Nothing Special   »   [go: up one dir, main page]

WO2014185131A1 - Device for manufacturing glass sheet and method for manufacturing glass sheet - Google Patents

Device for manufacturing glass sheet and method for manufacturing glass sheet Download PDF

Info

Publication number
WO2014185131A1
WO2014185131A1 PCT/JP2014/056041 JP2014056041W WO2014185131A1 WO 2014185131 A1 WO2014185131 A1 WO 2014185131A1 JP 2014056041 W JP2014056041 W JP 2014056041W WO 2014185131 A1 WO2014185131 A1 WO 2014185131A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass ribbon
glass
float bath
rotating member
roll
Prior art date
Application number
PCT/JP2014/056041
Other languages
French (fr)
Japanese (ja)
Inventor
伊賀 元一
信之 伴
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2015516969A priority Critical patent/JP6103048B2/en
Priority to KR1020157023523A priority patent/KR102153290B1/en
Priority to CN201480016389.7A priority patent/CN105050970B/en
Publication of WO2014185131A1 publication Critical patent/WO2014185131A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/04Changing or regulating the dimensions of the molten glass ribbon
    • C03B18/06Changing or regulating the dimensions of the molten glass ribbon using mechanical means, e.g. restrictor bars, edge rollers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/16Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors
    • C03B35/18Construction of the conveyor rollers ; Materials, coatings or coverings thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/16Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors
    • C03B35/18Construction of the conveyor rollers ; Materials, coatings or coverings thereof
    • C03B35/181Materials, coatings, loose coverings or sleeves thereof

Definitions

  • the present invention relates to a glass plate manufacturing apparatus and a glass plate manufacturing method.
  • FIG. 10 is a longitudinal sectional view showing a sectional shape of the tool steel rotating member taken along line XX in FIG. 9. It is a figure explaining the convex part of a rotation member. It is a figure for demonstrating the shape of the taper-shaped part of a convex part. It is the cross-sectional view which looked at an example of schematic structure of the manufacturing apparatus of the glass plate in Embodiment 2 from upper direction. It is the longitudinal cross-sectional view which looked at an example of schematic structure of the manufacturing apparatus of the glass plate in Embodiment 2 from the side.
  • the slow cooling furnace 90 includes a plurality of transport rolls 92A to 92N and a driving device 94 that rotationally drives the transport rolls 92A to 92N.
  • the drive device 94 includes a drive motor, a speed reduction mechanism, and the like, and rotationally drives the transport rolls 92A to 92N at a predetermined number of rotations according to a control signal output from the control device 100.
  • the slow cooling furnace 90 extends downstream, only the transport rolls 92A and 92B are shown in FIGS. 1 and 2, and the other transport rolls are omitted for convenience.
  • the thickness w of the rotating member 120 is preferably 5 mm or more, more preferably 10 mm or more, further preferably 15 mm or more, and particularly preferably 30 mm or more, considering the gripping force with the glass ribbon G, and the flatness of the glass ribbon G is improved. In view of preventing unnecessary increase in grip width, it is preferably 120 mm or less, more preferably 100 mm or less, still more preferably 80 mm or less, still more preferably 60 mm or less, and particularly preferably 40 mm or less.
  • the outer peripheral surface 122 of the rotating member 120 is a curved shape whose cross-sectional shape is convex outward in the radial direction over the entire circumference. Therefore, it is difficult to break and the molding and processing costs are reduced. 5A to 5C are preferable because the glass ribbon G can be stably formed into a sheet glass. However, small irregularities can be provided on the outer peripheral surface 122 of the rotating member 120. When this small unevenness is provided on the outer peripheral surface 122, a frictional force against the surface of the glass ribbon G can be obtained more.
  • the type of ceramic is selected according to the type of product glass plate (that is, a glass ribbon G that has been slowly cooled and cooled).
  • the glass plate is alkali-free glass
  • silicon nitride ceramics excellent in thermal shock resistance are suitable.
  • the temperature in the float bath 20 tends to be high, so that the higher the thermal shock resistance, the higher the degree of freedom of operation.
  • the higher the temperature the more likely the reactivity with the glass ribbon G and the molten tin S becomes a problem, but the silicon nitride ceramic tends to have a low reactivity.
  • the glass plate is soda lime glass, silicon carbide ceramics or alumina ceramics can be used in addition to silicon nitride ceramics.
  • the alkali-free glass is a glass that does not substantially contain an alkali metal oxide (Na 2 O, K 2 O, Li 2 O).
  • the total content (Na 2 O + K 2 O + Li 2 O) of the alkali metal oxide content in the alkali-free glass may be, for example, 0.1% or less.
  • the rotating member 72 has a disk shape, and the central axis of the rotating member 72 and the central axis of the shaft member 76 are on the same straight line.
  • the rotating member 72 is in contact with the surface of the glass ribbon G (the upper surface in the present embodiment) at the outer periphery. As the rotating member 72 rotates, the glass ribbon G is sent out in a predetermined direction (X direction).
  • tool steel has high temperature strength compared to conventional materials such as SUS and SC, the deformation of the convex portion 72b that bites into the glass ribbon G can be suppressed, and the durability of the rotating member 72 can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)

Abstract

A device for manufacturing a glass sheet, for supplying molten glass onto a molten metal (S) in a float bath (20) from an inflow port of the float bath (20), spreading a glass ribbon (G) in a width direction through use of a support roll (40) inserted from both sides of the float bath (20) in a molding region of the float bath (20), and molding the glass ribbon (G) to a predetermined thickness, wherein a glass ribbon delivery mechanism (70) is provided having drive rolls (71A-71C) for delivering the glass ribbon (G) in a downstream direction to an annealing region (L3) between a molding region (L2) and a float bath exit (29). The glass ribbon delivery mechanism (70) causes the drive rolls (71A-71C) to contact edge parts of the glass ribbon (G) on both sides thereof in the width direction and drives the drive rolls (71A-71C) so that the edge parts on both sides are delivered in the downstream direction.

