WO2014088315A1 - 결정형 도리페넴 일수화물 및 이의 제조 방법 - Google Patents
결정형 도리페넴 일수화물 및 이의 제조 방법 Download PDFInfo
- Publication number
- WO2014088315A1 WO2014088315A1 PCT/KR2013/011163 KR2013011163W WO2014088315A1 WO 2014088315 A1 WO2014088315 A1 WO 2014088315A1 KR 2013011163 W KR2013011163 W KR 2013011163W WO 2014088315 A1 WO2014088315 A1 WO 2014088315A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- doripenem
- pnb
- monohydrate
- phosphate
- water
- Prior art date
Links
- AVAACINZEOAHHE-VFZPANTDSA-N C[C@H]([C@H]([C@@H]([C@H]1C)N2C(C(O)=O)=C1S[C@@H]1CN[C@H](CNS(N)(=O)=O)C1)C2=O)O Chemical compound C[C@H]([C@H]([C@@H]([C@H]1C)N2C(C(O)=O)=C1S[C@@H]1CN[C@H](CNS(N)(=O)=O)C1)C2=O)O AVAACINZEOAHHE-VFZPANTDSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D477/00—Heterocyclic compounds containing 1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. carbapenicillins, thienamycins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulphur-containing hetero ring
- C07D477/10—Heterocyclic compounds containing 1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. carbapenicillins, thienamycins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulphur-containing hetero ring with hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 4, and with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2
- C07D477/12—Heterocyclic compounds containing 1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. carbapenicillins, thienamycins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulphur-containing hetero ring with hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 4, and with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2 with hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached in position 6
- C07D477/16—Heterocyclic compounds containing 1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. carbapenicillins, thienamycins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulphur-containing hetero ring with hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 4, and with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2 with hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached in position 6 with hetero atoms or carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 3
- C07D477/20—Sulfur atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/407—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with other heterocyclic ring systems, e.g. ketorolac, physostigmine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D477/00—Heterocyclic compounds containing 1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. carbapenicillins, thienamycins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulphur-containing hetero ring
- C07D477/02—Preparation
- C07D477/06—Preparation from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents
Definitions
- the present invention relates to a method for preparing doripenem monohydrate, and more specifically, a step of deprotecting by reacting doripenem-PNB represented by the following Chemical Formula 2 with zinc powder in a mixed solvent composed of an organic solvent and an aqueous solution of phosphate (step One); Removing phosphate from the product of step 1 (step 2); And a method for preparing doripenem monohydrate, which is prepared through the step (step 3) of crystallizing doripenem monohydrate represented by Chemical Formula 1 using the product of step 2 as a solvent for crystallization.
- penicillin has been known as a miracle medicine by saving the lives of many patients with infectious diseases.
- staphylococcus resistant to this emerged and in the 1960s, methicillin, a semisynthetic penicillin, was developed and used to treat penicillin-resistant staphylococcal infections.
- methicillin-resistant staphylococcus aureus (MRSA) resistant to methicillin began to develop, various cephalosporin preparations and various antibiotics such as quinolone, carbapenem, monobactam, and glycoside were developed in the 1980s and clinically Used in
- Carbapenem antibiotics have the strongest antibacterial effect among the beta-lactam antibiotics, and have been used to treat severe patients of children or elderly people with weak immunity due to its excellent safety and therapeutic effects. In addition, since it shows an excellent antibacterial effect to the resistant bacteria difficult to treat, it has been used as a treatment for this.
- Carbapenem antibiotics are prepared by total synthesis and are generally stereoselectively synthesized using 4-acetoxyazetidinone as a key intermediate. Beta-methyl group is introduced from 4-acetoxyazetidinone through stereoselective reaction, and then a multi-step reaction is a key intermediate of various carbapenem antibiotics (meropenem, attafenim, viafenim, doripenem, etc.). Beta-methyl vinyl phosphate carbapenem is synthesized.
- Doripenem monohydrate (DoripenemH 2 O, chemical name: (4R, 5S, 6S) -6-((R) -1-hydroxyethyl) -4-methyl-7-oxo-3-((3S, 5S) ) -5-((sulfamoylamino) methyl) pyrrolidin-3-ylthio) -1-aza-bicyclo [3.2.0] hept-2-ene-2-carboxylic acid hydrate) is a gram-positive bacterium And compounds having broad antibiotic efficacy against Gram-negative bacteria.
- doripenem monohydrate is prepared by a deprotection reaction of doripenem-PNB in which a carboxyl group is protected by a p-nitrobenzyl group.
- MAP is subjected to a coupling reaction with a side chain to prepare doripenem-PNB, in which a carboxyl group is protected with p-nitrobenzyl, and an appropriate amount thereof.
- WO2006-117763 discloses doripenem-PNB in a mixed solvent of ethyl acetate and N-methylmorpholine / acetic acid buffer solution (pH 6.0-7.0), and 5% palladium-carbon was added at room temperature under hydrogen atmosphere. After reacting for 4 hours, the catalyst filtration and the aqueous layer are separated, added to methyl alcohol at room temperature, and crystallized to obtain a desired doripenem. Compared to the European Patent Registration No.
- EP 0528678 B1 the method performs catalytic hydrogenation in a solvent mixture of ethyl acetate and a buffer without using tetrahydrofuran, so that the process is directly performed from an aqueous solution without column chromatography, lyophilization, separation and recovery. There is an advantage that the desired compound can be obtained.
- the inventors of the present invention are studying a method for preparing doripenem monohydrate through a safe process without requiring special equipment and expensive catalysts, and zinc powder instead of expensive metal catalysts and hydrogen gas in a deprotection reaction.
- the present invention was completed by confirming that a high yield of doripenem monohydrate can be obtained using an aqueous solution of phosphate.
- the present invention comprises the step of reacting the doripenem-PNB represented by the formula (2) with zinc powder in a mixed solvent consisting of an organic solvent and an aqueous solution of phosphate (step 1); Removing phosphate from the product of step 1 (step 2); And crystallizing doripenem monohydrate represented by the following Chemical Formula 1 using the product of step 2 as a crystallization solvent (step 3).
- the step 1 is, in order to deprotect the carboxyl protecting group PNB (4-nitrobenzyl) and the amine protecting group PNZ (4-nitrobenzyl oxy carbonyl) from the doripenem-PNB represented by the formula (2), the zinc powder is It is a step of performing deprotection reaction into a mixed solvent of an organic solvent and phosphate aqueous solution in which doripenem-PNB is represented.
- the zinc powder is preferably used four to twelve times the weight of doripenem-PNB, and in order to prevent decomposition of the target compound due to rapid exotherm, it is preferable to gradually divide and maintain the appropriate temperature.
- the phosphate is preferably any one or more selected from the group consisting of KH 2 PO 4 , K 2 HPO 4 , H 3 PO 4 , NaH 2 PO 4, and Na 2 HPO 4 .
- the organic solvent is preferably any one or more selected from the group consisting of tetrahydrofuran, acetonitrile, acetone, ethyl acetate, methylene chloride and chloroform.
