Nothing Special   »   [go: up one dir, main page]

WO2014050410A1 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
WO2014050410A1
WO2014050410A1 PCT/JP2013/072867 JP2013072867W WO2014050410A1 WO 2014050410 A1 WO2014050410 A1 WO 2014050410A1 JP 2013072867 W JP2013072867 W JP 2013072867W WO 2014050410 A1 WO2014050410 A1 WO 2014050410A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
photoelectric conversion
electrode
finger
Prior art date
Application number
PCT/JP2013/072867
Other languages
French (fr)
Japanese (ja)
Inventor
俊行 佐久間
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2014538297A priority Critical patent/JPWO2014050410A1/en
Publication of WO2014050410A1 publication Critical patent/WO2014050410A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/044PV modules or arrays of single PV cells including bypass diodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module.
  • Patent Document 1 describes a solar cell module including a plurality of solar cells.
  • the solar cell is a back junction type solar cell having first and second electrodes on the back surface side.
  • Each of the first and second electrodes has a plurality of finger portions extending along one direction. The extending direction of the finger portion is parallel to the longitudinal direction of the solar cell module.
  • the main object of the present invention is to provide a solar cell module that is not easily damaged when stress is applied.
  • the solar cell module according to the present invention is a rectangular solar cell module including a solar cell.
  • the solar cell includes a photoelectric conversion unit, a first electrode, and a second electrode.
  • the first electrode is provided on one main surface of the photoelectric conversion unit.
  • the first electrode has a first finger portion.
  • the first finger portion extends along one direction.
  • the second electrode is provided on one main surface of the photoelectric conversion unit.
  • the second electrode has a second finger portion.
  • the second finger portion extends along one direction.
  • the solar cell is arranged so that the extending direction of the first and second finger portions is parallel to the short side of the solar cell module.
  • FIG. 1 is a schematic back view of a solar cell module according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a solar cell module according to an embodiment of the present invention.
  • FIG. 3 is a schematic rear view of the solar cell in one embodiment of the present invention.
  • the planar view shape of the solar cell module 1 shown in FIGS. 1 and 2 is a rectangular shape.
  • the longitudinal direction of the solar cell module 1 is along the y-axis direction.
  • the short direction of the solar cell module 1 is along the x-axis direction.
  • the solar cell module 1 includes a plurality of solar cell strings 10. Each of the plurality of solar cell strings 10 is connected to the wiring member 32 and electrically connected to the adjacent wiring member 32 by the connection wiring member 33. As shown in FIG. 2, the plurality of solar cell strings 10 are arranged between the first protection member 11 and the second protection member 12. The first protective member 11 is located on the light receiving surface 20 a side of the solar cell 20. The second protective member 12 is located on the back surface 20 b side of the solar cell 20. A sealing layer 13 is provided between the first protective member 11 and the second protective member 12. A plurality of solar cell strings 10 are sealed by the sealing layer 13.
  • the plurality of solar cell strings 10 are connected to an output wiring member 34 for taking out the electric power generated by the solar cell 20 and a wiring member 35 for connecting a bypass diode (not shown).
  • a bypass diode means that the electric power which the other solar cell 20 generate
  • the output wiring member 34 and the wiring member 35 are arranged on the back surface 20 b side of the solar cell 20, and the insulating member 36 is interposed between the solar cell 20, the output wiring member 34 and the wiring member 35 in order to insulate the solar cell 20. Is provided.
  • the first protective member 11 can be made of a translucent member such as a glass plate or a resin plate.
  • the 2nd protection member 12 can be constituted by a member which has flexibility, such as a resin sheet and a resin sheet which interposed metal foil, for example.
  • the sealing layer 13 can be made of, for example, a resin such as ethylene / vinyl acetate copolymer (EVA), polyvinyl butyral (PVB), polyethylene (PE), or polyurethane (PU).
  • EVA ethylene / vinyl acetate copolymer
  • PVB polyvinyl butyral
  • PE polyethylene
  • PU polyurethane
  • each of the plurality of solar cell strings 10 includes a plurality of solar cells 20.
  • the solar cells 20 are electrically connected by a wiring material 31.
  • the arrangement direction of the solar cells 20 is parallel to the x-axis direction that is the short direction of the solar cell module 1.
  • the solar cell 20 includes a photoelectric conversion unit 23 and first and second electrodes 21 and 22.
  • the photoelectric conversion unit 23 has first and second main surfaces 23a and 23b.
  • the first main surface 23 a of the photoelectric conversion unit 23 constitutes the light receiving surface 20 a of the solar cell 20, and the second main surface 23 b constitutes the back surface 20 b of the solar cell 20.
  • the photoelectric conversion unit 23 is a member that generates carriers such as holes and electrons when receiving light.
  • the photoelectric conversion unit 23 may generate carriers only when light is received on the first main surface 23a, or not only when light is received on the first main surface 23a, but also on the second main surface 23b.
  • a carrier may be generated even when light is received. That is, the solar cell 20 may be a double-sided light receiving solar cell.
  • the type of the photoelectric conversion unit 23 is not particularly limited.
  • the photoelectric conversion unit 23 can be configured using, for example, a crystalline silicon plate.
  • the first and second electrodes 21 and 22 are provided on the second main surface 23b of the photoelectric conversion unit 23, respectively. Therefore, the solar cell 20 is a back junction solar cell.
  • the first electrode 21 has a plurality of finger portions 21a and a bus bar portion 21b.
  • the plurality of finger portions 21a are electrically connected to the bus bar portion 21b.
  • the second electrode 22 has a plurality of finger portions 22a and a bus bar portion 22b.
  • the plurality of finger portions 22a are electrically connected to the bus bar portion 22b.
  • the 1st and 2nd electrode is comprised only by the finger part, respectively, and does not need to have a bus-bar part.
  • the finger part 21a and the finger part 22a each extend along the x-axis direction. That is, the finger part 21a and the finger part 22a extend along the short direction of the solar cell module 1, respectively.
  • the longitudinal direction of the solar cell module is generally parallel to the arrangement direction of the solar cells in the solar cell string.
  • the arrangement direction of the solar cells is parallel to the extending direction of the finger portions of the first and second electrodes of the solar cell. Therefore, the longitudinal direction of the solar cell module is generally parallel to the extending direction of the finger portions.
  • the displacement of the central portion of the solar cell module that is, the sinking amount becomes the largest.
  • the sinking amount with respect to the length of the side is larger in the shorter direction of the solar cell module. That is, the curvature in the short direction of the solar cell module is larger than the curvature in the longitudinal direction.
  • the rigidity of the back junction solar cell is relatively strong in the direction in which the finger portions extend, and relatively weak in the direction in which the finger portions are arranged.
  • the solar cell is easily damaged when the solar cell module is stressed and deformed into a convex shape or a concave shape.
  • the solar cell 20 is arranged so that the extending direction of the finger portions 21 a and 22 a is parallel to the short direction of the solar cell module 1.
  • the short direction (x-axis direction) in which the curvature becomes relatively large when the solar cell module 1 is deformed is parallel to the direction in which the finger portions 21a and 22a extend, and the direction in which the solar cell 20 has high rigidity. I'm doing it. Therefore, when the solar cell module 1 is stressed and deformed, the solar cell 20 is not easily damaged.
  • the solar cell 20 can be prevented from being damaged when the solar cell module 1 is deformed, and the deformation amount of the solar cell module 1 can be allowed to increase. Accordingly, the rigidity required for the first and second protective members 11, 12 and the like can be reduced. Therefore, the 1st and 2nd protection members 11 and 12 can be made thin. Moreover, the effect which buffers the stress added to the solar cell 20 requested
  • the voltage applied to the bypass diodes connected between the plurality of solar cell strings 10 can be lowered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided is a solar cell module that is not susceptible to breakage when stress is applied thereto. A solar cell module (1) is a rectangular solar cell module that is provided with solar cells (20). Each of the solar cells (20) has a photoelectric conversion section (23), a first electrode (21), and a second electrode (22). The first electrode (21) is provided on one main surface (23b) of the photoelectric conversion section (23). The first electrode (21) has a first finger section (21a). The first finger section (21a) extends in one direction. The second electrode (22) is provided on the one main surface (23b) of the photoelectric conversion section (23). The second electrode (22) has a second finger section (22a). The second finger section (22a) extends in the one direction. Each of the solar cells (20) is disposed such that the direction in which the first and second finger sections (21a, 22a) extend is parallel to the short side of the solar cell module (1).

