WO2013133059A1 - Vehicle control apparatus, and vehicle control method - Google Patents
Vehicle control apparatus, and vehicle control method Download PDFInfo
- Publication number
- WO2013133059A1 WO2013133059A1 PCT/JP2013/054681 JP2013054681W WO2013133059A1 WO 2013133059 A1 WO2013133059 A1 WO 2013133059A1 JP 2013054681 W JP2013054681 W JP 2013054681W WO 2013133059 A1 WO2013133059 A1 WO 2013133059A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control
- damping force
- vehicle
- sprung
- unsprung
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/018—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/06—Characteristics of dampers, e.g. mechanical dampers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/10—Acceleration; Deceleration
- B60G2400/102—Acceleration; Deceleration vertical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/20—Speed
- B60G2400/208—Speed of wheel rotation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/90—Other conditions or factors
- B60G2400/91—Frequency
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2500/00—Indexing codes relating to the regulated action or device
- B60G2500/10—Damping action or damper
Definitions
- the present invention relates to a control device that controls the state of a vehicle.
- Patent Document 1 A technique described in Patent Document 1 is disclosed as a technique related to a vehicle control device.
- This publication discloses a technique for setting a damping force in accordance with the unsprung speed in a suspension control device capable of changing the damping force.
- the present invention has been made paying attention to the above problem, and an object of the present invention is to provide a vehicle control device capable of ensuring the grounding property of wheels while ensuring the ride comfort.
- the vehicle control apparatus calculates the damping force control amount of the damping force variable shock absorber according to the unsprung vertical speed, and the amplitude of an arbitrary frequency band of the sprung vertical acceleration.
- the damping force control amount is reduced and corrected.
- FIG. 1 is a system schematic diagram illustrating a vehicle control apparatus according to a first embodiment.
- FIG. 2 is a control block diagram illustrating a control configuration of the vehicle control device according to the first embodiment.
- 1 is a conceptual diagram illustrating a configuration of a wheel speed feedback control system according to a first embodiment.
- FIG. 3 is a control block diagram illustrating a configuration of a traveling state estimation unit according to the first embodiment. It is a control block diagram showing the control content in the stroke speed calculating part of Example 1.
- FIG. 3 is a block diagram illustrating a configuration of a reference wheel speed calculation unit according to the first embodiment. It is the schematic showing a vehicle body vibration model. It is a control block diagram showing brake pitch control of Example 1.
- FIG. 3 is a control block diagram illustrating a configuration of roll rate suppression control according to the first embodiment. 3 is a time chart illustrating an envelope waveform forming process of roll rate suppression control according to the first embodiment.
- FIG. 3 is a block diagram illustrating a control configuration of unsprung vibration suppression control according to the first embodiment.
- FIG. 3 is a control block diagram illustrating a control configuration of a damping force control unit according to the first embodiment.
- 6 is a flowchart illustrating attenuation coefficient arbitration processing in a standard mode according to the first embodiment.
- 6 is a flowchart illustrating an attenuation coefficient arbitration process in the sport mode according to the first embodiment.
- 6 is a flowchart illustrating attenuation coefficient arbitration processing in the comfort mode according to the first embodiment.
- 6 is a flowchart illustrating attenuation coefficient arbitration processing in a highway mode according to the first exemplary embodiment.
- FIG. 10 is a block diagram illustrating a control configuration of unsprung vibration suppression control according to a fifth embodiment.
- FIG. 1 is a system schematic diagram illustrating a vehicle control apparatus according to the first embodiment.
- the vehicle includes an engine 1 that is a power source and a brake 20 that generates braking torque due to friction force on each wheel (hereinafter, when displaying brakes corresponding to individual wheels, right front wheel brake: 20FR, left front wheel brake: 20FL).
- S / A shock absorber 3
- the engine 1 includes an engine controller (hereinafter also referred to as an engine control unit, which corresponds to power source control means) 1a that controls torque output from the engine 1, and the engine controller 1a is configured to By controlling the fuel injection amount, ignition timing, etc., the desired engine operating state (engine speed and engine output torque) is controlled. Further, the brake 20 generates a braking torque based on the hydraulic pressure supplied from the brake control unit 2 that can control the brake hydraulic pressure of each wheel according to the traveling state.
- the brake control unit 2 includes a brake controller (hereinafter also referred to as a brake control unit) 2a for controlling a braking torque generated by the brake 20, and a master cylinder pressure generated by a driver's brake pedal operation or a built-in motor.
- a pump pressure generated by the drive pump is used as a hydraulic pressure source, and a desired hydraulic pressure is generated in the brake 20 of each wheel by opening and closing operations of a plurality of solenoid valves.
- the S / A3 is a damping force generator that attenuates the elastic motion of a coil spring provided between a vehicle unsprung (axle, wheel, etc.) and a sprung (vehicle body, etc.). It is configured to be variable.
- the S / A 3 includes a cylinder in which fluid is sealed, a piston that strokes in the cylinder, and an orifice that controls fluid movement between fluid chambers formed above and below the piston. Furthermore, orifices having a plurality of types of orifice diameters are formed in the piston, and an orifice corresponding to a control command is selected from the plurality of types of orifices when the S / A actuator is operated. Thereby, the damping force according to the orifice diameter can be generated. For example, if the orifice diameter is small, the movement of the piston is easily restricted, so that the damping force is high. If the orifice diameter is large, the movement of the piston is difficult to be restricted, and thus the damping force is small.
- an electromagnetic control valve is arranged on the communication path connecting fluids formed above and below the piston, and the damping force is set by controlling the opening / closing amount of the electromagnetic control valve.
- the S / A 3 has an S / A controller 3a (corresponding to damping force control means) that controls the damping force of the S / A 3, and controls the damping force by operating the orifice diameter by the S / A actuator.
- a wheel speed sensor 5 for detecting the wheel speed of each wheel (hereinafter, when displaying wheel speeds corresponding to individual wheels, right front wheel speed: 5FR, left front wheel speed: 5FL, right rear wheel speed: 5RR). , Left rear wheel speed: 5RL)), an integrated sensor 6 for detecting longitudinal acceleration, yaw rate and lateral acceleration acting on the center of gravity of the vehicle, and a steering angle which is a steering operation amount of the driver is detected.
- Steering angle sensor 7 vehicle speed sensor 8 for detecting vehicle speed
- engine torque sensor 9 for detecting engine torque
- engine speed sensor 10 for detecting engine speed
- master pressure sensor 11 for detecting master cylinder pressure.
- a brake switch 12 that outputs an on-state signal when a brake pedal operation is performed, and an accelerator opening sensor 13 that detects an accelerator pedal opening.
- the signals from these various sensors are input to the engine controller 1a, the brake controller 2a, and the S / A controller 3a as necessary.
- the arrangement of the integrated sensor 6 may be at the center of gravity of the vehicle, or may be any place other than that as long as various values at the center of gravity can be estimated. Moreover, it is not necessary to be an integral type, and a configuration in which yaw rate, longitudinal acceleration, and lateral acceleration are individually detected may be employed.
- the control amount by the engine 1 and the brake 20 is limited and output from the control amount that can be actually output, thereby reducing the burden on the S / A 3 and accompanying the control of the engine 1 and the brake 20. Suppresses discomfort that occurs.
- Skyhook control is performed by all actuators. At this time, without using a stroke sensor or a sprung vertical acceleration sensor generally required for skyhook control, the skyhook control can be performed with an inexpensive configuration using wheel speed sensors mounted on all vehicles. Realize.
- scalar control frequency sensitive control
- FIG. 2 is a control block diagram illustrating a control configuration of the vehicle control apparatus according to the first embodiment.
- the controller includes an engine controller 1a, a brake controller 2a, and an S / A controller 3a, and each controller constitutes a wheel speed feedback control system.
- the configuration including three controllers as the controller is shown, but each controller may be configured by one integrated controller without any particular limitation.
- the configuration including the three controllers in the first embodiment is that the engine controller and the brake controller in the existing vehicle are used as they are to form the engine control unit 1a and the brake control unit 2a, and the S / A controller 3a is separately mounted. Thus, it is assumed that the vehicle control apparatus of the first embodiment is realized.
- the engine controller 1a mainly uses the wheel speed detected by the wheel speed sensor 5 to determine the stroke speed, bounce rate, roll rate and pitch of each wheel used for the skyhook control of the sprung mass damping control unit 101a described later.
- a first running state estimation unit 100 that estimates the rate, an engine posture control unit 101 that calculates an engine posture control amount that is an engine torque command, and controls the operating state of the engine 1 based on the calculated engine posture control amount.
- An engine control unit 102 The details of the estimation process of the first traveling state estimation unit 100 will be described later.
- the engine attitude control unit 101 includes a sprung mass damping control unit 101a that calculates a sprung control amount that suppresses bounce motion and pitch motion by skyhook control, and ground load variation suppression that suppresses ground load variation of front and rear wheels.
- a ground load control unit 101b that calculates a control amount
- an engine-side driver input control unit 101c that calculates a yaw response control amount corresponding to a vehicle behavior that the driver wants to achieve based on signals from the steering angle sensor 7 and the vehicle speed sensor 8 And have.
- the engine attitude control unit 101 calculates an engine attitude control amount that minimizes the control amount calculated by each of these control units by optimal control (LQR), and determines the final engine attitude control amount for the engine control unit 102. Output.
- LQR optimal control
- the S / A 3 can reduce the damping force control amount, and therefore, deterioration of the high frequency vibration can be avoided. Moreover, since S / A3 can concentrate on suppression of roll motion, it can suppress roll motion effectively.
- the brake controller 2a Based on the wheel speed detected by the wheel speed sensor 5, the brake controller 2a estimates the stroke speed and pitch rate of each wheel, and the like based on the estimated stroke speed and pitch rate.
- Skyhook control unit 201 (details will be described later) that calculates a brake attitude control amount based on skyhook control, and brake control unit 202 that controls the braking torque of brake 20 based on the calculated brake attitude control amount And have.
- the same estimation process is adopted as the estimation process in the first traveling state estimation unit 100 and the second traveling state estimation unit 200, but other estimation processes are performed as long as the process is estimated from the wheel speed. It may be used.
- the S / A controller 3a includes a driver input control unit 31 that performs driver input control for achieving a desired vehicle posture based on a driver's operation (steering operation, accelerator operation, brake pedal operation, etc.), and detection values of various sensors.
- a third traveling state estimation unit 32 that estimates the traveling state based on (mainly the wheel speed sensor value of the wheel speed sensor 5), and a sprung mass damping that controls the vibration state on the spring based on the estimated traveling state
- a control unit 33 an unsprung vibration suppression control unit 34 that controls the unsprung vibration state based on the estimated traveling state, a shock absorber attitude control amount output from the driver input control unit 31, and a sprung mass damping
- a damping force to be set in the S / A 3 is determined.
- a damping force control unit 35 for performing the damping force control of the A.
- the same estimation process is adopted as the estimation process in the first traveling state estimation unit 100, the second traveling state estimation unit 200, and the third traveling state estimation unit 32, but the process is estimated from the wheel speed. If so, other estimation processes may be used and there is no particular limitation.
- FIG. 3 is a conceptual diagram showing the configuration of the wheel speed feedback control system of the first embodiment.
- the engine 1, the brake 20 and the S / A 3 individually constitute an engine feedback control system, a brake feedback control system, and an S / A feedback control system.
- control interference becomes a problem.
- the effects of the control of each actuator appear as wheel speed fluctuations, by configuring the wheel speed feedback control system, the effect of each actuator is monitored as a result, and control interference is avoided. It is. For example, if a certain sprung vibration is suppressed by the engine 1, the wheel speed fluctuation
- the brake 20 and the S / A 3 perform control based on the wheel speed in which the influence is reflected.
- the feedback control system is configured using a common value of wheel speed, even if individual control is performed without controllable mutual monitoring, as a result, control based on mutual monitoring (below) This control is described as emphasis control), and the vehicle posture can be converged in the stabilization direction.
- each feedback control system will be described sequentially.
- the 1st, 2nd, 3rd driving state estimation part which is a common structure provided in each feedback control system is demonstrated.
- the same estimation process is adopted as the estimation process in the first traveling state estimation unit 100, the second traveling state estimation unit 200, and the third traveling state estimation unit 32. Therefore, since the process in each estimation part is common, the estimation process in the 3rd driving state estimation part 32 is demonstrated as a representative.
- Each of the running state estimation units may be provided with a separate estimation model as long as it is a state estimation using the wheel speed, and is not particularly limited.
- FIG. 4 is a control block diagram showing the configuration of the third traveling state estimation unit of the first embodiment.
- the stroke of each wheel used for the skyhook control of the sprung mass damping control unit 33 to be described later is basically based on the wheel speed detected by the wheel speed sensor 5. Calculate speed, bounce rate, roll rate and pitch rate. First, the value of the wheel speed sensor 5 of each wheel is input to the stroke speed calculation unit 321, and the sprung speed is calculated from the stroke speed of each wheel calculated by the stroke speed calculation unit 321.
- FIG. 5 is a control block diagram showing the control contents in the stroke speed calculation unit of the first embodiment.
- the stroke speed calculation unit 321 is individually provided for each wheel, and the control block diagram shown in FIG. 5 is a control block diagram focusing on a certain wheel.
- the value of the wheel speed sensor 5, the front wheel steering angle ⁇ f detected by the steering angle sensor 7, and the rear wheel steering angle ⁇ r (actual rear wheel steering if a rear wheel steering device is provided).
- the reference wheel speed calculation unit 300 that calculates a reference wheel speed based on the vehicle body lateral speed and the actual yaw rate detected by the integrated sensor 6, and the angle may be appropriately set to 0 in other cases.
- a tire rotation vibration frequency calculation unit 321a that calculates the tire rotation vibration frequency based on the calculated reference wheel speed, and a deviation calculation unit 321b that calculates a deviation (wheel speed fluctuation) between the reference wheel speed and the wheel speed sensor value.
- a GEO conversion unit 321c that converts the deviation calculated by the deviation calculation unit 321b into a suspension stroke amount, a stroke speed calibration unit 321d that calibrates the converted stroke amount to a stroke speed,
- a band elimination filter corresponding to the frequency calculated by the tire rotation vibration frequency calculation unit 321a is applied to the value calibrated by the roke speed calibration unit 321d to remove the tire rotation primary vibration component and calculate the final stroke speed.
- a signal processing unit 321e that calculates the tire rotation vibration frequency based on the calculated reference wheel speed
- a deviation calculation unit 321b that calculates a deviation (wheel speed fluctuation) between the reference wheel speed and the wheel speed sensor value.
- a GEO conversion unit 321c that converts the deviation calculated by the deviation calculation unit 321b
- FIG. 6 is a block diagram illustrating a configuration of a reference wheel speed calculation unit according to the first embodiment.
- the reference wheel speed refers to a value obtained by removing various disturbances from each wheel speed.
- the difference between the wheel speed sensor value and the reference wheel speed is a value related to a component that fluctuates according to the stroke generated by the bounce behavior, roll behavior, pitch behavior, or unsprung vertical vibration of the vehicle body.
- the stroke speed is estimated based on this difference.
- the plane motion component extraction unit 301 calculates the first wheel speed V0 that is the reference wheel speed of each wheel based on the vehicle body plan view model with the wheel speed sensor value as an input.
- the wheel speed sensor value detected by the wheel speed sensor 5 is ⁇ (rad / s)
- the front wheel actual steering angle detected by the steering angle sensor 7 is ⁇ f (rad)
- the rear wheel actual steering angle is ⁇ r (rad )
- the vehicle body lateral speed is Vx
- the yaw rate detected by the integrated sensor 6 is ⁇ (rad / s)
- the vehicle speed estimated from the calculated reference wheel speed ⁇ 0 is V (m / s)
- the reference to be calculated Wheel speed is VFL, VFR, VRL, VRR
- front wheel tread is Tf
- rear wheel tread is Tr
- distance from vehicle center of gravity to front wheel is Lf
- distance from vehicle center of gravity to rear wheel is Lr.
- VFL (V-Tf / 2 ⁇ ⁇ ) cos ⁇ f + (Vx + Lf ⁇ ⁇ ) sin ⁇ f
- VFR (V + Tf / 2 ⁇ ⁇ ) cos ⁇ f + (Vx + Lf ⁇ ⁇ ) sin ⁇ f
- VRL (V ⁇ Tr / 2 ⁇ ⁇ ) cos ⁇ r + (Vx ⁇ Lr ⁇ ⁇ ) sin ⁇ r
- VRR (V + Tr / 2 ⁇ ⁇ ) cos ⁇ r + (Vx-Lr ⁇ ⁇ ) sin ⁇ r
- V is described as V0FL, V0FR, V0RL, V0RR (corresponding to the first wheel speed) as a value corresponding to each wheel.
- V0FL ⁇ VFL-Lf ⁇ ⁇ sin ⁇ f ⁇ / cos ⁇ f + Tf / 2 ⁇ ⁇
- V0FR ⁇ VFR-Lf ⁇ ⁇ sin ⁇ f ⁇ / cos ⁇ f-Tf / 2 ⁇ ⁇
- V0RL ⁇ VRL + Lr ⁇ ⁇ sin ⁇ r ⁇ / cos ⁇ r + Tr / 2 ⁇ ⁇
- V0RR ⁇ VRR + Lf ⁇ ⁇ sin ⁇ f ⁇ / cos ⁇ r-Tr / 2 ⁇ ⁇
- the roll disturbance removing unit 302 calculates the second wheel speeds V0F and V0R as the reference wheel speeds for the front and rear wheels based on the vehicle body front view model with the first wheel speed V0 as an input.
- the vehicle body front view model removes the wheel speed difference caused by the roll motion that occurs around the roll rotation center on the vertical line passing through the center of gravity of the vehicle when the vehicle is viewed from the front. Is done.
- V0F (V0FL + V0FR) / 2
- V0R (V0RL + V0RR) / 2
- the second wheel speeds V0F and V0R from which disturbance based on the roll is removed are obtained.
- the pitch disturbance removal unit 303 calculates the third wheel speeds VbFL, VbFR, VbRL, and VbRR, which are the reference wheel speeds for all the wheels, based on the vehicle side view model, with the second wheel speeds V0F and V0R as inputs.
- the vehicle body side view model is to remove the wheel speed difference caused by the pitch motion generated around the pitch rotation center on the vertical line passing through the center of gravity of the vehicle when the vehicle is viewed from the lateral direction. It is expressed by the following formula.
- the sprung speed calculation unit 322 calculates the bounce rate, roll rate, and pitch rate for skyhook control. Calculated.
- Skyhook control is to achieve a flat running state by setting a damping force based on the relationship between the S / A3 stroke speed and the sprung speed, and controlling the posture on the sprung.
- the value that can be detected from the wheel speed sensor 5 is the stroke speed, and since the vertical acceleration sensor or the like is not provided on the spring, the sprung speed needs to be estimated using an estimation model.
- the problem of the estimation model and the model configuration to be adopted will be described.
- FIG. 7 is a schematic diagram showing a vehicle body vibration model.
- FIG. 7A is a model of a vehicle (hereinafter referred to as a conveyor vehicle) having an S / A with a constant damping force
- FIG. 7B has an S / A having a variable damping force.
- Ms represents the mass on the spring
- Mu represents the mass below the spring
- Ks represents the elastic coefficient of the coil spring
- Cs represents the damping coefficient of S / A
- Ku represents the unsprung (tire).
- Cu represents an unsprung (tire) damping coefficient
- Cv represents a variable damping coefficient
- Z2 represents a position on the spring
- z1 represents a position under the spring
- z0 represents a road surface position.
- Changing the damping force basically means changing the force that limits the piston moving speed of S / A 3 in accordance with the suspension stroke. Since the semi-active S / A3 that cannot positively move the piston in the desired direction is used, when the semi-active skyhook model is employed and the sprung speed is obtained, it is expressed as follows.
- the magnitude of the estimated sprung speed is smaller than the actual value in the frequency band below the sprung resonance, but the most important in skyhook control is the phase. If the correspondence between the phase and the sign can be maintained, the skyhook can be maintained. Since control is achieved and the magnitude of the sprung speed can be adjusted by other factors, there is no problem.
- the sprung speed can be estimated if the stroke speed of each wheel is known.
- the actual vehicle is four wheels instead of one wheel, it is considered to estimate the state of the spring by mode decomposition into roll rate, pitch rate and bounce rate using the stroke speed of each wheel. To do.
- the above three components are calculated from the stroke speed of the four wheels, one corresponding component is insufficient, and the solution becomes indefinite. Therefore, a war plate representing the movement of the diagonal wheels is introduced.
- the stroke amount bounce term is xsB
- the roll term is xsR
- the pitch term is xsP
- the warp term is xsW
- the stroke amount corresponding to Vz_sFL, Vz_sFR, Vz_sRL, Vz_sRR is z_sFL, z_sFR, z_sRL, z_sRR, Holds.
- dxsB 1/4 (Vz_sFL + Vz_sFR + Vz_sRL + Vz_sRR)
- dxsR 1/4 (Vz_sFL-Vz_sFR + Vz_sRL-Vz_sRR)
- dxsP 1/4 (-Vz_sFL-Vz_sFR + Vz_sRL + Vz_sRR)
- dxsW 1/4 (-Vz_sFL + Vz_sFR + Vz_sRL-Vz_sRR)
- the vehicle control apparatus includes the engine 1, the brake 20, and the S / A 3 as actuators for achieving sprung posture control.
- the sprung mass damping control unit 101a in the engine controller 1a has two bounce rate and pitch rate as control targets
- the skyhook control unit 201 in the brake controller 2a has pitch rate as control targets.
- the skyhook control unit 33a in the controller 3a three of bounce rate, roll rate, and pitch rate are controlled.
- the bounce direction skyhook control amount FB is calculated as a part of the engine attitude control amount in the sprung mass damping control unit 101a.
- the skyhook control unit 33a calculates as a part of the S / A attitude control amount.
- the skyhook control amount FR in roll direction is calculated as part of the S / A attitude control amount in the sky hook control unit 33a.
- the sky hook control amount FP in the pitch direction is calculated as a part of the engine attitude control amount in the sprung mass damping control unit 101a.
- the skyhook control unit 201 calculates the brake posture control amount.
- the skyhook control unit 33a calculates as a part of the S / A attitude control amount.
- the engine attitude control unit 101 is set with a limit value for limiting the engine torque control amount according to the engine attitude control amount so as not to give the driver a sense of incongruity.
- the engine torque control amount is limited to be within a predetermined longitudinal acceleration range when converted to longitudinal acceleration. Therefore, when the engine attitude control amount (engine torque control amount) is calculated based on FB or FP and a value equal to or greater than the limit value is calculated, bounce rate or pitch rate skyhook control that can be achieved by the limit value
- the engine attitude control amount is output as a quantity.
- an engine torque control amount is calculated based on the engine attitude control amount corresponding to the limit value and is output to the engine 1.
- a limit value for limiting the braking torque control amount is set in order to prevent the driver from feeling uncomfortable as in the case of the engine 1 (details of the limit value will be described later).
- the braking torque control amount is converted into the longitudinal acceleration, the braking torque control amount is limited to be within a predetermined longitudinal acceleration range (a limit value obtained from the occupant's uncomfortable feeling, the life of the actuator, etc.). Therefore, when the brake attitude control amount is calculated based on the FP and a value equal to or greater than the limit value is calculated, a pitch rate suppression amount (hereinafter referred to as a brake attitude control amount) that can be achieved by the limit value.
- a pitch rate suppression amount hereinafter referred to as a brake attitude control amount
- the brake control unit 202 calculates a braking torque control amount (or deceleration) based on the brake attitude control amount corresponding to the limit value, and outputs the calculated braking torque control amount to the brake 20.
- FIG. 8 is a control block diagram showing the brake pitch control of the first embodiment.
- the vehicle body mass is m
- the front wheel braking force is BFf
- the rear wheel braking force is BFr
- the height between the vehicle center of gravity and the road surface is Hcg
- the vehicle acceleration is a
- the pitch moment is Mp
- the pitch rate is Vp.
- the brake attitude control amount calculation unit 334 is composed of the following control blocks.
- the dead zone processing code determination unit 3341 determines the sign of the input pitch rate Vp, and when it is positive, it outputs 0 to the deceleration reduction processing unit 3342 because control is unnecessary, and when it is negative, it determines that control is possible.
- the pitch rate signal is output to the deceleration reduction processing unit 3342.
- the deceleration feeling reduction process is a process corresponding to the limit by the limit value performed in the brake attitude control amount calculation unit 334.
- the square processor 3342a squares the pitch rate signal. This inverts the sign and smoothes the rise of the control force.
- the pitch rate square decay moment calculation unit 3342b calculates the pitch moment Mp by multiplying the squared pitch rate by the skyhook gain CskyP of the pitch term considering the square process.
- the target deceleration calculating unit 3342c calculates the target deceleration by dividing the pitch moment Mp by the mass m and the height Hcg between the vehicle center of gravity and the road surface.
- the calculated rate of change of the target deceleration that is, whether the jerk is within a preset range of the deceleration jerk threshold and the extraction jerk threshold, and the target deceleration is the longitudinal acceleration limit value. Judgment is made whether or not it is within the range. If any threshold is exceeded, the target deceleration is corrected to a value within the jerk threshold range, and if the target deceleration exceeds the limit value, the limit is set. Set within the value. Thereby, the deceleration can be generated so as not to give the driver a sense of incongruity.
- the target pitch moment conversion unit 3343 calculates the target pitch moment by multiplying the target deceleration limited by the jerk threshold limiting unit 3342d by the mass m and the height Hcg, and outputs the target pitch moment to the brake control unit 2a.
- the sprung speed is estimated based on the detection value of the wheel speed sensor 5 and the skyhook control is performed based on the estimated sprung speed control.
- a comfortable driving state (a comfortable ride feeling softer than the vehicle body flatness) is guaranteed.
- vector control where the relationship (phase, etc.) of the sign of stroke speed and sprung speed is important, such as skyhook control, may make it difficult to achieve proper control due to a slight phase shift. Therefore, we decided to introduce frequency-sensitive control, which is sprung mass damping control according to the scalar quantity of vibration characteristics.
- FIG. 9 is a diagram in which the wheel speed frequency characteristic detected by the wheel speed sensor and the stroke frequency characteristic of a stroke sensor not mounted in the embodiment are simultaneously written.
- the frequency characteristic is a characteristic in which the vertical axis represents the magnitude of the amplitude with respect to the frequency as a scalar quantity. Comparing the frequency component of the wheel speed sensor 5 with the frequency component of the stroke sensor, it can be understood that substantially the same scalar amount is taken from the sprung resonance frequency component to the unsprung resonance frequency component. Therefore, the damping force is set based on this frequency characteristic among the detection values of the wheel speed sensor 5.
- the area where the sprung resonance frequency component exists is felt as if the occupant was thrown into the air by swinging the entire body of the occupant, in other words, the feeling that the gravitational acceleration acting on the occupant was reduced.
- the frequency region that brings about the waving region (0.5 to 3 Hz), and the region between the sprung resonance frequency component and the unsprung resonance frequency component is not a feeling that gravitational acceleration decreases.
- the feeling that the human body jumps in small increments when performing (trot), in other words, the frequency range that brings up and down movement that the whole body can follow is the leopard region (3 to 6 Hz), and the region where the unsprung resonance frequency component exists Is not a vertical movement until the mass of the human body follows, but a bull region (6 to 6) is used as a frequency region where vibration is transmitted to a part of the body such as the occupant's thigh. 23 Hz).
- FIG. 10 is a control block diagram illustrating frequency sensitive control in the sprung mass damping control of the first embodiment.
- the band elimination filter 350 cuts noise other than the vibration component used for the main control from the wheel speed sensor value.
- the predetermined frequency domain dividing unit 351 divides the frequency band into a wide area, a horizontal area, and a bull area.
- the Hilbert transform processing unit 352 performs Hilbert transform on each divided frequency band, and converts it into a scalar quantity based on the amplitude of the frequency (specifically, an area calculated from the amplitude and the frequency band).
- the vehicle vibration system weight setting unit 353 sets weights at which vibrations in the frequency bands of the fur region, the leopard region, and the bull region are actually propagated to the vehicle.
- the human sense weight setting unit 354 sets weights at which vibrations in the frequency bands of the fur region, the leopard region, and the bull region are propagated to the occupant.
- FIG. 11 is a correlation diagram showing human sensory characteristics with respect to frequency.
- the occupant's sensitivity is relatively low with respect to the frequency, and the sensitivity gradually increases as the frequency shifts to the high frequency region.
- the high frequency region above the bull region becomes difficult to be transmitted to the occupant.
- the human sense weight Wf of the wafe area is set to 0.17
- the human sense weight Wh of the leopard area is set to 0.34 which is larger than Wf
- the human sense weight Wb of the bull area is larger than Wf and Wh. Set to 0.38.
- the weight determining unit 355 calculates the ratio of the weight of each frequency band to the weight of each frequency band. If the weight of the wing area is a, the weight of the leopard area is b, and the weight of the bull area is c, the weight coefficient of the wing area is (a / (a + b + c)), and the weight coefficient of the leap area is (b / (a + b + c). )), And the weighting factor of the bull area is (c / (a + b + c)).
- the scalar amount calculation unit 356 multiplies the scalar amount of each frequency band calculated by the Hilbert transform processing unit 352 by the weight calculated by the weight determination unit 355, and outputs a final scalar amount. The processing so far is performed on the wheel speed sensor value of each wheel.