Description

ガラス板の製造装置、及びガラス板の製造方法Glass plate manufacturing apparatus and glass plate manufacturing method
 本発明はガラス板の製造装置、及びガラス板の製造方法に関する。 The present invention relates to a glass plate manufacturing apparatus and a glass plate manufacturing method.
 ガラス板の成形方法として、フロート法が広く用いられている。フロート法は、浴槽内に収容される溶融金属(例えば、溶融スズ)上に導入された溶融ガラスを所定方向に流動させ、帯板状のガラスリボンとする方法である。ガラスリボンは、水平方向に流動する過程で徐々に冷却された後、リフトアウトロールによって溶融金属から引き上げられ、徐冷炉内で徐冷され、板状ガラスとなる。板状ガラスは、徐冷炉から搬出された後、切断機によって所定の寸法形状に切断され、製品であるガラス板となる。 The float method is widely used as a glass plate forming method. The float method is a method in which molten glass introduced on a molten metal (for example, molten tin) accommodated in a bathtub is caused to flow in a predetermined direction to form a strip-shaped glass ribbon. The glass ribbon is gradually cooled in the process of flowing in the horizontal direction, then pulled up from the molten metal by a lift-out roll, and gradually cooled in a slow cooling furnace to become a sheet glass. The plate-like glass is unloaded from the slow cooling furnace and then cut into a predetermined size and shape by a cutting machine to become a glass plate as a product.
 ところで、平衡厚さより薄い状態にあるガラスリボンは、幅方向に収縮しようとする。収縮が過大であると、製品であるガラス板の厚さが目標の厚さよりも厚くなってしまう。 By the way, the glass ribbon in a state thinner than the equilibrium thickness tends to shrink in the width direction. If the shrinkage is excessive, the thickness of the product glass plate becomes thicker than the target thickness.
 そこで、従来から、ガラスリボンの幅方向の収縮を抑制するため、ガラスリボンを支持する支持ロールが用いられている(例えば、特許文献1参照)。支持ロールは、ガラスリボンの幅方向両側に複数対配置され、ガラスリボンに対し幅方向に張力を加える。 Therefore, conventionally, in order to suppress shrinkage in the width direction of the glass ribbon, a support roll for supporting the glass ribbon has been used (for example, see Patent Document 1). A plurality of pairs of support rolls are arranged on both sides of the glass ribbon in the width direction, and tension is applied to the glass ribbon in the width direction.
 支持ロールは、ガラスリボンの表面と接触する回転部材を先端部に有する。回転部材は、例えば円盤状であって、外周に、歯車状の凹凸部を有する。凹凸部の凸部がガラスリボンに食い込むことにより、ガラスリボンの収縮が抑制される。 The support roll has a rotating member in contact with the surface of the glass ribbon at the tip. The rotating member has a disk shape, for example, and has a gear-shaped uneven portion on the outer periphery. As the convex portions of the concave and convex portions bite into the glass ribbon, the shrinkage of the glass ribbon is suppressed.
 ガラス板の製造装置においては、溶融ガラスをフロートバス内に貯留された溶融金属上を流動するガラスリボンを所定の厚さに成形している。 In a glass plate manufacturing apparatus, a glass ribbon that flows on a molten metal stored in a float bath is molded into a predetermined thickness.
特開2011-225386号公報JP 2011-225386 A
 ところで、近年、ガラス板の厚さをより薄くすることが要望されており、特にディスプレイ基板用ガラス板の場合、好ましくは0.7mm以下、より好ましくは0.5mm以下、さらに好ましくは0.3mm以下、特には0.2mm以下、さらには0.1mm以下のガラス板が要望されている。 By the way, in recent years, it has been demanded to reduce the thickness of the glass plate, and particularly in the case of a glass plate for a display substrate, it is preferably 0.7 mm or less, more preferably 0.5 mm or less, and further preferably 0.3 mm. In the following, a glass plate of 0.2 mm or less, more preferably 0.1 mm or less is desired.
 ガラスリボンは、フロートバスの出口より後方に配置されたリフトアウトロール及び搬送ロールの回転により下流へ搬送される。そのため、フロートバス内においては、リフトアウトロール及び搬送ロールにより下流方向への引張り力をガラスリボンに作用させて搬送している。 The glass ribbon is transported downstream by the rotation of a lift-out roll and a transport roll disposed behind the float bath outlet. Therefore, in the float bath, a tensile force in the downstream direction is applied to the glass ribbon by the lift-out roll and the transport roll, and the glass ribbon is transported.
 一方、上記ガラス板の製造装置においては、フロートバスから引き出されるガラスリボンの移動速度とリフトアウトロールによるガラスリボンの搬送速度との間で相対的な速度差が生じた場合、ガラスリボンの下面にリフトアウトロールと接触する疵が発生する問題が生じやすかった。 On the other hand, in the glass plate manufacturing apparatus, when a relative speed difference occurs between the moving speed of the glass ribbon drawn from the float bath and the conveying speed of the glass ribbon by the lift-out roll, The problem of wrinkles coming into contact with the lift-out roll was likely to occur.
 フロートバスから引き出されるガラスリボンの移動速度に対してリフトアウトロールの回転速度が低下した場合には、フロートバスの出口付近でガラスリボンに波形変形が発生するおそれがあった。 When the rotation speed of the lift-out roll is reduced with respect to the moving speed of the glass ribbon drawn out from the float bath, the glass ribbon may be deformed near the exit of the float bath.
 フロートバスの出口付近において、ガラスリボンがリフトアウトロールの高さ位置に引き上げられる過程で幅方向のクラックが発生した場合には、ガラスリボンが切断されてガラスリボンを連続的に引出すことができなくなるという問題が発生する。 If a crack in the width direction occurs in the process of pulling the glass ribbon to the height of the lift-out roll near the exit of the float bath, the glass ribbon is cut and the glass ribbon cannot be pulled out continuously. The problem occurs.
 これら現象は、ガラス板を薄く成形する場合に発生しやすくなる。 These phenomena are likely to occur when a glass plate is thinly formed.
 そこで、本発明は上記課題を解決するガラス板の製造装置、及びガラス板の製造方法の提供を目的とする。 Therefore, an object of the present invention is to provide a glass plate manufacturing apparatus and a glass plate manufacturing method that solve the above-described problems.
 上記課題を解決するため、本発明は以下のような手段を有する。 In order to solve the above problems, the present invention has the following means.
 一つの形態によれば、溶融ガラスをフロートバスの流入口からフロートバス内の溶融金属上に供給し、前記フロートバスの成形領域において、支持ロールによりガラスリボンを幅方向に広げて所定の厚さに成形するガラス板の製造装置において、
 前記成形領域とフロートバス出口との間の徐冷領域に前記ガラスリボンを下流方向へ送り出すための駆動ロールを有するガラスリボン送出手段を設け、
 前記ガラスリボン送出手段は、前記駆動ロールを前記ガラスリボンの幅方向の両側縁部に接触させ、前記両側縁部を下流方向に送り出すように駆動させることを特徴とするガラス板の製造装置が提供される。
According to one embodiment, the molten glass is supplied from the inlet of the float bath onto the molten metal in the float bath, and in the float bath forming region, the glass ribbon is spread in the width direction by a support roll to have a predetermined thickness. In a glass plate manufacturing apparatus to be molded into
A glass ribbon delivery means having a drive roll for delivering the glass ribbon in the downstream direction in a slow cooling region between the molding region and the float bath outlet;
The glass ribbon feeding means provides the apparatus for manufacturing a glass plate, wherein the driving roll contacts the both side edges in the width direction of the glass ribbon and drives the both side edges to be sent in the downstream direction. Is done.
 本発明によれば、高品質なガラス板を安定して得ることできる。 According to the present invention, a high-quality glass plate can be obtained stably.
実施形態1におけるガラス板の製造装置の概略構成の一例を上方からみた横断面図である。It is the cross-sectional view which looked at an example of schematic structure of the manufacturing apparatus of the glass plate in Embodiment 1 from upper direction. 実施形態1におけるガラス板の製造装置の概略構成の一例を側方からみた縦断面図である。It is the longitudinal cross-sectional view which looked at an example of schematic structure of the manufacturing apparatus of the glass plate in Embodiment 1 from the side. 支持ロールの取付構造を示す一部縦断面図である。It is a partial longitudinal cross-sectional view which shows the attachment structure of a support roll. 駆動ロールの取付構造を示す一部縦断面図である。It is a partial longitudinal cross-sectional view which shows the attachment structure of a drive roll. 駆動ロールのセラミックス製回転部材を軸方向から見た図である。It is the figure which looked at the ceramic rotation member of the drive roll from the axial direction. セラミックス製回転部材の断面形状を示す縦断面図である。It is a longitudinal cross-sectional view which shows the cross-sectional shape of the ceramic rotation member. 回転部材の取付構造を拡大して示す図である。It is a figure which expands and shows the attachment structure of a rotating member. ガラスリボン送出機構の変形例を示す図である。It is a figure which shows the modification of a glass ribbon delivery mechanism. 駆動ロールの工具鋼回転部材を軸方向から見た図である。It is the figure which looked at the tool steel rotating member of the drive roll from the axial direction. 図9中X-X線に沿う工具鋼回転部材の断面形状を示す縦断面図である。FIG. 10 is a longitudinal sectional view showing a sectional shape of the tool steel rotating member taken along line XX in FIG. 9. 回転部材の凸部を説明する図である。It is a figure explaining the convex part of a rotation member. 凸部の先細り状部分の形状を説明するための図である。It is a figure for demonstrating the shape of the taper-shaped part of a convex part. 実施形態2におけるガラス板の製造装置の概略構成の一例を上方からみた横断面図である。It is the cross-sectional view which looked at an example of schematic structure of the manufacturing apparatus of the glass plate in Embodiment 2 from upper direction. 実施形態2におけるガラス板の製造装置の概略構成の一例を側方からみた縦断面図である。It is the longitudinal cross-sectional view which looked at an example of schematic structure of the manufacturing apparatus of the glass plate in Embodiment 2 from the side.
 以下、本発明の一実施形態について、図面を参照して説明する。以下の図面において、同一のまたは対応する構成には、同一のまたは対応する符号を付して、説明を省略する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and description thereof is omitted.
 〔実施形態1〕
 図1は、実施形態1におけるガラス板の製造装置10の概略構成の一例を上方からみた横断面図である。図2は、実施形態1におけるガラス板の製造装置10の概略構成の一例を側方からみた縦断面図である。
[Embodiment 1]
FIG. 1 is a cross-sectional view of an example of a schematic configuration of a glass plate manufacturing apparatus 10 according to Embodiment 1 as viewed from above. FIG. 2 is a longitudinal sectional view of an example of a schematic configuration of the glass plate manufacturing apparatus 10 according to the first embodiment as viewed from the side.
 図1~2に示されるように、ガラス板の製造装置10は、フロート法によりガラス板を製造する装置であり、溶融ガラスを溶融錫浴に導入してガラスリボンGに成形した後、ガラスリボンGの温度を徐々に下げる徐冷を行うように構成されている。 As shown in FIGS. 1 and 2, a glass plate manufacturing apparatus 10 is an apparatus for manufacturing a glass plate by a float process. After glass glass is introduced into a molten tin bath and formed into a glass ribbon G, the glass ribbon is manufactured. It is configured to perform slow cooling that gradually lowers the temperature of G.
 ガラス板の製造装置10の上流側には、溶融ガラスを生成する溶融窯が設けられている。 A melting furnace for generating molten glass is provided on the upstream side of the glass plate manufacturing apparatus 10.
 ガラス板の製造装置10は、フロートバス20を有する。フロートバス20は、溶融金属(例えば、溶融スズ)Sを収容する浴槽22、浴槽22の外周上縁に沿って設置される側壁24、および側壁24に連結され、浴槽22の上方を覆う天井26などで構成される。天井26には、浴槽22と天井26との間に形成される空間28に、還元性ガスを供給するガス供給路30が設けられている。また、ガス供給路30には、加熱源としてのヒータ32が挿通されており、ヒータ32の発熱部32aが溶融金属S、ガラスリボンGの上方に配置されている。 The glass plate manufacturing apparatus 10 has a float bath 20. The float bath 20 is connected to the bathtub 22 that houses the molten metal (for example, molten tin) S, the side wall 24 that is installed along the outer peripheral upper edge of the bathtub 22, and the ceiling 26 that covers the upper side of the bathtub 22. Etc. The ceiling 26 is provided with a gas supply path 30 for supplying a reducing gas in a space 28 formed between the bathtub 22 and the ceiling 26. Further, a heater 32 as a heating source is inserted into the gas supply path 30, and a heat generating portion 32 a of the heater 32 is disposed above the molten metal S and the glass ribbon G.
 上記製造装置10を用いた成形方法は、フロートバス20の流入口から溶融金属S上に導入された溶融ガラスを所定方向に流動させることにより、帯板状のガラスリボンGとする方法である。ガラスリボンGは、下流方向(図1、図2中、X方向)に流動する過程で冷却された後、リフトアウトロールによって溶融金属Sから引き上げられ、徐冷炉内で徐冷され、徐冷炉から搬出された後、切断機によって所定の寸法形状に切断され、製品であるガラス板となる。 The forming method using the manufacturing apparatus 10 is a method for forming a ribbon glass ribbon G by causing molten glass introduced onto the molten metal S from the inlet of the float bath 20 to flow in a predetermined direction. The glass ribbon G is cooled in the process of flowing in the downstream direction (X direction in FIGS. 1 and 2), then pulled up from the molten metal S by a lift-out roll, gradually cooled in a slow cooling furnace, and carried out of the slow cooling furnace. After that, it is cut into a predetermined size and shape by a cutting machine to form a glass plate as a product.
 フロートバス20内の空間28は、溶融金属Sの酸化を防止するため、ガス供給路30から供給される還元性ガスで満たされている。還元性ガスは、例えば、水素ガスを1~15体積%、窒素ガスを85~99体積%含んでいる。フロートバス20内の空間28は、側壁24の隙間などから大気が混入するのを防止するため、大気圧よりも高い気圧に設定されている。 The space 28 in the float bath 20 is filled with a reducing gas supplied from the gas supply path 30 in order to prevent the molten metal S from being oxidized. The reducing gas contains, for example, 1 to 15% by volume of hydrogen gas and 85 to 99% by volume of nitrogen gas. The space 28 in the float bath 20 is set to a pressure higher than the atmospheric pressure in order to prevent air from entering through the gaps between the side walls 24 and the like.
 フロートバス20内の温度分布を調節するため、ヒータ32は、例えば、ガラスリボンGの流動方向(X方向)および幅方向(Y方向)に間隔をおいて複数設けられ、格子状に配置されている。ヒータ32の出力は、ガラスリボンGの流動方向(X方向)上流側ほど、ガラスリボンGの温度が高くなるように制御される。また、ヒータ32の出力は、ガラスリボンGの板厚が幅方向(Y方向)に均一になるように制御される。 In order to adjust the temperature distribution in the float bath 20, a plurality of heaters 32 are provided, for example, at intervals in the flow direction (X direction) and the width direction (Y direction) of the glass ribbon G, and arranged in a lattice pattern. Yes. The output of the heater 32 is controlled so that the temperature of the glass ribbon G becomes higher toward the upstream side in the flow direction (X direction) of the glass ribbon G. The output of the heater 32 is controlled so that the thickness of the glass ribbon G is uniform in the width direction (Y direction).