Description

太陽電池モジュールSolar cell module
 本発明は、太陽電池モジュールに関する。 The present invention relates to a solar cell module.
 近年、環境負荷が小さなエネルギー源として、太陽電池モジュールに対する注目が高まってきている。例えば特許文献1には、複数の太陽電池を備える太陽電池モジュールが記載されている。特許文献1に記載の太陽電池モジュールでは、太陽電池は、裏面側に第1及び第2の電極を有する裏面接合型の太陽電池である。第1及び第2の電極は、それぞれ、一の方向に沿って延びる複数のフィンガー部を有する。フィンガー部の延びる方向は、太陽電池モジュールの長手方向と平行である。 In recent years, attention has been paid to solar cell modules as an energy source with a small environmental load. For example, Patent Document 1 describes a solar cell module including a plurality of solar cells. In the solar cell module described in Patent Document 1, the solar cell is a back junction type solar cell having first and second electrodes on the back surface side. Each of the first and second electrodes has a plurality of finger portions extending along one direction. The extending direction of the finger portion is parallel to the longitudinal direction of the solar cell module.
特開2012-84560号公報JP 2012-84560 A
 太陽電池モジュールには、応力が付加することがある。このため、太陽電池モジュールには、応力が付加したときに損傷しにくいことが求められている。 ● Stress may be applied to the solar cell module. For this reason, it is calculated | required that a solar cell module is hard to damage when stress is added.
 本発明の主な目的は、応力が付加したときに損傷しにくい太陽電池モジュールを提供することにある。 The main object of the present invention is to provide a solar cell module that is not easily damaged when stress is applied.
 本発明に係る太陽電池モジュールは、太陽電池を備える矩形状の太陽電池モジュールである。太陽電池は、光電変換部と、第1の電極と、第2の電極とを有する。第1の電極は、光電変換部の一主面上に設けられている。第1の電極は、第1のフィンガー部を有する。第1のフィンガー部は、一の方向に沿って延びている。第2の電極は、光電変換部の一主面上に設けられている。第2の電極は、第2のフィンガー部を有する。第2のフィンガー部は、一の方向に沿って延びている。太陽電池は、第1及び第2のフィンガー部の延びる方向が太陽電池モジュールの短辺と平行になるように配されている。 The solar cell module according to the present invention is a rectangular solar cell module including a solar cell. The solar cell includes a photoelectric conversion unit, a first electrode, and a second electrode. The first electrode is provided on one main surface of the photoelectric conversion unit. The first electrode has a first finger portion. The first finger portion extends along one direction. The second electrode is provided on one main surface of the photoelectric conversion unit. The second electrode has a second finger portion. The second finger portion extends along one direction. The solar cell is arranged so that the extending direction of the first and second finger portions is parallel to the short side of the solar cell module.
 本発明によれば、応力が付加したときに損傷しにくい太陽電池モジュールを提供することができる。 According to the present invention, it is possible to provide a solar cell module that is not easily damaged when stress is applied.
図1は、本発明の一実施形態に係る太陽電池モジュールの略図的裏面図である。FIG. 1 is a schematic back view of a solar cell module according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る太陽電池モジュールの略図的断面図である。FIG. 2 is a schematic cross-sectional view of a solar cell module according to an embodiment of the present invention. 図3は、本発明の一実施形態における太陽電池の略図的裏面図である。FIG. 3 is a schematic rear view of the solar cell in one embodiment of the present invention.
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。 Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。 In each drawing referred to in the embodiment and the like, members having substantially the same function are referred to by the same reference numerals. The drawings referred to in the embodiments and the like are schematically described, and the ratio of the dimensions of the objects drawn in the drawings may be different from the ratio of the dimensions of the actual objects. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.
 図1及び図2に示される太陽電池モジュール1の平面視形状は、矩形状である。太陽電池モジュール1の長手方向はy軸方向に沿っている。太陽電池モジュール1の短手方向はx軸方向に沿っている。 The planar view shape of the solar cell module 1 shown in FIGS. 1 and 2 is a rectangular shape. The longitudinal direction of the solar cell module 1 is along the y-axis direction. The short direction of the solar cell module 1 is along the x-axis direction.