- the maximum value selection unit 357 selects the maximum value from the final scalar amounts calculated for each of the four wheels. Note that 0.01 in the lower part is set to avoid the denominator becoming 0 because the sum of the maximum values is used as the denominator in the subsequent processing.
- the ratio calculation unit 358 calculates the ratio using the sum of the scalar value maximum values in each frequency band as the denominator and the scalar value maximum value in the frequency band corresponding to the waving region as the numerator. In other words, the mixing ratio (hereinafter simply referred to as the ratio) of the wafer region included in all vibration components is calculated.
- the sprung resonance filter 359 performs filter processing of about 1.2 Hz of the sprung resonance frequency with respect to the calculated ratio, and extracts a sprung resonance frequency band component representing a waft region from the calculated ratio. In other words, since the wing area exists at about 1.2 Hz, the ratio of this area is considered to change at about 1.2 Hz. Then, the finally extracted ratio is output to the damping force control unit 35, and a frequency sensitive damping force control amount corresponding to the ratio is output.
- FIG. 12 is a characteristic diagram showing the relationship between the vibration mixing ratio in the waft region and the damping force by the frequency sensitive control of the first embodiment.
- the vibration level of sprung resonance is reduced by setting the damping force high when the ratio of the wing area is large.
- the damping force is set high, the ratio of the leopard area and the bull area is small, so that high frequency vibration or vibration that moves with the leopard is not transmitted to the occupant.
- the damping force is set low, so that the vibration transmission characteristic more than the sprung resonance is reduced, the high frequency vibration is suppressed, and a smooth riding comfort is obtained.
- FIG. 13 is a diagram showing the wheel speed frequency characteristics detected by the wheel speed sensor 5 under a certain traveling condition. This is a characteristic that appears particularly when traveling on a road surface in which small unevenness such as a stone pavement continues.
- the damping force is determined by the value of the amplitude peak in Skyhook control. There is a problem that a very high damping force is set at an incorrect timing and high-frequency vibration is deteriorated.
- the S / A side driver input control unit 31 calculates a driver input damping force control amount corresponding to a vehicle behavior that the driver wants to achieve based on signals from the steering angle sensor 7 and the vehicle speed sensor 8, and a damping force control unit 35. Output for. For example, when the driver is turning, if the nose side of the vehicle is lifted, the driver's field of view easily deviates from the road surface. In this case, the four-wheel damping force is used as a driver input damping force to prevent the nose from rising. Output as a controlled variable. In addition, a driver input damping force control amount that suppresses a roll generated during turning is output.
- FIG. 14 is a control block diagram illustrating the configuration of roll rate suppression control according to the first embodiment.
- the lateral acceleration estimation unit 31b1 the front wheel rudder angle ⁇ f detected by the rudder angle sensor 7 and the rear wheel rudder angle ⁇ r (the actual rear wheel rudder angle if a rear wheel steering device is provided, and 0 in other cases as appropriate)
- the lateral acceleration Yg is estimated based on the vehicle speed VSP detected by the vehicle speed sensor 8. This lateral acceleration Yg is calculated by the following equation using the yaw rate estimated value ⁇ .
- Yg VSP ⁇ ⁇
- the yaw rate estimated value ⁇ is calculated by the following equation.
- the 90 ° phase advance component creation unit 31b2 differentiates the estimated lateral acceleration Yg and outputs a lateral acceleration differential value dYg.
- the 90 ° phase delay component creation unit 31b3 outputs a component F (dYg) obtained by delaying the phase of the lateral acceleration differential value dYg by 90 °.
- the component F (dYg) is obtained by returning the phase of the component from which the low-frequency region has been removed by the 90 ° phase advance component creation unit 31b2 to the phase of the lateral acceleration Yg. It is a transient component of acceleration Yg.
- the 90 ° phase delay component creation unit 31b4 outputs a component F (Yg) obtained by delaying the phase of the estimated lateral acceleration Yg by 90 °.
- the gain multiplication unit 31b5 multiplies the lateral acceleration Yg, the lateral acceleration differential value dYg, the lateral acceleration DC cut component F (dYg), and the 90 ° phase delay component F (Yg) by a gain. Each gain is set based on a roll rate transfer function with respect to the steering angle. Each gain may be adjusted according to four control modes described later.
- the square calculator 31b6 squares and outputs each component multiplied by the gain.
- the combining unit 31b7 adds the values output from the square calculation unit 31b6.
- the gain multiplication unit 31b8 multiplies the square value of each added component by the gain and outputs the result.
- the square root calculation unit 31b9 calculates a driver input attitude control amount for roll rate suppression control by calculating the square root of the value output from the gain multiplication unit 31b7, and outputs the calculated value to the damping force control unit 35.
- 90 ° phase advance component creation unit 31b2, 90 ° phase lag component creation unit 31b3, 90 ° phase lag component creation unit 31b4, gain multiplication unit 31b5, square operation unit 31b6, synthesis unit 31b7, gain multiplication unit 31b8, square root operation unit 31b9 Corresponds to the Hilbert transform unit 31b10 that generates an envelope waveform using the Hilbert transform.
- FIG. 15 is a time chart showing an envelope waveform forming process of the roll rate suppressing control according to the first embodiment.
- the driver starts steering at time t1
- roll rate begins to gradually occur.
- the 90 ° phase advance component dYg is added to form an envelope waveform
- the driver input attitude control amount is calculated based on the scalar amount based on the envelope waveform, thereby suppressing the occurrence of roll rate in the initial stage of steering.
- Can do Furthermore, by adding the lateral acceleration DC cut component F (dYg) to form an envelope waveform, it effectively suppresses the roll rate that occurs in a transitional state when the driver starts or ends steering. Can do.
- phase delay component F (Yg) If the phase delay component F (Yg) is not added, the damping force from the time t2 to the time t3 is set to a small value, which may cause the vehicle behavior to become unstable due to the roll rate resonance component. In order to suppress this roll rate resonance component, a 90 ° phase delay component F (Yg) is added.
- the problems that may occur when setting the damping force according to the unsprung resonance component will be described in more detail.
- the frequency band in which the vibration transmissibility rises includes the resonance frequency region of the human body of 3 to 6 Hz (leak region).
- the increase in the vibration transmissibility in this frequency region causes the occupant's body to jump in small increments.
- Such a vibration that is, vibration in the horizontal region
- the unsprung vibration suppression control amount is set to It was decided to perform control to suppress.
- FIG. 16 is a block diagram illustrating a control configuration of unsprung vibration suppression control according to the first embodiment.
- the unsprung resonance component extraction unit 341 extracts a unsprung resonance component by applying a band-pass filter to the wheel speed fluctuation output from the deviation calculation unit 321b in the traveling state estimation unit 32.
- the unsprung resonance component is extracted from the region of approximately 10 to 20 Hz of the wheel speed frequency component.
- the envelope waveform shaping unit 342 the extracted unsprung resonance component is scalarized, and the envelope waveform is shaped using the EnvelopeFilter.
- the gain multiplication unit 343 multiplies the scalarized unsprung resonance component by a gain, calculates an unsprung vibration damping damping force control amount, and outputs it to the control amount setting unit 346.
- the occupant vibration estimation unit 344 reads the sprung acceleration at the suspension attachment point from the state amount estimated by the third traveling state estimation unit 32, and represents a scalar amount Wb * g representing the vibration state felt by the occupant based on human sensory characteristics. And Wh * g. Specifically, the first envelope filter 344a performs 3-6 Hz bandpass filter processing of the sprung vertical acceleration to form an envelope waveform, and the weight multiplication unit 344a1 multiplies the human sense weight Wh of the leopard region described in FIG. The scalar amount Wh * g is output to the correction gain calculation unit 345.
- a 6-23 Hz bandpass filter process of sprung vertical acceleration is performed by the second envelope filter 344b to form an envelope waveform, and the weight multiplication unit 344b1 multiplies the human sense weight Wb of the bull region described in FIG.
- the amount Wb * g is output to the correction gain calculator 345.
- the correction gain calculation unit 345 selects 1 or 0 as the correction gain based on the magnitude relationship between Wb * g and Wh * g, and sets the correction gain K * g that has undergone smoothing processing at the time of change as a control amount setting unit. Output to 346. Specifically, when Wb * g> Wh * g in the gain selection unit 345a, since the vibration in the horizontal region is not particularly deteriorated, 1 is selected and output to the smoothing unit 345b. In this case, it is determined that the vibration component in the leopard region deteriorates and the vibration component increases at 3 to 6 Hz where the human body vertical resonance exists, and 0 is selected and output to the smoothing unit 345b.
- the smoothing unit 345b smoothes the sudden change of the values of 1 and 0 selected by the gain selection unit 345a and outputs the correction gain K * g to the control amount setting unit 346.
- the control amount setting unit 346 outputs a value obtained by multiplying the unsprung vibration damping damping force control amount by the correction gain K * g to the damping force control unit 35.
- the unsprung resonance component is extracted by applying a bandpass filter to the wheel speed fluctuation output from the deviation calculating section 321b in the running state estimating section 32.
- the unsprung resonance component may be extracted by applying a bandpass filter to the driving force, or the unsprung resonance component may be extracted by the running state estimation unit 32 by estimating and calculating the unsprung speed along with the sprung speed. Good.
- FIG. 17 is a control block diagram illustrating a control configuration of the damping force control unit according to the first embodiment.
- the driver input damping force control amount output from the driver input control unit 31 the S / A attitude control amount output from the skyhook control unit 33a, and the frequency sensitive control unit 33b output
- the frequency sensitive damping force control amount, the unsprung damping damping force control amount output from the unsprung damping control unit 34, and the stroke speed calculated by the running state estimation unit 32 are input, and these values are equivalent. Convert to viscous damping coefficient.
- each damping coefficient is referred to as driver input damping coefficient k1, S / A attitude damping coefficient k2, frequency sensitive damping coefficient k3, unsprung). (Which is described as damping damping coefficient k4)), which arbitration is performed based on which damping coefficient is controlled, and a final damping coefficient is output.
- the control signal converter 35c converts the control signal (command current value) for S / A3 based on the attenuation coefficient and stroke speed adjusted by the attenuation coefficient adjuster 35b, and outputs the control signal to S / A3.
- the vehicle control apparatus has four control modes. First, the standard mode assuming a state where an appropriate turning state can be obtained while driving in a general urban area, and second, a state where a stable turning state can be obtained while actively driving a winding road etc. In sport mode, thirdly, comfort mode that assumes a state of driving with priority on ride comfort, such as when starting at a low vehicle speed, and fourthly, highway mode that assumes a state of traveling at high vehicle speed on highways with many straight lines is there.
- sport mode thirdly, comfort mode that assumes a state of driving with priority on ride comfort, such as when starting at a low vehicle speed
- highway mode that assumes a state of traveling at high vehicle speed on highways with many straight lines is there.
- priority is given to unsprung vibration suppression control by the unsprung vibration suppression control unit 34 while performing skyhook control by the skyhook control unit 33a.
- priority is given to driver input control by the driver input control unit 31, and skyhook control by the skyhook control unit 33a and unsprung vibration suppression control by the unsprung vibration suppression control unit 34 are performed.
- comfort mode the control for giving priority to the unsprung vibration damping control by the unsprung vibration damping control unit 34 is performed while performing the frequency sensitive control by the frequency sensitive control unit 33b.
- priority is given to driver input control by the driver input control unit 31, and control for adding the amount of unsprung vibration suppression control by the unsprung vibration control unit 34 to skyhook control by the skyhook control unit 33a is performed. To do.
- the adjustment of the attenuation coefficient in each mode will be described.
- FIG. 18 is a flowchart illustrating the attenuation coefficient arbitration process in the standard mode according to the first embodiment.
- step S1 it is determined whether or not the S / A attitude damping coefficient k2 is larger than the unsprung damping damping coefficient k4. If larger, the process proceeds to step S4 and k2 is set as the damping coefficient.
- step S2 a scalar amount ratio of the bull region is calculated based on the scalar amounts of the fur region, the leopard region, and the bull region described in the frequency response control unit 33b.
- step S3 it is determined whether or not the ratio of the bull area is equal to or greater than a predetermined value.
- the routine proceeds to step S5 and k4 is set.
- FIG. 19 is a flowchart showing attenuation coefficient arbitration processing in the sport mode of the first embodiment.
- step S11 the four-wheel damping force distribution ratio is calculated based on the four-wheel driver input damping coefficient k1 set by the driver input control.
- the right front wheel driver input damping coefficient is k1fr
- the left front wheel driver input damping coefficient is k1fl
- the right rear wheel driver input damping coefficient is k1rr
- the left rear wheel driver input damping coefficient is k1rl
- xfl k1fl / (k1fr + k1fl + k1rr + k1rl)
- xrr k1rr / (k1fr + k1fl + k1rr + k1rl)
- xrl k1rl / (k1fr + k1fl + k1rr + k1rl)
- xrl k
- step S12 it is determined whether or not the damping force distribution ratio x is within a predetermined range (greater than ⁇ and smaller than ⁇ ). If it is within the predetermined range, it is determined that the distribution to each wheel is substantially equal, and the process proceeds to step S13. If any one is out of the predetermined range, the process proceeds to step S16. In step S13, it is determined whether or not the unsprung damping damping coefficient k4 is larger than the driver input damping coefficient k1. If it is determined that the unsprung damping damping coefficient k4 is larger, the process proceeds to step S15 and k4 is set as the first damping coefficient k. On the other hand, if it is determined that the unsprung damping damping coefficient k4 is equal to or less than the driver input damping coefficient k1, the process proceeds to step S14, and k1 is set as the first damping coefficient k.
- step S16 it is determined whether or not the unsprung damping damping coefficient k4 is the maximum value max that S / A3 can be set. If it is determined that the maximum value is max, the process proceeds to step S17, and otherwise, the process proceeds to step S18. move on.
- step S17 the maximum value of the four-wheel driver input damping coefficient k1 is the unsprung damping damping coefficient k4, and the damping coefficient that satisfies the damping force distribution ratio is calculated as the first damping coefficient k. In other words, a value that maximizes the damping coefficient while satisfying the damping force distribution rate is calculated.
- step S18 a damping coefficient that satisfies the damping force distribution ratio in a range where all the four-wheel driver input damping coefficients k1 are equal to or greater than k4 is calculated as the first damping coefficient k.
- a value that satisfies the damping force distribution ratio set by the driver input control and also satisfies the requirements of the unsprung vibration suppression control side is calculated.
- step S19 it is determined whether or not the first attenuation coefficient k set in each of the above steps is smaller than the S / A attitude attenuation coefficient k2 set by skyhook control. Since the damping coefficient requested on the side is larger, the process proceeds to step S20 and k2 is set. On the other hand, if it is determined that k is equal to or greater than k2, the process proceeds to step S21 and k is set.
- the damping force distribution rate required from the driver input control side is closely related to the vehicle body posture, and particularly because it is closely related to the driver's line-of-sight change due to the roll mode.
- the highest priority is to secure the damping force distribution ratio.
- the sky vehicle body posture can be maintained by selecting Skyhook control with select high.
- FIG. 20 is a flowchart illustrating the attenuation coefficient arbitration process in the comfort mode according to the first embodiment.
- step S30 it is determined whether or not the frequency sensitive damping coefficient k3 is larger than the unsprung damping damping coefficient k4. If it is determined that the frequency sensitive damping coefficient k3 is larger, the process proceeds to step S32 and the frequency sensitive damping coefficient k3 is set. On the other hand, if it is determined that the frequency sensitive damping coefficient k3 is equal to or less than the unsprung damping damping coefficient k4, the process proceeds to step S32 to set the unsprung damping damping coefficient k4.
- the comfort mode priority is given to unsprung resonance control that basically suppresses unsprung resonance.
- frequency sensitive control was performed as sprung mass damping control, and the optimum damping coefficient was set according to the road surface condition, so it was possible to achieve control that ensured riding comfort and lack of grounding feeling due to fluttering under the spring. Can be avoided by unsprung vibration suppression control.
- the attenuation coefficient may be switched according to the bull ratio of the frequency scalar quantity. As a result, the ride comfort can be further ensured in the super comfort mode.
- FIG. 21 is a flowchart illustrating the attenuation coefficient arbitration process in the highway mode according to the first embodiment. Since steps S11 to S18 are the same as the arbitration process in the sport mode, the description thereof is omitted.
- step S40 the S / A attitude attenuation coefficient k2 by the skyhook control is added to the first attenuation coefficient k that has been adjusted up to step S18, and is output.
- FIG. 22 is a time chart showing a change in attenuation coefficient when traveling on a wavy road surface and an uneven road surface.
- the first damping coefficient k is always set as in the highway mode, a certain amount of damping force is always secured, and the vehicle body fluctuates even when the damping coefficient by the skyhook control is small. Such movement can be suppressed. Further, since it is not necessary to increase the skyhook control gain, it is possible to appropriately deal with road surface irregularities by using a normal control gain. In addition, since the skyhook control is performed with the first damping coefficient k set, unlike the damping coefficient limit, the damping coefficient decreasing process can be performed in the semi-active control region, and at the time of high-speed traveling It is possible to ensure a stable vehicle posture.
- FIG. 23 is a flowchart illustrating a mode selection process based on the running state in the attenuation coefficient arbitration unit of the first embodiment.
- step S50 it is determined whether or not the vehicle is in the straight traveling state based on the value of the steering angle sensor 7. If it is determined that the vehicle is traveling straight, the process proceeds to step S51. If it is determined that the vehicle is turning, the process proceeds to step S54. move on.
- step S51 it is determined based on the value of the vehicle speed sensor 8 whether or not the vehicle speed is equal to or higher than a predetermined vehicle speed VSP1 representing a high vehicle speed state.
- step S52 If it is determined that the vehicle speed is VSP1 or higher, the process proceeds to step S52 and the standard mode is selected. On the other hand, if it is determined that it is less than VSP1, the process proceeds to step S53 and the comfort mode is selected. In step S54, based on the value of the vehicle speed sensor 8, it is determined whether or not the vehicle speed is equal to or higher than a predetermined vehicle speed VSP1 representing a high vehicle speed state. If it is determined that the vehicle speed is VSP1 or higher, the process proceeds to step S55 and the highway mode is selected. On the other hand, if it is determined that it is less than VSP1, the process proceeds to step S56 to select the sport mode.
- the standard mode when driving at a high vehicle speed in a straight running state, the standard mode is selected to stabilize the vehicle body posture by skyhook control and to suppress the high frequency vibration such as leopard and bull. In addition, unsprung resonance can be suppressed. Further, when traveling at a low vehicle speed, by selecting the comfort mode, it is possible to suppress unsprung resonance while suppressing the input of vibrations such as leopard and bull to the occupant as much as possible.
- the highway mode is selected, so that it is controlled by the value obtained by adding the damping coefficient, so that basically a high damping force can be obtained.
- the sport mode is selected, so that the vehicle posture during turning is positively secured by driver input control, and unsprung resonance is suppressed while skyhook control is performed as appropriate. Can travel in a stable vehicle posture.
- the control example in which the driving state is detected and automatically switched is shown in the first embodiment.
- a changeover switch that can be operated by the driver is provided to select the driving mode. You may control to. As a result, ride comfort and turning performance according to the driving intention of the driver can be obtained.
- Example 1 has the following effects.
- S / A3 (damping force variable shock absorber) capable of changing damping force
- third traveling state estimating unit 32 unsprung vertical speed detecting means for detecting unsprung vertical speed, detecting sprung vertical acceleration The unsprung acceleration detection means) and the unsprung damping damping force control amount (damping force control amount) of S / A3 according to the unsprung vertical speed estimated by the third running state estimation unit 32.
- the vibration control unit 34 (damping force control amount calculating means) and the magnitude of the amplitude in any frequency band of the sprung vertical acceleration are defined as the frequency scalar quantity, it corresponds to the amplitude in the higher frequency band than the human body resonance frequency band.
- correction gain K * g is switched from 1 to 0.
- Correction gain calculator 345 (damping force control The amount and the reduced correction for correcting section), with a. Therefore, even when the unsprung vibration suppression control amount, which is a damping force set according to the unsprung vertical speed, is set to be large, the component of the human body resonance frequency band is large among the sprung vertical acceleration components. In some cases, by reducing and correcting the damping force, the grounding property of the wheel can be ensured while ensuring the riding comfort.
- the third traveling state estimation unit 32 estimates the sprung vertical speed and the sprung vertical acceleration based on the detected wheel speed sensor value. Therefore, it is not necessary to provide an expensive sensor such as a sprung vertical acceleration sensor or a stroke sensor, and the number of parts can be reduced by estimating the sprung state from the wheel speed sensor 5 that is generally mounted on any vehicle. In addition, the cost can be reduced and the vehicle mountability can be improved.
- the correction gain calculation unit 345 calculates Wh * g by multiplying the scalar quantity corresponding to the amplitude of the human body resonance frequency band by Wh (first human sense weight coefficient), and is higher than the human body resonance frequency band.
- Wb * g is calculated by multiplying the scalar quantity corresponding to the amplitude of the frequency band by Wb (second human sensory weight coefficient) larger than Wh. Therefore, it is possible to reflect the sense of human feeling in actual control and to secure a ride comfort.
- FIG. 24 is a block diagram illustrating a control configuration of unsprung vibration suppression control according to the second embodiment.
- the sprung vertical acceleration at the suspension attachment point was input to the first envelope filter 344a and the second envelope filter 344b.
- the second embodiment instead of the suspension attachment point, it is converted into the sprung vertical acceleration at the seat position, and further converted into the sprung vertical acceleration considering the human body response, and this value Ghi is converted into the first and second envelope filter 344a. , 344b is different.
- the sprung vertical acceleration detecting means is a means for detecting the vertical acceleration at the attachment point of the damping force variable shock absorber.
- the boarding position vertical acceleration at the boarding position of the occupant is estimated, and the damping force control amount is reduced and corrected based on the boarding position vertical acceleration. Therefore, the damping force can be set according to the vertical acceleration component felt by the occupant, and an appropriate damping force with higher accuracy can be set.
- FIG. 25 is a block diagram illustrating a control configuration of unsprung vibration suppression control according to the third embodiment.
- Example 2 the sprung vertical acceleration considering the seat position and the human body response was used.
- the third embodiment is different in that the seat transfer function of the seat is further considered.
- the correction gain calculation unit 345 estimates the boarding position vertical acceleration in consideration of the elastic vibration of the seat at the occupant's boarding position, and reduces and corrects the damping force control amount based on the boarding position vertical acceleration. Therefore, the vertical acceleration component felt by the occupant can be estimated with higher accuracy, and an appropriate damping force with higher accuracy can be set.
- FIG. 26 is a characteristic diagram illustrating the value of the human sense weight Wb in the bull area according to the fourth embodiment.
- the human sense weight Wb of the bull area is set as a constant value.
- the fourth embodiment is different in that the weight increases in accordance with the lateral acceleration. That is, when Wb is large, a higher value is set as the damping force, and when Wb is small, a smaller value is set as the damping force.
- comfort is the most important during straight traveling, a relatively small Wb is set and the damping force is set small in a region where the lateral acceleration is small.
- FIG. 27 is a block diagram illustrating a control configuration of unsprung vibration suppression control according to the fifth embodiment.
- the correction gain is set in accordance with the magnitude relationship between the horizontal and vertical components of the sprung vertical acceleration.
- the bull region frequency band accounts for the ratio of the frequency band of each frequency band calculated by the weight determination unit 355 in the frequency sensitive control unit 33b. The difference is that the correction gain is set according to the weighting factor (c / (a + b + c)) of the region.
- the damping force set in the unsprung vibration suppression control is small. That is, when there are many components in the wing region and the leopard region, it is preferable to give priority to the damping force characteristic set in the skyhook control unit 33a of the sprung mass damping control unit 33. In this case, if the damping force by the unsprung vibration suppression control becomes a large value, the requested damping force on the unsprung vibration control side becomes larger than the requested damping force on the skyhook control side, and than the damping force by the skyhook control side. The damping force for the unsprung vibration suppression control is selected. Then, the ability to suppress the fluffy movement on the upper side of the spring is not sufficiently exhibited. Therefore, when the ratio occupied by the frequency band of the bull region is small, the correction gain is reduced from the viewpoint of securing the performance by the skyhook control.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Vehicle Body Suspensions (AREA)
Abstract
In a vehicle control apparatus according to the present invention, a damping force control amount for a variable damping force shock absorber is calculated in accordance with an unsprung vertical velocity. When the magnitude of the amplitude of sprung vertical acceleration in a given frequency band is expressed as a frequency scalar quantity, if the frequency scalar quantity of a high-frequency band is greater than the frequency scalar quantity of a low-frequency band, the damping force control amount is decreased for correction.
Description
本発明は、車両の状態を制御する制御装置に関する。
The present invention relates to a control device that controls the state of a vehicle.
車両の制御装置に関する技術として、特許文献1に記載の技術が開示されている。この公報には、減衰力を変更可能なサスペンション制御装置において、ばね下速度に応じた減衰力を設定する技術が開示されている。
A technique described in Patent Document 1 is disclosed as a technique related to a vehicle control device. This publication discloses a technique for setting a damping force in accordance with the unsprung speed in a suspension control device capable of changing the damping force.
しかしながら、ばね下速度に応じて減衰力を高めた場合に、ばね上に伝達される振動が増大するおそれがあり、乗り心地の悪化を招くおそれがあった。
However, when the damping force is increased in accordance with the unsprung speed, there is a risk that vibration transmitted onto the spring may increase, resulting in deterioration of riding comfort.
本発明は、上記問題に着目してなされたもので、乗り心地を確保しつつ車輪の接地性を確保可能な車両の制御装置を提供することを目的とする。
The present invention has been made paying attention to the above problem, and an object of the present invention is to provide a vehicle control device capable of ensuring the grounding property of wheels while ensuring the ride comfort.
上記目的を達成するため、本発明の車両の制御装置では、ばね下上下速度に応じて減衰力可変ショックアブソーバの減衰力制御量を演算すると共に、ばね上上下加速度の任意の周波数帯の振幅の大きさを周波数スカラー量としたとき、高周波数帯の周波数スカラー量が低周波数帯の周波数スカラー量より大きいときは、減衰力制御量を低減補正することとした。
In order to achieve the above object, the vehicle control apparatus according to the present invention calculates the damping force control amount of the damping force variable shock absorber according to the unsprung vertical speed, and the amplitude of an arbitrary frequency band of the sprung vertical acceleration. When the magnitude is a frequency scalar quantity, and the frequency scalar quantity in the high frequency band is larger than the frequency scalar quantity in the low frequency band, the damping force control amount is reduced and corrected.
よって、ばね下上下速度に応じて設定された減衰力が大きく設定されている場合であっても、ばね上上下加速度成分のうち、高周波数帯の周波数スカラー量が大きいときは減衰力を低減補正することで、乗り心地を確保しつつ車輪の接地性を確保することができる。
Therefore, even if the damping force set according to the unsprung vertical speed is set to be large, if the frequency scalar amount in the high frequency band is large among the sprung vertical acceleration components, the damping force is reduced and corrected. By doing so, it is possible to ensure the grounding property of the wheel while ensuring the ride comfort.
1 エンジン
1a エンジンコントローラ(エンジン制御部)
2 ブレーキコントロールユニット
2a ブレーキコントローラ(ブレーキ制御部)
3 S/A(減衰力可変ショックアブソーバ)
3a S/Aコントローラ
5 車輪速センサ
6 一体型センサ
7 舵角センサ
8 車速センサ
20 ブレーキ
31 ドライバ入力制御部
32 走行状態推定部
33 ばね上制振制御部
33a スカイフック制御部
33b 周波数感応制御部
34 ばね下制振制御部
35 減衰力制御部
331 第1目標姿勢制御量演算部
332 エンジン姿勢制御量演算部
333 第2目標姿勢制御量演算部
334 ブレーキ姿勢制御量演算部
335 第3目標姿勢制御量演算部
336 ショックアブソーバ姿勢制御量演算部
1Engine 1a Engine controller (engine control unit)
2Brake control unit 2a Brake controller (brake control unit)
3 S / A (Damping force variable shock absorber)
3a S /A controller 5 Wheel speed sensor 6 Integrated sensor 7 Steering angle sensor 8 Vehicle speed sensor 20 Brake 31 Driver input control unit 32 Running state estimation unit 33 Sprung vibration suppression control unit 33a Skyhook control unit 33b Frequency response control unit 34 Unsprung vibration suppression control unit 35 Damping force control unit 331 First target posture control amount calculation unit 332 Engine posture control amount calculation unit 333 Second target posture control amount calculation unit 334 Brake posture control amount calculation unit 335 Third target posture control amount Calculation unit 336 Shock absorber attitude control amount calculation unit
1a エンジンコントローラ(エンジン制御部)
2 ブレーキコントロールユニット
2a ブレーキコントローラ(ブレーキ制御部)
3 S/A(減衰力可変ショックアブソーバ)
3a S/Aコントローラ
5 車輪速センサ
6 一体型センサ
7 舵角センサ
8 車速センサ
20 ブレーキ
31 ドライバ入力制御部
32 走行状態推定部
33 ばね上制振制御部
33a スカイフック制御部
33b 周波数感応制御部
34 ばね下制振制御部
35 減衰力制御部
331 第1目標姿勢制御量演算部
332 エンジン姿勢制御量演算部
333 第2目標姿勢制御量演算部
334 ブレーキ姿勢制御量演算部
335 第3目標姿勢制御量演算部
336 ショックアブソーバ姿勢制御量演算部
1
2
3 S / A (Damping force variable shock absorber)
3a S /
〔実施例1〕
図1は実施例1の車両の制御装置を表すシステム概略図である。車両には、動力源であるエンジン1と、各輪に摩擦力による制動トルクを発生させるブレーキ20(以下、個別の輪に対応するブレーキを表示するときには右前輪ブレーキ:20FR、左前輪ブレーキ:20FL、右後輪ブレーキ:20RR、左後輪ブレーキ:20RLと記載する。)と、各輪と車体との間に設けられ減衰力を可変に制御可能なショックアブソーバ3(以下、S/Aと記載する。個別の輪に対応するS/Aを表示するときには右前輪S/A:3FR、左前輪S/A:3FL、右後輪S/A:3RR、左後輪S/A:3RLと記載する。)と、を有する。 [Example 1]
FIG. 1 is a system schematic diagram illustrating a vehicle control apparatus according to the first embodiment. The vehicle includes anengine 1 that is a power source and a brake 20 that generates braking torque due to friction force on each wheel (hereinafter, when displaying brakes corresponding to individual wheels, right front wheel brake: 20FR, left front wheel brake: 20FL). Right rear wheel brake: 20RR, left rear wheel brake: 20RL), and shock absorber 3 (hereinafter referred to as S / A) provided between each wheel and the vehicle body and capable of variably controlling the damping force. When displaying S / A corresponding to an individual wheel, right front wheel S / A: 3FR, left front wheel S / A: 3FL, right rear wheel S / A: 3RR, left rear wheel S / A: 3RL And).
