Nothing Special   »   [go: up one dir, main page]

WO2014045547A1 - Plasma processing device, and plasma processing method - Google Patents

Plasma processing device, and plasma processing method Download PDF

Info

Publication number
WO2014045547A1
WO2014045547A1 PCT/JP2013/005373 JP2013005373W WO2014045547A1 WO 2014045547 A1 WO2014045547 A1 WO 2014045547A1 JP 2013005373 W JP2013005373 W JP 2013005373W WO 2014045547 A1 WO2014045547 A1 WO 2014045547A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
plasma processing
processing apparatus
opening
substrate
Prior art date
Application number
PCT/JP2013/005373
Other languages
French (fr)
Japanese (ja)
Inventor
奥村 智洋
川浦 廣
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/423,056 priority Critical patent/US9601330B2/en
Priority to JP2014536582A priority patent/JP6064174B2/en
Priority to KR1020157006427A priority patent/KR101688338B1/en
Priority to CN201380047723.0A priority patent/CN104641730B/en
Publication of WO2014045547A1 publication Critical patent/WO2014045547A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02689Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using particle beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32651Shields, e.g. dark space shields, Faraday shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32807Construction (includes replacing parts of the apparatus)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/30Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32055Arc discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching

Definitions

  • the present invention provides a thermal plasma treatment for irradiating a substrate with thermal plasma, a plasma treatment with a reactive gas, and a treatment of the substrate by simultaneously irradiating the substrate with plasma and a reactive gas stream.
  • the present invention relates to a plasma processing apparatus such as a low-temperature plasma processing and a plasma processing method.
  • poly-Si TFTs thin film transistors
  • solar cells semiconductor thin films
  • poly-Si TFTs have high carrier mobility and can be manufactured on a transparent insulating substrate such as a glass substrate.
  • pixel circuits such as liquid crystal display devices, liquid crystal projectors, and organic EL display devices are used. It is widely used as a switching element constituting the circuit or as a circuit element of a liquid crystal driving driver.
  • high temperature process As a method for producing a high-performance TFT on a glass substrate, there is a manufacturing method generally called “high temperature process”.
  • a process using a high temperature with a maximum temperature of about 1000 ° C. is generally called a “high temperature process”.
  • a relatively good quality polycrystalline silicon can be formed by solid phase growth of silicon
  • a good quality gate insulating layer can be obtained by thermal oxidation of silicon
  • a clean polycrystalline This is the point that an interface between silicon and the gate insulating layer can be formed. Due to these characteristics, a high-performance TFT having high mobility and high reliability can be stably manufactured in a high-temperature process.
  • the high temperature process is a process for crystallizing a silicon film by solid phase growth, it requires a heat treatment for about 48 hours at a temperature of about 600 ° C. This is a very long process, and in order to increase the process throughput, a large number of heat treatment furnaces are inevitably required, and it is difficult to reduce the cost.
  • quartz glass has to be used as an insulating substrate with high heat resistance, so the cost of the substrate is high and it is said that it is not suitable for large area.
  • a technique for lowering the maximum temperature in the process and producing a poly-Si TFT on an inexpensive large-area glass substrate is a technique called “low temperature process”.
  • a process for manufacturing poly-Si TFTs on a heat-resistant glass substrate that is relatively inexpensive in a temperature environment where the maximum temperature is approximately 600 ° C. or lower is generally called a “low-temperature process”.
  • a laser crystallization technique for crystallizing a silicon film using a pulse laser having an extremely short oscillation time is widely used.
  • Laser crystallization is a technique that utilizes the property of crystallizing in the process of solidifying instantaneously by irradiating a silicon thin film on a substrate with high-power pulsed laser light.
  • laser crystallization technology generally uses a laser shaped in a line, and crystallization is performed by scanning this laser.
  • This line beam is shorter than the width of the substrate because of limited laser output, and it is necessary to scan the laser several times in order to crystallize the entire surface of the substrate.
  • a line beam seam area is generated in the substrate, and an area that is scanned twice is formed.
  • This region is significantly different in crystallinity from the region crystallized by one scan. For this reason, the element characteristics of the two are greatly different, which causes a large variation in devices.
  • the laser crystallization apparatus has a problem that the apparatus configuration and running cost are high because the apparatus configuration is complicated and the cost of consumable parts is high. As a result, a TFT using a polysilicon film crystallized by a laser crystallization apparatus becomes an element with a high manufacturing cost.
  • thermo plasma jet crystallization method In order to overcome the problems such as the limitation of the substrate size and the high apparatus cost, a crystallization technique called “thermal plasma jet crystallization method” has been studied (for example, see Non-Patent Document 1). The technology is briefly described below. When a tungsten (W) cathode and a water-cooled copper (Cu) anode are opposed to each other and a DC voltage is applied, an arc discharge occurs between the two electrodes. By flowing argon gas between these electrodes under atmospheric pressure, thermal plasma is ejected from the ejection holes vacated in the copper anode.
  • W tungsten
  • Cu water-cooled copper
  • Thermal plasma is thermal equilibrium plasma, which is an ultra-high temperature heat source having substantially the same temperature of ions, electrons, neutral atoms, etc., and their temperature is about 10,000K.
  • the thermal plasma can easily heat the object to be heated to a high temperature, and the substrate on which the a-Si (amorphous silicon) film is deposited scans the front surface of the ultra-high temperature thermal plasma at a high speed.
  • -Si film can be crystallized.
  • the apparatus configuration is extremely simple and the crystallization process is performed under atmospheric pressure, it is not necessary to cover the apparatus with an expensive member such as a sealed chamber, and the apparatus cost can be expected to be extremely low.
  • the utilities required for crystallization are argon gas, electric power, and cooling water, which is a crystallization technique with low running costs.
  • FIG. 19 is a schematic diagram for explaining a semiconductor film crystallization method using this thermal plasma.
  • a thermal plasma generator 31 includes a cathode 32 and an anode 33 disposed opposite to the cathode 32 with a predetermined distance.
  • the cathode 32 is made of a conductor such as tungsten.
  • the anode 33 is made of a conductor such as copper, for example. Further, the anode 33 is formed in a hollow shape, and is configured to be cooled through water through the hollow portion.
  • the anode 33 is provided with an ejection hole (nozzle) 34.
  • DC direct current
  • thermal plasma is thermal equilibrium plasma, which is an ultra-high temperature heat source having substantially the same temperature of ions, electrons, neutral atoms, etc., and those temperatures are about 10000K.
  • thermal plasma can be used for heat treatment for crystallization of a semiconductor film.
  • a semiconductor film 37 for example, an amorphous silicon film
  • thermal plasma (thermal plasma jet) 35 is applied to the semiconductor film 37.
  • the thermal plasma 35 is applied to the semiconductor film 37 while relatively moving along a first axis (left and right direction in the illustrated example) parallel to the surface of the semiconductor film 37. That is, the thermal plasma 35 is applied to the semiconductor film 37 while scanning in the first axis direction.
  • “relatively move” refers to relatively moving the semiconductor film 37 (and the substrate 36 supporting the semiconductor film 37) and the thermal plasma 35, and moving only one or both of them. Any of the cases are included.
  • the semiconductor film 37 is heated by the high temperature of the thermal plasma 35 to obtain a crystallized semiconductor film 38 (polysilicon film in this example) (for example, see Patent Document 1). ).
  • FIG. 20 is a conceptual diagram showing the relationship between the depth from the outermost surface of the substrate and the temperature. As shown in the figure, by moving the thermal plasma 35 at a high speed, only the vicinity of the surface can be processed at a high temperature. After the thermal plasma 35 passes, the heated region is quickly cooled, so that the vicinity of the surface becomes high temperature for a very short time.
  • Such a thermal plasma is generally generated in a dotted region.
  • the thermal plasma is maintained by thermionic emission from the cathode 32. Therefore, thermionic emission is more active at high plasma density, so positive feedback is applied and the plasma density becomes higher. That is, arc discharge is concentrated on one point of the cathode, and thermal plasma is generated in a dotted region.
  • JP 2008-53634 A International Publication No. 2011/142125 JP 2012-38839 A JP 2012-54129 A JP 2012-54130 A JP 2012-54131 A JP 2012-54132 A
  • the present invention has been made in view of such a problem, and is based on a technique for uniformly heat-treating the vicinity of the surface of a substrate for a very short period of time, a plasma treatment technique using a reactive gas, and a plasma and a reactive gas flow simultaneously.
  • plasma can be generated stably and efficiently, and the entire desired region to be treated of the substrate can be processed efficiently in a short time.
  • An object of the present invention is to provide a plasma processing apparatus and a plasma processing method.
  • the plasma processing apparatus of the present invention includes an opening, an annular chamber that communicates with the opening and is surrounded by a dielectric member, and a gas supply pipe for introducing gas into the annular chamber.
  • a plasma processing apparatus comprising a coil provided in the vicinity of an annular chamber, a high-frequency power source connected to the coil, and a substrate mounting table for disposing the substrate close to the opening.
  • An annular chamber is provided along a plane perpendicular to the plane formed by the mounting table.
  • a technique for uniformly heat treating the vicinity of the surface of the substrate for a very short time a plasma treatment technique using a reactive gas, and further, irradiating the substrate with plasma and a reactive gas flow simultaneously.
  • the plasma can be generated stably and efficiently.
  • the plasma processing method of the present invention generates a high-frequency electromagnetic field in the annular chamber by supplying high-frequency power to the coil while supplying gas into the annular chamber surrounded by a dielectric member except for the opening.
  • a plasma processing method for treating the surface of a substrate by placing the substrate close to the opening and exposing it to plasma in the vicinity of the opening, the surface being perpendicular to the surface formed by the substrate Plasma is generated in an annular chamber provided along the line.
  • a technique for uniformly heat treating the vicinity of the surface of the substrate for a very short time a plasma treatment technique using a reactive gas, and further, irradiating the substrate with plasma and a reactive gas flow simultaneously.
  • the plasma can be generated stably and efficiently.
  • a technique for uniformly heat-treating the vicinity of the surface of the substrate for a very short time a plasma treatment technique using a reactive gas, and further, irradiating the substrate with plasma and a reactive gas stream simultaneously.
  • the plasma can be generated stably and efficiently, and the entire desired region of the substrate to be processed can be efficiently processed in a short time.
  • FIG. 1A is a cross-sectional view showing the configuration of the plasma processing apparatus in accordance with the first exemplary embodiment of the present invention.
  • FIG. 1B is a cross-sectional view showing the configuration of the plasma processing apparatus in accordance with the first exemplary embodiment of the present invention (a view showing a cross section taken along a broken line in FIG. 1A).
  • FIG. 2 is a perspective view showing the configuration of the plasma processing apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a perspective view showing the configuration of the plasma processing apparatus in accordance with the second exemplary embodiment of the present invention.
  • FIG. 4 is a perspective view showing the configuration of the plasma processing apparatus in accordance with the third exemplary embodiment of the present invention.
  • FIG. 1A is a cross-sectional view showing the configuration of the plasma processing apparatus in accordance with the first exemplary embodiment of the present invention.
  • FIG. 1B is a cross-sectional view showing the configuration of the plasma processing apparatus in accordance with the first exemplary embodiment of the present invention
  • FIG. 5 is a sectional view showing the configuration of the plasma processing apparatus in accordance with the fourth exemplary embodiment of the present invention.
  • FIG. 6 is a perspective view showing the configuration of the plasma processing apparatus in accordance with the fourth exemplary embodiment of the present invention.
  • FIG. 7 is a perspective view showing the configuration of the plasma processing apparatus in accordance with the fourth exemplary embodiment of the present invention.
  • FIG. 8 is a sectional view showing the configuration of the plasma processing apparatus in accordance with the fifth exemplary embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing the configuration of the plasma processing apparatus in accordance with the sixth exemplary embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing the configuration of the plasma processing apparatus in the seventh embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing the configuration of the plasma processing apparatus in the seventh embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing the configuration of the plasma processing apparatus in the eighth embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing the configuration of the plasma processing apparatus in the ninth embodiment of the present invention.
  • FIG. 13 is a sectional view showing the structure of the plasma processing apparatus in accordance with the tenth embodiment of the present invention.
  • FIG. 14 is a sectional view showing the structure of the plasma processing apparatus in accordance with the eleventh embodiment of the present invention.
  • FIG. 15 is a perspective view showing the configuration of the plasma processing apparatus in accordance with the eleventh embodiment of the present invention.
  • FIG. 16A is a sectional view showing the structure of the plasma processing apparatus in accordance with the twelfth embodiment of the present invention.
  • FIG. 16B is a sectional view showing the structure of the plasma processing apparatus in accordance with the twelfth embodiment of the present invention.
  • FIG. 16C is a cross-sectional view showing the configuration of the plasma processing apparatus in accordance with the twelfth embodiment of the present invention.
  • FIG. 17 is a sectional view showing the structure of the plasma processing apparatus in accordance with the thirteenth embodiment of the present invention.
  • FIG. 18 is a sectional view showing the structure of the plasma processing apparatus in accordance with the thirteenth embodiment of the present invention.
  • FIG. 19 is a cross-sectional view showing a configuration of a conventional plasma processing apparatus.
  • FIG. 20 is a conceptual diagram showing the relationship between the depth from the outermost surface of the substrate and the temperature in the conventional example.
  • FIG. 1 Embodiment 1 of the present invention will be described with reference to FIGS. 1A, 1B, and 2.
  • FIG. 1A Embodiment 1 of the present invention will be described with reference to FIGS. 1A, 1B, and 2.
  • FIG. 1A shows the configuration of the plasma processing apparatus according to Embodiment 1 of the present invention, and is a cross-sectional view taken along a plane perpendicular to the longitudinal direction of an inductively coupled plasma torch unit.
  • FIG. 1B is a cross-sectional view of the inductively coupled plasma torch unit taken along a plane parallel to the longitudinal direction and perpendicular to the substrate.
  • 1A is a sectional view taken along the broken line in FIG. 1B
  • FIG. 1B is a sectional view taken along the broken line in FIG. 1A
  • FIG. 2 is an assembly configuration diagram of the inductively coupled plasma torch unit shown in FIGS. 1A and 1B.
  • the base material 2 is mounted on the base material mounting table 1.
  • a conductor solenoid coil 3 is disposed in the vicinity of the first quartz block 4 and the second quartz block 5.
  • a long space 7 made of a dielectric material is defined by a space surrounded by the surfaces of the first quartz block 4, the second quartz block 5 and the substrate 2.
  • the long chamber 7 is provided along a surface perpendicular to the surface formed by the substrate mounting table 1.
  • the central axis of the solenoid coil 3 is configured to be parallel to the base material mounting table 1 and perpendicular to a plane including the long chamber 7. That is, the surface formed by one turn of the solenoid coil 3 is provided along a plane perpendicular to the surface formed by the substrate mounting table and along a plane including the long chamber 7.
  • the solenoid coils 3 are arranged one by one on the outside of the first quartz block 4 and on the outside of the second quartz block 5 and connected in series at a position away from the long chamber 7 to apply high-frequency power. In this case, the directions of the high frequency electromagnetic fields generated in the long chamber are equal to each other.
  • the solenoid coil 3 can function with only one of these two, but it is generated in the long chamber 7 when the two are provided across the long chamber 7 as in the present embodiment. There is an advantage that the strength of the electromagnetic field can be increased.
  • the inductively coupled plasma torch unit T is entirely surrounded by a shield member (not shown) made of a grounded conductor, which can effectively prevent high-frequency leakage (noise) and effectively prevent undesirable abnormal discharge. Can be prevented.
  • the long chamber 7 is surrounded by one plane of the first quartz block 4 and a groove provided in the second quartz block 5. Further, two dielectric blocks as these dielectric members are bonded together. That is, the long chamber 7 has a configuration in which a portion other than the opening 8 is surrounded by a dielectric.
  • the long chamber 7 is annular.
  • the term “annular” as used herein means a shape that forms a continuous string of strings, and is not limited to a circle. In the present embodiment, a long chamber 7 having a rectangular shape (a continuous closed string-like shape formed by connecting two straight lines having two long sides and two straight lines forming two short sides at both ends). Is illustrated.
  • the plasma P generated in the long chamber 7 comes into contact with the base material 2 at the long and linear opening 8 in the long chamber 7. Further, the longitudinal direction of the long chamber 7 and the longitudinal direction of the opening 8 are arranged in parallel.
  • the opening width of the opening 8 is substantially equal to the thickness of the annular chamber (a series of closed passages constituting the annular chamber, dimension d in FIG. 1A).
  • a plasma gas manifold 9 is provided inside the second quartz block 5.
  • the gas supplied from the plasma gas supply pipe 10 to the plasma gas manifold 9 is introduced into the long chamber 7 through a plasma gas supply hole 11 (through hole) as a gas introduction part provided in the second quartz block 5. Is done. With such a configuration, a uniform gas flow in the longitudinal direction can be easily realized.
  • the flow rate of the gas introduced into the plasma gas supply pipe 10 is controlled by providing a flow rate control device such as a mass flow controller upstream thereof.
  • the plasma gas supply hole 11 is a long slit, but a plurality of round holes may be provided in the longitudinal direction.
  • the solenoid coil 3 is made of a hollow copper tube, and the inside is a refrigerant flow path.
  • the adhesive 6 ensures heat conduction between the outer coil portion of the solenoid coil 3 and the first quartz block 4 and the second quartz block 5. Accordingly, the solenoid coil 3, the first quartz block 4, and the second quartz block 5 can be cooled by flowing a coolant such as water through the copper pipe constituting the solenoid coil 3.
  • a rectangular linear opening 8 is provided, and the substrate mounting table 1 (or the substrate 2 on the substrate mounting table 1) is disposed to face the opening 8.
  • the high-frequency power is supplied from the high-frequency power source R to the solenoid coil 3 while supplying the gas into the long chamber and jetting the gas from the opening 8 toward the base material 2. 7 generates plasma P.
  • the plasma in the vicinity of the opening 8 to the substrate 2 the thin film 22 on the substrate 2 can be subjected to plasma treatment.
  • the base material 2 is processed by relatively moving the long chamber 7 and the base material mounting table 1 in a direction perpendicular to the longitudinal direction of the opening 8. That is, the inductively coupled plasma torch unit T or the substrate mounting table 1 is moved in the left-right direction in FIG. 1A and in the direction perpendicular to the paper surface in FIG. 1B.
  • the main component is an inert gas in consideration of the stability of the plasma, the ignitability, and the life of the member exposed to the plasma.
  • Ar gas is typically used.
  • plasma is generated only by Ar, the plasma becomes considerably high temperature (10,000 K or more).
  • the Ar or Ar + H 2 gas is supplied from the plasma gas supply hole 11 into the long chamber 7 and the gas is ejected from the opening 8 toward the substrate 2, while being supplied from the high frequency power supply R.
  • plasma P is generated by generating a high frequency electromagnetic field in the long chamber 7.
  • the gas flow rate and power are values per 100 mm of the length of the opening 8. This is because it is considered appropriate to input parameters proportional to the length of the opening 8 for parameters such as gas flow rate and electric power.