 フロートバス20の内部は、上記のように供給される低粘性領域である供給領域L1と、その下流側に溶融金属S上を流動するガラスリボンGを左右両側(幅方向)に広げて所定の厚さに成形する成形領域L2と、成形領域L2とフロートバス20の出口29との間にガラスリボンGを徐冷する徐冷領域L3とを有する。各領域L1~L3の天井26には、複数のヒータ32が配置されている。そして、各領域に各ヒータ32による加熱量が制御されており、各領域L1~L3を通過するガラスリボンGの温度を調整することで、ガラスリボンGの粘性を制御している。また、徐冷領域L3は、ガラスリボンGの軟化点より温度が低い領域であることが好ましい。 The interior of the float bath 20 is a predetermined region by spreading a supply region L1 which is a low-viscosity region supplied as described above and a glass ribbon G flowing on the molten metal S to the left and right sides (width direction) downstream thereof. A molding region L2 to be molded to a thickness, and a slow cooling region L3 for gradually cooling the glass ribbon G between the molding region L2 and the outlet 29 of the float bath 20 are provided. A plurality of heaters 32 are arranged on the ceiling 26 in each of the regions L1 to L3. The amount of heating by each heater 32 is controlled in each region, and the viscosity of the glass ribbon G is controlled by adjusting the temperature of the glass ribbon G passing through each region L1 to L3. Further, the slow cooling region L3 is preferably a region having a temperature lower than the softening point of the glass ribbon G.
 供給領域L1に供給される溶融ガラスの粘度は、例えば、10dPa・sである。 The viscosity of the molten glass supplied to the supply region L1 is, for example, 10 4 dPa · s.
 成形領域L2は、ガラスリボンGの粘度が、例えば104.5~107.5dPa・sになる。 In the forming region L2, the viscosity of the glass ribbon G is, for example, 10 4.5 to 10 7.5 dPa · s.
 成形領域L2において、フロートバス20内のガラスリボンGが幅方向に収縮するのを抑制するため、ガラスリボンGの幅方向の収縮を抑制する複数の支持ロール40を有する。 In the forming region L2, in order to prevent the glass ribbon G in the float bath 20 from shrinking in the width direction, a plurality of support rolls 40 that suppress the shrinkage in the width direction of the glass ribbon G are provided.
 図3は、支持ロールの取付構造を示す一部縦断面図である。図3に示すように、支持ロール40は、主に、回転部材50と、連結部材60と、軸部材65とにより構成される。軸部材65は、先端が浴槽22の側壁24を貫通してフロートバス20内に挿入されており、基端が側壁24の外側に配置された駆動装置34に接続されている。駆動装置34は、駆動モータと減速機構などからなり、回転部材50をガラスリボンGの進行方向に回転する。回転部材50は、外周の凸部がガラスリボンGの上面に食い込み、ガラスリボンGが幅方向に収縮しないように、ガラスリボンGの幅方向端部に張力を加える。 FIG. 3 is a partial longitudinal sectional view showing the mounting structure of the support roll. As shown in FIG. 3, the support roll 40 is mainly composed of a rotating member 50, a connecting member 60, and a shaft member 65. The shaft member 65 has a distal end penetrating the side wall 24 of the bathtub 22 and inserted into the float bath 20, and a proximal end connected to the driving device 34 disposed outside the side wall 24. The driving device 34 includes a driving motor and a speed reduction mechanism, and rotates the rotating member 50 in the traveling direction of the glass ribbon G. The rotating member 50 applies tension to the end in the width direction of the glass ribbon G so that the convex portion on the outer periphery bites into the upper surface of the glass ribbon G and the glass ribbon G does not contract in the width direction.
 徐冷領域L3におけるガラスリボンGの温度は、ソーダライム(ソーダ石灰ガラス)の場合、例えば736°C以下、無アルカリガラスの場合、例えば937°C以下に調整される。上記ヒータ制御の温度管理による徐冷領域L3におけるガラスリボンGの粘度は、例えば107.65dPa・s超に調整される。この徐冷領域L3におけるガラスリボンGの粘度は、成形領域L2を通過するときよりも硬くなっている。後述するガラスリボン送出機構70の駆動ロール71A~71CはガラスリボンGを下流方向(X方向)へ送り出せるように構成されている。 The temperature of the glass ribbon G in the slow cooling region L3 is adjusted to, for example, 736 ° C. or less in the case of soda lime (soda lime glass), and to 937 ° C. or less in the case of non-alkali glass, for example. The viscosity of the glass ribbon G in the slow cooling region L3 by the temperature control of the heater control is adjusted to, for example, more than 10 7.65 dPa · s. The viscosity of the glass ribbon G in the slow cooling region L3 is harder than when passing through the forming region L2. Driving rolls 71A to 71C of a glass ribbon delivery mechanism 70, which will be described later, are configured to send the glass ribbon G in the downstream direction (X direction).
 徐冷領域L3におけるガラスリボンGの温度は、ガラスリボン幅が縮小されない領域の温度、具体的にはガラス軟化点(ガラス粘度が107.65dPa・sとなる温度)よりも低い温度であることが好ましい。徐冷領域L3におけるガラスリボンの粘度は、107.65dPa・s超が好ましく、108.3dPa・s以上がより好ましく、109.3dPa・s以上がさらに好ましい。 The temperature of the glass ribbon G in the slow cooling region L3 is lower than the temperature of the region where the glass ribbon width is not reduced, specifically, the glass softening point (the temperature at which the glass viscosity becomes 10 7.65 dPa · s). It is preferable. The viscosity of the glass ribbon in the slow cooling region L3 is preferably more than 10 7.65 dPa · s, more preferably 10 8.3 dPa · s or more, and further preferably 10 9.3 dPa · s or more.
 徐冷領域L3には、ガラスリボンGを下流方向(X方向)に送り出すためのガラスリボン送出機構(ガラスリボン送出手段)70が配置されている。このガラスリボン送出機構70は、ガラスリボンGを所定の移動速度で送り出すようにガラスリボンGを下流方向へ駆動する複数の駆動ロール71A~71Cと、駆動装置78とを有する。 A glass ribbon delivery mechanism (glass ribbon delivery means) 70 for delivering the glass ribbon G in the downstream direction (X direction) is disposed in the slow cooling region L3. The glass ribbon delivery mechanism 70 includes a plurality of drive rolls 71A to 71C for driving the glass ribbon G in the downstream direction so as to send out the glass ribbon G at a predetermined moving speed, and a drive device 78.
 〔ガラスリボン送出機構70、ドロスボックス80、徐冷炉90〕
 図4は駆動ロールの取付構造を示す一部縦断面図である。図4に示されるように、ガラスリボン送出機構70は、複数の駆動ロール71A~71Cと、駆動装置78とを有する。駆動ロール71A~71Cは、セラミックス製又は金属製の回転部材120と、連結部材74と、軸部材76とにより構成される。前記金属製とは、例えば炭素鋼、ステンレス鋼などである。
[Glass ribbon delivery mechanism 70, dross box 80, slow cooling furnace 90]
FIG. 4 is a partial longitudinal sectional view showing a drive roll mounting structure. As shown in FIG. 4, the glass ribbon feeding mechanism 70 has a plurality of driving rolls 71A to 71C and a driving device 78. The drive rolls 71A to 71C are configured by a ceramic or metal rotating member 120, a connecting member 74, and a shaft member 76. Examples of the metal include carbon steel and stainless steel.
 ガラスリボン送出機構70の駆動装置78は、それぞれ軸部材76を回転駆動する駆動モータを有する。駆動装置78は、駆動モータと減速機構などからなり、制御装置100によりガラスリボンGの移動速度に応じた回転数に制御され、駆動ロール71A~71Cの軸部材76、連結部材74を介して回転部材120の回転駆動力をガラスリボンGに伝達する。それにより、ガラスリボンGを所定の移動速度でフロートバス出口へ送り出す。 The drive device 78 of the glass ribbon delivery mechanism 70 has a drive motor that drives the shaft member 76 to rotate. The drive device 78 includes a drive motor and a speed reduction mechanism, and is controlled by the control device 100 at a rotational speed corresponding to the moving speed of the glass ribbon G, and is rotated via the shaft member 76 and the connecting member 74 of the drive rolls 71A to 71C. The rotational driving force of the member 120 is transmitted to the glass ribbon G. Thereby, the glass ribbon G is sent out to the float bath outlet at a predetermined moving speed.
 図1及び図2に示されるように、フロートバス20の出口29より下流には、ドロスボックス80及び、徐冷炉90が設けられている。ドロスボックス80には、フロートバス20の出口29より流出するガラスリボンGを引き上げて搬送する複数のリフトアウトロール82A~82Cが設けられている。ドロスボックス80は、リフトアウトロール82A~82Cを回転駆動する駆動装置84を有する。駆動装置84は、駆動モータと減速機構などからなり、制御装置100から出力される制御信号により各リフトアウトロール82A~82Cを所定の回転数で回転駆動する。 As shown in FIGS. 1 and 2, a dross box 80 and a slow cooling furnace 90 are provided downstream from the outlet 29 of the float bath 20. The dross box 80 is provided with a plurality of lift-out rolls 82A to 82C for lifting and conveying the glass ribbon G flowing out from the outlet 29 of the float bath 20. The dross box 80 has a drive device 84 that rotationally drives the lift-out rolls 82A to 82C. The drive device 84 includes a drive motor, a speed reduction mechanism, and the like, and rotationally drives each of the lift-out rolls 82A to 82C at a predetermined rotational speed by a control signal output from the control device 100.
 制御装置100は、駆動ロール71A~71CによるガラスリボンGの搬送速度が、リフトアウトロール82A~82CによるガラスリボンGの搬送速度と同じになるように、駆動装置78を駆動制御する。そのため、フロートバス20から流出されるガラスリボンGの移動速度とリフトアウトロール82A~82CによるガラスリボンGの搬送速度との間で相対的な速度差が生じなくなる。その結果、リフトアウトロール82A~82C及び徐冷炉90の各搬送ロール92A~92Nに接触するガラスリボンGの表面に疵が付かず、またガラスリボンGの波形変形やガラスリボンGのクラック発生による切断などを防止できる。 The control device 100 drives and controls the drive device 78 so that the conveyance speed of the glass ribbon G by the drive rolls 71A to 71C is the same as the conveyance speed of the glass ribbon G by the lift-out rolls 82A to 82C. Therefore, there is no relative speed difference between the moving speed of the glass ribbon G flowing out from the float bath 20 and the conveying speed of the glass ribbon G by the lift-out rolls 82A to 82C. As a result, the surface of the glass ribbon G that comes into contact with the lift-out rolls 82A to 82C and the transport rolls 92A to 92N of the slow cooling furnace 90 is not wrinkled, and the glass ribbon G is deformed in a wave shape or cut due to generation of cracks in the glass ribbon G. Can be prevented.
 尚、複数のリフトアウトロール82A~82Cのうち、少なくともフロートバス20の出口29に近接配置された1番目のリフトアウトロール82Aを自由回転ロールとしても良い。 Of the plurality of lift-out rolls 82A to 82C, at least the first lift-out roll 82A disposed in the vicinity of the outlet 29 of the float bath 20 may be a free rotating roll.
 徐冷炉90は、複数の搬送ロール92A~92Nと、各搬送ロール92A~92Nを回転駆動する駆動装置94とを有する。駆動装置94は、駆動モータと減速機構などからなり、制御装置100から出力される制御信号により各搬送ロール92A~92Nを所定の回転数で回転駆動する。尚、徐冷炉90は、下流に延長されているが、図1及び図2では搬送ロール92A、92Bのみを図示し、その他の搬送ロールは便宜上省略している。 The slow cooling furnace 90 includes a plurality of transport rolls 92A to 92N and a driving device 94 that rotationally drives the transport rolls 92A to 92N. The drive device 94 includes a drive motor, a speed reduction mechanism, and the like, and rotationally drives the transport rolls 92A to 92N at a predetermined number of rotations according to a control signal output from the control device 100. Although the slow cooling furnace 90 extends downstream, only the transport rolls 92A and 92B are shown in FIGS. 1 and 2, and the other transport rolls are omitted for convenience.
 〔回転部材120〕
 図5は、駆動ロール71A~71Cの回転部材120を示す正面図である。図6(a)~(c)は、図5のVI-VI線に沿った断面図の例である。図7は回転部材120の取付構造を拡大して示す図である。
[Rotating member 120]
FIG. 5 is a front view showing the rotating member 120 of the drive rolls 71A to 71C. 6A to 6C are examples of cross-sectional views taken along line VI-VI in FIG. FIG. 7 is an enlarged view showing the mounting structure of the rotating member 120.
 図5に示す回転部材120は、外周面122が、例えば図6(a)に示すように、全周にわたって、断面形状が径方向外方に凸の湾曲状である。回転部材120の外周面122は、軸方向中央部が軸方向両端部よりも径方向外方に突出する。回転部材120は外周面122に歯車状の凹凸を有さない。歯車状の凹凸がなくても、回転部材120は、セラミックス製のため、ガラスリボンGの表面に摩擦力が生じる。 As shown in FIG. 6A, for example, the rotating member 120 shown in FIG. 5 has a curved shape with a sectional shape that protrudes radially outward over the entire circumference. The outer peripheral surface 122 of the rotating member 120 has a central portion in the axial direction that protrudes radially outward from both ends in the axial direction. The rotating member 120 does not have gear-like irregularities on the outer peripheral surface 122. Even if there are no gear-like irregularities, the rotating member 120 is made of ceramics, so that a frictional force is generated on the surface of the glass ribbon G.
 回転部材120の外周面122に高さ0.1~10mmの突起を複数設けても良いし、回転部材120の外周面122に深さ0.1~10mmの溝を複数設けてもよい。また、回転部材120の外周面122に突起と溝とを両方設けても良い。突起の高さや溝の深さは、回転部材120の外周面122を基準として計測される。突起の高さや溝の深さは、図6(a)に示す半径r、図6(b)に示す曲率半径Ra、及び図6(c)に示すRb、Rcに比べて小さい。このように、外周面122に小さな突起、溝を設けることでガラスリボンGの表面に摩擦力が生じる。 A plurality of protrusions having a height of 0.1 to 10 mm may be provided on the outer peripheral surface 122 of the rotating member 120, or a plurality of grooves having a depth of 0.1 to 10 mm may be provided on the outer peripheral surface 122 of the rotating member 120. Further, both the protrusion and the groove may be provided on the outer peripheral surface 122 of the rotating member 120. The height of the protrusion and the depth of the groove are measured with reference to the outer peripheral surface 122 of the rotating member 120. The height of the protrusion and the depth of the groove are smaller than the radius r shown in FIG. 6A, the curvature radius Ra shown in FIG. 6B, and Rb and Rc shown in FIG. Thus, by providing small protrusions and grooves on the outer peripheral surface 122, a frictional force is generated on the surface of the glass ribbon G.
 回転部材120は、セラミックス製及び金属製のどちらも内部に冷媒が流れていないので、回転部材120の近傍において、ガラスリボンGが強く冷却されず、ガラスリボンGに対して滑りにくい。 Rotating member 120 is neither made of ceramic nor metal, so that no coolant flows inside thereof, so that glass ribbon G is not cooled strongly in the vicinity of rotating member 120 and is difficult to slide with respect to glass ribbon G.
 例えば、図6(b)に示すように、前記凸の湾曲状の曲率半径Raは、ガラスリボンGとのグリップ力を考慮すると、R1~R100mmが好ましく、R3~R50mmがより好ましく、R5~R30mmがさらに好ましく、R10~R20mmが特に好ましい。また前記凸の湾曲状において、例えば図6(c)に示すように、前記軸方向中央部の曲率半径Rbと前記軸方向両端部の曲率半径Rcとが複合Rであってもよい。このとき曲率半径Rb、RcともR1~R100mmが好ましく、R3~R50mmがより好ましく、R5~R30mmがさらに好ましく、R10~R20mmが特に好ましい。また前記凸の湾曲状において、一部に平坦部を有していてもよいが、平坦部を有していない方がガラスリボンGとのグリップ力が安定するので好ましい。 For example, as shown in FIG. 6B, the convex curved radius of curvature Ra is preferably R1 to R100 mm, more preferably R3 to R50 mm, and more preferably R5 to R30 mm in consideration of the grip force with the glass ribbon G. Is more preferable, and R10 to R20 mm is particularly preferable. Further, in the convex curved shape, for example, as shown in FIG. 6C, the curvature radius Rb of the central portion in the axial direction and the curvature radius Rc of both end portions in the axial direction may be a composite R. At this time, the radii of curvature Rb and Rc are preferably R1 to R100 mm, more preferably R3 to R50 mm, still more preferably R5 to R30 mm, and particularly preferably R10 to R20 mm. Further, the convex curved shape may have a flat portion in part, but it is preferable not to have the flat portion because the grip force with the glass ribbon G is stable.