- the pH of the mixed solvent is preferably 4 to 7, and the concentration of the phosphate in the mixed solvent is preferably 0.5 M to 2 M. If the reaction proceeds out of the pH range or the phosphate concentration range, only the nitro portion of the protecting group stays in the intermediate which is reduced to the amine, so that the target compound cannot be obtained to the maximum, which may cause a problem in yield reduction.
- Step 1 is preferably carried out at 20 °C to 40 °C for 0.5 hours to 3 hours. If the temperature is less than 20 ° C., the reaction may proceed only to the primary reduced amine intermediate, thereby preventing a complete reaction. When the temperature exceeds 40 ° C., the reaction rate and the degree of completion may be increased, whereas a large amount of the target compound may be decomposed to reduce yield and purity.
- the washing is preferably performed using a mixture of an organic solvent and water used in the reaction, the organic solvent is methyl acetate, butyl acetate, isobutyl acetate, diethyl ether, dimethyl ether, isopropyl ether, methyl ethyl ketone Or dichloromethane can be removed via extraction. If the concentration is performed to remove the organic solvent, a problem may occur in that the target compound is gradually decomposed in the weakly acidic reaction solution to lower the yield and content.
- Step 2 is a step of removing the phosphate from the product of step 1, it can be carried out using the adsorption resin slurry extraction method or co-precipitation method.
- the adsorption resin slurry extraction method means that the product of step 1 is added to the adsorption resin, stirred and slurried, and then filtered with water to remove phosphate.
- the adsorption resin may be SP-207, Amberlite XAD-4, Amberlite XAD-7, Diaion HP-20 or HP-40, but is not limited thereto.
- the water may be used 50 to 200 times the weight of the doripenem-PNB, preferably 50 to 100 times.
- the mixed solution is preferably used 10 to 100 times the weight of the doripenem-PNB.
- the phosphate removal method using the conventional adsorption resin was carried out by filling the adsorption resin in a special facility, adsorbing doripenem, washing with excess water, removing phosphate, and concentrating for a long time at 50 ° C. or lower using an eluent. Therefore, a special facility is required, and a large amount of impurities are generated by heat and concentration time, so that there is a problem in that yield and purity are lowered.
- the adsorption resin slurry extraction method of the present invention can be carried out in a general reactor without a special resin column installation, a polar organic having greater affinity with the adsorption resin than doripenem adsorbed on the adsorption resin without mixing with water as eluent
- a polar organic having greater affinity with the adsorption resin than doripenem adsorbed on the adsorption resin without mixing with water as eluent
- the coprecipitation method means that the phosphate salt is crystallized by mixing the product of step 1 with an organic solvent of methanol, ethanol, isopropanol, tetrahydrofuran, acetone or acetonitrile and a mixed solvent of water to remove phosphate.
- the mixed solvent is preferably used 10 times to 40 times the weight of the doripenem-PNB, and the mixed solution is preferably cooled to 0 °C to 10 °C to prevent the generation of impurities by heat generation. Do.
- the coprecipitation method of the present invention excludes the resin process conventionally used conventionally, the target compound can be recovered without concentrating the eluate. Therefore, the generation of impurities by heat and concentration time can be minimized, and doripenem of high purity and high yield can be obtained.
- step 2 doripenem recovered after phosphate removal is added dropwise to methanol, ethanol, isopropyl alcohol, acetone or tetrahydrofuran, followed by filtration and drying in vacuo at room temperature to produce amorphous doripenem monohydrate. It is preferable to include as.
- Step 3 is a step of crystallizing the product of step 2 with a solvent for crystallization in order to obtain crystalline doripenem monohydrate.
- the solvent for crystallization is preferably water or a mixed solvent of water and methanol, ethanol, isopropanol, tetrahydrofuran, acetone or acetonitrile.
- the method for producing doripenem monohydrate according to the present invention can be carried out under mild conditions of room temperature and atmospheric pressure without expensive metal catalysts and special facilities, and economical and safe as well as high yield of doripenem monohydrate can be obtained. .
- the manufacturing method of this invention can be usefully applied to the industrial field related to doripenem monohydrate.
- 1 is a graph showing a powder X-ray diffraction analysis of doripenem monohydrate according to an embodiment of the present invention.
- FIG. 2 shows the thermogravimetric analysis (TGA) of doripenem monohydrate according to an embodiment of the present invention.
- Figure 3 shows the results of differential scanning calorimetry (DSC) analysis of doripenem monohydrate according to an embodiment of the present invention.
- Doripenem-PNB was prepared according to Scheme 2 below. 98 g of the compound represented by the formula (3) was added to 490 ml of methanol, and 25 ml of sulfuric acid was slowly added thereto, followed by reaction for 3 hours while maintaining the internal temperature of 60 ° C to 65 ° C. After completion of the reaction, the reaction mixture was concentrated under reduced pressure to remove methanol, and extracted with 100 ml of water and 100 ml of ethyl acetate. The organic layer was recovered and washed with water and 5% brine. Anhydrous magnesium sulfate was used to remove the water remaining in the organic layer and concentrated under reduced pressure.
- Example 1 Preparation of amorphous doripenem monohydrate-adsorption resin slurry extraction method
- the resin was filtered and washed with 1 L of water to remove the potassium phosphate salt and impurities used in the reaction.
- a mixed solution of 200 ml of ethyl acetate and 100 ml of water was added to the reactor, followed by stirring, followed by filtration to elute doripenem.
- the eluate was separated and the aqueous layer containing doripenem was added dropwise to isopropyl alcohol to precipitate crystals and stirred at 0 ° C. to 5 ° C. for 1 hour. Filtration and drying under reduced pressure at room temperature yielded 10.26 g of amorphous doripenem monohydrate (yield 90%).
- the resin was filtered and washed with 1 L of water to remove the potassium phosphate salt and impurities used in the reaction. 10 L of ethyl acetate and 5 L of water were added to the reactor, followed by stirring, followed by filtration and washing to elute doripenem. The eluate was separated and the aqueous layer containing doripenem was added dropwise to isopropyl alcohol to precipitate crystals and stirred at 0 ° C. to 5 ° C. for 1 hour. Filtration and drying under reduced pressure at room temperature gave 0.51 kg of amorphous doripenem monohydrate (yield 90%).
- amorphous doripenem monohydrate was prepared using two doses.
- Isopropyl alcohol was added dropwise to the aqueous layer and stirred for 30 minutes to crystallize the phosphate.
- the crystals were filtered to remove potassium phosphate salts and impurities.
- the filtrate was added dropwise to isopropyl alcohol to precipitate crystals, stirred at 0 ° C to 5 ° C for 1 hour, filtered and dried under reduced pressure at room temperature to give 10.81 g of amorphous doripenem monohydrate (yield 95%).
- the crystals were filtered to remove potassium phosphate salts and impurities.
- the filtrate was added dropwise to isopropyl alcohol to precipitate crystals, stirred for 1 hour at 0 ° C to 5 ° C, filtered and dried under reduced pressure at room temperature to give 0.54 kg of amorphous doripenem monohydrate (yield 95%).
- amorphous doripenem was prepared.
