Nothing Special   »   [go: up one dir, main page]

WO2013133268A1 - Sheet for forming resin film for chips - Google Patents

Sheet for forming resin film for chips Download PDF

Info

Publication number
WO2013133268A1
WO2013133268A1 PCT/JP2013/055981 JP2013055981W WO2013133268A1 WO 2013133268 A1 WO2013133268 A1 WO 2013133268A1 JP 2013055981 W JP2013055981 W JP 2013055981W WO 2013133268 A1 WO2013133268 A1 WO 2013133268A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
film forming
forming layer
sheet
chip
Prior art date
Application number
PCT/JP2013/055981
Other languages
French (fr)
Japanese (ja)
Inventor
祐一郎 吾妻
市川 功
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN201380012849.4A priority Critical patent/CN104160491B/en
Priority to KR1020167000118A priority patent/KR20160006801A/en
Priority to KR1020167003119A priority patent/KR101969991B1/en
Priority to JP2014503852A priority patent/JP6239498B2/en
Priority to KR1020147022175A priority patent/KR101584473B1/en
Publication of WO2013133268A1 publication Critical patent/WO2013133268A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a resin film forming sheet for chips, which can efficiently form a resin film having a high thermal diffusivity on any surface of a semiconductor chip and can manufacture a highly reliable semiconductor device.
  • chip a semiconductor chip having electrodes such as bumps on a circuit surface
  • the electrodes are bonded to a substrate.
  • the surface (chip back surface) opposite to the circuit surface of the chip may be exposed.
  • the exposed chip back surface may be protected by an organic film.
  • a chip having a protective film made of an organic film is obtained by applying a liquid resin to the back surface of a wafer by spin coating, drying and curing, and cutting the protective film together with the wafer.
  • the thickness accuracy of the protective film formed in this way is not sufficient, the product yield may be lowered.
  • Patent Document 1 a protective film-forming sheet for a chip having a support sheet and a protective film-forming layer comprising a heat or energy ray-curable component and a binder polymer component formed on the support sheet is disclosed.
  • a semiconductor wafer manufactured in a large diameter state may be cut and separated (diced) into element pieces (semiconductor chips) and then transferred to the next bonding process.
  • the semiconductor wafer is subjected to dicing, cleaning, drying, expanding, and pick-up processes in a state of being adhered to the adhesive sheet in advance, and then transferred to the next bonding process.
  • Patent Document 2 various dicing / die bonding adhesive sheets having both a wafer fixing function and a die bonding function have been proposed in order to simplify the pickup process and the bonding process (for example, Patent Document 2). reference).
  • the adhesive sheet disclosed in Patent Document 2 enables so-called direct die bonding, and the application process of the die bonding adhesive can be omitted.
  • the adhesive sheet it is possible to obtain a semiconductor chip having an adhesive layer attached to the back surface, and direct die bonding such as between an organic substrate and a chip, between a lead frame and a chip, and between a chip and a chip is possible. It becomes.
  • Such an adhesive sheet achieves a wafer fixing function and a die bonding function by imparting fluidity to the adhesive layer, and heat or energy ray curing formed on the support sheet and the support sheet. It has an adhesive layer composed of an adhesive component and a binder polymer component.
  • an adhesive layer is applied to the bump formation surface, that is, the surface of the chip, Die bonding will be performed.
  • Patent Document 3 discloses a heat conductive adhesive film in which a magnetic field is applied to a film composition containing boron nitride powder and the boron nitride powder in the composition is oriented and solidified in a certain direction.
  • the heat conductive adhesive film formed using the film composition described in Patent Document 3 has a process of applying a magnetic field in the manufacturing process as described above, and the manufacturing process is complicated. Further, when the resin film is formed using the boron nitride powder having an average particle diameter of 1 to 2 ⁇ m disclosed in the examples of Patent Document 3, the resin film forming layer composition is thickened due to the small particle diameter. There are things to do. When the resin film forming layer composition is thickened, the coating suitability of the resin film forming layer composition is lowered, and it may be difficult to form a smooth resin film.
  • the present invention has been made in view of the above circumstances, and in the manufacturing process of a semiconductor device, the number of steps is increased, and the semiconductor wafer or chip is not subjected to special processing that makes the process complicated.
  • the object is to impart heat dissipation characteristics to the obtained semiconductor device.
  • the present inventors have set the heat diffusivity of the resin film formed on any surface of the semiconductor chip within a predetermined range, thereby improving the heat dissipation characteristics of the semiconductor device.
  • the present invention has been completed.
  • the present invention includes the following gist. [1] having a support sheet and a resin film forming layer formed on the support sheet;
  • the resin film-forming layer contains a binder polymer component (A), a curable component (B) and an inorganic filler (C), A resin film-forming sheet for chips, wherein the resin film-forming layer has a thermal diffusivity of 2 ⁇ 10 ⁇ 6 m 2 / s or more.
  • the inorganic filler (C) includes anisotropic shaped particles (C1) having an aspect ratio of 5 or more and an average particle size of 20 ⁇ m or less, and interfering particles (C2) having an average particle size of more than 20 ⁇ m.
  • anisotropic shaped particles (C1) having an aspect ratio of 5 or more and an average particle size of 20 ⁇ m or less
  • interfering particles (C2) having an average particle size of more than 20 ⁇ m.
  • a resin film is formed on any surface of a semiconductor chip, by using the chip resin film forming sheet according to the present invention, a semiconductor wafer and a chip can be obtained without special treatment. Reliability can be improved.
  • the resin film forming sheet for chips according to the present invention includes a support sheet and a resin film forming layer formed on the support sheet.
  • the resin film-forming layer contains a binder polymer component (A), a curable component (B), and an inorganic filler (C).
  • Binder polymer component The binder polymer component (A) is used for imparting sufficient adhesion and film forming property (sheet forming property) to the resin film forming layer.
  • the binder polymer component (A) conventionally known acrylic polymers, polyester resins, urethane resins, acrylic urethane resins, silicone resins, rubber-based polymers, and the like can be used.
  • the weight average molecular weight (Mw) of the binder polymer component (A) is preferably 10,000 to 2,000,000, more preferably 100,000 to 1,500,000. If the weight average molecular weight of the binder polymer component (A) is too low, the adhesive force between the resin film forming layer and the support sheet increases, and transfer failure of the resin film forming layer may occur. Adhesiveness may decrease and transfer to a chip or the like may not be possible, or the resin film may peel from the chip or the like after transfer.
  • the glass transition temperature (Tg) of the acrylic polymer is preferably in the range of ⁇ 60 to 50 ° C., more preferably ⁇ 50 to 40 ° C., and particularly preferably ⁇ 40 to 30 ° C. If the glass transition temperature of the acrylic polymer is too low, the peeling force between the resin film-forming layer and the support sheet may increase, resulting in poor transfer of the resin film-forming layer, and if it is too high, the adhesion of the resin film-forming layer will be reduced. However, the transfer to the chip or the like may be impossible, or the resin film may be peeled off from the chip or the like after the transfer.
  • the monomer constituting the acrylic polymer includes a (meth) acrylic acid ester monomer or a derivative thereof.
  • an alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms specifically methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (Meth) acrylate, etc .
  • polymerizing the monomer which has a hydroxyl group has preferable compatibility with the sclerosing
  • the acrylic polymer may be copolymerized with acrylic acid, methacrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, or the like.
  • thermoplastic resin may be blended as the binder polymer component (A).
  • the thermoplastic resin is a polymer excluding an acrylic polymer, and is blended in order to maintain the flexibility of the cured resin film.
  • the thermoplastic resin preferably has a weight average molecular weight of 1,000 to 100,000, more preferably 3,000 to 80,000.
  • the glass transition temperature of the thermoplastic resin is preferably -30 to 150 ° C, more preferably -20 to 120 ° C. If the glass transition temperature of the thermoplastic resin is too low, the peeling force between the resin film forming layer and the support sheet may increase, and transfer failure of the resin film forming layer may occur. Adhesive strength may be insufficient.
  • thermoplastic resin examples include polyester resin, urethane resin, acrylic urethane resin, phenoxy resin, silicone resin, polybutene, polybutadiene, and polystyrene. These can be used individually by 1 type or in mixture of 2 or more types.
  • thermoplastic resin When the thermoplastic resin is contained, it is contained in an amount of usually 1 to 60 parts by mass, preferably 1 to 30 parts by mass with respect to 100 parts by mass in total of the binder polymer component (A). When the content of the thermoplastic resin is within this range, the above effect can be obtained.
  • binder polymer component (A) a polymer having an energy ray polymerizable group in the side chain (energy ray curable polymer) may be used.
  • energy ray curable polymer has a function as a binder polymer component (A) and a function as a curable component (B) described later.
  • an energy beam polymerizable group what is necessary is just to have the same thing as the energy beam polymerizable functional group which the energy beam polymerizable compound mentioned later contains.
  • Examples of the polymer having an energy ray polymerizable group in the side chain include, for example, a polymer having a reactive functional group X in the side chain, a low molecular weight having a functional group Y capable of reacting with the reactive functional group X and an energy ray polymerizable group.
  • Examples include polymers prepared by reacting compounds.
  • the curable component (B) may be a thermosetting component and a thermosetting agent or an energy beam polymerizable compound. Moreover, you may use combining these.
  • the thermosetting component for example, an epoxy resin is preferable.
  • epoxy resin a conventionally known epoxy resin can be used.
  • epoxy resins include polyfunctional epoxy resins, biphenyl compounds, bisphenol A diglycidyl ether and hydrogenated products thereof, orthocresol novolac epoxy resins, dicyclopentadiene type epoxy resins, biphenyl type epoxy resins, and bisphenols.
  • epoxy compounds having two or more functional groups in the molecule such as A-type epoxy resin, bisphenol F-type epoxy resin, and phenylene skeleton-type epoxy resin. These can be used individually by 1 type or in combination of 2 or more types.
  • the thermosetting component in the resin film forming layer is preferably 1 with respect to 100 parts by mass of the binder polymer component (A). ⁇ 1500 parts by mass, more preferably 3 ⁇ 1200 parts by mass.
  • the content of the thermosetting component is less than 1 part by mass, sufficient adhesiveness may not be obtained.
  • the content exceeds 1500 parts by mass, the peeling force between the resin film-forming layer and the support sheet increases, and the resin film A transfer defect of the formation layer may occur.
  • thermosetting agent functions as a curing agent for thermosetting components, particularly epoxy resins.
  • a preferable thermosetting agent includes a compound having two or more functional groups capable of reacting with an epoxy group in one molecule.
  • the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxyl group, and an acid anhydride. Of these, phenolic hydroxyl groups, amino groups, acid anhydrides and the like are preferable, and phenolic hydroxyl groups and amino groups are more preferable.
  • phenolic curing agent examples include polyfunctional phenolic resins, biphenols, novolac type phenolic resins, dicyclopentadiene type phenolic resins, zylock type phenolic resins, and aralkylphenolic resins.
  • amine curing agent is DICY (dicyandiamide). These can be used individually by 1 type or in mixture of 2 or more types.
  • the content of the thermosetting agent is preferably 0.1 to 500 parts by mass and more preferably 1 to 200 parts by mass with respect to 100 parts by mass of the thermosetting component.
  • the content of the thermosetting agent is small, the adhesiveness may not be obtained due to insufficient curing, and when it is excessive, the moisture absorption rate of the resin film forming layer is increased and the reliability of the semiconductor device may be lowered.
  • the energy beam polymerizable compound contains an energy beam polymerizable group and is polymerized and cured when irradiated with energy rays such as ultraviolet rays and electron beams.
  • energy beam polymerizable compounds include trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, or 1,4-butylene glycol.
  • Examples include acrylate compounds such as diacrylate, 1,6-hexanediol diacrylate, polyethylene glycol diacrylate, oligoester acrylate, urethane acrylate oligomer, epoxy-modified acrylate, polyether acrylate, and itaconic acid oligomer.
  • acrylate compounds such as diacrylate, 1,6-hexanediol diacrylate, polyethylene glycol diacrylate, oligoester acrylate, urethane acrylate oligomer, epoxy-modified acrylate, polyether acrylate, and itaconic acid oligomer.
  • Such a compound has at least one polymerizable double bond in the molecule, and usually has a weight average molecular weight of about 100 to 30,000, preferably about 300 to 10,000.
  • the energy ray polymerizable compound is preferably used in an amount of 1 to 1500 in the resin film forming layer with respect to 100 parts by mass of the binder polymer component (A).
  • the inorganic filler (C) can improve the thermal diffusivity of the resin film-forming layer.
  • the thermal diffusivity is improved, and it becomes possible to efficiently diffuse the heat generated by the semiconductor device mounted with the semiconductor chip to which the resin film forming layer is attached.
  • the thermal diffusivity is a value obtained by dividing the thermal conductivity of the resin film by the product of the specific heat and specific gravity of the resin film, and indicates that the larger the thermal diffusivity, the better the heat dissipation characteristics.
  • the inorganic filler (C) examples include silica (1.3 W / m ⁇ K), zinc oxide (54 W / m ⁇ K), magnesium oxide (59 W / m ⁇ K), and alumina (38 W / m ⁇ K).
  • K titanium (21.9 W / m ⁇ K), silicon carbide (100 to 350 W / m ⁇ K), boron nitride (30 to 200 W / m ⁇ K), spherical particles of these, single crystal Examples thereof include fibers and glass fibers.
  • the numerical value in parenthesis shows thermal conductivity.
  • the inorganic filler (C) preferably contains anisotropic shaped particles (C1) and interfering particles (C2).
  • anisotropic shaped particles (C1) When only the anisotropically shaped particles (C1) are used as the inorganic filler (C), the long axis of the resin film forming layer due to stress or gravity applied to the anisotropically shaped particles (C1) during the production process (for example, coating process).
  • the proportion of anisotropically shaped particles whose direction is substantially the same as the width direction or the flow direction of the resin film forming layer increases, and it may be difficult to obtain a resin film forming layer having an excellent thermal diffusivity.
  • Anisotropically shaped particles exhibit good thermal diffusivity in the long axis direction.
  • the ratio of the anisotropically shaped particles in which the major axis direction and the thickness direction of the resin film forming layer are substantially the same increases, so that the heat generated in the semiconductor chip causes the resin film forming layer to It becomes easy to diverge through.
  • anisotropically shaped particles (C1) and interfering particles (C2) in combination as the inorganic filler (C)
  • the long axis direction of the anisotropically shaped particles is the same as that of the resin film forming layer. It can suppress that it becomes substantially the same as the width direction or the flow direction, and can increase the proportion of anisotropically shaped particles whose major axis direction and the thickness direction of the resin film forming layer are substantially the same.
  • the phrase “the major axis direction of anisotropically shaped particles and the thickness direction of the resin film forming layer are substantially the same” specifically means that the major axis direction of anisotropically shaped particles is the same as that of the resin film forming layer. It is in the range of ⁇ 45 to 45 ° with respect to the thickness direction.
  • anisotropically shaped particles have anisotropy, and the specific shape thereof has at least one shape selected from the group consisting of a plate shape, a needle shape, and a scale shape. Is preferred.
  • Preferred anisotropically shaped particles (C1) include nitride particles, and examples of nitride particles include particles of boron nitride, aluminum nitride, silicon nitride, and the like. Among these, boron nitride particles that are easy to obtain good thermal conductivity are preferable.
  • the average particle diameter of the anisotropically shaped particles (C1) is 20 ⁇ m or less, preferably 5 to 20 ⁇ m, more preferably 8 to 20 ⁇ m, and particularly preferably 10 to 15 ⁇ m. Moreover, it is preferable that the average particle diameter of anisotropically-shaped particle
  • the average particle diameter of the anisotropically shaped particles (C1) is the number average particle diameter calculated as the arithmetic average value of 20 long axis diameters of randomly selected anisotropically shaped particles (C1) selected with an electron microscope.
  • the particle size distribution (CV value) of the anisotropically shaped particles (C1) is preferably 5 to 40%, more preferably 10 to 30%. By setting the particle size distribution of the anisotropically shaped particles (C1) within the above range, efficient and uniform thermal conductivity can be achieved.
  • the CV value is an index of particle size variation, and the larger the CV value, the larger the particle size variation.
  • the CV value is small, since the particle diameter is uniform, the amount of small-sized particles entering the gap between the particles is reduced, and it becomes difficult to pack the inorganic filler (C) more densely. A resin film forming layer having high thermal conductivity may be difficult to obtain.
  • the particle diameter of the inorganic filler (C) may be larger than the thickness of the formed resin film forming layer, resulting in unevenness on the surface of the resin film forming layer.
  • the film-forming layer may have poor adhesion.
  • CV value is too large, it may become difficult to obtain the heat conductive composition which has uniform performance.
  • the particle size distribution (CV value) of the anisotropically shaped particles (C1) was observed with an electron microscope, the major axis diameter was measured for 200 or more particles, the standard deviation of the major axis diameter was determined, and the above average Using the particle diameter, (standard deviation of major axis diameter) / (average particle diameter) can be calculated.
  • the aspect ratio of the anisotropically shaped particles (C1) is 5 or more, preferably 5 to 30, more preferably 8 to 20, and still more preferably 10 to 15.
  • the aspect ratio is represented by (major axis number average diameter) / (minor axis number average diameter) of the anisotropically shaped particles (C1).
  • the short axis number average diameter and the long axis number average diameter are calculated as the arithmetic average values of the short axis diameter and the long axis diameter of 20 anisotropically-shaped particles randomly selected in a transmission electron micrograph.
  • the number average particle size is 5 or more, preferably 5 to 30, more preferably 8 to 20, and still more preferably 10 to 15.
  • the aspect ratio is represented by (major axis number average diameter) / (minor axis number average diameter) of the anisotropically shaped particles (C1).
  • the short axis number average diameter and the long axis number average diameter are calculated as the arithmetic average values of the short
  • the aspect ratio of the anisotropically shaped particles (C1) within the above range, the major axis direction of the anisotropically shaped particles (C1) and the width direction and the flow direction of the resin film forming layer are substantially reduced by the disturbing particles (C2). It becomes difficult to be the same, and the anisotropically shaped particles (C1) can form an efficient heat conduction path in the thickness direction of the resin film forming layer, thereby improving the thermal diffusivity.
  • the specific gravity of the anisotropically shaped particles (C1) is preferably 2 to 4 g / cm 3 , more preferably 2.2 to 3 g / cm 3 .
  • the thermal conductivity in the major axis direction of the anisotropically shaped particles (C1) is preferably 60 to 400 W / m ⁇ K, and more preferably 100 to 300 W / m ⁇ K.
  • the formed heat conduction path has high heat conductivity, and as a result, a resin film forming layer having a high thermal diffusivity can be obtained.
  • the shape of the interfering particles (C2) is approximately the major axis direction of the anisotropically shaped particles (C1) and the width direction and flow direction (direction parallel to the resin film forming layer) of the resin film forming layer.
  • the shape is not particularly limited as long as the shape is prevented from being the same, and the specific shape is preferably spherical.
  • Preferred interfering particles (C2) include silica particles and alumina particles, and alumina particles are particularly preferable.
  • the average particle diameter of the disturbing particles (C2) is more than 20 ⁇ m, preferably more than 20 ⁇ m and not more than 50 ⁇ m, more preferably more than 20 ⁇ m and not more than 30 ⁇ m.
  • the average particle diameter of the interfering particles (C2) is the number average particle diameter calculated as the arithmetic average value of 20 major axis diameters of 20 interfering particles (C2) randomly selected with an electron microscope. .
  • the average particle diameter of the interfering particles (C2) is preferably 0.6 to 0.95 times, more preferably 0.7 to 0.9 times the thickness of the resin film forming layer described later. .
  • the average particle diameter of the disturbing particles (C2) is less than 0.6 times the thickness of the resin film forming layer, the anisotropic shape in which the major axis direction is substantially the same as the width direction and the flow direction of the resin film forming layer.
  • the ratio of the particles (C1) increases, it becomes difficult to form an efficient heat conduction path, and the thermal diffusivity may decrease.
  • the surface of the resin film forming layer may be uneven and the adhesiveness of the resin film forming layer may be inferior.
  • it may be difficult to obtain a heat conductive resin film forming layer composition having uniform performance.
  • the particle size distribution (CV value) of the interfering particles (C2) is preferably 5 to 40%, more preferably 10 to 30%.
  • efficient and uniform thermal conductivity can be achieved.
  • the CV value is small, since the particle diameter is uniform, the amount of small-sized particles entering the gap between the particles is reduced, and it becomes difficult to pack the inorganic filler (C) more densely.
  • a resin film forming layer having high thermal conductivity may be difficult to obtain.
  • the particle diameter of the inorganic filler (C) may be larger than the thickness of the formed resin film forming layer, resulting in unevenness on the surface of the resin film forming layer.
  • the film-forming layer may have poor adhesion.
  • the particle size distribution (CV value) of the interfering particles (C2) is observed with an electron microscope, the major axis diameter is measured for 200 or more particles, the standard deviation of the major axis diameter is obtained, and the average particle diameter described above is obtained. Can be obtained by calculating (standard deviation of major axis diameter) / (average particle diameter).
  • the content of the inorganic filler (C) in the resin film forming layer is preferably 30 to 80% by mass, more preferably 40 to 70% by mass, and particularly preferably the total solid content constituting the resin film forming layer. 50 to 60% by mass.
  • the weight ratio of the anisotropic shaped particles (C1) to the disturbing particles (C2) is preferably 5: 1 to 1 : 5, more preferably 4: 1 to 1: 4.
  • the anisotropically shaped particles (C1) whose major axis direction and the thickness direction of the resin film forming layer are substantially the same. ) Ratio can be increased. As a result, the thermal diffusivity of the resin film forming layer can be improved. Moreover, the thickening of the composition for resin film formation layers can be suppressed, and a smooth resin film can be formed.
  • the concentration of the inorganic filler (C) in the resin film forming layer is preferably 30 to 50% by volume, more preferably 35 to 45% by volume.
  • the other component resin film-forming layer can contain the following components in addition to the binder polymer component (A), the curable component (B), and the inorganic filler (C).
  • Colorant (D) can be mix
  • the colorant organic or inorganic pigments and dyes are used. Among these, black pigments are preferable from the viewpoint of electromagnetic wave and infrared shielding properties. Examples of the black pigment include carbon black, iron oxide, manganese dioxide, aniline black, activated carbon, and the like, but are not limited thereto. Carbon black is particularly preferable from the viewpoint of increasing the reliability of the semiconductor device.
  • the blending amount of the colorant (D) is preferably 0.1 to 35 parts by mass, more preferably 0.5 to 25 parts by mass, particularly preferably 100 parts by mass of the total solid content constituting the resin film forming layer. Is 1 to 15 parts by mass.
  • the curing accelerator (E) is used to adjust the curing rate of the resin film forming layer.
  • the curing accelerator (E) is preferably used when an epoxy resin and a thermosetting agent are used in combination, particularly when at least a thermosetting component and a thermosetting agent are used as the curable component (B).
  • Preferred curing accelerators include tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole, 2-phenyl- Imidazoles such as 4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole; Organic phosphines such as tributylphosphine, diphenylphosphine and triphenylphosphine; And tetraphenylboron salts such as tetraphenylphosphonium tetraphenylborate and triphenylphosphinetetraphenylborate. These can be used individually by 1 type or in mixture of 2 or more types.
  • the curing accelerator (E) is preferably contained in an amount of 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the total amount of the thermosetting component and the thermosetting agent. It is. By containing the curing accelerator (E) in an amount within the above range, it has excellent adhesion even when exposed to high temperatures and high humidity, and has high reliability even when exposed to severe reflow conditions. Can be achieved. If the content of the curing accelerator (E) is small, sufficient adhesion cannot be obtained due to insufficient curing, and if it is excessive, the curing accelerator having high polarity will adhere to the resin film forming layer at high temperature and high humidity. The reliability of the semiconductor device is lowered by moving to the side and segregating.
  • the coupling agent (F) having a functional group that reacts with an inorganic substance and a functional group that reacts with an organic functional group is bonded to the chip of the resin film forming layer, adhesion, and / or aggregation of the resin film. It may be used to improve the property. Moreover, the water resistance can be improved by using a coupling agent (F), without impairing the heat resistance of the resin film obtained by hardening
  • the coupling agent (F) a compound in which the functional group that reacts with the organic functional group is a group that reacts with the functional group of the binder polymer component (A), the curable component (B), or the like is preferably used. .
  • a silane coupling agent is preferable.
  • Such coupling agents include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (methacryloxypropyl).
  • the coupling agent (F) is usually 0.1 to 20 parts by mass, preferably 0.2 to 10 parts by mass, based on 100 parts by mass in total of the binder polymer component (A) and the curable component (B). Preferably, it is contained at a ratio of 0.3 to 5 parts by mass. If the content of the coupling agent (F) is less than 0.1 parts by mass, the above effect may not be obtained, and if it exceeds 20 parts by mass, it may cause outgassing.
  • the photopolymerization initiator resin film-forming layer contains an energy beam polymerizable compound as the curable component (B)
  • energy beam polymerization is performed by irradiating energy rays such as ultraviolet rays when using the compound.
  • the active compound is cured.
  • the photopolymerization initiator (G) in the composition constituting the resin film forming layer, the polymerization curing time and the amount of light irradiation can be reduced.
  • photopolymerization initiator (G) examples include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, and benzoin dimethyl ketal.
  • a photoinitiator (G) can be used individually by 1 type or in combination of 2 or more types.
  • the blending ratio of the photopolymerization initiator (G) is preferably 0.1 to 10 parts by mass, and more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the energy beam polymerizable compound. If the amount is less than 0.1 parts by mass, satisfactory transferability may not be obtained due to insufficient photopolymerization. If the amount exceeds 10 parts by mass, a residue that does not contribute to photopolymerization is generated, and the curability of the resin film forming layer is not obtained. May be insufficient.
  • a crosslinking agent may be added to adjust the initial adhesive force and cohesive strength of the crosslinking agent resin film-forming layer.
  • examples of the crosslinking agent (H) include organic polyvalent isocyanate compounds and organic polyvalent imine compounds.
  • organic polyvalent isocyanate compounds include aromatic polyvalent isocyanate compounds, aliphatic polyvalent isocyanate compounds, alicyclic polyvalent isocyanate compounds, trimers of these organic polyvalent isocyanate compounds, and these organic polyvalent isocyanate compounds.
  • examples thereof include terminal isocyanate urethane prepolymers obtained by reacting with a polyol compound.
  • organic polyvalent isocyanate compound examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylene diisocyanate, diphenylmethane-4,4′-.
  • organic polyvalent imine compounds include N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), trimethylolpropane-tri- ⁇ -aziridinylpropionate, tetramethylol. Mention may be made of methane-tri- ⁇ -aziridinylpropionate and N, N′-toluene-2,4-bis (1-aziridinecarboxamide) triethylenemelamine.
  • the crosslinking agent (H) is usually in a ratio of 0.01 to 20 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the binder polymer component (A). Used.
  • additives may be blended in the general-purpose additive resin film forming layer as necessary.
  • additives include leveling agents, plasticizers, antistatic agents, antioxidants, ion scavengers, gettering agents, chain transfer agents, and the like.
  • the resin film-forming layer composed of the above components has adhesiveness and curability, and adheres by being pressed against a semiconductor wafer, a chip or the like in an uncured state, or by being pressed while being heated. After curing, a resin film having high impact resistance can be finally provided, the adhesive strength is excellent, and a sufficient protective function can be maintained even under severe high temperature and high humidity conditions.
  • the resin film forming layer is preferably used as a film adhesive for fixing a semiconductor chip to a substrate or another semiconductor chip, or as a protective film for a semiconductor wafer or a semiconductor chip.
  • the resin film forming layer may have a single layer structure, or may have a multilayer structure as long as one or more layers containing the above components are included.
  • the thermal diffusivity of the resin film forming layer is 2 ⁇ 10 ⁇ 6 m 2 / s or more, preferably 2.5 ⁇ 10 ⁇ 6 to 5 ⁇ 10 ⁇ 6 m 2 / s, more preferably 4 ⁇ 10 ⁇ 6. ⁇ 5 ⁇ 10 ⁇ 6 m 2 / s.
  • the thermal diffusivity of the cured resin film forming layer (resin film) is preferably 2 ⁇ 10 ⁇ 6 m 2 / s or more, more preferably 2.5 ⁇ 10 ⁇ 6 to 5 ⁇ 10 ⁇ 6 m 2. / S, particularly preferably 4 ⁇ 10 ⁇ 6 to 5 ⁇ 10 ⁇ 6 m 2 / s.
  • the thermal diffusivity of the resin film forming layer is less than 2 ⁇ 10 ⁇ 6 m 2 / s, the semiconductor device is deformed due to heat generation of the semiconductor device, causing failure or breakage, and the operation speed of the semiconductor device. Deterioration and malfunction may be caused, and the reliability of the semiconductor device may be reduced.
  • the thermal diffusivity of the resin film forming layer or the resin film within the above range, the heat dissipation characteristics of the semiconductor device can be improved, and a semiconductor device having excellent reliability can be manufactured.
  • thermal conductivity can be used as an index of heat dissipation characteristics of the resin film forming layer.
  • the thermal conductivity of the cured resin film forming layer (resin film) is 4 to 15 W / m ⁇ K is preferable, and 5 to 10 W / m ⁇ K is more preferable.
  • the resin film-forming layer is obtained by applying and drying a resin film-forming composition obtained by mixing each of the above components in an appropriate solvent on a support sheet.
  • the composition for forming a resin film may be applied on a process film different from the support sheet and dried to form a film, which may be transferred onto the support sheet.
  • the resin film forming sheet for chips according to the present invention is formed by releasably forming the resin film forming layer on a support sheet.
  • the shape of the resin film forming sheet for chips according to the present invention can take any shape such as a tape shape and a label shape.
  • the support sheet for example, polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polyethylene naphthalate film, polybutylene terephthalate film, Polyurethane film, ethylene vinyl acetate copolymer film, ionomer resin film, ethylene / (meth) acrylic acid copolymer film, ethylene / (meth) acrylic acid ester copolymer film, polystyrene film, polycarbonate film, polyimide film, fluorine A film such as a resin film is used. These crosslinked films are also used. Furthermore, these laminated films may be sufficient. Moreover, the film which colored these can also be used.
  • the support sheet is peeled off when used, and the resin film forming layer is transferred to a semiconductor wafer or chip.
  • the support sheet needs to withstand the heating during the heat curing of the resin film forming layer, and therefore, an annealed polyethylene terephthalate film having excellent heat resistance, polyethylene Naphthalate film, polymethylpentene film, and polyimide film are preferably used.
  • the surface tension of the support sheet is preferably 40 mN / m or less, more preferably 37 mN / m or less, and particularly preferably 35 mN / m or less. .
  • the lower limit is usually about 25 mN / m.
  • alkyd, silicone, fluorine, unsaturated polyester, polyolefin, wax, and the like are used as the release agent used for the release treatment.
  • alkyd, silicone, and fluorine release agents are heat resistant. This is preferable.
  • the release agent is applied as it is without a solvent, or diluted or emulsified with a solvent, and applied with a gravure coater, Mayer bar coater, air knife coater, roll coater, etc.
  • the laminate may be formed by room temperature, heat curing, electron beam curing, wet lamination, dry lamination, hot melt lamination, melt extrusion lamination, coextrusion processing, or the like.
  • the resin film forming layer may be laminated on a releasable pressure-sensitive adhesive layer provided on the support sheet.
  • the re-peelable pressure-sensitive adhesive layer may be a weakly-adhesive layer having an adhesive strength that can peel the resin film-forming layer, or an energy-ray-curable layer whose adhesive strength is reduced by energy beam irradiation. May be used.
  • the region where the resin film forming layer is laminated is preliminarily irradiated with energy rays to reduce adhesiveness, while other regions are irradiated with energy rays. For example, for the purpose of bonding to a jig, the adhesive strength may be kept high.
  • an energy beam shielding layer may be provided by printing or the like in a region corresponding to the other region of the substrate, and the energy beam irradiation may be performed from the substrate side.
  • the re-peelable pressure-sensitive adhesive layer can be formed of various conventionally known pressure-sensitive adhesives (for example, rubber-based, acrylic-based, silicone-based, urethane-based, vinyl ether-based general-purpose pressure-sensitive adhesives).
  • the thickness of the releasable pressure-sensitive adhesive layer is not particularly limited, but is usually 1 to 50 ⁇ m, preferably 3 to 20 ⁇ m.
  • the thickness of the support sheet is usually 10 to 500 ⁇ m, preferably 15 to 300 ⁇ m, particularly preferably 20 to 250 ⁇ m.
  • the thickness of the resin film forming layer is preferably 20 to 60 ⁇ m, more preferably 25 to 50 ⁇ m, and particularly preferably 30 to 45 ⁇ m.
  • the thickness of the resin film forming layer is preferably 2 to 5 ⁇ m larger than the average particle diameter of the disturbing particles (C2).
  • a light peelable release film is laminated on the upper surface of the resin film forming layer separately from the support sheet. May be.
  • the resin film forming layer of such a resin film forming sheet for chips can function as a film adhesive.
  • a film adhesive is usually applied to any surface of a semiconductor wafer, cut into individual chips through a dicing process, and then placed on a substrate (die bond), and a semiconductor chip is bonded and fixed through a curing process. Used for Such a film adhesive is sometimes referred to as a die attachment film. Since the semiconductor device using the resin film forming layer in the present invention as a film adhesive is excellent in heat dissipation characteristics, it is possible to suppress a decrease in reliability. *
  • the resin film forming layer of the chip resin film forming sheet can be a protective film.
  • the resin film forming layer is affixed to the back surface of the face-down chip semiconductor wafer or semiconductor chip, and has a function of protecting the semiconductor chip as an alternative to the sealing resin by being cured by an appropriate means.
  • the protective film has a function of reinforcing the wafer, so that damage to the wafer can be prevented.
  • the semiconductor device which used the resin film formation layer in this invention as the protective film is excellent in the thermal radiation characteristic, it can suppress the fall of the reliability.
  • a method of manufacturing a semiconductor device is a semiconductor device in which a resin film forming layer of the resin film forming sheet for a chip is pasted on the back surface of a semiconductor wafer having a circuit formed on the surface, and then the resin film is formed on the back surface. It is preferable to obtain a chip.
  • the resin film is preferably a protective film for a semiconductor wafer or a semiconductor chip.
  • the semiconductor chip manufacturing method according to the present invention preferably further includes the following steps (1) to (3), wherein the steps (1) to (3) are performed in an arbitrary order. Step (1): peeling the resin film forming layer or resin film and the support sheet, Step (2): The resin film forming layer is cured to obtain a resin film. Step (3): dicing the semiconductor wafer and the resin film forming layer or resin film.
  • the semiconductor wafer may be a silicon wafer or a compound semiconductor wafer such as gallium / arsenic. Formation of a circuit on the wafer surface can be performed by various methods including conventionally used methods such as an etching method and a lift-off method. Next, the opposite surface (back surface) of the circuit surface of the semiconductor wafer is ground.
  • the grinding method is not particularly limited, and grinding may be performed by a known means using a grinder or the like. At the time of back surface grinding, an adhesive sheet called a surface protection sheet is attached to the circuit surface in order to protect the circuit on the surface.
  • the circuit surface side (that is, the surface protection sheet side) of the wafer is fixed by a chuck table or the like, and the back surface side on which no circuit is formed is ground by a grinder.
  • the thickness of the wafer after grinding is not particularly limited, but is usually about 20 to 500 ⁇ m.
  • the crushed layer generated during back grinding is removed.
  • the crushed layer is removed by chemical etching, plasma etching, or the like.
  • steps (1) to (3) are performed in an arbitrary order. Details of this process are described in detail in JP-A-2002-280329. As an example, the case where it performs in order of process (1), (2), (3) is demonstrated.
  • the resin film forming layer of the above-mentioned resin film forming sheet for chips is attached to the back surface of a semiconductor wafer having a circuit formed on the front surface.
  • the support sheet is peeled from the resin film forming layer to obtain a laminate of the semiconductor wafer and the resin film forming layer.
  • the resin film forming layer is cured to form a resin film on the entire surface of the wafer.
  • a thermosetting component and a thermosetting agent are used as the curable component (B) in the resin film forming layer
  • the resin film forming layer is cured by thermosetting.
  • the resin film forming layer can be cured by irradiation with energy rays, and the thermosetting component, the thermosetting agent, energy
  • the linear polymerizable compound is used in combination, curing by heating and energy beam irradiation may be performed simultaneously or sequentially.
  • the energy rays to be irradiated include ultraviolet rays (UV) and electron beams (EB), and preferably ultraviolet rays are used.
  • the outstanding heat dissipation characteristic is provided by forming the resin film with a high thermal diffusivity. Further, compared with a coating method in which a coating solution for a resin film is directly applied to the back surface of a wafer or chip, the thickness of the resin film is excellent.
  • the laminated body of the semiconductor wafer and the resin film is diced for each circuit formed on the wafer surface. Dicing is performed so as to cut both the wafer and the resin film.
  • the wafer is diced by a conventional method using a dicing sheet. As a result, a semiconductor chip having a resin film on the back surface is obtained.
  • the semiconductor device can be manufactured by mounting the semiconductor chip on a predetermined base by the face-down method.
  • a semiconductor device can be manufactured by bonding a semiconductor chip having a resin film on the back surface to another member (on a chip mounting portion) such as a die pad portion or another semiconductor chip.
  • the resin film forming layer of the sheet is bonded to a semiconductor wafer, and the semiconductor wafer is diced into a semiconductor chip.
  • the resin film forming layer is fixedly left on either side of the semiconductor chip and peeled off from the support sheet, and the semiconductor chip is mounted on the die pad portion or another semiconductor chip via the resin film forming layer. It is preferable to include a step of placing. As an example, a manufacturing method for attaching a resin film forming layer to the back surface of a chip will be described below.
  • the ring frame and the back side of the semiconductor wafer are placed on the resin film forming layer of the chip resin film forming sheet according to the present invention, and lightly pressed to fix the semiconductor wafer. At that time, if it does not have tackiness at room temperature, it may be appropriately heated (although it is not limited, it is preferably 40 to 80 ° C.).
  • the resin film forming layer is irradiated with energy rays from the support sheet side, and the resin layer forming layer is preliminarily formed. It may be hardened to increase the cohesive force of the resin film forming layer and decrease the adhesive force between the resin film forming layer and the support sheet.
  • the cutting depth at this time is a depth that takes into account the sum of the thickness of the semiconductor wafer and the thickness of the resin film forming layer and the amount of wear of the dicing saw.
  • the energy beam irradiation may be performed at any stage after the semiconductor wafer is pasted and before the semiconductor chip is peeled off (pickup). For example, the irradiation may be performed after dicing or after the following expanding step. Good. Further, the energy beam irradiation may be performed in a plurality of times.
  • the resin film forming sheet for chips is expanded, the interval between the semiconductor chips is expanded, and the semiconductor chips can be picked up more easily. At this time, a deviation occurs between the resin film forming layer and the support sheet, the adhesive force between the resin film forming layer and the support sheet is reduced, and the pick-up property of the semiconductor chip is improved. When the semiconductor chip is picked up in this manner, the cut resin film forming layer can be adhered to the back surface of the semiconductor chip and peeled off from the support sheet.
  • the semiconductor chip is placed on the die pad of the lead frame or on the surface of another semiconductor chip (lower chip) through the resin film forming layer (hereinafter, the die pad or lower chip surface on which the chip is mounted is referred to as “chip mounting portion”. ).
  • the chip mounting portion is heated before or after the semiconductor chip is placed.
  • the heating temperature is usually 80 to 200 ° C., preferably 100 to 180 ° C.
  • the heating time is usually 0.1 seconds to 5 minutes, preferably 0.5 seconds to 3 minutes.
  • the pressure is usually 1 kPa to 200 MPa.
  • the heating conditions at this time are in the above heating temperature range, and the heating time is usually 1 to 180 minutes, preferably 10 to 120 minutes.
  • the resin film forming layer may be cured by using a heat in resin sealing that is normally performed in package manufacturing, without temporarily performing the heat treatment after placement.
  • the resin film formation layer hardens
  • the resin film forming layer is fluidized under die bonding conditions, the resin film forming layer is sufficiently embedded in the unevenness of the chip mounting portion, and generation of voids can be prevented and the reliability of the semiconductor device is improved.
  • the thermal diffusivity of the resin film forming layer is high, the semiconductor device has excellent heat dissipation characteristics, and it is possible to suppress a decrease in reliability.
  • the resin film-forming sheet for chips of the present invention can be used for bonding semiconductor compounds, glass, ceramics, metals, etc., in addition to the above-described usage methods.
  • the resin film forming layer (thickness: 40 ⁇ m) was cut to obtain a square sample with each piece being 1 cm. Next, the sample was heated and cured (130 ° C., 2 hours), and then the thermal conductivity of the sample was measured using a thermal conductivity measuring device (eye phase mobile 1u manufactured by ai-phase). . Thereafter, the thermal diffusivity of the sample was calculated from the specific heat and specific gravity of the sample, and was used as the thermal diffusivity of the resin film. The case where the thermal diffusivity was 2 ⁇ 10 ⁇ 6 m 2 / s or more was judged as “good”, and the case where it was less than 2 ⁇ 10 ⁇ 6 m 2 / s was judged as “bad”.
  • Binder polymer component copolymer of 85 parts by weight of methyl methacrylate and 15 parts by weight of 2-hydroxyethyl acrylate (weight average molecular weight: 400,000, glass transition temperature: 6 ° C.)
  • Curing component (B1) Bisphenol A type epoxy resin (epoxy equivalent 180 to 200 g / eq)
  • B2) Dicyclopentadiene type epoxy resin (Epicron HP-7200HH, manufactured by Dainippon Ink & Chemicals, Inc.)
  • B3 Dicyandiamide Adeka Hardener 3636AS manufactured by Asahi Denka
  • Inorganic filler (C1) Boron nitride particles (UHP-2, manufactured by Showa Denko KK, shape: plate, average particle diameter 11.8 ⁇ m, aspect ratio 11.2, major axis thermal conductivity 200 W / m ⁇ K, specific gravity 2
  • Examples and Comparative Examples The above components were blended in the amounts shown in Table 1 to obtain a resin film forming composition.
  • a methyl ethyl ketone solution (solid concentration 61% by weight) of the obtained composition was dried on the release-treated surface of a support sheet (SP-PET 381031, thickness 38 ⁇ m manufactured by Lintec Co., Ltd.) that had been subjected to a release treatment with silicone, and then 40 ⁇ m (Comparative Example). 3 is applied to a thickness of 60 ⁇ m) and dried (drying conditions: 110 ° C. for 1 minute in an oven) to form a resin film forming layer on the support sheet, thereby obtaining a resin film forming sheet for chips. It was.
  • the resin film-forming layer of the chip resin film-forming sheet of the example exhibited an excellent thermal diffusivity. Therefore, it has a support sheet and a resin film forming layer formed on the support sheet, and the resin film forming layer contains a binder polymer component (A), a curable component (B), and an inorganic filler (C).
  • the resin film forming layer contains a binder polymer component (A), a curable component (B), and an inorganic filler (C).
  • a highly reliable semiconductor device can be obtained by using a resin film forming sheet for a chip in which the thermal diffusivity of the resin film forming layer is 2 ⁇ 10 ⁇ 6 m 2 / s or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Die Bonding (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