 ガラスリボンGとのグリップ力を考慮すると、図6(b)に示す前記凸の湾曲状における回転部材120の半径方向の幅dは、0.5mm以上が好ましく、1mm以上がより好ましく、2mm以上がさらに好ましい。同様に、前記凸の湾曲状における回転部材120の半径方向の幅dは、5mm以下が好ましく、4mm以下がより好ましい。 In consideration of the grip force with the glass ribbon G, the radial width d of the rotating member 120 in the convex curved shape shown in FIG. 6B is preferably 0.5 mm or more, more preferably 1 mm or more, and 2 mm or more. Is more preferable. Similarly, the radial width d of the rotating member 120 in the convex curved shape is preferably 5 mm or less, and more preferably 4 mm or less.
 図6(b)に示す回転部材120の半径rは、連結部材74とガラスリボンGとの接触防止や軸部材76の水平性を考慮すると、100mm以上が好ましく、150mm以上がより好ましく、180mm以上がさらに好ましく、回転部材120とガラスリボンGとの位置調整や回転部材120の回転速度の微調整を考慮すると350mm以下が好ましく、300mm以下がより好ましく、270mm以下がさらに好ましい。 The radius r of the rotating member 120 shown in FIG. 6B is preferably 100 mm or more, more preferably 150 mm or more, and more preferably 180 mm or more in consideration of prevention of contact between the connecting member 74 and the glass ribbon G and the horizontality of the shaft member 76. Is more preferable, and 350 mm or less is preferable, 300 mm or less is more preferable, and 270 mm or less is more preferable in consideration of position adjustment between the rotating member 120 and the glass ribbon G and fine adjustment of the rotation speed of the rotating member 120.
 回転部材120の厚さwは、ガラスリボンGとのグリップ力を考慮すると、5mm以上が好ましく、10mm以上がより好ましく、15mm以上がさらに好ましく、30mm以上が特に好ましく、ガラスリボンGの平坦性向上や不要なグリップ幅の拡大防止を考慮すると120mm以下ガ好ましく、100mm以下がより好ましく、80mm以下がさらに好ましく、60mm以下がよりさらに好ましく、40mm以下が特に好ましい。 The thickness w of the rotating member 120 is preferably 5 mm or more, more preferably 10 mm or more, further preferably 15 mm or more, and particularly preferably 30 mm or more, considering the gripping force with the glass ribbon G, and the flatness of the glass ribbon G is improved. In view of preventing unnecessary increase in grip width, it is preferably 120 mm or less, more preferably 100 mm or less, still more preferably 80 mm or less, still more preferably 60 mm or less, and particularly preferably 40 mm or less.
 このように、回転部材120の外周面122は、図5(a)~(c)に示すように、全周にわたって、断面形状が径方向外方に凸の湾曲状であり、歯車状の凹凸がないので、破損し難く、成形や加工コストが低減される。また図5(a)~(c)のような構造の場合、ガラスリボンGを安定して板状ガラスに成形できるため好ましい。但し、回転部材120の外周面122に小さな凹凸を設けることはできる。この小さな凹凸を外周面122に設けた場合、ガラスリボンGの表面に対する摩擦力がより得られる。 Thus, as shown in FIGS. 5A to 5C, the outer peripheral surface 122 of the rotating member 120 is a curved shape whose cross-sectional shape is convex outward in the radial direction over the entire circumference. Therefore, it is difficult to break and the molding and processing costs are reduced. 5A to 5C are preferable because the glass ribbon G can be stably formed into a sheet glass. However, small irregularities can be provided on the outer peripheral surface 122 of the rotating member 120. When this small unevenness is provided on the outer peripheral surface 122, a frictional force against the surface of the glass ribbon G can be obtained more.
 図4に示した回転部材120は、内部に冷媒流路を有しておらず、セラミックスで形成される。セラミックスは、従来の鋼や耐熱合金などの金属に比べて高温強度が高いので、従来必要であった冷媒流路が不要になる。よって、冷媒が回転部材120の内部を流れないので、回転部材120の近傍において、ガラスリボンGが強く冷却され難い。その結果、ガラスリボンGの温度、ひいては、ガラスリボンGの厚さが安定化するので、製品であるガラス板の平坦性が向上する。また、回転部材120の近傍において、ガラスリボンGが強く冷却され難く、硬くなり難いので、前述したガラス温度が低下してガラス表面が硬くなった徐冷領域L3においても回転部材120のガラスリボンGに対するグリップ性が向上する。この効果は、ガラスリボンGの温度が低くなる、流動方向下流側において顕著である。 The rotating member 120 shown in FIG. 4 does not have a coolant channel inside, and is formed of ceramics. Ceramics has a high temperature strength higher than that of conventional metals such as steel and heat-resistant alloys, so that the conventionally required refrigerant flow path is not required. Therefore, since the refrigerant does not flow through the rotating member 120, the glass ribbon G is not easily cooled in the vicinity of the rotating member 120. As a result, the temperature of the glass ribbon G, and hence the thickness of the glass ribbon G, is stabilized, so that the flatness of the glass plate as a product is improved. Further, in the vicinity of the rotating member 120, the glass ribbon G is hard to be strongly cooled and hard to be hardened. Therefore, the glass ribbon G of the rotating member 120 is also used in the slow cooling region L3 in which the glass temperature is lowered and the glass surface is hardened. Gripping performance is improved. This effect is remarkable on the downstream side in the flow direction where the temperature of the glass ribbon G is lowered.
 セラミックスとしては、特に限定されないが、例えば、炭化ケイ素(SiC)質セラミックス、窒化ケイ素(Si)質セラミックスなどが用いられる。炭化ケイ素や窒化ケイ素は、溶融金属Sの飛沫や溶融金属Sの蒸気に対する耐性が高く、また、高温強度やクリープ特性に優れている。 The ceramics are not particularly limited, for example, silicon carbide (SiC) quality ceramics, silicon nitride (Si 3 N 4) such quality ceramics are used. Silicon carbide and silicon nitride have high resistance to the splash of the molten metal S and the vapor of the molten metal S, and are excellent in high-temperature strength and creep characteristics.
 セラミックスの種類は、製品であるガラス板(即ち、ガラスリボンGを徐冷および冷却したもの)の種類などに応じて選定される。例えば、ガラス板が無アルカリガラスの場合、耐熱衝撃性に優れた窒化ケイ素質セラミックスが好適である。無アルカリガラスの場合、フロートバス20内の温度が高い傾向にあるので、耐熱衝撃性が高い方が操業操作の自由度が高くなるからである。さらに、高温であるほど、ガラスリボンGや溶融スズSとの反応性が問題となりやすいが、窒化ケイ素質セラミックスは反応性についても低い傾向にあるからである。また、ガラス板の種類がソーダライムガラスの場合、窒化ケイ素質セラミックスの他、炭化ケイ素質セラミックスやアルミナ系セラミックスを用いることができる。 The type of ceramic is selected according to the type of product glass plate (that is, a glass ribbon G that has been slowly cooled and cooled). For example, when the glass plate is alkali-free glass, silicon nitride ceramics excellent in thermal shock resistance are suitable. In the case of non-alkali glass, the temperature in the float bath 20 tends to be high, so that the higher the thermal shock resistance, the higher the degree of freedom of operation. Furthermore, the higher the temperature, the more likely the reactivity with the glass ribbon G and the molten tin S becomes a problem, but the silicon nitride ceramic tends to have a low reactivity. When the glass plate is soda lime glass, silicon carbide ceramics or alumina ceramics can be used in addition to silicon nitride ceramics.
 本実施形態で用いられるガラス板の組成は、例えば、酸化物基準の質量百分率表示で、SiOを50~75%、Alを0.1~24%、Bを0~12%、MgOを0~10%、CaOを0~14.5%、SrOを0~24%、BaOを0~13.5%、NaOを0~20%、KOを0~20%、ZrOを0~5%、MgO+CaO+SrO+BaOを5~29.5%、NaO+KOを0~20%を含有するものである。 The composition of the glass plate used in the present embodiment is, for example, expressed in terms of mass percentage on the basis of oxide, 50 to 75% for SiO 2 , 0.1 to 24% for Al 2 O 3 , and 0 to 0 for B 2 O 3. 12%, MgO 0-10%, CaO 0-14.5%, SrO 0-24%, BaO 0-13.5%, Na 2 O 0-20%, K 2 O 0-0 20%, ZrO 2 0 to 5%, MgO + CaO + SrO + BaO 5 to 29.5%, Na 2 O + K 2 O 0 to 20%.
 無アルカリガラスは、アルカリ金属酸化物(NaO、KO、LiO)を実質的に含有しないガラスである。無アルカリガラス中のアルカリ金属酸化物の含有量の合量(NaO+KO+LiO)は、例えば0.1%以下であってよい。 The alkali-free glass is a glass that does not substantially contain an alkali metal oxide (Na 2 O, K 2 O, Li 2 O). The total content (Na 2 O + K 2 O + Li 2 O) of the alkali metal oxide content in the alkali-free glass may be, for example, 0.1% or less.
 無アルカリガラスは、例えば、酸化物基準の質量百分率表示で、SiO:50~70%、好ましくは50~66%、Al:10.5~24%、B:0~12%、MgO:0~10%、好ましくは0~8%、CaO:0~14.5%、SrO:0~24%、BaO:0~13.5%、ZrO:0~5%を含有し、MgO+CaO+SrO+BaO:8~29.5%、好ましくは9~29.5%を含有するものである。 The alkali-free glass is, for example, expressed in terms of mass percentage based on oxide, SiO 2 : 50 to 70%, preferably 50 to 66%, Al 2 O 3 : 10.5 to 24%, B 2 O 3 : 0 to 12%, MgO: 0 to 10%, preferably 0 to 8%, CaO: 0 to 14.5%, SrO: 0 to 24%, BaO: 0 to 13.5%, ZrO 2 : 0 to 5% MgO + CaO + SrO + BaO: 8 to 29.5%, preferably 9 to 29.5%.
 無アルカリガラスは、歪点が高く溶解性を考慮する場合は好ましくは、酸化物基準の質量百分率表示で、SiO:58~66%、Al:15~22%、B:5~12%、MgO:0~8%、CaO:0~9%、SrO:3~12.5%、BaO:0~2%を含有し、MgO+CaO+SrO+BaO:9~18%を含有するものである。 The alkali-free glass has a high strain point, and when considering the solubility, it is preferably expressed in terms of mass percentage based on oxide, SiO 2 : 58 to 66%, Al 2 O 3 : 15 to 22%, B 2 O 3 : 5 to 12%, MgO: 0 to 8%, CaO: 0 to 9%, SrO: 3 to 12.5%, BaO: 0 to 2%, MgO + CaO + SrO + BaO: 9 to 18% is there.
 無アルカリガラスは、高歪点を考慮する場合は好ましくは、酸化物基準の質量百分率表示で、SiO:54~73%、Al:10.5~22.5%、B:0~5.5%、MgO:0~10%、CaO:0~9%、SrO:0~16%、BaO:0~2.5%、MgO+CaO+SrO+BaO:8~26%を含有するものである。 When considering the high strain point, the alkali-free glass is preferably expressed in terms of mass percentage based on oxide, SiO 2 : 54 to 73%, Al 2 O 3 : 10.5 to 22.5%, B 2 O 3 : 0 to 5.5%, MgO: 0 to 10%, CaO: 0 to 9%, SrO: 0 to 16%, BaO: 0 to 2.5%, MgO + CaO + SrO + BaO: 8 to 26% is there.
 ガラス板の種類が無アルカリガラスの場合、回転部材120のうち、少なくとも、ガラスリボンGと接触する部分が、窒化ケイ素質セラミックスであってよく、回転部材120の全体が窒化ケイ素質セラミックスでなくてもよい。例えば、金属、カーボンまたは他のセラミックスからなる基材上に、窒化ケイ素質セラミックスの層が成膜、接合または嵌合等によって形成されていてもよい。このように、回転部材120の部位毎に、異なる種類のセラミックスが用いられてもよい。なお、本実施形態では、回転部材120の全体が窒化ケイ素質セラミックスで形成されている。 When the type of glass plate is non-alkali glass, at least a portion of the rotating member 120 that contacts the glass ribbon G may be silicon nitride ceramics, and the entire rotating member 120 is not silicon nitride ceramics. Also good. For example, a silicon nitride ceramic layer may be formed on a base material made of metal, carbon or other ceramics by film formation, bonding or fitting. Thus, different types of ceramics may be used for each part of the rotating member 120. In the present embodiment, the entire rotating member 120 is formed of silicon nitride ceramics.
 窒化ケイ素質セラミックスは、窒化ケイ素の粉末と、焼結助剤の粉末とを含む混合粉末で作製した成形体を焼結した焼結体であってよい。焼結方法としては、常圧焼結法、加圧焼結法(ホットプレス焼結、ガス圧焼結を含む)などがある。焼結助剤としては、例えば、アルミナ(Al)、マグネシア(MgO)、チタニア(TiO)、ジルコニア(ZrO)、およびイットリア(Y)から選ばれる少なくとも1種類が用いられる。 The silicon nitride ceramics may be a sintered body obtained by sintering a molded body made of a mixed powder containing silicon nitride powder and sintering aid powder. As the sintering method, there are an atmospheric pressure sintering method, a pressure sintering method (including hot press sintering, gas pressure sintering) and the like. As the sintering aid, for example, at least one selected from alumina (Al 2 O 3 ), magnesia (MgO), titania (TiO 2 ), zirconia (ZrO 2 ), and yttria (Y 2 O 3 ) is used. It is done.
 窒化ケイ素質セラミックスは、アルミニウム(Al)の含有量が0.1質量%以下、好ましくは1質量%未満、マグネシウム(Mg)の含有量が0.7質量%以下、好ましくは0.7質量%未満、チタン(Ti)の含有量が0.9質量%以下、好ましくは0.9質量%未満であることが好ましい。Al含有量、Mg含有量、およびTi含有量が上記の範囲であると、ガラスリボンGと反応し難く、また、ガラスリボンGが付着し難いので、良好な耐久性が得られる。なお、Al含有量、Mg含有量、およびTi含有量は、それぞれ、0質量%であってもよい。 The silicon nitride ceramic has an aluminum (Al) content of 0.1% by mass or less, preferably less than 1% by mass, and a magnesium (Mg) content of 0.7% by mass or less, preferably 0.7% by mass. The titanium (Ti) content is 0.9 mass% or less, preferably less than 0.9 mass%. When the Al content, the Mg content, and the Ti content are in the above ranges, it is difficult to react with the glass ribbon G, and the glass ribbon G is difficult to adhere, so that good durability is obtained. In addition, 0 mass% may be sufficient as Al content, Mg content, and Ti content, respectively.
 窒化ケイ素質セラミックスは、ジルコニウム(Zr)の含有量が3.5質量%以下、好ましくは3.5質量%未満、イットリウム(Y)の含有量が0.5質量%以上、好ましくは0.5質量%超、10質量%以下、好ましくは10質量%未満であることが好ましい。ZrやYは、AlやMg、Tiに比べて、ガラスリボンGと相互拡散し難い成分であるので、上記の範囲で含有されてよい。上記の範囲で含有されることによって、窒化ケイ素粉末の焼結を促進することができる。なお、Zrは任意成分であって、Zr含有量は0質量%であってもよい。 The silicon nitride ceramic has a zirconium (Zr) content of 3.5% by mass or less, preferably less than 3.5% by mass, and a yttrium (Y) content of 0.5% by mass or more, preferably 0.5%. It is preferable to be more than 10% by mass, more preferably less than 10% by mass. Zr and Y are components that are less likely to interdiffuse with the glass ribbon G as compared with Al, Mg, and Ti, and thus may be contained in the above range. By containing in the above range, sintering of the silicon nitride powder can be promoted. Zr is an optional component, and the Zr content may be 0% by mass.
 尚、本実施形態の窒化ケイ素質セラミックスは、常圧焼結法または加圧焼結法により得られる焼結体であるとしたが、反応焼結法により得られる焼結体であってもよい。反応焼結法は、金属ケイ素(Si)の粉末で成形された成形体を窒素雰囲気中で加熱する方法である。反応焼結法は、焼結助剤を使用しないので、高純度の焼結体が得られ、焼結体のガラスリボンGに対する耐久性を向上できる。 The silicon nitride ceramic of the present embodiment is a sintered body obtained by a normal pressure sintering method or a pressure sintering method, but may be a sintered body obtained by a reactive sintering method. . The reaction sintering method is a method in which a molded body formed of metal silicon (Si) powder is heated in a nitrogen atmosphere. Since the reaction sintering method does not use a sintering aid, a high-purity sintered body can be obtained, and the durability of the sintered body with respect to the glass ribbon G can be improved.
 回転部材120の中心には、円孔124が貫通形成されている。円孔124には、ロッド部74cが挿通される。円孔124の内径は、ロッド部74cの外径よりも大きい。 A circular hole 124 is formed through the center of the rotating member 120. The rod portion 74c is inserted through the circular hole 124. The inner diameter of the circular hole 124 is larger than the outer diameter of the rod portion 74c.
 図7に示されるように、回転部材120には、一対の挿通孔126が貫通形成されている。各挿通孔126には、軸部75、75が挿通される。各挿通孔の内径は、対応する軸部75、75の外径よりも大きい。 As shown in FIG. 7, the rotating member 120 has a pair of insertion holes 126 formed therethrough. The shaft portions 75 and 75 are inserted through the respective insertion holes 126. The inner diameter of each insertion hole is larger than the outer diameter of the corresponding shaft portions 75 and 75.
 〔軸部材76〕
 図7に示されるように、軸部材76は、ステンレス鋼(日本工業規格(JIS)でSUSと表される鋼材)や炭素鋼(日本工業規格(JIS)でSCと表される鋼材)などの金属材料で形成されてよい。軸部材76の外周には、断熱材等を巻き付けてもよい。
[Shaft member 76]