  • the long chamber and the substrate mounting table 1 are placed in a direction perpendicular to the longitudinal direction of the opening 8 while the longitudinal direction of the opening 8 and the substrate mounting table 1 are arranged in parallel. Since they move relatively, as shown in FIG. 1B, it is possible to configure the length of the plasma to be generated and the processing length of the substrate 2 to be substantially equal.
  • the long chamber 7 is annular. And the distance (dimension g of FIG. 1A) of the lowermost surface of the 1st quartz block 4 which comprises the opening part 8, and the surface of the base material 2 is 0.5 mm. The effects brought about by such a long chamber structure will be described below.
  • a long annular chamber is configured, a long and narrow rectangular plasma P is generated along the shape. Therefore, it is possible to perform processing that is much more uniform in the longitudinal direction than in the conventional example. Further, since the volume of the chamber is smaller than that of the conventional example, the high frequency power acting per unit volume is increased, so that there is an advantage that the plasma generation efficiency is improved.
  • the annular plasma P cannot enter the gap between the inductively coupled plasma torch unit T and the base material 2, and remains in the long chamber 7 (region upstream of the gap). Therefore, the oscillation of the annular plasma P does not occur, and an extremely stable long annular plasma P is maintained. Therefore, it is possible to generate plasma that is much more stable than the conventional example.
  • the distance g between the lowermost surface of the first quartz block 4 constituting the opening 8 and the surface of the substrate 2 was examined in detail, the oscillation of the annular plasma P was suppressed when g was 1 mm or less. I knew it was possible. On the other hand, if g is too small, the influence of parts processing and assembly accuracy in the long direction increases, and the plasma flow that reaches the base material 2 through the passage is weakened. Accordingly, it is desirable that the distance g is 0.1 mm or more, preferably 0.3 mm or more.
  • the thickness of the long chamber 7 is the width of the groove provided in the second quartz block 5 in the long chamber 7 in FIG. 1A. expressed as d. If the outer diameter of the long chamber 7 (the size of the long chamber 7 as a whole) is e, in FIG. 1A, the inner wall surface above the groove provided in the second quartz block 5 and the substrate 2 Is expressed as a distance e formed by. Since the long chamber 7 is long, the outer diameter e of the long chamber 7 is different between the long side portion and the short side portion. Specifically, the outer diameter e of the long chamber 7 in the long side portion is smaller than the outer diameter e of the long chamber 7 in the short side portion.
  • the thickness d of the long chamber 7 is preferably 1 mm or more, and the outer diameter e of the long chamber 7 is preferably 10 mm or more.
  • the thickness d of the long chamber 7 is preferably 10 mm or less.
  • FIG. 3 shows the configuration of the plasma processing apparatus according to Embodiment 2 of the present invention, is an assembly configuration diagram of an inductively coupled plasma torch unit, and is a perspective view of each part (part). This corresponds to FIG.
  • a planar spiral coil 23 is used instead of a solenoid type coil.
  • Such a configuration has an advantage that the strength of the electromagnetic field generated in the long chamber 7 is increased when the same current is passed through the spiral coil 23 as compared with the first embodiment. Accordingly, higher-speed or high-temperature plasma processing becomes possible.
  • the spiral coils 23 are arranged one by one on the outside of the first quartz block 4 and on the outside of the second quartz block 5 and are connected in series at a position away from the long chamber 7 to apply high-frequency power. In this case, the directions of the high frequency electromagnetic fields generated in the long chamber 7 are equal to each other.
  • the spiral coil 23 can function with only one of these two.
  • the two spiral coils 23 are not connected in series, but one end of one coil 23 is connected to a high frequency while the other end is grounded to function as a coil, and the other coil 23 is grounded, so that It is also possible to improve the ignitability.
  • Embodiment 3 of the present invention will be described below with reference to FIG.
  • FIG. 4 shows the configuration of the plasma processing apparatus according to Embodiment 3 of the present invention, is an assembly configuration diagram of an inductively coupled plasma torch unit, and is a perspective view of each part (part). This corresponds to FIG.
  • one-turn coils 43 arranged one by one on the outside of the first quartz block 4 and on the outside of the second quartz block 5 are connected in parallel at a position away from the long chamber 7.
  • the directions of the high-frequency electromagnetic fields generated in the long chamber 7 when high-frequency power is applied are equal to each other.
  • FIG. 5 shows the configuration of the plasma processing apparatus according to Embodiment 4 of the present invention, which is a cross-sectional view taken along a plane perpendicular to the longitudinal direction of the inductively coupled plasma torch unit, and corresponds to FIG. 1A.
  • FIG. 6 is an assembly configuration diagram of the inductively coupled plasma torch unit, in which perspective views of parts (parts) are arranged, and corresponds to FIG. Further, FIG. 7 is a diagram in which some parts are arranged with the left and right directions opposite to those in FIG.
  • a groove 12 is provided outside the second quartz block 5 (the surface opposite to the groove constituting the long chamber 7), and a copper tube 13 serving as a grounded conductor is disposed inside the groove 12.
  • the groove 12 has a long shape in a direction parallel to the long chamber 7 and is shorter than the length of the coil in the long direction.
  • the copper tube 13 is shaped in a U shape, and is bonded to the groove 12 by the adhesive 6 like the solenoid coil 3. Further, the second quartz block 5 can be further cooled by flowing a coolant such as water through the copper tube 13.
  • FIG. 8 shows the configuration of the plasma processing apparatus according to Embodiment 5 of the present invention, which is a cross-sectional view taken along a plane perpendicular to the longitudinal direction of the inductively coupled plasma torch unit, and corresponds to FIG. 1A.
  • a through hole is provided in the first quartz block 4 and a convex portion surrounding the groove 12 provided in the second quartz block 5 is inserted into the through hole.
  • Other configurations are the same as those in the fourth embodiment.
  • the grounded copper tube 13 can be placed closer to the long chamber 7. Therefore, since the electrostatic field in the long chamber 7 is increased and the cooling efficiency is increased as compared with the fourth embodiment, higher high-frequency power can be applied, and higher-speed processing or higher-temperature processing can be performed. It becomes possible.
  • FIG. 9 shows the configuration of the plasma processing apparatus according to Embodiment 6 of the present invention, which is a cross-sectional view taken along a plane perpendicular to the longitudinal direction of the inductively coupled plasma torch unit, and corresponds to FIG. 1A.
  • Embodiment 6 differs from Embodiment 5 in that the upper and lower grooves 12 are provided in the second quartz block 5 and a grounded copper tube 13 is disposed in each groove 12.
  • the grounded copper tube 13 can be placed closer to the long chamber 7. Therefore, since the electrostatic field in the long chamber 7 is increased and the cooling efficiency is increased as compared with the fourth embodiment, higher radio frequency power can be applied, and higher speed processing or higher temperature processing can be performed. It becomes possible.
  • Embodiment 7 of the present invention will be described below with reference to FIG.
  • FIG. 10 shows the configuration of the plasma processing apparatus according to Embodiment 7 of the present invention, and is a cross-sectional view taken along a plane parallel to the longitudinal direction of the inductively coupled plasma torch unit and perpendicular to the substrate. This corresponds to FIG. 1B.
  • a racetrack a continuous closed string-like shape formed by connecting a straight portion having two long sides and a circle or ellipse having two short sides at both ends.
  • the chamber is illustrated.
  • FIG. 11 shows the configuration of the plasma processing apparatus according to the eleventh embodiment of the present invention, which is a cross-sectional view taken along a plane perpendicular to the longitudinal direction of the inductively coupled plasma torch unit, and corresponds to FIG. 1A.
  • the second quartz block 5 is provided with a gas flow path 14 in an inner portion of a groove constituting the long chamber 7, and inductively coupled plasma which is one of the long sides constituting the long chamber 7.
  • Ar gas supply to the space between the torch unit T and the base material 2 is smoothed. That is, in the first embodiment, the gas supply to the space between the inductively coupled plasma torch unit T and the base material 2 is performed only from the short side constituting the long chamber 7, whereas In the present embodiment, gas supply is promoted through the gas flow path 14 which is a gap between two long sides. Therefore, the Ar concentration in the space between the inductively coupled plasma torch unit T and the base material 2 increases (since there is much air entrainment in the first embodiment). Therefore, more stable plasma can be obtained.
  • the thickness of the gas flow path 14 (the size of the gap in the left-right direction in FIG. 11) needs to be sufficiently thin so that the ring-shaped plasma formed in the long chamber 7 does not enter, and d is If the thickness is less than 1 mm, high-density thermal plasma is hardly generated in the long chamber 7. Therefore, the thickness of the gas flow path 14 is desirably less than 1 mm.
  • Embodiment 9 of the present invention will be described below with reference to FIG.
  • FIG. 12 shows the configuration of the plasma processing apparatus according to the ninth embodiment of the present invention, which is a cross-sectional view taken along a plane perpendicular to the longitudinal direction of the inductively coupled plasma torch unit, and corresponds to FIG. 1A.
  • the second quartz block 5 is provided with a gas flow path 14 in the inner part of the groove constituting the long chamber 7, and the plasma gas manifold 9 is provided in the inner part of the groove constituting the long chamber 7. Is provided.
  • the gas supply to the two long sides constituting the long chamber 7 is more equalized, and the Ar concentration in the space between the inductively coupled plasma torch unit T and the substrate 2 is increased (implementation). This is because there is much air entrainment in Form 1). Therefore, more stable plasma can be obtained.
  • Embodiment 10 of the present invention will be described below with reference to FIG.
  • FIG. 13 shows the configuration of the plasma processing apparatus according to the tenth embodiment of the present invention, which is a cross-sectional view taken along a plane perpendicular to the longitudinal direction of the inductively coupled plasma torch unit, and corresponds to FIG. 1A.
  • the groove provided in the lowermost portion of the first quartz block 4 and the groove provided in the second quartz block 5 are grooves on the short side (not shown) of the first quartz block 4 and the second quartz block.
  • An annular long chamber 7 as a whole is configured through grooves provided on both sides. That is, although the long chamber 7 is provided along a surface perpendicular to the surface formed by the substrate mounting table 1, the long chamber 7 is disposed slightly inclined. Such a configuration is also within the scope of the present invention.
  • FIG. 14 shows the configuration of the plasma processing apparatus according to the eleventh embodiment of the present invention, which is a cross-sectional view taken along a plane perpendicular to the longitudinal direction of the inductively coupled plasma torch unit, and corresponds to FIG. 1A.
  • FIG. 15 is an assembly configuration diagram of the inductively coupled plasma torch unit shown in FIG. 14, in which perspective views of parts (parts) are arranged, and corresponds to FIG. 2.
  • the second quartz block 5 is provided with a gas flow path 14 in the inner part of the groove constituting the long chamber 7, and is a guide that is one of the long sides constituting the long chamber 7.
  • Ar gas supply to the space between the combined plasma torch unit T and the substrate 2 is made smooth.
  • the gas flow path 14 is composed of a plurality of relatively deep grooves.
  • the gas flow path 14 may be constituted not only by a groove but by both a thin gap and a groove as in the eighth embodiment.
  • the gas supply is further promoted than in the eighth embodiment, and the Ar concentration in the space between the inductively coupled plasma torch unit T and the substrate 2 is increased, so that more stable plasma can be obtained. it can.
  • the thickness of the gas flow path 14 (the size of the gap in the left-right direction in FIG. 14) needs to be sufficiently thin so that the ring-shaped plasma formed in the long chamber 7 does not enter. If d is less than 1 mm, high-density thermal plasma is very unlikely to be generated in the long chamber 7, so the width of the gas flow path 14 is preferably less than 1 mm.
  • FIGS. 16A, 16B, and 16C show the configuration of the plasma processing apparatus according to the twelfth embodiment of the present invention, and are cross-sectional views taken along a plane perpendicular to the longitudinal direction of the inductively coupled plasma torch unit.
  • FIG. 16A shows a preparatory stage for performing the ignition sequence / acceleration of the inductively coupled plasma torch unit T
  • FIG. 16B shows a stage during the plasma processing
  • FIG. Indicates FIG.
  • a flat cover 16 is provided on both sides of the substrate mounting table 1.
  • the cover 16 is provided on both sides of the substrate mounting table 1 so as to surround the edge of the substrate 2 when the substrate 2 is disposed. Further, the surface of the cover 16 and the surface of the substrate 2 are configured to be located on the same plane.
  • a coolant channel 17 for cooling the cover 16 is provided inside the cover 16.
  • the cover 16 has a function of protecting the apparatus from plasma and a function of keeping the shape of the annular chamber constant so that plasma can be ignited and misfired smoothly. It is preferable that the gap w generated between the cover 16 and the base material 2 when the base material 2 is placed on the base material mounting table 1 is as small as possible.
  • the surface of the cover 16 is preferably made of an insulating material. With such a configuration, it is possible to effectively suppress the occurrence of arc discharge between the plasma and the cover 16.
  • the entire cover 16 may be made of an insulator such as quartz or ceramic, or sprayed, CVD, coating, etc. on a metal (conductor) such as stainless steel or aluminum. You may use what formed the insulating film by.
  • FIG. 17 shows the configuration of the plasma processing apparatus according to the thirteenth embodiment of the present invention, and is a cross-sectional view taken along a plane perpendicular to the longitudinal direction of the inductively coupled plasma torch unit.
  • FIG. 17 shows a preparation stage in which the ignition sequence and acceleration of the inductively coupled plasma torch unit T are performed.
  • FIG. 18 shows the configuration of the plasma processing apparatus according to the thirteenth embodiment of the present invention, and is a cross section cut by a plane parallel to the longitudinal direction of the inductively coupled plasma torch unit and perpendicular to the substrate.
  • FIG. 6 corresponds to FIG. 1B.
  • the gap w is generated between the cover 16 and the base material 2 when the base material 2 is placed on the base material placing table 1
  • the gap is not formed.
  • the inductively coupled plasma torch unit T passes near the gap w, the plasma may fluctuate or misfire, but this embodiment can effectively suppress this.
  • the cover 16 is kept movable, and after the base material 2 is placed on the base material placing table 1, a motor driving mechanism, an air driving mechanism, a spring driving mechanism, or the like is used as appropriate. A method of approaching and pressing the cover 16 toward the base material 2 slowly can be considered.
  • the refrigerant flow path is not provided inside the cover 16, but this is because the inductively coupled plasma torch unit T passes over the cover 16 in a short time, so that the inductively coupled plasma torch unit T This is because the heat energy flowing into the cover 16 is relatively small.
  • the inductively coupled plasma torch unit T may be scanned with respect to the fixed substrate mounting table 1, but the substrate mounting table 1 is scanned with respect to the fixed inductively coupled plasma torch unit T. May be.
  • the various structures of the present invention enable high-temperature treatment of the vicinity of the surface of the substrate 2. Specifically, it can be applied to the crystallization of the TFT semiconductor film and the modification of the semiconductor film for solar cells described in detail in the conventional example, as well as cleaning of the protective layer of the plasma display panel and reduction of degassing, The present invention can be applied to various surface treatments such as surface planarization and degassing reduction of a dielectric layer made of an aggregate of silica fine particles, reflow of various electronic devices, and plasma doping using a solid impurity source.
  • a manufacturing method of a solar cell it can apply also to the method of apply
  • an ignition source in order to facilitate plasma ignition.
  • an ignition source an ignition spark device used for a gas water heater or the like can be used.
  • the application of the present invention is relatively easy.
  • the base material 2 is a conductor or a semiconductor, or when the thin film 22 is a conductor or a semiconductor, Arc discharge is likely to occur on the surface of the material 2.
  • a method of treating the surface of the substrate 2 after forming an insulating film on the surface of the substrate 2 can be used.
  • thermal plasma is used for simplicity. However, it is difficult to distinguish between thermal plasma and low temperature plasma. For example, Tanaka Yasunori “Non-equilibrium in thermal plasma” Journal of Fusion Society, Vol. 82, no. 8 (2006) p. As described in 479-483, it is also difficult to classify the plasma types based on thermal equilibrium alone.
  • the present invention has an object of heat-treating a substrate, and can be applied to a technique for irradiating high-temperature plasma without being bound by terms such as thermal plasma, thermal equilibrium plasma, and high-temperature plasma.
  • the case where high-temperature heat treatment is performed in the vicinity of the surface of the base material uniformly for a very short time is illustrated in detail.
  • the present invention can also be applied.
  • the plasma by the reaction gas is irradiated onto the substrate, and etching and CVD can be realized.
  • a gas containing a reactive gas as a shielding gas is supplied to the periphery of the plasma gas, so that the plasma and the reactive gas flow are changed.
  • the substrate can be irradiated to realize plasma processing such as etching, CVD, and doping.
  • thermal plasma is generated as exemplified in detail in the embodiment.
  • a gas containing argon as a main component is used as the plasma gas
  • thermal plasma is generated as exemplified in detail in the embodiment.
  • a gas containing helium as a main component is used as the plasma gas
  • a relatively low temperature plasma can be generated.
  • Examples of the reactive gas used for etching include a halogen-containing gas such as C x F y (x and y are natural numbers), SF 6, and the like, and silicon and silicon compounds can be etched. If O 2 is used as the reaction gas, it is possible to remove organic substances, resist ashing, and the like.
  • the reactive gas used for CVD includes monosilane, disilane, and the like, and silicon or silicon compound can be formed.
  • a silicon oxide film can be formed by using a mixed gas of O 2 and an organic gas containing silicon typified by TEOS (Tetraethoxysilane).
  • various low-temperature plasma treatments such as surface treatments that improve water repellency and hydrophilicity are possible. Since the structure of the present invention is an inductive coupling type, even if a high power density per unit volume is applied, it is difficult to shift to arc discharge, so that higher density plasma can be generated. As a result, a high reaction rate can be obtained, and the entire desired region to be treated of the substrate can be efficiently processed in a short time.
  • the present invention is applicable to crystallization of a semiconductor film for TFT and modification of a semiconductor film for solar cell.
  • the protective layer of the plasma display panel is cleaned and degassing is reduced, the surface of the dielectric layer composed of aggregates of silica particles is flattened and degassing is reduced, the reflow of various electronic devices, and plasma doping using a solid impurity source
  • plasma is generated stably and efficiently in the vicinity of the surface of the base material for a short period of time, uniformly and efficiently, and the entire desired area of the base material is efficiently processed in a short time.
  • the invention is useful for efficiently treating the entire desired region of the substrate in a short time in low temperature plasma processing such as etching, film formation, doping, and surface modification in the manufacture of various electronic devices. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Recrystallisation Techniques (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Provided are a plasma processing device and a plasma processing method which can generate plasma stably and efficiently, and can efficiently process the entirety of the region of a base material which is to be processed, in a short period of time. This plasma processing device is provided with: a ring shaped chamber (7), which, other than the opening section thereof, is surrounded by a dielectric member; a coil (3) which is provided in the vicinity of the ring shaped chamber; and a base material mounting table (1) which is disposed in the vicinity of the opening section (8). Also provided is a processing method for the device. The ring shaped chamber is provided along a plane which is perpendicular to the surface formed by the base material mounting table. Thus, plasma can be generated stably and efficiently, and the entirety of the region of a base material which is to be processed can be efficiently processed in a short period of time.