[Problem] To impart heat release properties to a resulting semiconductor device without increasing the number of semiconductor device production steps or subjecting the semiconductor wafer or chip to special treatment that will complicate the process. [Solution] The sheet for forming a resin film for chips comprises a support sheet and a resin film-forming layer formed on the support sheet, wherein the resin film-forming layer comprises binder polymer component (A), curable component (B) and inorganic filler (C), and the thermal diffusivity of the resin film-forming layer is 2 x 10-6 m2/s or greater.

Description

チップ用樹脂膜形成用シートResin film forming sheet for chips
 本発明は、半導体チップのいずれかの面に熱拡散率の高い樹脂膜を効率良く形成でき、かつ信頼性の高い半導体装置を製造することが可能なチップ用樹脂膜形成用シートに関する。 The present invention relates to a resin film forming sheet for chips, which can efficiently form a resin film having a high thermal diffusivity on any surface of a semiconductor chip and can manufacture a highly reliable semiconductor device.
 近年、いわゆるフェースダウン(face down)方式と呼ばれる実装法を用いた半導体装置の製造が行われている。フェースダウン方式においては、回路面上にバンプなどの電極を有する半導体チップ(以下、単に「チップ」ともいう。)が用いられ、該電極が基板と接合される。このため、チップの回路面とは反対側の面(チップ裏面)は剥き出しとなることがある。 In recent years, semiconductor devices have been manufactured using a so-called “face-down” mounting method. In the face-down method, a semiconductor chip (hereinafter simply referred to as “chip”) having electrodes such as bumps on a circuit surface is used, and the electrodes are bonded to a substrate. For this reason, the surface (chip back surface) opposite to the circuit surface of the chip may be exposed.
 この剥き出しとなったチップ裏面は、有機膜により保護されることがある。従来、この有機膜からなる保護膜を有するチップは、液状の樹脂をスピンコート法によりウエハ裏面に塗布し、乾燥し、硬化してウエハとともに保護膜を切断して得られる。しかしながら、このようにして形成される保護膜の厚み精度は充分でないため、製品の歩留まりが低下することがあった。 The exposed chip back surface may be protected by an organic film. Conventionally, a chip having a protective film made of an organic film is obtained by applying a liquid resin to the back surface of a wafer by spin coating, drying and curing, and cutting the protective film together with the wafer. However, since the thickness accuracy of the protective film formed in this way is not sufficient, the product yield may be lowered.
 上記問題を解決するため、支持シートと、該支持シート上に形成された、熱またはエネルギー線硬化性成分とバインダーポリマー成分とからなる保護膜形成層を有するチップ用保護膜形成用シートが開示されている(特許文献1)。 In order to solve the above problems, a protective film-forming sheet for a chip having a support sheet and a protective film-forming layer comprising a heat or energy ray-curable component and a binder polymer component formed on the support sheet is disclosed. (Patent Document 1).
 また、大径の状態で製造される半導体ウエハは、素子小片(半導体チップ)に切断分離(ダイシング)された後に、次工程であるボンディング工程に移されることもある。この際、半導体ウエハは予め接着シートに貼着された状態でダイシング、洗浄、乾燥、エキスパンディングおよびピックアップの各工程が加えられた後、次工程のボンディング工程に移送される。 In addition, a semiconductor wafer manufactured in a large diameter state may be cut and separated (diced) into element pieces (semiconductor chips) and then transferred to the next bonding process. At this time, the semiconductor wafer is subjected to dicing, cleaning, drying, expanding, and pick-up processes in a state of being adhered to the adhesive sheet in advance, and then transferred to the next bonding process.
 これらの工程の中で、ピックアップ工程およびボンディング工程のプロセスを簡略化するため、ウエハ固定機能とダイ接着機能とを同時に兼ね備えたダイシング・ダイボンディング用接着シートが種々提案されている(例えば特許文献2参照)。特許文献2に開示されている接着シートは、いわゆるダイレクトダイボンディングを可能にし、ダイ接着用接着剤の塗布工程を省略できるようになる。例えば、前記接着シートを用いることにより、裏面に接着剤層が貼付された半導体チップを得ることができ、有機基板-チップ間、リードフレーム-チップ間、チップ-チップ間などのダイレクトダイボンディングが可能となる。このような接着シートは、接着剤層に流動性を持たせることで、ウエハ固定機能とダイ接着機能を達成しており、支持シートと、該支持シート上に形成された、熱またはエネルギー線硬化性成分とバインダーポリマー成分とからなる接着剤層を有する。 Among these processes, various dicing / die bonding adhesive sheets having both a wafer fixing function and a die bonding function have been proposed in order to simplify the pickup process and the bonding process (for example, Patent Document 2). reference). The adhesive sheet disclosed in Patent Document 2 enables so-called direct die bonding, and the application process of the die bonding adhesive can be omitted. For example, by using the adhesive sheet, it is possible to obtain a semiconductor chip having an adhesive layer attached to the back surface, and direct die bonding such as between an organic substrate and a chip, between a lead frame and a chip, and between a chip and a chip is possible. It becomes. Such an adhesive sheet achieves a wafer fixing function and a die bonding function by imparting fluidity to the adhesive layer, and heat or energy ray curing formed on the support sheet and the support sheet. It has an adhesive layer composed of an adhesive component and a binder polymer component.
 また、チップのバンプ(電極)形成面をチップ搭載部に対向させてダイボンドするフェースダウン方式のチップに接着シートを用いる場合には、接着剤層をバンプ形成面、すなわちチップの表面に貼付し、ダイボンドを行うこととなる。 In addition, when using an adhesive sheet for a face-down type chip that is die-bonded with the bump (electrode) formation surface of the chip facing the chip mounting portion, an adhesive layer is applied to the bump formation surface, that is, the surface of the chip, Die bonding will be performed.
 近年の半導体装置の高密度化および半導体装置の製造工程の高速化に伴い、半導体装置からの発熱が問題となってきている。半導体装置の発熱により、半導体装置が変形し、故障や破損の原因となることや、半導体装置の演算速度の低下や誤作動を招き、半導体装置の信頼性を低下させることがある。このため、高性能な半導体装置においては、効率的な放熱特性が求められており、熱拡散率が良好な充填剤を、保護膜形成層や接着剤層等の樹脂膜に用いることが検討されている。たとえば、特許文献3には、窒化ホウ素粉末を含むフィルム組成物に磁場を印加し、組成物中の窒化ホウ素粉末を一定方向に配向させて固化させた熱伝導性接着フィルムが開示されている。 With the recent increase in the density of semiconductor devices and the speeding up of the manufacturing process of semiconductor devices, heat generation from the semiconductor devices has become a problem. Due to heat generated by the semiconductor device, the semiconductor device may be deformed, causing a failure or breakage, or causing a reduction in operation speed or malfunction of the semiconductor device, thereby reducing the reliability of the semiconductor device. For this reason, efficient heat dissipation characteristics are required in high-performance semiconductor devices, and it is considered to use a filler having a good thermal diffusivity for a resin film such as a protective film forming layer or an adhesive layer. ing. For example, Patent Document 3 discloses a heat conductive adhesive film in which a magnetic field is applied to a film composition containing boron nitride powder and the boron nitride powder in the composition is oriented and solidified in a certain direction.
特開2002-280329号公報JP 2002-280329 A 特開2007-314603号公報JP 2007-314603 A 特開2002-69392号公報JP 2002-69392 A
 しかし、特許文献3に記載のフィルム組成物を用いて形成される熱伝導性接着フィルムは、上述したように製造工程において磁場を印加する工程を有し、その製造工程が煩雑である。また、特許文献3の実施例で開示された平均粒径1~2μmの窒化ホウ素粉末を用いて樹脂膜を形成すると、粒径が小さいことに起因して樹脂膜形成層用組成物が増粘することがある。樹脂膜形成層用組成物が増粘すると、樹脂膜形成層用組成物の塗工適性が低下し、平滑な樹脂膜を形成することが困難になることがある。一方、樹脂膜形成層用組成物の増粘を避けるために窒化ホウ素粉末の添加量を少なくした場合には、樹脂膜の高い熱拡散率が得られない。したがって、簡素な製造方法によるもので、かつ窒化ホウ素粉末の添加量を増加させることなく熱拡散率を高める手段が要望されていた。 However, the heat conductive adhesive film formed using the film composition described in Patent Document 3 has a process of applying a magnetic field in the manufacturing process as described above, and the manufacturing process is complicated. Further, when the resin film is formed using the boron nitride powder having an average particle diameter of 1 to 2 μm disclosed in the examples of Patent Document 3, the resin film forming layer composition is thickened due to the small particle diameter. There are things to do. When the resin film forming layer composition is thickened, the coating suitability of the resin film forming layer composition is lowered, and it may be difficult to form a smooth resin film. On the other hand, when the amount of boron nitride powder added is reduced to avoid thickening of the resin film-forming layer composition, a high thermal diffusivity of the resin film cannot be obtained. Therefore, there has been a demand for a means for increasing the thermal diffusivity by using a simple manufacturing method and without increasing the amount of boron nitride powder added.
 本発明は上記の事情に鑑みてなされたものであって、半導体装置の製造工程において、工程数が増加し、プロセスが煩雑化するような特別な処理を、半導体ウエハ、チップに施すことなく、得られる半導体装置に放熱特性を付与することを目的としている。 The present invention has been made in view of the above circumstances, and in the manufacturing process of a semiconductor device, the number of steps is increased, and the semiconductor wafer or chip is not subjected to special processing that makes the process complicated. The object is to impart heat dissipation characteristics to the obtained semiconductor device.
 本発明者らは、上記課題の解決を目的として鋭意研究した結果、半導体チップのいずれかの面に形成される樹脂膜の熱拡散率を所定の範囲とすることで、半導体装置の放熱特性を向上できることに着想し、本発明を完成させるに至った。 As a result of intensive research aimed at solving the above problems, the present inventors have set the heat diffusivity of the resin film formed on any surface of the semiconductor chip within a predetermined range, thereby improving the heat dissipation characteristics of the semiconductor device. Inspired by the improvement, the present invention has been completed.
 本発明は、以下の要旨を含む。
〔1〕支持シートと、該支持シート上に形成された樹脂膜形成層とを有し、
 該樹脂膜形成層が、バインダーポリマー成分(A)、硬化性成分(B)および無機フィラー(C)を含み、
 該樹脂膜形成層の熱拡散率が2×10-6/s以上であるチップ用樹脂膜形成用シート。
The present invention includes the following gist.
[1] having a support sheet and a resin film forming layer formed on the support sheet;
The resin film-forming layer contains a binder polymer component (A), a curable component (B) and an inorganic filler (C),
A resin film-forming sheet for chips, wherein the resin film-forming layer has a thermal diffusivity of 2 × 10 −6 m 2 / s or more.
〔2〕該樹脂膜形成層が無機フィラー(C)を30~60質量%含む〔1〕に記載のチップ用樹脂膜形成用シート。 [2] The resin film forming sheet for chips according to [1], wherein the resin film forming layer contains 30 to 60% by mass of an inorganic filler (C).
〔3〕無機フィラー(C)が、アスペクト比が5以上であり、平均粒子径が20μm以下である異方形状粒子(C1)と、平均粒子径が20μm超である妨害粒子(C2)を含む〔1〕または〔2〕に記載のチップ用樹脂膜形成用シート。 [3] The inorganic filler (C) includes anisotropic shaped particles (C1) having an aspect ratio of 5 or more and an average particle size of 20 μm or less, and interfering particles (C2) having an average particle size of more than 20 μm. The sheet for forming a resin film for a chip according to [1] or [2].
〔4〕異方形状粒子(C1)の長軸方向における熱伝導率が、60~400W/m・Kである〔3〕に記載のチップ用樹脂膜形成用シート。 [4] The resin film forming sheet for chips according to [3], wherein the anisotropically shaped particles (C1) have a thermal conductivity in the major axis direction of 60 to 400 W / m · K.
〔5〕異方形状粒子(C1)が、窒化物粒子である〔3〕または〔4〕に記載のチップ用樹脂膜形成用シート。 [5] The resin film forming sheet for chips according to [3] or [4], wherein the anisotropically shaped particles (C1) are nitride particles.
〔6〕妨害粒子(C2)の平均粒子径が、樹脂膜形成層の厚みの0.6~0.95倍である〔3〕~〔5〕のいずれかに記載のチップ用樹脂膜形成用シート。 [6] The resin particle forming for a chip according to any one of [3] to [5], wherein the average particle diameter of the interfering particles (C2) is 0.6 to 0.95 times the thickness of the resin film forming layer Sheet.
〔7〕異方形状粒子(C1)と妨害粒子(C2)との重量比率が、5:1~1:5である〔3〕~〔6〕のいずれかに記載のチップ用樹脂膜形成用シート。 [7] The resin film formation for a chip according to any one of [3] to [6], wherein the weight ratio of the anisotropically shaped particles (C1) to the interfering particles (C2) is 5: 1 to 1: 5. Sheet.
〔8〕該樹脂膜形成層の厚みが20~60μmである〔1〕~〔7〕のいずれかに記載のチップ用樹脂膜形成用シート。 [8] The resin film forming sheet for chips according to any one of [1] to [7], wherein the resin film forming layer has a thickness of 20 to 60 μm.
〔9〕樹脂膜形成層が、半導体チップを基板または他の半導体チップに固定するためのフィルム状接着剤として機能する〔1〕~〔8〕の何れかに記載のチップ用樹脂膜形成用シート。 [9] The resin film-forming sheet for chips according to any one of [1] to [8], wherein the resin film-forming layer functions as a film adhesive for fixing the semiconductor chip to the substrate or another semiconductor chip. .
〔10〕樹脂膜形成層が、半導体ウエハまたはチップの保護膜である〔1〕~〔8〕の何れかに記載のチップ用樹脂膜形成用シート。 [10] The resin film forming sheet for a chip according to any one of [1] to [8], wherein the resin film forming layer is a protective film for a semiconductor wafer or a chip.
〔11〕上記〔1〕~〔10〕の何れかに記載のチップ用樹脂膜形成用シートを用いる半導体装置の製造方法。 [11] A method of manufacturing a semiconductor device using the resin film forming sheet for chips according to any one of [1] to [10].
 半導体チップのいずれかの面に樹脂膜を形成する際に、本発明に係るチップ用樹脂膜形成用シートを用いることで、半導体ウエハ、チップに特別な処理を施すことなく、得られる半導体装置の信頼性を向上させることができる。 When a resin film is formed on any surface of a semiconductor chip, by using the chip resin film forming sheet according to the present invention, a semiconductor wafer and a chip can be obtained without special treatment. Reliability can be improved.
 以下、本発明について、その最良の形態も含めてさらに具体的に説明する。本発明に係るチップ用樹脂膜形成用シートは、支持シートと、該支持シート上に形成された樹脂膜形成層とを有する。 Hereinafter, the present invention will be described more specifically, including its best mode. The resin film forming sheet for chips according to the present invention includes a support sheet and a resin film forming layer formed on the support sheet.
(樹脂膜形成層)
 樹脂膜形成層は、バインダーポリマー成分(A)、硬化性成分(B)および無機フィラー(C)を含む。
(Resin film forming layer)
The resin film-forming layer contains a binder polymer component (A), a curable component (B), and an inorganic filler (C).
(A)バインダーポリマー成分
 樹脂膜形成層に十分な接着性および造膜性(シート形成性)を付与するためにバインダーポリマー成分(A)が用いられる。バインダーポリマー成分(A)としては、従来公知のアクリルポリマー、ポリエステル樹脂、ウレタン樹脂、アクリルウレタン樹脂、シリコーン樹脂、ゴム系ポリマー等を用いることができる。
(A) Binder polymer component The binder polymer component (A) is used for imparting sufficient adhesion and film forming property (sheet forming property) to the resin film forming layer. As the binder polymer component (A), conventionally known acrylic polymers, polyester resins, urethane resins, acrylic urethane resins, silicone resins, rubber-based polymers, and the like can be used.
 バインダーポリマー成分(A)の重量平均分子量(Mw)は、1万~200万であることが好ましく、10万~150万であることがより好ましい。バインダーポリマー成分(A)の重量平均分子量が低過ぎると樹脂膜形成層と支持シートとの粘着力が高くなり、樹脂膜形成層の転写不良が起こることがあり、高過ぎると樹脂膜形成層の接着性が低下し、チップ等に転写できなくなったり、あるいは転写後にチップ等から樹脂膜が剥離することがある。 The weight average molecular weight (Mw) of the binder polymer component (A) is preferably 10,000 to 2,000,000, more preferably 100,000 to 1,500,000. If the weight average molecular weight of the binder polymer component (A) is too low, the adhesive force between the resin film forming layer and the support sheet increases, and transfer failure of the resin film forming layer may occur. Adhesiveness may decrease and transfer to a chip or the like may not be possible, or the resin film may peel from the chip or the like after transfer.
 バインダーポリマー成分(A)として、アクリルポリマーが好ましく用いられる。アクリルポリマーのガラス転移温度(Tg)は、好ましくは-60~50℃、さらに好ましくは-50~40℃、特に好ましくは-40~30℃の範囲にある。アクリルポリマーのガラス転移温度が低過ぎると樹脂膜形成層と支持シートとの剥離力が大きくなって樹脂膜形成層の転写不良が起こることがあり、高過ぎると樹脂膜形成層の接着性が低下し、チップ等に転写できなくなったり、あるいは転写後にチップ等から樹脂膜が剥離したりすることがある。 An acrylic polymer is preferably used as the binder polymer component (A). The glass transition temperature (Tg) of the acrylic polymer is preferably in the range of −60 to 50 ° C., more preferably −50 to 40 ° C., and particularly preferably −40 to 30 ° C. If the glass transition temperature of the acrylic polymer is too low, the peeling force between the resin film-forming layer and the support sheet may increase, resulting in poor transfer of the resin film-forming layer, and if it is too high, the adhesion of the resin film-forming layer will be reduced. However, the transfer to the chip or the like may be impossible, or the resin film may be peeled off from the chip or the like after the transfer.
 上記アクリルポリマーを構成するモノマーとしては、(メタ)アクリル酸エステルモノマーまたはその誘導体が挙げられる。例えば、アルキル基の炭素数が1~18であるアルキル(メタ)アクリレート、具体的にはメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートなど;環状骨格を有する(メタ)アクリレート、具体的にはシクロアルキル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イミド(メタ)アクリレートなど;水酸基を有する(メタ)アクリレート、具体的には2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートなど;その他、エポキシ基を有するグリシジル(メタ)アクリレートなどが挙げられる。これらの中では、水酸基を有しているモノマーを重合して得られるアクリルポリマーが、後述する硬化性成分(B)との相溶性が良いため好ましい。また、上記アクリルポリマーは、アクリル酸、メタクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレンなどが共重合されていてもよい。 The monomer constituting the acrylic polymer includes a (meth) acrylic acid ester monomer or a derivative thereof. For example, an alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms, specifically methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (Meth) acrylate, etc .; (meth) acrylate having a cyclic skeleton, specifically cycloalkyl (meth) acrylate, benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (Meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, imide (meth) acrylate, etc .; (meth) acrylate having a hydroxyl group, specifically 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) ) Acrylate and the like; other, such as glycidyl (meth) acrylate having an epoxy group. In these, the acrylic polymer obtained by superposing | polymerizing the monomer which has a hydroxyl group has preferable compatibility with the sclerosing | hardenable component (B) mentioned later. The acrylic polymer may be copolymerized with acrylic acid, methacrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, or the like.
 また、バインダーポリマー成分(A)として、熱可塑性樹脂を配合してもよい。熱可塑性樹脂は、アクリルポリマーを除く重合体であり、硬化後の樹脂膜の可とう性を保持するために配合される。熱可塑性樹脂としては、重量平均分子量が1000~10万のものが好ましく、3000~8万のものがさらに好ましい。上記範囲の熱可塑性樹脂を含有することにより、半導体ウエハまたはチップへの樹脂膜形成層の転写時における支持シートと樹脂膜形成層との層間剥離を容易に行うことができ、さらに転写面に樹脂膜形成層が追従しボイドなどの発生を抑えることができる。 Further, a thermoplastic resin may be blended as the binder polymer component (A). The thermoplastic resin is a polymer excluding an acrylic polymer, and is blended in order to maintain the flexibility of the cured resin film. The thermoplastic resin preferably has a weight average molecular weight of 1,000 to 100,000, more preferably 3,000 to 80,000. By containing the thermoplastic resin in the above range, the delamination between the support sheet and the resin film forming layer can be easily performed at the time of transferring the resin film forming layer to the semiconductor wafer or chip, and the resin on the transfer surface. The film formation layer follows and the generation of voids can be suppressed.