- adsorption resin SP-207 30 L was charged to the resin column and the doripenem mother liquor was passed through to adsorb the doripenem.
- 50 liters of water was run on a resin column to remove the potassium phosphate salt and impurities used in the reaction.
- 100 L of 70% isopropyl alcohol (IPA) was then developed on the resin column to recover doripenem from the adsorption resin.
- Fractions containing doripenem were collected and concentrated to 5 times volume by weight of doripenem-PNB. The concentrated solution was added dropwise to isopropyl alcohol to precipitate crystals and stirred at 0 ° C to 5 ° C for 1 hour. Filtration and drying gave 0.68 kg of amorphous doripenem monohydrate (yield 60%).
- Example 1 and Example 2 were more remarkable than the preparation methods of Comparative Example 1 and Comparative Example 2. It was found that amorphous doripenem monohydrate can be obtained with improved yields.
- Diffraction Angle (2 ⁇ ) 10.91 °, 13.07 °, 15.0 °, 15.90 °, 16.64 °, 18.10 °, 20.63 °, 21.09 °, 23.47 °, 23.89 °, 24.19 °, 24.47 °, 26.06 °, 26.96 °, 27.53 ° , 28.23 °, 28.91 ° and 34.15 °.
- thermogravimetric analysis was performed at 35 ° C. to 250 ° C. and 10 ° C./min rate, and the results are shown in FIG. 2.
- doripenem monohydrate showed a weight loss of 5.19% monohydrate at 125.24 ° C. to 132.74 ° C., and a weight loss due to decomposition of doripenem at 17.25% at 168.38 ° C. to 187.61 ° C. .
- Differential scanning calorimetry of doripenem monohydrate prepared in Examples 1 and 2 was performed. The temperature of the melting endothermic peak was recorded as the melting point. Data obtained from differential scanning calorimetry (DSC) is influenced by several factors such as heating rate, sample purity, crystal size and sample size. Thus, the following melting points are representative of the samples produced by the above examples. For analysis, differential scanning calorimetry (DSC) was performed using 3.30 mg of doripenem monohydrate prepared in Examples 1 and 2, and the results are shown in FIG. 3.
- the doripenem monohydrate of Examples 1 and 2 exhibited an endothermic peak at 180.02 °C.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Oncology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Communicable Diseases (AREA)
- Molecular Biology (AREA)
- Epidemiology (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
본 발명은 도리페넴 일수화물의 제조 방법에 관한 것으로, 보다 구체적으로 도리페넴-PNB를 유기 용매와 포스페이트 수용액으로 구성된 혼합 용매 중에서 아연 분말과 반응시켜 탈보호 반응시키는 단계(단계 1); 상기 단계 1의 생성물로부터 포스페이트를 제거하는 단계(단계 2); 및 상기 단계 2의 생성물을 결정화용 용매로 도리페넴 일수화물을 결정화하는 단계(단계 3)를 통하여 제조되는 도리페넴 일수화물의 제조 방법에 관한 것이다. 이에 따른, 도리페넴 일수화물의 제조 방법은 고가의 금속 촉매 및 특수 설비 없이 상온, 상압의 온화한 조건에서 수행할 수 있어, 경제적이며 안전할 뿐만 아니라 고수율의 도리페넴 일수화물을 수득할 수 있다. 따라서, 본 발명의 제조 방법은, 도리페넴 일수화물과 관련된 산업 분야에 유용하게 적용할 수 있다.
Description
본 발명은 도리페넴 일수화물의 제조 방법에 관한 것으로, 보다 구체적으로 하기 화학식 2로 표시되는 도리페넴-PNB를 유기 용매와 포스페이트 수용액으로 구성된 혼합 용매 중에서 아연 분말과 반응시켜 탈보호 반응시키는 단계(단계 1); 상기 단계 1의 생성물로부터 포스페이트를 제거하는 단계(단계 2); 및 상기 단계 2의 생성물을 결정화용 용매로 하기 화학식 1로 표시되는 도리페넴 일수화물을 결정화하는 단계(단계 3)를 통하여 제조되는 도리페넴 일수화물의 제조 방법에 관한 것이다.
[화학식 1]
[화학식 2]
1940년대 현대적인 개념의 항생제로서 처음으로 사용된 페니실린은 감염질환을 가진 수많은 환자의 생명을 구함으로써 기적의 약으로 알려져 왔다. 그러나, 페니실린이 사용된지 얼마 되지 않아, 이에 대해 내성을 가지는 포도상구균이 등장하였으며, 1960년대에 반합성 페니실린인 메티실린이 개발되어 페니실린 내성 포도상구균 감염증 치료에 사용되었다. 그러나, 이후 메티실린에 내성을 가지는 메티실린 내성 포도상구균(MRSA)이 발생하기 시작하여, 1980년대에 들어 각종 세팔로스포린 제제와 퀴놀론, 카바페넴, 모노박탐, 글리코사이드 등 수많은 항생제가 개발되어 임상에서 사용되었다.
카바페넴계 항생물질은 베타락탐계 항생 물질 중에서 가장 강력한 항균 효과를 나타내며, 약물의 안전성과 치료 효과가 우수하여 소아나 면역이 약한 노약자의 중증 환자를 치료하는데 사용되고 있다. 또한, 치료가 어려운 내성균에도 우수한 항균효과를 보이므로 이에 대한 치료제로서 사용되고 있다.
카바페넴계 항생물질은 전합성에 의하여 제조되며, 일반적으로 4-아세톡시아제티디논을 핵심 중간체로 사용하여 입체 선택적으로 합성한다. 4-아세톡시아제티디논으로부터 입체 선택적 반응을 통하여 베타-메틸기를 도입하고, 이후 다단계 반응을 통하여 다양한 카바페넴계 항생제(메로페넴, 어타페님, 비아페님, 도리페넴 등)의 핵심 중간체인 베타-메틸 비닐 포스페이트 카바페넴을 합성하고 있다.
한편, 도리페넴 일수화물(DoripenemㆍH2O, 화학명: (4R,5S,6S)-6-((R)-1-hydroxyethyl)-4-methyl-7-oxo-3-((3S,5S)-5-((sulfamoylamino)methyl)pyrrolidin-3-ylthio)-1-aza-bicyclo[3.2.0]hept-2-ene-2-carboxylic acid hydrate)은 카바페넴계 항생 물질로서, 그람-양성균 및 그람-음성균에 대하여 넓은 항생 효능을 가지는 화합물이다. 일반적으로 도리페넴 일수화물은 카르복실기가 p-니트로벤질기로 보호된 도리페넴-PNB를 탈보호 반응시키는 방법으로 제조하고 있다.
유럽특허 등록번호 EP 0528678 B1에는, 하기 반응식 1에 도시한 바와 같이 MAP를 측쇄 물질(side chain)과 커플링 반응시켜 카복실기가 p-니트로벤질기로 보호된 도리페넴-PNB를 제조하고, 이를 적당량의 테트라하이드로퓨란과 물의 혼합 용매에 용해시킨 후 10% 팔라듐-카본, 0.1 M-MES(2-(N-morpholino)ethanesulfonic acid) 완충액(pH 7.0)을 첨가하여 실온에서 4시간 동안 수소화시키고, 촉매를 여과하고 에틸아세테이트로 세척한 후 잔류 수용액을 감압 증류, 스티렌-디비닐벤젠 공중합체 레진 컬럼크로마토그래피로 분리한 후 동결건조하여 도리페넴 일수화물을 얻는 공정을 개시하고 있다.