Description

プラズマ処理装置及びプラズマ処理方法Plasma processing apparatus and plasma processing method
 本発明は、熱プラズマを基材に照射して基材を処理する熱プラズマ処理、反応ガスによるプラズマ処理、更には、プラズマと反応ガス流とを同時に基材に照射して該基材を処理する低温プラズマ処理などのプラズマ処理装置及びプラズマ処理方法に関するものである。 The present invention provides a thermal plasma treatment for irradiating a substrate with thermal plasma, a plasma treatment with a reactive gas, and a treatment of the substrate by simultaneously irradiating the substrate with plasma and a reactive gas stream. The present invention relates to a plasma processing apparatus such as a low-temperature plasma processing and a plasma processing method.
 従来、多結晶シリコン(poly-Si)等の半導体薄膜は薄膜トランジスタ(TFT:Thin Film Transistor)や太陽電池に広く利用されている。とりわけ、poly-SiTFTは、キャリア移動度が高いうえ、ガラス基板のような透明の絶縁基板上に作製できるという特徴を活かして、例えば、液晶表示装置、液晶プロジェクタや有機EL表示装置などの画素回路を構成するスイッチング素子として、或いは液晶駆動用ドライバの回路素子として広く用いられている。 Conventionally, semiconductor thin films such as polycrystalline silicon (poly-Si) have been widely used for thin film transistors (TFTs) and solar cells. In particular, poly-Si TFTs have high carrier mobility and can be manufactured on a transparent insulating substrate such as a glass substrate. For example, pixel circuits such as liquid crystal display devices, liquid crystal projectors, and organic EL display devices are used. It is widely used as a switching element constituting the circuit or as a circuit element of a liquid crystal driving driver.
 ガラス基板上に高性能なTFTを作製する方法としては、一般に「高温プロセス」と呼ばれる製造方法がある。TFTの製造プロセスの中でも、工程中の最高温度が1000℃程度の高温を用いるプロセスを一般的に「高温プロセス」と呼んでいる。高温プロセスの特徴は、シリコンの固相成長により比較的良質の多結晶シリコンを成膜することができる点、シリコンの熱酸化により良質のゲート絶縁層を得ることができる点、及び清浄な多結晶シリコンとゲート絶縁層との界面を形成できる点である。高温プロセスではこれらの特徴により、高移動度でしかも信頼性の高い高性能TFTを安定的に製造することができる。 As a method for producing a high-performance TFT on a glass substrate, there is a manufacturing method generally called “high temperature process”. Among TFT manufacturing processes, a process using a high temperature with a maximum temperature of about 1000 ° C. is generally called a “high temperature process”. Features of the high-temperature process are that a relatively good quality polycrystalline silicon can be formed by solid phase growth of silicon, a good quality gate insulating layer can be obtained by thermal oxidation of silicon, and a clean polycrystalline. This is the point that an interface between silicon and the gate insulating layer can be formed. Due to these characteristics, a high-performance TFT having high mobility and high reliability can be stably manufactured in a high-temperature process.
 他方、高温プロセスは固相成長によりシリコン膜の結晶化を行うプロセスであるために、600℃程度の温度で48時間程度の長時間の熱処理を必要とする。これは大変長時間の工程であり、工程のスループットを高めるためには必然的に熱処理炉を多数必要とし、低コスト化が難しいという点が課題である。加えて、耐熱性の高い絶縁性基板として石英ガラスを使わざるを得ないため基板のコストが高く、大面積化には向かないとされている。 On the other hand, since the high temperature process is a process for crystallizing a silicon film by solid phase growth, it requires a heat treatment for about 48 hours at a temperature of about 600 ° C. This is a very long process, and in order to increase the process throughput, a large number of heat treatment furnaces are inevitably required, and it is difficult to reduce the cost. In addition, quartz glass has to be used as an insulating substrate with high heat resistance, so the cost of the substrate is high and it is said that it is not suitable for large area.
 一方、工程中の最高温度を下げ、安価な大面積のガラス基板上にpoly-SiTFTを作製するための技術が「低温プロセス」と呼ばれる技術である。TFTの製造プロセスの中でも、最高温度が概ね600℃以下の温度環境下において比較的安価な耐熱性のガラス基板上にpoly-SiTFTを製造するプロセスは、一般に「低温プロセス」と呼ばれている。低温プロセスでは、発振時間が極短時間のパルスレーザーを用いてシリコン膜の結晶化を行うレーザー結晶化技術が広く使われている。レーザー結晶化とは、基板上のシリコン薄膜に高出力のパルスレーザー光を照射することによって瞬時に溶融させ、これが凝固する過程で結晶化する性質を利用する技術である。 On the other hand, a technique for lowering the maximum temperature in the process and producing a poly-Si TFT on an inexpensive large-area glass substrate is a technique called “low temperature process”. Among TFT manufacturing processes, a process for manufacturing poly-Si TFTs on a heat-resistant glass substrate that is relatively inexpensive in a temperature environment where the maximum temperature is approximately 600 ° C. or lower is generally called a “low-temperature process”. In a low temperature process, a laser crystallization technique for crystallizing a silicon film using a pulse laser having an extremely short oscillation time is widely used. Laser crystallization is a technique that utilizes the property of crystallizing in the process of solidifying instantaneously by irradiating a silicon thin film on a substrate with high-power pulsed laser light.
 しかしながら、このレーザー結晶化技術には幾つかの大きな課題がある。一つは、レーザー結晶化技術によって形成したポリシリコン膜の内部に局在する多量の捕獲準位である。この捕獲準位の存在により、電圧の印加によって本来能動層を移動するはずのキャリアが捕獲され、電気伝導に寄与できず、TFTの移動度の低下、閾値電圧の増大といった悪影響を及ぼす。更に、レーザー出力の制限によって、ガラス基板のサイズが制限されるといった課題もある。レーザー結晶化工程のスループットを向上させるためには、一回で結晶化できる面積を増やす必要がある。しかしながら、現状のレーザー出力には制限があるため、第7世代(1800mm×2100mm)といった大型基板にこの結晶化技術を採用する場合には、基板一枚を結晶化するために長時間を要する。 However, there are some major problems with this laser crystallization technology. One is a large amount of trap levels localized inside the polysilicon film formed by the laser crystallization technique. Due to the presence of the trap level, carriers that are supposed to move in the active layer by the application of voltage are trapped and cannot contribute to electrical conduction, which has adverse effects such as a decrease in TFT mobility and an increase in threshold voltage. Further, there is a problem that the size of the glass substrate is limited due to the limitation of the laser output. In order to improve the throughput of the laser crystallization process, it is necessary to increase the area that can be crystallized at one time. However, since the current laser output is limited, when this crystallization technique is adopted for a large substrate such as the seventh generation (1800 mm × 2100 mm), it takes a long time to crystallize one substrate.
 また、レーザー結晶化技術は一般的にライン状に成形されたレーザーが用いられ、これを走査させることによって結晶化を行なう。このラインビームは、レーザー出力に制限があるため基板の幅よりも短く、基板全面を結晶化するためには、レーザーを数回に分けて走査する必要がある。これによって基板内にはラインビームの継ぎ目の領域が発生し、二回走査されてしまう領域ができる。この領域は一回の走査で結晶化した領域とは結晶性が大きく異なる。そのため両者の素子特性は大きく異なり、デバイスのバラツキの大きな要因となる。 Also, laser crystallization technology generally uses a laser shaped in a line, and crystallization is performed by scanning this laser. This line beam is shorter than the width of the substrate because of limited laser output, and it is necessary to scan the laser several times in order to crystallize the entire surface of the substrate. As a result, a line beam seam area is generated in the substrate, and an area that is scanned twice is formed. This region is significantly different in crystallinity from the region crystallized by one scan. For this reason, the element characteristics of the two are greatly different, which causes a large variation in devices.
 最後に、レーザー結晶化装置は装置構成が複雑であり且つ、消耗部品のコストが高いため、装置コストおよびランニングコストが高いという課題がある。これによって、レーザー結晶化装置によって結晶化したポリシリコン膜を使用したTFTは製造コストが高い素子になってしまう。 Finally, the laser crystallization apparatus has a problem that the apparatus configuration and running cost are high because the apparatus configuration is complicated and the cost of consumable parts is high. As a result, a TFT using a polysilicon film crystallized by a laser crystallization apparatus becomes an element with a high manufacturing cost.
 このような基板サイズの制限、装置コストが高いといった課題を克服するため、「熱プラズマジェット結晶化法」と呼ばれる結晶化技術が研究されている(例えば、非特許文献1を参照)。本技術を以下に簡単に説明する。タングステン(W)陰極と水冷した銅(Cu)陽極を対向させ、DC電圧を印加すると両極間にアーク放電が発生する。この電極間に大気圧下でアルゴンガスを流すことによって、銅陽極に空いた噴出孔から熱プラズマが噴出する。 In order to overcome the problems such as the limitation of the substrate size and the high apparatus cost, a crystallization technique called “thermal plasma jet crystallization method” has been studied (for example, see Non-Patent Document 1). The technology is briefly described below. When a tungsten (W) cathode and a water-cooled copper (Cu) anode are opposed to each other and a DC voltage is applied, an arc discharge occurs between the two electrodes. By flowing argon gas between these electrodes under atmospheric pressure, thermal plasma is ejected from the ejection holes vacated in the copper anode.
 熱プラズマとは、熱平衡プラズマであり、イオン、電子、中性原子などの温度がほぼ等しく、それらの温度が10000K程度を有する超高温の熱源である。このことから、熱プラズマは被熱物体を容易に高温に加熱することが可能であり、a-Si(アモルファス・シリコン)膜を堆積した基板が超高温の熱プラズマ前面を高速走査することによってa-Si膜を結晶化することができる。 Thermal plasma is thermal equilibrium plasma, which is an ultra-high temperature heat source having substantially the same temperature of ions, electrons, neutral atoms, etc., and their temperature is about 10,000K. Thus, the thermal plasma can easily heat the object to be heated to a high temperature, and the substrate on which the a-Si (amorphous silicon) film is deposited scans the front surface of the ultra-high temperature thermal plasma at a high speed. -Si film can be crystallized.
 このように装置構成が極めて単純であり、且つ大気圧下での結晶化プロセスであるため、装置を密閉チャンバ等の高価な部材で覆う必要が無く、装置コストが極めて安くなることが期待できる。また結晶化に必要なユーティリティは、アルゴンガスと電力と冷却水であるため、ランニングコストも安い結晶化技術である。 As described above, since the apparatus configuration is extremely simple and the crystallization process is performed under atmospheric pressure, it is not necessary to cover the apparatus with an expensive member such as a sealed chamber, and the apparatus cost can be expected to be extremely low. The utilities required for crystallization are argon gas, electric power, and cooling water, which is a crystallization technique with low running costs.
 図19は、この熱プラズマを用いた半導体膜の結晶化方法を説明するための模式図である。 FIG. 19 is a schematic diagram for explaining a semiconductor film crystallization method using this thermal plasma.
 同図において、熱プラズマ発生装置31は、陰極32と、この陰極32と所定距離だけ離間して対向配置される陽極33とを備え構成される。陰極32は、例えばタングステン等の導電体からなる。陽極33は、例えば銅などの導電体からなる。また、陽極33は、中空に形成され、この中空部分に水を通して冷却可能に構成されている。また、陽極33には噴出孔(ノズル)34が設けられている。陰極32と陽極33の間に直流(DC)電圧を印加すると両極間にアーク放電が発生する。この状態において、陰極32と陽極33の間に大気圧下でアルゴンガス等のガスを流すことによって、上記の噴出孔34から熱プラズマ35を噴出させることができる。 Referring to FIG. 1, a thermal plasma generator 31 includes a cathode 32 and an anode 33 disposed opposite to the cathode 32 with a predetermined distance. The cathode 32 is made of a conductor such as tungsten. The anode 33 is made of a conductor such as copper, for example. Further, the anode 33 is formed in a hollow shape, and is configured to be cooled through water through the hollow portion. The anode 33 is provided with an ejection hole (nozzle) 34. When a direct current (DC) voltage is applied between the cathode 32 and the anode 33, an arc discharge is generated between the two electrodes. In this state, by flowing a gas such as argon gas between the cathode 32 and the anode 33 under atmospheric pressure, the thermal plasma 35 can be ejected from the ejection hole 34.
 ここで「熱プラズマ」とは、熱平衡プラズマであり、イオン、電子、中性原子などの温度がほぼ等しく、それらの温度が10000K程度を有する超高温の熱源である。 Here, “thermal plasma” is thermal equilibrium plasma, which is an ultra-high temperature heat source having substantially the same temperature of ions, electrons, neutral atoms, etc., and those temperatures are about 10000K.
 このような熱プラズマを半導体膜の結晶化のための熱処理に利用することができる。具体的には、基板36上に半導体膜37(例えば、アモルファスシリコン膜)を形成しておき、当該半導体膜37に熱プラズマ(熱プラズマジェット)35を当てる。このとき、熱プラズマ35は、半導体膜37の表面と平行な第1軸(図示の例では左右方向)に沿って相対的に移動させながら半導体膜37に当てられる。すなわち、熱プラズマ35は第1軸方向に走査しながら半導体膜37に当てられる。 Such thermal plasma can be used for heat treatment for crystallization of a semiconductor film. Specifically, a semiconductor film 37 (for example, an amorphous silicon film) is formed on the substrate 36, and thermal plasma (thermal plasma jet) 35 is applied to the semiconductor film 37. At this time, the thermal plasma 35 is applied to the semiconductor film 37 while relatively moving along a first axis (left and right direction in the illustrated example) parallel to the surface of the semiconductor film 37. That is, the thermal plasma 35 is applied to the semiconductor film 37 while scanning in the first axis direction.
 ここで「相対的に移動させる」とは、半導体膜37(及びこれを支持する基板36)と熱プラズマ35とを相対的に移動させることを言い、一方のみを移動させる場合と両者をともに移動させる場合のいずれも含まれる。このような熱プラズマ35の走査により、半導体膜37が熱プラズマ35の有する高温によって加熱され、結晶化された半導体膜38(本例ではポリシリコン膜)が得られる(例えば、特許文献1を参照)。 Here, “relatively move” refers to relatively moving the semiconductor film 37 (and the substrate 36 supporting the semiconductor film 37) and the thermal plasma 35, and moving only one or both of them. Any of the cases are included. By such scanning of the thermal plasma 35, the semiconductor film 37 is heated by the high temperature of the thermal plasma 35 to obtain a crystallized semiconductor film 38 (polysilicon film in this example) (for example, see Patent Document 1). ).
 図20は、基板の最表面からの深さと温度の関係を示す概念図である。同図に示すように、熱プラズマ35を高速で移動させることにより、表面近傍のみを高温で処理することができる。熱プラズマ35が通り過ぎた後、加熱された領域は速やかに冷却されるので、表面近傍はごく短時間だけ高温になる。 FIG. 20 is a conceptual diagram showing the relationship between the depth from the outermost surface of the substrate and the temperature. As shown in the figure, by moving the thermal plasma 35 at a high speed, only the vicinity of the surface can be processed at a high temperature. After the thermal plasma 35 passes, the heated region is quickly cooled, so that the vicinity of the surface becomes high temperature for a very short time.
 このような熱プラズマは、点状領域に発生させるのが一般的である。熱プラズマは、陰極32からの熱電子放出によって維持されている。従って、プラズマ密度の高い位置では熱電子放出がより盛んになるため、正のフィードバックがかかり、ますますプラズマ密度が高くなる。つまり、アーク放電は陰極の1点に集中して生じることとなり、熱プラズマは点状領域に発生する。 Such a thermal plasma is generally generated in a dotted region. The thermal plasma is maintained by thermionic emission from the cathode 32. Therefore, thermionic emission is more active at high plasma density, so positive feedback is applied and the plasma density becomes higher. That is, arc discharge is concentrated on one point of the cathode, and thermal plasma is generated in a dotted region.
 半導体膜の結晶化など、平板状の基材を一様に処理したい場合には、点状の熱プラズマを基材全体に渡って走査する必要があるが、走査回数を減らしてより短時間で処理できるプロセスを構築するには、熱プラズマの照射領域を広くすることが有効である。このため、長尺の熱プラズマを発生させ、一方向にのみ走査する技術が検討されている(例えば、特許文献2~7を参照)。 If you want to process a flat substrate uniformly, such as when crystallizing a semiconductor film, it is necessary to scan a dotted thermal plasma over the entire substrate. In order to construct a process that can be processed, it is effective to widen the thermal plasma irradiation area. For this reason, techniques for generating a long thermal plasma and scanning only in one direction have been studied (see, for example, Patent Documents 2 to 7).
特開2008-53634号公報JP 2008-53634 A 国際公開第2011/142125号International Publication No. 2011/142125 特開2012-38839号公報JP 2012-38839 A 特開2012-54129号公報JP 2012-54129 A 特開2012-54130号公報JP 2012-54130 A 特開2012-54131号公報JP 2012-54131 A 特開2012-54132号公報JP 2012-54132 A
 しかしながら、半導体の結晶化など、ごく短時間だけ基材の表面近傍を高温処理する用途に対して、従来例に示した特許文献2~7に記載の熱プラズマを長尺状に発生させる技術では、プラズマが最も高温になる部分が基板から遠い。そのため、基板の温度を十分に高めることが困難であるという問題点があった。 However, in the technique of generating thermal plasma in a long shape as described in Patent Documents 2 to 7 shown in the prior art for applications in which the vicinity of the surface of the substrate is subjected to high temperature treatment for a very short time, such as crystallization of semiconductors. The part where the plasma is the hottest is far from the substrate. Therefore, there is a problem that it is difficult to sufficiently raise the temperature of the substrate.
 本発明はこのような課題に鑑みなされたもので、基材の表面近傍をごく短時間だけ均一に高温熱処理する技術、反応ガスによるプラズマ処理技術、更には、プラズマと反応ガス流とを同時に基材に照射して該基材を処理する低温プラズマ処理技術において、プラズマを安定的かつ効率的に発生させることができ、基材の所望の被処理領域全体を短時間で効率よく処理することができるプラズマ処理装置及びプラズマ処理方法を提供することを目的としている。 The present invention has been made in view of such a problem, and is based on a technique for uniformly heat-treating the vicinity of the surface of a substrate for a very short period of time, a plasma treatment technique using a reactive gas, and a plasma and a reactive gas flow simultaneously. In the low-temperature plasma processing technology for irradiating a material to process the substrate, plasma can be generated stably and efficiently, and the entire desired region to be treated of the substrate can be processed efficiently in a short time. An object of the present invention is to provide a plasma processing apparatus and a plasma processing method.
 本発明のプラズマ処理装置は、開口部と、開口部に連通し、かつ、開口部以外が誘電体部材に囲まれた環状チャンバと、環状チャンバ内にガスを導入するためのガス供給配管と、環状チャンバ近傍に設けられたコイルと、コイルに接続された高周波電源と、基材を開口部に近接して配置するための基材載置台とを備えたプラズマ処理装置であって、基材載置台がなす面に垂直な面に沿って環状チャンバを設けたことを特徴とする。 The plasma processing apparatus of the present invention includes an opening, an annular chamber that communicates with the opening and is surrounded by a dielectric member, and a gas supply pipe for introducing gas into the annular chamber. A plasma processing apparatus comprising a coil provided in the vicinity of an annular chamber, a high-frequency power source connected to the coil, and a substrate mounting table for disposing the substrate close to the opening. An annular chamber is provided along a plane perpendicular to the plane formed by the mounting table.
 このような構成により、基材の表面近傍をごく短時間だけ均一に高温熱処理する技術、反応ガスによるプラズマ処理技術、更には、プラズマと反応ガス流とを同時に基材に照射して該基材を処理する低温プラズマ処理技術において、プラズマを安定的かつ効率的に発生させることができる。 With such a configuration, a technique for uniformly heat treating the vicinity of the surface of the substrate for a very short time, a plasma treatment technique using a reactive gas, and further, irradiating the substrate with plasma and a reactive gas flow simultaneously. In the low temperature plasma processing technology for processing the plasma, the plasma can be generated stably and efficiently.
 本発明のプラズマ処理方法は、開口部以外が誘電体部材で囲まれた環状チャンバ内にガスを供給しつつ、コイルに高周波電力を供給することで環状チャンバ内に高周波電磁界を発生させてプラズマを生成し、基材を開口部に近接して配置し、開口部近傍のプラズマに曝露することで、基材の表面を処理するプラズマ処理方法であって、基材がなす面に垂直な面に沿って設けた環状チャンバ内にプラズマを生成させることを特徴とする。 The plasma processing method of the present invention generates a high-frequency electromagnetic field in the annular chamber by supplying high-frequency power to the coil while supplying gas into the annular chamber surrounded by a dielectric member except for the opening. Is a plasma processing method for treating the surface of a substrate by placing the substrate close to the opening and exposing it to plasma in the vicinity of the opening, the surface being perpendicular to the surface formed by the substrate Plasma is generated in an annular chamber provided along the line.
 このような構成により、基材の表面近傍をごく短時間だけ均一に高温熱処理する技術、反応ガスによるプラズマ処理技術、更には、プラズマと反応ガス流とを同時に基材に照射して該基材を処理する低温プラズマ処理技術において、プラズマを安定的かつ効率的に発生させることができる。 With such a configuration, a technique for uniformly heat treating the vicinity of the surface of the substrate for a very short time, a plasma treatment technique using a reactive gas, and further, irradiating the substrate with plasma and a reactive gas flow simultaneously. In the low temperature plasma processing technology for processing the plasma, the plasma can be generated stably and efficiently.