As shown in FIG. 7, the shaft member 76 is made of stainless steel (steel material represented by SUS in Japanese Industrial Standards (JIS)) or carbon steel (steel material represented by SC in Japanese Industrial Standards (JIS)). It may be made of a metal material. A heat insulating material or the like may be wound around the outer periphery of the shaft member 76.
 軸部材76は、図4に示すように、側壁24を貫通しており、フロートバス20の外部において、モータや減速機などで構成される駆動装置78に接続されている。駆動装置78が作動することによって、軸部材76の中心軸線を中心に、軸部材76、連結部材74、および回転部材120が一体的に回転する。 As shown in FIG. 4, the shaft member 76 penetrates the side wall 24, and is connected to a drive device 78 configured by a motor, a speed reducer, and the like outside the float bath 20. When the driving device 78 is operated, the shaft member 76, the connecting member 74, and the rotating member 120 are integrally rotated around the central axis of the shaft member 76.
 連結部材74は、軸部材76と回転部材120とを連結する部材である。連結部材74は、例えば筒状であって、連結部材74の軸部材76側の端部の外径および内径が、それぞれ、軸部材76の外管の外径および内径と同じである。連結部材74は、軸部材76の外管と突き合わされ、例えば溶接によって、同軸的に連結されている。連結部材74は軸部材76と溶接が容易な材質であることが好ましく、同一材料で形成されることがより好ましい。 The connecting member 74 is a member that connects the shaft member 76 and the rotating member 120. The connecting member 74 is, for example, cylindrical, and the outer diameter and inner diameter of the end of the connecting member 74 on the shaft member 76 side are the same as the outer diameter and inner diameter of the outer tube of the shaft member 76, respectively. The connecting member 74 is abutted against the outer tube of the shaft member 76 and is connected coaxially, for example, by welding. The connecting member 74 is preferably made of a material that can be easily welded to the shaft member 76, and more preferably formed of the same material.
 〔連結部材74〕
 連結部材74は、軸部材76と一体化されており、鋼や耐熱合金などの金属材料で形成されてよい。連結部材74には、回転部材120が取り外し可能に取り付けられる。
[Connecting member 74]
The connecting member 74 is integrated with the shaft member 76 and may be formed of a metal material such as steel or a heat-resistant alloy. The rotating member 120 is detachably attached to the connecting member 74.
 連結部材74は、軸部材76と一体化されるシャフト部74aと、シャフト部74aの先端部から、シャフト部74aの径方向外方に突出する環状のフランジ部74bと、シャフト部74aの先端部から、シャフト部74aと同軸的に延びるロッド部74cとを一体的に有する。 The connecting member 74 includes a shaft portion 74a integrated with the shaft member 76, an annular flange portion 74b projecting radially outward from the tip portion of the shaft portion 74a, and a tip portion of the shaft portion 74a. And a rod portion 74c extending coaxially with the shaft portion 74a.
 シャフト部74aは、軸部材76と突き合わされ、例えば溶接によって一体化されている。フランジ部74bは、シャフト部74aの先端部(軸部材76と反対側の端部)から、シャフト部74aの径方向外方に突出している。 The shaft portion 74a is abutted against the shaft member 76 and integrated by welding, for example. The flange portion 74b protrudes outward in the radial direction of the shaft portion 74a from the tip end portion (the end portion opposite to the shaft member 76) of the shaft portion 74a.
 ロッド部74cは、シャフト部74aの先端部から、シャフト部74aと同軸的に延びている。ロッド部74cは、回転部材120を貫通しており、先端部に雄ネジ部を有している。雄ネジ部にネジ止めされるナット73と、フランジ部74bとによって、回転部材120の軸方向の移動が制限される。ナット73を雄ネジ部から取り外すことにより、回転部材120の取り外しが可能となる。 The rod portion 74c extends coaxially with the shaft portion 74a from the tip portion of the shaft portion 74a. The rod portion 74c penetrates the rotating member 120 and has a male screw portion at the tip. The axial movement of the rotating member 120 is limited by the nut 73 screwed to the male screw portion and the flange portion 74b. By removing the nut 73 from the male screw portion, the rotating member 120 can be removed.
 連結部材74は、フランジ部74bの先端側の面に固定され、ロッド部74cの中心軸線と平行な軸部67及び68を有している。軸部75と、ロッド部74cとによって連結部材74と回転部材120が一体的に回転可能となる。 The connecting member 74 is fixed to the surface on the distal end side of the flange portion 74b and has shaft portions 67 and 68 parallel to the central axis of the rod portion 74c. The connecting member 74 and the rotating member 120 can be integrally rotated by the shaft portion 75 and the rod portion 74c.
 軸部75は、図7に示すように、それぞれ、回転部材120を貫通しており、先端部に雄ネジ部を有している。雄ネジ部にネジ止めされるナット77と、フランジ部74bとによって、回転部材120の軸方向の移動が制限される。ナット77を雄ネジ部から取り外すことにより、回転部材120の取り外しが可能となる。 As shown in FIG. 7, each of the shaft portions 75 penetrates the rotating member 120 and has a male screw portion at the tip portion. The axial movement of the rotating member 120 is limited by the nut 77 screwed to the male screw portion and the flange portion 74b. By removing the nut 77 from the male screw portion, the rotating member 120 can be removed.
 〔ガラスリボン送出機構の変形例〕
 図8はガラスリボン送出機構の変形例を示す図である。図8に示されるように、変形例のガラスリボン送出機構70Aは、複数の駆動ロール71A~71Cと、駆動装置78とを有する。駆動ロール71A~71Cは、工具鋼製の回転部材72と、連結部材74Aと、軸部材76Aとにより構成される。
[Modification of glass ribbon feeding mechanism]
FIG. 8 is a view showing a modification of the glass ribbon delivery mechanism. As shown in FIG. 8, a modified example of the glass ribbon feeding mechanism 70A includes a plurality of driving rolls 71A to 71C and a driving device 78. The drive rolls 71A to 71C are constituted by a rotating member 72 made of tool steel, a connecting member 74A, and a shaft member 76A.
 〔軸部材76A〕
 軸部材76Aは、冷媒流路を内部に有しており、冷媒流路を流れる冷媒によって冷却され、ステンレス鋼(日本工業規格(JIS)でSUSと表される鋼材)や炭素鋼(日本工業規格(JIS)でSCと表される鋼材)などの金属材料で形成されてよい。軸部材76Aの外周には、断熱材等を巻き付けてもよい。
[Shaft member 76A]
The shaft member 76A has a refrigerant flow path inside, and is cooled by the refrigerant flowing through the refrigerant flow path, and is made of stainless steel (steel material represented by SUS in Japanese Industrial Standards (JIS)) or carbon steel (Japanese Industrial Standards). It may be formed of a metal material such as (a steel material represented by SC in (JIS)). A heat insulating material or the like may be wound around the outer periphery of the shaft member 76A.
 軸部材76Aは、例えば、2重管であって、内管および外管で構成される。内管の内側空間と、内管の外周面と外管の内周面との間に形成される空間とで冷媒流路が構成される。 The shaft member 76A is, for example, a double pipe, and includes an inner pipe and an outer pipe. A refrigerant flow path is constituted by the inner space of the inner tube and the space formed between the outer peripheral surface of the inner tube and the inner peripheral surface of the outer tube.
 冷媒としては、水などの液体、または、空気などの気体が用いられる。冷媒は、内管の内側空間を通り、連結部材74Aおよび回転部材72の内側空間に供給された後、内管の外周面と外管の内周面との間に形成される空間を通り、外部に排出される。外部に排出された冷媒は、冷却器で冷却され、再び、内管の内側空間に還流されてもよい。なお、冷媒の流れ方向は逆方向であってもよい。 As the refrigerant, a liquid such as water or a gas such as air is used. The refrigerant passes through the inner space of the inner tube, passes through the space formed between the outer peripheral surface of the inner tube and the inner peripheral surface of the outer tube, after being supplied to the inner space of the connecting member 74A and the rotating member 72, It is discharged outside. The refrigerant discharged to the outside may be cooled by a cooler and returned to the inner space of the inner pipe again. Note that the flow direction of the refrigerant may be in the opposite direction.
 軸部材76Aは、図8に示すように、側壁24を貫通しており、フロートバス20の外部において、モータや減速機などで構成される駆動装置34に接続されている。駆動装置34が作動することによって、軸部材76Aの中心軸線を中心に、軸部材76A、連結部材74、および回転部材72が一体的に回転する。 As shown in FIG. 8, the shaft member 76 </ b> A penetrates the side wall 24, and is connected to the drive device 34 constituted by a motor, a speed reducer, and the like outside the float bath 20. When the driving device 34 is operated, the shaft member 76A, the connecting member 74, and the rotating member 72 are integrally rotated around the central axis of the shaft member 76A.
 連結部材74Aは、軸部材76Aと回転部材72を連結する部材である。連結部材74Aは、軸部材76Aの冷媒流路と連通する内側空間を内部に有している。連結部材74Aは、例えば筒状であって、連結部材74Aの軸部材76A側の端部の外径および内径が、それぞれ、軸部材76Aの外管の外径および内径と同じである。連結部材74Aは、軸部材76Aの外管と突き合わされ、例えば溶接によって、同軸的に連結されている。連結部材74Aは軸部材76Aと溶接が容易な材質であることが好ましく、同一材料で形成されることがより好ましい。 The connecting member 74 </ b> A is a member that connects the shaft member 76 </ b> A and the rotating member 72. The connecting member 74A has an inner space communicating with the refrigerant flow path of the shaft member 76A. The connecting member 74A has, for example, a cylindrical shape, and the outer diameter and inner diameter of the end of the connecting member 74A on the shaft member 76A side are the same as the outer diameter and inner diameter of the outer tube of the shaft member 76A, respectively. The connecting member 74A is abutted against the outer tube of the shaft member 76A, and is connected coaxially by welding, for example. The connecting member 74A is preferably made of a material that can be easily welded to the shaft member 76A, and more preferably formed of the same material.
 〔駆動ロールの回転部材72〕
 図9は、変形例の回転部材を示す正面図である。図10は、図9のX-X線に沿った断面の一部拡大図である。図11は、回転部材72の凸部を説明する図であり、図12(a)は凸部の先細り状部分の断面を示し、図12(b)は凸部のピッチと高さを示す。
[Rotating member 72 of driving roll]
FIG. 9 is a front view showing a rotating member of a modification. FIG. 10 is a partially enlarged view of a cross section taken along line XX of FIG. 11A and 11B are diagrams for explaining the convex portion of the rotating member 72. FIG. 12A shows a cross section of the tapered portion of the convex portion, and FIG. 12B shows the pitch and height of the convex portion.
 回転部材72は、図9に示すように、円盤状であって、回転部材72の中心軸線と軸部材76の中心軸線とは同一直線上にある。また、回転部材72は、外周にて、ガラスリボンGの表面(本実施形態では、上面)と接触する。回転部材72が回転することによって、ガラスリボンGが所定方向(X方向)に送り出される。 As shown in FIG. 9, the rotating member 72 has a disk shape, and the central axis of the rotating member 72 and the central axis of the shaft member 76 are on the same straight line. The rotating member 72 is in contact with the surface of the glass ribbon G (the upper surface in the present embodiment) at the outer periphery. As the rotating member 72 rotates, the glass ribbon G is sent out in a predetermined direction (X direction).
 回転部材72は、例えば図9に示すように、円盤状の本体部72aと、本体部72aの外周に沿って設けられる複数の凸部72bとを一体的に有する。 For example, as shown in FIG. 9, the rotating member 72 integrally includes a disk-shaped main body 72 a and a plurality of convex portions 72 b provided along the outer periphery of the main body 72 a.
 回転部材72は、図10及び図11に示すように、内部に、冷媒流路としての内側空間72cを有する。この内側空間72cは、回転部材72の背面側に形成される開口部を介して、連結部材74Aの内側空間と連通している。 As shown in FIGS. 10 and 11, the rotating member 72 has an inner space 72 c as a refrigerant flow path. The inner space 72c communicates with the inner space of the connecting member 74A through an opening formed on the back side of the rotating member 72.
 複数の凸部72bは、周方向に等間隔で設けられている。凸部72bによって、前述したガラス温度が低下してガラス表面が硬くなった徐冷領域L3においても回転部材72がガラスリボンGの両側縁部と滑りにくくなる。また歯車状の凸部72bは、図10に示すように、本体部72aの外周に二列形成されているが、3列以上形成されてもよいし、1列のみ形成されてもよい。尚、ガラスリボンGの冷却防止を考慮すると、凸部72bは1~2列形成されるのが好ましい。 The plurality of convex portions 72b are provided at equal intervals in the circumferential direction. The convex portion 72b makes it difficult for the rotating member 72 to slip on both side edges of the glass ribbon G even in the slow cooling region L3 where the glass temperature is lowered and the glass surface is hardened. Further, as shown in FIG. 10, the gear-shaped convex portions 72b are formed in two rows on the outer periphery of the main body portion 72a, but may be formed in three or more rows, or may be formed in only one row. In consideration of preventing the cooling of the glass ribbon G, the convex portions 72b are preferably formed in one or two rows.
 各凸部72bは、ガラスリボンGに食い込みやすいように、先細り状(例えば、四角錐状)であってよい。 Each convex portion 72b may be tapered (for example, a quadrangular pyramid shape) so as to easily bite into the glass ribbon G.
 凸部72bの前記先細り状部分の軸部材76Aに垂直な面に対する角度AまたはB(図12(a)参照)は、ガラスリボンGに対するグリップ力を考慮すると45°以下が好ましく、30°以下がより好ましく、25°以下がさらに好ましい。また前記先細り状部分の強度を考慮すると、角度A又はBは15°以上が好ましい。 The angle A or B (see FIG. 12A) of the tapered portion 72b with respect to the surface perpendicular to the shaft member 76A is preferably 45 ° or less, and preferably 30 ° or less in view of the grip force with respect to the glass ribbon G. More preferably, it is more preferably 25 ° or less. In consideration of the strength of the tapered portion, the angle A or B is preferably 15 ° or more.
 凸部72bの前記先細り状部分の先端部の幅C(図12(a)参照)は、ガラスリボンGに対するグリップ力を考慮すると2mm以下が好ましく、1mm以下がより好ましく、0.5mm以下がさらに好ましい。前記先端部は必ずしも直線状である必要はなく、曲線状あるいは複合形状を呈していてもよい。 The width C (see FIG. 12A) of the tip of the tapered portion of the convex portion 72b is preferably 2 mm or less, more preferably 1 mm or less, and more preferably 0.5 mm or less in consideration of the grip force with respect to the glass ribbon G. preferable. The tip portion does not necessarily have to be linear, and may have a curved shape or a composite shape.
 凸部72bのピッチD(図12(b)参照)は、ガラスリボンGに対するグリップ力を考慮すると6.5mm以下が好ましく、5.5mm以下がより好ましい。また前記先細り状部分の強度や加工性を考慮すると、ピッチDは1.5mm以上が好ましく、2.5mm以上がより好ましい。 The pitch D of the convex portions 72b (see FIG. 12 (b)) is preferably 6.5 mm or less, more preferably 5.5 mm or less in consideration of the grip force with respect to the glass ribbon G. In consideration of the strength and workability of the tapered portion, the pitch D is preferably 1.5 mm or more, and more preferably 2.5 mm or more.
 凸部72bの高さE(図12(b)参照)は、ガラスリボンGに対するグリップ力を考慮すると4mm以上が好ましく、5mm以上がより好ましい。また前記先細り状部分の強度や加工性を考慮すると、高さEは8mm以下が好ましく、7mm以下がより好ましい。 The height E of the convex portion 72b (see FIG. 12B) is preferably 4 mm or more, more preferably 5 mm or more in consideration of the grip force with respect to the glass ribbon G. In consideration of the strength and workability of the tapered portion, the height E is preferably 8 mm or less, and more preferably 7 mm or less.