[반응식 1]
국제특허 공개번호 WO2006-117763에는 도리페넴-PNB를 에틸아세테이트와 N-메틸몰포린/초산완충액(pH 6.0~7.0)의 혼합 용매에 용해시키고, 5% 팔라듐-카본을 첨가하여 수소 대기하의 실온에서 4시간 동안 반응시킨 후 촉매 여과 및 수층을 분리하고, 실온에서 메틸알콜에 첨가하고 결정화 과정을 거쳐 목적하는 도리페넴을 얻는 방법을 기재하고 있다. 상기 방법은 상기 유럽특허 등록번호 EP 0528678 B1와 비교하여, 테트라하이드로퓨란을 사용하지 않고 에틸아세테이트와 버퍼 혼합 용매에서 촉매 수소화 반응을 수행하므로 컬럼크로마토그래피, 동결건조, 분리 및 회수 과정 없이 수용액으로부터 곧바로 목적 화합물을 수득할 수 있는 장점이 있다.
또한, 테트라하이드로퓨란과 정제수 혼합 용매에 도리페넴-PNB를 용해시키고 10% 팔라듐/카본 촉매, 마그네슘클로라이드를 첨가하여 수소 대기하의 실온에서 2시간 동안 반응시킨 후 촉매 여과 및 수층을 분리하고 메틸알콜을 사용하여 결정화 과정을 거쳐 목적하는 도리페넴을 수득하는 방법이 공지되어 있다(Yutaka Nishino et al., Org. Process Research Dev. 2003, 7, p 846-50).
상기에 기재된 바와 같이, 종래의 도리페넴 일수화물 제조 방법들은, 탈보호 반응을 위하여 고가의 팔라듐/카본을 사용하므로 경제성이 떨어지는 단점이 있다. 또한, 환원제로써 폭발 위험이 매우 큰 수소가스를 사용해야 하기 때문에 안전성 문제가 있으며, 특수 설비가 필요하여 별도의 설비 투자가 이뤄져야 하는 단점이 있다. 따라서, 경제성 및 안전성이 확보된 도리페넴 일수화물의 제조 기술이 필요한 실정이다.
상기와 같은 배경 하에, 본 발명자들은 특수 설비와 고가의 촉매가 필요하지 않으면서 안전한 공정을 통한 도리페넴 일수화물의 제조 방법을 연구하던 중, 탈보호 반응으로 고가의 금속 촉매 및 수소 가스 대신 아연 분말과 포스페이트 수용액을 사용하여 고수율의 도리페넴 일수화물을 수득할 수 있음을 확인함으로써 본 발명을 완성하였다.
본 발명의 목적은 특수 설비 없이 상온, 상압의 온화한 반응 조건을 통한 고수율의 결정성 도리페넴 일수화물의 제조 방법을 제공하는 것이다.
상기의 과제를 해결하기 위하여, 본 발명은 하기 화학식 2로 표시되는 도리페넴-PNB를 유기 용매와 포스페이트 수용액으로 구성된 혼합 용매 중에서 아연 분말과 반응시켜 탈보호 반응시키는 단계(단계 1); 상기 단계 1의 생성물로부터 포스페이트를 제거하는 단계(단계 2); 및 상기 단계 2의 생성물을 결정화용 용매로 하기 화학식 1로 표시되는 도리페넴 일수화물을 결정화하는 단계(단계3)를 포함하는 도리페넴 일수화물의 제조 방법을 제공한다.
[화학식 1]
[화학식 2]
상기 단계 1은, 상기 화학식 2로 표시되는 도리페넴-PNB로부터 카복실기 보호기인 PNB(4-nitrobenzyl) 및 아민 보호기인 PNZ(4-nitrobenzyl oxy carbonyl)를 탈보호 하기 위하여, 아연 분말을 상기 화학식 2로 표시되는 도리페넴-PNB가 용해되어 있는 유기 용매와 포스페이트 수용액 혼합 용매에 넣고 탈보호 반응시키는 단계이다. 상기 아연 분말은, 상기 도리페넴-PNB 중량의 4배 내지 12배가 사용되는 것이 바람직하며, 급격한 발열에 의한 목적 화합물의 분해를 방지하기 위하여 서서히 분할 투입하여 적정 온도를 유지하는 것이 바람직하다.
상기 포스페이트는 KH2PO4, K2HPO4, H3PO4, NaH2PO4 및 Na2HPO4로 구성되는 군으로부터 선택되는 어느 하나 이상인 것이 바람직하다. 상기 유기 용매는, 테트라하이드로퓨란, 아세토니트릴, 아세톤, 에틸아세테이트, 메틸렌클로라이드 및 클로로포름으로 구성되는 군으로부터 선택되는 어느 하나 이상인 것이 바람직하다. 또한, 상기 혼합 용매의 pH는 4 내지 7인 것이 바람직하며, 상기 혼합 용매 중 포스페이트의 농도는 0.5 M 내지 2 M인 것이 바람직하다. 만약, 상기의 pH 범위 또는 포스페이트 농도 범위를 벗어나 반응을 진행할 경우, 보호기의 니트로 부분만 아민으로 환원되는 중간체에 머물게 되어 목적 화합물을 최대로 얻을 수 없어 수율 저하의 문제가 발생할 수 있다.
상기 단계 1은 20℃ 내지 40℃에서 0.5시간 내지 3시간 동안 수행되는 것이 바람직하다. 만약, 온도가 20℃ 미만이면 1차 환원된 아민 중간체까지만 반응이 진행되어 완전한 반응이 이뤄지지 않을 수 있다. 40℃를 초과할 경우 반응속도 및 완결도가 빨라지는 반면, 목적 화합물이 다량 분해되어 수율 및 순도 저하의 문제가 발생할 수 있다.
또한, 상기 단계 1은, 탈보호 반응이 완결된 후 여과 및 세척하여 아연 분말을 제거한 후 유기 용매를 제거하는 단계를 추가로 포함하는 것이 바람직하다. 상기 세척은 반응에 사용된 유기 용매와 물 혼합 용액을 사용하여 수행하는 것이 바람직하며, 상기 유기 용매는 메틸아세테이트, 부틸아세테이트, 이소부틸아세테이트, 디에틸에테르, 디메틸에테르, 이소프로필에테르, 메틸에틸케톤 또는 디클로로메탄을 사용하여 추출을 통해 제거할 수 있다. 만약, 상기 유기 용매를 제거하기 위하여 농축을 하게 되면 약산성의 반응액에서 목적 화합물이 점차 분해되어 수율 및 함량이 저하되는 문제가 발생할 수 있다.