 本発明によれば、基材の表面近傍をごく短時間だけ均一に高温熱処理する技術、反応ガスによるプラズマ処理技術、更には、プラズマと反応ガス流とを同時に基材に照射して該基材を処理する低温プラズマ処理技術において、プラズマを安定的かつ効率的に発生させることができ、基材の所望の被処理領域全体を短時間で効率よく処理することができる。 According to the present invention, a technique for uniformly heat-treating the vicinity of the surface of the substrate for a very short time, a plasma treatment technique using a reactive gas, and further, irradiating the substrate with plasma and a reactive gas stream simultaneously. In the low temperature plasma processing technology for processing the plasma, the plasma can be generated stably and efficiently, and the entire desired region of the substrate to be processed can be efficiently processed in a short time.
図1Aは本発明の実施の形態1におけるプラズマ処理装置の構成を示す断面図である。FIG. 1A is a cross-sectional view showing the configuration of the plasma processing apparatus in accordance with the first exemplary embodiment of the present invention. 図1Bは本発明の実施の形態1におけるプラズマ処理装置の構成を示す断面図(図1Aにおける破線部の断面を示す図)である。FIG. 1B is a cross-sectional view showing the configuration of the plasma processing apparatus in accordance with the first exemplary embodiment of the present invention (a view showing a cross section taken along a broken line in FIG. 1A). 図2は本発明の実施の形態1におけるプラズマ処理装置の構成を示す斜視図である。FIG. 2 is a perspective view showing the configuration of the plasma processing apparatus according to Embodiment 1 of the present invention. 図3は本発明の実施の形態2におけるプラズマ処理装置の構成を示す斜視図である。FIG. 3 is a perspective view showing the configuration of the plasma processing apparatus in accordance with the second exemplary embodiment of the present invention. 図4は本発明の実施の形態3におけるプラズマ処理装置の構成を示す斜視図である。FIG. 4 is a perspective view showing the configuration of the plasma processing apparatus in accordance with the third exemplary embodiment of the present invention. 図5は本発明の実施の形態4におけるプラズマ処理装置の構成を示す断面図である。FIG. 5 is a sectional view showing the configuration of the plasma processing apparatus in accordance with the fourth exemplary embodiment of the present invention. 図6は本発明の実施の形態4におけるプラズマ処理装置の構成を示す斜視図である。FIG. 6 is a perspective view showing the configuration of the plasma processing apparatus in accordance with the fourth exemplary embodiment of the present invention. 図7は本発明の実施の形態4におけるプラズマ処理装置の構成を示す斜視図である。FIG. 7 is a perspective view showing the configuration of the plasma processing apparatus in accordance with the fourth exemplary embodiment of the present invention. 図8は本発明の実施の形態5におけるプラズマ処理装置の構成を示す断面図である。FIG. 8 is a sectional view showing the configuration of the plasma processing apparatus in accordance with the fifth exemplary embodiment of the present invention. 図9は本発明の実施の形態6におけるプラズマ処理装置の構成を示す断面図である。FIG. 9 is a cross-sectional view showing the configuration of the plasma processing apparatus in accordance with the sixth exemplary embodiment of the present invention. 図10は本発明の実施の形態7におけるプラズマ処理装置の構成を示す断面図である。FIG. 10 is a cross-sectional view showing the configuration of the plasma processing apparatus in the seventh embodiment of the present invention. 図11は本発明の実施の形態8におけるプラズマ処理装置の構成を示す断面図である。FIG. 11 is a cross-sectional view showing the configuration of the plasma processing apparatus in the eighth embodiment of the present invention. 図12は本発明の実施の形態9におけるプラズマ処理装置の構成を示す断面図である。FIG. 12 is a cross-sectional view showing the configuration of the plasma processing apparatus in the ninth embodiment of the present invention. 図13は本発明の実施の形態10におけるプラズマ処理装置の構成を示す断面図である。FIG. 13 is a sectional view showing the structure of the plasma processing apparatus in accordance with the tenth embodiment of the present invention. 図14は本発明の実施の形態11におけるプラズマ処理装置の構成を示す断面図である。FIG. 14 is a sectional view showing the structure of the plasma processing apparatus in accordance with the eleventh embodiment of the present invention. 図15は本発明の実施の形態11におけるプラズマ処理装置の構成を示す斜視図である。FIG. 15 is a perspective view showing the configuration of the plasma processing apparatus in accordance with the eleventh embodiment of the present invention. 図16Aは本発明の実施の形態12におけるプラズマ処理装置の構成を示す断面図である。FIG. 16A is a sectional view showing the structure of the plasma processing apparatus in accordance with the twelfth embodiment of the present invention. 図16Bは本発明の実施の形態12におけるプラズマ処理装置の構成を示す断面図である。FIG. 16B is a sectional view showing the structure of the plasma processing apparatus in accordance with the twelfth embodiment of the present invention. 図16Cは本発明の実施の形態12におけるプラズマ処理装置の構成を示す断面図である。FIG. 16C is a cross-sectional view showing the configuration of the plasma processing apparatus in accordance with the twelfth embodiment of the present invention. 図17は本発明の実施の形態13におけるプラズマ処理装置の構成を示す断面図である。FIG. 17 is a sectional view showing the structure of the plasma processing apparatus in accordance with the thirteenth embodiment of the present invention. 図18は本発明の実施の形態13におけるプラズマ処理装置の構成を示す断面図である。FIG. 18 is a sectional view showing the structure of the plasma processing apparatus in accordance with the thirteenth embodiment of the present invention. 図19は従来例におけるプラズマ処理装置の構成を示す断面図である。FIG. 19 is a cross-sectional view showing a configuration of a conventional plasma processing apparatus. 図20は従来例における、基板の最表面からの深さと温度の関係を示す概念図である。FIG. 20 is a conceptual diagram showing the relationship between the depth from the outermost surface of the substrate and the temperature in the conventional example.
 以下、本発明の実施の形態におけるプラズマ処理装置について図面を用いて説明する。 Hereinafter, a plasma processing apparatus according to an embodiment of the present invention will be described with reference to the drawings.
 (実施の形態1)
 以下、本発明の実施の形態1について、図1A,図1B及び図2を参照して説明する。
(Embodiment 1)
Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. 1A, 1B, and 2. FIG.
 図1Aは、本発明の実施の形態1におけるプラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニットの長尺方向に垂直な面で切った断面図である。図1Bは、誘導結合型プラズマトーチユニットの長尺方向に平行で、かつ、基材に垂直な面で切った断面図である。図1Aは図1Bの破線で切った断面図、図1Bは図1Aの破線で切った断面図、また、図2は、図1A及び図1Bに示した誘導結合型プラズマトーチユニットの組立構成図であり、各部品(一部)の斜視図を並べたものである。 FIG. 1A shows the configuration of the plasma processing apparatus according to Embodiment 1 of the present invention, and is a cross-sectional view taken along a plane perpendicular to the longitudinal direction of an inductively coupled plasma torch unit. FIG. 1B is a cross-sectional view of the inductively coupled plasma torch unit taken along a plane parallel to the longitudinal direction and perpendicular to the substrate. 1A is a sectional view taken along the broken line in FIG. 1B, FIG. 1B is a sectional view taken along the broken line in FIG. 1A, and FIG. 2 is an assembly configuration diagram of the inductively coupled plasma torch unit shown in FIGS. 1A and 1B. These are perspective views of parts (part).
 図1A,図1B及び図2において、基材載置台1上に基材2が載置されている。誘導結合型プラズマトーチユニットTにおいて、導体製のソレノイドコイル3が第一石英ブロック4及び第二石英ブロック5の近傍に配置される。第一石英ブロック4、第二石英ブロック5及び基材2の表面によって囲まれた空間により、誘電体製の長尺チャンバ7が画定される。長尺チャンバ7は、基材載置台1がなす面に垂直な面に沿って設けられている。 In FIG. 1A, FIG. 1B, and FIG. 2, the base material 2 is mounted on the base material mounting table 1. In the inductively coupled plasma torch unit T, a conductor solenoid coil 3 is disposed in the vicinity of the first quartz block 4 and the second quartz block 5. A long space 7 made of a dielectric material is defined by a space surrounded by the surfaces of the first quartz block 4, the second quartz block 5 and the substrate 2. The long chamber 7 is provided along a surface perpendicular to the surface formed by the substrate mounting table 1.
 また、ソレノイドコイル3の中心軸は、基材載置台1に平行で、かつ、長尺チャンバ7を含む平面に垂直な向きになるよう構成される。すなわち、ソレノイドコイル3の一巻きが構成する面は基材載置台がなす面に垂直な面に沿って、かつ、長尺チャンバ7を含む平面に沿って設けられている。また、ソレノイドコイル3は、第一石英ブロック4の外側、第二石英ブロック5の外側に各一つずつ配置され、かつ、長尺チャンバ7から離れた位置で直列に接続され、高周波電力を印加した際に長尺チャンバに発生させる高周波電磁界の向きが互いに等しくなるようになっている。 Further, the central axis of the solenoid coil 3 is configured to be parallel to the base material mounting table 1 and perpendicular to a plane including the long chamber 7. That is, the surface formed by one turn of the solenoid coil 3 is provided along a plane perpendicular to the surface formed by the substrate mounting table and along a plane including the long chamber 7. The solenoid coils 3 are arranged one by one on the outside of the first quartz block 4 and on the outside of the second quartz block 5 and connected in series at a position away from the long chamber 7 to apply high-frequency power. In this case, the directions of the high frequency electromagnetic fields generated in the long chamber are equal to each other.
 ソレノイドコイル3は、これら二つのうちのどちらか一方だけでも機能しうるが、本実施の形態のように、長尺チャンバ7を挟んで二つを設けた方が、長尺チャンバ7内に発生する電磁界の強度を強めることができるという利点がある。 The solenoid coil 3 can function with only one of these two, but it is generated in the long chamber 7 when the two are provided across the long chamber 7 as in the present embodiment. There is an advantage that the strength of the electromagnetic field can be increased.
 誘導結合型プラズマトーチユニットTは、全体が接地された導体製のシールド部材(図示しない)で囲われ、高周波の漏洩(ノイズ)が効果的に防止できるとともに、好ましくない異常放電などを効果的に防止できる。 The inductively coupled plasma torch unit T is entirely surrounded by a shield member (not shown) made of a grounded conductor, which can effectively prevent high-frequency leakage (noise) and effectively prevent undesirable abnormal discharge. Can be prevented.
 長尺チャンバ7は、第一石英ブロック4の一つの平面と、第二石英ブロック5に設けた溝に囲まれている。また、これらの誘電体部材としての2つの誘電体ブロックは貼り合わされている。つまり、長尺チャンバ7は、開口部8以外が誘電体で囲まれている構成である。また、長尺チャンバ7は環状である。ここでいう環状とは、一続きの閉じたヒモ状をなす形状を意味し、円形に限定されるものではない。本実施の形態においては、長方形(2つの長辺をなす直線部と、その両端に2つの短辺をなす直線が連結されてなる、一続きの閉じたヒモ状の形状)の長尺チャンバ7を例示している。 The long chamber 7 is surrounded by one plane of the first quartz block 4 and a groove provided in the second quartz block 5. Further, two dielectric blocks as these dielectric members are bonded together. That is, the long chamber 7 has a configuration in which a portion other than the opening 8 is surrounded by a dielectric. The long chamber 7 is annular. The term “annular” as used herein means a shape that forms a continuous string of strings, and is not limited to a circle. In the present embodiment, a long chamber 7 having a rectangular shape (a continuous closed string-like shape formed by connecting two straight lines having two long sides and two straight lines forming two short sides at both ends). Is illustrated.
 長尺チャンバ7に発生したプラズマPは、長尺チャンバ7における長尺で線状の開口部8において、基材2に接触する。また、長尺チャンバ7の長手方向と開口部8の長手方向とは平行に配置されている。また、開口部8の開口幅は、環状チャンバの太さ(環状チャンバを構成する、一続きの閉じた通路、図1Aの寸法d)にほぼ等しい。 The plasma P generated in the long chamber 7 comes into contact with the base material 2 at the long and linear opening 8 in the long chamber 7. Further, the longitudinal direction of the long chamber 7 and the longitudinal direction of the opening 8 are arranged in parallel. The opening width of the opening 8 is substantially equal to the thickness of the annular chamber (a series of closed passages constituting the annular chamber, dimension d in FIG. 1A).
 第二石英ブロック5の内部にプラズマガスマニホールド9が設けられている。プラズマガス供給配管10よりプラズマガスマニホールド9に供給されたガスは、第二石英ブロック5に設けられたガス導入部としてのプラズマガス供給穴11(貫通穴)を介して、長尺チャンバ7に導入される。このような構成により、長手方向に均一なガス流れを簡単に実現できる。プラズマガス供給配管10へ導入するガスの流量は、その上流にマスフローコントローラなどの流量制御装置を備えることにより制御される。 A plasma gas manifold 9 is provided inside the second quartz block 5. The gas supplied from the plasma gas supply pipe 10 to the plasma gas manifold 9 is introduced into the long chamber 7 through a plasma gas supply hole 11 (through hole) as a gas introduction part provided in the second quartz block 5. Is done. With such a configuration, a uniform gas flow in the longitudinal direction can be easily realized. The flow rate of the gas introduced into the plasma gas supply pipe 10 is controlled by providing a flow rate control device such as a mass flow controller upstream thereof.
 プラズマガス供給穴11は、長尺のスリットであるが、丸い穴状のものを長手方向に複数設けたものであってもよい。 The plasma gas supply hole 11 is a long slit, but a plurality of round holes may be provided in the longitudinal direction.
 ソレノイドコイル3は中空の銅管からなり、内部が冷媒流路となっている。また、接着剤6によってソレノイドコイル3の外皮部分と第一石英ブロック4及び第二石英ブロック5との熱伝導が確保されている。従って、ソレノイドコイル3を構成する銅管に水などの冷媒を流すことで、ソレノイドコイル3、第一石英ブロック4及び第二石英ブロック5の冷却が可能である。 The solenoid coil 3 is made of a hollow copper tube, and the inside is a refrigerant flow path. The adhesive 6 ensures heat conduction between the outer coil portion of the solenoid coil 3 and the first quartz block 4 and the second quartz block 5. Accordingly, the solenoid coil 3, the first quartz block 4, and the second quartz block 5 can be cooled by flowing a coolant such as water through the copper pipe constituting the solenoid coil 3.
 長方形の線状の開口部8が設けられ、基材載置台1(或いは、基材載置台1上の基材2)は、開口部8と対向して配置されている。この状態で、長尺チャンバ内にガスを供給しつつ、開口部8から基材2に向けてガスを噴出させながら、高周波電源Rよりソレノイドコイル3に高周波電力を供給することにより、長尺チャンバ7にプラズマPを発生させる。開口部8付近のプラズマを基材2に曝露することにより、基材2上の薄膜22をプラズマ処理することができる。 A rectangular linear opening 8 is provided, and the substrate mounting table 1 (or the substrate 2 on the substrate mounting table 1) is disposed to face the opening 8. In this state, the high-frequency power is supplied from the high-frequency power source R to the solenoid coil 3 while supplying the gas into the long chamber and jetting the gas from the opening 8 toward the base material 2. 7 generates plasma P. By exposing the plasma in the vicinity of the opening 8 to the substrate 2, the thin film 22 on the substrate 2 can be subjected to plasma treatment.
 開口部8の長手方向に対して垂直な向きに、長尺チャンバ7と基材載置台1とを相対的に移動させることで、基材2を処理する。つまり、図1Aの左右方向へ、図1Bの紙面に垂直な方向へ、誘導結合型プラズマトーチユニットTまたは基材載置台1を動かす。 The base material 2 is processed by relatively moving the long chamber 7 and the base material mounting table 1 in a direction perpendicular to the longitudinal direction of the opening 8. That is, the inductively coupled plasma torch unit T or the substrate mounting table 1 is moved in the left-right direction in FIG. 1A and in the direction perpendicular to the paper surface in FIG. 1B.
 長尺チャンバ7内に供給するガスとして種々のものが使用可能だが、プラズマの安定性、着火性、プラズマに暴露される部材の寿命などを考えると、不活性ガス主体であることが望ましい。なかでも、Arガスが典型的に用いられる。Arのみでプラズマを生成させた場合、プラズマは相当高温となる(10,000K以上)。 Although various gases can be used as the gas supplied into the long chamber 7, it is desirable that the main component is an inert gas in consideration of the stability of the plasma, the ignitability, and the life of the member exposed to the plasma. Among these, Ar gas is typically used. When plasma is generated only by Ar, the plasma becomes considerably high temperature (10,000 K or more).
 このようなプラズマ処理装置において、長尺チャンバ7内にプラズマガス供給穴11よりArまたはAr+H2ガスを供給しつつ、開口部8から基材2に向けてガスを噴出させながら、高周波電源Rより13.56MHzの高周波電力を、ソレノイドコイル3に供給することにより、長尺チャンバ7内に高周波電磁界を発生させることでプラズマPを発生させる。開口部8付近のプラズマを基材2に曝露するとともに走査することで、半導体膜の結晶化などの熱処理を行うことができる。 In such a plasma processing apparatus, the Ar or Ar + H 2 gas is supplied from the plasma gas supply hole 11 into the long chamber 7 and the gas is ejected from the opening 8 toward the substrate 2, while being supplied from the high frequency power supply R. By supplying high frequency power of 13.56 MHz to the solenoid coil 3, plasma P is generated by generating a high frequency electromagnetic field in the long chamber 7. By exposing and scanning the plasma in the vicinity of the opening 8 to the base material 2, heat treatment such as crystallization of the semiconductor film can be performed.
 プラズマ発生の条件としては、走査速度=50~3000mm/s、プラズマガス総流量=1~100SLM、Ar+H2ガス中のH2濃度=0~10%、高周波電力=0.5~10kW程度の値が適切である。ただし、これらの諸量のうち、ガス流量及び電力は、開口部8の長さ100mm当たりの値である。ガス流量や電力などのパラメータは、開口部8の長さに比例した量を投入することが適切と考えられるためである。 The plasma generation conditions are: scanning speed = 50 to 3000 mm / s, total plasma gas flow rate = 1 to 100 SLM, H 2 concentration in Ar + H 2 gas = 0 to 10%, and high frequency power = 0.5 to 10 kW Is appropriate. However, among these quantities, the gas flow rate and power are values per 100 mm of the length of the opening 8. This is because it is considered appropriate to input parameters proportional to the length of the opening 8 for parameters such as gas flow rate and electric power.
 このように、開口部8の長手方向と、基材載置台1とが平行に配置されたまま、開口部8の長手方向とは垂直な向きに、長尺チャンバと基材載置台1とを相対的に移動するので、図1Bに示すように、生成すべきプラズマの長さと、基材2の処理長さがほぼ等しくなるように構成することが可能となる。 In this manner, the long chamber and the substrate mounting table 1 are placed in a direction perpendicular to the longitudinal direction of the opening 8 while the longitudinal direction of the opening 8 and the substrate mounting table 1 are arranged in parallel. Since they move relatively, as shown in FIG. 1B, it is possible to configure the length of the plasma to be generated and the processing length of the substrate 2 to be substantially equal.
 また、本実施の形態においては、長尺チャンバ7は環状である。そして、開口部8を構成する第一石英ブロック4の最下面と基材2の表面との距離(図1Aの寸法g)を0.5mmとしている。このような長尺チャンバの構造がもたらす効果について、以下で説明する。 Further, in the present embodiment, the long chamber 7 is annular. And the distance (dimension g of FIG. 1A) of the lowermost surface of the 1st quartz block 4 which comprises the opening part 8, and the surface of the base material 2 is 0.5 mm. The effects brought about by such a long chamber structure will be described below.
 従来の一般的な円筒型の誘導結合型プラズマトーチと同様の、一塊の直方体形状の空間に大気圧誘導結合型プラズマを発生させると、円環状の(ドーナツ形状の)プラズマがチャンバ内に発生しやすい。すなわち、直方体形状のチャンバ内に円環状のプラズマが発生するので、チャンバ内はその一部のみが非常に高密度のプラズマとなり、長尺方向に均一な処理を行うことが困難である。 When atmospheric pressure inductively coupled plasma is generated in a block of rectangular parallelepiped space similar to a conventional general cylindrical inductively coupled plasma torch, an annular (donut-shaped) plasma is generated in the chamber. Cheap. That is, since an annular plasma is generated in a rectangular parallelepiped chamber, only a part of the chamber becomes a very high-density plasma, and it is difficult to perform uniform processing in the longitudinal direction.
 一方、本実施の形態においては、長尺の環状チャンバを構成しているため、その形状に沿って長方形の細長い長尺のプラズマPが発生する。従って、従来例に比べて、格段に長尺方向に均一な処理を行うことができる。また、チャンバの体積が従来例に比べて小さくなることから、単位体積当たりに作用する高周波電力が増すので、プラズマ発生効率がよくなるという利点もある。 On the other hand, in the present embodiment, since a long annular chamber is configured, a long and narrow rectangular plasma P is generated along the shape. Therefore, it is possible to perform processing that is much more uniform in the longitudinal direction than in the conventional example. Further, since the volume of the chamber is smaller than that of the conventional example, the high frequency power acting per unit volume is increased, so that there is an advantage that the plasma generation efficiency is improved.
