有するInAlGa1-x-yN(0≦x+y≦1、0≦x、0≦y)からなる第4の半導体層と、
     前記第4の半導体層の上に形成されたゲート電極とを備える
     半導体装置。
  2.  前記第3の半導体層は、膜厚方向の長さあたりのp型ドーパント量の変化量が第4の半導体層における変化量よりも小さい
     請求項1に記載の半導体装置。
  3.  前記第2の半導体層は、上面に形成された凹部を有し、
     前記第3の半導体層は、積層方向から見て前記凹部の少なくとも一部が埋まるように形成されている
     請求項1と2のいずれか1項に記載の半導体装置。
  4.  前記第3の半導体層は、積層方向から見て前記凹部が埋まるように形成されている
     請求項3に記載の半導体装置。
  5.  前記第4の半導体層のp型ドーパントはMgであり、
     前記第2の半導体層は、前記第3の半導体層と接する部分において、1×1019(/cm)以下のMg濃度を有し、
     前記第3の半導体層は、前記第2の半導体層と接する部分において、1×1019(/cm)以下のMg濃度を有する
     請求項1と2のいずれか1項に記載の半導体装置。
  6.  前記第3の半導体層がGaNである
     請求項1と2のいずれか1項に記載の半導体装置。
  7.  前記第3の半導体層が1×1018(/cm)以上のSi濃度を有する
     請求項1と2のいずれか1項に記載の半導体装置。
  8.  前記第3の半導体層は、AlGa1-aN(0<a≦1)からなる層と、GaNからなる層とが積層された構造である
     請求項3に記載の半導体装置。
  9.  前記第3の半導体層のAlGa1-aN(0<a≦1)からなる層が1×1018(/cm)以上のSi濃度を有する
     請求項8に記載の半導体装置。
  10.  前記第3の半導体層のGaNからなる層が1×1018(/cm)以上のSi濃度を有する
     請求項8に記載の半導体装置。
  11.  前記第2の半導体層が1×1018(/cm)以上のSi濃度を有する
     請求項1と2のいずれか1項に記載の半導体装置。
  12.  前記第2の半導体層は、前記第1の半導体層と接する側に形成されたSiをドーピングしていない層と、ソース電極及びドレイン電極と接する側に形成された1×1018(/cm)以上のSi濃度を有する層とが積層された構造である
     請求項1と2のいずれか1項に記載の半導体装置。
  13.  前記第4の半導体層がGaNである
     請求項1と2のいずれか1項に記載の半導体装置。
  14.  前記第4の半導体層がAlGa1-zN(0<z≦1)である
     請求項1と2のいずれか1項に記載の半導体装置。
  15.  前記第4の半導体層は、前記第3の半導体層と接する側に形成されたAlGa1-zN(0<z≦1)からなる層と、ゲート電極と接する側に形成されたGaNからなる層とが積層された構造である
     請求項1と2のいずれか1項に記載の半導体装置。
  16.  InAlGa1-p-qN(0≦p+q≦1、0≦p、0≦q)からなる第1の半導体層を形成する工程と、
     前記第1の半導体層上に、前記第1の半導体層よりバンドギャップの大きなInAlGa1-r-sN(0≦r+s≦1、0≦r)からなる第2の半導体層を形成する工程と、
     前記第2の半導体層の上に、InAlGa1-t-uN(0≦t+u≦1、0≦t、s>u)からなる第3の半導体層を形成する工程と、
     前記第3の半導体層の上に、p型の導電性を有するInAlGa1-x-yN(0≦x+y≦1、0≦x、0≦y)からなる第4の半導体層を形成する工程と、
     前記第4の半導体層の上にゲート電極を形成する工程と、
     前記第4の半導体層を形成する工程の後、前記第3の半導体層および前記第4の半導体層のうち前記ゲート電極に対応する領域以外を除去する工程とを含む
     半導体装置の製造方法。
PCT/JP2014/002655 2013-05-24 2014-05-21 半導体装置及びその製造方法 WO2014188715A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015518077A JP6330148B2 (ja) 2013-05-24 2014-05-21 半導体装置
US14/930,628 US9837496B2 (en) 2013-05-24 2015-11-02 Semiconductor device and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-110034 2013-05-24
JP2013110034 2013-05-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/930,628 Continuation US9837496B2 (en) 2013-05-24 2015-11-02 Semiconductor device and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2014188715A1 true WO2014188715A1 (ja) 2014-11-27

Family

ID=51933282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002655 WO2014188715A1 (ja) 2013-05-24 2014-05-21 半導体装置及びその製造方法

Country Status (3)

Country Link
US (1) US9837496B2 (ja)
JP (1) JP6330148B2 (ja)
WO (1) WO2014188715A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219538A (ja) * 2015-05-18 2016-12-22 トヨタ自動車株式会社 ヘテロ接合半導体装置及びその製造方法
JP2020523781A (ja) * 2017-06-15 2020-08-06 エフィシエント パワー コンヴァーション コーポレーション GaNスペーサ厚の均一性改善のために選択及び非選択エッチング層を用いたエンハンスメントモードGaNトランジスタ
JP2021106219A (ja) * 2019-12-26 2021-07-26 株式会社デンソー 窒化物半導体装置の製造方法
JP2022106775A (ja) * 2016-08-23 2022-07-20 クロミス,インコーポレイテッド 加工基板と統合された電子パワーデバイス
JP7522851B2 (ja) 2020-03-31 2024-07-25 華為技術有限公司 半導体エピタキシャル構造および半導体装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034186B (zh) * 2018-01-12 2021-03-16 中国科学院苏州纳米技术与纳米仿生研究所 基于复合势垒层结构的iii族氮化物增强型hemt及其制作方法
IT201800001693A1 (it) * 2018-01-23 2019-07-23 St Microelectronics Srl Metodo di fabbricazione di un transistore hemt di tipo normalmente spento con ridotta resistenza in stato acceso e transistore hemt
TWI775065B (zh) * 2020-04-13 2022-08-21 世界先進積體電路股份有限公司 半導體裝置
CN111564490B (zh) * 2020-05-28 2022-07-01 西安电子科技大学芜湖研究院 一种P-GaN增强型HEMT器件及其制备方法
US11942326B2 (en) * 2020-12-16 2024-03-26 Semiconductor Components Industries, Llc Process of forming an electronic device including a doped gate electrode
KR102578828B1 (ko) * 2021-03-29 2023-09-15 삼성전자주식회사 고전자이동도 트랜지스터