상기 단계 2는, 상기 단계 1의 생성물로부터 포스페이트를 제거하는 단계로, 흡착 레진 슬러리 추출법 또는 공침법을 이용하여 수행할 수 있다.
상기 흡착 레진 슬러리 추출법은, 상기 단계 1의 생성물을 흡착 레진에 첨가하고 교반하여 슬러리화 한 후 물로 여과하여 포스페이트를 제거하는 것을 의미한다. 상기 흡착 레진은 SP-207, Amberlite XAD-4, Amberlite XAD-7, Diaion HP-20 또는 HP-40을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 물은 상기 도리페넴-PNB 중량의 50배 내지 200배를 사용할 수 있으며, 바람직하게는 50배 내지 100배이다. 상기 포스페이트를 제거한 후, 메틸아세테이트, 에틸아세테이트, 부틸아세테이트, 이소부틸아세테이트, 디에틸에테르, 디메틸에테르, 이소프로필에테르 또는 메틸에틸케톤의 유기 용매와 물의 혼합 용액으로 상기 레진으로부터 도리페넴을 회수하는 것이 바람직하다. 상기 혼합 용액은 상기 도리페넴-PNB 중량의 10배 내지 100배를 사용하는 것이 바람직하다.
종래의 흡착 레진을 이용한 포스페이트 제거 방법은, 특수 설비에 흡착 레진을 충진한 후 도리페넴을 흡착시키고 과량의 물로 세척하여 포스페이트를 제거하고 용출액을 사용하여 50℃ 이하에서 장시간 농축하여 수행하였다. 따라서, 특수 설비가 필요하며, 열 및 농축 시간에 의해 불순물이 다량 발생하여 수율 및 순도가 저하되는 문제점이 있다.
반면, 본 발명의 상기 흡착 레진 슬러리 추출법은 특수한 레진 컬럼 설비 없이 일반 반응기에서 수행할 수 있으며, 용출액으로 물과 섞이지 않으면서 흡착 레진에 흡착되어 있는 도리페넴 보다 흡착 레진과의 친화력이 더 큰 극성 유기 용매와 물을 혼합하여 사용함으로써 단순한 층분리로 도리페넴을 회수할 수 있다.
상기 공침법은, 상기 단계 1의 생성물을 메탄올, 에탄올, 이소프로판올, 테트라하이드로퓨란, 아세톤 또는 아세토니트릴의 유기 용매와 물의 혼합 용매로 포스페이트 염을 결정화하여 포스페이트를 제거하는 것을 의미한다. 상기 혼합 용매는 상기 도리페넴-PNB 중량의 10배 내지 40배를 사용하는 것이 바람직하며, 상기 혼합 용액은 발열에 의해 불순물이 발생하는 것을 방지하기 위하여 0℃ 내지 10℃로 냉각하여 사용하는 것이 바람직하다.
본 발명의 상기 공침법은 종래에 통상적으로 사용되던 레진 공정이 배제됨에 따라, 용출액의 농축 없이 목적 화합물을 회수할 수 있다. 따라서, 열 및 농축 시간에 의한 불순물 생성을 최소화할 수 있어 고순도 및 고수율의 도리페넴을 수득할 수 있다.
상기 단계 2는, 포스페이트 제거 이후에 회수된 도리페넴을 메탄올, 에탄올, 이소프로필알콜, 아세톤 또는 테트라하이드로퓨란에 적가한 후 여과하고 상온에서 진공건조하여 비결정성 도리페넴 일수화물을 제조하는 단계를 추가로 포함하는 것이 바람직하다.
상기 단계 3은, 결정성 도리페넴 일수화물을 수득하기 위하여, 상기 단계 2의 생성물을 결정화용 용매로 결정화하는 단계이다. 상기 결정화용 용매는, 물 또는 물과 메탄올, 에탄올, 이소프로판올, 테트라하이드로퓨란, 아세톤 또는 아세토니트릴의 혼합 용매인 것이 바람직하다.
본 발명에 따른 도리페넴 일수화물의 제조 방법은 고가의 금속 촉매 및 특수 설비 없이 상온, 상압의 온화한 조건에서 수행할 수 있어, 경제적이며 안전할 뿐만 아니라 고수율의 도리페넴 일수화물을 수득할 수 있다.
또한, 포스페이트 제거 후 도리페넴 회수 단계에 있어, 농축 없이 단순한 층분리만으로 회수할 수 있어 농축과정에서 발생되는 불순물을 최소화하여 고순도의 도리페넴 일수화물을 제조할 수 있다.
따라서, 본 발명의 제조 방법은, 도리페넴 일수화물과 관련된 산업 분야에 유용하게 적용할 수 있다.
도 1은, 본 발명의 일 실시예에 따른 도리페넴 일수화물의 분말 X선 회절 분석 결과를 나타낸 그래프이다.
도 2는, 본 발명의 일 실시예에 따른 도리페넴 일수화물의 열중량(TGA) 분석 결과를 나타낸 것이다.
도 3은, 본 발명의 일 실시예에 따른 도리페넴 일수화물의 시차 주사 열량(DSC) 분석 결과를 나타낸 것이다.
이하, 실시예 및 실험예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 단, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
제조예: 도리페넴-PNB의 제조
하기 반응식 2에 따라 도리페넴-PNB를 제조하였다. 화학식 3으로 표시되는 화합물 98 g을 메탄올 490 ㎖에 넣은 후 황산 25 ㎖를 서서히 첨가하고, 내부 온도 60℃~65℃를 유지하면서 3시간 동안 반응시켰다. 반응 종결 후 감압 농축하여 메탄올을 제거하고, 물 100 ㎖, 에틸아세테이트 100 ㎖로 추출하였다. 유기층을 회수하고, 물과 5% 소금물로 세척하였다. 무수 황산마그네슘을 사용하여 유기층에 남아 있는 물을 제거하고 감압 농축하였다. 농축된 용액에 화학식 4로 표시되는 화합물 100 g과 디메틸포름아마이드(dimethylformamide) 100 ㎖를 첨가하여 녹이고, 0℃~5℃로 냉각한 후 디이소프로필에틸아민(diisopropylethylamine) 47 ㎖를 적가하였다. 동일한 온도에서 10시간 이상 교반한 후 에틸아세테이트 100 ㎖와 물 100 ㎖를 첨가하여 반응액을 교반하고 층 분리하였다. 에틸아세테이트 층에 1N HCl 100 ㎖를 가하여 잔류하는 염기를 제거하고 포화 소금물 100 ㎖로 세척하였다. 무수 황산마그네슘을 사용하여 남아있는 물을 제거하고 여액인 에틸아세테이트 용액을 감압 농축시켰다. 농축된 용액을 톨루엔에 서서히 투입하고, 상온에서 1시간 동안 교반한 후 여과하여 화학식 2로 표시되는 도리페넴-PNB 132.51 g을 수득하였다(수율 98%).
[반응식 2]
실시예 1: 비결정형 도리페넴 일수화물 제조-흡착 레진 슬러리 추출법
수율 확인을 위하여, 두 가지의 용량의 비결정형 도리페넴 일수화물을 제조하였다.