 太陽電池モジュール1は、複数の太陽電池ストリング10を備えている。複数の太陽電池ストリング10は、それぞれ配線材32が接続され、接続配線材33によって隣接する配線材32に電気的に接続されている。図2に示されるように、複数の太陽電池ストリング10は、第1の保護部材11と、第2の保護部材12との間に配されている。第1の保護部材11は、太陽電池20の受光面20a側に位置している。第2の保護部材12は、太陽電池20の裏面20b側に位置している。第1の保護部材11と第2の保護部材12との間には封止層13が設けられている。この封止層13により複数の太陽電池ストリング10が封止されている。 The solar cell module 1 includes a plurality of solar cell strings 10. Each of the plurality of solar cell strings 10 is connected to the wiring member 32 and electrically connected to the adjacent wiring member 32 by the connection wiring member 33. As shown in FIG. 2, the plurality of solar cell strings 10 are arranged between the first protection member 11 and the second protection member 12. The first protective member 11 is located on the light receiving surface 20 a side of the solar cell 20. The second protective member 12 is located on the back surface 20 b side of the solar cell 20. A sealing layer 13 is provided between the first protective member 11 and the second protective member 12. A plurality of solar cell strings 10 are sealed by the sealing layer 13.
 複数の太陽電池ストリング10には、太陽電池20が発電した電力を取り出すための出力配線材34と、図示しないバイパスダイオードを接続するための配線材35が接続される。なおバイパスダイオードは、太陽電池モジュール1を構成する一部の太陽電池20上に影が生じた際、他の太陽電池20が発電した電力が流れ込み、影となった太陽電池20が発熱することを防止するために設けられるものである。出力配線材34と配線材35は、太陽電池20の裏面20b側に配置され、太陽電池20との絶縁を図るために、絶縁部材36が太陽電池20と出力配線材34及び配線材35の間に設けられる。 The plurality of solar cell strings 10 are connected to an output wiring member 34 for taking out the electric power generated by the solar cell 20 and a wiring member 35 for connecting a bypass diode (not shown). In addition, when a shadow arises on the one part solar cell 20 which comprises the solar cell module 1, a bypass diode means that the electric power which the other solar cell 20 generate | occur | produced flows, and the solar cell 20 which became a shadow generate | occur | produces heat. It is provided to prevent this. The output wiring member 34 and the wiring member 35 are arranged on the back surface 20 b side of the solar cell 20, and the insulating member 36 is interposed between the solar cell 20, the output wiring member 34 and the wiring member 35 in order to insulate the solar cell 20. Is provided.
 第1の保護部材11は、例えば、ガラス板、樹脂板等の透光性を有する部材により構成することができる。第2の保護部材12は、例えば、樹脂シート、金属箔を介在させた樹脂シート等の可撓性を有する部材により構成することができる。封止層13は、例えば、エチレン・酢酸ビニル共重合体(EVA)、ポリビニルブチラール(PVB)、ポリエチレン(PE)、ポリウレタン(PU)などの樹脂により構成することができる。 The first protective member 11 can be made of a translucent member such as a glass plate or a resin plate. The 2nd protection member 12 can be constituted by a member which has flexibility, such as a resin sheet and a resin sheet which interposed metal foil, for example. The sealing layer 13 can be made of, for example, a resin such as ethylene / vinyl acetate copolymer (EVA), polyvinyl butyral (PVB), polyethylene (PE), or polyurethane (PU).
 図1に示されるように、複数の太陽電池ストリング10は、それぞれ、複数の太陽電池20を有する。各太陽電池ストリング10において、太陽電池20は、配線材31により電気的に接続されている。各太陽電池ストリング10において、太陽電池20の配列方向は、太陽電池モジュール1の短手方向であるx軸方向と平行である。 As shown in FIG. 1, each of the plurality of solar cell strings 10 includes a plurality of solar cells 20. In each solar cell string 10, the solar cells 20 are electrically connected by a wiring material 31. In each solar cell string 10, the arrangement direction of the solar cells 20 is parallel to the x-axis direction that is the short direction of the solar cell module 1.
 図1及び図3に示されるように、太陽電池20は、光電変換部23と、第1及び第2の電極21,22とを有する。 As shown in FIGS. 1 and 3, the solar cell 20 includes a photoelectric conversion unit 23 and first and second electrodes 21 and 22.