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242746A (ja) * 2006-03-07 2007-09-20 Nippon Telegr & Teleph Corp <Ntt> デュアルゲートhemt構造半導体変調素子及びその製造方法
JP2008153330A (ja) * 2006-12-15 2008-07-03 Oki Electric Ind Co Ltd 窒化物半導体高電子移動度トランジスタ
JP2008277655A (ja) * 2007-05-02 2008-11-13 Hitachi Cable Ltd 半導体エピタキシャルウェハ及び電界効果トランジスタ
JP2010258313A (ja) * 2009-04-28 2010-11-11 Nichia Corp 電界効果トランジスタ及びその製造方法
JP2012523700A (ja) * 2009-04-08 2012-10-04 エフィシエント パワー コンヴァーション コーポレーション 逆拡散抑制構造

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4041075B2 (ja) * 2004-02-27 2008-01-30 株式会社東芝 半導体装置
JP5299805B2 (ja) 2005-08-29 2013-09-25 学校法人 名城大学 トランジスタ
JP5100002B2 (ja) * 2005-12-14 2012-12-19 新日本無線株式会社 窒化物半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242746A (ja) * 2006-03-07 2007-09-20 Nippon Telegr & Teleph Corp <Ntt> デュアルゲートhemt構造半導体変調素子及びその製造方法
JP2008153330A (ja) * 2006-12-15 2008-07-03 Oki Electric Ind Co Ltd 窒化物半導体高電子移動度トランジスタ
JP2008277655A (ja) * 2007-05-02 2008-11-13 Hitachi Cable Ltd 半導体エピタキシャルウェハ及び電界効果トランジスタ
JP2012523700A (ja) * 2009-04-08 2012-10-04 エフィシエント パワー コンヴァーション コーポレーション 逆拡散抑制構造
JP2010258313A (ja) * 2009-04-28 2010-11-11 Nichia Corp 電界効果トランジスタ及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219538A (ja) * 2015-05-18 2016-12-22 トヨタ自動車株式会社 ヘテロ接合半導体装置及びその製造方法
JP2022106775A (ja) * 2016-08-23 2022-07-20 クロミス,インコーポレイテッド 加工基板と統合された電子パワーデバイス
JP2020523781A (ja) * 2017-06-15 2020-08-06 エフィシエント パワー コンヴァーション コーポレーション GaNスペーサ厚の均一性改善のために選択及び非選択エッチング層を用いたエンハンスメントモードGaNトランジスタ
JP7348842B2 (ja) 2017-06-15 2023-09-21 エフィシエント パワー コンヴァーション コーポレーション GaNスペーサ厚の均一性改善のために選択及び非選択エッチング層を用いたエンハンスメントモードGaNトランジスタ
JP2021106219A (ja) * 2019-12-26 2021-07-26 株式会社デンソー 窒化物半導体装置の製造方法
JP7522851B2 (ja) 2020-03-31 2024-07-25 華為技術有限公司 半導体エピタキシャル構造および半導体装置

Also Published As

Publication number Publication date
JPWO2014188715A1 (ja) 2017-02-23
US9837496B2 (en) 2017-12-05
JP6330148B2 (ja) 2018-05-30
US20160056245A1 (en) 2016-02-25

Similar Documents

Publication Publication Date Title
JP6330148B2 (ja) 半導体装置
US8441035B2 (en) Field effect transistor and method of manufacturing the same
US11322599B2 (en) Enhancement mode III-nitride devices having an Al1-xSixO gate insulator
US8907349B2 (en) Semiconductor device and method of manufacturing the same
JP6174874B2 (ja) 半導体装置
US7863649B2 (en) Nitride semiconductor device and method for fabricating the same
JP5469098B2 (ja) 電界効果トランジスタ及びその製造方法
JP6371986B2 (ja) 窒化物半導体構造物
US9190508B2 (en) GaN based semiconductor device
US20140110759A1 (en) Semiconductor device
US10784361B2 (en) Semiconductor device and method for manufacturing the same
WO2010109566A1 (ja) 半導体装置及びその製造方法
JP2009231508A (ja) 半導体装置
JP6649208B2 (ja) 半導体装置
JP2008243881A (ja) 半導体装置及びその製造方法
US20240105812A1 (en) Nitride-based semiconductor device and method for manufacturing the same
JP5721782B2 (ja) 半導体装置
KR20230007512A (ko) 베릴륨 도핑된 쇼트키 접촉층을 갖는 공핍 모드 고전자 이동도 전계 효과 트랜지스터(hemt) 반도체 장치
JP2007250727A (ja) 電界効果トランジスタ
US20160211358A1 (en) Semiconductor device
US20190035922A1 (en) Semiconductor device, electronic part, electronic apparatus, and method for fabricating semiconductor device
JP2010177416A (ja) 窒化物半導体装置
JP2010267817A (ja) 電界効果トランジスタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015518077

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14800347

Country of ref document: EP

Kind code of ref document: A1