図1は実施例1の車両の制御装置を表すシステム概略図である。車両には、動力源であるエンジン1と、各輪に摩擦力による制動トルクを発生させるブレーキ20(以下、個別の輪に対応するブレーキを表示するときには右前輪ブレーキ:20FR、左前輪ブレーキ:20FL、右後輪ブレーキ:20RR、左後輪ブレーキ:20RLと記載する。)と、各輪と車体との間に設けられ減衰力を可変に制御可能なショックアブソーバ3(以下、S/Aと記載する。個別の輪に対応するS/Aを表示するときには右前輪S/A:3FR、左前輪S/A:3FL、右後輪S/A:3RR、左後輪S/A:3RLと記載する。)と、を有する。 [Example 1]
FIG. 1 is a system schematic diagram illustrating a vehicle control apparatus according to the first embodiment. The vehicle includes an
エンジン1は、エンジン1から出力されるトルクを制御するエンジンコントローラ(以下、エンジン制御部とも言う。動力源制御手段に相当)1aを有し、エンジンコントローラ1aは、エンジン1のスロットルバルブ開度や、燃料噴射量、点火タイミング等を制御することで、所望のエンジン運転状態(エンジン回転数やエンジン出力トルク)を制御する。また、ブレーキ20は、各輪のブレーキ液圧を走行状態に応じて制御可能なブレーキコントロールユニット2から供給される液圧に基づいて制動トルクを発生する。ブレーキコントロールユニット2は、ブレーキ20の発生する制動トルクを制御するブレーキコントローラ(以下、ブレーキ制御部とも言う)2aを有し、運転者のブレーキペダル操作によって発生するマスタシリンダ圧、もしくは内蔵されたモータ駆動ポンプにより発生するポンプ圧を液圧源とし、複数の電磁弁の開閉動作によって各輪のブレーキ20に所望の液圧を発生させる。
The engine 1 includes an engine controller (hereinafter also referred to as an engine control unit, which corresponds to power source control means) 1a that controls torque output from the engine 1, and the engine controller 1a is configured to By controlling the fuel injection amount, ignition timing, etc., the desired engine operating state (engine speed and engine output torque) is controlled. Further, the brake 20 generates a braking torque based on the hydraulic pressure supplied from the brake control unit 2 that can control the brake hydraulic pressure of each wheel according to the traveling state. The brake control unit 2 includes a brake controller (hereinafter also referred to as a brake control unit) 2a for controlling a braking torque generated by the brake 20, and a master cylinder pressure generated by a driver's brake pedal operation or a built-in motor. A pump pressure generated by the drive pump is used as a hydraulic pressure source, and a desired hydraulic pressure is generated in the brake 20 of each wheel by opening and closing operations of a plurality of solenoid valves.
S/A3は、車両のばね下(アクスルや車輪等)とばね上(車体等)との間に設けられたコイルスプリングの弾性運動を減衰する減衰力発生装置であり、アクチュエータの作動により減衰力を可変に構成されている。S/A3は、流体が封入されたシリンダと、このシリンダ内をストロークするピストンと、このピストンの上下に形成された流体室の間の流体移動を制御するオリフィスとを有する。更に、このピストンには複数種のオリフィス径を有するオリフィスが形成され、S/Aアクチュエータの作動時には、複数種のオリフィスから制御指令に応じたオリフィスが選択される。これにより、オリフィス径に応じた減衰力を発生することができる。例えば、オリフィス径が小さければピストンの移動は制限されやすいため、減衰力が高くなり、オリフィス径が大きければピストンの移動は制限されにくいため、減衰力は小さくなる。
S / A3 is a damping force generator that attenuates the elastic motion of a coil spring provided between a vehicle unsprung (axle, wheel, etc.) and a sprung (vehicle body, etc.). It is configured to be variable. The S / A 3 includes a cylinder in which fluid is sealed, a piston that strokes in the cylinder, and an orifice that controls fluid movement between fluid chambers formed above and below the piston. Furthermore, orifices having a plurality of types of orifice diameters are formed in the piston, and an orifice corresponding to a control command is selected from the plurality of types of orifices when the S / A actuator is operated. Thereby, the damping force according to the orifice diameter can be generated. For example, if the orifice diameter is small, the movement of the piston is easily restricted, so that the damping force is high. If the orifice diameter is large, the movement of the piston is difficult to be restricted, and thus the damping force is small.
尚、オリフィス径の選択以外にも、例えばピストンの上下に形成された流体を接続する連通路上に電磁制御弁を配置し、この電磁制御弁の開閉量を制御することで減衰力を設定してもよく、特に限定しない。S/A3は、S/A3の減衰力を制御するS/Aコントローラ3a(減衰力制御手段に相当)を有し、S/Aアクチュエータによりオリフィス径を動作させて減衰力を制御する。
In addition to the selection of the orifice diameter, for example, an electromagnetic control valve is arranged on the communication path connecting fluids formed above and below the piston, and the damping force is set by controlling the opening / closing amount of the electromagnetic control valve. There is no particular limitation. The S / A 3 has an S / A controller 3a (corresponding to damping force control means) that controls the damping force of the S / A 3, and controls the damping force by operating the orifice diameter by the S / A actuator.
また、各輪の車輪速を検出する車輪速センサ5(以下、個別の輪に対応する車輪速を表示するときには右前輪車輪速:5FR、左前輪車輪速:5FL、右後輪車輪速:5RR、左後輪車輪速:5RLと記載する。)と、車両の重心点に作用する前後加速度、ヨーレイト及び横加速度を検出する一体型センサ6と、運転者のステアリング操作量である操舵角を検出する舵角センサ7と、車速を検出する車速センサ8と、エンジントルクを検出するエンジントルクセンサ9と、エンジン回転数を検出するエンジン回転数センサ10と、マスタシリンダ圧を検出するマスタ圧センサ11と、ブレーキペダル操作が行なわれるとオン状態信号を出力するブレーキスイッチ12と、アクセルペダル開度を検出するアクセル開度センサ13と、を有する。これら各種センサの信号は、必要に応じてエンジンコントローラ1a,ブレーキコントローラ2a及びS/Aコントローラ3aに入力される。尚、一体型センサ6の配置は車両の重心位置でもよいし、それ以外の場所であっても、重心位置における各種値が推定可能な構成であればよく、特に限定しない。また、一体型である必要は無く、個別にヨーレイト、前後加速度及び横加速度を検出する構成としてもよい。
Further, a wheel speed sensor 5 for detecting the wheel speed of each wheel (hereinafter, when displaying wheel speeds corresponding to individual wheels, right front wheel speed: 5FR, left front wheel speed: 5FL, right rear wheel speed: 5RR). , Left rear wheel speed: 5RL)), an integrated sensor 6 for detecting longitudinal acceleration, yaw rate and lateral acceleration acting on the center of gravity of the vehicle, and a steering angle which is a steering operation amount of the driver is detected. Steering angle sensor 7, vehicle speed sensor 8 for detecting vehicle speed, engine torque sensor 9 for detecting engine torque, engine speed sensor 10 for detecting engine speed, and master pressure sensor 11 for detecting master cylinder pressure. And a brake switch 12 that outputs an on-state signal when a brake pedal operation is performed, and an accelerator opening sensor 13 that detects an accelerator pedal opening.The signals from these various sensors are input to the engine controller 1a, the brake controller 2a, and the S / A controller 3a as necessary. The arrangement of the integrated sensor 6 may be at the center of gravity of the vehicle, or may be any place other than that as long as various values at the center of gravity can be estimated. Moreover, it is not necessary to be an integral type, and a configuration in which yaw rate, longitudinal acceleration, and lateral acceleration are individually detected may be employed.
(車両の制御装置の全体構成)
実施例1の車両の制御装置にあっては、ばね上に生じる振動状態を制御するために、3つのアクチュエータを使用する。このとき、それぞれの制御がばね上状態を制御するため、相互干渉が問題となる。また、エンジン1によって制御可能な要素と、ブレーキ20によって制御可能な要素と、S/A3によって制御可能な要素はそれぞれ異なり、これらをどのように組み合わせて制御するべきかが問題となる。
例えば、ブレーキ20はバウンス運動とピッチ運動の制御が可能であるが、両方を行なうと減速感が強く運転者に違和感を与えやすい。また、S/A3はロール運動とバウンス運動とピッチ運動の全てを制御可能であるが、S/A3によって全ての制御を広い範囲で行う場合、S/A3の製造コストの上昇を招き、また、減衰力が高くなる傾向があることから路面側からの高周波振動が入力されやすく、やはり運転者に違和感を与えやすい。言い換えると、ブレーキ20による制御は高周波振動の悪化を招くことは無いが減速感の増大を招き、S/A3による制御は減速感を招くことは無いが高周波振動の入力を招くというトレードオフが存在する。 (Overall configuration of vehicle control device)
In the vehicle control apparatus of the first embodiment, three actuators are used to control the vibration state generated on the spring. At this time, since each control controls the sprung state, mutual interference becomes a problem. In addition, the elements that can be controlled by theengine 1, the elements that can be controlled by the brake 20, and the elements that can be controlled by the S / A 3 are different from each other, and how to control them in combination is a problem.
For example, thebrake 20 can control a bounce motion and a pitch motion, but if both are performed, a feeling of deceleration is strong and a driver is likely to feel uncomfortable. In addition, S / A3 can control all of roll motion, bounce motion and pitch motion. However, when all control is performed by S / A3 in a wide range, the production cost of S / A3 is increased. Since the damping force tends to increase, high-frequency vibrations from the road surface side are easily input, and the driver is likely to feel uncomfortable. In other words, there is a trade-off that the control by the brake 20 does not cause deterioration of the high frequency vibration but increases the feeling of deceleration, and the control by the S / A3 does not cause the feeling of deceleration but invites the input of high frequency vibration. To do.
実施例1の車両の制御装置にあっては、ばね上に生じる振動状態を制御するために、3つのアクチュエータを使用する。このとき、それぞれの制御がばね上状態を制御するため、相互干渉が問題となる。また、エンジン1によって制御可能な要素と、ブレーキ20によって制御可能な要素と、S/A3によって制御可能な要素はそれぞれ異なり、これらをどのように組み合わせて制御するべきかが問題となる。
例えば、ブレーキ20はバウンス運動とピッチ運動の制御が可能であるが、両方を行なうと減速感が強く運転者に違和感を与えやすい。また、S/A3はロール運動とバウンス運動とピッチ運動の全てを制御可能であるが、S/A3によって全ての制御を広い範囲で行う場合、S/A3の製造コストの上昇を招き、また、減衰力が高くなる傾向があることから路面側からの高周波振動が入力されやすく、やはり運転者に違和感を与えやすい。言い換えると、ブレーキ20による制御は高周波振動の悪化を招くことは無いが減速感の増大を招き、S/A3による制御は減速感を招くことは無いが高周波振動の入力を招くというトレードオフが存在する。 (Overall configuration of vehicle control device)
In the vehicle control apparatus of the first embodiment, three actuators are used to control the vibration state generated on the spring. At this time, since each control controls the sprung state, mutual interference becomes a problem. In addition, the elements that can be controlled by the
For example, the
そこで、実施例1の車両の制御装置にあっては、これらの課題を総合的に判断し、それぞれの制御特性として有利な点を活かしつつ、相互の弱点を補完しあう制御構成を実現することで、安価でありながらも制振能力に優れた車両の制御装置を実現するために、主に、以下に列挙する点を考慮して全体の制御システムを構築した。
(1)エンジン1及びブレーキ20による制御を並行して行うことで、S/A3による制御量を抑制する。
(2)ブレーキ20の制御対象運動をピッチ運動に限定することで、ブレーキ20による制御での減速感を解消する。
(3)エンジン1及びブレーキ20による制御量を実際に出力可能な制御量よりも制限して出力することで、S/A3での負担を低減しつつ、エンジン1やブレーキ20の制御に伴って生じる違和感を抑制する。
(4)全てのアクチュエータによりスカイフック制御を行う。このとき、一般にスカイフック制御に必要とされるストロークセンサやばね上上下加速度センサ等を使用することなく、全ての車両に搭載されている車輪速センサを利用して安価な構成でスカイフック制御を実現する。
(5)S/A3によるばね上制御を行なう際、スカイフック制御のようなベクトル制御では対応が困難な高周波振動の入力に対し、新たにスカラー制御(周波数感応制御)を導入する。
(6)走行状態に応じて、S/A3が実現する制御状態を適宜選択することで、走行状況に応じた適切な制御状態を提供する。
以上が、実施例において構成した全体の制御システムの概要である。以下、これらを実現する個別の内容について、順次説明する。 Therefore, in the vehicle control apparatus of the first embodiment, it is possible to comprehensively judge these problems and realize a control configuration that complements each other's weak points while taking advantage of the advantages as the respective control characteristics. Therefore, in order to realize a vehicle control apparatus that is inexpensive but has excellent vibration control capability, an overall control system was constructed mainly considering the points listed below.
(1) The control amount by S / A3 is suppressed by performing control by theengine 1 and the brake 20 in parallel.
(2) By limiting the control target motion of thebrake 20 to the pitch motion, the feeling of deceleration in the control by the brake 20 is eliminated.
(3) The control amount by theengine 1 and the brake 20 is limited and output from the control amount that can be actually output, thereby reducing the burden on the S / A 3 and accompanying the control of the engine 1 and the brake 20. Suppresses discomfort that occurs.
(4) Skyhook control is performed by all actuators. At this time, without using a stroke sensor or a sprung vertical acceleration sensor generally required for skyhook control, the skyhook control can be performed with an inexpensive configuration using wheel speed sensors mounted on all vehicles. Realize.
(5) When performing sprung control by S / A3, scalar control (frequency sensitive control) is newly introduced for the input of high frequency vibration that is difficult to cope with by vector control such as skyhook control.
(6) By appropriately selecting the control state realized by the S /A 3 according to the traveling state, an appropriate control state according to the traveling state is provided.
The above is the outline of the entire control system configured in the embodiment. Hereinafter, individual contents for realizing these will be sequentially described.
(1)エンジン1及びブレーキ20による制御を並行して行うことで、S/A3による制御量を抑制する。
(2)ブレーキ20の制御対象運動をピッチ運動に限定することで、ブレーキ20による制御での減速感を解消する。
(3)エンジン1及びブレーキ20による制御量を実際に出力可能な制御量よりも制限して出力することで、S/A3での負担を低減しつつ、エンジン1やブレーキ20の制御に伴って生じる違和感を抑制する。
(4)全てのアクチュエータによりスカイフック制御を行う。このとき、一般にスカイフック制御に必要とされるストロークセンサやばね上上下加速度センサ等を使用することなく、全ての車両に搭載されている車輪速センサを利用して安価な構成でスカイフック制御を実現する。
(5)S/A3によるばね上制御を行なう際、スカイフック制御のようなベクトル制御では対応が困難な高周波振動の入力に対し、新たにスカラー制御(周波数感応制御)を導入する。
(6)走行状態に応じて、S/A3が実現する制御状態を適宜選択することで、走行状況に応じた適切な制御状態を提供する。
以上が、実施例において構成した全体の制御システムの概要である。以下、これらを実現する個別の内容について、順次説明する。 Therefore, in the vehicle control apparatus of the first embodiment, it is possible to comprehensively judge these problems and realize a control configuration that complements each other's weak points while taking advantage of the advantages as the respective control characteristics. Therefore, in order to realize a vehicle control apparatus that is inexpensive but has excellent vibration control capability, an overall control system was constructed mainly considering the points listed below.
(1) The control amount by S / A3 is suppressed by performing control by the
(2) By limiting the control target motion of the
(3) The control amount by the
(4) Skyhook control is performed by all actuators. At this time, without using a stroke sensor or a sprung vertical acceleration sensor generally required for skyhook control, the skyhook control can be performed with an inexpensive configuration using wheel speed sensors mounted on all vehicles. Realize.
(5) When performing sprung control by S / A3, scalar control (frequency sensitive control) is newly introduced for the input of high frequency vibration that is difficult to cope with by vector control such as skyhook control.
(6) By appropriately selecting the control state realized by the S /
The above is the outline of the entire control system configured in the embodiment. Hereinafter, individual contents for realizing these will be sequentially described.
図2は実施例1の車両の制御装置の制御構成を表す制御ブロック図である。実施例1では、コントローラとして、エンジンコントローラ1aと、ブレーキコントローラ2aと、S/Aコントローラ3aとの3つで構成され、それぞれのコントローラにおいて、車輪速フィードバック制御系を構成している。
尚、実施例1では、コントローラとして、3つのコントローラを備えた構成を示したが、各コントローラを全て一つの統合コントローラから構成してもよく特に限定しない。実施例1において3つのコントローラを備えた構成としたのは、既存の車両におけるエンジンコントローラとブレーキコントローラをそのまま流用してエンジン制御部1a及びブレーキ制御部2aとし、別途S/Aコントローラ3aを搭載することで実施例1の車両の制御装置を実現することを想定したものである。 FIG. 2 is a control block diagram illustrating a control configuration of the vehicle control apparatus according to the first embodiment. In the first embodiment, the controller includes anengine controller 1a, a brake controller 2a, and an S / A controller 3a, and each controller constitutes a wheel speed feedback control system.
In the first embodiment, the configuration including three controllers as the controller is shown, but each controller may be configured by one integrated controller without any particular limitation. The configuration including the three controllers in the first embodiment is that the engine controller and the brake controller in the existing vehicle are used as they are to form theengine control unit 1a and the brake control unit 2a, and the S / A controller 3a is separately mounted. Thus, it is assumed that the vehicle control apparatus of the first embodiment is realized.
尚、実施例1では、コントローラとして、3つのコントローラを備えた構成を示したが、各コントローラを全て一つの統合コントローラから構成してもよく特に限定しない。実施例1において3つのコントローラを備えた構成としたのは、既存の車両におけるエンジンコントローラとブレーキコントローラをそのまま流用してエンジン制御部1a及びブレーキ制御部2aとし、別途S/Aコントローラ3aを搭載することで実施例1の車両の制御装置を実現することを想定したものである。 FIG. 2 is a control block diagram illustrating a control configuration of the vehicle control apparatus according to the first embodiment. In the first embodiment, the controller includes an
In the first embodiment, the configuration including three controllers as the controller is shown, but each controller may be configured by one integrated controller without any particular limitation. The configuration including the three controllers in the first embodiment is that the engine controller and the brake controller in the existing vehicle are used as they are to form the
(エンジンコントローラの構成)
エンジンコントローラ1aは、主に車輪速センサ5により検出された車輪速に基づいて、後述するばね上制振制御部101aのスカイフック制御に使用する各輪のストローク速度、バウンスレイト、ロールレイト及びピッチレイトを推定する第1走行状態推定部100と、エンジントルク指令であるエンジン姿勢制御量を演算するエンジン姿勢制御部101と、演算されたエンジン姿勢制御量に基づいてエンジン1の運転状態を制御するエンジン制御部102とを有する。尚、第1走行状態推定部100の推定処理内容については後述する。
エンジン姿勢制御部101は、スカイフック制御によりバウンス運動及びピッチ運動を抑制するばね上制御量を演算するばね上制振制御部101aと、前輪と後輪の接地荷重変動を抑制する接地荷重変動抑制制御量を演算する接地荷重制御部101bと、舵角センサ7や車速センサ8からの信号に基づいて運転者の達成したい車両挙動に対応するヨー応答制御量を演算するエンジン側ドライバ入力制御部101cとを有する。エンジン姿勢制御部101は、これら各制御部により演算された制御量が最小となるエンジン姿勢制御量を最適制御(LQR)により演算し、エンジン制御部102に対して最終的なエンジン姿勢制御量を出力する。このように、エンジン1によってバウンス運動及びピッチ運動を抑制することで、S/A3では、減衰力制御量を低減できるため、高周波振動の悪化を回避できる。また、S/A3はロール運動の抑制に注力できるため、効果的にロール運動を抑制することができる。 (Engine controller configuration)
Theengine controller 1a mainly uses the wheel speed detected by the wheel speed sensor 5 to determine the stroke speed, bounce rate, roll rate and pitch of each wheel used for the skyhook control of the sprung mass damping control unit 101a described later. A first running state estimation unit 100 that estimates the rate, an engine posture control unit 101 that calculates an engine posture control amount that is an engine torque command, and controls the operating state of the engine 1 based on the calculated engine posture control amount. An engine control unit 102. The details of the estimation process of the first traveling state estimation unit 100 will be described later.
The engineattitude control unit 101 includes a sprung mass damping control unit 101a that calculates a sprung control amount that suppresses bounce motion and pitch motion by skyhook control, and ground load variation suppression that suppresses ground load variation of front and rear wheels. A ground load control unit 101b that calculates a control amount, and an engine-side driver input control unit 101c that calculates a yaw response control amount corresponding to a vehicle behavior that the driver wants to achieve based on signals from the steering angle sensor 7 and the vehicle speed sensor 8 And have. The engine attitude control unit 101 calculates an engine attitude control amount that minimizes the control amount calculated by each of these control units by optimal control (LQR), and determines the final engine attitude control amount for the engine control unit 102. Output. In this manner, by suppressing the bounce motion and the pitch motion by the engine 1, the S / A 3 can reduce the damping force control amount, and therefore, deterioration of the high frequency vibration can be avoided. Moreover, since S / A3 can concentrate on suppression of roll motion, it can suppress roll motion effectively.
エンジンコントローラ1aは、主に車輪速センサ5により検出された車輪速に基づいて、後述するばね上制振制御部101aのスカイフック制御に使用する各輪のストローク速度、バウンスレイト、ロールレイト及びピッチレイトを推定する第1走行状態推定部100と、エンジントルク指令であるエンジン姿勢制御量を演算するエンジン姿勢制御部101と、演算されたエンジン姿勢制御量に基づいてエンジン1の運転状態を制御するエンジン制御部102とを有する。尚、第1走行状態推定部100の推定処理内容については後述する。
エンジン姿勢制御部101は、スカイフック制御によりバウンス運動及びピッチ運動を抑制するばね上制御量を演算するばね上制振制御部101aと、前輪と後輪の接地荷重変動を抑制する接地荷重変動抑制制御量を演算する接地荷重制御部101bと、舵角センサ7や車速センサ8からの信号に基づいて運転者の達成したい車両挙動に対応するヨー応答制御量を演算するエンジン側ドライバ入力制御部101cとを有する。エンジン姿勢制御部101は、これら各制御部により演算された制御量が最小となるエンジン姿勢制御量を最適制御(LQR)により演算し、エンジン制御部102に対して最終的なエンジン姿勢制御量を出力する。このように、エンジン1によってバウンス運動及びピッチ運動を抑制することで、S/A3では、減衰力制御量を低減できるため、高周波振動の悪化を回避できる。また、S/A3はロール運動の抑制に注力できるため、効果的にロール運動を抑制することができる。 (Engine controller configuration)
The
The engine
(ブレーキコントローラの構成)
ブレーキコントローラ2aは、車輪速センサ5により検出された車輪速に基づいて、各輪のストローク速度及びピッチレイト等を推定する第2走行状態推定部200と、推定されたストローク速度及びピッチレイトに基づいてスカイフック制御に基づくブレーキ姿勢制御量を演算するスカイフック制御部201(詳細については後述する。)と、演算されたブレーキ姿勢制御量に基づいてブレーキ20の制動トルクを制御するブレーキ制御部202とを有する。尚、実施例1では、第1走行状態推定部100及び第2走行状態推定部200における推定処理として同じ推定処理を採用しているが、車輪速から推定する処理であれば他の推定処理を用いてもよい。このように、ブレーキ20によってピッチ運動を抑制することで、S/A3では、減衰力制御量を低減できるため、高周波振動の悪化を回避できる。また、S/A3はロール運動の抑制に注力できるため、効果的にロール運動を抑制することができる。 (Brake controller configuration)
Based on the wheel speed detected by thewheel speed sensor 5, the brake controller 2a estimates the stroke speed and pitch rate of each wheel, and the like based on the estimated stroke speed and pitch rate. Skyhook control unit 201 (details will be described later) that calculates a brake attitude control amount based on skyhook control, and brake control unit 202 that controls the braking torque of brake 20 based on the calculated brake attitude control amount And have. In the first embodiment, the same estimation process is adopted as the estimation process in the first traveling state estimation unit 100 and the second traveling state estimation unit 200, but other estimation processes are performed as long as the process is estimated from the wheel speed. It may be used. In this way, by suppressing the pitch motion by the brake 20, in S / A3, the damping force control amount can be reduced, so that deterioration of high-frequency vibration can be avoided. Moreover, since S / A3 can concentrate on suppression of roll motion, it can suppress roll motion effectively.
ブレーキコントローラ2aは、車輪速センサ5により検出された車輪速に基づいて、各輪のストローク速度及びピッチレイト等を推定する第2走行状態推定部200と、推定されたストローク速度及びピッチレイトに基づいてスカイフック制御に基づくブレーキ姿勢制御量を演算するスカイフック制御部201(詳細については後述する。)と、演算されたブレーキ姿勢制御量に基づいてブレーキ20の制動トルクを制御するブレーキ制御部202とを有する。尚、実施例1では、第1走行状態推定部100及び第2走行状態推定部200における推定処理として同じ推定処理を採用しているが、車輪速から推定する処理であれば他の推定処理を用いてもよい。このように、ブレーキ20によってピッチ運動を抑制することで、S/A3では、減衰力制御量を低減できるため、高周波振動の悪化を回避できる。また、S/A3はロール運動の抑制に注力できるため、効果的にロール運動を抑制することができる。 (Brake controller configuration)
Based on the wheel speed detected by the
(S/Aコントローラの構成)
S/Aコントローラ3aは、運転者の操作(ステアリング操作、アクセル操作及びブレーキペダル操作等)に基づいて所望の車両姿勢を達成するドライバ入力制御を行うドライバ入力制御部31と、各種センサの検出値(主に車輪速センサ5の車輪速センサ値)に基づいて走行状態を推定する第3走行状態推定部32と、推定された走行状態に基づいてばね上の振動状態を制御するばね上制振制御部33と、推定された走行状態に基づいてばね下の振動状態を制御するばね下制振制御部34と、ドライバ入力制御部31から出力されたショックアブソーバ姿勢制御量と、ばね上制振制御部33から出力されたばね上制振制御量と、ばね下制振制御部34から出力されたばね下制振制御量とに基づいて、S/A3に設定すべき減衰力を決定し、S/Aの減衰力制御を行う減衰力制御部35とを有する。尚、実施例1では、第1走行状態推定部100,第2走行状態推定部200及び第3走行状態推定部32における推定処理として同じ推定処理を採用しているが、車輪速から推定する処理であれば他の推定処理を用いてもよく特に限定しない。 (Configuration of S / A controller)
The S /A controller 3a includes a driver input control unit 31 that performs driver input control for achieving a desired vehicle posture based on a driver's operation (steering operation, accelerator operation, brake pedal operation, etc.), and detection values of various sensors. A third traveling state estimation unit 32 that estimates the traveling state based on (mainly the wheel speed sensor value of the wheel speed sensor 5), and a sprung mass damping that controls the vibration state on the spring based on the estimated traveling state A control unit 33, an unsprung vibration suppression control unit 34 that controls the unsprung vibration state based on the estimated traveling state, a shock absorber attitude control amount output from the driver input control unit 31, and a sprung mass damping Based on the sprung mass damping control amount output from the control unit 33 and the unsprung vibration damping control amount output from the unsprung vibration suppression control unit 34, a damping force to be set in the S / A 3 is determined. / And a damping force control unit 35 for performing the damping force control of the A. In the first embodiment, the same estimation process is adopted as the estimation process in the first traveling state estimation unit 100, the second traveling state estimation unit 200, and the third traveling state estimation unit 32, but the process is estimated from the wheel speed. If so, other estimation processes may be used and there is no particular limitation.