 光電変換部23は、第1及び第2の主面23a、23bを有する。光電変換部23の第1の主面23aが太陽電池20の受光面20aを構成しており、第2の主面23bが太陽電池20の裏面20bを構成している。 The photoelectric conversion unit 23 has first and second main surfaces 23a and 23b. The first main surface 23 a of the photoelectric conversion unit 23 constitutes the light receiving surface 20 a of the solar cell 20, and the second main surface 23 b constitutes the back surface 20 b of the solar cell 20.
 光電変換部23は、受光した際に正孔や電子などのキャリアを生成させる部材である。光電変換部23は、第1の主面23aにおいて受光したときのみキャリアを生成させるものであってもよいし、第1の主面23aにおいて受光したときのみならず、第2の主面23bにおいて受光したときにもキャリアを発生させるものであってもよい。即ち、太陽電池20は、両面受光型の太陽電池であってもよい。 The photoelectric conversion unit 23 is a member that generates carriers such as holes and electrons when receiving light. The photoelectric conversion unit 23 may generate carriers only when light is received on the first main surface 23a, or not only when light is received on the first main surface 23a, but also on the second main surface 23b. A carrier may be generated even when light is received. That is, the solar cell 20 may be a double-sided light receiving solar cell.
 なお、光電変換部23の種類は特に限定されない。光電変換部23は、例えば、結晶シリコン板等を用いて構成することができる。 Note that the type of the photoelectric conversion unit 23 is not particularly limited. The photoelectric conversion unit 23 can be configured using, for example, a crystalline silicon plate.
 第1及び第2の電極21,22は、それぞれ、光電変換部23の第2の主面23bの上に設けられている。従って、太陽電池20は、裏面接合型の太陽電池である。 The first and second electrodes 21 and 22 are provided on the second main surface 23b of the photoelectric conversion unit 23, respectively. Therefore, the solar cell 20 is a back junction solar cell.
 第1の電極21は、複数のフィンガー部21aと、バスバー部21bとを有する。複数のフィンガー部21aは、バスバー部21bに電気的に接続されている。第2の電極22は、複数のフィンガー部22aと、バスバー部22bとを有する。複数のフィンガー部22aは、バスバー部22bに電気的に接続されている。もっとも、第1及び第2の電極は、それぞれ、フィンガー部のみにより構成されており、バスバー部を有していなくてもよい。 The first electrode 21 has a plurality of finger portions 21a and a bus bar portion 21b. The plurality of finger portions 21a are electrically connected to the bus bar portion 21b. The second electrode 22 has a plurality of finger portions 22a and a bus bar portion 22b. The plurality of finger portions 22a are electrically connected to the bus bar portion 22b. But the 1st and 2nd electrode is comprised only by the finger part, respectively, and does not need to have a bus-bar part.
 フィンガー部21aと、フィンガー部22aとは、それぞれ、x軸方向に沿って延びている。すなわち、フィンガー部21aと、フィンガー部22aとは、それぞれ、太陽電池モジュール1の短手方向に沿って延びている。 The finger part 21a and the finger part 22a each extend along the x-axis direction. That is, the finger part 21a and the finger part 22a extend along the short direction of the solar cell module 1, respectively.
 ところで、一般的には、特許文献1にも示されているように、太陽電池ストリングの数よりも太陽電池ストリングを構成している太陽電池の数が多くなるようにする。従って、太陽電池モジュールの長手方向は、太陽電池ストリングにおける太陽電池の配列方向と平行となるのが一般的である。太陽電池が裏面接合型である場合、太陽電池の配列方向は、太陽電池の第1及び第2の電極のフィンガー部の延びる方向と平行となる。よって、太陽電池モジュールの長手方向は、一般的には、フィンガー部の延びる方向と平行である。 By the way, generally, as shown in Patent Document 1, the number of solar cells constituting the solar cell string is made larger than the number of solar cell strings. Therefore, the longitudinal direction of the solar cell module is generally parallel to the arrangement direction of the solar cells in the solar cell string. When the solar cell is a back junction type, the arrangement direction of the solar cells is parallel to the extending direction of the finger portions of the first and second electrodes of the solar cell. Therefore, the longitudinal direction of the solar cell module is generally parallel to the extending direction of the finger portions.