 また、従来の一般的な誘導結合型プラズマトーチにおいては、ガス流量を増すと放電が不安定になることが指摘されている(例えば、Hironobu Yabuta et al., “Design and evaluation of dual inlet ICP torch for low gas consumption”, Journal of Analytical Atomic Spectrometry,17(2002)1090-1095頁を参照)。これは、チャンバ内で環状プラズマが揺動した際に、ガス流れの下流域において環状プラズマとコイルとの距離が離れすぎて誘導結合を維持できなくなり、プラズマが失火してしまうためと考えられる。 In addition, it has been pointed out that in a conventional general inductively coupled plasma torch, the discharge becomes unstable when the gas flow rate is increased (for example, Hironobu Yabuta et al., “Design and evaluation of dual ICP Torch”). for low gas consumption ", Journal of Analytical Atomic Spectrometry, 17 (2002) 1090-1095). This is presumably because when the annular plasma oscillates in the chamber, the distance between the annular plasma and the coil is too far away in the downstream region of the gas flow, so that inductive coupling cannot be maintained, and the plasma misfires.
 一方、本実施の形態においては、開口部8を構成する第一石英ブロック4の最下面と基材2の表面との距離gを0.5mmと極めて狭く構成しているため、環状のプラズマPが誘導結合型プラズマトーチユニットTと基材2との間の隙間に侵入することができず、長尺チャンバ7内(隙間よりも上流の領域)にとどまる。従って、環状のプラズマPの揺動が起きず、極めて安定した長尺の環状のプラズマPが維持される。よって、従来例に比べて、格段に安定したプラズマ発生が可能となる。 On the other hand, in the present embodiment, since the distance g between the lowermost surface of the first quartz block 4 constituting the opening 8 and the surface of the substrate 2 is very narrow as 0.5 mm, the annular plasma P Cannot enter the gap between the inductively coupled plasma torch unit T and the base material 2, and remains in the long chamber 7 (region upstream of the gap). Therefore, the oscillation of the annular plasma P does not occur, and an extremely stable long annular plasma P is maintained. Therefore, it is possible to generate plasma that is much more stable than the conventional example.
 また、プラズマPにおいて電子密度や活性粒子密度の高い部分を基材2の表面に曝露させるので、高速な処理、或いは、高温処理が可能となる。 In addition, since a portion having a high electron density or active particle density in the plasma P is exposed to the surface of the substrate 2, high-speed processing or high-temperature processing is possible.
 なお、開口部8を構成する第一石英ブロック4の最下面と基材2の表面との距離gについて詳細に調べたところ、gが1mm以下である場合に環状のプラズマPの揺動を抑制できることがわかった。一方、gがあまりに小さいと、長尺方向の部品加工や組立精度の影響が増し、また、通路を通過して基材2に到達するプラズマ流が弱まる。従って、距離gは0.1mm以上、好ましくは0.3mm以上に構成することが望ましい。 When the distance g between the lowermost surface of the first quartz block 4 constituting the opening 8 and the surface of the substrate 2 was examined in detail, the oscillation of the annular plasma P was suppressed when g was 1 mm or less. I knew it was possible. On the other hand, if g is too small, the influence of parts processing and assembly accuracy in the long direction increases, and the plasma flow that reaches the base material 2 through the passage is weakened. Accordingly, it is desirable that the distance g is 0.1 mm or more, preferably 0.3 mm or more.
 また、長尺チャンバ7の太さ(長尺チャンバ7を構成する、一続きの閉じた通路)dは、図1Aにおいては、長尺チャンバ7における、第二石英ブロック5に設けた溝の幅dとして表される。また、長尺チャンバ7の外径(長尺チャンバ7の全体としての大きさ)をeとすると、図1Aにおいては、第二石英ブロック5に設けた溝の上側の内壁面と、基材2とがなす距離eとして表される。長尺チャンバ7は長尺であるので、長辺部と短辺部とでは、長尺チャンバ7の外径eが異なる。具体的には、長辺部における長尺チャンバ7の外径eの方が短辺部における長尺チャンバ7の外径eよりも小さい。 Further, the thickness of the long chamber 7 (a continuous closed passage constituting the long chamber 7) d is the width of the groove provided in the second quartz block 5 in the long chamber 7 in FIG. 1A. expressed as d. If the outer diameter of the long chamber 7 (the size of the long chamber 7 as a whole) is e, in FIG. 1A, the inner wall surface above the groove provided in the second quartz block 5 and the substrate 2 Is expressed as a distance e formed by. Since the long chamber 7 is long, the outer diameter e of the long chamber 7 is different between the long side portion and the short side portion. Specifically, the outer diameter e of the long chamber 7 in the long side portion is smaller than the outer diameter e of the long chamber 7 in the short side portion.
 これらの寸法d(長尺チャンバ7の太さ)、e(長尺チャンバ7の外径)について実験的に詳細に調べたところ、dが1mm未満であると、長尺チャンバ7内には高密度の熱プラズマが極めて発生しにくくなることが判明した。また、eが10mm未満の場合も、長尺チャンバ7内には高密度の熱プラズマが極めて発生しにくくなることが判明した。こうした実験から、長尺チャンバ7の太さdは、1mm以上であることが好ましく、長尺チャンバ7の外径eは、10mm以上であることが好ましいことがわかった。 When these dimensions d (thickness of the long chamber 7) and e (outer diameter of the long chamber 7) were examined in detail experimentally, if d was less than 1 mm, the long chamber 7 had a high height. It has been found that thermal plasma with a density is extremely difficult to generate. It has also been found that even when e is less than 10 mm, high-density thermal plasma is hardly generated in the long chamber 7. From these experiments, it was found that the thickness d of the long chamber 7 is preferably 1 mm or more, and the outer diameter e of the long chamber 7 is preferably 10 mm or more.
 また、dが太すぎるとプラズマ発生効率が低下するので、長尺チャンバ7の太さdは10mm以下であることが望ましい。 In addition, if d is too thick, the plasma generation efficiency is lowered. Therefore, the thickness d of the long chamber 7 is preferably 10 mm or less.
 (実施の形態2)
 以下、本発明の実施の形態2について、図3を参照して説明する。
(Embodiment 2)
The second embodiment of the present invention will be described below with reference to FIG.
 図3は本発明の実施の形態2におけるプラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニットの組立構成図であり、各部品(一部)の斜視図を並べたものであり、図2に相当する。 FIG. 3 shows the configuration of the plasma processing apparatus according to Embodiment 2 of the present invention, is an assembly configuration diagram of an inductively coupled plasma torch unit, and is a perspective view of each part (part). This corresponds to FIG.
 実施の形態2においては、ソレノイド形のコイルではなく、平面状のスパイラルコイル23を用いる構成としている。 In the second embodiment, a planar spiral coil 23 is used instead of a solenoid type coil.
 このような構成では、スパイラルコイル23に同一の電流を流した際、実施の形態1に比べて長尺チャンバ7内に発生する電磁界の強度が強まるという利点がある。従って、より高速または高温のプラズマ処理が可能となる。 Such a configuration has an advantage that the strength of the electromagnetic field generated in the long chamber 7 is increased when the same current is passed through the spiral coil 23 as compared with the first embodiment. Accordingly, higher-speed or high-temperature plasma processing becomes possible.
 なお、スパイラルコイル23は、第一石英ブロック4の外側、第二石英ブロック5の外側に各一つずつ配置され、かつ、長尺チャンバ7から離れた位置で直列に接続され、高周波電力を印加した際に長尺チャンバ7に発生させる高周波電磁界の向きが互いに等しくなるようになっている。スパイラルコイル23は、これら二つのうちのどちらか一方だけでも機能しうる。 The spiral coils 23 are arranged one by one on the outside of the first quartz block 4 and on the outside of the second quartz block 5 and are connected in series at a position away from the long chamber 7 to apply high-frequency power. In this case, the directions of the high frequency electromagnetic fields generated in the long chamber 7 are equal to each other. The spiral coil 23 can function with only one of these two.
 或いは、二つのスパイラルコイル23を直列接続せず、片方のコイル23の一端を高周波に接続しつつ他端を接地することでコイルとして機能させるとともに、他方のコイル23を接地することにより、プラズマの着火性を向上することも可能である。 Alternatively, the two spiral coils 23 are not connected in series, but one end of one coil 23 is connected to a high frequency while the other end is grounded to function as a coil, and the other coil 23 is grounded, so that It is also possible to improve the ignitability.
 (実施の形態3)
 以下、本発明の実施の形態3について、図4を参照して説明する。
(Embodiment 3)
Embodiment 3 of the present invention will be described below with reference to FIG.
 図4は本発明の実施の形態3におけるプラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニットの組立構成図であり、各部品(一部)の斜視図を並べたものであり、図2に相当する。 FIG. 4 shows the configuration of the plasma processing apparatus according to Embodiment 3 of the present invention, is an assembly configuration diagram of an inductively coupled plasma torch unit, and is a perspective view of each part (part). This corresponds to FIG.
 実施の形態3においては、第一石英ブロック4の外側、第二石英ブロック5の外側に各一つずつ配置されたワンターンコイル43を、長尺チャンバ7から離れた位置で並列に接続しており、高周波電力を印加した際に長尺チャンバ7に発生させる高周波電磁界の向きが互いに等しくなるようになっている。 In Embodiment 3, one-turn coils 43 arranged one by one on the outside of the first quartz block 4 and on the outside of the second quartz block 5 are connected in parallel at a position away from the long chamber 7. The directions of the high-frequency electromagnetic fields generated in the long chamber 7 when high-frequency power is applied are equal to each other.
 このような構成により、コイル全体のインダクタンスが小さくなるので、高い周波数の高周波電力を用いたい場合、或いは、長尺チャンバ7をより長くしたい場合に有効で、より高い電力効率を得ることができる。 With such a configuration, since the inductance of the entire coil is reduced, it is effective when high frequency high frequency power is desired or when the long chamber 7 is desired to be longer, and higher power efficiency can be obtained.
 (実施の形態4)
 以下、本発明の実施の形態4について、図5~図7を参照して説明する。
(Embodiment 4)
Hereinafter, a fourth embodiment of the present invention will be described with reference to FIGS.
 図5は本発明の実施の形態4におけるプラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニットの長尺方向に垂直な面で切った断面図であり、図1Aに相当する。図6は、誘導結合型プラズマトーチユニットの組立構成図であり、各部品(一部)の斜視図を並べたものであり、図2に相当する。また、図7は、図6とは左右を逆向きにして一部の部品を並べたものである。 FIG. 5 shows the configuration of the plasma processing apparatus according to Embodiment 4 of the present invention, which is a cross-sectional view taken along a plane perpendicular to the longitudinal direction of the inductively coupled plasma torch unit, and corresponds to FIG. 1A. FIG. 6 is an assembly configuration diagram of the inductively coupled plasma torch unit, in which perspective views of parts (parts) are arranged, and corresponds to FIG. Further, FIG. 7 is a diagram in which some parts are arranged with the left and right directions opposite to those in FIG.
 実施の形態4においては、第二石英ブロック5の外側(長尺チャンバ7を構成する溝とは逆の面)に溝12を設け、その内部に接地された導体としての銅管13を配置している。溝12は長尺チャンバ7と平行な向きに長尺な形状であり、コイルの長尺方向の長さより短い。銅管13は、U字形に整形されており、ソレノイドコイル3と同様、接着剤6によって溝12に接着される。また、銅管13に水などの冷媒を流すことで、第二石英ブロック5のさらなる冷却が可能である。 In the fourth embodiment, a groove 12 is provided outside the second quartz block 5 (the surface opposite to the groove constituting the long chamber 7), and a copper tube 13 serving as a grounded conductor is disposed inside the groove 12. ing. The groove 12 has a long shape in a direction parallel to the long chamber 7 and is shorter than the length of the coil in the long direction. The copper tube 13 is shaped in a U shape, and is bonded to the groove 12 by the adhesive 6 like the solenoid coil 3. Further, the second quartz block 5 can be further cooled by flowing a coolant such as water through the copper tube 13.
 このような構成により、実施の形態1と比較して長尺チャンバ7内の静電界が高まるため、プラズマの着火性を高めることができる。また、冷却効率が高まるため、より高い高周波電力を印加することができるので、より高速な処理、或いは、より高温の処理が可能となる。 With such a configuration, since the electrostatic field in the long chamber 7 is increased as compared with the first embodiment, the ignitability of plasma can be improved. In addition, since the cooling efficiency is increased, higher high-frequency power can be applied, so that higher-speed processing or higher-temperature processing can be performed.
 (実施の形態5)
 以下、本発明の実施の形態5について、図8を参照して説明する。
(Embodiment 5)
The fifth embodiment of the present invention will be described below with reference to FIG.
 図8は本発明の実施の形態5におけるプラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニットの長尺方向に垂直な面で切った断面図であり、図1Aに相当する。 FIG. 8 shows the configuration of the plasma processing apparatus according to Embodiment 5 of the present invention, which is a cross-sectional view taken along a plane perpendicular to the longitudinal direction of the inductively coupled plasma torch unit, and corresponds to FIG. 1A.
 実施の形態5においては、第一石英ブロック4に貫通穴を設けるとともに、第二石英ブロック5に設けた溝12を囲う凸部を貫通穴に挿入する構成としている。その他の構成については、実施の形態4と同様である。 In the fifth embodiment, a through hole is provided in the first quartz block 4 and a convex portion surrounding the groove 12 provided in the second quartz block 5 is inserted into the through hole. Other configurations are the same as those in the fourth embodiment.
 このような構成により、接地した銅管13の配置を、より長尺チャンバ7に近づけることができる。従って、実施の形態4と比較して長尺チャンバ7内の静電界が高まるとともに冷却効率が高まるため、より高い高周波電力を印加することができ、より高速な処理、或いは、より高温の処理が可能となる。 With this configuration, the grounded copper tube 13 can be placed closer to the long chamber 7. Therefore, since the electrostatic field in the long chamber 7 is increased and the cooling efficiency is increased as compared with the fourth embodiment, higher high-frequency power can be applied, and higher-speed processing or higher-temperature processing can be performed. It becomes possible.
 (実施の形態6)
 以下、本発明の実施の形態6について、図9を参照して説明する。
(Embodiment 6)
Hereinafter, a sixth embodiment of the present invention will be described with reference to FIG.
 図9は本発明の実施の形態6におけるプラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニットの長尺方向に垂直な面で切った断面図あり、図1Aに相当する。 FIG. 9 shows the configuration of the plasma processing apparatus according to Embodiment 6 of the present invention, which is a cross-sectional view taken along a plane perpendicular to the longitudinal direction of the inductively coupled plasma torch unit, and corresponds to FIG. 1A.
 実施の形態6においては、第二石英ブロック5に上下二本の溝12を設け、各溝12に接地された銅管13を配置している点で、実施の形態5と異なる。 Embodiment 6 differs from Embodiment 5 in that the upper and lower grooves 12 are provided in the second quartz block 5 and a grounded copper tube 13 is disposed in each groove 12.
 このような構成により、接地した銅管13の配置を、さらに長尺チャンバ7に近づけることができる。従って、実施の形態4と比較して長尺チャンバ7内の静電界が高まるとともに冷却効率が高まるため、さらに高い高周波電力を印加することができ、さらに高速な処理、或いは、さらに高温の処理が可能となる。 With this configuration, the grounded copper tube 13 can be placed closer to the long chamber 7. Therefore, since the electrostatic field in the long chamber 7 is increased and the cooling efficiency is increased as compared with the fourth embodiment, higher radio frequency power can be applied, and higher speed processing or higher temperature processing can be performed. It becomes possible.
 (実施の形態7)
 以下、本発明の実施の形態7について、図10を参照して説明する。
(Embodiment 7)
Embodiment 7 of the present invention will be described below with reference to FIG.
 図10は本発明の実施の形態7におけるプラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニットの長尺方向に平行で、かつ、基材に垂直な面で切った断面図であり、図1Bに相当する。 FIG. 10 shows the configuration of the plasma processing apparatus according to Embodiment 7 of the present invention, and is a cross-sectional view taken along a plane parallel to the longitudinal direction of the inductively coupled plasma torch unit and perpendicular to the substrate. This corresponds to FIG. 1B.
  図10において、レーストラック形(2つの長辺をなす直線部と、その両端に2つの短辺をなす円、または楕円が連結されてなる、一続きの閉じたヒモ状の形状)の長尺チャンバを例示している。 In FIG. 10, the long length of a racetrack (a continuous closed string-like shape formed by connecting a straight portion having two long sides and a circle or ellipse having two short sides at both ends). The chamber is illustrated.
 このような構成により、高温のプラズマによる溝12の損傷や変形が小さくなり、誘電体部材の長寿命化を図ることができる。 With such a configuration, damage and deformation of the groove 12 due to high-temperature plasma are reduced, and the life of the dielectric member can be extended.
 (実施の形態8)
 以下、本発明の実施の形態8について、図11を参照して説明する。
(Embodiment 8)
Hereinafter, an eighth embodiment of the present invention will be described with reference to FIG.
 図11は本発明の実施の形態11におけるプラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニットの長尺方向に垂直な面で切った断面図あり、図1Aに相当する。 FIG. 11 shows the configuration of the plasma processing apparatus according to the eleventh embodiment of the present invention, which is a cross-sectional view taken along a plane perpendicular to the longitudinal direction of the inductively coupled plasma torch unit, and corresponds to FIG. 1A.
 図11において、第二石英ブロック5には、長尺チャンバ7を構成する溝の内側部分にガス流路14が設けられ、長尺チャンバ7を構成する長辺の一方である、誘導結合型プラズマトーチユニットTと基材2との間の空間への、Arガス供給を円滑化している。すなわち、実施の形態1においては、誘導結合型プラズマトーチユニットTと基材2との間の空間へのガス供給が、長尺チャンバ7を構成する短辺からのみなされていたのに対して、本実施の形態においては、2つの長辺間の隙間であるガス流路14を通じてガス供給が促進される。従って、誘導結合型プラズマトーチユニットTと基材2との間の空間におけるAr濃度が増す(実施の形態1では空気の巻き込みが多いため)。従って、より安定したプラズマを得ることができる。 In FIG. 11, the second quartz block 5 is provided with a gas flow path 14 in an inner portion of a groove constituting the long chamber 7, and inductively coupled plasma which is one of the long sides constituting the long chamber 7. Ar gas supply to the space between the torch unit T and the base material 2 is smoothed. That is, in the first embodiment, the gas supply to the space between the inductively coupled plasma torch unit T and the base material 2 is performed only from the short side constituting the long chamber 7, whereas In the present embodiment, gas supply is promoted through the gas flow path 14 which is a gap between two long sides. Therefore, the Ar concentration in the space between the inductively coupled plasma torch unit T and the base material 2 increases (since there is much air entrainment in the first embodiment). Therefore, more stable plasma can be obtained.
 なお、ガス流路14の厚さ(図11における左右方向の隙間の大きさ)は、長尺チャンバ7に形成されたリング状のプラズマが入り込まない程度に十分薄く構成する必要があり、dが1mm未満であると、長尺チャンバ7内には高密度の熱プラズマが極めて発生しにくくなるので、ガス流路14の厚さは1mm未満であることが望ましい。 Note that the thickness of the gas flow path 14 (the size of the gap in the left-right direction in FIG. 11) needs to be sufficiently thin so that the ring-shaped plasma formed in the long chamber 7 does not enter, and d is If the thickness is less than 1 mm, high-density thermal plasma is hardly generated in the long chamber 7. Therefore, the thickness of the gas flow path 14 is desirably less than 1 mm.
 (実施の形態9)
 以下、本発明の実施の形態9について、図12を参照して説明する。
(Embodiment 9)
Embodiment 9 of the present invention will be described below with reference to FIG.
 図12は本発明の実施の形態9におけるプラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニットの長尺方向に垂直な面で切った断面図あり、図1Aに相当する。 FIG. 12 shows the configuration of the plasma processing apparatus according to the ninth embodiment of the present invention, which is a cross-sectional view taken along a plane perpendicular to the longitudinal direction of the inductively coupled plasma torch unit, and corresponds to FIG. 1A.
 図12において、第二石英ブロック5には、長尺チャンバ7を構成する溝の内側部分にガス流路14が設けられ、かつ、長尺チャンバ7を構成する溝の内側部分にプラズマガスマニホールド9が設けられる。 In FIG. 12, the second quartz block 5 is provided with a gas flow path 14 in the inner part of the groove constituting the long chamber 7, and the plasma gas manifold 9 is provided in the inner part of the groove constituting the long chamber 7. Is provided.
 このような構成により、長尺チャンバ7を構成する2つの長辺へのガス供給がより均等化され、誘導結合型プラズマトーチユニットTと基材2との間の空間におけるAr濃度が増す(実施の形態1では空気の巻き込みが多いため)。従って、より安定したプラズマを得ることができる。 With such a configuration, the gas supply to the two long sides constituting the long chamber 7 is more equalized, and the Ar concentration in the space between the inductively coupled plasma torch unit T and the substrate 2 is increased (implementation). This is because there is much air entrainment in Form 1). Therefore, more stable plasma can be obtained.
 (実施の形態10)
 以下、本発明の実施の形態10について、図13を参照して説明する。
(Embodiment 10)
Embodiment 10 of the present invention will be described below with reference to FIG.
 図13は本発明の実施の形態10におけるプラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニットの長尺方向に垂直な面で切った断面図あり、図1Aに相当する。 FIG. 13 shows the configuration of the plasma processing apparatus according to the tenth embodiment of the present invention, which is a cross-sectional view taken along a plane perpendicular to the longitudinal direction of the inductively coupled plasma torch unit, and corresponds to FIG. 1A.