 熱可塑性樹脂のガラス転移温度は、好ましくは-30~150℃、さらに好ましくは-20~120℃の範囲にある。熱可塑性樹脂のガラス転移温度が低過ぎると樹脂膜形成層と支持シートとの剥離力が大きくなって樹脂膜形成層の転写不良が起こることがあり、高過ぎると樹脂膜形成層とチップとの接着力が不十分となるおそれがある。 The glass transition temperature of the thermoplastic resin is preferably -30 to 150 ° C, more preferably -20 to 120 ° C. If the glass transition temperature of the thermoplastic resin is too low, the peeling force between the resin film forming layer and the support sheet may increase, and transfer failure of the resin film forming layer may occur. Adhesive strength may be insufficient.
 熱可塑性樹脂としては、ポリエステル樹脂、ウレタン樹脂、アクリルウレタン樹脂、フェノキシ樹脂、シリコーン樹脂、ポリブテン、ポリブタジエン、ポリスチレンなどが挙げられる。これらは1種単独で、または2種以上混合して使用することができる。 Examples of the thermoplastic resin include polyester resin, urethane resin, acrylic urethane resin, phenoxy resin, silicone resin, polybutene, polybutadiene, and polystyrene. These can be used individually by 1 type or in mixture of 2 or more types.
 熱可塑性樹脂を含有する場合には、バインダーポリマー成分(A)の合計100質量部に対して、通常1~60質量部、好ましくは1~30質量部の割合で含まれる。熱可塑性樹脂の含有量がこの範囲にあることにより、上記の効果を得ることができる。 When the thermoplastic resin is contained, it is contained in an amount of usually 1 to 60 parts by mass, preferably 1 to 30 parts by mass with respect to 100 parts by mass in total of the binder polymer component (A). When the content of the thermoplastic resin is within this range, the above effect can be obtained.
 また、バインダーポリマー成分(A)として、側鎖にエネルギー線重合性基を有するポリマー(エネルギー線硬化型重合体)を用いてもよい。このようなエネルギー線硬化型重合体は、バインダーポリマー成分(A)としての機能と、後述する硬化性成分(B)としての機能を兼ね備える。エネルギー線重合性基としては、後述するエネルギー線重合性化合物が含有するエネルギー線重合性官能基と同じものを有していればよい。側鎖にエネルギー線重合性基を有するポリマーとしては、たとえば側鎖に反応性官能基Xを有するポリマーに、反応性官能基Xと反応しうる官能基Yおよびエネルギー線重合性基を有する低分子化合物を反応させて調製したポリマーが挙げられる。 Further, as the binder polymer component (A), a polymer having an energy ray polymerizable group in the side chain (energy ray curable polymer) may be used. Such an energy beam curable polymer has a function as a binder polymer component (A) and a function as a curable component (B) described later. As an energy beam polymerizable group, what is necessary is just to have the same thing as the energy beam polymerizable functional group which the energy beam polymerizable compound mentioned later contains. Examples of the polymer having an energy ray polymerizable group in the side chain include, for example, a polymer having a reactive functional group X in the side chain, a low molecular weight having a functional group Y capable of reacting with the reactive functional group X and an energy ray polymerizable group. Examples include polymers prepared by reacting compounds.
(B)硬化性成分
 硬化性成分(B)は、熱硬化性成分および熱硬化剤、またはエネルギー線重合性化合物を用いることができる。また、これらを組み合わせて用いてもよい。熱硬化性成分としては、たとえば、エポキシ樹脂が好ましい。
(B) Curable component The curable component (B) may be a thermosetting component and a thermosetting agent or an energy beam polymerizable compound. Moreover, you may use combining these. As the thermosetting component, for example, an epoxy resin is preferable.
 エポキシ樹脂としては、従来公知のエポキシ樹脂を用いることができる。エポキシ樹脂としては、具体的には、多官能系エポキシ樹脂や、ビフェニル化合物、ビスフェノールAジグリシジルエーテルやその水添物、オルソクレゾールノボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェニレン骨格型エポキシ樹脂など、分子中に2官能以上有するエポキシ化合物が挙げられる。これらは1種単独で、または2種以上を組み合わせて用いることができる。 As the epoxy resin, a conventionally known epoxy resin can be used. Specific examples of epoxy resins include polyfunctional epoxy resins, biphenyl compounds, bisphenol A diglycidyl ether and hydrogenated products thereof, orthocresol novolac epoxy resins, dicyclopentadiene type epoxy resins, biphenyl type epoxy resins, and bisphenols. Examples thereof include epoxy compounds having two or more functional groups in the molecule, such as A-type epoxy resin, bisphenol F-type epoxy resin, and phenylene skeleton-type epoxy resin. These can be used individually by 1 type or in combination of 2 or more types.
 硬化性成分(B)として熱硬化性成分および熱硬化剤を用いる場合には、樹脂膜形成層には、バインダーポリマー成分(A)100質量部に対して、熱硬化性成分が、好ましくは1~1500質量部含まれ、より好ましくは3~1200質量部含まれる。熱硬化性成分の含有量が1質量部未満であると十分な接着性が得られないことがあり、1500質量部を超えると樹脂膜形成層と支持シートとの剥離力が高くなり、樹脂膜形成層の転写不良が起こることがある。 When a thermosetting component and a thermosetting agent are used as the curable component (B), the thermosetting component in the resin film forming layer is preferably 1 with respect to 100 parts by mass of the binder polymer component (A). ˜1500 parts by mass, more preferably 3˜1200 parts by mass. When the content of the thermosetting component is less than 1 part by mass, sufficient adhesiveness may not be obtained. When the content exceeds 1500 parts by mass, the peeling force between the resin film-forming layer and the support sheet increases, and the resin film A transfer defect of the formation layer may occur.
 熱硬化剤は、熱硬化性成分、特にエポキシ樹脂に対する硬化剤として機能する。好ましい熱硬化剤としては、1分子中にエポキシ基と反応しうる官能基を2個以上有する化合物が挙げられる。その官能基としてはフェノール性水酸基、アルコール性水酸基、アミノ基、カルボキシル基および酸無水物などが挙げられる。これらのうち好ましくはフェノール性水酸基、アミノ基、酸無水物などが挙げられ、さらに好ましくはフェノール性水酸基、アミノ基が挙げられる。 The thermosetting agent functions as a curing agent for thermosetting components, particularly epoxy resins. A preferable thermosetting agent includes a compound having two or more functional groups capable of reacting with an epoxy group in one molecule. Examples of the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxyl group, and an acid anhydride. Of these, phenolic hydroxyl groups, amino groups, acid anhydrides and the like are preferable, and phenolic hydroxyl groups and amino groups are more preferable.
 フェノール系硬化剤の具体的な例としては、多官能系フェノール樹脂、ビフェノール、ノボラック型フェノール樹脂、ジシクロペンタジエン系フェノール樹脂、ザイロック型フェノール樹脂、アラルキルフェノール樹脂が挙げられる。アミン系硬化剤の具体的な例としては、DICY(ジシアンジアミド)が挙げられる。これらは、1種単独で、または2種以上混合して使用することができる。 Specific examples of the phenolic curing agent include polyfunctional phenolic resins, biphenols, novolac type phenolic resins, dicyclopentadiene type phenolic resins, zylock type phenolic resins, and aralkylphenolic resins. A specific example of the amine curing agent is DICY (dicyandiamide). These can be used individually by 1 type or in mixture of 2 or more types.
 熱硬化剤の含有量は、熱硬化性成分100質量部に対して、0.1~500質量部であることが好ましく、1~200質量部であることがより好ましい。熱硬化剤の含有量が少ないと硬化不足で接着性が得られないことがあり、過剰であると樹脂膜形成層の吸湿率が高まり半導体装置の信頼性を低下させることがある。 The content of the thermosetting agent is preferably 0.1 to 500 parts by mass and more preferably 1 to 200 parts by mass with respect to 100 parts by mass of the thermosetting component. When the content of the thermosetting agent is small, the adhesiveness may not be obtained due to insufficient curing, and when it is excessive, the moisture absorption rate of the resin film forming layer is increased and the reliability of the semiconductor device may be lowered.
 エネルギー線重合性化合物は、エネルギー線重合性基を含み、紫外線、電子線等のエネルギー線の照射を受けると重合硬化する。このようなエネルギー線重合性化合物として具体的には、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレートあるいは1,4-ブチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ポリエチレングリコールジアクリレート、オリゴエステルアクリレート、ウレタンアクリレート系オリゴマー、エポキシ変性アクリレート、ポリエーテルアクリレートおよびイタコン酸オリゴマーなどのアクリレート系化合物が挙げられる。このような化合物は、分子内に少なくとも1つの重合性二重結合を有し、通常は、重量平均分子量が100~30000、好ましくは300~10000程度である。硬化性成分(B)としてエネルギー線重合性化合物を用いる場合には、樹脂膜形成層には、バインダーポリマー成分(A)100質量部に対して、エネルギー線重合性化合物が、好ましくは1~1500質量部含まれ、より好ましくは3~1200質量部含まれる。 The energy beam polymerizable compound contains an energy beam polymerizable group and is polymerized and cured when irradiated with energy rays such as ultraviolet rays and electron beams. Specific examples of such energy beam polymerizable compounds include trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, or 1,4-butylene glycol. Examples include acrylate compounds such as diacrylate, 1,6-hexanediol diacrylate, polyethylene glycol diacrylate, oligoester acrylate, urethane acrylate oligomer, epoxy-modified acrylate, polyether acrylate, and itaconic acid oligomer. Such a compound has at least one polymerizable double bond in the molecule, and usually has a weight average molecular weight of about 100 to 30,000, preferably about 300 to 10,000. When an energy ray polymerizable compound is used as the curable component (B), the energy ray polymerizable compound is preferably used in an amount of 1 to 1500 in the resin film forming layer with respect to 100 parts by mass of the binder polymer component (A). It is contained in an amount of 3 parts by mass, more preferably 3 to 1200 parts by mass.
(C)無機フィラー
 無機フィラー(C)は、樹脂膜形成層の熱拡散率を向上させることができるものであることが好ましい。無機フィラー(C)を樹脂膜形成層に配合することにより熱拡散率を向上させ、樹脂膜形成層が貼付された半導体チップを実装した半導体装置の発熱を効率的に拡散することが可能となる。また、硬化後の樹脂膜における熱膨張係数を調整することが可能となり、半導体チップ、リードフレームや有機基板等の被着体に対して硬化後の樹脂膜の熱膨張係数を最適化することで半導体装置の信頼性を向上させることができる。さらにまた、硬化後の樹脂膜の吸湿率を低減させることが可能となり、加熱時に樹脂膜としての接着性を維持し、半導体装置の信頼性を向上させることができる。なお、熱拡散率とは、樹脂膜の熱伝導率を樹脂膜の比熱と比重の積で除算した値であり、熱拡散率が大きいほど優れた放熱特性を有することを示す。
(C) Inorganic filler It is preferable that the inorganic filler (C) can improve the thermal diffusivity of the resin film-forming layer. By blending the inorganic filler (C) in the resin film forming layer, the thermal diffusivity is improved, and it becomes possible to efficiently diffuse the heat generated by the semiconductor device mounted with the semiconductor chip to which the resin film forming layer is attached. . In addition, it is possible to adjust the thermal expansion coefficient in the cured resin film, and by optimizing the thermal expansion coefficient of the cured resin film for adherends such as semiconductor chips, lead frames and organic substrates The reliability of the semiconductor device can be improved. Furthermore, the moisture absorption rate of the cured resin film can be reduced, the adhesiveness as the resin film can be maintained during heating, and the reliability of the semiconductor device can be improved. The thermal diffusivity is a value obtained by dividing the thermal conductivity of the resin film by the product of the specific heat and specific gravity of the resin film, and indicates that the larger the thermal diffusivity, the better the heat dissipation characteristics.
 無機フィラー(C)としては、具体的には、シリカ(1.3W/m・K)、酸化亜鉛(54W/m・K)、酸化マグネシウム(59W/m・K)、アルミナ(38W/m・K)、チタン(21.9W/m・K)、炭化珪素(100~350W/m・K)、窒化ホウ素(30~200W/m・K)等の粒子、これらを球形化したビーズ、単結晶繊維およびガラス繊維等が挙げられる。なお、かっこ内の数値は、熱伝導率を示す。 Specific examples of the inorganic filler (C) include silica (1.3 W / m · K), zinc oxide (54 W / m · K), magnesium oxide (59 W / m · K), and alumina (38 W / m · K). K), titanium (21.9 W / m · K), silicon carbide (100 to 350 W / m · K), boron nitride (30 to 200 W / m · K), spherical particles of these, single crystal Examples thereof include fibers and glass fibers. In addition, the numerical value in parenthesis shows thermal conductivity.
 無機フィラー(C)は、異方形状粒子(C1)と妨害粒子(C2)とを含むことが好ましい。無機フィラー(C)として異方形状粒子(C1)のみを用いた場合、樹脂膜形成層の製造工程(例えば塗布工程)中に異方形状粒子(C1)にかかる応力や重力により、その長軸方向が樹脂膜形成層の幅方向や流れ方向と略同一となる異方形状粒子の割合が高まり、優れた熱拡散率を有する樹脂膜形成層を得ることが困難になることがある。異方形状粒子は、その長軸方向に良好な熱拡散率を示す。そのため、樹脂膜形成層中において、その長軸方向と樹脂膜形成層の厚み方向とが略同一となる異方形状粒子の割合が高まることで、半導体チップに発生した熱が樹脂膜形成層を介して発散されやすくなる。無機フィラー(C)として、異方形状粒子(C1)と妨害粒子(C2)とを併用することにより、樹脂膜形成層の製造工程において、異方形状粒子の長軸方向が樹脂膜形成層の幅方向や流れ方向と略同一となることを抑制し、その長軸方向と樹脂膜形成層の厚み方向とが略同一となった異方形状粒子の割合を高めることができる。その結果、優れた熱拡散率を有する樹脂膜形成層が得られる。これは、樹脂膜形成層中に、妨害粒子(C2)が存在することにより、異方形状粒子(C1)が妨害粒子(C2)に立て掛かるように存在する結果、異方形状粒子の長軸方向と樹脂膜形成層の厚み方向とが略同一となることに起因する。なお、本発明において「異方形状粒子の長軸方向と樹脂膜形成層の厚み方向とが略同一」とは、具体的には、異方形状粒子の長軸方向が、樹脂膜形成層の厚み方向に対して、-45~45°の範囲にあることをいう。 The inorganic filler (C) preferably contains anisotropic shaped particles (C1) and interfering particles (C2). When only the anisotropically shaped particles (C1) are used as the inorganic filler (C), the long axis of the resin film forming layer due to stress or gravity applied to the anisotropically shaped particles (C1) during the production process (for example, coating process). The proportion of anisotropically shaped particles whose direction is substantially the same as the width direction or the flow direction of the resin film forming layer increases, and it may be difficult to obtain a resin film forming layer having an excellent thermal diffusivity. Anisotropically shaped particles exhibit good thermal diffusivity in the long axis direction. Therefore, in the resin film forming layer, the ratio of the anisotropically shaped particles in which the major axis direction and the thickness direction of the resin film forming layer are substantially the same increases, so that the heat generated in the semiconductor chip causes the resin film forming layer to It becomes easy to diverge through. By using anisotropically shaped particles (C1) and interfering particles (C2) in combination as the inorganic filler (C), the long axis direction of the anisotropically shaped particles is the same as that of the resin film forming layer. It can suppress that it becomes substantially the same as the width direction or the flow direction, and can increase the proportion of anisotropically shaped particles whose major axis direction and the thickness direction of the resin film forming layer are substantially the same. As a result, a resin film forming layer having an excellent thermal diffusivity can be obtained. This is because the presence of the disturbing particles (C2) in the resin film forming layer causes the anisotropically shaped particles (C1) to lean against the disturbing particles (C2), resulting in the long axis of the anisotropically shaped particles. This is because the direction and the thickness direction of the resin film forming layer are substantially the same. In the present invention, the phrase “the major axis direction of anisotropically shaped particles and the thickness direction of the resin film forming layer are substantially the same” specifically means that the major axis direction of anisotropically shaped particles is the same as that of the resin film forming layer. It is in the range of −45 to 45 ° with respect to the thickness direction.
(C1)異方形状粒子
 異方形状粒子(C1)は異方性を有し、その具体的な形状は、板状、針状及び鱗片状からなる群より選ばれる少なくとも1つの形状を有することが好ましい。好ましい異方形状粒子(C1)としては、窒化物粒子が挙げられ、窒化物粒子としては、窒化ホウ素、窒化アルミニウム、窒化珪素等の粒子が挙げられる。これらのうちでも良好な熱伝導性が得られやすい窒化ホウ素粒子が好ましい。
(C1) Anisotropically shaped particles The anisotropically shaped particles (C1) have anisotropy, and the specific shape thereof has at least one shape selected from the group consisting of a plate shape, a needle shape, and a scale shape. Is preferred. Preferred anisotropically shaped particles (C1) include nitride particles, and examples of nitride particles include particles of boron nitride, aluminum nitride, silicon nitride, and the like. Among these, boron nitride particles that are easy to obtain good thermal conductivity are preferable.
 異方形状粒子(C1)の平均粒子径は、20μm以下であり、好ましくは5~20μm、より好ましくは8~20μm、特に好ましくは10~15μmである。また、異方形状粒子(C1)の平均粒子径は、後述する妨害粒子(C2)の平均粒子径よりも小さいことが好ましい。異方形状粒子(C1)の平均粒子径を上記のように調整することにより、樹脂膜形成層の熱拡散率や製膜性が向上するとともに、樹脂膜形成層中における異方形状粒子(C1)の充填率が向上する。異方形状粒子(C1)の平均粒子径は、電子顕微鏡で無作為に選んだ異方形状粒子(C1)20個の長軸径を測定し、その算術平均値として算出される個数平均粒子径とする。 The average particle diameter of the anisotropically shaped particles (C1) is 20 μm or less, preferably 5 to 20 μm, more preferably 8 to 20 μm, and particularly preferably 10 to 15 μm. Moreover, it is preferable that the average particle diameter of anisotropically-shaped particle | grains (C1) is smaller than the average particle diameter of interference particle | grains (C2) mentioned later. By adjusting the average particle diameter of the anisotropically shaped particles (C1) as described above, the thermal diffusivity and film-forming property of the resin film forming layer are improved, and the anisotropically shaped particles (C1 in the resin film forming layer). ) Is improved. The average particle diameter of the anisotropically shaped particles (C1) is the number average particle diameter calculated as the arithmetic average value of 20 long axis diameters of randomly selected anisotropically shaped particles (C1) selected with an electron microscope. And
 異方形状粒子(C1)の粒子径分布(CV値)は、好ましくは5~40%、より好ましくは10~30%である。異方形状粒子(C1)の粒子径分布を上記範囲とすることで、効率的で均一な熱伝導性を達成することができる。CV値は粒子径のバラツキの指標であり、CV値が大きいほど、粒子径のバラツキが大きいことを意味する。CV値が小さい場合、粒子径が揃っているため、粒子と粒子の間隙に入るサイズの小さな粒子の量が少なくなり、無機フィラー(C)をより密に充填するのが困難になり、結果として高い熱伝導率を有する樹脂膜形成層が得にくくなることがある。逆に、CV値が大きい場合、無機フィラー(C)の粒子径が製膜された樹脂膜形成層の厚みよりも大きくなることがあり、結果として樹脂膜形成層の表面に凹凸が生じ、樹脂膜形成層の接着性に劣ることがある。また、CV値が大きすぎると、均一な性能を有する熱伝導性組成物を得ることが困難になることがある。なお、異方形状粒子(C1)の粒子径分布(CV値)は、電子顕微鏡観察を行い、200個以上の粒子について長軸径を測定し、長軸径の標準偏差を求め、上述の平均粒子径を用いて、(長軸径の標準偏差)/(平均粒子径)を算出して求めることができる。 The particle size distribution (CV value) of the anisotropically shaped particles (C1) is preferably 5 to 40%, more preferably 10 to 30%. By setting the particle size distribution of the anisotropically shaped particles (C1) within the above range, efficient and uniform thermal conductivity can be achieved. The CV value is an index of particle size variation, and the larger the CV value, the larger the particle size variation. When the CV value is small, since the particle diameter is uniform, the amount of small-sized particles entering the gap between the particles is reduced, and it becomes difficult to pack the inorganic filler (C) more densely. A resin film forming layer having high thermal conductivity may be difficult to obtain. On the contrary, when the CV value is large, the particle diameter of the inorganic filler (C) may be larger than the thickness of the formed resin film forming layer, resulting in unevenness on the surface of the resin film forming layer. The film-forming layer may have poor adhesion. Moreover, when CV value is too large, it may become difficult to obtain the heat conductive composition which has uniform performance. The particle size distribution (CV value) of the anisotropically shaped particles (C1) was observed with an electron microscope, the major axis diameter was measured for 200 or more particles, the standard deviation of the major axis diameter was determined, and the above average Using the particle diameter, (standard deviation of major axis diameter) / (average particle diameter) can be calculated.