 しかしながら、太陽電池モジュールに雪が積もり加わる圧力や、風圧がかかるなどして変形した場合においては、太陽電池モジュールの中央部の変位、すなわち沈み込み量が一番大きくなる。このため、太陽電池モジュールの長手方向に比べ、太陽電池モジュールの短手方向の方が、辺の長さに対する沈み込み量が大きくなる。つまり、太陽電池モジュールの短手方向の曲率が長手方向の曲率よりも大きくなる。 However, when the solar cell module is deformed due to the pressure applied by snow or the wind pressure, the displacement of the central portion of the solar cell module, that is, the sinking amount becomes the largest. For this reason, compared with the longitudinal direction of the solar cell module, the sinking amount with respect to the length of the side is larger in the shorter direction of the solar cell module. That is, the curvature in the short direction of the solar cell module is larger than the curvature in the longitudinal direction.
 また、裏面接合型の太陽電池の剛性は、フィンガー部の延びる方向において相対的に強く、フィンガー部の配列方向において相対的に弱い。 Also, the rigidity of the back junction solar cell is relatively strong in the direction in which the finger portions extend, and relatively weak in the direction in which the finger portions are arranged.
 この結果、太陽電池モジュールの長手方向とフィンガー部の延びる方向とが平行である場合は、太陽電池モジュールに応力が加わり凸状または凹状に変形した場合に、太陽電池が損傷しやすくなっていた。 As a result, when the longitudinal direction of the solar cell module is parallel to the extending direction of the finger portion, the solar cell is easily damaged when the solar cell module is stressed and deformed into a convex shape or a concave shape.
 太陽電池モジュール1では、太陽電池20は、フィンガー部21a、22aの延びる方向が太陽電池モジュール1の短手方向と平行になるように配されている。このため、太陽電池モジュール1の変形時に曲率が相対的に大きくなる短手方向(x軸方向)と、フィンガー部21a、22aの延びる方向と平行な、太陽電池20の剛性が高い方向とが一致している。よって、太陽電池モジュール1に応力が加わり、変形した際にも太陽電池20が損傷しにくい。 In the solar cell module 1, the solar cell 20 is arranged so that the extending direction of the finger portions 21 a and 22 a is parallel to the short direction of the solar cell module 1. For this reason, the short direction (x-axis direction) in which the curvature becomes relatively large when the solar cell module 1 is deformed is parallel to the direction in which the finger portions 21a and 22a extend, and the direction in which the solar cell 20 has high rigidity. I'm doing it. Therefore, when the solar cell module 1 is stressed and deformed, the solar cell 20 is not easily damaged.
 換言すると、太陽電池モジュール1の変形時における太陽電池20の損傷を抑制でき、太陽電池モジュール1の変形量が大きくなることを許容できるようになる。従って、第1及び第2の保護部材11,12等に要求される剛性を低くすることができる。よって、第1及び第2の保護部材11,12を薄くし得る。また、封止層13に要求される太陽電池20へ加わる応力を緩衝する効果を小さくすることができる。よって、封止層13を薄くし得る。この結果、太陽電池モジュール1の薄型化を図り得る。 In other words, the solar cell 20 can be prevented from being damaged when the solar cell module 1 is deformed, and the deformation amount of the solar cell module 1 can be allowed to increase. Accordingly, the rigidity required for the first and second protective members 11, 12 and the like can be reduced. Therefore, the 1st and 2nd protection members 11 and 12 can be made thin. Moreover, the effect which buffers the stress added to the solar cell 20 requested | required of the sealing layer 13 can be made small. Therefore, the sealing layer 13 can be thinned. As a result, the solar cell module 1 can be thinned.
 また、太陽電池ストリング10が有する太陽電池20の数が少なく、太陽電池ストリング10の電圧が低いため、複数の太陽電池ストリング10間に接続されたバイパスダイオードに印加される電圧を低くし得る。 Moreover, since the number of the solar cells 20 included in the solar cell string 10 is small and the voltage of the solar cell string 10 is low, the voltage applied to the bypass diodes connected between the plurality of solar cell strings 10 can be lowered.
1…太陽電池モジュール
10…太陽電池ストリング
20…太陽電池
20a…受光面
20b…裏面
21…第1の電極
21a…第1のフィンガー部
22…第2の電極
22a…第2のフィンガー部
23…光電変換部
31…配線材
32…配線材
33…接続配線材
34…出力配線材
35…配線材
36…絶縁部材
DESCRIPTION OF SYMBOLS 1 ... Solar cell module 10 ... Solar cell string 20 ... Solar cell 20a ... Light-receiving surface 20b ... Back surface 21 ... 1st electrode 21a ... 1st finger part 22 ... 2nd electrode 22a ... 2nd finger part 23 ... Photoelectric Conversion unit 31 ... wiring material 32 ... wiring material 33 ... connection wiring material 34 ... output wiring material 35 ... wiring material 36 ... insulating member