S/Aコントローラ3aは、運転者の操作(ステアリング操作、アクセル操作及びブレーキペダル操作等)に基づいて所望の車両姿勢を達成するドライバ入力制御を行うドライバ入力制御部31と、各種センサの検出値(主に車輪速センサ5の車輪速センサ値)に基づいて走行状態を推定する第3走行状態推定部32と、推定された走行状態に基づいてばね上の振動状態を制御するばね上制振制御部33と、推定された走行状態に基づいてばね下の振動状態を制御するばね下制振制御部34と、ドライバ入力制御部31から出力されたショックアブソーバ姿勢制御量と、ばね上制振制御部33から出力されたばね上制振制御量と、ばね下制振制御部34から出力されたばね下制振制御量とに基づいて、S/A3に設定すべき減衰力を決定し、S/Aの減衰力制御を行う減衰力制御部35とを有する。尚、実施例1では、第1走行状態推定部100,第2走行状態推定部200及び第3走行状態推定部32における推定処理として同じ推定処理を採用しているが、車輪速から推定する処理であれば他の推定処理を用いてもよく特に限定しない。 (Configuration of S / A controller)
The S /
ここで、実施例1では、全てのアクチュエータにおいて車輪速センサ5を用いたフィードバック制御系を構成することとした。図3は実施例1の車輪速フィードバック制御系の構成を表す概念図である。エンジン1、ブレーキ20及びS/A3は、それぞれ個別にエンジンフィードバック制御系、ブレーキフィードバック制御系、S/Aフィードバック制御系を構成している。このとき、それぞれのアクチュエータが相互に作動状態を監視することなく個別に作動した場合、制御干渉が問題となる。しかし、各アクチュエータの制御による影響は、それぞれ車輪速変動として出現するため、車輪速フィードバック制御系を構成することで、結果として各アクチュエータの影響を相互に監視することとなり、制御干渉を回避するものである。例えば、エンジン1によってあるばね上振動が抑制されると、それに伴う車輪速変動が生じる。他のアクチュエータは、エンジン1において行われた制御内容について感知していなくても、その影響が反映された車輪速に基づいてブレーキ20やS/A3が制御を行うことになる。すなわち、車輪速という共通の値を用いてフィードバック制御系を構成しているため、制御的に相互監視を働かせることなく個別に制御したとしても、結果的に相互に監視した上での制御(以下、この制御を強調制御と記載する。)が行われ、車両姿勢を安定化方向に収束できるのである。以下、各フィードバック制御系について順次説明する。
Here, in Example 1, the feedback control system using the wheel speed sensor 5 is configured in all the actuators. FIG. 3 is a conceptual diagram showing the configuration of the wheel speed feedback control system of the first embodiment. The engine 1, the brake 20 and the S / A 3 individually constitute an engine feedback control system, a brake feedback control system, and an S / A feedback control system. At this time, when each actuator individually operates without mutually monitoring the operation state, control interference becomes a problem. However, since the effects of the control of each actuator appear as wheel speed fluctuations, by configuring the wheel speed feedback control system, the effect of each actuator is monitored as a result, and control interference is avoided. It is. For example, if a certain sprung vibration is suppressed by the engine 1, the wheel speed fluctuation | variation accompanying it will arise. Even if the other actuators do not sense the control content performed in the engine 1, the brake 20 and the S / A 3 perform control based on the wheel speed in which the influence is reflected. In other words, because the feedback control system is configured using a common value of wheel speed, even if individual control is performed without controllable mutual monitoring, as a result, control based on mutual monitoring (below) This control is described as emphasis control), and the vehicle posture can be converged in the stabilization direction. Hereinafter, each feedback control system will be described sequentially.
(走行状態推定部について)
まず、各フィードバック制御系に設けられた共通する構成である第1,第2,第3走行状態推定部について説明する。実施例1では、第1走行状態推定部100,第2走行状態推定部200及び第3走行状態推定部32における推定処理として同じ推定処理を採用している。よって、各推定部内における処理は共通であるため、代表して第3走行状態推定部32における推定処理を説明する。尚、これら各走行状態推定部は、車輪速を用いた状態推定であれば別々の推定モデルを備えていてもよく、特に限定しない。 (About the running state estimation unit)
First, the 1st, 2nd, 3rd driving state estimation part which is a common structure provided in each feedback control system is demonstrated. In the first embodiment, the same estimation process is adopted as the estimation process in the first travelingstate estimation unit 100, the second traveling state estimation unit 200, and the third traveling state estimation unit 32. Therefore, since the process in each estimation part is common, the estimation process in the 3rd driving state estimation part 32 is demonstrated as a representative. Each of the running state estimation units may be provided with a separate estimation model as long as it is a state estimation using the wheel speed, and is not particularly limited.
まず、各フィードバック制御系に設けられた共通する構成である第1,第2,第3走行状態推定部について説明する。実施例1では、第1走行状態推定部100,第2走行状態推定部200及び第3走行状態推定部32における推定処理として同じ推定処理を採用している。よって、各推定部内における処理は共通であるため、代表して第3走行状態推定部32における推定処理を説明する。尚、これら各走行状態推定部は、車輪速を用いた状態推定であれば別々の推定モデルを備えていてもよく、特に限定しない。 (About the running state estimation unit)
First, the 1st, 2nd, 3rd driving state estimation part which is a common structure provided in each feedback control system is demonstrated. In the first embodiment, the same estimation process is adopted as the estimation process in the first traveling
図4は実施例1の第3走行状態推定部の構成を表す制御ブロック図である。実施例1の第3走行状態推定部32では、基本的に車輪速センサ5により検出された車輪速に基づいて、後述するばね上制振制御部33のスカイフック制御に使用する各輪のストローク速度、バウンスレイト、ロールレイト及びピッチレイトを算出する。まず、各輪の車輪速センサ5の値がストローク速度演算部321に入力され、ストローク速度演算部321において演算された各輪のストローク速度からばね上速度を演算する。
FIG. 4 is a control block diagram showing the configuration of the third traveling state estimation unit of the first embodiment. In the third running state estimation unit 32 of the first embodiment, the stroke of each wheel used for the skyhook control of the sprung mass damping control unit 33 to be described later is basically based on the wheel speed detected by the wheel speed sensor 5. Calculate speed, bounce rate, roll rate and pitch rate. First, the value of the wheel speed sensor 5 of each wheel is input to the stroke speed calculation unit 321, and the sprung speed is calculated from the stroke speed of each wheel calculated by the stroke speed calculation unit 321.
図5は実施例1のストローク速度演算部における制御内容を表す制御ブロック図である。ストローク速度演算部321は、輪ごとに個別に設けられており、図5に示す制御ブロック図は、ある輪に着目した制御ブロック図である。ストローク速度演算部321内には、車輪速センサ5の値と、舵角センサ7により検出された前輪舵角δfと、後輪舵角δr(後輪操舵装置を備えた場合は実後輪舵角を、それ以外の場合は適宜0でよい。)と、車体横速度と、一体型センサ6により検出された実ヨーレイトとに基づいて基準となる車輪速を演算する基準車輪速演算部300と、演算された基準車輪速に基づいてタイヤ回転振動周波数を演算するタイヤ回転振動周波数演算部321aと、基準車輪速と車輪速センサ値との偏差(車輪速変動)を演算する偏差演算部321bと、偏差演算部321bにより演算された偏差をサスペンションストローク量に変換するGEO変換部321cと、変換されたストローク量をストローク速度に校正するストローク速度校正部321dと、ストローク速度校正部321dにより校正された値にタイヤ回転振動周波数演算部321aにより演算された周波数に応じたバンドエリミネーションフィルタを作用させてタイヤ回転一次振動成分を除去し、最終的なストローク速度を算出する信号処理部321eとを有する。
FIG. 5 is a control block diagram showing the control contents in the stroke speed calculation unit of the first embodiment. The stroke speed calculation unit 321 is individually provided for each wheel, and the control block diagram shown in FIG. 5 is a control block diagram focusing on a certain wheel. In the stroke speed calculation unit 321, the value of the wheel speed sensor 5, the front wheel steering angle δf detected by the steering angle sensor 7, and the rear wheel steering angle δr (actual rear wheel steering if a rear wheel steering device is provided). The reference wheel speed calculation unit 300 that calculates a reference wheel speed based on the vehicle body lateral speed and the actual yaw rate detected by the integrated sensor 6, and the angle may be appropriately set to 0 in other cases. A tire rotation vibration frequency calculation unit 321a that calculates the tire rotation vibration frequency based on the calculated reference wheel speed, and a deviation calculation unit 321b that calculates a deviation (wheel speed fluctuation) between the reference wheel speed and the wheel speed sensor value. A GEO conversion unit 321c that converts the deviation calculated by the deviation calculation unit 321b into a suspension stroke amount, a stroke speed calibration unit 321d that calibrates the converted stroke amount to a stroke speed, A band elimination filter corresponding to the frequency calculated by the tire rotation vibration frequency calculation unit 321a is applied to the value calibrated by the roke speed calibration unit 321d to remove the tire rotation primary vibration component and calculate the final stroke speed. And a signal processing unit 321e.
〔基準車輪速演算部について〕
ここで、基準車輪速演算部300について説明する。図6は実施例1の基準車輪速演算部の構成を表すブロック図である。基準車輪速とは、各車輪速のうち、種々の外乱が除去された値を指すものである。言い換えると、車輪速センサ値と基準車輪速との差分は、車体のバウンス挙動、ロール挙動、ピッチ挙動又はばね下上下振動によって発生したストロークに応じて変動した成分と関連がある値であり、実施例では、この差分に基づいてストローク速度を推定する。 [Regarding the reference wheel speed calculation unit]
Here, the reference wheelspeed calculation unit 300 will be described. FIG. 6 is a block diagram illustrating a configuration of a reference wheel speed calculation unit according to the first embodiment. The reference wheel speed refers to a value obtained by removing various disturbances from each wheel speed. In other words, the difference between the wheel speed sensor value and the reference wheel speed is a value related to a component that fluctuates according to the stroke generated by the bounce behavior, roll behavior, pitch behavior, or unsprung vertical vibration of the vehicle body. In the example, the stroke speed is estimated based on this difference.
ここで、基準車輪速演算部300について説明する。図6は実施例1の基準車輪速演算部の構成を表すブロック図である。基準車輪速とは、各車輪速のうち、種々の外乱が除去された値を指すものである。言い換えると、車輪速センサ値と基準車輪速との差分は、車体のバウンス挙動、ロール挙動、ピッチ挙動又はばね下上下振動によって発生したストロークに応じて変動した成分と関連がある値であり、実施例では、この差分に基づいてストローク速度を推定する。 [Regarding the reference wheel speed calculation unit]
Here, the reference wheel
平面運動成分抽出部301では、車輪速センサ値を入力として車体プランビューモデルに基づいて各輪の基準車輪速となる第1車輪速V0を演算する。ここで、車輪速センサ5により検出された車輪速センサ値をω(rad/s)、舵角センサ7により検出された前輪実舵角をδf(rad)、後輪実舵角をδr(rad)、車体横速度をVx、一体型センサ6により検出されたヨーレイトをγ(rad/s)、算出される基準車輪速ω0から推定される車体速をV(m/s)、算出すべき基準車輪速をVFL、VFR、VRL、VRR、前輪のトレッドをTf、後輪のトレッドをTr、車両重心位置から前輪までの距離をLf、車両重心位置から後輪までの距離をLrとする。以上を用いて、車体プランビューモデルは以下のように表される。
The plane motion component extraction unit 301 calculates the first wheel speed V0 that is the reference wheel speed of each wheel based on the vehicle body plan view model with the wheel speed sensor value as an input. Here, the wheel speed sensor value detected by the wheel speed sensor 5 is ω (rad / s), the front wheel actual steering angle detected by the steering angle sensor 7 is δf (rad), and the rear wheel actual steering angle is δr (rad ), The vehicle body lateral speed is Vx, the yaw rate detected by the integrated sensor 6 is γ (rad / s), the vehicle speed estimated from the calculated reference wheel speed ω0 is V (m / s), and the reference to be calculated Wheel speed is VFL, VFR, VRL, VRR, front wheel tread is Tf, rear wheel tread is Tr, distance from vehicle center of gravity to front wheel is Lf, and distance from vehicle center of gravity to rear wheel is Lr. Using the above, the car body plan view model is expressed as follows.
(式1)
VFL=(V-Tf/2・γ)cosδf+(Vx+Lf・γ)sinδf
VFR=(V+Tf/2・γ)cosδf+(Vx+Lf・γ)sinδf
VRL=(V-Tr/2・γ)cosδr+(Vx-Lr・γ)sinδr
VRR=(V+Tr/2・γ)cosδr+(Vx-Lr・γ)sinδr
尚、車両に横滑りが発生してない通常走行時を仮定すると、車体横速度Vxは0を入力すればよい。これをそれぞれの式においてVを基準とする値に書き換えると以下のように表される。この書き換えにあたり、Vをそれぞれの車輪に対応する値としてV0FL、V0FR、V0RL、V0RR(第1車輪速に相当)と記載する。
(式2)
V0FL={VFL-Lf・γsinδf}/cosδf+Tf/2・γ
V0FR={VFR-Lf・γsinδf}/cosδf-Tf/2・γ
V0RL={VRL+Lr・γsinδr}/cosδr+Tr/2・γ
V0RR={VRR+Lf・γsinδf}/cosδr-Tr/2・γ (Formula 1)
VFL = (V-Tf / 2 ・ γ) cosδf + (Vx + Lf ・ γ) sinδf
VFR = (V + Tf / 2 ・ γ) cosδf + (Vx + Lf ・ γ) sinδf
VRL = (V−Tr / 2 ・ γ) cosδr + (Vx−Lr ・ γ) sinδr
VRR = (V + Tr / 2 ・ γ) cosδr + (Vx-Lr ・ γ) sinδr
If it is assumed that the vehicle is traveling normally without skidding, 0 may be input as the vehicle body lateral velocity Vx. When this is rewritten to a value based on V in each equation, it is expressed as follows. In this rewriting, V is described as V0FL, V0FR, V0RL, V0RR (corresponding to the first wheel speed) as a value corresponding to each wheel.
(Formula 2)
V0FL = {VFL-Lf · γsinδf} / cosδf + Tf / 2 · γ
V0FR = {VFR-Lf · γsinδf} / cosδf-Tf / 2 · γ
V0RL = {VRL + Lr · γsinδr} / cosδr + Tr / 2 · γ
V0RR = {VRR + Lf · γsinδf} / cosδr-Tr / 2 · γ
VFL=(V-Tf/2・γ)cosδf+(Vx+Lf・γ)sinδf
VFR=(V+Tf/2・γ)cosδf+(Vx+Lf・γ)sinδf
VRL=(V-Tr/2・γ)cosδr+(Vx-Lr・γ)sinδr
VRR=(V+Tr/2・γ)cosδr+(Vx-Lr・γ)sinδr
尚、車両に横滑りが発生してない通常走行時を仮定すると、車体横速度Vxは0を入力すればよい。これをそれぞれの式においてVを基準とする値に書き換えると以下のように表される。この書き換えにあたり、Vをそれぞれの車輪に対応する値としてV0FL、V0FR、V0RL、V0RR(第1車輪速に相当)と記載する。
(式2)
V0FL={VFL-Lf・γsinδf}/cosδf+Tf/2・γ
V0FR={VFR-Lf・γsinδf}/cosδf-Tf/2・γ
V0RL={VRL+Lr・γsinδr}/cosδr+Tr/2・γ
V0RR={VRR+Lf・γsinδf}/cosδr-Tr/2・γ (Formula 1)
VFL = (V-Tf / 2 ・ γ) cosδf + (Vx + Lf ・ γ) sinδf
VFR = (V + Tf / 2 ・ γ) cosδf + (Vx + Lf ・ γ) sinδf
VRL = (V−Tr / 2 ・ γ) cosδr + (Vx−Lr ・ γ) sinδr
VRR = (V + Tr / 2 ・ γ) cosδr + (Vx-Lr ・ γ) sinδr
If it is assumed that the vehicle is traveling normally without skidding, 0 may be input as the vehicle body lateral velocity Vx. When this is rewritten to a value based on V in each equation, it is expressed as follows. In this rewriting, V is described as V0FL, V0FR, V0RL, V0RR (corresponding to the first wheel speed) as a value corresponding to each wheel.
(Formula 2)
V0FL = {VFL-Lf · γsinδf} / cosδf + Tf / 2 · γ
V0FR = {VFR-Lf · γsinδf} / cosδf-Tf / 2 · γ
V0RL = {VRL + Lr · γsinδr} / cosδr + Tr / 2 · γ
V0RR = {VRR + Lf · γsinδf} / cosδr-Tr / 2 · γ
ロール外乱除去部302では、第1車輪速V0を入力として車体フロントビューモデルに基づいて前後輪の基準車輪速となる第2車輪速V0F、V0Rを演算する。車体フロントビューモデルとは、車両を前方から見たときに、車両重心点を通る鉛直線上のロール回転中心周りに発生するロール運動によって生じる車輪速差を除去するものであり、以下の式で表される。
V0F=(V0FL+V0FR)/2
V0R=(V0RL+V0RR)/2
これにより、ロールに基づく外乱を除去した第2車輪速V0F、V0Rが得られる。 The rolldisturbance removing unit 302 calculates the second wheel speeds V0F and V0R as the reference wheel speeds for the front and rear wheels based on the vehicle body front view model with the first wheel speed V0 as an input. The vehicle body front view model removes the wheel speed difference caused by the roll motion that occurs around the roll rotation center on the vertical line passing through the center of gravity of the vehicle when the vehicle is viewed from the front. Is done.
V0F = (V0FL + V0FR) / 2
V0R = (V0RL + V0RR) / 2
As a result, the second wheel speeds V0F and V0R from which disturbance based on the roll is removed are obtained.
V0F=(V0FL+V0FR)/2
V0R=(V0RL+V0RR)/2
これにより、ロールに基づく外乱を除去した第2車輪速V0F、V0Rが得られる。 The roll
V0F = (V0FL + V0FR) / 2
V0R = (V0RL + V0RR) / 2
As a result, the second wheel speeds V0F and V0R from which disturbance based on the roll is removed are obtained.
ピッチ外乱除去部303では、第2車輪速V0F、V0Rを入力として車体サイドビューモデルに基づいて全輪の基準車輪速となる第三車輪速VbFL、VbFR、VbRL、VbRRを演算する。ここで、車体サイドビューモデルとは、車両を横方向から見たときに、車両重心点を通る鉛直線上のピッチ回転中心周りに発生するピッチ運動によって生じる車輪速差を除去するものであり、以下の式で表される。
(式3)
VbFL=VbFR=VbRL=VbRR={Lr/(Lf+Lr)}V0F+{Lf/(Lf+Lr)}V0R
基準車輪速再配分部304では、(式1)に示す車体プランビューモデルのVにVbFL(=VbFR=VbRL=VbRR)をそれぞれ代入し、最終的な各輪の基準車輪速VFL、VFR、VRL、VRRを算出し、それぞれタイヤ半径r0で除算して基準車輪速ω0を算出する。 The pitchdisturbance removal unit 303 calculates the third wheel speeds VbFL, VbFR, VbRL, and VbRR, which are the reference wheel speeds for all the wheels, based on the vehicle side view model, with the second wheel speeds V0F and V0R as inputs. Here, the vehicle body side view model is to remove the wheel speed difference caused by the pitch motion generated around the pitch rotation center on the vertical line passing through the center of gravity of the vehicle when the vehicle is viewed from the lateral direction. It is expressed by the following formula.
(Formula 3)
VbFL = VbFR = VbRL = VbRR = {Lr / (Lf + Lr)} V0F + {Lf / (Lf + Lr)} V0R
In the reference wheelspeed redistribution unit 304, VbFL (= VbFR = VbRL = VbRR) is substituted for V in the vehicle body plan view model shown in (Equation 1), and the final reference wheel speeds VFL, VFR, VRL of each wheel are respectively substituted. VRR is calculated and divided by the tire radius r0 to calculate the reference wheel speed ω0.
(式3)
VbFL=VbFR=VbRL=VbRR={Lr/(Lf+Lr)}V0F+{Lf/(Lf+Lr)}V0R
基準車輪速再配分部304では、(式1)に示す車体プランビューモデルのVにVbFL(=VbFR=VbRL=VbRR)をそれぞれ代入し、最終的な各輪の基準車輪速VFL、VFR、VRL、VRRを算出し、それぞれタイヤ半径r0で除算して基準車輪速ω0を算出する。 The pitch
(Formula 3)
VbFL = VbFR = VbRL = VbRR = {Lr / (Lf + Lr)} V0F + {Lf / (Lf + Lr)} V0R
In the reference wheel
上述の処理により、各輪における基準車輪速ω0が算出されると、この基準車輪速ω0と車輪速センサ値との偏差が演算され、この偏差がサスペンションストロークに伴う車輪速変動であることから、ストローク速度Vz_sに変換される。基本的に、サスペンションは、各輪を保持する際、上下方向にのみストロークするのではなく、ストロークに伴って車輪回転中心が前後に移動すると共に、車輪速センサ5を搭載したアクスル自身も傾きを持ち、車輪との回転角差を生じる。この前後移動に伴って車輪速が変化するため、基準車輪速と車輪速センサ値との偏差がこのストロークに伴う変動として抽出できるのである。尚、どの程度の変動が生じるかはサスペンションジオメトリに応じて適宜設定すればよい。
When the reference wheel speed ω0 for each wheel is calculated by the above processing, a deviation between the reference wheel speed ω0 and the wheel speed sensor value is calculated, and this deviation is a wheel speed variation associated with the suspension stroke. Converted to stroke speed Vz_s. Basically, the suspension does not stroke only in the vertical direction when holding each wheel, but the wheel rotation center moves back and forth with the stroke, and the axle itself equipped with the wheel speed sensor 5 also tilts. It causes a rotation angle difference from the wheel. Since the wheel speed changes with this back-and-forth movement, the deviation between the reference wheel speed and the wheel speed sensor value can be extracted as the fluctuation accompanying this stroke. It should be noted that the degree of fluctuation may be set as appropriate according to the suspension geometry.
ストローク速度演算部321において、上述の処理により各輪におけるストローク速度Vz_sFL、Vz_sFR、Vz_sRL、Vz_sRRが算出されると、ばね上速度演算部322においてスカイフック制御用のバウンスレイト、ロールレイト及びピッチレイトが演算される。
When the stroke speed calculation unit 321 calculates the stroke speeds Vz_sFL, Vz_sFR, Vz_sRL, and Vz_sRR for each wheel by the above processing, the sprung speed calculation unit 322 calculates the bounce rate, roll rate, and pitch rate for skyhook control. Calculated.
(推定モデルについて)
スカイフック制御とは、S/A3のストローク速度とばね上速度の関係に基づいて減衰力を設定し、ばね上を姿勢制御することでフラットな走行状態を達成するものである。ここで、スカイフック制御によってばね上の姿勢制御を達成するには、ばね上速度をフィードバックする必要がある。今、車輪速センサ5から検出可能な値はストローク速度であり、ばね上に上下加速度センサ等を備えていないことから、ばね上速度は推定モデルを用いて推定する必要がある。以下、推定モデルの課題及び採用すべきモデル構成について説明する。 (About the estimation model)
Skyhook control is to achieve a flat running state by setting a damping force based on the relationship between the S / A3 stroke speed and the sprung speed, and controlling the posture on the sprung. Here, in order to achieve the posture control on the spring by the skyhook control, it is necessary to feed back the sprung speed. Now, the value that can be detected from thewheel speed sensor 5 is the stroke speed, and since the vertical acceleration sensor or the like is not provided on the spring, the sprung speed needs to be estimated using an estimation model. Hereinafter, the problem of the estimation model and the model configuration to be adopted will be described.
スカイフック制御とは、S/A3のストローク速度とばね上速度の関係に基づいて減衰力を設定し、ばね上を姿勢制御することでフラットな走行状態を達成するものである。ここで、スカイフック制御によってばね上の姿勢制御を達成するには、ばね上速度をフィードバックする必要がある。今、車輪速センサ5から検出可能な値はストローク速度であり、ばね上に上下加速度センサ等を備えていないことから、ばね上速度は推定モデルを用いて推定する必要がある。以下、推定モデルの課題及び採用すべきモデル構成について説明する。 (About the estimation model)
Skyhook control is to achieve a flat running state by setting a damping force based on the relationship between the S / A3 stroke speed and the sprung speed, and controlling the posture on the sprung. Here, in order to achieve the posture control on the spring by the skyhook control, it is necessary to feed back the sprung speed. Now, the value that can be detected from the
図7は車体振動モデルを表す概略図である。図7(a)は、減衰力が一定のS/Aを備えた車両(以下、コンベ車両と記載する。)のモデルであり、図7(b)は、減衰力可変のS/Aを備え、スカイフック制御を行う場合のモデルである。図7中、Msはばね上の質量を表し、Muはばね下の質量を表し、Ksはコイルスプリングの弾性係数を表し、CsはS/Aの減衰係数を表し、Kuはばね下(タイヤ)の弾性係数を表し、Cuはばね下(タイヤ)の減衰係数を表し、Cvは可変とされた減衰係数を表す。また、z2はばね上の位置を表し、z1はばね下の位置を表し、z0は路面位置を表す。
FIG. 7 is a schematic diagram showing a vehicle body vibration model. FIG. 7A is a model of a vehicle (hereinafter referred to as a conveyor vehicle) having an S / A with a constant damping force, and FIG. 7B has an S / A having a variable damping force. This is a model for performing skyhook control. In FIG. 7, Ms represents the mass on the spring, Mu represents the mass below the spring, Ks represents the elastic coefficient of the coil spring, Cs represents the damping coefficient of S / A, and Ku represents the unsprung (tire). , Cu represents an unsprung (tire) damping coefficient, and Cv represents a variable damping coefficient. Z2 represents a position on the spring, z1 represents a position under the spring, and z0 represents a road surface position.
図7(a)に示すコンベ車両モデルを用いた場合、ばね上に対する運動方程式は以下のように表される。なお、z1の1回微分(即ち速度)をdz1で、2回微分(即ち加速度)をddz1で表す。
(推定式1)
Ms・ddz2=-Ks(z2-z1)-Cs(dz2-dz1)
この関係式をラプラス変換して整理すると下記のように表される。
(推定式2)
dz2=-(1/Ms)・(1/s2)・(Cs・s+Ks)(dz2-dz1)
ここで、dz2-dz1はストローク速度(Vz_sFL、Vz_sFR、Vz_sRL、Vz_sRR)であることから、ばね上速度はストローク速度から算出できる。しかし、スカイフック制御によって減衰力が変更されると、推定精度が著しく低下するため、コンベ車両モデルでは大きな姿勢制御力(減衰力変更)を与えられないという問題が生じる。 When the convex vehicle model shown in FIG. 7A is used, the equation of motion for the sprung is expressed as follows. Note that the first derivative (ie, speed) of z1 is represented by dz1, and the second derivative (ie, acceleration) is represented by ddz1.
(Estimation formula 1)
Ms · ddz2 = −Ks (z2−z1) −Cs (dz2−dz1)
When this relational expression is rearranged by Laplace transform, it is expressed as follows.
(Estimation formula 2)
dz2 = − (1 / Ms) · (1 / s 2 ) · (Cs · s + Ks) (dz2−dz1)
Here, since dz2-dz1 is the stroke speed (Vz_sFL, Vz_sFR, Vz_sRL, Vz_sRR), the sprung speed can be calculated from the stroke speed. However, when the damping force is changed by the skyhook control, the estimation accuracy is remarkably lowered, and therefore, there is a problem that a large attitude control force (attenuating force change) cannot be given in the convex vehicle model.
(推定式1)
Ms・ddz2=-Ks(z2-z1)-Cs(dz2-dz1)
この関係式をラプラス変換して整理すると下記のように表される。
(推定式2)
dz2=-(1/Ms)・(1/s2)・(Cs・s+Ks)(dz2-dz1)
ここで、dz2-dz1はストローク速度(Vz_sFL、Vz_sFR、Vz_sRL、Vz_sRR)であることから、ばね上速度はストローク速度から算出できる。しかし、スカイフック制御によって減衰力が変更されると、推定精度が著しく低下するため、コンベ車両モデルでは大きな姿勢制御力(減衰力変更)を与えられないという問題が生じる。 When the convex vehicle model shown in FIG. 7A is used, the equation of motion for the sprung is expressed as follows. Note that the first derivative (ie, speed) of z1 is represented by dz1, and the second derivative (ie, acceleration) is represented by ddz1.
(Estimation formula 1)
Ms · ddz2 = −Ks (z2−z1) −Cs (dz2−dz1)
When this relational expression is rearranged by Laplace transform, it is expressed as follows.
(Estimation formula 2)
dz2 = − (1 / Ms) · (1 / s 2 ) · (Cs · s + Ks) (dz2−dz1)
Here, since dz2-dz1 is the stroke speed (Vz_sFL, Vz_sFR, Vz_sRL, Vz_sRR), the sprung speed can be calculated from the stroke speed. However, when the damping force is changed by the skyhook control, the estimation accuracy is remarkably lowered, and therefore, there is a problem that a large attitude control force (attenuating force change) cannot be given in the convex vehicle model.