 異方形状粒子(C1)のアスペクト比は、5以上であり、好ましくは5~30、より好ましくは8~20、さらに好ましくは10~15である。アスペクト比は、異方形状粒子(C1)の(長軸数平均径)/(短軸数平均径)で表される。短軸数平均径および長軸数平均径は、透過電子顕微鏡写真で無作為に選んだ異方形状粒子20個の短軸径および長軸径を測定し、それぞれの算術平均値として算出される個数平均粒子径とする。異方形状粒子(C1)のアスペクト比を上記範囲とすることで、妨害粒子(C2)により、異方形状粒子(C1)の長軸方向と樹脂膜形成層の幅方向や流れ方向とが略同一となることが妨げられ、異方形状粒子(C1)が樹脂膜形成層の厚み方向に効率的な熱伝導パスを形成し、熱拡散率を向上させることができる。 The aspect ratio of the anisotropically shaped particles (C1) is 5 or more, preferably 5 to 30, more preferably 8 to 20, and still more preferably 10 to 15. The aspect ratio is represented by (major axis number average diameter) / (minor axis number average diameter) of the anisotropically shaped particles (C1). The short axis number average diameter and the long axis number average diameter are calculated as the arithmetic average values of the short axis diameter and the long axis diameter of 20 anisotropically-shaped particles randomly selected in a transmission electron micrograph. The number average particle size. By setting the aspect ratio of the anisotropically shaped particles (C1) within the above range, the major axis direction of the anisotropically shaped particles (C1) and the width direction and the flow direction of the resin film forming layer are substantially reduced by the disturbing particles (C2). It becomes difficult to be the same, and the anisotropically shaped particles (C1) can form an efficient heat conduction path in the thickness direction of the resin film forming layer, thereby improving the thermal diffusivity.
 異方形状粒子(C1)の比重は、好ましくは2~4g/cm、より好ましくは2.2~3g/cmである。 The specific gravity of the anisotropically shaped particles (C1) is preferably 2 to 4 g / cm 3 , more preferably 2.2 to 3 g / cm 3 .
 異方形状粒子(C1)の長軸方向における熱伝導率は、60~400W/m・Kであることが好ましく、100~300W/m・Kであることがより好ましい。このような異方形状粒子を用いることで、形成された熱伝導パスが高い熱伝導性を有し、結果として熱拡散率の高い樹脂膜形成層が得られる。 The thermal conductivity in the major axis direction of the anisotropically shaped particles (C1) is preferably 60 to 400 W / m · K, and more preferably 100 to 300 W / m · K. By using such anisotropically shaped particles, the formed heat conduction path has high heat conductivity, and as a result, a resin film forming layer having a high thermal diffusivity can be obtained.
(C2)妨害粒子
 妨害粒子(C2)の形状は、異方形状粒子(C1)の長軸方向と、樹脂膜形成層の幅方向や流れ方向(樹脂膜形成層と平行な方向)とが略同一となることを妨げる形状であれば特に限定されず、その具体的な形状は、好ましくは球状である。好ましい妨害粒子(C2)としては、シリカ粒子、アルミナ粒子が挙げられ、アルミナ粒子が特に好ましい。
(C2) Interfering particles The shape of the interfering particles (C2) is approximately the major axis direction of the anisotropically shaped particles (C1) and the width direction and flow direction (direction parallel to the resin film forming layer) of the resin film forming layer. The shape is not particularly limited as long as the shape is prevented from being the same, and the specific shape is preferably spherical. Preferred interfering particles (C2) include silica particles and alumina particles, and alumina particles are particularly preferable.
 妨害粒子(C2)の平均粒子径は、20μm超であり、好ましくは20μm超50μm以下、より好ましくは20μm超30μm以下である。妨害粒子(C2)の平均粒子径を上記範囲とすることにより、樹脂膜形成層の熱拡散率や製膜性が向上するとともに、樹脂膜形成層中における妨害粒子(C2)の充填率が向上する。また、異方形状粒子は単位体積当たりの比表面積が大きく、樹脂膜形成層用組成物の粘度を上昇させやすい。ここに、さらに比表面積の大きい、平均粒子径が20μm以下の異方形状粒子以外のフィラーを添加した場合、樹脂膜形成層用組成物の粘度がいっそう上昇し、樹脂膜形成が困難になったり、多量の溶媒により希釈する必要が生じ、生産性が低下したりする懸念がある。なお、妨害粒子(C2)の平均粒子径は、電子顕微鏡で無作為に選んだ妨害粒子(C2)20個の長軸径を測定し、その算術平均値として算出される個数平均粒子径とする。 The average particle diameter of the disturbing particles (C2) is more than 20 μm, preferably more than 20 μm and not more than 50 μm, more preferably more than 20 μm and not more than 30 μm. By making the average particle diameter of the interfering particles (C2) within the above range, the thermal diffusivity and film forming property of the resin film forming layer are improved, and the filling rate of the interfering particles (C2) in the resin film forming layer is improved. To do. Further, the anisotropically shaped particles have a large specific surface area per unit volume, and are likely to increase the viscosity of the resin film forming layer composition. When a filler other than anisotropically shaped particles having a larger specific surface area and an average particle size of 20 μm or less is added here, the viscosity of the resin film-forming layer composition further increases, making it difficult to form a resin film. Therefore, it is necessary to dilute with a large amount of solvent, and there is a concern that productivity is lowered. The average particle diameter of the interfering particles (C2) is the number average particle diameter calculated as the arithmetic average value of 20 major axis diameters of 20 interfering particles (C2) randomly selected with an electron microscope. .
 また、妨害粒子(C2)の平均粒子径は、後述する樹脂膜形成層の厚みの0.6~0.95倍であることが好ましく、0.7~0.9倍であることがより好ましい。妨害粒子(C2)の平均粒子径が樹脂膜形成層の厚みの0.6倍未満であると、その長軸方向が樹脂膜形成層の幅方向や流れ方向と略同一となった異方形状粒子(C1)の割合が高まり、効率的な熱伝導パスが形成されにくくなり、熱拡散率が低下することがある。また、妨害粒子(C2)の平均粒子径が樹脂膜形成層の厚みの0.95倍を超えると、樹脂膜形成層の表面に凹凸が生じ、樹脂膜形成層の接着性に劣ることがある。また、均一な性能を有する熱伝導性の樹脂膜形成層用組成物を得ることが困難になることがある。 The average particle diameter of the interfering particles (C2) is preferably 0.6 to 0.95 times, more preferably 0.7 to 0.9 times the thickness of the resin film forming layer described later. . When the average particle diameter of the disturbing particles (C2) is less than 0.6 times the thickness of the resin film forming layer, the anisotropic shape in which the major axis direction is substantially the same as the width direction and the flow direction of the resin film forming layer. The ratio of the particles (C1) increases, it becomes difficult to form an efficient heat conduction path, and the thermal diffusivity may decrease. Further, when the average particle diameter of the interfering particles (C2) exceeds 0.95 times the thickness of the resin film forming layer, the surface of the resin film forming layer may be uneven and the adhesiveness of the resin film forming layer may be inferior. . In addition, it may be difficult to obtain a heat conductive resin film forming layer composition having uniform performance.
 妨害粒子(C2)の粒子径分布(CV値)は、好ましくは5~40%、より好ましくは10~30%である。妨害粒子(C2)の粒子径分布を上記範囲とすることで、効率的で均一な熱伝導性を達成することができる。CV値が小さい場合、粒子径が揃っているため、粒子と粒子の間隙に入るサイズの小さな粒子の量が少なくなり、無機フィラー(C)をより密に充填するのが困難になり、結果として高い熱伝導率を有する樹脂膜形成層が得にくくなることがある。逆に、CV値が大きい場合、無機フィラー(C)の粒子径が製膜された樹脂膜形成層の厚みよりも大きくなることがあり、結果として樹脂膜形成層の表面に凹凸が生じ、樹脂膜形成層の接着性に劣ることがある。また、CV値が大きすぎると、均一な性能を有する熱伝導性組成物を得ることが困難になることがある。なお、妨害粒子(C2)の粒子径分布(CV値)は、電子顕微鏡観察を行い、200個以上の粒子について長軸径を測定し、長軸径の標準偏差を求め、上述の平均粒子径を用いて、(長軸径の標準偏差)/(平均粒子径)を算出して求めることができる。 The particle size distribution (CV value) of the interfering particles (C2) is preferably 5 to 40%, more preferably 10 to 30%. By setting the particle size distribution of the disturbing particles (C2) within the above range, efficient and uniform thermal conductivity can be achieved. When the CV value is small, since the particle diameter is uniform, the amount of small-sized particles entering the gap between the particles is reduced, and it becomes difficult to pack the inorganic filler (C) more densely. A resin film forming layer having high thermal conductivity may be difficult to obtain. On the contrary, when the CV value is large, the particle diameter of the inorganic filler (C) may be larger than the thickness of the formed resin film forming layer, resulting in unevenness on the surface of the resin film forming layer. The film-forming layer may have poor adhesion. Moreover, when CV value is too large, it may become difficult to obtain the heat conductive composition which has uniform performance. In addition, the particle size distribution (CV value) of the interfering particles (C2) is observed with an electron microscope, the major axis diameter is measured for 200 or more particles, the standard deviation of the major axis diameter is obtained, and the average particle diameter described above is obtained. Can be obtained by calculating (standard deviation of major axis diameter) / (average particle diameter).
 樹脂膜形成層中の無機フィラー(C)の含有割合は、樹脂膜形成層を構成する全固形分に対して、好ましくは30~80質量%、より好ましくは40~70質量%、特に好ましくは50~60質量%である。無機フィラー(C)の含有割合を上記範囲とすることで、効率的な熱伝導パスが形成され、熱拡散率を向上させることができる。 The content of the inorganic filler (C) in the resin film forming layer is preferably 30 to 80% by mass, more preferably 40 to 70% by mass, and particularly preferably the total solid content constituting the resin film forming layer. 50 to 60% by mass. By making the content rate of an inorganic filler (C) into the said range, an efficient heat conductive path can be formed and a thermal diffusivity can be improved.
 無機フィラー(C)として異方形状粒子(C1)と妨害粒子(C2)とを含む場合、異方形状粒子(C1)と妨害粒子(C2)との重量比率は、好ましくは5:1~1:5、より好ましくは4:1~1:4である。
 異方形状粒子(C1)と妨害粒子(C2)との重量比率を上記範囲とすることで、その長軸方向と樹脂膜形成層の厚み方向とが略同一となった異方形状粒子(C1)の割合を高めることができる。その結果、樹脂膜形成層の熱拡散率を向上させることができる。また、樹脂膜形成層用組成物の増粘を抑制し、平滑な樹脂膜を形成することができる。
When the inorganic filler (C) includes the anisotropic shaped particles (C1) and the disturbing particles (C2), the weight ratio of the anisotropic shaped particles (C1) to the disturbing particles (C2) is preferably 5: 1 to 1 : 5, more preferably 4: 1 to 1: 4.
By setting the weight ratio of the anisotropically shaped particles (C1) and the disturbing particles (C2) within the above range, the anisotropically shaped particles (C1) whose major axis direction and the thickness direction of the resin film forming layer are substantially the same. ) Ratio can be increased. As a result, the thermal diffusivity of the resin film forming layer can be improved. Moreover, the thickening of the composition for resin film formation layers can be suppressed, and a smooth resin film can be formed.
 また、樹脂膜形成層中の無機フィラー(C)の濃度は、好ましくは30~50体積%、より好ましくは35~45体積%である。 Further, the concentration of the inorganic filler (C) in the resin film forming layer is preferably 30 to 50% by volume, more preferably 35 to 45% by volume.
その他の成分
 樹脂膜形成層は、上記バインダーポリマー成分(A)、硬化性成分(B)および無機フィラー(C)に加えて下記成分を含むことができる。
The other component resin film-forming layer can contain the following components in addition to the binder polymer component (A), the curable component (B), and the inorganic filler (C).
(D)着色剤
 樹脂膜形成層には、着色剤(D)を配合することができる。着色剤を配合することで、半導体装置を機器に組み込んだ際に、周囲の装置から発生する赤外線等による半導体装置の誤作動を防止することができる。このような効果は、特に樹脂膜を保護膜として用いた場合に有用である。着色剤としては、有機または無機の顔料および染料が用いられる。これらの中でも電磁波や赤外線遮蔽性の点から黒色顔料が好ましい。黒色顔料としては、カーボンブラック、酸化鉄、二酸化マンガン、アニリンブラック、活性炭等が用いられるが、これらに限定されることはない。半導体装置の信頼性を高める観点からは、カーボンブラックが特に好ましい。着色剤(D)の配合量は、樹脂膜形成層を構成する全固形分100質量部に対して、好ましくは0.1~35質量部、さらに好ましくは0.5~25質量部、特に好ましくは1~15質量部である。
(D) Colorant (D) can be mix | blended with a colorant resin film formation layer. By blending the colorant, malfunction of the semiconductor device due to infrared rays or the like generated from surrounding devices when the semiconductor device is incorporated into equipment can be prevented. Such an effect is particularly useful when a resin film is used as a protective film. As the colorant, organic or inorganic pigments and dyes are used. Among these, black pigments are preferable from the viewpoint of electromagnetic wave and infrared shielding properties. Examples of the black pigment include carbon black, iron oxide, manganese dioxide, aniline black, activated carbon, and the like, but are not limited thereto. Carbon black is particularly preferable from the viewpoint of increasing the reliability of the semiconductor device. The blending amount of the colorant (D) is preferably 0.1 to 35 parts by mass, more preferably 0.5 to 25 parts by mass, particularly preferably 100 parts by mass of the total solid content constituting the resin film forming layer. Is 1 to 15 parts by mass.
(E)硬化促進剤
 硬化促進剤(E)は、樹脂膜形成層の硬化速度を調整するために用いられる。硬化促進剤(E)は、特に、硬化性成分(B)として、少なくとも熱硬化性成分および熱硬化剤を用いる場合において、エポキシ樹脂と熱硬化剤とを併用するときに好ましく用いられる。
(E) Curing accelerator The curing accelerator (E) is used to adjust the curing rate of the resin film forming layer. The curing accelerator (E) is preferably used when an epoxy resin and a thermosetting agent are used in combination, particularly when at least a thermosetting component and a thermosetting agent are used as the curable component (B).
 好ましい硬化促進剤としては、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどの3級アミン類;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールなどのイミダゾール類;トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィンなどの有機ホスフィン類;テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレートなどのテトラフェニルボロン塩などが挙げられる。これらは1種単独で、または2種以上混合して使用することができる。 Preferred curing accelerators include tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole, 2-phenyl- Imidazoles such as 4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole; Organic phosphines such as tributylphosphine, diphenylphosphine and triphenylphosphine; And tetraphenylboron salts such as tetraphenylphosphonium tetraphenylborate and triphenylphosphinetetraphenylborate. These can be used individually by 1 type or in mixture of 2 or more types.
 硬化促進剤(E)は、熱硬化性成分および熱硬化剤の合計量100質量部に対して、好ましくは0.01~10質量部、さらに好ましくは0.1~5質量部の量で含まれる。硬化促進剤(E)を上記範囲の量で含有することにより、高温度高湿度下に曝されても優れた接着性を有し、厳しいリフロー条件に曝された場合であっても高い信頼性を達成することができる。硬化促進剤(E)の含有量が少ないと硬化不足で十分な接着性が得られず、過剰であると高い極性をもつ硬化促進剤は高温度高湿度下で樹脂膜形成層中を接着界面側に移動し、偏析することにより半導体装置の信頼性を低下させる。 The curing accelerator (E) is preferably contained in an amount of 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the total amount of the thermosetting component and the thermosetting agent. It is. By containing the curing accelerator (E) in an amount within the above range, it has excellent adhesion even when exposed to high temperatures and high humidity, and has high reliability even when exposed to severe reflow conditions. Can be achieved. If the content of the curing accelerator (E) is small, sufficient adhesion cannot be obtained due to insufficient curing, and if it is excessive, the curing accelerator having high polarity will adhere to the resin film forming layer at high temperature and high humidity. The reliability of the semiconductor device is lowered by moving to the side and segregating.
(F)カップリング剤
 無機物と反応する官能基および有機官能基と反応する官能基を有するカップリング剤(F)を、樹脂膜形成層のチップに対する接着性、密着性および/または樹脂膜の凝集性を向上させるために用いてもよい。また、カップリング剤(F)を使用することで、樹脂膜形成層を硬化して得られる樹脂膜の耐熱性を損なうことなく、その耐水性を向上することができる。
(F) Coupling agent The coupling agent (F) having a functional group that reacts with an inorganic substance and a functional group that reacts with an organic functional group is bonded to the chip of the resin film forming layer, adhesion, and / or aggregation of the resin film. It may be used to improve the property. Moreover, the water resistance can be improved by using a coupling agent (F), without impairing the heat resistance of the resin film obtained by hardening | curing a resin film formation layer.
 カップリング剤(F)としては、その有機官能基と反応する官能基が、バインダーポリマー成分(A)、硬化性成分(B)などが有する官能基と反応する基である化合物が好ましく使用される。カップリング剤(F)としては、シランカップリング剤が好ましい。このようなカップリング剤としてはγ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-(メタクリロキシプロピル)トリメトキシシラン、γ-アミノプロピルトリメトキシシラン、N-6-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-6-(アミノエチル)-γ-アミノプロピルメチルジエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、イミダゾールシランなどが挙げられる。これらは1種単独で、または2種以上混合して使用することができる。 As the coupling agent (F), a compound in which the functional group that reacts with the organic functional group is a group that reacts with the functional group of the binder polymer component (A), the curable component (B), or the like is preferably used. . As the coupling agent (F), a silane coupling agent is preferable. Such coupling agents include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ- (methacryloxypropyl). ) Trimethoxysilane, γ-aminopropyltrimethoxysilane, N-6- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-6- (aminoethyl) -γ-aminopropylmethyldiethoxysilane, N- Phenyl-γ-aminopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, bis (3-triethoxysilylpropyl) tetrasulfane, methyltrimethoxy Silane, methyl Examples include rutriethoxysilane, vinyltrimethoxysilane, vinyltriacetoxysilane, and imidazolesilane. These can be used individually by 1 type or in mixture of 2 or more types.
 カップリング剤(F)は、バインダーポリマー成分(A)および硬化性成分(B)の合計100質量部に対して、通常0.1~20質量部、好ましくは0.2~10質量部、より好ましくは0.3~5質量部の割合で含まれる。カップリング剤(F)の含有量が0.1質量部未満だと上記の効果が得られない可能性があり、20質量部を超えるとアウトガスの原因となる可能性がある。 The coupling agent (F) is usually 0.1 to 20 parts by mass, preferably 0.2 to 10 parts by mass, based on 100 parts by mass in total of the binder polymer component (A) and the curable component (B). Preferably, it is contained at a ratio of 0.3 to 5 parts by mass. If the content of the coupling agent (F) is less than 0.1 parts by mass, the above effect may not be obtained, and if it exceeds 20 parts by mass, it may cause outgassing.
(G)光重合開始剤
 樹脂膜形成層が、硬化性成分(B)として、エネルギー線重合性化合物を含有する場合には、その使用に際して、紫外線等のエネルギー線を照射して、エネルギー線重合性化合物を硬化させる。この際、樹脂膜形成層を構成する組成物中に光重合開始剤(G)を含有させることで、重合硬化時間ならびに光線照射量を少なくすることができる。
(G) In the case where the photopolymerization initiator resin film-forming layer contains an energy beam polymerizable compound as the curable component (B), energy beam polymerization is performed by irradiating energy rays such as ultraviolet rays when using the compound. The active compound is cured. At this time, by including the photopolymerization initiator (G) in the composition constituting the resin film forming layer, the polymerization curing time and the amount of light irradiation can be reduced.
 このような光重合開始剤(G)として具体的には、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサンソン、α-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ベンジル、ジベンジル、ジアセチル、1,2-ジフェニルメタン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイドおよびβ-クロールアンスラキノンなどが挙げられる。光重合開始剤(G)は1種類単独で、または2種類以上を組み合わせて用いることができる。 Specific examples of such photopolymerization initiator (G) include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, and benzoin dimethyl ketal. 2,4-diethylthioxanthone, α-hydroxycyclohexyl phenyl ketone, benzyldiphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, 1,2-diphenylmethane, 2-hydroxy- 2-methyl-1- [4- (1-methylvinyl) phenyl] propanone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide and β- And crawl anthraquinone. A photoinitiator (G) can be used individually by 1 type or in combination of 2 or more types.