 図13において、第一石英ブロック4の最下部に設けた溝と、第二石英ブロック5に設けた溝が、図示していない短辺側の溝として第一石英ブロック4及び第二石英ブロックの双方に設けられた溝を介して、全体として環状の長尺チャンバ7を構成している。すなわち、長尺チャンバ7は、基材載置台1がなす面に垂直な面に沿って設けられているものの、わずかに傾斜した配置となっている。このような構成も、本発明の適用範囲内である。 In FIG. 13, the groove provided in the lowermost portion of the first quartz block 4 and the groove provided in the second quartz block 5 are grooves on the short side (not shown) of the first quartz block 4 and the second quartz block. An annular long chamber 7 as a whole is configured through grooves provided on both sides. That is, although the long chamber 7 is provided along a surface perpendicular to the surface formed by the substrate mounting table 1, the long chamber 7 is disposed slightly inclined. Such a configuration is also within the scope of the present invention.
 (実施の形態11)
 以下、本発明の実施の形態11について、図14及び図15を参照して説明する。
(Embodiment 11)
Hereinafter, an eleventh embodiment of the present invention will be described with reference to FIGS.
 図14は本発明の実施の形態11におけるプラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニットの長尺方向に垂直な面で切った断面図あり、図1Aに相当する。また、図15は、図14に示した誘導結合型プラズマトーチユニットの組立構成図であり、各部品(一部)の斜視図を並べたものであり、図2に相当する。 FIG. 14 shows the configuration of the plasma processing apparatus according to the eleventh embodiment of the present invention, which is a cross-sectional view taken along a plane perpendicular to the longitudinal direction of the inductively coupled plasma torch unit, and corresponds to FIG. 1A. FIG. 15 is an assembly configuration diagram of the inductively coupled plasma torch unit shown in FIG. 14, in which perspective views of parts (parts) are arranged, and corresponds to FIG. 2.
 図14及び図15において、第二石英ブロック5には、長尺チャンバ7を構成する溝の内側部分にガス流路14が設けられ、長尺チャンバ7を構成する長辺の一方である、誘導結合型プラズマトーチユニットTと基材2との間の空間への、Arガス供給を円滑化している。実施の形態8との違いは、ガス流路14が複数の比較的深い溝により構成されていることである。 14 and 15, the second quartz block 5 is provided with a gas flow path 14 in the inner part of the groove constituting the long chamber 7, and is a guide that is one of the long sides constituting the long chamber 7. Ar gas supply to the space between the combined plasma torch unit T and the substrate 2 is made smooth. The difference from the eighth embodiment is that the gas flow path 14 is composed of a plurality of relatively deep grooves.
 ガス流路14は、溝のみでなく、実施の形態8と同様の全体的に薄い隙間と、溝との双方によって構成してもよい。 The gas flow path 14 may be constituted not only by a groove but by both a thin gap and a groove as in the eighth embodiment.
 このような構成により、実施の形態8よりもさらにガス供給が促進され、誘導結合型プラズマトーチユニットTと基材2との間の空間におけるAr濃度が増すため、より安定したプラズマを得ることができる。 With such a configuration, the gas supply is further promoted than in the eighth embodiment, and the Ar concentration in the space between the inductively coupled plasma torch unit T and the substrate 2 is increased, so that more stable plasma can be obtained. it can.
 なお、ガス流路14の厚さ(図14における左右方向の隙間の大きさ)は、長尺チャンバ7に形成されたリング状のプラズマが入り込まない程度に十分薄く構成する必要がある。dが1mm未満であると長尺チャンバ7内には高密度の熱プラズマが極めて発生しにくくなるので、ガス流路14の幅は1mm未満であることが望ましい。 Note that the thickness of the gas flow path 14 (the size of the gap in the left-right direction in FIG. 14) needs to be sufficiently thin so that the ring-shaped plasma formed in the long chamber 7 does not enter. If d is less than 1 mm, high-density thermal plasma is very unlikely to be generated in the long chamber 7, so the width of the gas flow path 14 is preferably less than 1 mm.
 (実施の形態12)
 以下、本発明の実施の形態12について、図16A,図16B,図16Cを参照して説明する。
(Embodiment 12)
Hereinafter, a twelfth embodiment of the present invention will be described with reference to FIGS. 16A, 16B, and 16C.
 図16A,図16B,図16Cは本発明の実施の形態12におけるプラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニットの長尺方向に垂直な面で切った断面図ある。図16Aは誘導結合型プラズマトーチユニットTの着火シーケンス・加速を実施する準備段階を示し、図16Bはプラズマ処理中の段階を示し、図16Cはプラズマ処理が完了した後に減速・失火を実施する段階を示す。 FIGS. 16A, 16B, and 16C show the configuration of the plasma processing apparatus according to the twelfth embodiment of the present invention, and are cross-sectional views taken along a plane perpendicular to the longitudinal direction of the inductively coupled plasma torch unit. FIG. 16A shows a preparatory stage for performing the ignition sequence / acceleration of the inductively coupled plasma torch unit T, FIG. 16B shows a stage during the plasma processing, and FIG. Indicates.
 図16A,図16B,図16Cにおいて、基材載置台1の両隣に、平板状のカバー16が設けられている。カバー16は、基材2が配置された際に基材2の縁部を囲うように、基材載置台1の両隣に設けられる。また、カバー16の表面と、基材2の表面が、同一平面上に位置するよう構成される。カバー16の内部には、カバー16を冷却するための冷媒流路17が設けられている。カバー16は、装置をプラズマから保護する機能と、プラズマの着火・失火をスムーズに行えるよう、環状チャンバの形状を一定に保つ機能がある。基材2を基材載置台1上に載置した際に、カバー16と基材2との間に生ずる隙間wはできるだけ小さい方が好ましい。 16A, FIG. 16B, and FIG. 16C, a flat cover 16 is provided on both sides of the substrate mounting table 1. The cover 16 is provided on both sides of the substrate mounting table 1 so as to surround the edge of the substrate 2 when the substrate 2 is disposed. Further, the surface of the cover 16 and the surface of the substrate 2 are configured to be located on the same plane. A coolant channel 17 for cooling the cover 16 is provided inside the cover 16. The cover 16 has a function of protecting the apparatus from plasma and a function of keeping the shape of the annular chamber constant so that plasma can be ignited and misfired smoothly. It is preferable that the gap w generated between the cover 16 and the base material 2 when the base material 2 is placed on the base material mounting table 1 is as small as possible.
 なお、カバー16の少なくとも表面は、絶縁材料から構成されていることが好ましい。このような構成により、プラズマとカバー16との間でアーク放電が起きることを効果的に抑制できる。カバー16の少なくとも表面を絶縁材料から構成するに際して、カバー16全体を石英、セラミックスなどの絶縁体で構成してもよいし、ステンレス、アルミニウムなどの金属(導体)に、溶射、CVD、塗工などにより絶縁皮膜を形成したものを用いてもよい。 Note that at least the surface of the cover 16 is preferably made of an insulating material. With such a configuration, it is possible to effectively suppress the occurrence of arc discharge between the plasma and the cover 16. When at least the surface of the cover 16 is made of an insulating material, the entire cover 16 may be made of an insulator such as quartz or ceramic, or sprayed, CVD, coating, etc. on a metal (conductor) such as stainless steel or aluminum. You may use what formed the insulating film by.
 (実施の形態13)
 以下、本発明の実施の形態13について、図17及び図18を参照して説明する。
(Embodiment 13)
A thirteenth embodiment of the present invention will be described below with reference to FIGS.
 図17は本発明の実施の形態13におけるプラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニットの長尺方向に垂直な面で切った断面図ある。図17は誘導結合型プラズマトーチユニットTの着火シーケンス・加速を実施する準備段階を示している。また、図18は、本発明の実施の形態13におけるプラズマ処理装置の構成を示すもので、誘導結合型プラズマトーチユニットの長尺方向に平行で、かつ、基材に垂直な面で切った断面図であり、図1Bに相当する。 FIG. 17 shows the configuration of the plasma processing apparatus according to the thirteenth embodiment of the present invention, and is a cross-sectional view taken along a plane perpendicular to the longitudinal direction of the inductively coupled plasma torch unit. FIG. 17 shows a preparation stage in which the ignition sequence and acceleration of the inductively coupled plasma torch unit T are performed. FIG. 18 shows the configuration of the plasma processing apparatus according to the thirteenth embodiment of the present invention, and is a cross section cut by a plane parallel to the longitudinal direction of the inductively coupled plasma torch unit and perpendicular to the substrate. FIG. 6 corresponds to FIG. 1B.
 実施の形態12においては、基材2を基材載置台1上に載置した際に、カバー16と基材2との間に隙間wが生じる場合を例示した。しかし、本実施の形態においては、図17に示すように、この隙間ができないように構成している。実施の形態12においては、誘導結合型プラズマトーチユニットTが隙間wの近傍を通り過ぎる時に、プラズマが揺らいだり失火したりすることがあり得るが、本実施の形態ではこれを効果的に抑制できる。このような構成を実現するには、カバー16を可動にしておき、基材2を基材載置台1上に載置した後、モータ駆動機構、エア駆動機構、バネ駆動機構などを適宜用いてカバー16を基材2に向けてゆっくりと近づけ、押し当てる方法が考えられる。 In the twelfth embodiment, the case where the gap w is generated between the cover 16 and the base material 2 when the base material 2 is placed on the base material placing table 1 is exemplified. However, in the present embodiment, as shown in FIG. 17, the gap is not formed. In the twelfth embodiment, when the inductively coupled plasma torch unit T passes near the gap w, the plasma may fluctuate or misfire, but this embodiment can effectively suppress this. In order to realize such a configuration, the cover 16 is kept movable, and after the base material 2 is placed on the base material placing table 1, a motor driving mechanism, an air driving mechanism, a spring driving mechanism, or the like is used as appropriate. A method of approaching and pressing the cover 16 toward the base material 2 slowly can be considered.
 また、図18において、開口部8の長さが基材2の幅以上となっているので、一度の走査(誘導結合型プラズマトーチユニットTと基材載置台1とを相対的に移動すること)で基材2の表面近傍の薄膜22の全体を処理することができる。基材載置台1の両隣に、平板状のカバー16が設けられている。カバー16は、装置をプラズマから保護する機能と、プラズマ不安定化・失火を抑制できるよう、環状チャンバの形状を一定に保つ機能がある。 In FIG. 18, since the length of the opening 8 is equal to or larger than the width of the base material 2, a single scan (relative movement of the inductively coupled plasma torch unit T and the base material mounting table 1 is performed). ), The entire thin film 22 near the surface of the substrate 2 can be processed. A flat cover 16 is provided on both sides of the substrate mounting table 1. The cover 16 has a function of protecting the apparatus from plasma and a function of keeping the shape of the annular chamber constant so that plasma destabilization / misfire can be suppressed.
 なお、図18においては、カバー16の内部に冷媒流路を設けていないが、これは、誘導結合型プラズマトーチユニットTがカバー16上を短時間で通り過ぎるため、誘導結合型プラズマトーチユニットTからカバー16への熱エネルギー流入が比較的小さいためである。処理の性質によっては、カバー16の内部に冷媒流路を設けて水冷することが好ましい場合もありうる。 In FIG. 18, the refrigerant flow path is not provided inside the cover 16, but this is because the inductively coupled plasma torch unit T passes over the cover 16 in a short time, so that the inductively coupled plasma torch unit T This is because the heat energy flowing into the cover 16 is relatively small. Depending on the nature of the treatment, it may be preferable to provide a coolant channel in the cover 16 and cool it with water.
 以上述べたプラズマ処理装置及び方法は、本発明の適用範囲のうちの典型例を例示したに過ぎない。 The plasma processing apparatus and method described above merely exemplify typical examples of the scope of application of the present invention.
 例えば、誘導結合型プラズマトーチユニットTを、固定された基材載置台1に対して走査してもよいが、固定された誘導結合型プラズマトーチユニットTに対して、基材載置台1を走査してもよい。 For example, the inductively coupled plasma torch unit T may be scanned with respect to the fixed substrate mounting table 1, but the substrate mounting table 1 is scanned with respect to the fixed inductively coupled plasma torch unit T. May be.
 また、本発明の種々の構成によって、基材2の表面近傍を高温処理することが可能となる。具体的には、従来例で詳しく述べたTFT用半導体膜の結晶化や太陽電池用半導体膜の改質に適用可能であることは勿論、プラズマディスプレイパネルの保護層の清浄化や脱ガス低減、シリカ微粒子の集合体からなる誘電体層の表面平坦化や脱ガス低減、種々の電子デバイスのリフロー、固体不純物源を用いたプラズマドーピングなど、様々な表面処理に適用できる。また、太陽電池の製造方法としては、シリコンインゴットを粉砕して得られる粉末を基材上に塗布し、これにプラズマを照射して溶融させ多結晶シリコン膜を得る方法にも適用可能である。 Moreover, the various structures of the present invention enable high-temperature treatment of the vicinity of the surface of the substrate 2. Specifically, it can be applied to the crystallization of the TFT semiconductor film and the modification of the semiconductor film for solar cells described in detail in the conventional example, as well as cleaning of the protective layer of the plasma display panel and reduction of degassing, The present invention can be applied to various surface treatments such as surface planarization and degassing reduction of a dielectric layer made of an aggregate of silica fine particles, reflow of various electronic devices, and plasma doping using a solid impurity source. Moreover, as a manufacturing method of a solar cell, it can apply also to the method of apply | coating the powder obtained by grind | pulverizing a silicon ingot on a base material, and irradiating this with a plasma and fuse | melting it, and obtaining a polycrystalline silicon film.
 また、プラズマの着火を容易にするために、着火源を用いることも可能である。着火源としては、ガス給湯器などに用いられる点火用スパーク装置などを利用できる。 Also, it is possible to use an ignition source in order to facilitate plasma ignition. As an ignition source, an ignition spark device used for a gas water heater or the like can be used.
 なお、絶縁体の基材2を用いる場合は、本発明の適用は比較的容易であるが、基材2が導体や半導体である場合、或いは、薄膜22が導体や半導体である場合は、基材2の表面でアーク放電が発生しやすい。これを防ぐため、基材2の表面に絶縁膜を形成した後に、基材2の表面を処理する方法を用いることができる。 In the case where the insulating base material 2 is used, the application of the present invention is relatively easy. However, when the base material 2 is a conductor or a semiconductor, or when the thin film 22 is a conductor or a semiconductor, Arc discharge is likely to occur on the surface of the material 2. In order to prevent this, a method of treating the surface of the substrate 2 after forming an insulating film on the surface of the substrate 2 can be used.
 また、説明においては簡単のため「熱プラズマ」という言葉を用いているが、熱プラズマと低温プラズマの区分けは厳密には難しく、また、例えば、田中康規「熱プラズマにおける非平衡性」プラズマ核融合学会誌、Vol.82、No.8(2006)pp.479-483において解説されているように、熱的平衡性のみでプラズマの種類を区分することも困難である。本発明は、基材を熱処理することを一つの目的としており、熱プラズマ、熱平衡プラズマ、高温プラズマなどの用語にとらわれず、高温のプラズマを照射する技術に関するものに適用可能である。 In the description, the term “thermal plasma” is used for simplicity. However, it is difficult to distinguish between thermal plasma and low temperature plasma. For example, Tanaka Yasunori “Non-equilibrium in thermal plasma” Journal of Fusion Society, Vol. 82, no. 8 (2006) p. As described in 479-483, it is also difficult to classify the plasma types based on thermal equilibrium alone. The present invention has an object of heat-treating a substrate, and can be applied to a technique for irradiating high-temperature plasma without being bound by terms such as thermal plasma, thermal equilibrium plasma, and high-temperature plasma.
 また、基材の表面近傍をごく短時間だけ均一に高温熱処理する場合について詳しく例示したが、反応ガスによるプラズマまたはプラズマと反応ガス流を同時に基材へ照射して基材を低温プラズマ処理する場合においても、本発明は適用できる。プラズマガスに反応ガスを混ぜることにより、反応ガスによるプラズマを基材へ照射し、エッチングやCVDが実現できる。 In addition, the case where high-temperature heat treatment is performed in the vicinity of the surface of the base material uniformly for a very short time is illustrated in detail. The present invention can also be applied. By mixing the reaction gas with the plasma gas, the plasma by the reaction gas is irradiated onto the substrate, and etching and CVD can be realized.
 或いは、プラズマガスとしては希ガスまたは希ガスに少量のH2ガスを加えたガスを用いつつ、シールドガスとして反応ガスを含むガスをプラズマガスの周辺に供給することによって、プラズマと反応ガス流を同時に基材へ照射し、エッチング、CVD、ドーピングなどのプラズマ処理を実現することもできる。 Alternatively, by using a rare gas or a gas obtained by adding a small amount of H 2 gas to a rare gas as a plasma gas, a gas containing a reactive gas as a shielding gas is supplied to the periphery of the plasma gas, so that the plasma and the reactive gas flow are changed. At the same time, the substrate can be irradiated to realize plasma processing such as etching, CVD, and doping.
 プラズマガスとしてアルゴンを主成分とするガスを用いると、実施例で詳しく例示したように、熱プラズマが発生する。一方、プラズマガスとしてヘリウムを主成分とするガスを用いると、比較的低温のプラズマを発生させることができる。このような方法で、基材をあまり加熱することなく、エッチングや成膜などの処理が可能となる。 When a gas containing argon as a main component is used as the plasma gas, thermal plasma is generated as exemplified in detail in the embodiment. On the other hand, when a gas containing helium as a main component is used as the plasma gas, a relatively low temperature plasma can be generated. By such a method, processing such as etching and film formation can be performed without heating the substrate too much.
 エッチングに用いる反応ガスとしては、ハロゲン含有ガス、例えば、Cxy(x、yは自然数)、SF6などがあり、シリコンやシリコン化合物などをエッチングすることができる。反応ガスとしてO2を用いれば、有機物の除去、レジストアッシングなどが可能となる。CVDに用いる反応ガスとしては、モノシラン、ジシランなどがあり、シリコンやシリコン化合物の成膜が可能となる。或いは、TEOS(Tetraethoxysilane)に代表されるシリコンを含有した有機ガスとO2の混合ガスを用いれば、シリコン酸化膜を成膜することができる。 Examples of the reactive gas used for etching include a halogen-containing gas such as C x F y (x and y are natural numbers), SF 6, and the like, and silicon and silicon compounds can be etched. If O 2 is used as the reaction gas, it is possible to remove organic substances, resist ashing, and the like. The reactive gas used for CVD includes monosilane, disilane, and the like, and silicon or silicon compound can be formed. Alternatively, a silicon oxide film can be formed by using a mixed gas of O 2 and an organic gas containing silicon typified by TEOS (Tetraethoxysilane).
 その他、撥水性・親水性を改質する表面処理など、種々の低温プラズマ処理が可能である。本発明の構成は誘導結合型であるため、単位体積あたり高いパワー密度を投入してもアーク放電に移行しにくいため、より高密度なプラズマが発生可能である。その結果、速い反応速度が得られ、基材の所望の被処理領域全体を短時間で効率よく処理することが可能となる。 In addition, various low-temperature plasma treatments such as surface treatments that improve water repellency and hydrophilicity are possible. Since the structure of the present invention is an inductive coupling type, even if a high power density per unit volume is applied, it is difficult to shift to arc discharge, so that higher density plasma can be generated. As a result, a high reaction rate can be obtained, and the entire desired region to be treated of the substrate can be efficiently processed in a short time.
 本発明は、TFT用半導体膜の結晶化や太陽電池用半導体膜の改質に適用可能である。更に、プラズマディスプレイパネルの保護層の清浄化や脱ガス低減、シリカ微粒子の集合体からなる誘電体層の表面平坦化や脱ガス低減、種々の電子デバイスのリフロー、固体不純物源を用いたプラズマドーピングなど、様々な表面処理において、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、プラズマを安定的かつ効率的に発生させ、基材の所望の被処理領域全体を短時間で効率よく処理する上で有用な発明である。また、種々の電子デバイスなどの製造における、エッチング・成膜・ドーピング・表面改質などの低温プラズマ処理において、基材の所望の被処理領域全体を短時間で効率よく処理する上で有用な発明である。 The present invention is applicable to crystallization of a semiconductor film for TFT and modification of a semiconductor film for solar cell. In addition, the protective layer of the plasma display panel is cleaned and degassing is reduced, the surface of the dielectric layer composed of aggregates of silica particles is flattened and degassing is reduced, the reflow of various electronic devices, and plasma doping using a solid impurity source In various surface treatments, plasma is generated stably and efficiently in the vicinity of the surface of the base material for a short period of time, uniformly and efficiently, and the entire desired area of the base material is efficiently processed in a short time. It is an invention useful for processing well. In addition, the invention is useful for efficiently treating the entire desired region of the substrate in a short time in low temperature plasma processing such as etching, film formation, doping, and surface modification in the manufacture of various electronic devices. It is.
 1 基材載置台
 2 基材
 T 誘導結合型プラズマトーチユニット
 3 ソレノイドコイル
 4 第一石英ブロック
 5 第二石英ブロック
 6 接着剤
 7 長尺チャンバ
 8 開口部
 9 プラズマガスマニホールド
 10 プラズマガス供給配管
 11 プラズマガス供給穴
 12 溝
 13 銅管
 14 ガス流路
 P プラズマ
 22 薄膜
 23 スパイラルコイル
 43 ワンターンコイル
DESCRIPTION OF SYMBOLS 1 Base material mounting base 2 Base material T Inductive coupling type plasma torch unit 3 Solenoid coil 4 1st quartz block 5 2nd quartz block 6 Adhesive 7 Long chamber 8 Opening part 9 Plasma gas manifold 10 Plasma gas supply piping 11 Plasma gas Supply hole 12 Groove 13 Copper tube 14 Gas flow path P Plasma 22 Thin film 23 Spiral coil 43 One-turn coil