そこで、図7(b)に示すようなスカイフック制御による車両モデルを用いることが考えられる。減衰力を変更するとは、基本的にサスペンションストロークに伴ってS/A3のピストン移動速度を制限する力を変更することである。ピストンを積極的に望ましい方向に移動することはできないセミアクティブなS/A3を用いるため、セミアクティブスカイフックモデルを採用し、ばね上速度を求めると、下記のように表される。
(推定式3)
dz2=-(1/Ms)・(1/s2)・{(Cs+Cv)・s+Ks}(dz2-dz1)
ただし、
dz2・(dz2-dz1)≧0のとき Cv=Csky・{dz2/(dz2-dz1)}
dz2・(dz2-dz1)<0のとき Cv=0
すなわち、Cvは不連続な値となる。 Therefore, it is conceivable to use a vehicle model based on skyhook control as shown in FIG. Changing the damping force basically means changing the force that limits the piston moving speed of S /A 3 in accordance with the suspension stroke. Since the semi-active S / A3 that cannot positively move the piston in the desired direction is used, when the semi-active skyhook model is employed and the sprung speed is obtained, it is expressed as follows.
(Estimation formula 3)
dz2 = − (1 / Ms) · (1 / s 2 ) · {(Cs + Cv) · s + Ks} (dz2−dz1)
However,
When dz2 · (dz2−dz1) ≧ 0 Cv = Csky · {dz2 / (dz2−dz1)}
When dz2 · (dz2-dz1) <0, Cv = 0
That is, Cv has a discontinuous value.
(推定式3)
dz2=-(1/Ms)・(1/s2)・{(Cs+Cv)・s+Ks}(dz2-dz1)
ただし、
dz2・(dz2-dz1)≧0のとき Cv=Csky・{dz2/(dz2-dz1)}
dz2・(dz2-dz1)<0のとき Cv=0
すなわち、Cvは不連続な値となる。 Therefore, it is conceivable to use a vehicle model based on skyhook control as shown in FIG. Changing the damping force basically means changing the force that limits the piston moving speed of S /
(Estimation formula 3)
dz2 = − (1 / Ms) · (1 / s 2 ) · {(Cs + Cv) · s + Ks} (dz2−dz1)
However,
When dz2 · (dz2−dz1) ≧ 0 Cv = Csky · {dz2 / (dz2−dz1)}
When dz2 · (dz2-dz1) <0, Cv = 0
That is, Cv has a discontinuous value.
今、簡単なフィルタを用いてばね上速度の推定を行いたいと考えた場合、セミアクティブスカイフックモデルでは、本モデルをフィルタとして見た場合、各変数はフィルタ係数に相当し、擬似微分項{(Cs+Cv)・s+Ks}に不連続な可変減衰係数Cvが含まれるため、フィルタ応答が不安定となり、適切な推定精度が得られない。特に、フィルタ応答が不安定となると、位相がずれてしまう。ばね上速度の位相と符号との対応関係が崩れると、スカイフック制御を達成することはできない。そこで、セミアクティブなS/A3を用いる場合であっても、ばね上速度とストローク速度の符号関係に依存せず、安定的なCskyを直接用いることが可能なアクティブスカイフックモデルを用いてばね上速度を推定することとした。アクティブスカイフックモデルを採用し、ばね上速度を求めると、下記のように表される。
Now, if you want to estimate the sprung speed using a simple filter, in the semi-active skyhook model, when this model is viewed as a filter, each variable corresponds to a filter coefficient, and the pseudo-differential term { Since (Cs + Cv) · s + Ks} includes a discontinuous variable attenuation coefficient Cv, the filter response becomes unstable and appropriate estimation accuracy cannot be obtained. In particular, when the filter response becomes unstable, the phase shifts. If the correspondence between the phase of the sprung speed and the sign is broken, the skyhook control cannot be achieved. Therefore, even when a semi-active S / A3 is used, it is not dependent on the sign relationship between the sprung speed and the stroke speed, and the sprung is performed using an active skyhook model that can directly use stable Csky. The speed was estimated. When the active sky hook model is adopted and the sprung speed is obtained, it is expressed as follows.
(推定式4)
dz2=-(1/s)・{1/(s+Csky/Ms)}・{(Cs/Ms)s+(Ks/Ms)}(dz2-dz1)
この場合、擬似微分項{(Cs/Ms)s+(Ks/Ms)}には不連続性が生じず、{1/(s+Csky/Ms)}の項はローパスフィルタで構成できる。よって、フィルタ応答が安定し、適切な推定精度を得ることができる。尚、ここで、アクティブスカイフックモデルを採用しても、実際にはセミアクティブ制御しかできないことから、制御可能領域が半分となる。よって、推定されるばね上速度の大きさはばね上共振以下の周波数帯で実際よりも小さくなるが、スカイフック制御において最も重要なのは位相であり、位相と符号との対応関係が維持できればスカイフック制御は達成され、ばね上速度の大きさは他の係数等によって調整可能であることから問題はない。 (Estimation formula 4)
dz2 =-(1 / s). {1 / (s + Csky / Ms)}. {(Cs / Ms) s + (Ks / Ms)} (dz2-dz1)
In this case, discontinuity does not occur in the pseudo differential term {(Cs / Ms) s + (Ks / Ms)}, and the {1 / (s + Csky / Ms)} term can be configured by a low-pass filter. Therefore, the filter response is stable and appropriate estimation accuracy can be obtained. Here, even if the active sky hook model is adopted, only semi-active control is actually possible, so the controllable area is halved. Therefore, the magnitude of the estimated sprung speed is smaller than the actual value in the frequency band below the sprung resonance, but the most important in skyhook control is the phase. If the correspondence between the phase and the sign can be maintained, the skyhook can be maintained. Since control is achieved and the magnitude of the sprung speed can be adjusted by other factors, there is no problem.
dz2=-(1/s)・{1/(s+Csky/Ms)}・{(Cs/Ms)s+(Ks/Ms)}(dz2-dz1)
この場合、擬似微分項{(Cs/Ms)s+(Ks/Ms)}には不連続性が生じず、{1/(s+Csky/Ms)}の項はローパスフィルタで構成できる。よって、フィルタ応答が安定し、適切な推定精度を得ることができる。尚、ここで、アクティブスカイフックモデルを採用しても、実際にはセミアクティブ制御しかできないことから、制御可能領域が半分となる。よって、推定されるばね上速度の大きさはばね上共振以下の周波数帯で実際よりも小さくなるが、スカイフック制御において最も重要なのは位相であり、位相と符号との対応関係が維持できればスカイフック制御は達成され、ばね上速度の大きさは他の係数等によって調整可能であることから問題はない。 (Estimation formula 4)
dz2 =-(1 / s). {1 / (s + Csky / Ms)}. {(Cs / Ms) s + (Ks / Ms)} (dz2-dz1)
In this case, discontinuity does not occur in the pseudo differential term {(Cs / Ms) s + (Ks / Ms)}, and the {1 / (s + Csky / Ms)} term can be configured by a low-pass filter. Therefore, the filter response is stable and appropriate estimation accuracy can be obtained. Here, even if the active sky hook model is adopted, only semi-active control is actually possible, so the controllable area is halved. Therefore, the magnitude of the estimated sprung speed is smaller than the actual value in the frequency band below the sprung resonance, but the most important in skyhook control is the phase. If the correspondence between the phase and the sign can be maintained, the skyhook can be maintained. Since control is achieved and the magnitude of the sprung speed can be adjusted by other factors, there is no problem.
以上の関係によって、各輪のストローク速度が分かれば、ばね上速度を推定できることが理解できる。次に、実際の車両は1輪ではなく4輪であるため、これら各輪のストローク速度を用いてばね上の状態を、ロールレイト、ピッチレイト及びバウンスレイトにモード分解して推定することを検討する。今、4輪のストローク速度から上記3つの成分を算出する場合、対応する成分が一つ足りず、解が不定となるため、対角輪の動きを表すワープレイトを導入することとした。ストローク量のバウンス項をxsB、ロール項をxsR、ピッチ項をxsP、ワープ項をxsWとし、Vz_sFL、Vz_sFR、Vz_sRL、Vz_sRRに対応するストローク量をz_sFL、z_sFR、z_sRL、z_sRRとすると、以下の式が成り立つ。
From the above relationship, it can be understood that the sprung speed can be estimated if the stroke speed of each wheel is known. Next, since the actual vehicle is four wheels instead of one wheel, it is considered to estimate the state of the spring by mode decomposition into roll rate, pitch rate and bounce rate using the stroke speed of each wheel. To do. Now, when the above three components are calculated from the stroke speed of the four wheels, one corresponding component is insufficient, and the solution becomes indefinite. Therefore, a war plate representing the movement of the diagonal wheels is introduced. If the stroke amount bounce term is xsB, the roll term is xsR, the pitch term is xsP, the warp term is xsW, and the stroke amount corresponding to Vz_sFL, Vz_sFR, Vz_sRL, Vz_sRR is z_sFL, z_sFR, z_sRL, z_sRR, Holds.
(式1)
以上の関係式から、xsB、xsR、xsP、xsWの微分dxsB等は以下の式で表される。
dxsB=1/4(Vz_sFL+Vz_sFR+Vz_sRL+Vz_sRR)
dxsR=1/4(Vz_sFL-Vz_sFR+Vz_sRL-Vz_sRR)
dxsP=1/4(-Vz_sFL-Vz_sFR+Vz_sRL+Vz_sRR)
dxsW=1/4(-Vz_sFL+Vz_sFR+Vz_sRL-Vz_sRR) (Formula 1)
From the above relational expression, the differential dxsB of xsB, xsR, xsP, xsW, etc. is expressed by the following expression.
dxsB = 1/4 (Vz_sFL + Vz_sFR + Vz_sRL + Vz_sRR)
dxsR = 1/4 (Vz_sFL-Vz_sFR + Vz_sRL-Vz_sRR)
dxsP = 1/4 (-Vz_sFL-Vz_sFR + Vz_sRL + Vz_sRR)
dxsW = 1/4 (-Vz_sFL + Vz_sFR + Vz_sRL-Vz_sRR)
以上の関係式から、xsB、xsR、xsP、xsWの微分dxsB等は以下の式で表される。
dxsB=1/4(Vz_sFL+Vz_sFR+Vz_sRL+Vz_sRR)
dxsR=1/4(Vz_sFL-Vz_sFR+Vz_sRL-Vz_sRR)
dxsP=1/4(-Vz_sFL-Vz_sFR+Vz_sRL+Vz_sRR)
dxsW=1/4(-Vz_sFL+Vz_sFR+Vz_sRL-Vz_sRR) (Formula 1)
From the above relational expression, the differential dxsB of xsB, xsR, xsP, xsW, etc. is expressed by the following expression.
dxsB = 1/4 (Vz_sFL + Vz_sFR + Vz_sRL + Vz_sRR)
dxsR = 1/4 (Vz_sFL-Vz_sFR + Vz_sRL-Vz_sRR)
dxsP = 1/4 (-Vz_sFL-Vz_sFR + Vz_sRL + Vz_sRR)
dxsW = 1/4 (-Vz_sFL + Vz_sFR + Vz_sRL-Vz_sRR)
ここで、ばね上速度とストローク速度との関係は上記推定式4より得られているため、推定式4のうち、-(1/s)・{1/(s+Csky/Ms)}・{(Cs/Ms)s+(Ks/Ms)}部分をGと記載し、それぞれCsky,Cs及びKsのバウンス項、ロール項、ピッチ項に応じたモーダルパラメータ(CskyB,CskyR,CskyP,CsB,CsR,CsP,KsB,KsR,KsP)を考慮した値をGB,GR,GPとし、各バウンスレイトをdB、ロールレイトをdR、ピッチレイトをdPとすると、dB、dR、dPは以下の値として算出できる。
dB=GB・dxsB
dR=GR・dxsR
dP=GP・dxsP
以上から、各輪のストローク速度に基づいて、実際の車両におけるばね上の状態推定が達成できる。 Here, since the relationship between the sprung speed and the stroke speed is obtained from theestimation equation 4, among the estimation equations 4, − (1 / s) · {1 / (s + Csky / Ms)} · {(Cs / Ms) s + (Ks / Ms)} is described as G, and modal parameters (CskyB, CskyR, CskyP, CsB, CsR, CsP, KsB, KsR, KsP) are GB, GR, GP, bounce rate is dB, roll rate is dR, and pitch rate is dP, dB, dR, dP can be calculated as the following values.
dB = GB · dxsB
dR = GR · dxsR
dP = GP · dxsP
From the above, the state estimation on the spring in the actual vehicle can be achieved based on the stroke speed of each wheel.
dB=GB・dxsB
dR=GR・dxsR
dP=GP・dxsP
以上から、各輪のストローク速度に基づいて、実際の車両におけるばね上の状態推定が達成できる。 Here, since the relationship between the sprung speed and the stroke speed is obtained from the
dB = GB · dxsB
dR = GR · dxsR
dP = GP · dxsP
From the above, the state estimation on the spring in the actual vehicle can be achieved based on the stroke speed of each wheel.
(ばね上制振制御部)
次に、ばね上制振制御部101a,スカイフック制御部201及びばね上制振制御部33において実行されるスカイフック制御構成について説明する。スカイフック制御では、上述のように車輪速に基づいて推定されたばね上状態を目標ばね上状態となるように制御する。言い換えると、車輪速変化はばね上状態に対応して変化するものであり、バウンス,ロール,ピッチといったばね上状態を目標ばね上状態に制御する場合、検出された車輪速の変化が目標ばね上状態に対応する車輪速変化となるように制御するものである。 (Spring control unit)
Next, the skyhook control configuration executed in the sprung mass dampingcontrol unit 101a, the skyhook control unit 201, and the sprung mass damping control unit 33 will be described. In the skyhook control, the sprung state estimated based on the wheel speed as described above is controlled to become the target sprung state. In other words, the wheel speed change changes according to the sprung state, and when the sprung state such as bounce, roll, and pitch is controlled to the target sprung state, the detected wheel speed change is detected by the target sprung state. It is controlled so that the wheel speed changes corresponding to the state.
次に、ばね上制振制御部101a,スカイフック制御部201及びばね上制振制御部33において実行されるスカイフック制御構成について説明する。スカイフック制御では、上述のように車輪速に基づいて推定されたばね上状態を目標ばね上状態となるように制御する。言い換えると、車輪速変化はばね上状態に対応して変化するものであり、バウンス,ロール,ピッチといったばね上状態を目標ばね上状態に制御する場合、検出された車輪速の変化が目標ばね上状態に対応する車輪速変化となるように制御するものである。 (Spring control unit)
Next, the skyhook control configuration executed in the sprung mass damping
〔スカイフック制御部の構成〕
実施例1の車両の制御装置にあっては、ばね上姿勢制御を達成するアクチュエータとして、エンジン1と、ブレーキ20と、S/A3の三つを備えている。このうち、エンジンコントローラ1aにおけるばね上制振制御部101aでは、バウンスレイトとピッチレイトの2つを制御対象とし、ブレーキコントローラ2aにおけるスカイフック制御部201においてはピッチレイトを制御対象とし、S/Aコントローラ3aにおけるスカイフック制御部33aでは、バウンスレイト、ロールレイト、ピッチレイトの3つを制御対象とする。 [Configuration of Skyhook Control Unit]
The vehicle control apparatus according to the first embodiment includes theengine 1, the brake 20, and the S / A 3 as actuators for achieving sprung posture control. Among these, the sprung mass damping control unit 101a in the engine controller 1a has two bounce rate and pitch rate as control targets, and the skyhook control unit 201 in the brake controller 2a has pitch rate as control targets. In the skyhook control unit 33a in the controller 3a, three of bounce rate, roll rate, and pitch rate are controlled.
実施例1の車両の制御装置にあっては、ばね上姿勢制御を達成するアクチュエータとして、エンジン1と、ブレーキ20と、S/A3の三つを備えている。このうち、エンジンコントローラ1aにおけるばね上制振制御部101aでは、バウンスレイトとピッチレイトの2つを制御対象とし、ブレーキコントローラ2aにおけるスカイフック制御部201においてはピッチレイトを制御対象とし、S/Aコントローラ3aにおけるスカイフック制御部33aでは、バウンスレイト、ロールレイト、ピッチレイトの3つを制御対象とする。 [Configuration of Skyhook Control Unit]
The vehicle control apparatus according to the first embodiment includes the
バウンス方向のスカイフック制御量は、
FB=CskyB・dB
ロール方向のスカイフック制御量は、
FR=CskyR・dR
ピッチ方向のスカイフック制御量は、
FP=CskyP・dP
となる。
(バウンス方向のスカイフック制御量FB)
バウンス方向のスカイフック制御量FBは、ばね上制振制御部101aにおいてエンジン姿勢制御量の一部として演算される。また、スカイフック制御部33aにおいてS/A姿勢制御量の一部として演算される。
(ロール方向のスカイフック制御量FR)
ロール方向のスカイフック制御量FRは、スカイフック制御部33aにおいてS/A姿勢制御量の一部として演算される。
(ピッチ方向のスカイフック制御量FP)
ピッチ方向のスカイフック制御量FPは、ばね上制振制御部101aにおいてエンジン姿勢制御量の一部として演算される。また、スカイフック制御部201においてブレーキ姿勢制御量として演算される。また、スカイフック制御部33aにおいてS/A姿勢制御量の一部として演算される。 The amount of skyhook control in the bounce direction is
FB = CskyB · dB
The amount of skyhook control in the roll direction is
FR = CskyR · dR
The amount of skyhook control in the pitch direction is
FP = CskyP · dP
It becomes.
(Skyhook control amount FB in the bounce direction)
The bounce direction skyhook control amount FB is calculated as a part of the engine attitude control amount in the sprung mass dampingcontrol unit 101a. In addition, the skyhook control unit 33a calculates as a part of the S / A attitude control amount.
(Skyhook control amount FR in roll direction)
The sky hook control amount FR in the roll direction is calculated as part of the S / A attitude control amount in the skyhook control unit 33a.
(Pitch direction skyhook control amount FP)
The sky hook control amount FP in the pitch direction is calculated as a part of the engine attitude control amount in the sprung mass dampingcontrol unit 101a. In addition, the skyhook control unit 201 calculates the brake posture control amount. In addition, the skyhook control unit 33a calculates as a part of the S / A attitude control amount.
FB=CskyB・dB
ロール方向のスカイフック制御量は、
FR=CskyR・dR
ピッチ方向のスカイフック制御量は、
FP=CskyP・dP
となる。
(バウンス方向のスカイフック制御量FB)
バウンス方向のスカイフック制御量FBは、ばね上制振制御部101aにおいてエンジン姿勢制御量の一部として演算される。また、スカイフック制御部33aにおいてS/A姿勢制御量の一部として演算される。
(ロール方向のスカイフック制御量FR)
ロール方向のスカイフック制御量FRは、スカイフック制御部33aにおいてS/A姿勢制御量の一部として演算される。
(ピッチ方向のスカイフック制御量FP)
ピッチ方向のスカイフック制御量FPは、ばね上制振制御部101aにおいてエンジン姿勢制御量の一部として演算される。また、スカイフック制御部201においてブレーキ姿勢制御量として演算される。また、スカイフック制御部33aにおいてS/A姿勢制御量の一部として演算される。 The amount of skyhook control in the bounce direction is
FB = CskyB · dB
The amount of skyhook control in the roll direction is
FR = CskyR · dR
The amount of skyhook control in the pitch direction is
FP = CskyP · dP
It becomes.
(Skyhook control amount FB in the bounce direction)
The bounce direction skyhook control amount FB is calculated as a part of the engine attitude control amount in the sprung mass damping
(Skyhook control amount FR in roll direction)
The sky hook control amount FR in the roll direction is calculated as part of the S / A attitude control amount in the sky
(Pitch direction skyhook control amount FP)
The sky hook control amount FP in the pitch direction is calculated as a part of the engine attitude control amount in the sprung mass damping
エンジン姿勢制御部101は、運転者に違和感を与えないためにエンジン姿勢制御量に応じたエンジントルク制御量を制限する制限値が設定されている。これにより、エンジントルク制御量を前後加速度に換算したときに所定前後加速度範囲内となるように制限している。よって、FBやFPに基づいてエンジン姿勢制御量(エンジントルク制御量)を演算し、制限値以上の値が演算された場合には、制限値によって達成可能なバウンスレイトやピッチレイトのスカイフック制御量としてエンジン姿勢制御量を出力する。エンジン制御部102では、制限値に対応するエンジン姿勢制御量に基づいてエンジントルク制御量が演算され、エンジン1に対して出力する。
The engine attitude control unit 101 is set with a limit value for limiting the engine torque control amount according to the engine attitude control amount so as not to give the driver a sense of incongruity. Thus, the engine torque control amount is limited to be within a predetermined longitudinal acceleration range when converted to longitudinal acceleration. Therefore, when the engine attitude control amount (engine torque control amount) is calculated based on FB or FP and a value equal to or greater than the limit value is calculated, bounce rate or pitch rate skyhook control that can be achieved by the limit value The engine attitude control amount is output as a quantity. In the engine control unit 102, an engine torque control amount is calculated based on the engine attitude control amount corresponding to the limit value and is output to the engine 1.
スカイフック制御部201には、エンジン1と同様に運転者に違和感を与えないために制動トルク制御量を制限する制限値が設定されている(尚、制限値の詳細については後述する。)。これにより、制動トルク制御量を前後加速度に換算したときに所定前後加速度範囲内(乗員の違和感、アクチュエータの寿命等から求まる制限値)となるように制限している。よって、FPに基づいてブレーキ姿勢制御量を演算し、制限値以上の値が演算された場合には、制限値によって達成可能なピッチレイト抑制量(以下、ブレーキ姿勢制御量と記載する。)をブレーキ制御部202に出力する。ブレーキ制御部202では、制限値に対応するブレーキ姿勢制御量に基づいて制動トルク制御量(もしくは減速度)が演算され、ブレーキ20に対して出力される。
In the skyhook control unit 201, a limit value for limiting the braking torque control amount is set in order to prevent the driver from feeling uncomfortable as in the case of the engine 1 (details of the limit value will be described later). Thereby, when the braking torque control amount is converted into the longitudinal acceleration, the braking torque control amount is limited to be within a predetermined longitudinal acceleration range (a limit value obtained from the occupant's uncomfortable feeling, the life of the actuator, etc.). Therefore, when the brake attitude control amount is calculated based on the FP and a value equal to or greater than the limit value is calculated, a pitch rate suppression amount (hereinafter referred to as a brake attitude control amount) that can be achieved by the limit value. Output to the brake control unit 202. The brake control unit 202 calculates a braking torque control amount (or deceleration) based on the brake attitude control amount corresponding to the limit value, and outputs the calculated braking torque control amount to the brake 20.
〔ブレーキピッチ制御〕
ここで、ブレーキピッチ制御について説明する。一般に、ブレーキ20については、バウンスとピッチの両方を制御可能であることから、両方を行うことが好ましいとも言える。しかし、ブレーキ20によるバウンス制御は4輪同時に制動力を発生させるため、制御優先度が低い方向にも関わらず、制御効果が得にくい割には減速感が強く、運転者にとって違和感となる傾向があった。そこで、ブレーキ20についてはピッチ制御に特化した構成とした。図8は実施例1のブレーキピッチ制御を表す制御ブロック図である。車体の質量をm、前輪の制動力をBFf、後輪の制動力をBFr、車両重心点と路面との間の高さをHcg、車両の加速度をa、ピッチモーメントをMp、ピッチレイトをVpとすると、以下の関係式が成立する。 [Brake pitch control]
Here, the brake pitch control will be described. In general, it can be said that it is preferable to perform both of thebrakes 20 because both bounce and pitch can be controlled. However, the bounce control by the brake 20 generates braking force at the same time for the four wheels. Therefore, despite the low control priority, the deceleration effect is strong for the difficulty of obtaining the control effect, and the driver tends to feel uncomfortable. there were. Therefore, the brake 20 has a configuration specialized for pitch control. FIG. 8 is a control block diagram showing the brake pitch control of the first embodiment. The vehicle body mass is m, the front wheel braking force is BFf, the rear wheel braking force is BFr, the height between the vehicle center of gravity and the road surface is Hcg, the vehicle acceleration is a, the pitch moment is Mp, and the pitch rate is Vp. Then, the following relational expression is established.
ここで、ブレーキピッチ制御について説明する。一般に、ブレーキ20については、バウンスとピッチの両方を制御可能であることから、両方を行うことが好ましいとも言える。しかし、ブレーキ20によるバウンス制御は4輪同時に制動力を発生させるため、制御優先度が低い方向にも関わらず、制御効果が得にくい割には減速感が強く、運転者にとって違和感となる傾向があった。そこで、ブレーキ20についてはピッチ制御に特化した構成とした。図8は実施例1のブレーキピッチ制御を表す制御ブロック図である。車体の質量をm、前輪の制動力をBFf、後輪の制動力をBFr、車両重心点と路面との間の高さをHcg、車両の加速度をa、ピッチモーメントをMp、ピッチレイトをVpとすると、以下の関係式が成立する。 [Brake pitch control]
Here, the brake pitch control will be described. In general, it can be said that it is preferable to perform both of the
BFf+BFr=m・a
m・a・Hcg=Mp
Mp=(BFf+BFr)・Hcg
ここで、ピッチレイトVpが正、つまり前輪側が沈み込んでいるときには制動力を与えてしまうと、より前輪側が沈み込み、ピッチ運動を助長してしまうため、この場合は制動力を付与しない。一方、ピッチレイトVpが負、つまり前輪側が浮き上がっているときには制動ピッチモーメントが制動力を与えて前輪側の浮き上がりを抑制する。これにより、運転者の視界を確保し、前方を見やすくすることで、安心感、フラット感の向上に寄与する。以上から、
Vp>0(前輪沈み込み)のとき Mp=0
Vp≦0(前輪浮き上がり)のとき Mp=CskyP・Vp
の制御量を与えるものである。これにより、車体のフロント側の浮き上がり時のみ制動トルクを発生させるため、浮き上がりと沈み込み両方に制動トルクを発生する場合に比べて、発生する減速度を小さくすることができる。また、アクチュエータ作動頻度も半分で済むため、低コストなアクチュエータを採用できる。 BFf + BFr = m · a
m · a · Hcg = Mp
Mp = (BFf + BFr) · Hcg
Here, when the pitch rate Vp is positive, that is, when the braking force is applied when the front wheel side is depressed, the front wheel side is further depressed and the pitch motion is promoted. In this case, the braking force is not applied. On the other hand, when the pitch rate Vp is negative, that is, when the front wheel side is lifted, the braking pitch moment gives a braking force to suppress the front wheel side lift. This contributes to improving the sense of security and flatness by ensuring the driver's field of view and making it easier to see the front. From the above
When Vp> 0 (front wheel sinks) Mp = 0
When Vp ≦ 0 (front wheel lift) Mp = CskyP · Vp
The amount of control is given. Accordingly, since the braking torque is generated only when the vehicle body is lifted up on the front side, the generated deceleration can be reduced as compared with the case where the braking torque is generated in both the lifting and sinking. Moreover, since the actuator operation frequency is only half, a low-cost actuator can be employed.
m・a・Hcg=Mp
Mp=(BFf+BFr)・Hcg
ここで、ピッチレイトVpが正、つまり前輪側が沈み込んでいるときには制動力を与えてしまうと、より前輪側が沈み込み、ピッチ運動を助長してしまうため、この場合は制動力を付与しない。一方、ピッチレイトVpが負、つまり前輪側が浮き上がっているときには制動ピッチモーメントが制動力を与えて前輪側の浮き上がりを抑制する。これにより、運転者の視界を確保し、前方を見やすくすることで、安心感、フラット感の向上に寄与する。以上から、
Vp>0(前輪沈み込み)のとき Mp=0
Vp≦0(前輪浮き上がり)のとき Mp=CskyP・Vp
の制御量を与えるものである。これにより、車体のフロント側の浮き上がり時のみ制動トルクを発生させるため、浮き上がりと沈み込み両方に制動トルクを発生する場合に比べて、発生する減速度を小さくすることができる。また、アクチュエータ作動頻度も半分で済むため、低コストなアクチュエータを採用できる。 BFf + BFr = m · a
m · a · Hcg = Mp
Mp = (BFf + BFr) · Hcg
Here, when the pitch rate Vp is positive, that is, when the braking force is applied when the front wheel side is depressed, the front wheel side is further depressed and the pitch motion is promoted. In this case, the braking force is not applied. On the other hand, when the pitch rate Vp is negative, that is, when the front wheel side is lifted, the braking pitch moment gives a braking force to suppress the front wheel side lift. This contributes to improving the sense of security and flatness by ensuring the driver's field of view and making it easier to see the front. From the above
When Vp> 0 (front wheel sinks) Mp = 0
When Vp ≦ 0 (front wheel lift) Mp = CskyP · Vp
The amount of control is given. Accordingly, since the braking torque is generated only when the vehicle body is lifted up on the front side, the generated deceleration can be reduced as compared with the case where the braking torque is generated in both the lifting and sinking. Moreover, since the actuator operation frequency is only half, a low-cost actuator can be employed.
以上の関係に基づいて、ブレーキ姿勢制御量演算部334内は、以下の制御ブロックから構成される。不感帯処理符号判定部3341では、入力されたピッチレイトVpの符号を判定し、正のときは制御不要であるため減速感低減処理部3342に0を出力し、負のときは制御可能と判断して減速感低減処理部3342にピッチレイト信号を出力する。
Based on the above relationship, the brake attitude control amount calculation unit 334 is composed of the following control blocks. The dead zone processing code determination unit 3341 determines the sign of the input pitch rate Vp, and when it is positive, it outputs 0 to the deceleration reduction processing unit 3342 because control is unnecessary, and when it is negative, it determines that control is possible. The pitch rate signal is output to the deceleration reduction processing unit 3342.