1) 20 g 도리페넴-PNB
상기 제조예의 도리페넴-PNB 20 g을 테트라하이드로퓨란 100 ㎖에 용해시켰다. 여기에 포타슘포스페이트 모노베이직(KH2PO4) 40 g을 녹인 물 200 ㎖를 첨가하고 30℃로 가온하였다. 그 후, 아연 분말 160 g을 나누어 천천히 첨가한 후 30℃~35℃ 사이에서 2시간 동안 교반하였다. 반응이 완료된 후, 여과하여 아연 분말을 제거하였다. 여액을 메틸렌클로라이드 200 ㎖로 3회 세척하여 수층에 존재하는 테트라히이드로퓨란 및 불순물을 제거하였다. 흡착 레진 SP-207을 가하고 교반하여 도리페넴을 흡착시켰다. 레진을 여과하고 물 1 ℓ로 세척하여 반응에 사용한 포타슘포스페이트 염과 불순물을 제거하였다. 반응기에 에틸아세테이트 200 ㎖와 물 100 ㎖ 혼합 용액을 첨가하고 교반한 후, 여과하여 도리페넴을 용출시켰다. 용출액은 층분리하고 도리페넴이 들어있는 수층은 이소프로필알콜에 적가하여 결정을 석출시키고 0℃~5℃에서 1시간 동안 교반하였다. 여과 및 실온 감압 건조하여 비결정형 도리페넴 일수화물 10.26 g을 수득하였다(수율 90%).
2) 1 kg 도리페넴-PNB
상기 제조예의 도리페넴-PNB 1 kg을 테트라하이드로퓨란 10 ℓ에 용해시켰다. 여기에 포타슘포스페이트 모노베이직(KH2PO4) 3 kg을 녹인 물 20 ℓ를 첨가하고 30 ℃로 가온하였다. 그 후, 아연 분말 8 kg을 나누어 천천히 첨가한 후 30℃~35℃ 사이에서 2시간 동안 교반하였다. 반응이 완료된 후, 여과하여 아연 분말을 제거하였다. 여액을 메틸렌클로라이드 10 ℓ로 3회 세척하여 수층에 존재하는 테트라히이드로퓨란을 완전히 제거하였다. 흡착 레진 SP-207 30 ℓ를 가하고 교반하여 도리페넴을 흡착시켰다. 레진을 여과하고 물 1 ℓ로 세척하여 반응에 사용한 포타슘포스페이트 염과 불순물을 제거하였다. 반응기에 에틸아세테이트 10 ℓ와 물 5 ℓ 혼합 용액을 첨가하고 교반한 후, 여과 및 세척하여 도리페넴을 용출시켰다. 용출액은 층분리하고 도리페넴이 들어있는 수층은 이소프로필알콜에 적가하여 결정을 석출시키고 0℃~5℃에서 1시간 동안 교반하였다. 여과 및 실온 감압 건조하여 비결정형 도리페넴 일수화물 0.51 kg을 수득하였다(수율 90%).
실시예 2: 비결정형 도리페넴 일수화물의 제조-공침법
수율 확인을 위하여, 두 가지의 용량을 사용하여 비결정형 도리페넴 일수화물을 제조하였다.
1) 20g 도리페넴-PNB
상기 제조예의 도리페넴-PNB 20 g을 테트라하이드로퓨란 200 ㎖에 용해시켰다. 여기에 포타슘포스페이트 모노베이직(KH2PO4) 60 g을 녹인 물 400 ㎖을 첨가하고 30℃로 가온하였다. 이 후 아연 분말 160 g을 나누어 천천히 첨가한 후 30℃~35℃ 사이에서 2시간 동안 교반하였다. 반응이 완료된 후, 여과하여 아연 분말을 제거하였다. 여액을 메틸렌클로라이드 200 ㎖로 3회 세척하여 수층에 존재하는 테트라하이드로퓨란 및 불순물을 제거하였다. 수층에 이소프로필알콜을 적가하고 30분 교반하여 포스페이트를 결정화하였다. 결정을 여과하여 포타슘포스페이트 염과 불순물을 제거하였다. 여액을 이소프로필알콜에 적가하여 결정을 석출시키고 0℃~5℃에서 1시간 동안 교반하고, 여과 및 실온 감압 건조하여 비결정형 도리페넴 일수화물 10.81 g을 수득하였다(수율 95%).
2) 1 kg 도리페넴-PNB
상기 제조예의 도리페넴-PNB 1 kg을 테트라하이드로퓨란 10 ℓ에 용해시켰다. 여기에 포타슘포스페이트 모노베이직(KH2PO4) 3 kg을 녹인 물 20 ℓ를 첨가하고 30℃로 가온하였다. 이 후, 아연 분말 8 kg을 나누어 천천히 첨가한 후 30℃~35℃ 사이에서 2시간 동안 교반하였다. 반응이 완료된 후, 여과하여 아연 분말을 제거하였다. 여액을 메틸렌클로라이드 10 ℓ로 3회 세척하여 수층에 존재하는 테트라하이드로퓨란 및 불순물을 제거하였다. 수층에 이소프로필알콜을 적가하고 30분 교반하여 포스페이트를 결정화하였다. 결정을 여과하여 포타슘포스페이트 염과 불순물을 제거하였다. 여액을 이소프로필알콜에 적가하여 결정을 석출시키고 0℃~5℃에서 1시간 동안 교반하고, 여과 및 실온 감압 건조하여 비결정형 도리페넴 일수화물 0.54 kg을 수득하였다(수율 95%).
실시예 3: 결정형 도리페넴 일수화물 제조
상기 실시예 2의 비결정형 도리페넴 일수화물 20 g을 물 100 ㎖로 용해하고 0℃~5℃로 냉각시킨 후, 교반하여 결정을 석출시켰다. 동일한 온도에서 2시간 동안 교반한 후, 여과 및 50℃ 감압 건조하여 결정형 도리페넴 일수화물 16 g을 수득하였다(수율 80%, 함량 99%).
비교예 1: 비결정형 도리페넴 -팔라듐/카본
수율 비교를 위하여, 비결정형 도리페넴을 제조하였다.
1) 20 g 도리페넴-PNB
상기 제조예의 도리페넴-PNB 20 g을 테트라하이드로퓨란 400 ㎖에 용해시켰다. 여기에 0.1M MES 버퍼(pH 7.0) 200 ㎖를 첨가하고 이 용액에 촉매로서 팔라듐/카본(10 % w/w) 13.5 g을 첨가하였다. 그 후, 상기 혼합물을 수소 기류하에 4시간 동안 교반하였다. 반응이 완료된 후 여과하여 촉매를 제거하고 에틸아세테이트로 세척하여 유기층을 제거한 후, 수용액 층을 농축하였다. 상기 농축한 수용액을 HP-20 resin 컬럼 크로마토 그래피를 하여 흡착시켰다. 5~10% 에탄올 용액으로 레진 컬럼에 전개시켜 흡착 레진으로부터 도리페넴을 회수하였다. 상기 회수한 모액을 동결건조하여 비결정형 도리페넴을 9.1 g을 수득하였다(수율 80%).