 回転部材72の半径は、連結部材74とガラスリボンGとの接触防止や軸部材76の水平性を考慮すると、100mm以上が好ましく、150mm以上がより好ましく、180mm以上がさらに好ましく、回転部材72とガラスリボンGとの位置調整や回転部材72の回転速度の微調整を考慮すると350mm以下が好ましく、300mm以下がより好ましく、270mm以下がさらに好ましい。 The radius of the rotating member 72 is preferably 100 mm or more, more preferably 150 mm or more, further preferably 180 mm or more, in consideration of prevention of contact between the connecting member 74 and the glass ribbon G and the horizontality of the shaft member 76. Considering position adjustment with the glass ribbon G and fine adjustment of the rotation speed of the rotating member 72, 350 mm or less is preferable, 300 mm or less is more preferable, and 270 mm or less is more preferable.
 回転部材72のうち少なくとも凸部72bが工具鋼、好ましくは熱間ダイス鋼で形成される。なお、本実施形態では、本体部72aも工具鋼で形成されている。 At least the projection 72b of the rotating member 72 is formed of tool steel, preferably hot die steel. In the present embodiment, the main body 72a is also made of tool steel.
 ここで、「熱間ダイス鋼」とは、JIS G4404に記載の「SKD」のうち、「熱間金型用」の合金工具鋼を意味する。 Here, “hot die steel” means “hot mold” alloy tool steel among “SKD” described in JIS G4404.
 工具鋼としては、特に限定はなく、例えば日本工業規格(JIS)でSKS、SKD、SKT、SKHと表される鋼材等を使用できる。工具鋼には、例えばSKS4、SKS41、SKS42、SKS43、SKS44、SKS1、SKS11、SKS2、SK21、SKS5、SKS51、SKS7、SKS8、SKS3、SKS31、SKS93、SKD1、SKD11、SKD12、SKD2、SKD4、SKD5、SKD6、SKD61、SKT1、SKT2、SKT3、SKT4、SKT5、SKT6、SKH2、SKH3,SKH4A、SKH4B、SKH40、SKH5、SKH51、SKH52、SKH53、SKH54、SKH55,SKH56、SKH57、SKH58、SKH59、SKH10等やこれらの材種から改良された各社の開発鋼が使用できる。このような開発鋼は、Feを主成分とし、好ましくはCの含有量が0.3~2.5質量%、Siの含有量が0~1.1質量%、Mnの含有量が0~1.1質量%、Niの含有量が0~2.0質量%、Crの含有量が0~13.5質量%、Moの含有量が0~5.0質量%、Vの含有量が0~4.0質量%、Wの含有量が0~10.0質量%、Coの含有量が0~10.0質量%である。熱間ダイス鋼としては、特に限定されなく、SKD61や各社の改良鋼材が使用できる。このような熱間ダイス鋼は、Feを主成分とし、好ましくはCの含有量が0.3~0.5質量%、Siの含有量が0.3~1.20質量%、Mnの含有量が0.4~0.9質量%、Niの含有量が0~1.8質量%、Crの含有量が1.3~5.50質量%、Moの含有量が0.4~2.7質量%、Vの含有量が0.2~1.7質量である。加工性やコストの観点から、熱間ダイス鋼はSKD61であることが好ましい。SKD61は、Feを主成分とし、日本工業規格(JIS)に規定されているように、Cの含有量が0.35~0.42質量%、Siの含有量が0.80~1.20質量%、Mnの含有量が0.25~0.50質量%、Pの含有量が0~0.030質量%、Sの含有量が0~0.020質量%、Crの含有量が4.80~5.50質量%、Moの含有量が1.00~1.50質量%、Vの含有量が0.80~1.15質量%の鋼材であり、不可避的に含有される不純物を更に含んでも良い。SKD61は、国際規格(ISO 4957:1999)においてX40CrMoV5-1と表されることもある。 The tool steel is not particularly limited, and for example, steel materials represented by SKS, SKD, SKT, and SKH in Japanese Industrial Standard (JIS) can be used. Examples of tool steel include SKS4, SKS41, SKS42, SKS43, SKS44, SKS1, SKS11, SKS2, SK21, SKS5, SKS51, SKS7, SKS8, SKS3, SKS31, SKS93, SKD1, SKD11, SKD11, SKD11, SKD11, SKD11 SKD6, SKD61, SKT1, SKT2, SKT3, SKT4, SKT5, SKT6, SKH2, SKH3, SKH4A, SKH4B, SKH40, SKH5, SKH51, SKH52, SKH53, HSK58, S The steel developed by each company improved from these grades can be used. Such a developed steel is mainly composed of Fe, and preferably has a C content of 0.3 to 2.5% by mass, a Si content of 0 to 1.1% by mass, and a Mn content of 0 to 1.1 mass%, Ni content 0-2.0 mass%, Cr content 0-13.5 mass%, Mo content 0-5.0 mass%, V content The content is 0 to 4.0 mass%, the W content is 0 to 10.0 mass%, and the Co content is 0 to 10.0 mass%. The hot die steel is not particularly limited, and SKD61 and improved steel materials of various companies can be used. Such hot die steel has Fe as a main component, preferably C content of 0.3 to 0.5% by mass, Si content of 0.3 to 1.20% by mass, Mn content The amount is 0.4 to 0.9% by mass, the Ni content is 0 to 1.8% by mass, the Cr content is 1.3 to 5.50% by mass, and the Mo content is 0.4 to 2%. 0.7% by mass and the V content is 0.2 to 1.7% by mass. From the viewpoint of workability and cost, the hot die steel is preferably SKD61. SKD61 is mainly composed of Fe, and has a C content of 0.35 to 0.42 mass% and a Si content of 0.80 to 1.20, as defined in Japanese Industrial Standards (JIS). Mass%, Mn content 0.25 to 0.50 mass%, P content 0 to 0.030 mass%, S content 0 to 0.020 mass%, Cr content 4 .80 to 5.50 mass%, steel content of Mo 1.00 to 1.50 mass%, V content 0.80 to 1.15 mass%, inevitably contained impurities May further be included. SKD61 may be expressed as X40CrMoV5-1 in the international standard (ISO 4957: 1999).
 工具鋼は、SUSやSCなどの従来の材料に比べて、高温強度が高いので、ガラスリボンGに食い込む凸部72bの変形を抑制でき、回転部材72の耐久性を向上できる。 Since tool steel has high temperature strength compared to conventional materials such as SUS and SC, the deformation of the convex portion 72b that bites into the glass ribbon G can be suppressed, and the durability of the rotating member 72 can be improved.
 工具鋼は、SUSやSCなどの従来の材料に比べて、高温強度が高いので、凸部72bがガラスリボンGに食い込みやすくなるよう、凸部72bを尖鋭化できる。この効果は、フロートバス20内の下流側ほど、ガラスリボンGが冷えて硬くなるので、顕著であり、従来使用できなかった温度領域において、駆動ロール71A~71Cの使用が可能となる。 Since tool steel has high temperature strength compared to conventional materials such as SUS and SC, the convex portion 72b can be sharpened so that the convex portion 72b can easily bite into the glass ribbon G. This effect is remarkable because the glass ribbon G cools and becomes harder toward the downstream side in the float bath 20, and the drive rolls 71A to 71C can be used in a temperature range that could not be used conventionally.
 回転部材72は、図11に示すように、外表面の少なくとも一部に、耐食性に優れた保護膜72dを有してもよい。特にクロム窒化物または金属クロムを含む保護膜72dを有することが好ましい。クロム窒化物および金属クロムは、溶融スズSの飛沫や蒸気に対する耐食性が熱間ダイス鋼よりも高いので、回転部材72の耐スズ性を向上できる。 As shown in FIG. 11, the rotating member 72 may have a protective film 72d having excellent corrosion resistance on at least a part of the outer surface. In particular, it is preferable to have a protective film 72d containing chromium nitride or metallic chromium. Since chromium nitride and metallic chromium have higher corrosion resistance against the splash of molten tin S and steam than hot die steel, the tin resistance of the rotating member 72 can be improved.
 保護膜72dは、凸部72bの外表面を覆っており、本体部72aの外表面の一部を覆っている。 The protective film 72d covers the outer surface of the convex portion 72b and covers a part of the outer surface of the main body portion 72a.
 保護膜72dの成膜方法としては、例えば、メッキ法、蒸着法、スパッタリング法、CVD法、イオンコーティング法、溶射法などがあり、凸部72bの形状などに応じて適宜選択される。例えば、凸部72bを尖鋭化する場合、蒸着法やスパッタリング法やイオンコーティング法などのドライコーティング法が好ましい。 Examples of the method for forming the protective film 72d include a plating method, a vapor deposition method, a sputtering method, a CVD method, an ion coating method, and a thermal spraying method, which are appropriately selected according to the shape of the convex portion 72b. For example, when sharpening the convex part 72b, dry coating methods, such as a vapor deposition method, sputtering method, and an ion coating method, are preferable.
 〔実施形態2〕
 図13は、実施形態2におけるガラス板の製造装置10Aの概略構成の一例を上方からみた横断面図である。図14は、実施形態2におけるガラス板の製造装置10Aの概略構成の一例を側方からみた縦断面図である。尚、図13及び図14において、実施形態1と同一部分には、同一符号を付して説明を省略する。
[Embodiment 2]
FIG. 13: is the cross-sectional view which looked at an example of schematic structure of 10 A of glass plate manufacturing apparatuses in Embodiment 2 from upper direction. FIG. 14 is a longitudinal sectional view of an example of a schematic configuration of a glass plate manufacturing apparatus 10 </ b> A according to Embodiment 2 as viewed from the side. In FIG. 13 and FIG. 14, the same parts as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 図13及び図14に示されるように、実施形態2のガラス板の製造装置10Aは、フロートバス20の出口29の下流に配置されたリフトアウトロール82A~82Cの上方にガラスリボン押え機構(ガラスリボン押え手段)170の押えロール171A~171Cと、各押えロール171A~171Cを回転駆動する駆動装置178と有する。駆動装置178は、駆動モータと減速機構などからなり、制御装置100によりガラスリボンGの移動速度に応じた回転数に制御される。 As shown in FIGS. 13 and 14, the glass plate manufacturing apparatus 10A according to the second embodiment has a glass ribbon holding mechanism (glass glass) above the lift-out rolls 82A to 82C arranged downstream of the outlet 29 of the float bath 20. Ribbon presser means) 170 presser rolls 171A to 171C, and a driving device 178 that rotationally drives each presser roll 171A to 171C. The drive device 178 includes a drive motor, a speed reduction mechanism, and the like, and is controlled by the control device 100 at a rotational speed corresponding to the moving speed of the glass ribbon G.
 このガラスリボン押え機構170の押えロール171A~171Cは、フロートバス出口の下流に配置されたリフトアウトロール82A~82Cのそれぞれに対向する上方に配置されている。 The press rolls 171A to 171C of the glass ribbon press mechanism 170 are arranged above the lift out rolls 82A to 82C arranged downstream of the float bath outlet.
 押えロール171A~171Cは、前述した駆動ロール71A~71Cと同様に、セラミックス製又は金属製の回転部材120と、連結部材74と、軸部材76とにより構成される。押えロール171A~171Cは、ガラスリボンGの幅方向の両側縁部に接触し、ガラスリボンGの両側縁部を下流方向に送り出すようにリフトアウトロール82A~82Cに押圧する。そして、駆動ロール71A~71Cの回転によりフロートバス20の出口29から送り出されたガラスリボンGは、さらに押えロール171A~171C及びリフトアウトロール82A~82Cの回転により下流方向へ送り出される。 The presser rolls 171A to 171C are configured by a ceramic or metal rotating member 120, a connecting member 74, and a shaft member 76, similarly to the drive rolls 71A to 71C described above. The presser rolls 171A to 171C are in contact with both side edges in the width direction of the glass ribbon G, and press the lift-out rolls 82A to 82C so as to feed the both side edges of the glass ribbon G in the downstream direction. The glass ribbon G sent out from the outlet 29 of the float bath 20 by the rotation of the drive rolls 71A to 71C is further sent downstream by the rotation of the press rolls 171A to 171C and the lift-out rolls 82A to 82C.
 押えロール171A~171Cの回転部材120は、前述したようにセラミックス製又は金属製の外周面122が、例えば図6(a)に示すように、全周にわたって、断面形状が径方向外方に凸の湾曲状である。また、セラミックス製及び金属製の回転部材120の内部に冷媒が流れていないので、回転部材120の近傍において、ガラスリボンGが強く冷却されず、ガラスリボンGに対して滑りにくい。 As described above, the rotating member 120 of the presser rolls 171A to 171C has the outer peripheral surface 122 made of ceramics or metal, for example, as shown in FIG. The curved shape. In addition, since the refrigerant does not flow inside the ceramic and metal rotating member 120, the glass ribbon G is not cooled strongly in the vicinity of the rotating member 120, and the glass ribbon G is difficult to slip.
 押えロール171A~171Cの軸部材76は、ドロスボックス80の外側に延在しており、ドロスボックス80の外側に配置された駆動装置178に接続されている。駆動装置178は、制御装置100から出力される制御信号により、リフトアウトロール82A~82Cと同じ搬送速度となるように回転制御される。 The shaft member 76 of the presser rolls 171A to 171C extends to the outside of the dross box 80 and is connected to a driving device 178 disposed outside the dross box 80. The drive device 178 is rotationally controlled by the control signal output from the control device 100 so as to have the same conveyance speed as the lift-out rolls 82A to 82C.
 上記セラミックス製又は金属製の回転部材120の代わりに工具鋼製の回転部材72を用いて良い。回転部材72は、例えば図8及び図9に示すように、外周に、歯車状の凹凸72bを有する回転部材72をしており、ガラスリボンGの表面と滑りにくい。尚、押えロール171A~171Cは、フロートバス20の外部に設けられるため、前述した冷却器及び冷媒の通路を設けなくて良い。 Instead of the ceramic or metal rotating member 120, a tool steel rotating member 72 may be used. For example, as shown in FIGS. 8 and 9, the rotating member 72 has a rotating member 72 having gear-like irregularities 72 b on the outer periphery, and is difficult to slip on the surface of the glass ribbon G. Since the presser rolls 171A to 171C are provided outside the float bath 20, the above-described cooler and refrigerant passages need not be provided.
 尚、上記押えロール171A~171Cのうち何れか1つ又は何れか2つを設ける構成としても良い。 It should be noted that any one or any two of the presser rolls 171A to 171C may be provided.
 押えロール171A~171Cは、リフトアウトロール82A~82Cの配置数に応じた数を設けても良いし、あるいはリフトアウトロール82A~82Cの配置数より少ない数を配置しても良い。 The number of presser rolls 171A to 171C may be provided in accordance with the number of lift-out rolls 82A to 82C, or a number smaller than the number of lift-out rolls 82A to 82C may be provided.
 少なくともフロートバス20の出口29に近接した1番目の押えロール171A及びリフトアウトロール82Aを自由回転ロールとしても良い。 At least the first presser roll 171A and the lift-out roll 82A close to the outlet 29 of the float bath 20 may be free-rotating rolls.
 以上、本発明の好ましい実施形態及び実施例について詳述したが、本発明は上記した特定の実施形態及び実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能なものである。 The preferred embodiments and examples of the present invention have been described in detail above. However, the present invention is not limited to the specific embodiments and examples described above, and is based on the gist of the present invention described in the claims. Various modifications and changes can be made within the range.
 本国際出願は2013年5月16日に出願された日本国特許出願2013-104537号に基づく優先権を主張するものであり、その全内容をここに援用する。 This international application claims priority based on Japanese Patent Application No. 2013-104537 filed on May 16, 2013, the entire contents of which are incorporated herein by reference.
10、10A ガラス板の製造装置
20 フロートバス
22 浴槽
24 側壁
26 天井
28 空間
29 出口
30 ガス供給路
32 ヒータ
32a  発熱部
34、78、84、94、178 駆動装置
40 支持ロール
50、72、120 回転部材
60、74、74A 連結部材
65、76、76A 軸部材
67、68、75 軸部
70、70A ガラスリボン送出機構
71A~71C 駆動ロール
72a 本体部
72b 凸部
72c 内側空間
72d 保護膜
73、77 ナット
74a シャフト部
74b フランジ部
74c ロッド部
80 ドロスボックス
82A~82C リフトアウトロール
90 徐冷炉   
92A~92N 搬送ロール
100 制御装置
122 外周面
124 円孔
126 挿通孔
170 ガラスリボン押え機構
171A~171C 押えロール
G  ガラスリボン
S  溶融金属
L1 供給領域
L2 成形領域
L3 徐冷領域
10, 10A Glass plate manufacturing apparatus 20 Float bath 22 Bathtub 24 Side wall 26 Ceiling 28 Space 29 Exit 30 Gas supply path 32 Heater 32a Heating part 34, 78, 84, 94, 178 Drive device 40 Support roll 50, 72, 120 Rotation Members 60, 74, 74A Connecting members 65, 76, 76A Shaft members 67, 68, 75 Shaft portions 70, 70A Glass ribbon delivery mechanisms 71A-71C Drive roll 72a Main body portion 72b Convex portion 72c Inner space 72d Protective films 73, 77 Nut 74a Shaft portion 74b Flange portion 74c Rod portion 80 Dross boxes 82A to 82C Lift out roll 90 Slow cooling furnace
92A to 92N Transport roll 100 Controller 122 Outer peripheral surface 124 Circular hole 126 Insertion hole 170 Glass ribbon presser mechanism 171A to 171C Presser roll G Glass ribbon S Molten metal L1 Supply region L2 Molding region L3 Slow cooling region