〔減速感低減処理〕
次に、減速感低減処理について説明する。この処理は、ブレーキ姿勢制御量演算部334内で行なわれる上記制限値による制限に対応する処理である。2乗処理部3342aでは、ピッチレイト信号を2乗処理する。これにより符号を反転させると共に、制御力の立ち上がりを滑らかにする。ピッチレイト2乗減衰モーメント演算部3342bでは、2乗処理されたピッチレイトに2乗処理を考慮したピッチ項のスカイフックゲインCskyPを乗算してピッチモーメントMpを演算する。目標減速度算出部3342cでは、ピッチモーメントMpを質量m及び車両重心点と路面との間の高さHcgにより除算して目標減速度を演算する。 [Deceleration feeling reduction processing]
Next, the deceleration feeling reduction process will be described. This process is a process corresponding to the limit by the limit value performed in the brake attitude control amount calculation unit 334. Thesquare processor 3342a squares the pitch rate signal. This inverts the sign and smoothes the rise of the control force. The pitch rate square decay moment calculation unit 3342b calculates the pitch moment Mp by multiplying the squared pitch rate by the skyhook gain CskyP of the pitch term considering the square process. The target deceleration calculating unit 3342c calculates the target deceleration by dividing the pitch moment Mp by the mass m and the height Hcg between the vehicle center of gravity and the road surface.
次に、減速感低減処理について説明する。この処理は、ブレーキ姿勢制御量演算部334内で行なわれる上記制限値による制限に対応する処理である。2乗処理部3342aでは、ピッチレイト信号を2乗処理する。これにより符号を反転させると共に、制御力の立ち上がりを滑らかにする。ピッチレイト2乗減衰モーメント演算部3342bでは、2乗処理されたピッチレイトに2乗処理を考慮したピッチ項のスカイフックゲインCskyPを乗算してピッチモーメントMpを演算する。目標減速度算出部3342cでは、ピッチモーメントMpを質量m及び車両重心点と路面との間の高さHcgにより除算して目標減速度を演算する。 [Deceleration feeling reduction processing]
Next, the deceleration feeling reduction process will be described. This process is a process corresponding to the limit by the limit value performed in the brake attitude control amount calculation unit 334. The
ジャーク閾値制限部3342dでは、算出された目標減速度の変化率、すなわちジャークが予め設定された減速ジャーク閾値と抜きジャーク閾値の範囲内であるか否か、及び目標減速度が前後加速度制限値の範囲内であるか否かを判断し、いずれかの閾値を越える場合は、目標減速度をジャーク閾値の範囲内となる値に補正し、また、目標減速度が制限値を超える場合は、制限値内に設定する。これにより、運転者に違和感を与えないように減速度を発生させることができる。
In the jerk threshold limiting unit 3342d, the calculated rate of change of the target deceleration, that is, whether the jerk is within a preset range of the deceleration jerk threshold and the extraction jerk threshold, and the target deceleration is the longitudinal acceleration limit value. Judgment is made whether or not it is within the range. If any threshold is exceeded, the target deceleration is corrected to a value within the jerk threshold range, and if the target deceleration exceeds the limit value, the limit is set. Set within the value. Thereby, the deceleration can be generated so as not to give the driver a sense of incongruity.
目標ピッチモーメント変換部3343では、ジャーク閾値制限部3342dにおいて制限された目標減速度に質量mと高さHcgとを乗算して目標ピッチモーメントを算出し、ブレーキ制御部2aに対して出力する。
The target pitch moment conversion unit 3343 calculates the target pitch moment by multiplying the target deceleration limited by the jerk threshold limiting unit 3342d by the mass m and the height Hcg, and outputs the target pitch moment to the brake control unit 2a.
〔周波数感応制御部〕
次に、ばね上制振制御部内における周波数感応制御処理について説明する。実施例1では、基本的に車輪速センサ5の検出値に基づいてばね上速度を推定し、それに基づくスカイフック制御を行うことでばね上制振制御を達成する。しかしながら、車輪速センサ5では十分に推定精度が担保出来ないと考えられる場合や、走行状況や運転者の意図によっては積極的に快適な走行状態(車体フラット感よりも柔らかな乗り心地)を担保したい場合もある。このような場合には、スカイフック制御のようにストローク速度とばね上速度の符号の関係(位相等)が重要となるベクトル制御では僅かな位相ずれによって適正な制御が困難となる場合があることから、振動特性のスカラー量に応じたばね上制振制御である周波数感応制御を導入することとした。 [Frequency-sensitive control unit]
Next, frequency sensitive control processing in the sprung mass damping control unit will be described. In the first embodiment, the sprung speed is estimated based on the detection value of thewheel speed sensor 5 and the skyhook control is performed based on the estimated sprung speed control. However, when it is considered that the estimation accuracy cannot be sufficiently secured by the wheel speed sensor 5 or depending on the driving situation or the driver's intention, a comfortable driving state (a comfortable ride feeling softer than the vehicle body flatness) is guaranteed. Sometimes you want to. In such cases, vector control where the relationship (phase, etc.) of the sign of stroke speed and sprung speed is important, such as skyhook control, may make it difficult to achieve proper control due to a slight phase shift. Therefore, we decided to introduce frequency-sensitive control, which is sprung mass damping control according to the scalar quantity of vibration characteristics.
次に、ばね上制振制御部内における周波数感応制御処理について説明する。実施例1では、基本的に車輪速センサ5の検出値に基づいてばね上速度を推定し、それに基づくスカイフック制御を行うことでばね上制振制御を達成する。しかしながら、車輪速センサ5では十分に推定精度が担保出来ないと考えられる場合や、走行状況や運転者の意図によっては積極的に快適な走行状態(車体フラット感よりも柔らかな乗り心地)を担保したい場合もある。このような場合には、スカイフック制御のようにストローク速度とばね上速度の符号の関係(位相等)が重要となるベクトル制御では僅かな位相ずれによって適正な制御が困難となる場合があることから、振動特性のスカラー量に応じたばね上制振制御である周波数感応制御を導入することとした。 [Frequency-sensitive control unit]
Next, frequency sensitive control processing in the sprung mass damping control unit will be described. In the first embodiment, the sprung speed is estimated based on the detection value of the
図9は車輪速センサにより検出された車輪速周波数特性と、実施例では搭載していないストロークセンサのストローク周波数特性とを同時に書き表した図である。ここで、周波数特性とは、周波数に対する振幅の大きさをスカラー量として縦軸に取った特性である。車輪速センサ5の周波数成分とストロークセンサの周波数成分とを見比べると、ばね上共振周波数成分からばね下共振周波数成分にかけて概ね同じようなスカラー量を取ることが理解できる。そこで、車輪速センサ5の検出値のうち、この周波数特性に基づいて減衰力を設定することとした。ここで、ばね上共振周波数成分が存在する領域を、乗員の体全体が振れることで乗員が空中に放り投げらたような感覚、更に言い換えると、乗員に作用する重力加速度が減少したような感覚をもたらす周波数領域としてフワ領域(0.5~3Hz)とし、ばね上共振周波数成分とばね下共振周波数成分との間の領域を、重力加速度が減少するような感覚ではないが、乗馬で速足(trot)を行う際に人体が小刻みに跳ね上がるような感覚、更に言い換えると、体全体が追従可能な上下動をもたらす周波数領域としてヒョコ領域(3~6Hz)とし、ばね下共振周波数成分が存在する領域を、人体の質量が追従するまでの上下動ではないが、乗員の太ももといった体の一部に対して小刻みな振動が伝達されるような周波数領域としてブル領域(6~23Hz)と定義する。
FIG. 9 is a diagram in which the wheel speed frequency characteristic detected by the wheel speed sensor and the stroke frequency characteristic of a stroke sensor not mounted in the embodiment are simultaneously written. Here, the frequency characteristic is a characteristic in which the vertical axis represents the magnitude of the amplitude with respect to the frequency as a scalar quantity. Comparing the frequency component of the wheel speed sensor 5 with the frequency component of the stroke sensor, it can be understood that substantially the same scalar amount is taken from the sprung resonance frequency component to the unsprung resonance frequency component. Therefore, the damping force is set based on this frequency characteristic among the detection values of the wheel speed sensor 5. Here, the area where the sprung resonance frequency component exists is felt as if the occupant was thrown into the air by swinging the entire body of the occupant, in other words, the feeling that the gravitational acceleration acting on the occupant was reduced. The frequency region that brings about the waving region (0.5 to 3 Hz), and the region between the sprung resonance frequency component and the unsprung resonance frequency component is not a feeling that gravitational acceleration decreases, The feeling that the human body jumps in small increments when performing (trot), in other words, the frequency range that brings up and down movement that the whole body can follow is the leopard region (3 to 6 Hz), and the region where the unsprung resonance frequency component exists Is not a vertical movement until the mass of the human body follows, but a bull region (6 to 6) is used as a frequency region where vibration is transmitted to a part of the body such as the occupant's thigh. 23 Hz).
図10は実施例1のばね上制振制御における周波数感応制御を表す制御ブロック図である。バンドエリミネーションフィルタ350では、車輪速センサ値のうち、本制御に使用する振動成分以外のノイズをカットする。所定周波数領域分割部351では、フワ領域、ヒョコ領域及びブル領域のそれぞれの周波数帯に分割する。ヒルベルト変換処理部352では、分割された各周波数帯をヒルベルト変換し、周波数の振幅に基づくスカラー量(具体的には、振幅と周波数帯により算出される面積)に変換する。
車両振動系重み設定部353では、フワ領域、ヒョコ領域及びブル領域の各周波数帯の振動が実際に車両に伝播される重みを設定する。人間感覚重み設定部354では、フワ領域、ヒョコ領域及びブル領域の各周波数帯の振動が乗員に伝播される重みを設定する。 FIG. 10 is a control block diagram illustrating frequency sensitive control in the sprung mass damping control of the first embodiment. Theband elimination filter 350 cuts noise other than the vibration component used for the main control from the wheel speed sensor value. The predetermined frequency domain dividing unit 351 divides the frequency band into a wide area, a horizontal area, and a bull area. The Hilbert transform processing unit 352 performs Hilbert transform on each divided frequency band, and converts it into a scalar quantity based on the amplitude of the frequency (specifically, an area calculated from the amplitude and the frequency band).
The vehicle vibration systemweight setting unit 353 sets weights at which vibrations in the frequency bands of the fur region, the leopard region, and the bull region are actually propagated to the vehicle. The human sense weight setting unit 354 sets weights at which vibrations in the frequency bands of the fur region, the leopard region, and the bull region are propagated to the occupant.
車両振動系重み設定部353では、フワ領域、ヒョコ領域及びブル領域の各周波数帯の振動が実際に車両に伝播される重みを設定する。人間感覚重み設定部354では、フワ領域、ヒョコ領域及びブル領域の各周波数帯の振動が乗員に伝播される重みを設定する。 FIG. 10 is a control block diagram illustrating frequency sensitive control in the sprung mass damping control of the first embodiment. The
The vehicle vibration system
ここで、人間感覚重みの設定について説明する。図11は周波数に対する人間感覚特性を表す相関図である。図11に示すように、低周波数領域であるフワ領域にあっては、比較的周波数に対して乗員の感度が低く、高周波数領域に移行するに従って徐々に感度が増大していく。尚、ブル領域以上の高周波領域は乗員に伝達されにくくなっていく。以上から、フワ領域の人間感覚重みWfを0.17に設定し、ヒョコ領域の人間感覚重みWhをWfより大きな0.34に設定し、ブル領域の人間感覚重みWbをWf及びWhより更に大きな0.38に設定する。これにより、各周波数帯のスカラー量と実際に乗員に伝播される振動との相関をより高めることができる。尚、これら二つの重み係数は、車両コンセプトや、乗員の好みにより適宜変更してもよい。
Here, the setting of human sense weight is explained. FIG. 11 is a correlation diagram showing human sensory characteristics with respect to frequency. As shown in FIG. 11, in the waft region, which is a low frequency region, the occupant's sensitivity is relatively low with respect to the frequency, and the sensitivity gradually increases as the frequency shifts to the high frequency region. Note that the high frequency region above the bull region becomes difficult to be transmitted to the occupant. From the above, the human sense weight Wf of the wafe area is set to 0.17, the human sense weight Wh of the leopard area is set to 0.34 which is larger than Wf, and the human sense weight Wb of the bull area is larger than Wf and Wh. Set to 0.38. Thereby, the correlation between the scalar quantity in each frequency band and the vibration actually propagated to the occupant can be further increased. These two weighting factors may be changed as appropriate according to the vehicle concept and the passenger's preference.
重み決定手段355では、各周波数帯の重みのうち、それぞれの周波数帯の重みが占める割合を算出する。フワ領域の重みをa、ヒョコ領域の重みをb、ブル領域の重みをcとすると、フワ領域の重み係数は(a/(a+b+c))であり、ヒョコ領域の重み係数は(b/(a+b+c))であり、ブル領域の重み係数は(c/(a+b+c))である。
スカラー量演算部356では、ヒルベルト変換処理部352により算出された各周波数帯のスカラー量に重み決定手段355において算出された重みを乗算し、最終的なスカラー量を出力する。ここまでの処理は、各輪の車輪速センサ値に対して行なわれる。 Theweight determining unit 355 calculates the ratio of the weight of each frequency band to the weight of each frequency band. If the weight of the wing area is a, the weight of the leopard area is b, and the weight of the bull area is c, the weight coefficient of the wing area is (a / (a + b + c)), and the weight coefficient of the leap area is (b / (a + b + c). )), And the weighting factor of the bull area is (c / (a + b + c)).
The scalaramount calculation unit 356 multiplies the scalar amount of each frequency band calculated by the Hilbert transform processing unit 352 by the weight calculated by the weight determination unit 355, and outputs a final scalar amount. The processing so far is performed on the wheel speed sensor value of each wheel.
スカラー量演算部356では、ヒルベルト変換処理部352により算出された各周波数帯のスカラー量に重み決定手段355において算出された重みを乗算し、最終的なスカラー量を出力する。ここまでの処理は、各輪の車輪速センサ値に対して行なわれる。 The
The scalar
最大値選択部357では、4輪においてそれぞれ演算された最終的なスカラー量のうち最大値を選択する。尚、下部における0.01は、後の処理において最大値の合計を分母とすることから、分母が0になることを回避するために設定したものである。比率演算部358では、各周波数帯のスカラー量最大値の合計を分母とし、フワ領域に相当する周波数帯のスカラー量最大値を分子として比率を演算する。言い換えると、全振動成分に含まれるフワ領域の混入比率(以下、単に比率と記載する。)を演算するものである。ばね上共振フィルタ359では、算出された比率に対してばね上共振周波数の1.2Hz程度のフィルタ処理を行い、算出された比率からフワ領域を表すばね上共振周波数帯の成分を抽出する。言い換えると、フワ領域は1.2Hz程度に存在することから、この領域の比率も1.2Hz程度で変化すると考えられるからである。そして、最終的に抽出された比率を減衰力制御部35に対して出力し、比率に応じた周波数感応減衰力制御量を出力する。
The maximum value selection unit 357 selects the maximum value from the final scalar amounts calculated for each of the four wheels. Note that 0.01 in the lower part is set to avoid the denominator becoming 0 because the sum of the maximum values is used as the denominator in the subsequent processing. The ratio calculation unit 358 calculates the ratio using the sum of the scalar value maximum values in each frequency band as the denominator and the scalar value maximum value in the frequency band corresponding to the waving region as the numerator. In other words, the mixing ratio (hereinafter simply referred to as the ratio) of the wafer region included in all vibration components is calculated. The sprung resonance filter 359 performs filter processing of about 1.2 Hz of the sprung resonance frequency with respect to the calculated ratio, and extracts a sprung resonance frequency band component representing a waft region from the calculated ratio. In other words, since the wing area exists at about 1.2 Hz, the ratio of this area is considered to change at about 1.2 Hz. Then, the finally extracted ratio is output to the damping force control unit 35, and a frequency sensitive damping force control amount corresponding to the ratio is output.
図12は実施例1の周波数感応制御によるフワ領域の振動混入比率と減衰力との関係を表す特性図である。図12に示すように、フワ領域の比率が大きいときには減衰力を高く設定することで、ばね上共振の振動レベルを低減する。このとき、減衰力を高く設定しても、ヒョコ領域やブル領域の比率は小さいため、乗員に高周波振動やヒョコヒョコと動くような振動を伝達することはない。一方、フワ領域の比率が小さいときには減衰力を低く設定することで、ばね上共振以上の振動伝達特性が減少し、高周波振動が抑制され、滑らかな乗り心地が得られる。
FIG. 12 is a characteristic diagram showing the relationship between the vibration mixing ratio in the waft region and the damping force by the frequency sensitive control of the first embodiment. As shown in FIG. 12, the vibration level of sprung resonance is reduced by setting the damping force high when the ratio of the wing area is large. At this time, even if the damping force is set high, the ratio of the leopard area and the bull area is small, so that high frequency vibration or vibration that moves with the leopard is not transmitted to the occupant. On the other hand, when the ratio of the wing region is small, the damping force is set low, so that the vibration transmission characteristic more than the sprung resonance is reduced, the high frequency vibration is suppressed, and a smooth riding comfort is obtained.
ここで、周波数感応制御とスカイフック制御とを対比した場合における周波数感応制御の利点について説明する。図13はある走行条件において車輪速センサ5により検出された車輪速周波数特性を表した図である。これは、特に石畳のような小さな凹凸が連続するような路面を走行した場合に表れる特性である。このような特性を示す路面を走行中にスカイフック制御を行うと、スカイフック制御では振幅のピークの値で減衰力を決定するため、仮に高周波振動の入力に対して位相の推定が悪化すると、誤ったタイミングで非常に高い減衰力を設定してしまい、高周波振動が悪化するという問題がある。
これに対し、周波数感応制御のようにベクトルではなくスカラー量に基づいて制御する場合、図13に示すような路面にあってはフワ領域の比率が小さいことから低い減衰力が設定されることになる。これにより、ブル領域の振動の振幅が大きい場合であっても十分に振動伝達特性が減少するため、高周波振動の悪化を回避することができるものである。以上から、例え高価なセンサ等を備えてスカイフック制御を行ったとしても位相推定精度が悪化することで制御が困難な領域では、スカラー量に基づく周波数感応制御によって高周波振動を抑制できるものである。 Here, an advantage of the frequency sensitive control when the frequency sensitive control is compared with the skyhook control will be described. FIG. 13 is a diagram showing the wheel speed frequency characteristics detected by thewheel speed sensor 5 under a certain traveling condition. This is a characteristic that appears particularly when traveling on a road surface in which small unevenness such as a stone pavement continues. When Skyhook control is performed while traveling on a road surface exhibiting such characteristics, the damping force is determined by the value of the amplitude peak in Skyhook control. There is a problem that a very high damping force is set at an incorrect timing and high-frequency vibration is deteriorated.
On the other hand, when the control is based on the scalar quantity instead of the vector as in the frequency sensitive control, a low damping force is set on the road surface as shown in FIG. Become. As a result, even if the amplitude of the vibration in the bull region is large, the vibration transfer characteristic is sufficiently reduced, so that deterioration of high-frequency vibration can be avoided. From the above, high-frequency vibration can be suppressed by frequency-sensitive control based on the scalar amount in a region where control is difficult due to deterioration in phase estimation accuracy even if skyhook control is performed using an expensive sensor or the like. .
これに対し、周波数感応制御のようにベクトルではなくスカラー量に基づいて制御する場合、図13に示すような路面にあってはフワ領域の比率が小さいことから低い減衰力が設定されることになる。これにより、ブル領域の振動の振幅が大きい場合であっても十分に振動伝達特性が減少するため、高周波振動の悪化を回避することができるものである。以上から、例え高価なセンサ等を備えてスカイフック制御を行ったとしても位相推定精度が悪化することで制御が困難な領域では、スカラー量に基づく周波数感応制御によって高周波振動を抑制できるものである。 Here, an advantage of the frequency sensitive control when the frequency sensitive control is compared with the skyhook control will be described. FIG. 13 is a diagram showing the wheel speed frequency characteristics detected by the
On the other hand, when the control is based on the scalar quantity instead of the vector as in the frequency sensitive control, a low damping force is set on the road surface as shown in FIG. Become. As a result, even if the amplitude of the vibration in the bull region is large, the vibration transfer characteristic is sufficiently reduced, so that deterioration of high-frequency vibration can be avoided. From the above, high-frequency vibration can be suppressed by frequency-sensitive control based on the scalar amount in a region where control is difficult due to deterioration in phase estimation accuracy even if skyhook control is performed using an expensive sensor or the like. .
(S/A側ドライバ入力制御部について)
次に、S/A側ドライバ入力制御部について説明する。S/A側ドライバ入力制御部31では、舵角センサ7や車速センサ8からの信号に基づいて運転者の達成したい車両挙動に対応するドライバ入力減衰力制御量を演算し、減衰力制御部35に対して出力する。例えば、運転者が旋回中において、車両のノーズ側が浮き上がると、運転者の視界が路面から外れやすくなることから、この場合にはノーズ浮き上がりを防止するように4輪の減衰力をドライバ入力減衰力制御量として出力する。また、旋回時に発生するロールを抑制するドライバ入力減衰力制御量を出力する。 (About S / A side driver input controller)
Next, the S / A side driver input control unit will be described. The S / A side driverinput control unit 31 calculates a driver input damping force control amount corresponding to a vehicle behavior that the driver wants to achieve based on signals from the steering angle sensor 7 and the vehicle speed sensor 8, and a damping force control unit 35. Output for. For example, when the driver is turning, if the nose side of the vehicle is lifted, the driver's field of view easily deviates from the road surface. In this case, the four-wheel damping force is used as a driver input damping force to prevent the nose from rising. Output as a controlled variable. In addition, a driver input damping force control amount that suppresses a roll generated during turning is output.
次に、S/A側ドライバ入力制御部について説明する。S/A側ドライバ入力制御部31では、舵角センサ7や車速センサ8からの信号に基づいて運転者の達成したい車両挙動に対応するドライバ入力減衰力制御量を演算し、減衰力制御部35に対して出力する。例えば、運転者が旋回中において、車両のノーズ側が浮き上がると、運転者の視界が路面から外れやすくなることから、この場合にはノーズ浮き上がりを防止するように4輪の減衰力をドライバ入力減衰力制御量として出力する。また、旋回時に発生するロールを抑制するドライバ入力減衰力制御量を出力する。 (About S / A side driver input controller)
Next, the S / A side driver input control unit will be described. The S / A side driver
〔S/A側ドライバ入力制御によるロール制御について〕
ここで、S/A側ドライバ入力制御によって行われるロール抑制制御について説明する。図14は実施例1のロールレイト抑制制御の構成を表す制御ブロック図である。横加速度推定部31b1では、舵角センサ7により検出された前輪舵角δfと、後輪舵角δr(後輪操舵装置を備えた場合は実後輪舵角を、それ以外の場合は適宜0でよい。)と、車速センサ8により検出された車速VSPに基づいて横加速度Ygを推定する。この横加速度Ygは、ヨーレイト推定値γを用いて以下の式により算出される。
Yg=VSP・γ
なおヨーレイト推定値γは以下の式により算出される。
[Roll control by S / A side driver input control]
Here, the roll suppression control performed by the S / A side driver input control will be described. FIG. 14 is a control block diagram illustrating the configuration of roll rate suppression control according to the first embodiment. In the lateral acceleration estimation unit 31b1, the front wheel rudder angle δf detected by therudder angle sensor 7 and the rear wheel rudder angle δr (the actual rear wheel rudder angle if a rear wheel steering device is provided, and 0 in other cases as appropriate) The lateral acceleration Yg is estimated based on the vehicle speed VSP detected by the vehicle speed sensor 8. This lateral acceleration Yg is calculated by the following equation using the yaw rate estimated value γ.
Yg = VSP ・ γ
The yaw rate estimated value γ is calculated by the following equation.
ここで、S/A側ドライバ入力制御によって行われるロール抑制制御について説明する。図14は実施例1のロールレイト抑制制御の構成を表す制御ブロック図である。横加速度推定部31b1では、舵角センサ7により検出された前輪舵角δfと、後輪舵角δr(後輪操舵装置を備えた場合は実後輪舵角を、それ以外の場合は適宜0でよい。)と、車速センサ8により検出された車速VSPに基づいて横加速度Ygを推定する。この横加速度Ygは、ヨーレイト推定値γを用いて以下の式により算出される。
Yg=VSP・γ
なおヨーレイト推定値γは以下の式により算出される。
[Roll control by S / A side driver input control]
Here, the roll suppression control performed by the S / A side driver input control will be described. FIG. 14 is a control block diagram illustrating the configuration of roll rate suppression control according to the first embodiment. In the lateral acceleration estimation unit 31b1, the front wheel rudder angle δf detected by the
Yg = VSP ・ γ
The yaw rate estimated value γ is calculated by the following equation.
90°位相進み成分作成部31b2では、推定された横加速度Ygを微分して横加速度微分値dYgを出力する。90°位相遅れ成分作成部31b3では、横加速度微分値dYgの位相を90°遅らせた成分F(dYg)を出力する。成分F(dYg)は、90°位相進み成分作成部31b2において低周波領域が除去された成分の位相を横加速度Ygの位相に戻したものであって、横加速度YgのDCカット成分、つまり横加速度Ygの過渡成分である。90°位相遅れ成分作成部31b4では、推定された横加速度Ygの位相を90°遅らせた成分F(Yg)を出力する。
ゲイン乗算部31b5では、横加速度Yg、横加速度微分値dYg、横加速度DCカット成分F(dYg)、90°位相遅れ成分F(Yg)にそれぞれゲインを乗算する。各ゲインは、操舵角に対するロールレイト伝達関数に基づいて設定する。また各ゲインは、後述する4つの制御モードに応じて調整しても良い。二乗演算部31b6では、ゲインを乗算した各成分の二乗して出力する。合成部31b7では、二乗演算部31b6が出力した値を足し合わせる。ゲイン乗算部31b8では、足し合わせた各成分の二乗の値にゲインを乗算して出力する。平方根演算部31b9は、ゲイン乗算部31b7が出力した値の平方根を演算することで、ロールレイト抑制制御用のドライバ入力姿勢制御量を演算し、減衰力制御部35に対して出力する。
90°位相進み成分作成部31b2、90°位相遅れ成分作成部31b3、90°位相遅れ成分作成部31b4、ゲイン乗算部31b5、二乗演算部31b6、合成部31b7、ゲイン乗算部31b8、平方根演算部31b9は、ヒルベルト変換を利用した包絡波形を生成するヒルベルト変換部31b10に相当する。 The 90 ° phase advance component creation unit 31b2 differentiates the estimated lateral acceleration Yg and outputs a lateral acceleration differential value dYg. The 90 ° phase delay component creation unit 31b3 outputs a component F (dYg) obtained by delaying the phase of the lateral acceleration differential value dYg by 90 °. The component F (dYg) is obtained by returning the phase of the component from which the low-frequency region has been removed by the 90 ° phase advance component creation unit 31b2 to the phase of the lateral acceleration Yg. It is a transient component of acceleration Yg. The 90 ° phase delay component creation unit 31b4 outputs a component F (Yg) obtained by delaying the phase of the estimated lateral acceleration Yg by 90 °.
The gain multiplication unit 31b5 multiplies the lateral acceleration Yg, the lateral acceleration differential value dYg, the lateral acceleration DC cut component F (dYg), and the 90 ° phase delay component F (Yg) by a gain. Each gain is set based on a roll rate transfer function with respect to the steering angle. Each gain may be adjusted according to four control modes described later. The square calculator 31b6 squares and outputs each component multiplied by the gain. The combining unit 31b7 adds the values output from the square calculation unit 31b6. The gain multiplication unit 31b8 multiplies the square value of each added component by the gain and outputs the result. The square root calculation unit 31b9 calculates a driver input attitude control amount for roll rate suppression control by calculating the square root of the value output from the gain multiplication unit 31b7, and outputs the calculated value to the dampingforce control unit 35.
90 ° phase advance component creation unit 31b2, 90 ° phase lag component creation unit 31b3, 90 ° phase lag component creation unit 31b4, gain multiplication unit 31b5, square operation unit 31b6, synthesis unit 31b7, gain multiplication unit 31b8, square root operation unit 31b9 Corresponds to the Hilbert transform unit 31b10 that generates an envelope waveform using the Hilbert transform.
ゲイン乗算部31b5では、横加速度Yg、横加速度微分値dYg、横加速度DCカット成分F(dYg)、90°位相遅れ成分F(Yg)にそれぞれゲインを乗算する。各ゲインは、操舵角に対するロールレイト伝達関数に基づいて設定する。また各ゲインは、後述する4つの制御モードに応じて調整しても良い。二乗演算部31b6では、ゲインを乗算した各成分の二乗して出力する。合成部31b7では、二乗演算部31b6が出力した値を足し合わせる。ゲイン乗算部31b8では、足し合わせた各成分の二乗の値にゲインを乗算して出力する。平方根演算部31b9は、ゲイン乗算部31b7が出力した値の平方根を演算することで、ロールレイト抑制制御用のドライバ入力姿勢制御量を演算し、減衰力制御部35に対して出力する。
90°位相進み成分作成部31b2、90°位相遅れ成分作成部31b3、90°位相遅れ成分作成部31b4、ゲイン乗算部31b5、二乗演算部31b6、合成部31b7、ゲイン乗算部31b8、平方根演算部31b9は、ヒルベルト変換を利用した包絡波形を生成するヒルベルト変換部31b10に相当する。 The 90 ° phase advance component creation unit 31b2 differentiates the estimated lateral acceleration Yg and outputs a lateral acceleration differential value dYg. The 90 ° phase delay component creation unit 31b3 outputs a component F (dYg) obtained by delaying the phase of the lateral acceleration differential value dYg by 90 °. The component F (dYg) is obtained by returning the phase of the component from which the low-frequency region has been removed by the 90 ° phase advance component creation unit 31b2 to the phase of the lateral acceleration Yg. It is a transient component of acceleration Yg. The 90 ° phase delay component creation unit 31b4 outputs a component F (Yg) obtained by delaying the phase of the estimated lateral acceleration Yg by 90 °.