Claims (13)

  1. 開口部と、前記開口部に連通し、かつ、前記開口部以外が誘電体部材に囲まれた環状チャンバと、前記環状チャンバの内部にガスを導入するためのガス供給配管と、前記環状チャンバの近傍に設けられたコイルと、前記コイルに接続された高周波電源と、基材を前記開口部に近接して配置するための基材載置台とを備えたプラズマ処理装置であって、前記基材載置台がなす面に垂直な面に沿って前記環状チャンバを設けたこと、
    を特徴とするプラズマ処理装置。
    An opening, an annular chamber communicating with the opening and surrounded by a dielectric member except for the opening, a gas supply pipe for introducing gas into the annular chamber, and the annular chamber A plasma processing apparatus comprising: a coil provided in the vicinity; a high-frequency power source connected to the coil; and a substrate mounting table for disposing a substrate in proximity to the opening, Providing the annular chamber along a surface perpendicular to the surface formed by the mounting table;
    A plasma processing apparatus.
  2. 前記環状チャンバが、長尺な形状であり、前記開口部が、長尺で線状であり、前記コイルが、前記開口部の長手方向と平行な向きに長尺な形状をもち、前記開口部の長手方向に対して垂直な向きに、前記チャンバと前記基材載置台とを相対的に移動可能とする移動機構を備えた、請求項1記載のプラズマ処理装置。 The annular chamber has a long shape, the opening is long and linear, and the coil has a long shape in a direction parallel to the longitudinal direction of the opening, and the opening The plasma processing apparatus according to claim 1, further comprising a moving mechanism that allows the chamber and the substrate mounting table to move relative to each other in a direction perpendicular to the longitudinal direction.
  3. 前記コイルは、前記基材載置台がなす面に垂直な面に沿って設けられた、請求項1記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the coil is provided along a surface perpendicular to a surface formed by the substrate mounting table.
  4. 前記誘電体部材は、2つの誘電体ブロックを貼り合わせることによって構成され、前記2つの誘電体ブロックのうち、少なくとも片方に溝を形成することで環状チャンバを構成している、請求項1記載のプラズマ処理装置。 The said dielectric member is comprised by bonding together two dielectric blocks, The annular chamber is comprised by forming a groove | channel in at least one side of the said two dielectric blocks. Plasma processing equipment.
  5. 前記開口部の端面と前記基材との距離は1mm以下である、請求項1記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein a distance between an end surface of the opening and the base material is 1 mm or less.
  6. 前記環状チャンバの太さは、1mm以上10mm以下である、請求項1記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the annular chamber has a thickness of 1 mm to 10 mm.
  7. 前記環状チャンバの外径は、10mm以上である、請求項1記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein an outer diameter of the annular chamber is 10 mm or more.
  8. 前記開口部の開口幅は、前記環状チャンバの太さに等しい、請求項1記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein an opening width of the opening is equal to a thickness of the annular chamber.
  9. 前記コイルは、前記2つの誘電体ブロックの両方の外側に設けられた、請求項4記載のプラズマ処理装置。 The plasma processing apparatus according to claim 4, wherein the coil is provided outside both of the two dielectric blocks.
  10. 前記コイルよりも内側に接地された導体を設けた、請求項1記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, further comprising a conductor grounded inside the coil.
  11. 前記基材が配置された際に前記基材の縁部を囲うように、前記基材載置台の周囲に平板状のカバーが設けられている、請求項1記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein a flat cover is provided around the substrate mounting table so as to surround an edge of the substrate when the substrate is disposed.
  12. 前記カバーの表面と、前記基材が配置された際の前記基材の表面が、同一平面上に位置するよう構成されている、請求項11記載のプラズマ処理装置。 The plasma processing apparatus according to claim 11, wherein the surface of the cover and the surface of the base material when the base material is disposed are positioned on the same plane.
  13. 開口部以外が誘電体部材で囲まれた環状チャンバ内にガスを供給しつつ、コイルに高周波電力を供給することで、前記環状チャンバ内に高周波電磁界を発生させてプラズマを発生させ、基材を前記開口部に近接して配置しつつ、前記開口部近傍のプラズマに曝露することにより、前記基材の表面を処理するプラズマ処理方法であって、前記基材がなす面に垂直な面に沿って設けた前記環状チャンバ内にプラズマを発生させること、
    を特徴とするプラズマ処理方法。
    By supplying high frequency power to the coil while supplying gas into the annular chamber surrounded by the dielectric member except for the opening, plasma is generated by generating a high frequency electromagnetic field in the annular chamber, and A plasma processing method for treating the surface of the base material by exposing it to the plasma in the vicinity of the opening while being placed in proximity to the opening, the surface being perpendicular to the surface formed by the base material Generating a plasma in the annular chamber provided along;
    A plasma processing method characterized by the above.
PCT/JP2013/005373 2012-09-18 2013-09-11 Plasma processing device, and plasma processing method WO2014045547A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/423,056 US9601330B2 (en) 2012-09-18 2013-09-11 Plasma processing device, and plasma processing method
JP2014536582A JP6064174B2 (en) 2012-09-18 2013-09-11 Plasma processing apparatus and plasma processing method
KR1020157006427A KR101688338B1 (en) 2012-09-18 2013-09-11 Plasma processing device, and plasma processing method
CN201380047723.0A CN104641730B (en) 2012-09-18 2013-09-11 Plasma processing apparatus and method of plasma processing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-204066 2012-09-18
JP2012204066 2012-09-18