Claims (10)

  1.  溶融ガラスをフロートバスの流入口からフロートバス内の溶融金属上に供給し、前記フロートバスの成形領域において、支持ロールによりガラスリボンを幅方向に広げて所定の厚さに成形するガラス板の製造装置において、
     前記成形領域とフロートバス出口との間の徐冷領域に前記ガラスリボンを下流方向へ送り出すための駆動ロールを有するガラスリボン送出手段を設け、
     前記ガラスリボン送出手段は、前記駆動ロールを前記ガラスリボンの幅方向の両側縁部に接触させ、前記両側縁部を下流方向に送り出すように駆動させることを特徴とするガラス板の製造装置。
    Manufacture of a glass plate in which molten glass is supplied from the inlet of the float bath onto the molten metal in the float bath, and in the float bath forming region, the glass ribbon is spread in the width direction by a support roll and formed into a predetermined thickness. In the device
    A glass ribbon delivery means having a drive roll for delivering the glass ribbon in the downstream direction in a slow cooling region between the molding region and the float bath outlet;
    The said glass ribbon sending means makes the said drive roll contact the both-sides edge part of the width direction of the said glass ribbon, and drives the said both-sides edge part to send out downstream, The manufacturing apparatus of the glass plate characterized by the above-mentioned.
  2.  前記徐冷領域が、前記ガラスリボンの温度がガラスリボンの軟化点より低い領域である請求項1に記載のガラス板の製造装置。 The glass sheet manufacturing apparatus according to claim 1, wherein the slow cooling region is a region where the temperature of the glass ribbon is lower than the softening point of the glass ribbon.
  3.  前記駆動ロールは、セラミックスにより形成された回転部材を有する請求項1又は2に記載のガラス板の製造装置。 The said drive roll is a manufacturing apparatus of the glass plate of Claim 1 or 2 which has a rotating member formed with ceramics.
  4.  前記駆動ロールは、金属により形成された回転部材を有する請求項1又は2に記載のガラス板の製造装置。 The said drive roll is a manufacturing apparatus of the glass plate of Claim 1 or 2 which has a rotating member formed with the metal.
  5.  前記駆動ロールは、複数の凸部が外周に形成された回転部材を有し、少なくとも前記凸部が工具鋼により形成される請求項1又は2に記載のガラス板の製造装置。 The apparatus for producing a glass plate according to claim 1 or 2, wherein the drive roll has a rotating member having a plurality of convex portions formed on an outer periphery, and at least the convex portions are formed of tool steel.
  6.  前記ガラスリボンを前記フロートバスから引き出すためのリフトアウトロールと同じガラス搬送速度で前記駆動ロールを駆動する請求項1~5の何れか一項に記載のガラス板の製造装置。 The apparatus for producing a glass plate according to any one of claims 1 to 5, wherein the driving roll is driven at the same glass transport speed as a lift-out roll for pulling out the glass ribbon from the float bath.
  7.  少なくとも前記出口に隣接するリフトアウトロールは、前記ガラスリボンとの接触により自由回転する請求項6に記載のガラス板の製造装置。 The glass plate manufacturing apparatus according to claim 6, wherein at least a lift-out roll adjacent to the outlet freely rotates by contact with the glass ribbon.
  8.  前記ガラスリボンを挟んで前記リフトアウトロールと対向する位置に、前記ガラスリボンを下流方向へ送り出すための押えロールを有するガラスリボン押え手段が設けられた請求項1~7のいずれか一項に記載のガラス板の製造装置。 The glass ribbon pressing means having a pressing roll for feeding the glass ribbon in the downstream direction is provided at a position facing the lift-out roll with the glass ribbon interposed therebetween. Glass plate manufacturing equipment.
  9.  溶融ガラスをフロートバスの流入口からフロートバス内の溶融金属上に供給し、前記フロートバスの成形領域において、支持ロールによりガラスリボンを幅方向に広げて所定の厚さに成形するガラス板の製造方法において、
     前記成形領域とフロートバス出口との間の徐冷領域に前記ガラスリボンを下流方向へ送り出すための駆動ロールを有するガラスリボン送出手段を設け、前記ガラスリボン送出手段は、前記駆動ロールを前記ガラスリボンの幅方向の両側縁部に接触させ、前記両側縁部を下流方向に送り出すように駆動することを特徴とするガラス板の製造方法。
    Manufacture of a glass plate in which molten glass is supplied from the inlet of the float bath onto the molten metal in the float bath, and in the float bath forming region, the glass ribbon is spread in the width direction by a support roll and formed into a predetermined thickness. In the method
    A glass ribbon delivery means having a drive roll for delivering the glass ribbon in the downstream direction is provided in a slow cooling area between the molding area and the float bath outlet, and the glass ribbon delivery means is configured to send the drive roll to the glass ribbon. A method of manufacturing a glass plate, comprising: contacting both side edges in the width direction and driving the both side edges in a downstream direction.
  10.  前記駆動ロールによって送出された前記ガラスリボンを徐冷し、切断する工程を有する、請求項9に記載のガラス板の製造方法。 The method for producing a glass plate according to claim 9, further comprising a step of gradually cooling and cutting the glass ribbon fed by the drive roll.
PCT/JP2014/056041 2013-05-16 2014-03-07 Device for manufacturing glass sheet and method for manufacturing glass sheet WO2014185131A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015516969A JP6103048B2 (en) 2013-05-16 2014-03-07 Glass plate manufacturing apparatus and glass plate manufacturing method
KR1020157023523A KR102153290B1 (en) 2013-05-16 2014-03-07 Device for manufacturing glass sheet and method for manufacturing glass sheet
CN201480016389.7A CN105050970B (en) 2013-05-16 2014-03-07 The manufacture device of glass plate and the manufacture method of glass plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013104537 2013-05-16
JP2013-104537 2013-05-16