The gain multiplication unit 31b5 multiplies the lateral acceleration Yg, the lateral acceleration differential value dYg, the lateral acceleration DC cut component F (dYg), and the 90 ° phase delay component F (Yg) by a gain. Each gain is set based on a roll rate transfer function with respect to the steering angle. Each gain may be adjusted according to four control modes described later. The square calculator 31b6 squares and outputs each component multiplied by the gain. The combining unit 31b7 adds the values output from the square calculation unit 31b6. The gain multiplication unit 31b8 multiplies the square value of each added component by the gain and outputs the result. The square root calculation unit 31b9 calculates a driver input attitude control amount for roll rate suppression control by calculating the square root of the value output from the gain multiplication unit 31b7, and outputs the calculated value to the damping
90 ° phase advance component creation unit 31b2, 90 ° phase lag component creation unit 31b3, 90 ° phase lag component creation unit 31b4, gain multiplication unit 31b5, square operation unit 31b6, synthesis unit 31b7, gain multiplication unit 31b8, square root operation unit 31b9 Corresponds to the Hilbert transform unit 31b10 that generates an envelope waveform using the Hilbert transform.
図15は実施例1のロールレイト抑制制御の包絡波形形成処理を表すタイムチャートである。
時刻t1において、運転者が操舵を開始すると、ロールレイトが徐々に発生し始める。このとき、90°位相進み成分dYgを加算して包絡波形を形成し、包絡波形に基づくスカラー量に基づいてドライバ入力姿勢制御量を演算することで、操舵初期におけるロールレイトの発生を抑制することができる。さらに、横加速度DCカット成分F(dYg)を加算して包絡波形を形成することで、運転者が操舵を開始もしくは終了する際の過渡的な状態において発生するロールレイトを効率的に抑制することができる。言い換えると、ロールの発生が安定している定常旋回状態では、過度に減衰力を高めることがなく、乗り心地の悪化を回避できる。
次に、時刻t2において、運転者が保舵状態となると、90°位相進み成分dYgおよび横加速度DCカット成分F(dYg)は無くなり、今度は90°位相遅れ成分F(Yg)が加算される。このとき、定常旋回状態でロールレイト自体の変化はさほどない場合であっても、一旦ロールした後に、ロールの揺り返しに相当するロールレイト共振成分が発生する。仮に、位相遅れ成分F(Yg)が加算されていないと、時刻t2から時刻t3における減衰力は小さな値に設定されてしまい、ロールレイト共振成分による車両挙動の不安定化を招くおそれがある。このロールレイト共振成分を抑制するために90°位相遅れ成分F(Yg)を付与するものである。 FIG. 15 is a time chart showing an envelope waveform forming process of the roll rate suppressing control according to the first embodiment.
When the driver starts steering at time t1, roll rate begins to gradually occur. At this time, the 90 ° phase advance component dYg is added to form an envelope waveform, and the driver input attitude control amount is calculated based on the scalar amount based on the envelope waveform, thereby suppressing the occurrence of roll rate in the initial stage of steering. Can do. Furthermore, by adding the lateral acceleration DC cut component F (dYg) to form an envelope waveform, it effectively suppresses the roll rate that occurs in a transitional state when the driver starts or ends steering. Can do. In other words, in a steady turning state in which the generation of rolls is stable, the damping force is not excessively increased, and deterioration in riding comfort can be avoided.
Next, when the driver is in the steered state at time t2, the 90 ° phase advance component dYg and the lateral acceleration DC cut component F (dYg) disappear, and this time, the 90 ° phase delay component F (Yg) is added. . At this time, even if the roll rate itself does not change much in the steady turning state, a roll rate resonance component corresponding to the roll back is generated after the roll once. If the phase delay component F (Yg) is not added, the damping force from the time t2 to the time t3 is set to a small value, which may cause the vehicle behavior to become unstable due to the roll rate resonance component. In order to suppress this roll rate resonance component, a 90 ° phase delay component F (Yg) is added.
時刻t1において、運転者が操舵を開始すると、ロールレイトが徐々に発生し始める。このとき、90°位相進み成分dYgを加算して包絡波形を形成し、包絡波形に基づくスカラー量に基づいてドライバ入力姿勢制御量を演算することで、操舵初期におけるロールレイトの発生を抑制することができる。さらに、横加速度DCカット成分F(dYg)を加算して包絡波形を形成することで、運転者が操舵を開始もしくは終了する際の過渡的な状態において発生するロールレイトを効率的に抑制することができる。言い換えると、ロールの発生が安定している定常旋回状態では、過度に減衰力を高めることがなく、乗り心地の悪化を回避できる。
次に、時刻t2において、運転者が保舵状態となると、90°位相進み成分dYgおよび横加速度DCカット成分F(dYg)は無くなり、今度は90°位相遅れ成分F(Yg)が加算される。このとき、定常旋回状態でロールレイト自体の変化はさほどない場合であっても、一旦ロールした後に、ロールの揺り返しに相当するロールレイト共振成分が発生する。仮に、位相遅れ成分F(Yg)が加算されていないと、時刻t2から時刻t3における減衰力は小さな値に設定されてしまい、ロールレイト共振成分による車両挙動の不安定化を招くおそれがある。このロールレイト共振成分を抑制するために90°位相遅れ成分F(Yg)を付与するものである。 FIG. 15 is a time chart showing an envelope waveform forming process of the roll rate suppressing control according to the first embodiment.
When the driver starts steering at time t1, roll rate begins to gradually occur. At this time, the 90 ° phase advance component dYg is added to form an envelope waveform, and the driver input attitude control amount is calculated based on the scalar amount based on the envelope waveform, thereby suppressing the occurrence of roll rate in the initial stage of steering. Can do. Furthermore, by adding the lateral acceleration DC cut component F (dYg) to form an envelope waveform, it effectively suppresses the roll rate that occurs in a transitional state when the driver starts or ends steering. Can do. In other words, in a steady turning state in which the generation of rolls is stable, the damping force is not excessively increased, and deterioration in riding comfort can be avoided.
Next, when the driver is in the steered state at time t2, the 90 ° phase advance component dYg and the lateral acceleration DC cut component F (dYg) disappear, and this time, the 90 ° phase delay component F (Yg) is added. . At this time, even if the roll rate itself does not change much in the steady turning state, a roll rate resonance component corresponding to the roll back is generated after the roll once. If the phase delay component F (Yg) is not added, the damping force from the time t2 to the time t3 is set to a small value, which may cause the vehicle behavior to become unstable due to the roll rate resonance component. In order to suppress this roll rate resonance component, a 90 ° phase delay component F (Yg) is added.
時刻t3において、運転者が保舵状態から直進走行状態に移行すると、横加速度Ygは小さくなり、ロールレイトも小さな値に収束する。ここでも90°位相遅れ成分F(Yg)の作用によってしっかりと減衰力を確保しているため、ロールレイト共振成分による不安定化を回避することができる。
When the driver shifts from the steered state to the straight traveling state at time t3, the lateral acceleration Yg decreases and the roll rate converges to a small value. Again, since the damping force is firmly secured by the action of the 90 ° phase delay component F (Yg), instability due to the roll rate resonance component can be avoided.
(ばね下制振制御部)
次に、ばね下制振制御部の構成について説明する。図7(a)のコンベ車両において説明したように、タイヤも弾性係数と減衰係数を有することから共振周波数帯が存在する。ただし、タイヤの質量はばね上の質量に比べて小さく、弾性係数も高いため、ばね上共振よりも高周波数側に存在する。このばね下共振成分により、ばね下においてタイヤがバタバタ動いてしまい、接地性が悪化するおそれがある。また、ばね下でのバタつきは乗員に不快感を与えるおそれもある。そこで、ばね下共振によるバタつきを抑制するために、ばね下共振成分に応じた減衰力を設定するものである。 (Unsprung vibration control unit)
Next, the configuration of the unsprung vibration suppression control unit will be described. As described in the conveyor vehicle of FIG. 7A, since the tire also has an elastic coefficient and a damping coefficient, a resonance frequency band exists. However, since the mass of the tire is smaller than the mass on the spring and the elastic coefficient is high, it exists on the higher frequency side than the resonance on the spring. Due to this unsprung resonance component, the tire may flutter under the unsprung mass, which may deteriorate the ground contact property. In addition, fluttering under the spring may cause discomfort to the occupant. Therefore, in order to suppress the flutter due to unsprung resonance, a damping force corresponding to the unsprung resonance component is set.
次に、ばね下制振制御部の構成について説明する。図7(a)のコンベ車両において説明したように、タイヤも弾性係数と減衰係数を有することから共振周波数帯が存在する。ただし、タイヤの質量はばね上の質量に比べて小さく、弾性係数も高いため、ばね上共振よりも高周波数側に存在する。このばね下共振成分により、ばね下においてタイヤがバタバタ動いてしまい、接地性が悪化するおそれがある。また、ばね下でのバタつきは乗員に不快感を与えるおそれもある。そこで、ばね下共振によるバタつきを抑制するために、ばね下共振成分に応じた減衰力を設定するものである。 (Unsprung vibration control unit)
Next, the configuration of the unsprung vibration suppression control unit will be described. As described in the conveyor vehicle of FIG. 7A, since the tire also has an elastic coefficient and a damping coefficient, a resonance frequency band exists. However, since the mass of the tire is smaller than the mass on the spring and the elastic coefficient is high, it exists on the higher frequency side than the resonance on the spring. Due to this unsprung resonance component, the tire may flutter under the unsprung mass, which may deteriorate the ground contact property. In addition, fluttering under the spring may cause discomfort to the occupant. Therefore, in order to suppress the flutter due to unsprung resonance, a damping force corresponding to the unsprung resonance component is set.
ここで、ばね下共振成分に応じた減衰力を設定する際に生じうる課題について更に詳述する。基本的にばね下共振によるバタつきを抑制するために減衰力を大きくすると、ばね上共振周波数とばね下共振周波数との間の周波数帯におけるばね上への振動伝達率が上昇する。この振動伝達率が上昇する周波数帯には、人体の共振周波数領域である3~6Hz(ヒョコ領域)が含まれており、この周波数領域における振動伝達率の上昇は、乗員の体が小刻みに跳ね上がるような振動(すなわち、ヒョコ領域の振動)を増大させるおそれがある。そこで、例え、ばね下共振によるバタつきを抑制するために減衰力を高める必要がある場合であっても、ヒョコ領域の振動成分が多いと判断される場合には、ばね下制振制御量を抑制する制御を行うこととした。
Here, the problems that may occur when setting the damping force according to the unsprung resonance component will be described in more detail. Basically, when the damping force is increased in order to suppress flutter due to unsprung resonance, the vibration transmission rate to the spring in the frequency band between the unsprung resonance frequency and the unsprung resonance frequency increases. The frequency band in which the vibration transmissibility rises includes the resonance frequency region of the human body of 3 to 6 Hz (leak region). The increase in the vibration transmissibility in this frequency region causes the occupant's body to jump in small increments. Such a vibration (that is, vibration in the horizontal region) may be increased. Therefore, even if it is necessary to increase the damping force to suppress flutter due to unsprung resonance, if it is determined that there are many vibration components in the leopard region, the unsprung vibration suppression control amount is set to It was decided to perform control to suppress.
図16は実施例1のばね下制振制御の制御構成を表すブロック図である。ばね下共振成分抽出部341では、走行状態推定部32内の偏差演算部321bから出力された車輪速変動にバンドパスフィルタを作用させてばね下共振成分を抽出する。ばね下共振成分は車輪速周波数成分のうち概ね10~20Hzの領域から抽出される。包絡波形成形部342では、抽出されたばね下共振成分をスカラー化し、EnvelopeFilterを用いて包絡波形を成形する。ゲイン乗算部343では、スカラー化されたばね下共振成分にゲインを乗算し、ばね下制振減衰力制御量を算出し、制御量設定部346に出力する。
FIG. 16 is a block diagram illustrating a control configuration of unsprung vibration suppression control according to the first embodiment. The unsprung resonance component extraction unit 341 extracts a unsprung resonance component by applying a band-pass filter to the wheel speed fluctuation output from the deviation calculation unit 321b in the traveling state estimation unit 32. The unsprung resonance component is extracted from the region of approximately 10 to 20 Hz of the wheel speed frequency component. In the envelope waveform shaping unit 342, the extracted unsprung resonance component is scalarized, and the envelope waveform is shaped using the EnvelopeFilter. The gain multiplication unit 343 multiplies the scalarized unsprung resonance component by a gain, calculates an unsprung vibration damping damping force control amount, and outputs it to the control amount setting unit 346.
乗員振動推定部344では、第3走行状態推定部32において推定された状態量からサスペンション取り付け点におけるばね上加速度を読み込み、人間感覚特性に基づき乗員の感じている振動状態を表すスカラー量Wb*g及びWh*gを算出する。具体的には、第1EnvelopeFilter344aにより、ばね上上下加速度の3~6Hzバンドパスフィルタ処理を施して包絡波形を形成し、重み乗算部344a1において図11で説明したヒョコ領域の人間感覚重みWhを乗算してスカラー量Wh*gを補正ゲイン演算部345に出力する。同様に、第2EnvelopeFilter344bにより、ばね上上下加速度の6~23Hzバンドパスフィルタ処理を施して包絡波形を形成し、重み乗算部344b1において図11で説明したブル領域の人間感覚重みWbを乗算してスカラー量Wb*gを補正ゲイン演算部345に出力する。
The occupant vibration estimation unit 344 reads the sprung acceleration at the suspension attachment point from the state amount estimated by the third traveling state estimation unit 32, and represents a scalar amount Wb * g representing the vibration state felt by the occupant based on human sensory characteristics. And Wh * g. Specifically, the first envelope filter 344a performs 3-6 Hz bandpass filter processing of the sprung vertical acceleration to form an envelope waveform, and the weight multiplication unit 344a1 multiplies the human sense weight Wh of the leopard region described in FIG. The scalar amount Wh * g is output to the correction gain calculation unit 345. Similarly, a 6-23 Hz bandpass filter process of sprung vertical acceleration is performed by the second envelope filter 344b to form an envelope waveform, and the weight multiplication unit 344b1 multiplies the human sense weight Wb of the bull region described in FIG. The amount Wb * g is output to the correction gain calculator 345.
補正ゲイン演算部345では、Wb*g及びWh*gの大小関係に基づいて補正ゲインを1もしくは0を選択すると共に、変化時における平滑化処理を行った補正ゲインK*gを制御量設定部346に出力する。具体的には、ゲイン選択部345aにおいて、Wb*g>Wh*gの場合は、ヒョコ領域の振動は特に悪化していないことから1を選択して平滑化部345bに出力し、それ以外の場合はヒョコ領域の振動が悪化し、人体上下共振が存在する3~6Hzにおいて振動成分が増大していると判断して0を選択して平滑化部345bに出力する。平滑化部345bでは、ゲイン選択部345aにおいて選択された1と0の値の急変を平滑化して補正ゲインK*gを制御量設定部346に出力する。
The correction gain calculation unit 345 selects 1 or 0 as the correction gain based on the magnitude relationship between Wb * g and Wh * g, and sets the correction gain K * g that has undergone smoothing processing at the time of change as a control amount setting unit. Output to 346. Specifically, when Wb * g> Wh * g in the gain selection unit 345a, since the vibration in the horizontal region is not particularly deteriorated, 1 is selected and output to the smoothing unit 345b. In this case, it is determined that the vibration component in the leopard region deteriorates and the vibration component increases at 3 to 6 Hz where the human body vertical resonance exists, and 0 is selected and output to the smoothing unit 345b. The smoothing unit 345b smoothes the sudden change of the values of 1 and 0 selected by the gain selection unit 345a and outputs the correction gain K * g to the control amount setting unit 346.
制御量設定部346では、ばね下制振減衰力制御量に補正ゲインK*gを乗算した値を減衰力制御部35に対して出力する。これにより、人間感覚特性として重要な3~6Hz付近の振動特性が悪化してきた場合には、減衰力を低減することでばね上への振動伝達率を低下でき、乗り心地の悪化を回避できる。
尚、実施例1では、走行状態推定部32内の偏差演算部321bから出力された車輪速変動にバンドパスフィルタを作用させてばね下共振成分を抽出することとしたが、車輪速センサ検出値にバンドパスフィルタを作用させてばね下共振成分を抽出する、もしくは、走行状態推定部32において、ばね上速度に併せてばね下速度を推定演算し、ばね下共振成分を抽出するようにしてもよい。 The controlamount setting unit 346 outputs a value obtained by multiplying the unsprung vibration damping damping force control amount by the correction gain K * g to the damping force control unit 35. As a result, when the vibration characteristic in the vicinity of 3 to 6 Hz, which is important as a human sensory characteristic, has deteriorated, the vibration transmission rate to the spring can be lowered by reducing the damping force, and the deterioration of riding comfort can be avoided.
In the first embodiment, the unsprung resonance component is extracted by applying a bandpass filter to the wheel speed fluctuation output from thedeviation calculating section 321b in the running state estimating section 32. The unsprung resonance component may be extracted by applying a bandpass filter to the driving force, or the unsprung resonance component may be extracted by the running state estimation unit 32 by estimating and calculating the unsprung speed along with the sprung speed. Good.
尚、実施例1では、走行状態推定部32内の偏差演算部321bから出力された車輪速変動にバンドパスフィルタを作用させてばね下共振成分を抽出することとしたが、車輪速センサ検出値にバンドパスフィルタを作用させてばね下共振成分を抽出する、もしくは、走行状態推定部32において、ばね上速度に併せてばね下速度を推定演算し、ばね下共振成分を抽出するようにしてもよい。 The control
In the first embodiment, the unsprung resonance component is extracted by applying a bandpass filter to the wheel speed fluctuation output from the
(減衰力制御部の構成について)
次に、減衰力制御部35の構成について説明する。図17は実施例1の減衰力制御部の制御構成を表す制御ブロック図である。等価粘性減衰係数変換部35aでは、ドライバ入力制御部31から出力されたドライバ入力減衰力制御量と、スカイフック制御部33aから出力されたS/A姿勢制御量と、周波数感応制御部33bから出力された周波数感応減衰力制御量と、ばね下制振制御部34から出力されたばね下制振減衰力制御量と、走行状態推定部32により演算されたストローク速度が入力され、これらの値を等価粘性減衰係数に変換する。 (Configuration of damping force control unit)
Next, the configuration of the dampingforce control unit 35 will be described. FIG. 17 is a control block diagram illustrating a control configuration of the damping force control unit according to the first embodiment. In the equivalent viscosity damping coefficient conversion unit 35a, the driver input damping force control amount output from the driver input control unit 31, the S / A attitude control amount output from the skyhook control unit 33a, and the frequency sensitive control unit 33b output The frequency sensitive damping force control amount, the unsprung damping damping force control amount output from the unsprung damping control unit 34, and the stroke speed calculated by the running state estimation unit 32 are input, and these values are equivalent. Convert to viscous damping coefficient.
次に、減衰力制御部35の構成について説明する。図17は実施例1の減衰力制御部の制御構成を表す制御ブロック図である。等価粘性減衰係数変換部35aでは、ドライバ入力制御部31から出力されたドライバ入力減衰力制御量と、スカイフック制御部33aから出力されたS/A姿勢制御量と、周波数感応制御部33bから出力された周波数感応減衰力制御量と、ばね下制振制御部34から出力されたばね下制振減衰力制御量と、走行状態推定部32により演算されたストローク速度が入力され、これらの値を等価粘性減衰係数に変換する。 (Configuration of damping force control unit)
Next, the configuration of the damping
減衰係数調停部35bでは、等価粘性減衰係数変換部35aにおいて変換された減衰係数(以下、それぞれの減衰係数をドライバ入力減衰係数k1、S/A姿勢減衰係数k2、周波数感応減衰係数k3、ばね下制振減衰係数k4と記載する。)のうち、どの減衰係数に基づいて制御するのかを調停し、最終的な減衰係数を出力する。制御信号変換部35cでは、減衰係数調停部35bで調停された減衰係数とストローク速度に基づいてS/A3に対する制御信号(指令電流値)に変換し、S/A3に対して出力する。
In the damping coefficient arbitration unit 35b, the damping coefficient converted by the equivalent viscous damping coefficient conversion unit 35a (hereinafter, each damping coefficient is referred to as driver input damping coefficient k1, S / A attitude damping coefficient k2, frequency sensitive damping coefficient k3, unsprung). (Which is described as damping damping coefficient k4)), which arbitration is performed based on which damping coefficient is controlled, and a final damping coefficient is output. The control signal converter 35c converts the control signal (command current value) for S / A3 based on the attenuation coefficient and stroke speed adjusted by the attenuation coefficient adjuster 35b, and outputs the control signal to S / A3.
〔減衰係数調停部〕
次に、減衰係数調停部35bの調停内容について説明する。実施例1の車両の制御装置にあっては、4つの制御モードを有する。第1に一般的な市街地などを走行しつつ適度な旋回状態が得られる状態を想定したスタンダードモード、第2にワインディングロードなどを積極的に走行しつつ安定した旋回状態が得られる状態を想定したスポーツモード、第3に低車速発進時など、乗り心地を優先して走行する状態を想定したコンフォートモード、第4に直線状態の多い高速道路等を高車速で走行する状態を想定したハイウェイモードである。 [Attenuation coefficient mediation section]
Next, the contents of arbitration by the attenuationcoefficient arbitration unit 35b will be described. The vehicle control apparatus according to the first embodiment has four control modes. First, the standard mode assuming a state where an appropriate turning state can be obtained while driving in a general urban area, and second, a state where a stable turning state can be obtained while actively driving a winding road etc. In sport mode, thirdly, comfort mode that assumes a state of driving with priority on ride comfort, such as when starting at a low vehicle speed, and fourthly, highway mode that assumes a state of traveling at high vehicle speed on highways with many straight lines is there.
次に、減衰係数調停部35bの調停内容について説明する。実施例1の車両の制御装置にあっては、4つの制御モードを有する。第1に一般的な市街地などを走行しつつ適度な旋回状態が得られる状態を想定したスタンダードモード、第2にワインディングロードなどを積極的に走行しつつ安定した旋回状態が得られる状態を想定したスポーツモード、第3に低車速発進時など、乗り心地を優先して走行する状態を想定したコンフォートモード、第4に直線状態の多い高速道路等を高車速で走行する状態を想定したハイウェイモードである。 [Attenuation coefficient mediation section]
Next, the contents of arbitration by the attenuation
スタンダードモードでは、スカイフック制御部33aによるスカイフック制御を行いつつ、ばね下制振制御部34によるばね下制振制御を優先する制御を実施する。
スポーツモードでは、ドライバ入力制御部31によるドライバ入力制御を優先しつつ、スカイフック制御部33aによるスカイフック制御とばね下制振制御部34によるばね下制振制御とを実施する。
コンフォートモードでは、周波数感応制御部33bによる周波数感応制御を行いつつ、ばね下制振制御部34によるばね下制振制御を優先する制御を実施する。
ハイウェイモードでは、ドライバ入力制御部31によるドライバ入力制御を優先しつつ、スカイフック制御部33aによるスカイフック制御にばね下制振制御部34によるばね下制振制御の制御量を加算する制御を実施する。
以下、これら各モードにおける減衰係数の調停について説明する。 In the standard mode, priority is given to unsprung vibration suppression control by the unsprung vibrationsuppression control unit 34 while performing skyhook control by the skyhook control unit 33a.
In the sport mode, priority is given to driver input control by the driverinput control unit 31, and skyhook control by the skyhook control unit 33a and unsprung vibration suppression control by the unsprung vibration suppression control unit 34 are performed.
In the comfort mode, the control for giving priority to the unsprung vibration damping control by the unsprung vibration dampingcontrol unit 34 is performed while performing the frequency sensitive control by the frequency sensitive control unit 33b.
In the highway mode, priority is given to driver input control by the driverinput control unit 31, and control for adding the amount of unsprung vibration suppression control by the unsprung vibration control unit 34 to skyhook control by the skyhook control unit 33a is performed. To do.
Hereinafter, the adjustment of the attenuation coefficient in each mode will be described.
スポーツモードでは、ドライバ入力制御部31によるドライバ入力制御を優先しつつ、スカイフック制御部33aによるスカイフック制御とばね下制振制御部34によるばね下制振制御とを実施する。
コンフォートモードでは、周波数感応制御部33bによる周波数感応制御を行いつつ、ばね下制振制御部34によるばね下制振制御を優先する制御を実施する。
ハイウェイモードでは、ドライバ入力制御部31によるドライバ入力制御を優先しつつ、スカイフック制御部33aによるスカイフック制御にばね下制振制御部34によるばね下制振制御の制御量を加算する制御を実施する。
以下、これら各モードにおける減衰係数の調停について説明する。 In the standard mode, priority is given to unsprung vibration suppression control by the unsprung vibration
In the sport mode, priority is given to driver input control by the driver
In the comfort mode, the control for giving priority to the unsprung vibration damping control by the unsprung vibration damping
In the highway mode, priority is given to driver input control by the driver
Hereinafter, the adjustment of the attenuation coefficient in each mode will be described.
(スタンダードモードにおける調停)
図18は実施例1のスタンダードモードにおける減衰係数調停処理を表すフローチャートである。
ステップS1では、S/A姿勢減衰係数k2がばね下制振減衰係数k4より大きいか否かを判断し、大きいときはステップS4に進んで減衰係数としてk2を設定する。
ステップS2では、周波数感応制御部33bにおいて説明したフワ領域、ヒョコ領域及びブル領域のスカラー量に基づいて、ブル領域のスカラー量比率を演算する。
ステップS3では、ブル領域の比率が所定値以上か否かを判断し、所定値以上の場合は高周波振動による乗り心地悪化が懸念されることからステップS4に進み、減衰係数として低い値であるk2を設定する。一方、ブル領域の比率が上記所定値未満の場合は減衰係数を高く設定しても高周波振動による乗り心地悪化の心配が少ないことからステップS5に進んでk4を設定する。 (Arbitration in standard mode)
FIG. 18 is a flowchart illustrating the attenuation coefficient arbitration process in the standard mode according to the first embodiment.
In step S1, it is determined whether or not the S / A attitude damping coefficient k2 is larger than the unsprung damping damping coefficient k4. If larger, the process proceeds to step S4 and k2 is set as the damping coefficient.
In step S2, a scalar amount ratio of the bull region is calculated based on the scalar amounts of the fur region, the leopard region, and the bull region described in the frequencyresponse control unit 33b.
In step S3, it is determined whether or not the ratio of the bull area is equal to or greater than a predetermined value. If the ratio is greater than or equal to the predetermined value, there is a concern about deterioration of riding comfort due to high-frequency vibration. Set. On the other hand, if the ratio of the bull area is less than the predetermined value, even if the damping coefficient is set high, there is little fear of deterioration in riding comfort due to high-frequency vibration, so the routine proceeds to step S5 and k4 is set.
図18は実施例1のスタンダードモードにおける減衰係数調停処理を表すフローチャートである。
ステップS1では、S/A姿勢減衰係数k2がばね下制振減衰係数k4より大きいか否かを判断し、大きいときはステップS4に進んで減衰係数としてk2を設定する。
ステップS2では、周波数感応制御部33bにおいて説明したフワ領域、ヒョコ領域及びブル領域のスカラー量に基づいて、ブル領域のスカラー量比率を演算する。
ステップS3では、ブル領域の比率が所定値以上か否かを判断し、所定値以上の場合は高周波振動による乗り心地悪化が懸念されることからステップS4に進み、減衰係数として低い値であるk2を設定する。一方、ブル領域の比率が上記所定値未満の場合は減衰係数を高く設定しても高周波振動による乗り心地悪化の心配が少ないことからステップS5に進んでk4を設定する。 (Arbitration in standard mode)
FIG. 18 is a flowchart illustrating the attenuation coefficient arbitration process in the standard mode according to the first embodiment.
In step S1, it is determined whether or not the S / A attitude damping coefficient k2 is larger than the unsprung damping damping coefficient k4. If larger, the process proceeds to step S4 and k2 is set as the damping coefficient.
In step S2, a scalar amount ratio of the bull region is calculated based on the scalar amounts of the fur region, the leopard region, and the bull region described in the frequency
In step S3, it is determined whether or not the ratio of the bull area is equal to or greater than a predetermined value. If the ratio is greater than or equal to the predetermined value, there is a concern about deterioration of riding comfort due to high-frequency vibration. Set. On the other hand, if the ratio of the bull area is less than the predetermined value, even if the damping coefficient is set high, there is little fear of deterioration in riding comfort due to high-frequency vibration, so the routine proceeds to step S5 and k4 is set.