 光重合開始剤(G)の配合割合は、エネルギー線重合性化合物100質量部に対して0.1~10質量部含まれることが好ましく、1~5質量部含まれることがより好ましい。0.1質量部未満であると光重合の不足で満足な転写性が得られないことがあり、10質量部を超えると光重合に寄与しない残留物が生成し、樹脂膜形成層の硬化性が不十分となることがある。 The blending ratio of the photopolymerization initiator (G) is preferably 0.1 to 10 parts by mass, and more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the energy beam polymerizable compound. If the amount is less than 0.1 parts by mass, satisfactory transferability may not be obtained due to insufficient photopolymerization. If the amount exceeds 10 parts by mass, a residue that does not contribute to photopolymerization is generated, and the curability of the resin film forming layer is not obtained. May be insufficient.
(H)架橋剤
 樹脂膜形成層の初期接着力および凝集力を調節するために、架橋剤を添加することもできる。架橋剤(H)としては有機多価イソシアネート化合物、有機多価イミン化合物などが挙げられる。
(H) A crosslinking agent may be added to adjust the initial adhesive force and cohesive strength of the crosslinking agent resin film-forming layer. Examples of the crosslinking agent (H) include organic polyvalent isocyanate compounds and organic polyvalent imine compounds.
 有機多価イソシアネート化合物としては、芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物、脂環族多価イソシアネート化合物およびこれらの有機多価イソシアネート化合物の三量体、ならびにこれら有機多価イソシアネート化合物とポリオール化合物とを反応させて得られる末端イソシアネートウレタンプレポリマー等を挙げることができる。 Examples of organic polyvalent isocyanate compounds include aromatic polyvalent isocyanate compounds, aliphatic polyvalent isocyanate compounds, alicyclic polyvalent isocyanate compounds, trimers of these organic polyvalent isocyanate compounds, and these organic polyvalent isocyanate compounds. Examples thereof include terminal isocyanate urethane prepolymers obtained by reacting with a polyol compound.
 有機多価イソシアネート化合物として、具体的には、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-2,4’-ジイソシアネート、3-メチルジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、ジシクロヘキシルメタン-2,4’-ジイソシアネート、トリメチロールプロパンアダクトトリレンジイソシアネートおよびリジンイソシアネートが挙げられる。 Specific examples of the organic polyvalent isocyanate compound include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylene diisocyanate, diphenylmethane-4,4′-. Diisocyanate, diphenylmethane-2,4'-diisocyanate, 3-methyldiphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, dicyclohexylmethane-2,4'-diisocyanate, trimethylolpropane adduct tolylene Isocyanates and lysine isocyanates.
 有機多価イミン化合物として、具体的には、N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキシアミド)、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、テトラメチロールメタン-トリ-β-アジリジニルプロピオネートおよびN,N’-トルエン-2,4-ビス(1-アジリジンカルボキシアミド)トリエチレンメラミン等を挙げることができる。 Specific examples of organic polyvalent imine compounds include N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), trimethylolpropane-tri-β-aziridinylpropionate, tetramethylol. Mention may be made of methane-tri-β-aziridinylpropionate and N, N′-toluene-2,4-bis (1-aziridinecarboxamide) triethylenemelamine.
 架橋剤(H)はバインダーポリマー成分(A)100質量部に対して通常0.01~20質量部、好ましくは0.1~10質量部、より好ましくは0.5~5質量部の比率で用いられる。 The crosslinking agent (H) is usually in a ratio of 0.01 to 20 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the binder polymer component (A). Used.
(I)汎用添加剤
 樹脂膜形成層には、上記の他に、必要に応じて各種添加剤が配合されてもよい。各種添加剤としては、レベリング剤、可塑剤、帯電防止剤、酸化防止剤、イオン捕捉剤、ゲッタリング剤、連鎖移動剤などが挙げられる。
(I) In addition to the above, various additives may be blended in the general-purpose additive resin film forming layer as necessary. Examples of various additives include leveling agents, plasticizers, antistatic agents, antioxidants, ion scavengers, gettering agents, chain transfer agents, and the like.
 上記のような各成分からなる樹脂膜形成層は、接着性と硬化性とを有し、未硬化状態では半導体ウエハ、チップ等に押圧し、または加熱しながら押圧することで接着する。そして硬化を経て最終的には耐衝撃性の高い樹脂膜を与えることができ、接着強度にも優れ、厳しい高温度高湿度条件下においても十分な保護機能を保持し得る。本発明においては、上記の樹脂膜形成層を、半導体チップを基板または他の半導体チップに固定するためのフィルム状接着剤や、半導体ウエハまたは半導体チップの保護膜として用いることが好ましい。なお、樹脂膜形成層は単層構造であってもよく、また上記成分を含む層を1層以上含む限りにおいて多層構造であってもよい。 The resin film-forming layer composed of the above components has adhesiveness and curability, and adheres by being pressed against a semiconductor wafer, a chip or the like in an uncured state, or by being pressed while being heated. After curing, a resin film having high impact resistance can be finally provided, the adhesive strength is excellent, and a sufficient protective function can be maintained even under severe high temperature and high humidity conditions. In the present invention, the resin film forming layer is preferably used as a film adhesive for fixing a semiconductor chip to a substrate or another semiconductor chip, or as a protective film for a semiconductor wafer or a semiconductor chip. The resin film forming layer may have a single layer structure, or may have a multilayer structure as long as one or more layers containing the above components are included.
 樹脂膜形成層の熱拡散率は2×10-6/s以上であり、好ましくは2.5×10-6~5×10-6/s、より好ましくは4×10-6~5×10-6/sである。また、硬化後の樹脂膜形成層(樹脂膜)の熱拡散率は、好ましくは2×10-6/s以上、より好ましくは2.5×10-6~5×10-6/s、特に好ましくは4×10-6~5×10-6/sである。樹脂膜形成層の熱拡散率が2×10-6/s未満であると、半導体装置の発熱により、半導体装置が変形し、故障や破損の原因となることや、半導体装置の演算速度の低下や誤作動を招き、半導体装置の信頼性を低下させることがある。樹脂膜形成層または樹脂膜の熱拡散率を上記範囲とすることで、半導体装置の放熱特性を向上させ、優れた信頼性を有する半導体装置を製造することができる。 The thermal diffusivity of the resin film forming layer is 2 × 10 −6 m 2 / s or more, preferably 2.5 × 10 −6 to 5 × 10 −6 m 2 / s, more preferably 4 × 10 −6. ˜5 × 10 −6 m 2 / s. The thermal diffusivity of the cured resin film forming layer (resin film) is preferably 2 × 10 −6 m 2 / s or more, more preferably 2.5 × 10 −6 to 5 × 10 −6 m 2. / S, particularly preferably 4 × 10 −6 to 5 × 10 −6 m 2 / s. When the thermal diffusivity of the resin film forming layer is less than 2 × 10 −6 m 2 / s, the semiconductor device is deformed due to heat generation of the semiconductor device, causing failure or breakage, and the operation speed of the semiconductor device. Deterioration and malfunction may be caused, and the reliability of the semiconductor device may be reduced. By setting the thermal diffusivity of the resin film forming layer or the resin film within the above range, the heat dissipation characteristics of the semiconductor device can be improved, and a semiconductor device having excellent reliability can be manufactured.
 樹脂膜形成層の放熱特性の指標としては、熱拡散率のほか、熱伝導率を用いることができ、硬化後の樹脂膜形成層(樹脂膜)の熱伝導率は、4~15W/m・Kであることが好ましく、5~10W/m・Kであることがより好ましい。 In addition to thermal diffusivity, thermal conductivity can be used as an index of heat dissipation characteristics of the resin film forming layer. The thermal conductivity of the cured resin film forming layer (resin film) is 4 to 15 W / m · K is preferable, and 5 to 10 W / m · K is more preferable.
(チップ用樹脂膜形成用シート)
 樹脂膜形成層は、上記各成分を適宜の割合で、適当な溶媒中で混合してなる樹脂膜形成用組成物を、支持シート上に塗布乾燥して得られる。また、支持シートとは別の工程フィルム上に樹脂膜形成用組成物を塗布、乾燥して成膜し、これを支持シート上に転写してもよい。
(Sheet for forming a resin film for chips)
The resin film-forming layer is obtained by applying and drying a resin film-forming composition obtained by mixing each of the above components in an appropriate solvent on a support sheet. Alternatively, the composition for forming a resin film may be applied on a process film different from the support sheet and dried to form a film, which may be transferred onto the support sheet.
 本発明に係るチップ用樹脂膜形成用シートは、上記樹脂膜形成層を支持シート上に剥離可能に形成してなる。本発明に係るチップ用樹脂膜形成用シートの形状は、テープ状、ラベル状などあらゆる形状をとり得る。 The resin film forming sheet for chips according to the present invention is formed by releasably forming the resin film forming layer on a support sheet. The shape of the resin film forming sheet for chips according to the present invention can take any shape such as a tape shape and a label shape.
 支持シートとしては、たとえば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン酢酸ビニル共重合体フィルム、アイオノマー樹脂フィルム、エチレン・(メタ)アクリル酸共重合体フィルム、エチレン・(メタ)アクリル酸エステル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、ポリイミドフィルム、フッ素樹脂フィルムなどのフィルムが用いられる。またこれらの架橋フィルムも用いられる。さらにこれらの積層フィルムであってもよい。また、これらを着色したフィルムをも用いることができる。 As the support sheet, for example, polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polyethylene naphthalate film, polybutylene terephthalate film, Polyurethane film, ethylene vinyl acetate copolymer film, ionomer resin film, ethylene / (meth) acrylic acid copolymer film, ethylene / (meth) acrylic acid ester copolymer film, polystyrene film, polycarbonate film, polyimide film, fluorine A film such as a resin film is used. These crosslinked films are also used. Furthermore, these laminated films may be sufficient. Moreover, the film which colored these can also be used.
 本発明のチップ用樹脂膜形成用シートにおいては、その使用に際して支持シートを剥離し、樹脂膜形成層を半導体ウエハまたはチップに転写する。特に樹脂膜形成層の熱硬化後に支持シートを剥離する場合には、支持シートは樹脂膜形成層の熱硬化時の加熱に耐える必要があるため、耐熱性に優れたアニール処理ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリメチルペンテンフィルム、ポリイミドフィルムが好ましく用いられる。樹脂膜形成層と支持シートとの間での剥離を容易にするため、支持シートの表面張力は、好ましくは40mN/m以下、さらに好ましくは37mN/m以下、特に好ましくは35mN/m以下である。下限値は通常25mN/m程度である。このような表面張力が低い支持シートは、材質を適宜に選択して得ることが可能であるし、また支持シートの表面に剥離剤を塗布して剥離処理を施すことで得ることもできる。 In the resin film forming sheet for chips of the present invention, the support sheet is peeled off when used, and the resin film forming layer is transferred to a semiconductor wafer or chip. In particular, when the support sheet is peeled off after the resin film forming layer is thermally cured, the support sheet needs to withstand the heating during the heat curing of the resin film forming layer, and therefore, an annealed polyethylene terephthalate film having excellent heat resistance, polyethylene Naphthalate film, polymethylpentene film, and polyimide film are preferably used. In order to facilitate peeling between the resin film forming layer and the support sheet, the surface tension of the support sheet is preferably 40 mN / m or less, more preferably 37 mN / m or less, and particularly preferably 35 mN / m or less. . The lower limit is usually about 25 mN / m. Such a support sheet having a low surface tension can be obtained by appropriately selecting the material, and can also be obtained by applying a release agent to the surface of the support sheet and performing a release treatment.
 剥離処理に用いられる剥離剤としては、アルキッド系、シリコーン系、フッ素系、不飽和ポリエステル系、ポリオレフィン系、ワックス系などが用いられるが、特にアルキッド系、シリコーン系、フッ素系の剥離剤が耐熱性を有するので好ましい。 As the release agent used for the release treatment, alkyd, silicone, fluorine, unsaturated polyester, polyolefin, wax, and the like are used. In particular, alkyd, silicone, and fluorine release agents are heat resistant. This is preferable.
 上記の剥離剤を用いてシートの表面を剥離処理するためには、剥離剤をそのまま無溶剤で、または溶剤希釈やエマルション化して、グラビアコーター、メイヤーバーコーター、エアナイフコーター、ロールコーターなどにより塗布して、常温もしくは加熱硬化または電子線硬化させたり、ウェットラミネーションやドライラミネーション、熱溶融ラミネーション、溶融押出ラミネーション、共押出加工などで積層体を形成すればよい。 In order to release the surface of the sheet using the above release agent, the release agent is applied as it is without a solvent, or diluted or emulsified with a solvent, and applied with a gravure coater, Mayer bar coater, air knife coater, roll coater, etc. The laminate may be formed by room temperature, heat curing, electron beam curing, wet lamination, dry lamination, hot melt lamination, melt extrusion lamination, coextrusion processing, or the like.
 また、樹脂膜形成層は、支持シートに設けられた再剥離性粘着剤層上に積層されていてもよい。再剥離性粘着剤層は、樹脂膜形成層を剥離できる程度の粘着力を有する弱粘着性のものを使用してもよいし、エネルギー線照射により粘着力が低下するエネルギー線硬化性のものを使用してもよい。また、エネルギー線硬化性の再剥離性粘着剤層を用いる場合、樹脂膜形成層が積層される領域に予めエネルギー線照射を行い、粘着性を低減させておく一方、他の領域はエネルギー線照射を行わず、たとえば治具への接着を目的として、粘着力を高いまま維持しておいてもよい。他の領域のみにエネルギー線照射を行わないようにするには、たとえば基材の他の領域に対応する領域に印刷等によりエネルギー線遮蔽層を設け、基材側からエネルギー線照射を行えばよい。再剥離性粘着剤層は、従来より公知の種々の粘着剤(例えば、ゴム系、アクリル系、シリコーン系、ウレタン系、ビニルエーテル系などの汎用粘着剤)により形成できる。再剥離性粘着剤層の厚みは特に限定されないが、通常は1~50μmであり、好ましくは3~20μmである。 Further, the resin film forming layer may be laminated on a releasable pressure-sensitive adhesive layer provided on the support sheet. The re-peelable pressure-sensitive adhesive layer may be a weakly-adhesive layer having an adhesive strength that can peel the resin film-forming layer, or an energy-ray-curable layer whose adhesive strength is reduced by energy beam irradiation. May be used. In addition, when using an energy ray curable removable adhesive layer, the region where the resin film forming layer is laminated is preliminarily irradiated with energy rays to reduce adhesiveness, while other regions are irradiated with energy rays. For example, for the purpose of bonding to a jig, the adhesive strength may be kept high. In order not to irradiate the energy beam only to other regions, for example, an energy beam shielding layer may be provided by printing or the like in a region corresponding to the other region of the substrate, and the energy beam irradiation may be performed from the substrate side. . The re-peelable pressure-sensitive adhesive layer can be formed of various conventionally known pressure-sensitive adhesives (for example, rubber-based, acrylic-based, silicone-based, urethane-based, vinyl ether-based general-purpose pressure-sensitive adhesives). The thickness of the releasable pressure-sensitive adhesive layer is not particularly limited, but is usually 1 to 50 μm, preferably 3 to 20 μm.
 支持シートの厚さは、通常は10~500μm、好ましくは15~300μm、特に好ましくは20~250μmである。 The thickness of the support sheet is usually 10 to 500 μm, preferably 15 to 300 μm, particularly preferably 20 to 250 μm.
 樹脂膜形成層の厚みは、好ましくは20~60μm、より好ましくは25~50μm、特に好ましくは30~45μmである。また、樹脂膜形成層の厚みは、妨害粒子(C2)の平均粒子径よりも2~5μm大きいことが好ましい。 The thickness of the resin film forming layer is preferably 20 to 60 μm, more preferably 25 to 50 μm, and particularly preferably 30 to 45 μm. The thickness of the resin film forming layer is preferably 2 to 5 μm larger than the average particle diameter of the disturbing particles (C2).
 なお、チップ用樹脂膜形成用シートの使用前に、樹脂膜形成層を保護するために、樹脂膜形成層の上面に、前記支持シートとは別に、軽剥離性の剥離フィルムを積層しておいてもよい。 Before using the resin film forming sheet for chips, in order to protect the resin film forming layer, a light peelable release film is laminated on the upper surface of the resin film forming layer separately from the support sheet. May be.
 このようなチップ用樹脂膜形成用シートの樹脂膜形成層は、フィルム状接着剤として機能することができる。フィルム状接着剤は通常半導体ウエハのいずれかの面に貼付され、ダイシング工程を経て個々のチップに切断された後、基板などに載置(ダイボンド)され、硬化工程を経て半導体チップを接着固定するのに用いられる。このようなフィルム状接着剤はダイアタッチメントフィルムと呼ばれることがある。本発明における樹脂膜形成層をフィルム状接着剤として用いた半導体装置は、放熱特性に優れるため、その信頼性の低下を抑制できる。  The resin film forming layer of such a resin film forming sheet for chips can function as a film adhesive. A film adhesive is usually applied to any surface of a semiconductor wafer, cut into individual chips through a dicing process, and then placed on a substrate (die bond), and a semiconductor chip is bonded and fixed through a curing process. Used for Such a film adhesive is sometimes referred to as a die attachment film. Since the semiconductor device using the resin film forming layer in the present invention as a film adhesive is excellent in heat dissipation characteristics, it is possible to suppress a decrease in reliability. *
 また、チップ用樹脂膜形成用シートの樹脂膜形成層は保護膜とすることができる。樹脂膜形成層はフェースダウン方式のチップ用半導体ウエハまたは半導体チップの裏面に貼付され、適当な手段により硬化されて封止樹脂の代替として半導体チップを保護する機能を有する。半導体ウエハに貼付した場合には、保護膜がウエハを補強する機能を有するためにウエハの破損等を防止しうる。また、本発明における樹脂膜形成層を保護膜とした半導体装置は、放熱特性に優れるため、その信頼性の低下を抑制できる。 Also, the resin film forming layer of the chip resin film forming sheet can be a protective film. The resin film forming layer is affixed to the back surface of the face-down chip semiconductor wafer or semiconductor chip, and has a function of protecting the semiconductor chip as an alternative to the sealing resin by being cured by an appropriate means. When pasted on a semiconductor wafer, the protective film has a function of reinforcing the wafer, so that damage to the wafer can be prevented. Moreover, since the semiconductor device which used the resin film formation layer in this invention as the protective film is excellent in the thermal radiation characteristic, it can suppress the fall of the reliability.
(半導体装置の製造方法)
 次に本発明に係るチップ用樹脂膜形成用シートの利用方法について、該シートを半導体装置の製造に適用した場合を例にとって説明する。
(Method for manufacturing semiconductor device)
Next, a method of using the resin film forming sheet for chips according to the present invention will be described taking as an example the case where the sheet is applied to the manufacture of a semiconductor device.
 本発明に係る半導体装置の製造方法は、表面に回路が形成された半導体ウエハの裏面に、上記チップ用樹脂膜形成用シートの樹脂膜形成層を貼付し、その後、裏面に樹脂膜を有する半導体チップを得ることが好ましい。該樹脂膜は、半導体ウエハまたは半導体チップの保護膜であることが好ましい。また、本発明に係る半導体チップの製造方法は、好ましくは、以下の工程(1)~(3)をさらに含み、工程(1)~(3)を任意の順で行うことを特徴としている。
 工程(1):樹脂膜形成層または樹脂膜と、支持シートとを剥離、
 工程(2):樹脂膜形成層を硬化し樹脂膜を得る、
 工程(3):半導体ウエハと、樹脂膜形成層または樹脂膜とをダイシング。
A method of manufacturing a semiconductor device according to the present invention is a semiconductor device in which a resin film forming layer of the resin film forming sheet for a chip is pasted on the back surface of a semiconductor wafer having a circuit formed on the surface, and then the resin film is formed on the back surface. It is preferable to obtain a chip. The resin film is preferably a protective film for a semiconductor wafer or a semiconductor chip. The semiconductor chip manufacturing method according to the present invention preferably further includes the following steps (1) to (3), wherein the steps (1) to (3) are performed in an arbitrary order.
Step (1): peeling the resin film forming layer or resin film and the support sheet,
Step (2): The resin film forming layer is cured to obtain a resin film.
Step (3): dicing the semiconductor wafer and the resin film forming layer or resin film.