Publications (1)

Publication Number Publication Date
WO2014185131A1 true WO2014185131A1 (en) 2014-11-20

Family

ID=51898117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056041 WO2014185131A1 (en) 2013-05-16 2014-03-07 Device for manufacturing glass sheet and method for manufacturing glass sheet

Country Status (4)

Country Link
JP (1) JP6103048B2 (en)
KR (1) KR102153290B1 (en)
CN (1) CN105050970B (en)
WO (1) WO2014185131A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102678868B1 (en) * 2019-07-10 2024-06-27 주식회사 엘지화학 System for manufacturing glass plate
JP7251444B2 (en) * 2019-10-21 2023-04-04 Agc株式会社 Glass plate manufacturing apparatus and glass plate manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228163A (en) * 1998-02-12 1999-08-24 Asahi Glass Co Ltd Method and apparatus for transporting ribbon-shaped material
JP2010064948A (en) * 2007-10-12 2010-03-25 Central Glass Co Ltd Method for producing thin glass plate by float process
WO2011136122A1 (en) * 2010-04-26 2011-11-03 日本電気硝子株式会社 Process and apparatus for production of glass plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL300755A (en) * 1962-11-20
US3661548A (en) * 1969-06-30 1972-05-09 Nippon Sheet Glass Co Ltd Apparatus for manufacturing glass ribbon by float process
JPH01219029A (en) * 1988-02-29 1989-09-01 Hoya Corp Formation of thin sheet glass
WO2010064948A1 (en) * 2008-12-05 2010-06-10 Artur Bagratovich Bagdasarov Folding camping trailer
JP5565062B2 (en) 2010-04-15 2014-08-06 旭硝子株式会社 Float glass manufacturing apparatus and float glass manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228163A (en) * 1998-02-12 1999-08-24 Asahi Glass Co Ltd Method and apparatus for transporting ribbon-shaped material
JP2010064948A (en) * 2007-10-12 2010-03-25 Central Glass Co Ltd Method for producing thin glass plate by float process
WO2011136122A1 (en) * 2010-04-26 2011-11-03 日本電気硝子株式会社 Process and apparatus for production of glass plate

Also Published As

Publication number Publication date
JPWO2014185131A1 (en) 2017-02-23
CN105050970B (en) 2018-05-15
CN105050970A (en) 2015-11-11
JP6103048B2 (en) 2017-03-29
KR20160007483A (en) 2016-01-20
KR102153290B1 (en) 2020-09-08

Similar Documents

Publication Publication Date Title
TW201127761A (en) Roll-to-roll glass: touch-free process and multilayer approach
JP6127978B2 (en) Support roll, plate glass forming apparatus having support roll, and plate glass forming method using support roll
JP5056035B2 (en) Manufacturing method of plate glass by float method
JP6103048B2 (en) Glass plate manufacturing apparatus and glass plate manufacturing method
JP2008239370A (en) Method for producing plate glass by floating process
JPWO2013187179A1 (en) Sheet glass manufacturing apparatus and sheet glass manufacturing method
JP6098519B2 (en) Forming method of plate glass using support roll
WO2014185127A1 (en) Method for molding glass plate, device for manufacturing glass plate, and method for manufacturing glass plate
WO2014185130A1 (en) Device for manufacturing glass plate and method for manufacturing glass plate
WO2014185129A1 (en) Method for molding glass plate, device for manufacturing glass plate, and method for manufacturing glass plate
JP6137306B2 (en) Support roll, glass plate forming method, glass plate manufacturing method, and glass plate manufacturing apparatus
JP4821148B2 (en) Thin film coating method on metal strip surface and manufacturing method of grain-oriented electrical steel sheet with ceramic coating
CN218642622U (en) Backup roll and glass plate molding device
CN112759233B (en) Apparatus for manufacturing glass plate and method for manufacturing glass plate
WO2016170634A1 (en) Method for manufacturing float glass
JPH04260622A (en) Roll for producing float glass
WO2023106093A1 (en) Glass transfer device, glass article manufacturing device, and glass article manufacturing method
JP6094670B2 (en) Support roll, glass plate forming method, glass plate manufacturing apparatus, and glass plate manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480016389.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157023523

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015516969

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14798549

Country of ref document: EP

Kind code of ref document: A1