비교예 2: 비결정형 도리페넴 일수화물 제조-흡착 레진 컬럼
수율 비교를 위하여, 두 가지 용량의 비결정형 도리페넴 일수화물을 제조하였다.
1) 20 g 도리페넴-PNB
상기 제조예의 도리페넴-PNB 20 g을 테트라하이드로퓨란 200 ㎖에 용해시켰다. 여기에 포타슘포스페이트 모노베이직(KH2PO4) 60 g을 녹인 물 400 ㎖를 첨가하고 30℃로 가온하였다. 그 후, 아연 분말 160 g을 나누어 천천히 첨가한 후 30℃~35℃ 사이에서 2시간 동안 교반하였다. 반응이 완료된 후, 여과하여 아연 분말을 제거하였다. 여액을 메틸렌클로라이드 200 ㎖로 3회 세척하여 수층에 존재하는 테트라하이드로퓨란 및 불순물을 제거하여 도리페넴 모액을 제조하였다. 흡착 레진 SP-207 600 ㎖를 레진 컬럼에 충진하고 도리페넴 모액을 통과시켜 도리페넴을 흡착시켰다. 물 1 ℓ를 레진 컬럼에 전개시켜 반응에 사용한 포타슘포스페이트 염과 불순물을 제거하였다. 그리고 70% 이소프로필알콜(IPA) 2 ℓ를 레진 컬럼에 전개시켜 흡착 레진으로부터 도리페넴을 회수하였다. 도리페넴이 들어있는 분획을 모으고, 도리페넴-PNB 중량 대비 5배 부피가 될 때까지 농축하였다. 농축액은 이소프로필알콜에 적가하여 결정을 석출시키고 0℃ 내지 5℃에서 1시간 교반하였다. 여과 및 건조하여 비결정형 도리페넴 일수화물 8.0 g을 수득하였다(수율 70%).
2) 1 kg 도리페넴-PNB
상기 제조예의 도리페넴-PNB 1 kg을 테트라하이드로퓨란 10 ℓ에 용해시켰다. 여기에 포타슘포스페이트 모노베이직(KH2PO4) 3 kg을 녹인 물 20 ℓ를 첨가하고 27℃로 가온하였다. 그 후, 아연 분말 8 kg을 나누어 천천히 첨가한 후 30℃~35℃ 사이에서 2시간 동안 교반하였다. 반응이 완료된 후, 여과하여 아연 분말을 제거하였다. 여액을 메틸렌클로라이드 10 ℓ로 3회 세척하여 수층에 존재하는 테트라하이드로퓨란 및 불순물을 제거하여 도리페넴 모액을 제조하였다. 흡착 레진 SP-207 30 ℓ를 레진 컬럼에 충진하고 도리페넴 모액을 통과시켜 도리페넴을 흡착시켰다. 물 50 ℓ를 레진 컬럼에 전개시켜 반응에 사용한 포타슘포스페이트 염과 불순물을 제거하였다. 그리고 70% 이소프로필알콜(IPA) 100 ℓ를 레진 컬럼에 전개시켜 흡착 레진으로부터 도리페넴을 회수하였다. 도리페넴이 들어있는 분획을 모으고, 도리페넴-PNB 중량 대비 5배 부피가 될 때까지 농축하였다. 농축액은 이소프로필알콜에 적가하여 결정을 석출시키고 0℃ 내지 5℃에서 1시간 교반하였다. 여과 및 건조하여 비결정형 도리페넴 일수화물 0.68 kg을 수득하였다(수율 60%).
상기의 실시예 1, 실시예 2 및 비교예 1, 비교예 2의 비결정형 도리페넴 일수화물을 비교한 결과, 실시예 1 및 실시예 2가 비교예 1 및 비교예 2에 제조 방법에 비하여 현저하게 향상된 수율로 비결정형 도리페넴 일수화물을 수득할 수 있음을 확인하였다.
실험예 1: 분말 X선 회절분석(XRD)
상기 실시예 1 및 2에서 제조한 도리페넴 일수화물의 X-선 회절 패턴 결과를 하기 및 도 1에 나타내었다.
회절 각도(2θ) = 10.91°, 13.07°, 15.0°, 15.90°, 16.64°, 18.10°, 20.63°, 21.09°, 23.47°, 23.89°, 24.19°, 24.47°, 26.06°, 26.96°, 27.53°, 28.23°, 28.91° 및 34.15°.
실험예 2: 열중량 분석(TGA)
상기 실시예 1 및 2에서 제조한 도리페넴 일수화물의 열중량 분석을 수행하였다. 열중량 분석(TGA)으로부터 얻는 데이타는 여러 인자, 예컨대 가열속도, 샘플의 순도, 결정 크기 및 샘플 크기에 따라 영향을 받는다. 분석을 위하여, 35℃~250℃, 10 ℃/min 속도로 열중량 분석(TGA)를 실시하였으며, 결과를 도 2에 나타내었다.
도 2에 나타난 바와 같이, 도리페넴 일수화물은 125.24℃~132.74℃에서 5.19%의 일수화물의 무게 감소를 나타내었으며, 168.38℃~187.61℃에서 17.25%의 도리페넴의 분해에 의한 무게 감소를 나타내었다.
실험예 3: 시차 주사 열량 분석(DSC)
상기 실시예 1 및 2에서 제조한 도리페넴 일수화물의 시차 주사 열량 분석을 수행하였다. 용융 흡열피크의 온도는 융점으로 기록하였다. 시차 주사 열량 분석(DSC)로부터 얻은 데이타는 여러 인자, 예컨대 가열속도, 샘플의 순도, 결정크기 및 샘플크기에 따라 영향을 받는다. 따라서, 하기 융점은 상기 실시예에 의해서 제조된 샘플의 대표예이다. 분석을 위하여, 상기 실시예 1 및 2에서 제조한 도리페넴 일수화물 3.30 mg을 이용하여 시차 주사 열량 분석(DSC)를 실시하였으며, 결과를 도 3에 나타내었다.
도 3에 나타난 바와 같이, 상기 실시예 1 및 2의 도리페넴 일수화물은 180.02℃에서 흡열 피크를 나타내었다.
Claims (14)
제1항에 있어서, 상기 단계 1의 아연 분말은, 상기 도리페넴-PNB 중량의 4배 내지 12배가 사용되는 것을 특징으로 하는 제조 방법.
제1항에 있어서, 상기 단계 1의 포스페이트는 KH2PO4, K2HPO4, H3PO4, NaH2PO4 및 Na2HPO4로 구성되는 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 제조 방법.
제1항에 있어서, 상기 단계 1의 유기 용매는, 테트라하이드로퓨란, 아세토니트릴, 아세톤, 에틸아세테이트, 메틸렌클로라이드 및 클로로포름으로 구성되는 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 제조 방법.
제1항에 있어서, 상기 단계 1의 혼합 용매의 pH는, 4 내지 7인 것을 특징으로 하는 제조 방법.
제1항에 있어서, 상기 단계 1의 혼합 용매 중 포스페이트의 농도는, 0.5 M 내지 2 M인 것을 특징으로 하는 제조 방법.