 半導体ウエハはシリコンウエハであってもよく、またガリウム・砒素などの化合物半導体ウエハであってもよい。ウエハ表面への回路の形成はエッチング法、リフトオフ法などの従来より汎用されている方法を含む様々な方法により行うことができる。次いで、半導体ウエハの回路面の反対面(裏面)を研削する。研削法は特に限定はされず、グラインダーなどを用いた公知の手段で研削してもよい。裏面研削時には、表面の回路を保護するために回路面に、表面保護シートと呼ばれる粘着シートを貼付する。裏面研削は、ウエハの回路面側(すなわち表面保護シート側)をチャックテーブル等により固定し、回路が形成されていない裏面側をグラインダーにより研削する。ウエハの研削後の厚みは特に限定はされないが、通常は20~500μm程度である。 The semiconductor wafer may be a silicon wafer or a compound semiconductor wafer such as gallium / arsenic. Formation of a circuit on the wafer surface can be performed by various methods including conventionally used methods such as an etching method and a lift-off method. Next, the opposite surface (back surface) of the circuit surface of the semiconductor wafer is ground. The grinding method is not particularly limited, and grinding may be performed by a known means using a grinder or the like. At the time of back surface grinding, an adhesive sheet called a surface protection sheet is attached to the circuit surface in order to protect the circuit on the surface. In the back surface grinding, the circuit surface side (that is, the surface protection sheet side) of the wafer is fixed by a chuck table or the like, and the back surface side on which no circuit is formed is ground by a grinder. The thickness of the wafer after grinding is not particularly limited, but is usually about 20 to 500 μm.
 その後、必要に応じ、裏面研削時に生じた破砕層を除去する。破砕層の除去は、ケミカルエッチングや、プラズマエッチングなどにより行われる。 After that, if necessary, the crushed layer generated during back grinding is removed. The crushed layer is removed by chemical etching, plasma etching, or the like.
 次いで、半導体ウエハの裏面に、上記チップ用樹脂膜形成用シートの樹脂膜形成層を貼付する。その後、工程(1)~(3)を任意の順で行う。このプロセスの詳細については、特開2002-280329号公報に詳述されている。一例として、工程(1)、(2)、(3)の順で行う場合について説明する。 Then, the resin film forming layer of the chip resin film forming sheet is attached to the back surface of the semiconductor wafer. Thereafter, steps (1) to (3) are performed in an arbitrary order. Details of this process are described in detail in JP-A-2002-280329. As an example, the case where it performs in order of process (1), (2), (3) is demonstrated.
 まず、表面に回路が形成された半導体ウエハの裏面に、上記チップ用樹脂膜形成用シートの樹脂膜形成層を貼付する。次いで樹脂膜形成層から支持シートを剥離し、半導体ウエハと樹脂膜形成層との積層体を得る。次いで樹脂膜形成層を硬化し、ウエハの全面に樹脂膜を形成する。樹脂膜形成層に、硬化性成分(B)として熱硬化性成分および熱硬化剤を用いた場合には、熱硬化により樹脂膜形成層を硬化する。硬化性成分(B)として、エネルギー線重合性化合物が配合されている場合には、樹脂膜形成層の硬化を、エネルギー線照射により行うことができ、熱硬化性成分および熱硬化剤と、エネルギー線重合性化合物を併用する場合には、加熱およびエネルギー線照射による硬化を同時に行ってもよく、逐次的に行ってもよい。照射されるエネルギー線としては、紫外線(UV)または電子線(EB)等が挙げられ、好ましくは紫外線が用いられる。この結果、ウエハ裏面に硬化樹脂からなる樹脂膜が形成され、ウエハ単独の場合と比べて強度が向上するので、薄くなったウエハの取扱い時の破損を低減できる。また、熱拡散率の高い樹脂膜が形成されることで、優れた放熱特性が付与される。また、ウエハやチップの裏面に直接樹脂膜用の塗布液を塗布・被膜化するコーティング法と比較して、樹脂膜の厚さの均一性に優れる。 First, the resin film forming layer of the above-mentioned resin film forming sheet for chips is attached to the back surface of a semiconductor wafer having a circuit formed on the front surface. Next, the support sheet is peeled from the resin film forming layer to obtain a laminate of the semiconductor wafer and the resin film forming layer. Next, the resin film forming layer is cured to form a resin film on the entire surface of the wafer. When a thermosetting component and a thermosetting agent are used as the curable component (B) in the resin film forming layer, the resin film forming layer is cured by thermosetting. When the energy ray polymerizable compound is blended as the curable component (B), the resin film forming layer can be cured by irradiation with energy rays, and the thermosetting component, the thermosetting agent, energy When the linear polymerizable compound is used in combination, curing by heating and energy beam irradiation may be performed simultaneously or sequentially. Examples of the energy rays to be irradiated include ultraviolet rays (UV) and electron beams (EB), and preferably ultraviolet rays are used. As a result, a resin film made of a cured resin is formed on the back surface of the wafer, and the strength is improved as compared with the case of the wafer alone, so that damage during handling of the thinned wafer can be reduced. Moreover, the outstanding heat dissipation characteristic is provided by forming the resin film with a high thermal diffusivity. Further, compared with a coating method in which a coating solution for a resin film is directly applied to the back surface of a wafer or chip, the thickness of the resin film is excellent.
 次いで、半導体ウエハと樹脂膜との積層体を、ウエハ表面に形成された回路毎にダイシングする。ダイシングは、ウエハと樹脂膜をともに切断するように行われる。ウエハのダイシングは、ダイシングシートを用いた常法により行われる。この結果、裏面に樹脂膜を有する半導体チップが得られる。 Next, the laminated body of the semiconductor wafer and the resin film is diced for each circuit formed on the wafer surface. Dicing is performed so as to cut both the wafer and the resin film. The wafer is diced by a conventional method using a dicing sheet. As a result, a semiconductor chip having a resin film on the back surface is obtained.
 最後に、ダイシングされたチップをコレット等の汎用手段によりピックアップすることで、裏面に樹脂膜を有する半導体チップが得られる。このような本発明によれば、厚みの均一性の高い樹脂膜を、チップ裏面に簡便に形成でき、ダイシング工程やパッケージングの後のクラックが発生しにくくなる。さらに、得られる半導体装置には優れた放熱特性が付与されるため、その信頼性が低下することを抑制できる。そして、半導体チップをフェースダウン方式で所定の基台上に実装することで半導体装置を製造することができる。また、裏面に樹脂膜を有する半導体チップを、ダイパッド部または別の半導体チップなどの他の部材上(チップ搭載部上)に接着することで、半導体装置を製造することもできる。 Finally, by picking up the diced chip by a general means such as a collet, a semiconductor chip having a resin film on the back surface can be obtained. According to the present invention, a highly uniform resin film can be easily formed on the back surface of the chip, and cracks after the dicing process and packaging are less likely to occur. Furthermore, since excellent heat dissipation characteristics are imparted to the obtained semiconductor device, it is possible to suppress a decrease in reliability. Then, the semiconductor device can be manufactured by mounting the semiconductor chip on a predetermined base by the face-down method. In addition, a semiconductor device can be manufactured by bonding a semiconductor chip having a resin film on the back surface to another member (on a chip mounting portion) such as a die pad portion or another semiconductor chip.
 また、本発明に係るチップ用樹脂膜形成用シートを用いた別の半導体装置の製造方法は、該シートの樹脂膜形成層を半導体ウエハに貼着し、該半導体ウエハをダイシングして半導体チップとし、該半導体チップのいずれかの面に該樹脂膜形成層を固着残存させて支持シートから剥離し、該半導体チップをダイパッド部上、または別の半導体チップ上に該樹脂膜形成層を介して載置する工程を含むことが好ましい。一例として、チップの裏面に樹脂膜形成層を貼付する製造方法について以下説明する。 In another method of manufacturing a semiconductor device using the chip resin film forming sheet according to the present invention, the resin film forming layer of the sheet is bonded to a semiconductor wafer, and the semiconductor wafer is diced into a semiconductor chip. The resin film forming layer is fixedly left on either side of the semiconductor chip and peeled off from the support sheet, and the semiconductor chip is mounted on the die pad portion or another semiconductor chip via the resin film forming layer. It is preferable to include a step of placing. As an example, a manufacturing method for attaching a resin film forming layer to the back surface of a chip will be described below.
 まず、リングフレームおよび半導体ウエハの裏面側を本発明に係るチップ用樹脂膜形成用シートの樹脂膜形成層上に載置し、軽く押圧し、半導体ウエハを固定する。その際、室温ではタック性を有しない場合は適宜加温しても良い(限定するものではないが、40~80℃が好ましい)。次いで、樹脂膜形成層に硬化性成分(B)としてエネルギー線重合性化合物が配合されている場合には、樹脂膜形成層に支持シート側からエネルギー線を照射し、樹脂層形成層を予備的に硬化し、樹脂膜形成層の凝集力を上げ、樹脂膜形成層と支持シートとの間の接着力を低下させておいてもよい。次いで、ダイシングソーなどの切断手段を用いて、上記の半導体ウエハを切断し半導体チップを得る。この際の切断深さは、半導体ウエハの厚みと、樹脂膜形成層の厚みとの合計およびダイシングソーの磨耗分を加味した深さにする。なお、エネルギー線照射は、半導体ウエハの貼付後、半導体チップの剥離(ピックアップ)前のいずれの段階で行ってもよく、たとえばダイシングの後に行ってもよく、また下記のエキスパンド工程の後に行ってもよい。さらにエネルギー線照射を複数回に分けて行ってもよい。 First, the ring frame and the back side of the semiconductor wafer are placed on the resin film forming layer of the chip resin film forming sheet according to the present invention, and lightly pressed to fix the semiconductor wafer. At that time, if it does not have tackiness at room temperature, it may be appropriately heated (although it is not limited, it is preferably 40 to 80 ° C.). Next, when an energy beam polymerizable compound is blended as the curable component (B) in the resin film forming layer, the resin film forming layer is irradiated with energy rays from the support sheet side, and the resin layer forming layer is preliminarily formed. It may be hardened to increase the cohesive force of the resin film forming layer and decrease the adhesive force between the resin film forming layer and the support sheet. Next, the semiconductor wafer is cut using a cutting means such as a dicing saw to obtain a semiconductor chip. The cutting depth at this time is a depth that takes into account the sum of the thickness of the semiconductor wafer and the thickness of the resin film forming layer and the amount of wear of the dicing saw. The energy beam irradiation may be performed at any stage after the semiconductor wafer is pasted and before the semiconductor chip is peeled off (pickup). For example, the irradiation may be performed after dicing or after the following expanding step. Good. Further, the energy beam irradiation may be performed in a plurality of times.
 次いで必要に応じ、チップ用樹脂膜形成用シートのエキスパンドを行うと、半導体チップ間隔が拡張し、半導体チップのピックアップをさらに容易に行えるようになる。この際、樹脂膜形成層と支持シートとの間にずれが発生することになり、樹脂膜形成層と支持シートとの間の接着力が減少し、半導体チップのピックアップ性が向上する。このようにして半導体チップのピックアップを行うと、切断された樹脂膜形成層を半導体チップ裏面に固着残存させて支持シートから剥離することができる。 Then, if necessary, if the resin film forming sheet for chips is expanded, the interval between the semiconductor chips is expanded, and the semiconductor chips can be picked up more easily. At this time, a deviation occurs between the resin film forming layer and the support sheet, the adhesive force between the resin film forming layer and the support sheet is reduced, and the pick-up property of the semiconductor chip is improved. When the semiconductor chip is picked up in this manner, the cut resin film forming layer can be adhered to the back surface of the semiconductor chip and peeled off from the support sheet.
 次いで樹脂膜形成層を介して半導体チップを、リードフレームのダイパッド上または別の半導体チップ(下段チップ)表面に載置する(以下、チップが搭載されるダイパッドまたは下段チップ表面を「チップ搭載部」と記載する)。チップ搭載部は、半導体チップを載置する前に加熱するか載置直後に加熱される。加熱温度は、通常は80~200℃、好ましくは100~180℃であり、加熱時間は、通常は0.1秒~5分、好ましくは0.5秒~3分であり、載置するときの圧力は、通常1kPa~200MPaである。 Next, the semiconductor chip is placed on the die pad of the lead frame or on the surface of another semiconductor chip (lower chip) through the resin film forming layer (hereinafter, the die pad or lower chip surface on which the chip is mounted is referred to as “chip mounting portion”. ). The chip mounting portion is heated before or after the semiconductor chip is placed. The heating temperature is usually 80 to 200 ° C., preferably 100 to 180 ° C., and the heating time is usually 0.1 seconds to 5 minutes, preferably 0.5 seconds to 3 minutes. The pressure is usually 1 kPa to 200 MPa.
 半導体チップをチップ搭載部に載置した後、必要に応じさらに加熱を行ってもよい。この際の加熱条件は、上記加熱温度の範囲であって、加熱時間は通常1~180分、好ましくは10~120分である。 After the semiconductor chip is placed on the chip mounting portion, further heating may be performed as necessary. The heating conditions at this time are in the above heating temperature range, and the heating time is usually 1 to 180 minutes, preferably 10 to 120 minutes.
 また、載置後の加熱処理は行わずに仮接着状態としておき、パッケージ製造において通常行われる樹脂封止での加熱を利用して樹脂膜形成層を硬化させてもよい。このような工程を経ることで、樹脂膜形成層が硬化し、半導体チップとチップ搭載部とが強固に接着された半導体装置を得ることができる。樹脂膜形成層はダイボンド条件下では流動化しているため、チップ搭載部の凹凸にも十分に埋め込まれ、ボイドの発生を防止でき半導体装置の信頼性が高くなる。また、樹脂膜形成層の熱拡散率が高いため、半導体装置は優れた放熱特性を有し、その信頼性が低下することを抑制できる。 Alternatively, the resin film forming layer may be cured by using a heat in resin sealing that is normally performed in package manufacturing, without temporarily performing the heat treatment after placement. By passing through such a process, the resin film formation layer hardens | cures and the semiconductor device with which the semiconductor chip and the chip mounting part were adhere | attached firmly can be obtained. Since the resin film forming layer is fluidized under die bonding conditions, the resin film forming layer is sufficiently embedded in the unevenness of the chip mounting portion, and generation of voids can be prevented and the reliability of the semiconductor device is improved. In addition, since the thermal diffusivity of the resin film forming layer is high, the semiconductor device has excellent heat dissipation characteristics, and it is possible to suppress a decrease in reliability.
 本発明のチップ用樹脂膜形成用シートは、上記のような使用方法の他、半導体化合物、ガラス、セラミックス、金属などの接着に使用することもできる。 The resin film-forming sheet for chips of the present invention can be used for bonding semiconductor compounds, glass, ceramics, metals, etc., in addition to the above-described usage methods.
 以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の実施例および比較例において、<熱拡散率測定>は次のように行った。 Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to these examples. In the following Examples and Comparative Examples, <Measurement of Thermal Diffusivity> was performed as follows.
<熱拡散率測定>
(硬化前)
 樹脂膜形成層(厚さ:40μm)を、裁断して各片が1cmの正方形の試料を得た。次いで、熱伝導率測定装置(ai-phase社製 アイフェイズ・モバイル1u)を用いて、該試料の熱伝導率を測定した。その後、該試料の比熱と比重から該試料の熱拡散率を算出し、樹脂膜形成層の熱拡散率とした。熱拡散率が2×10-6/s以上の場合を「良好」とし、2×10-6/s未満の場合を「不良」とした。
(硬化後)
 樹脂膜形成層(厚さ:40μm)を、裁断して各片が1cmの正方形の試料を得た。次いで、該試料を加熱(130℃、2時間)して硬化させた後、熱伝導率測定装置(ai-phase社製 アイフェイズ・モバイル1u)を用いて、該試料の熱伝導率を測定した。その後、該試料の比熱と比重から該試料の熱拡散率を算出し、樹脂膜の熱拡散率とした。熱拡散率が2×10-6/s以上の場合を「良好」とし、2×10-6/s未満の場合を「不良」とした。
<Measurement of thermal diffusivity>
(Before curing)
The resin film forming layer (thickness: 40 μm) was cut to obtain a square sample with each piece being 1 cm. Subsequently, the thermal conductivity of the sample was measured using a thermal conductivity measuring device (eye phase mobile 1u manufactured by ai-phase). Thereafter, the thermal diffusivity of the sample was calculated from the specific heat and specific gravity of the sample to obtain the thermal diffusivity of the resin film forming layer. The case where the thermal diffusivity was 2 × 10 −6 m 2 / s or more was judged as “good”, and the case where it was less than 2 × 10 −6 m 2 / s was judged as “bad”.
(After curing)
The resin film forming layer (thickness: 40 μm) was cut to obtain a square sample with each piece being 1 cm. Next, the sample was heated and cured (130 ° C., 2 hours), and then the thermal conductivity of the sample was measured using a thermal conductivity measuring device (eye phase mobile 1u manufactured by ai-phase). . Thereafter, the thermal diffusivity of the sample was calculated from the specific heat and specific gravity of the sample, and was used as the thermal diffusivity of the resin film. The case where the thermal diffusivity was 2 × 10 −6 m 2 / s or more was judged as “good”, and the case where it was less than 2 × 10 −6 m 2 / s was judged as “bad”.
<樹脂膜形成層用組成物>
 樹脂膜形成層を構成する各成分を下記に示す。
(A)バインダーポリマー成分:メタクリル酸メチル85質量部とアクリル酸2-ヒドロキシエチル15質量部との共重合体(重量平均分子量:40万、ガラス転移温度:6℃)
(B)硬化性成分:
 (B1)ビスフェノールA型エポキシ樹脂(エポキシ当量180~200g/eq)
 (B2)ジシクロペンタジエン型エポキシ樹脂(大日本インキ化学工業(株)製 エピクロンHP-7200HH)
 (B3)ジシアンジアミド(旭電化製 アデカハードナー3636AS)
(C)無機フィラー:
 (C1)窒化ホウ素粒子(昭和電工(株)製 UHP-2、形状:板状、平均粒子径11.8μm、アスペクト比11.2、長軸方向の熱伝導率200W/m・K、比重2.3g/cm
 (C2)アルミナフィラー(昭和電工(株)製 CB-A30S、形状:球状、平均粒子径30μm、比重4.0g/cm
(D)着色剤:黒色顔料(カーボンブラック、三菱化学社製 #MA650、平均粒子径28nm)
(E)硬化促進剤:2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業社製 キュアゾール2PHZ-PW)
(F)カップリング剤:A-1110(日本ユニカー社製)
<Composition for resin film forming layer>
Each component which comprises a resin film formation layer is shown below.
(A) Binder polymer component: copolymer of 85 parts by weight of methyl methacrylate and 15 parts by weight of 2-hydroxyethyl acrylate (weight average molecular weight: 400,000, glass transition temperature: 6 ° C.)
(B) Curing component:
(B1) Bisphenol A type epoxy resin (epoxy equivalent 180 to 200 g / eq)
(B2) Dicyclopentadiene type epoxy resin (Epicron HP-7200HH, manufactured by Dainippon Ink & Chemicals, Inc.)
(B3) Dicyandiamide (Adeka Hardener 3636AS manufactured by Asahi Denka)
(C) Inorganic filler:
(C1) Boron nitride particles (UHP-2, manufactured by Showa Denko KK, shape: plate, average particle diameter 11.8 μm, aspect ratio 11.2, major axis thermal conductivity 200 W / m · K, specific gravity 2 .3 g / cm 3 )
(C2) Alumina filler (CB-A30S manufactured by Showa Denko KK, shape: spherical, average particle diameter 30 μm, specific gravity 4.0 g / cm 3 )
(D) Colorant: Black pigment (carbon black, manufactured by Mitsubishi Chemical Corporation # MA650, average particle size 28 nm)
(E) Curing accelerator: 2-phenyl-4,5-dihydroxymethylimidazole (Curesol 2PHZ-PW manufactured by Shikoku Kasei Kogyo Co., Ltd.)
(F) Coupling agent: A-1110 (Nihon Unicar)
(実施例および比較例)
 上記各成分を表1に記載の量で配合し、樹脂膜形成用組成物を得た。得られた組成物のメチルエチルケトン溶液(固形濃度61重量%)を、シリコーンで剥離処理された支持シート(リンテック株式会社製 SP-PET381031、厚さ38μm)の剥離処理面上に乾燥後40μm(比較例3のみ60μm)の厚みになるように塗布、乾燥(乾燥条件:オーブンにて110℃、1分間)して、支持シート上に樹脂膜形成層を形成し、チップ用樹脂膜形成用シートを得た。
(Examples and Comparative Examples)
The above components were blended in the amounts shown in Table 1 to obtain a resin film forming composition. A methyl ethyl ketone solution (solid concentration 61% by weight) of the obtained composition was dried on the release-treated surface of a support sheet (SP-PET 381031, thickness 38 μm manufactured by Lintec Co., Ltd.) that had been subjected to a release treatment with silicone, and then 40 μm (Comparative Example). 3 is applied to a thickness of 60 μm) and dried (drying conditions: 110 ° C. for 1 minute in an oven) to form a resin film forming layer on the support sheet, thereby obtaining a resin film forming sheet for chips. It was.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 得られたチップ用樹脂膜形成用シートの樹脂膜形成層について、<熱拡散率測定>を行った。結果を表2に示す。 <Thermal diffusivity measurement> was performed on the resin film forming layer of the obtained resin film forming sheet for chips. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例のチップ用樹脂膜形成用シートの樹脂膜形成層は、優れた熱拡散率を示した。したがって、支持シートと、該支持シート上に形成された樹脂膜形成層とを有し、該樹脂膜形成層が、バインダーポリマー成分(A)、硬化性成分(B)および無機フィラー(C)を含み、該樹脂膜形成層の熱拡散率が2×10-6/s以上であるチップ用樹脂膜形成用シートを用いることで、高信頼性の半導体装置を得ることができる。 The resin film-forming layer of the chip resin film-forming sheet of the example exhibited an excellent thermal diffusivity. Therefore, it has a support sheet and a resin film forming layer formed on the support sheet, and the resin film forming layer contains a binder polymer component (A), a curable component (B), and an inorganic filler (C). In addition, a highly reliable semiconductor device can be obtained by using a resin film forming sheet for a chip in which the thermal diffusivity of the resin film forming layer is 2 × 10 −6 m 2 / s or more.