Claims (2)

  1.  太陽電池を備える矩形状の太陽電池モジュールであって、
     前記太陽電池は、
     光電変換部と、
     前記光電変換部の一主面上に設けられており、一の方向に沿って延びる第1のフィンガー部を有する第1の電極と、
     前記光電変換部の一主面上に設けられており、前記一の方向に沿って延びる第2のフィンガー部を有する第2の電極と、
    を有し、
     前記太陽電池は、前記第1及び第2のフィンガー部の延びる方向が前記太陽電池モジュールの短辺と平行になるように配されている、太陽電池モジュール。
    A rectangular solar cell module including a solar cell,
    The solar cell is
    A photoelectric conversion unit;
    A first electrode provided on one main surface of the photoelectric conversion unit and having a first finger portion extending along one direction;
    A second electrode provided on one main surface of the photoelectric conversion portion and having a second finger portion extending along the one direction;
    Have
    The solar cell is a solar cell module in which the extending direction of the first and second finger portions is arranged so as to be parallel to the short side of the solar cell module.
  2.  複数の前記太陽電池と、前記複数の太陽電池を電気的に接続している配線材とを有する太陽電池ストリングを備え、
     前記太陽電池ストリングにおける前記太陽電池の配列方向が前記太陽電池モジュールの短手方向と平行である、請求項1に記載の太陽電池モジュール。
    A solar cell string comprising a plurality of the solar cells and a wiring member that electrically connects the plurality of solar cells,
    The solar cell module according to claim 1, wherein an arrangement direction of the solar cells in the solar cell string is parallel to a short direction of the solar cell module.
PCT/JP2013/072867 2012-09-27 2013-08-27 Solar cell module WO2014050410A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014538297A JPWO2014050410A1 (en) 2012-09-27 2013-08-27 Solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-214385 2012-09-27
JP2012214385 2012-09-27