제1항에 있어서, 상기 단계 1은 20℃ 내지 40℃에서 0.5시간 내지 3시간 동안 수행되는 것을 특징으로 하는 제조 방법.
제1항에 있어서, 상기 단계 2는, 상기 단계 1의 생성물을 흡착 레진에 첨가하여 교반하여 슬러리화 한 후 물로 여과하여 포스페이트를 제거하는 것을 특징으로 하는 제조 방법.
제8항에 있어서, 상기 물은 상기 도리페넴-PNB 중량의 50배 내지 200배를 사용하는 것을 특징으로 하는 제조 방법.
제8항에 있어서, 상기 포스페이트를 제거한 후, 메틸아세테이트, 에틸아세테이트, 부틸아세테이트, 이소부틸아세테이트, 디에틸에테르, 디메틸에테르, 이소프로필에테르 또는 메틸에틸케톤의 유기 용매와 물의 혼합 용액으로 상기 레진으로부터 도리페넴을 회수하는 것을 특징으로 하는 제조 방법.
제10항에 있어서, 상기 혼합 용액은 상기 도리페넴-PNB 중량의 10배 내지 100배를 사용하는 것을 특징으로 하는 제조 방법.
제1항에 있어서, 상기 단계 2는, 상기 단계 1의 생성물을 메탄올, 에탄올, 이소프로판올, 테트라하이드로퓨란, 아세톤 또는 아세토니트릴의 유기 용매와 물의 혼합 용매로 포스페이트 염을 결정화하여 포스페이트를 제거하는 것을 특징으로 하는 제조 방법.
제12항에 있어서, 상기 혼합 용매는 상기 도리페넴-PNB 중량의 10배 내지 40배를 사용하는 것을 특징으로 하는 제조 방법.
제1항에 있어서, 상기 단계 3의 결정화용 용매는, 물 또는 물과 메탄올, 에탄올, 이소프로판올, 테트라하이드로퓨란, 아세톤 또는 아세토니트릴의 혼합 용매인 것을 특징으로 하는 제조 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015546382A JP2016501259A (ja) | 2012-12-04 | 2013-12-04 | 結晶性ドリペネム一水和物およびその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2012-0139850 | 2012-12-04 | ||
KR20120139850 | 2012-12-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014088315A1 true WO2014088315A1 (ko) | 2014-06-12 |
Family
ID=50883684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/011163 WO2014088315A1 (ko) | 2012-12-04 | 2013-12-04 | 결정형 도리페넴 일수화물 및 이의 제조 방법 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2016501259A (ko) |
KR (1) | KR101573049B1 (ko) |
WO (1) | WO2014088315A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160109904A (ko) * | 2015-03-13 | 2016-09-21 | 주식회사 대웅제약 | 결정형 도리페넴의 제조방법 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006117763A2 (en) * | 2005-05-03 | 2006-11-09 | Ranbaxy Laboratories Limited | A process for the preparation of doripenem |
WO2008006298A1 (fr) * | 2006-07-03 | 2008-01-17 | Chengdu Di'ao Jiuhong Pharmaceutical Factory | Nouvelle forme cristalline de doripenem, préparation, procédé et utilisations de celle-ci |
KR20100103427A (ko) * | 2009-03-13 | 2010-09-27 | 주식회사 대웅제약 | 아연 분말을 이용한 메로페넴의 개선된 제조방법 |
US20120035357A1 (en) * | 2009-02-26 | 2012-02-09 | Orchid Chemicals & Pharmaceuticals Ltd. | Process for the preparation of carbapenem antibiotic |
-
2013
- 2013-12-04 WO PCT/KR2013/011163 patent/WO2014088315A1/ko active Application Filing
- 2013-12-04 JP JP2015546382A patent/JP2016501259A/ja active Pending
- 2013-12-04 KR KR1020130150076A patent/KR101573049B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006117763A2 (en) * | 2005-05-03 | 2006-11-09 | Ranbaxy Laboratories Limited | A process for the preparation of doripenem |
WO2008006298A1 (fr) * | 2006-07-03 | 2008-01-17 | Chengdu Di'ao Jiuhong Pharmaceutical Factory | Nouvelle forme cristalline de doripenem, préparation, procédé et utilisations de celle-ci |
US20120035357A1 (en) * | 2009-02-26 | 2012-02-09 | Orchid Chemicals & Pharmaceuticals Ltd. | Process for the preparation of carbapenem antibiotic |
KR20100103427A (ko) * | 2009-03-13 | 2010-09-27 | 주식회사 대웅제약 | 아연 분말을 이용한 메로페넴의 개선된 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
KR101573049B1 (ko) | 2015-12-02 |
KR20140071941A (ko) | 2014-06-12 |
JP2016501259A (ja) | 2016-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2457642C (en) | Crystalline forms of ertapenem sodium | |
JP5247449B2 (ja) | β−ラクタム系抗生物質の改善された調製方法 | |
CA2740508C (en) | Improved process for the preparation of carbapenem using carbapenem intermediates and recovery of carbapenem | |
WO2010104336A2 (ko) | 아연 분말을 이용한 메로페넴의 개선된 제조방법 | |
US8097719B2 (en) | Meropenem intermediate in novel crystalline form and a method of manufacture of meropenem | |
AU2002331885A1 (en) | Crystalline forms of ertapenem sodium | |
JPH04279588A (ja) | 1−メチルカルバペネム誘導体及びその製法 | |
JP4100908B2 (ja) | 塩基性抗生物質・無機酸塩の製造法およびシュウ酸塩中間体 | |
WO2014088315A1 (ko) | 결정형 도리페넴 일수화물 및 이의 제조 방법 | |
EP2188287A2 (en) | Acid addition salts of synthetic intermediates for carbapenem antibiotics and processes for preparing the same | |
US20110288289A1 (en) | Preparation of Carbapenem Intermediate and Their Use | |
EP2834242A2 (en) | An improved process for the preparation of carbapenem antibiotic | |
CA2531578C (en) | A new process for preparation of imipenem | |
CN113929684B (zh) | 一种美罗培南中间体及其制备方法 | |
CN109400630B (zh) | 一种氟氯西林钠的合成方法 | |
KR101050976B1 (ko) | 카바페넴계 항생제의 합성 중간체의 산부가염 및 그의 제조방법 | |
JP2934274B2 (ja) | カルバペネム誘導体 | |
EP0326640B1 (en) | (1r,5s,6s)-2-substituted thio-6 (r)-1-hydroxyethyl -1-methyl-carbapenem - carboxylic acid derivatives | |
JP2999216B2 (ja) | カルバペネム誘導体 | |
JP2832742B2 (ja) | カルバペネム誘導体 | |
JPH0436282A (ja) | カルバペネム誘導体 | |
WO2016148439A2 (en) | Method of preparing crystalline doripenem | |
WO2014204097A1 (ko) | 결정형 메로페넴 삼수화물의 제조방법 | |
EP0256990A1 (de) | Pyridinio-Verbindungen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13861410 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015546382 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13861410 Country of ref document: EP Kind code of ref document: A1 |