Claims (11)

  1.  支持シートと、該支持シート上に形成された樹脂膜形成層とを有し、
     該樹脂膜形成層が、バインダーポリマー成分(A)、硬化性成分(B)および無機フィラー(C)を含み、
     該樹脂膜形成層の熱拡散率が2×10-6/s以上であるチップ用樹脂膜形成用シート。
    A support sheet, and a resin film forming layer formed on the support sheet;
    The resin film-forming layer contains a binder polymer component (A), a curable component (B) and an inorganic filler (C),
    A resin film-forming sheet for chips, wherein the resin film-forming layer has a thermal diffusivity of 2 × 10 −6 m 2 / s or more.
  2.  該樹脂膜形成層が無機フィラー(C)を30~60質量%含む請求項1に記載のチップ用樹脂膜形成用シート。 2. The resin film forming sheet for chips according to claim 1, wherein the resin film forming layer contains 30 to 60% by mass of an inorganic filler (C).
  3.  無機フィラー(C)が、アスペクト比が5以上であり、平均粒子径が20μm以下である異方形状粒子(C1)と、平均粒子径が20μm超である妨害粒子(C2)を含む請求項1または2に記載のチップ用樹脂膜形成用シート。 The inorganic filler (C) comprises anisotropically shaped particles (C1) having an aspect ratio of 5 or more and an average particle diameter of 20 μm or less, and interfering particles (C2) having an average particle diameter of more than 20 μm. Or the resin film formation sheet for a chip | tip of 2.
  4.  異方形状粒子(C1)の長軸方向における熱伝導率が、60~400W/m・Kである請求項3に記載のチップ用樹脂膜形成用シート。 The resin film forming sheet for chips according to claim 3, wherein the anisotropically shaped particles (C1) have a thermal conductivity in the major axis direction of 60 to 400 W / m · K.
  5.  異方形状粒子(C1)が、窒化物粒子である請求項3または4に記載のチップ用樹脂膜形成用シート。 The resin film forming sheet for chips according to claim 3 or 4, wherein the anisotropically shaped particles (C1) are nitride particles.
  6.  妨害粒子(C2)の平均粒子径が、樹脂膜形成層の厚みの0.6~0.95倍である請求項3~5のいずれかに記載のチップ用樹脂膜形成用シート。 6. The resin film forming sheet for chips according to claim 3, wherein the average particle diameter of the interfering particles (C2) is 0.6 to 0.95 times the thickness of the resin film forming layer.
  7.  異方形状粒子(C1)と妨害粒子(C2)との重量比率が、5:1~1:5である請求項3~6のいずれかに記載のチップ用樹脂膜形成用シート。 7. The resin film forming sheet for chips according to claim 3, wherein the weight ratio of the anisotropically shaped particles (C1) to the interfering particles (C2) is 5: 1 to 1: 5.
  8.  該樹脂膜形成層の厚みが20~60μmである請求項1~7のいずれかに記載のチップ用樹脂膜形成用シート。 The chip resin film-forming sheet according to any one of claims 1 to 7, wherein the resin film-forming layer has a thickness of 20 to 60 µm.
  9.  樹脂膜形成層が、半導体チップを基板または他の半導体チップに固定するためのフィルム状接着剤として機能する請求項1~8の何れかに記載のチップ用樹脂膜形成用シート。 9. The resin film forming sheet for a chip according to claim 1, wherein the resin film forming layer functions as a film adhesive for fixing the semiconductor chip to the substrate or another semiconductor chip.
  10.  樹脂膜形成層が、半導体ウエハまたはチップの保護膜である請求項1~8の何れかに記載のチップ用樹脂膜形成用シート。 9. The resin film forming sheet for chips according to claim 1, wherein the resin film forming layer is a protective film for a semiconductor wafer or a chip.
  11.  請求項1~10の何れかに記載のチップ用樹脂膜形成用シートを用いる半導体装置の製造方法。 A method of manufacturing a semiconductor device using the chip resin film forming sheet according to any one of claims 1 to 10.
PCT/JP2013/055981 2012-03-07 2013-03-05 Sheet for forming resin film for chips WO2013133268A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380012849.4A CN104160491B (en) 2012-03-07 2013-03-05 Chip is with resin film formation sheet material
KR1020167000118A KR20160006801A (en) 2012-03-07 2013-03-05 Sheet for forming resin film for chips
KR1020167003119A KR101969991B1 (en) 2012-03-07 2013-03-05 Sheet for forming resin film for chips
JP2014503852A JP6239498B2 (en) 2012-03-07 2013-03-05 Resin film forming sheet for chips
KR1020147022175A KR101584473B1 (en) 2012-03-07 2013-03-05 Sheet for forming resin film for chips