Publications (1)

Publication Number Publication Date
WO2014045547A1 true WO2014045547A1 (en) 2014-03-27

Family

ID=50340889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005373 WO2014045547A1 (en) 2012-09-18 2013-09-11 Plasma processing device, and plasma processing method

Country Status (5)

Country Link
US (1) US9601330B2 (en)
JP (1) JP6064174B2 (en)
KR (1) KR101688338B1 (en)
CN (1) CN104641730B (en)
WO (1) WO2014045547A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014209433A (en) * 2013-03-28 2014-11-06 パナソニック株式会社 Plasma processing device and method
JP2015215942A (en) * 2014-05-07 2015-12-03 国立大学法人金沢大学 Plasma generator and plasma generation method
JP2017183269A (en) * 2016-03-29 2017-10-05 パナソニックIpマネジメント株式会社 Plasma processing apparatus and plasma processing method, manufacturing method of electronic device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5617817B2 (en) * 2011-10-27 2014-11-05 パナソニック株式会社 Inductively coupled plasma processing apparatus and inductively coupled plasma processing method
JP6544902B2 (en) * 2014-09-18 2019-07-17 東京エレクトロン株式会社 Plasma processing system
US10722925B2 (en) * 2017-12-04 2020-07-28 Suss Micro Tec Photomask Equipment Gmbh & Co Kg Treatment head, treatment system and method for treating a local surface area of a substrate

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845736A (en) * 1981-09-01 1983-03-17 ラム・リサーチ・コーポレイション Plasma etching apparatus
JPH11251090A (en) * 1998-03-02 1999-09-17 Foi:Kk Plasma generation device
JP2001093871A (en) * 1999-09-24 2001-04-06 Tadahiro Omi Plasma arc cutting apparatus, manufacturing process and device
JP2004047192A (en) * 2002-07-10 2004-02-12 Adtec Plasma Technology Co Ltd Transformer discharge type plasma generating device by magnet-permeating core
JP2006332055A (en) * 2005-05-23 2006-12-07 New Power Plasma Co Ltd Plasma processing chamber, plasma reactor, atmospheric pressure plasma processing system and plasma processing system
JP2007287454A (en) * 2006-04-14 2007-11-01 Seiko Epson Corp Plasma apparatus
JP2007294414A (en) * 2006-04-24 2007-11-08 New Power Plasma Co Ltd Inductively coupled plasma reactor coupled with multiplex magnetic core
JP2008537282A (en) * 2005-03-11 2008-09-11 パーキンエルマー・インコーポレイテッド Plasma and how to use it
JP2009283435A (en) * 2008-05-20 2009-12-03 New Power Plasma Co Ltd Plasma reactor with built-in transformer
WO2011142125A1 (en) * 2010-05-13 2011-11-17 パナソニック株式会社 Plasma processing device and method
US20120097646A1 (en) * 2010-10-20 2012-04-26 Neil Martin Paul Benjamin Plasma ignition and sustaining methods and apparatuses
JP2012174500A (en) * 2011-02-22 2012-09-10 Panasonic Corp Plasma processing device and method
JP2013120685A (en) * 2011-12-07 2013-06-17 Panasonic Corp Plasma processing device and plasma processing method
JP2013120686A (en) * 2011-12-07 2013-06-17 Panasonic Corp Plasma processing device and plasma processing method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2872167B1 (en) 2004-06-25 2006-09-22 Arkema Sa MONO COMPONENT SYSTEM BASED ON COREACTIVE LATEX, PROCESS FOR THE PREPARATION AND APPLICATION IN THE FIELD OF FORMOL-FREE COATINGS
WO2007106076A2 (en) * 2006-03-03 2007-09-20 Prasad Gadgil Apparatus and method for large area multi-layer atomic layer chemical vapor processing of thin films
JP2008053634A (en) 2006-08-28 2008-03-06 Seiko Epson Corp Manufacturing methods of semiconductor film, and of semiconductor element, and electro-optical apparatus and electronic equipment
JP5321552B2 (en) 2010-08-05 2013-10-23 パナソニック株式会社 Plasma processing apparatus and method
JP5182340B2 (en) 2010-09-02 2013-04-17 パナソニック株式会社 Plasma processing apparatus and method
CN102387653B (en) 2010-09-02 2015-08-05 松下电器产业株式会社 Plasma processing apparatus and plasma processing method
JP5056926B2 (en) 2010-09-02 2012-10-24 パナソニック株式会社 Plasma processing apparatus and method
JP5110137B2 (en) 2010-09-02 2012-12-26 パナソニック株式会社 Plasma processing apparatus and method
JP5187367B2 (en) 2010-09-02 2013-04-24 パナソニック株式会社 Plasma processing apparatus and method
JP5263266B2 (en) * 2010-11-09 2013-08-14 パナソニック株式会社 Plasma doping method and apparatus
CN103094038B (en) 2011-10-27 2017-01-11 松下知识产权经营株式会社 Plasma processing apparatus and plasma processing method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845736A (en) * 1981-09-01 1983-03-17 ラム・リサーチ・コーポレイション Plasma etching apparatus
JPH11251090A (en) * 1998-03-02 1999-09-17 Foi:Kk Plasma generation device
JP2001093871A (en) * 1999-09-24 2001-04-06 Tadahiro Omi Plasma arc cutting apparatus, manufacturing process and device
JP2004047192A (en) * 2002-07-10 2004-02-12 Adtec Plasma Technology Co Ltd Transformer discharge type plasma generating device by magnet-permeating core
JP2008537282A (en) * 2005-03-11 2008-09-11 パーキンエルマー・インコーポレイテッド Plasma and how to use it
JP2006332055A (en) * 2005-05-23 2006-12-07 New Power Plasma Co Ltd Plasma processing chamber, plasma reactor, atmospheric pressure plasma processing system and plasma processing system
JP2007287454A (en) * 2006-04-14 2007-11-01 Seiko Epson Corp Plasma apparatus
JP2007294414A (en) * 2006-04-24 2007-11-08 New Power Plasma Co Ltd Inductively coupled plasma reactor coupled with multiplex magnetic core
JP2009283435A (en) * 2008-05-20 2009-12-03 New Power Plasma Co Ltd Plasma reactor with built-in transformer
WO2011142125A1 (en) * 2010-05-13 2011-11-17 パナソニック株式会社 Plasma processing device and method
US20120097646A1 (en) * 2010-10-20 2012-04-26 Neil Martin Paul Benjamin Plasma ignition and sustaining methods and apparatuses
JP2012174500A (en) * 2011-02-22 2012-09-10 Panasonic Corp Plasma processing device and method
JP2013120685A (en) * 2011-12-07 2013-06-17 Panasonic Corp Plasma processing device and plasma processing method
JP2013120686A (en) * 2011-12-07 2013-06-17 Panasonic Corp Plasma processing device and plasma processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014209433A (en) * 2013-03-28 2014-11-06 パナソニック株式会社 Plasma processing device and method
JP2015215942A (en) * 2014-05-07 2015-12-03 国立大学法人金沢大学 Plasma generator and plasma generation method
JP2017183269A (en) * 2016-03-29 2017-10-05 パナソニックIpマネジメント株式会社 Plasma processing apparatus and plasma processing method, manufacturing method of electronic device

Also Published As

Publication number Publication date
KR101688338B1 (en) 2016-12-20
JPWO2014045547A1 (en) 2016-08-18
US20150294866A1 (en) 2015-10-15
KR20150043445A (en) 2015-04-22
JP6064174B2 (en) 2017-01-25
CN104641730A (en) 2015-05-20
US9601330B2 (en) 2017-03-21
CN104641730B (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP5467371B2 (en) Inductively coupled plasma processing apparatus and inductively coupled plasma processing method
JP5510436B2 (en) Plasma processing apparatus and plasma processing method
JP5429268B2 (en) Plasma processing apparatus and plasma processing method
JP6191887B2 (en) Plasma processing equipment
JP6064174B2 (en) Plasma processing apparatus and plasma processing method
JP5617817B2 (en) Inductively coupled plasma processing apparatus and inductively coupled plasma processing method
JP5861045B2 (en) Plasma processing apparatus and method
JP2013229211A (en) Plasma processing apparatus and method
JP2013120687A (en) Plasma processing device and plasma processing method
JP5500097B2 (en) Inductively coupled plasma processing apparatus and method
JP2014060035A (en) Plasma processing method and plasma processing apparatus
JP5899422B2 (en) Inductively coupled plasma processing apparatus and method
JP5617818B2 (en) Inductively coupled plasma processing apparatus and inductively coupled plasma processing method
JP6064176B2 (en) Inductively coupled plasma processing apparatus and method
JP5821984B2 (en) Manufacturing method of electronic device
JP6264762B2 (en) Plasma processing apparatus and method
JP5906391B2 (en) Plasma processing apparatus and method
JP5578155B2 (en) Plasma processing apparatus and method
JP5413421B2 (en) Inductively coupled plasma processing apparatus and method
JP2013098067A (en) Plasma treatment device and method therefor
JP6074668B2 (en) Plasma processing apparatus and method
JP2013115026A (en) Plasma processing apparatus and plasma processing method
JP2013037978A (en) Plasma processing device and plasma processing method
JP2014060037A (en) Plasma processing apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839506

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014536582

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14423056

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157006427

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13839506

Country of ref document: EP

Kind code of ref document: A1