Publications (1)

Publication Number Publication Date
WO2014050410A1 true WO2014050410A1 (en) 2014-04-03

Family

ID=50387819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072867 WO2014050410A1 (en) 2012-09-27 2013-08-27 Solar cell module

Country Status (2)

Country Link
JP (1) JPWO2014050410A1 (en)
WO (1) WO2014050410A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224598A (en) * 2008-03-17 2009-10-01 Sharp Corp Solar cell module, and manufacturing method of solar cell module
JP2011003735A (en) * 2009-06-18 2011-01-06 Sharp Corp Back electrode type solar cell, solar cell with wiring sheet, and solar cell module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5642591B2 (en) * 2011-02-28 2014-12-17 三洋電機株式会社 Solar cell module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224598A (en) * 2008-03-17 2009-10-01 Sharp Corp Solar cell module, and manufacturing method of solar cell module
JP2011003735A (en) * 2009-06-18 2011-01-06 Sharp Corp Back electrode type solar cell, solar cell with wiring sheet, and solar cell module

Also Published As

Publication number Publication date
JPWO2014050410A1 (en) 2016-08-22

Similar Documents

Publication Publication Date Title
JP6624418B2 (en) Solar cell module
JP6145884B2 (en) Solar cell module
JP6265135B2 (en) Manufacturing method of solar cell module
WO2013018533A1 (en) Solar cell module
WO2013161810A1 (en) Solar cell module
JPWO2015098203A1 (en) Solar cell module
WO2013137204A1 (en) Solar cell module
JP7270631B2 (en) solar module
WO2014109282A1 (en) Solar cell module
JP6283918B2 (en) Solar cell module
WO2013046773A1 (en) Solar cell module
WO2014084037A1 (en) Solar-cell module
US9373738B2 (en) Solar module
JP6655828B2 (en) Solar cell module
WO2016047054A1 (en) Solar cell module
JP5196821B2 (en) Solar cell module
WO2014050410A1 (en) Solar cell module
WO2013042683A1 (en) Solar cell module
JP6624535B2 (en) Solar cell module
WO2013042417A1 (en) Solar cell module and solar cell
JP5877332B2 (en) Solar cell module
WO2019065606A1 (en) Solar cell module
WO2017170214A1 (en) Solar battery module
JP5906422B2 (en) Solar cell and solar cell module
JP7377692B2 (en) solar module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842788

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538297

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842788

Country of ref document: EP

Kind code of ref document: A1