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012050787 2012-03-07
JP2012-050787 2012-03-07

Publications (1)

Publication Number Publication Date
WO2013133268A1 true WO2013133268A1 (en) 2013-09-12

Family

ID=49116743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055981 WO2013133268A1 (en) 2012-03-07 2013-03-05 Sheet for forming resin film for chips

Country Status (5)

Country Link
JP (1) JP6239498B2 (en)
KR (3) KR101969991B1 (en)
CN (1) CN104160491B (en)
TW (1) TWI600738B (en)
WO (1) WO2013133268A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204545A (en) * 2015-04-24 2016-12-08 日東電工株式会社 Encapsulation resin sheet and electronic device
JP2017025313A (en) * 2015-07-21 2017-02-02 積水化学工業株式会社 Adhesive sheet
JP2018139326A (en) * 2018-05-31 2018-09-06 日東電工株式会社 Manufacturing method of electronic device
WO2021039732A1 (en) * 2019-08-26 2021-03-04 富士フイルム株式会社 Composition for forming heat-conducting material, heat-conducting material, heat-conducting sheet, and device with heat-conducting layer
JP7330404B1 (en) * 2022-06-22 2023-08-21 三菱電機株式会社 THERMALLY CONDUCTIVE RESIN COMPOSITION, THERMAL CONDUCTIVE SHEET AND MANUFACTURING METHOD THEREOF, THERMALLY CONDUCTIVE CURED PRODUCT AND MANUFACTURING METHOD THEREOF, POWER MODULE, AND MOTOR STATOR

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200092932A (en) 2017-12-08 2020-08-04 세키스이가가쿠 고교가부시키가이샤 Laminates and electronic devices
PL3702400T3 (en) * 2019-02-27 2021-12-06 Röhm Gmbh Forgery prevention labels for high-temperature applications
CN112582283B (en) * 2019-09-29 2023-11-21 矽磐微电子(重庆)有限公司 Semiconductor packaging method and semiconductor packaging structure
CN112582282B (en) * 2019-09-29 2023-07-25 矽磐微电子(重庆)有限公司 Semiconductor packaging method and semiconductor packaging structure
CN112582281B (en) * 2019-09-29 2023-08-25 矽磐微电子(重庆)有限公司 Semiconductor packaging method and semiconductor packaging structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0516296A (en) * 1991-07-09 1993-01-26 Toyo Takasago Kandenchi Kk High heat dissipation material composition
JPH0823005A (en) * 1993-09-14 1996-01-23 Toshiba Corp Resin sealed semiconductor device and its manufacturing method, and sealing resin sheet
JP2002030223A (en) * 2000-07-18 2002-01-31 Sekisui Chem Co Ltd Thermally conductive resin composition
JP2005232313A (en) * 2004-02-19 2005-09-02 Mitsubishi Electric Corp Thermally conductive resin sheet and power module using the same
JP2005281467A (en) * 2004-03-29 2005-10-13 Toshiba Corp Resin and member having high thermal conductivity, and electrical equipment and semiconductor device produced by using the same
JP2007254527A (en) * 2006-03-22 2007-10-04 Toray Ind Inc Adhesive composition for electronic equipment and adhesive sheet for electronic equipment using the same
JP2010235953A (en) * 2002-05-02 2010-10-21 Three M Innovative Properties Co Thermally conductive sheet and method for producing the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950010029A (en) * 1993-09-14 1995-04-26 사토 후미오 Resin-sealed semiconductor device and manufacturing method thereof
JP2002069392A (en) 2000-08-31 2002-03-08 Polymatech Co Ltd Heat-conductive adhesive film, method for producing the same and electronic part
JP5134747B2 (en) * 2000-11-28 2013-01-30 日立化成工業株式会社 Adhesive film and semiconductor device
JP3544362B2 (en) 2001-03-21 2004-07-21 リンテック株式会社 Method for manufacturing semiconductor chip
JP4812391B2 (en) * 2005-10-14 2011-11-09 昭和電工株式会社 Thermally conductive resin composition, structure thereof and use thereof
JP5005258B2 (en) 2006-05-23 2012-08-22 リンテック株式会社 Adhesive composition, adhesive sheet and method for producing semiconductor device
JP5407601B2 (en) * 2008-09-01 2014-02-05 油化電子株式会社 Thermally conductive molded body
JP5332464B2 (en) * 2008-09-30 2013-11-06 住友ベークライト株式会社 Resin composition and semiconductor device produced using resin composition
JP5308859B2 (en) * 2008-10-20 2013-10-09 株式会社カネカ Highly light-resistant and heat-conductive resin molded product for lighting equipment
US20100252961A1 (en) * 2009-04-06 2010-10-07 3M Innovative Properties Company Optical film replication on low thermal diffusivity tooling with conformal coating
JP2011162706A (en) * 2010-02-12 2011-08-25 Nitto Denko Corp Method for producing thermally conductive self-adhesive sheet
JP5023179B2 (en) * 2010-03-31 2012-09-12 リンテック株式会社 Resin film forming sheet for chip and manufacturing method of semiconductor chip
JP5742375B2 (en) * 2010-03-31 2015-07-01 東レ株式会社 Adhesive composition for electronic equipment and adhesive sheet for electronic equipment using the same
JP6182967B2 (en) * 2013-05-09 2017-08-23 日立化成株式会社 High thermal conductive adhesive film for semiconductor devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0516296A (en) * 1991-07-09 1993-01-26 Toyo Takasago Kandenchi Kk High heat dissipation material composition
JPH0823005A (en) * 1993-09-14 1996-01-23 Toshiba Corp Resin sealed semiconductor device and its manufacturing method, and sealing resin sheet
JP2002030223A (en) * 2000-07-18 2002-01-31 Sekisui Chem Co Ltd Thermally conductive resin composition
JP2010235953A (en) * 2002-05-02 2010-10-21 Three M Innovative Properties Co Thermally conductive sheet and method for producing the same
JP2005232313A (en) * 2004-02-19 2005-09-02 Mitsubishi Electric Corp Thermally conductive resin sheet and power module using the same
JP2005281467A (en) * 2004-03-29 2005-10-13 Toshiba Corp Resin and member having high thermal conductivity, and electrical equipment and semiconductor device produced by using the same
JP2007254527A (en) * 2006-03-22 2007-10-04 Toray Ind Inc Adhesive composition for electronic equipment and adhesive sheet for electronic equipment using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204545A (en) * 2015-04-24 2016-12-08 日東電工株式会社 Encapsulation resin sheet and electronic device
JP2017025313A (en) * 2015-07-21 2017-02-02 積水化学工業株式会社 Adhesive sheet
JP2018139326A (en) * 2018-05-31 2018-09-06 日東電工株式会社 Manufacturing method of electronic device
WO2021039732A1 (en) * 2019-08-26 2021-03-04 富士フイルム株式会社 Composition for forming heat-conducting material, heat-conducting material, heat-conducting sheet, and device with heat-conducting layer
JPWO2021039732A1 (en) * 2019-08-26 2021-03-04
JP7257529B2 (en) 2019-08-26 2023-04-13 富士フイルム株式会社 COMPOSITION FOR HEAT CONDUCTIVE MATERIAL, HEAT CONDUCTIVE MATERIAL, HEAT CONDUCTIVE SHEET, DEVICE WITH HEAT CONDUCTIVE LAYER
JP7330404B1 (en) * 2022-06-22 2023-08-21 三菱電機株式会社 THERMALLY CONDUCTIVE RESIN COMPOSITION, THERMAL CONDUCTIVE SHEET AND MANUFACTURING METHOD THEREOF, THERMALLY CONDUCTIVE CURED PRODUCT AND MANUFACTURING METHOD THEREOF, POWER MODULE, AND MOTOR STATOR
WO2023248380A1 (en) * 2022-06-22 2023-12-28 三菱電機株式会社 Heat conductive resin composition, heat conductive sheet and method for manufacturing same, heat conductive cured product and method for manufacturing same, power module, and stator of motor

Also Published As

Publication number Publication date
KR20140128999A (en) 2014-11-06
KR20160018876A (en) 2016-02-17
JP6239498B2 (en) 2017-11-29
TW201402758A (en) 2014-01-16
KR101969991B1 (en) 2019-04-17
CN104160491B (en) 2018-05-11
TWI600738B (en) 2017-10-01
JPWO2013133268A1 (en) 2015-07-30
CN104160491A (en) 2014-11-19
KR101584473B1 (en) 2016-01-11
KR20160006801A (en) 2016-01-19

Similar Documents

Publication Publication Date Title
JP6239498B2 (en) Resin film forming sheet for chips
JP5774799B2 (en) Composite sheet for protective film formation
JP5917215B2 (en) Adhesive composition, adhesive sheet, and method for manufacturing semiconductor device
WO2014092200A1 (en) Holding membrane forming film
KR102215668B1 (en) Protective film formation composite sheet, protective film-equipped chip, and method for fabricating protective film-equipped chip
WO2014021450A1 (en) Film-like adhesive, adhesive sheet for semiconductor junction, and method for producing semiconductor device
KR102224971B1 (en) Sheet provided with curable resin film-forming layer and method for manufacturing semiconductor device using sheet
JP5893250B2 (en) Chip protective film forming sheet, semiconductor chip manufacturing method, and semiconductor device
JP5785420B2 (en) Protective film forming sheet and semiconductor chip manufacturing method
JP6262717B2 (en) Method for manufacturing chip with protective film
JP5743638B2 (en) Protective film forming film and chip protective film forming sheet
JP6427791B2 (en) Resin film forming sheet for chip and manufacturing method of semiconductor device
JP5973027B2 (en) Protective film forming film and chip protective film forming sheet
JP6038919B2 (en) Protective film forming layer, protective film forming sheet, and method of manufacturing semiconductor device
TW202039728A (en) Dicing tape-integrated semiconductor back surface adhesion film having secondary processability for bonding
JP5234594B2 (en) Adhesive composition, adhesive sheet and method for producing semiconductor device
JP2014192463A (en) Resin film formation sheet
JP5951206B2 (en) Dicing die bonding sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13756988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014503852

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147022175

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13756988

Country of ref document: EP

Kind code of ref document: A1