上述のように、スタンダードモードでは、原則としてばね下の共振を抑制するばね下制振制御を優先する。ただし、ばね下制振制御が要求する減衰力よりスカイフック制御が要求する減衰力が低く、かつ、ブル領域の比率が大きいときには、スカイフック制御の減衰力を設定し、ばね下制振制御の要求を満たすことに伴う高周波振動特性の悪化を回避する。これにより、走行状態に応じて最適な減衰特性を得ることができ、車体のフラット感を達成しつつ、高周波振動に対する乗り心地悪化を同時に回避できる。
As described above, in the standard mode, priority is given to unsprung vibration suppression control that suppresses unsprung resonance. However, when the damping force required by skyhook control is lower than the damping force required by unsprung vibration suppression control and the ratio of the bull area is large, the damping force of skyhook control is set and Avoid the deterioration of high-frequency vibration characteristics that accompanies the requirements. As a result, it is possible to obtain optimum damping characteristics according to the running state, and at the same time, it is possible to avoid a deterioration in riding comfort against high-frequency vibrations while achieving a flat feeling of the vehicle body.
(スポーツモードにおける調停)
図19は実施例1のスポーツモードにおける減衰係数調停処理を表すフローチャートである。
ステップS11では、ドライバ入力制御により設定された4輪のドライバ入力減衰係数k1に基づいて4輪減衰力配分率を演算する。右前輪のドライバ入力減衰係数をk1fr、左前輪のドライバ入力減衰係数をk1fl、右後輪のドライバ入力減衰係数をk1rr、左後輪のドライバ入力減衰係数をk1rl、各輪の減衰力配分率をxfr、xfl、xrr、xrlとすると、
xfr=k1fr/(k1fr+k1fl+k1rr+k1rl)
xfl=k1fl/(k1fr+k1fl+k1rr+k1rl)
xrr=k1rr/(k1fr+k1fl+k1rr+k1rl)
xrl=k1rl/(k1fr+k1fl+k1rr+k1rl)
により算出される。 (Mediation in sport mode)
FIG. 19 is a flowchart showing attenuation coefficient arbitration processing in the sport mode of the first embodiment.
In step S11, the four-wheel damping force distribution ratio is calculated based on the four-wheel driver input damping coefficient k1 set by the driver input control. The right front wheel driver input damping coefficient is k1fr, the left front wheel driver input damping coefficient is k1fl, the right rear wheel driver input damping coefficient is k1rr, the left rear wheel driver input damping coefficient is k1rl, and the damping force distribution ratio of each wheel is If xfr, xfl, xrr, xrl,
xfr = k1fr / (k1fr + k1fl + k1rr + k1rl)
xfl = k1fl / (k1fr + k1fl + k1rr + k1rl)
xrr = k1rr / (k1fr + k1fl + k1rr + k1rl)
xrl = k1rl / (k1fr + k1fl + k1rr + k1rl)
Is calculated by
図19は実施例1のスポーツモードにおける減衰係数調停処理を表すフローチャートである。
ステップS11では、ドライバ入力制御により設定された4輪のドライバ入力減衰係数k1に基づいて4輪減衰力配分率を演算する。右前輪のドライバ入力減衰係数をk1fr、左前輪のドライバ入力減衰係数をk1fl、右後輪のドライバ入力減衰係数をk1rr、左後輪のドライバ入力減衰係数をk1rl、各輪の減衰力配分率をxfr、xfl、xrr、xrlとすると、
xfr=k1fr/(k1fr+k1fl+k1rr+k1rl)
xfl=k1fl/(k1fr+k1fl+k1rr+k1rl)
xrr=k1rr/(k1fr+k1fl+k1rr+k1rl)
xrl=k1rl/(k1fr+k1fl+k1rr+k1rl)
により算出される。 (Mediation in sport mode)
FIG. 19 is a flowchart showing attenuation coefficient arbitration processing in the sport mode of the first embodiment.
In step S11, the four-wheel damping force distribution ratio is calculated based on the four-wheel driver input damping coefficient k1 set by the driver input control. The right front wheel driver input damping coefficient is k1fr, the left front wheel driver input damping coefficient is k1fl, the right rear wheel driver input damping coefficient is k1rr, the left rear wheel driver input damping coefficient is k1rl, and the damping force distribution ratio of each wheel is If xfr, xfl, xrr, xrl,
xfr = k1fr / (k1fr + k1fl + k1rr + k1rl)
xfl = k1fl / (k1fr + k1fl + k1rr + k1rl)
xrr = k1rr / (k1fr + k1fl + k1rr + k1rl)
xrl = k1rl / (k1fr + k1fl + k1rr + k1rl)
Is calculated by
ステップS12では、減衰力配分率xが所定範囲内(αより大きくβより小さい)か否かを判断し、所定範囲内の場合は各輪に対する配分はほぼ均等であると判断してステップS13に進み、いずれか1つでも所定範囲外の場合はステップS16に進む。
ステップS13では、ばね下制振減衰係数k4がドライバ入力減衰係数k1より大きいか否かを判断し、大きいと判断した場合はステップS15に進み、第1減衰係数kとしてk4を設定する。一方、ばね下制振減衰係数k4がドライバ入力減衰係数k1以下であると判断した場合はステップS14に進み、第1減衰係数kとしてk1を設定する。 In step S12, it is determined whether or not the damping force distribution ratio x is within a predetermined range (greater than α and smaller than β). If it is within the predetermined range, it is determined that the distribution to each wheel is substantially equal, and the process proceeds to step S13. If any one is out of the predetermined range, the process proceeds to step S16.
In step S13, it is determined whether or not the unsprung damping damping coefficient k4 is larger than the driver input damping coefficient k1. If it is determined that the unsprung damping damping coefficient k4 is larger, the process proceeds to step S15 and k4 is set as the first damping coefficient k. On the other hand, if it is determined that the unsprung damping damping coefficient k4 is equal to or less than the driver input damping coefficient k1, the process proceeds to step S14, and k1 is set as the first damping coefficient k.
ステップS13では、ばね下制振減衰係数k4がドライバ入力減衰係数k1より大きいか否かを判断し、大きいと判断した場合はステップS15に進み、第1減衰係数kとしてk4を設定する。一方、ばね下制振減衰係数k4がドライバ入力減衰係数k1以下であると判断した場合はステップS14に進み、第1減衰係数kとしてk1を設定する。 In step S12, it is determined whether or not the damping force distribution ratio x is within a predetermined range (greater than α and smaller than β). If it is within the predetermined range, it is determined that the distribution to each wheel is substantially equal, and the process proceeds to step S13. If any one is out of the predetermined range, the process proceeds to step S16.
In step S13, it is determined whether or not the unsprung damping damping coefficient k4 is larger than the driver input damping coefficient k1. If it is determined that the unsprung damping damping coefficient k4 is larger, the process proceeds to step S15 and k4 is set as the first damping coefficient k. On the other hand, if it is determined that the unsprung damping damping coefficient k4 is equal to or less than the driver input damping coefficient k1, the process proceeds to step S14, and k1 is set as the first damping coefficient k.
ステップS16では、ばね下制振減衰係数k4がS/A3の設定可能な最大値maxか否かを判断し、最大値maxと判断した場合はステップS17に進み、それ以外の場合はステップS18に進む。
ステップS17では、4輪のドライバ入力減衰係数k1の最大値がばね下制振減衰係数k4となり、かつ、減衰力配分率を満たす減衰係数を第1減衰係数kとして演算する。言い換えると、減衰力配分率を満たしつつ減衰係数が最も高くなる値を演算する。
ステップS18では、4輪のドライバ入力減衰係数k1がいずれもk4以上となる範囲で減衰力配分率を満たす減衰係数を第1減衰係数kとして演算する。言い換えると、ドライバ入力制御によって設定される減衰力配分率を満たし、かつ、ばね下制振制御側の要求をも満たす値を演算する。 In step S16, it is determined whether or not the unsprung damping damping coefficient k4 is the maximum value max that S / A3 can be set. If it is determined that the maximum value is max, the process proceeds to step S17, and otherwise, the process proceeds to step S18. move on.
In step S17, the maximum value of the four-wheel driver input damping coefficient k1 is the unsprung damping damping coefficient k4, and the damping coefficient that satisfies the damping force distribution ratio is calculated as the first damping coefficient k. In other words, a value that maximizes the damping coefficient while satisfying the damping force distribution rate is calculated.
In step S18, a damping coefficient that satisfies the damping force distribution ratio in a range where all the four-wheel driver input damping coefficients k1 are equal to or greater than k4 is calculated as the first damping coefficient k. In other words, a value that satisfies the damping force distribution ratio set by the driver input control and also satisfies the requirements of the unsprung vibration suppression control side is calculated.
ステップS17では、4輪のドライバ入力減衰係数k1の最大値がばね下制振減衰係数k4となり、かつ、減衰力配分率を満たす減衰係数を第1減衰係数kとして演算する。言い換えると、減衰力配分率を満たしつつ減衰係数が最も高くなる値を演算する。
ステップS18では、4輪のドライバ入力減衰係数k1がいずれもk4以上となる範囲で減衰力配分率を満たす減衰係数を第1減衰係数kとして演算する。言い換えると、ドライバ入力制御によって設定される減衰力配分率を満たし、かつ、ばね下制振制御側の要求をも満たす値を演算する。 In step S16, it is determined whether or not the unsprung damping damping coefficient k4 is the maximum value max that S / A3 can be set. If it is determined that the maximum value is max, the process proceeds to step S17, and otherwise, the process proceeds to step S18. move on.
In step S17, the maximum value of the four-wheel driver input damping coefficient k1 is the unsprung damping damping coefficient k4, and the damping coefficient that satisfies the damping force distribution ratio is calculated as the first damping coefficient k. In other words, a value that maximizes the damping coefficient while satisfying the damping force distribution rate is calculated.
In step S18, a damping coefficient that satisfies the damping force distribution ratio in a range where all the four-wheel driver input damping coefficients k1 are equal to or greater than k4 is calculated as the first damping coefficient k. In other words, a value that satisfies the damping force distribution ratio set by the driver input control and also satisfies the requirements of the unsprung vibration suppression control side is calculated.
ステップS19では、上記各ステップにより設定された第1減衰係数kがスカイフック制御により設定されるS/A姿勢減衰係数k2より小さいか否かを判断し、小さいと判断された場合はスカイフック制御側の要求する減衰係数のほうが大きいためステップS20に進んでk2を設定する。一方、kがk2以上であると判断された場合はステップS21に進んでkを設定する。
In step S19, it is determined whether or not the first attenuation coefficient k set in each of the above steps is smaller than the S / A attitude attenuation coefficient k2 set by skyhook control. Since the damping coefficient requested on the side is larger, the process proceeds to step S20 and k2 is set. On the other hand, if it is determined that k is equal to or greater than k2, the process proceeds to step S21 and k is set.
上述のように、スポーツモードでは、原則としてばね下の共振を抑制するばね下制振制御を優先する。ただし、ドライバ入力制御側から要求される減衰力配分率は、車体姿勢と密接に関連し、特にロールモードによるドライバの視線変化との関連も深いことから、ドライバ入力制御側から要求された減衰係数そのものではなく、減衰力配分率の確保を最優先事項とする。また、減衰力配分率が保たれた状態で車体姿勢に姿勢変化をもたらす動きについてはスカイフック制御をセレクトハイで選択することで、安定した車体姿勢を維持することができる。
As described above, in the sport mode, priority is given to unsprung vibration suppression control that suppresses unsprung resonance as a rule. However, the damping force distribution rate required from the driver input control side is closely related to the vehicle body posture, and particularly because it is closely related to the driver's line-of-sight change due to the roll mode. The highest priority is to secure the damping force distribution ratio. In addition, with respect to the movement that causes the posture change in the vehicle body posture while the damping force distribution ratio is maintained, the sky vehicle body posture can be maintained by selecting Skyhook control with select high.
(コンフォードモードにおける調停)
図20は実施例1のコンフォートモードにおける減衰係数調停処理を表すフローチャートである。
ステップS30では、周波数感応減衰係数k3がばね下制振減衰係数k4より大きいか否かを判断し、大きいと判断した場合はステップS32に進んで周波数感応減衰係数k3を設定する。一方、周波数感応減衰係数k3がばね下制振減衰係数k4以下であると判断した場合はステップS32に進んでばね下制振減衰係数k4を設定する。 (Mediation in Conford mode)
FIG. 20 is a flowchart illustrating the attenuation coefficient arbitration process in the comfort mode according to the first embodiment.
In step S30, it is determined whether or not the frequency sensitive damping coefficient k3 is larger than the unsprung damping damping coefficient k4. If it is determined that the frequency sensitive damping coefficient k3 is larger, the process proceeds to step S32 and the frequency sensitive damping coefficient k3 is set. On the other hand, if it is determined that the frequency sensitive damping coefficient k3 is equal to or less than the unsprung damping damping coefficient k4, the process proceeds to step S32 to set the unsprung damping damping coefficient k4.
図20は実施例1のコンフォートモードにおける減衰係数調停処理を表すフローチャートである。
ステップS30では、周波数感応減衰係数k3がばね下制振減衰係数k4より大きいか否かを判断し、大きいと判断した場合はステップS32に進んで周波数感応減衰係数k3を設定する。一方、周波数感応減衰係数k3がばね下制振減衰係数k4以下であると判断した場合はステップS32に進んでばね下制振減衰係数k4を設定する。 (Mediation in Conford mode)
FIG. 20 is a flowchart illustrating the attenuation coefficient arbitration process in the comfort mode according to the first embodiment.
In step S30, it is determined whether or not the frequency sensitive damping coefficient k3 is larger than the unsprung damping damping coefficient k4. If it is determined that the frequency sensitive damping coefficient k3 is larger, the process proceeds to step S32 and the frequency sensitive damping coefficient k3 is set. On the other hand, if it is determined that the frequency sensitive damping coefficient k3 is equal to or less than the unsprung damping damping coefficient k4, the process proceeds to step S32 to set the unsprung damping damping coefficient k4.
上述のように、コンフォートモードでは、基本的にばね下の共振を抑制するばね下共振制御を優先する。もともとばね上制振制御として周波数感応制御を行い、これにより路面状況に応じた最適な減衰係数を設定しているため、乗り心地を確保した制御を達成でき、ばね下がばたつくことによる接地感不足をばね下制振制御で回避することができる。尚、コンフォートモードにおいても、スタンダードモードと同様に、周波数スカラー量のブル比率に応じて減衰係数を切り替えるように構成してもよい。これにより、スーパーコンフォートモードとして更に乗り心地を確保することができる。
As described above, in the comfort mode, priority is given to unsprung resonance control that basically suppresses unsprung resonance. Originally frequency sensitive control was performed as sprung mass damping control, and the optimum damping coefficient was set according to the road surface condition, so it was possible to achieve control that ensured riding comfort and lack of grounding feeling due to fluttering under the spring. Can be avoided by unsprung vibration suppression control. In the comfort mode, as in the standard mode, the attenuation coefficient may be switched according to the bull ratio of the frequency scalar quantity. As a result, the ride comfort can be further ensured in the super comfort mode.
(ハイウェイモードにおける調停)
図21は実施例1のハイウェイモードにおける減衰係数調停処理を表すフローチャートである。尚、ステップS11からS18までは、スポーツモードにおける調停処理と同じであるため、説明を省略する。
ステップS40では、ステップS18までで調停された第1減衰係数kにスカイフック制御によるS/A姿勢減衰係数k2を加算して出力する。 (Arbitration in highway mode)
FIG. 21 is a flowchart illustrating the attenuation coefficient arbitration process in the highway mode according to the first embodiment. Since steps S11 to S18 are the same as the arbitration process in the sport mode, the description thereof is omitted.
In step S40, the S / A attitude attenuation coefficient k2 by the skyhook control is added to the first attenuation coefficient k that has been adjusted up to step S18, and is output.
図21は実施例1のハイウェイモードにおける減衰係数調停処理を表すフローチャートである。尚、ステップS11からS18までは、スポーツモードにおける調停処理と同じであるため、説明を省略する。
ステップS40では、ステップS18までで調停された第1減衰係数kにスカイフック制御によるS/A姿勢減衰係数k2を加算して出力する。 (Arbitration in highway mode)
FIG. 21 is a flowchart illustrating the attenuation coefficient arbitration process in the highway mode according to the first embodiment. Since steps S11 to S18 are the same as the arbitration process in the sport mode, the description thereof is omitted.
In step S40, the S / A attitude attenuation coefficient k2 by the skyhook control is added to the first attenuation coefficient k that has been adjusted up to step S18, and is output.
上述のように、ハイウェイモードでは、調停された第1減衰係数kにS/A姿勢減衰係数k2を加算した値を用いて減衰係数を調停する。ここで、図を用いて作用を説明する。図22はうねり路面及び凹凸路面を走行する際の減衰係数変化を表すタイムチャートである。例えば高車速走行時にわずかな路面のうねり等の影響で車体がゆらゆらと動くような動きを抑制しようとした場合、スカイフック制御のみで達成しようとすると、僅かな車輪速変動を検知する必要があることから、スカイフック制御ゲインをかなり高く設定する必要がある。この場合、ゆらゆらと動くような動きを抑制することはできるが、路面の凹凸などが発生した場合、制御ゲインが大き過ぎて過剰な減衰力制御を行うおそれがある。これにより、乗り心地の悪化や車体姿勢の悪化が懸念される。
As described above, in the highway mode, the attenuation coefficient is adjusted using a value obtained by adding the S / A attitude attenuation coefficient k2 to the adjusted first attenuation coefficient k. Here, the operation will be described with reference to the drawings. FIG. 22 is a time chart showing a change in attenuation coefficient when traveling on a wavy road surface and an uneven road surface. For example, when trying to suppress the movement of the vehicle body to fluctuate due to slight road surface undulations when driving at high vehicle speeds, it is necessary to detect slight fluctuations in the wheel speed when trying to achieve only with the skyhook control. Therefore, it is necessary to set the skyhook control gain to be quite high. In this case, the movement that fluctuates can be suppressed, but if the road surface is uneven, the control gain is too large and excessive damping force control may be performed. As a result, there is a concern about deterioration in ride comfort and vehicle body posture.
これに対し、ハイウェイモードのように第1減衰係数kを常時設定しているため、ある程度の減衰力は常時確保されることになり、スカイフック制御による減衰係数が小さくても車体がゆらゆらと動くような動きを抑制できる。また、スカイフック制御ゲインを上昇させる必要がないため、路面凹凸に対しても通常の制御ゲインにより適切に対処できる。加えて、第1減衰係数kが設定された状態でスカイフック制御が行われるため、セミアクティブ制御領域内において、減衰係数制限とは異なり、減衰係数の減少工程の動作が可能となり、高速走行時において安定した車両姿勢を確保することができる。
On the other hand, since the first damping coefficient k is always set as in the highway mode, a certain amount of damping force is always secured, and the vehicle body fluctuates even when the damping coefficient by the skyhook control is small. Such movement can be suppressed. Further, since it is not necessary to increase the skyhook control gain, it is possible to appropriately deal with road surface irregularities by using a normal control gain. In addition, since the skyhook control is performed with the first damping coefficient k set, unlike the damping coefficient limit, the damping coefficient decreasing process can be performed in the semi-active control region, and at the time of high-speed traveling It is possible to ensure a stable vehicle posture.
(モード選択処理)
次に、上記各走行モードを選択するモード選択処理について説明する。図23は実施例1の減衰係数調停部において走行状態に基づくモード選択処理を表すフローチャートである。
ステップS50では、舵角センサ7の値に基づいて直進走行状態か否かを判断し、直進走行状態と判断された場合にはステップS51に進み、旋回状態と判断された場合にはステップS54に進む。
ステップS51では、車速センサ8の値に基づいて高車速状態を表す所定車速VSP1以上か否かを判断し、VSP1以上と判断された場合にはステップS52に進んでスタンダードモードを選択する。一方、VSP1未満と判断された場合にはステップS53に進んでコンフォートモードを選択する。
ステップS54では、車速センサ8の値に基づいて高車速状態を表す所定車速VSP1以上か否かを判断し、VSP1以上と判断された場合にはステップS55に進んでハイウェイモードを選択する。一方、VSP1未満と判断された場合にはステップS56に進んでスポーツモードを選択する。 (Mode selection process)
Next, a mode selection process for selecting each travel mode will be described. FIG. 23 is a flowchart illustrating a mode selection process based on the running state in the attenuation coefficient arbitration unit of the first embodiment.
In step S50, it is determined whether or not the vehicle is in the straight traveling state based on the value of thesteering angle sensor 7. If it is determined that the vehicle is traveling straight, the process proceeds to step S51. If it is determined that the vehicle is turning, the process proceeds to step S54. move on.
In step S51, it is determined based on the value of thevehicle speed sensor 8 whether or not the vehicle speed is equal to or higher than a predetermined vehicle speed VSP1 representing a high vehicle speed state. If it is determined that the vehicle speed is VSP1 or higher, the process proceeds to step S52 and the standard mode is selected. On the other hand, if it is determined that it is less than VSP1, the process proceeds to step S53 and the comfort mode is selected.
In step S54, based on the value of thevehicle speed sensor 8, it is determined whether or not the vehicle speed is equal to or higher than a predetermined vehicle speed VSP1 representing a high vehicle speed state. If it is determined that the vehicle speed is VSP1 or higher, the process proceeds to step S55 and the highway mode is selected. On the other hand, if it is determined that it is less than VSP1, the process proceeds to step S56 to select the sport mode.
次に、上記各走行モードを選択するモード選択処理について説明する。図23は実施例1の減衰係数調停部において走行状態に基づくモード選択処理を表すフローチャートである。
ステップS50では、舵角センサ7の値に基づいて直進走行状態か否かを判断し、直進走行状態と判断された場合にはステップS51に進み、旋回状態と判断された場合にはステップS54に進む。
ステップS51では、車速センサ8の値に基づいて高車速状態を表す所定車速VSP1以上か否かを判断し、VSP1以上と判断された場合にはステップS52に進んでスタンダードモードを選択する。一方、VSP1未満と判断された場合にはステップS53に進んでコンフォートモードを選択する。
ステップS54では、車速センサ8の値に基づいて高車速状態を表す所定車速VSP1以上か否かを判断し、VSP1以上と判断された場合にはステップS55に進んでハイウェイモードを選択する。一方、VSP1未満と判断された場合にはステップS56に進んでスポーツモードを選択する。 (Mode selection process)
Next, a mode selection process for selecting each travel mode will be described. FIG. 23 is a flowchart illustrating a mode selection process based on the running state in the attenuation coefficient arbitration unit of the first embodiment.
In step S50, it is determined whether or not the vehicle is in the straight traveling state based on the value of the
In step S51, it is determined based on the value of the
In step S54, based on the value of the
すなわち、直進走行状態において、高車速走行する場合にはスタンダードモードを選択することで、スカイフック制御による車体姿勢の安定化を図り、かつ、ヒョコやブルといった高周波振動を抑制することで乗り心地を確保し、更に、ばね下の共振を抑制することができる。また、低車速走行する場合にはコンフォートモードを選択することで、ヒョコやブルといった振動の乗員への入力を極力抑えながら、ばね下の共振を抑制することができる。
In other words, when driving at a high vehicle speed in a straight running state, the standard mode is selected to stabilize the vehicle body posture by skyhook control and to suppress the high frequency vibration such as leopard and bull. In addition, unsprung resonance can be suppressed. Further, when traveling at a low vehicle speed, by selecting the comfort mode, it is possible to suppress unsprung resonance while suppressing the input of vibrations such as leopard and bull to the occupant as much as possible.
一方、旋回走行状態において、高車速走行する場合にはハイウェイモードを選択することで、減衰係数を加算した値によって制御されるため、基本的に高い減衰力が得られる。これにより、高車速であってもドライバ入力制御によって旋回時の車体姿勢を積極的に確保しつつ、ばね下共振を抑制することができる。また、低車速走行する場合にはスポーツモードを選択することで、ドライバ入力制御によって旋回時の車体姿勢を積極的に確保しつつ、スカイフック制御が適宜行われながら、ばね下共振を抑制することができ、安定した車両姿勢で走行できる。
On the other hand, when the vehicle is traveling at a high vehicle speed while turning, the highway mode is selected, so that it is controlled by the value obtained by adding the damping coefficient, so that basically a high damping force can be obtained. As a result, even when the vehicle speed is high, unsprung resonance can be suppressed while positively securing the vehicle body posture during turning by driver input control. In addition, when driving at low vehicle speeds, the sport mode is selected, so that the vehicle posture during turning is positively secured by driver input control, and unsprung resonance is suppressed while skyhook control is performed as appropriate. Can travel in a stable vehicle posture.
尚、モード選択処理については、実施例1では走行状態を検知して自動的に切り替える制御例を示したが、例えば運転者が操作可能な切換スイッチ等を設け、これにより走行モードを選択するように制御してもよい。これにより、運転者の走行意図に応じた乗り心地や旋回性能が得られる。
As for the mode selection process, the control example in which the driving state is detected and automatically switched is shown in the first embodiment. However, for example, a changeover switch that can be operated by the driver is provided to select the driving mode. You may control to. As a result, ride comfort and turning performance according to the driving intention of the driver can be obtained.
以上説明したように、実施例1にあっては下記に列挙する作用効果を奏する。
(1)減衰力を変更可能なS/A3(減衰力可変ショックアブソーバ)と、第3走行状態推定部32(ばね下上下速度を検出するばね下上下速度検出手段、ばね上上下加速度を検出するばね上上下加速度検出手段)と、第3走行状態推定部32により推定されたばね下上下速度に応じてS/A3のばね下制振減衰力制御量(減衰力制御量)を演算するばね下制振制御部34(減衰力制御量演算手段)と、ばね上上下加速度の任意の周波数帯の振幅の大きさを周波数スカラー量としたとき、人体共振周波数帯よりも高周波数帯の振幅に応じたWb*g(高周波数帯の周波数スカラー量)が人体共振周波数帯の振幅に応じたWh*g(低周波数帯の周波数スカラー量)より大きいときは、補正ゲインK*gを1から0に切り換える補正ゲイン演算部345(減衰力制御量を低減補正する補正手段)と、を備えた。
よって、ばね下上下速度に応じて設定された減衰力であるばね下制振制御量が大きく設定されている場合であっても、ばね上上下加速度成分のうち、人体共振周波数帯の成分が大きいときは減衰力を低減補正することで、乗り心地を確保しつつ車輪の接地性を確保することができる。 As described above, Example 1 has the following effects.
(1) S / A3 (damping force variable shock absorber) capable of changing damping force, third traveling state estimating unit 32 (unsprung vertical speed detecting means for detecting unsprung vertical speed, detecting sprung vertical acceleration The unsprung acceleration detection means) and the unsprung damping damping force control amount (damping force control amount) of S / A3 according to the unsprung vertical speed estimated by the third runningstate estimation unit 32. When the vibration control unit 34 (damping force control amount calculating means) and the magnitude of the amplitude in any frequency band of the sprung vertical acceleration are defined as the frequency scalar quantity, it corresponds to the amplitude in the higher frequency band than the human body resonance frequency band. When Wb * g (frequency scalar quantity in the high frequency band) is larger than Wh * g (frequency scalar quantity in the low frequency band) corresponding to the amplitude of the human body resonance frequency band, the correction gain K * g is switched from 1 to 0. Correction gain calculator 345 (damping force control The amount and the reduced correction for correcting section), with a.
Therefore, even when the unsprung vibration suppression control amount, which is a damping force set according to the unsprung vertical speed, is set to be large, the component of the human body resonance frequency band is large among the sprung vertical acceleration components. In some cases, by reducing and correcting the damping force, the grounding property of the wheel can be ensured while ensuring the riding comfort.
(1)減衰力を変更可能なS/A3(減衰力可変ショックアブソーバ)と、第3走行状態推定部32(ばね下上下速度を検出するばね下上下速度検出手段、ばね上上下加速度を検出するばね上上下加速度検出手段)と、第3走行状態推定部32により推定されたばね下上下速度に応じてS/A3のばね下制振減衰力制御量(減衰力制御量)を演算するばね下制振制御部34(減衰力制御量演算手段)と、ばね上上下加速度の任意の周波数帯の振幅の大きさを周波数スカラー量としたとき、人体共振周波数帯よりも高周波数帯の振幅に応じたWb*g(高周波数帯の周波数スカラー量)が人体共振周波数帯の振幅に応じたWh*g(低周波数帯の周波数スカラー量)より大きいときは、補正ゲインK*gを1から0に切り換える補正ゲイン演算部345(減衰力制御量を低減補正する補正手段)と、を備えた。
よって、ばね下上下速度に応じて設定された減衰力であるばね下制振制御量が大きく設定されている場合であっても、ばね上上下加速度成分のうち、人体共振周波数帯の成分が大きいときは減衰力を低減補正することで、乗り心地を確保しつつ車輪の接地性を確保することができる。 As described above, Example 1 has the following effects.
(1) S / A3 (damping force variable shock absorber) capable of changing damping force, third traveling state estimating unit 32 (unsprung vertical speed detecting means for detecting unsprung vertical speed, detecting sprung vertical acceleration The unsprung acceleration detection means) and the unsprung damping damping force control amount (damping force control amount) of S / A3 according to the unsprung vertical speed estimated by the third running
Therefore, even when the unsprung vibration suppression control amount, which is a damping force set according to the unsprung vertical speed, is set to be large, the component of the human body resonance frequency band is large among the sprung vertical acceleration components. In some cases, by reducing and correcting the damping force, the grounding property of the wheel can be ensured while ensuring the riding comfort.
(2)車輪速を検出する車輪速センサ5を有し、第3走行状態推定部32は、検出された車輪速センサ値に基づいてばね上上下速度及びばね上上下加速度を推定する。
よって、ばね上上下加速度センサや、ストロークセンサといった高価なセンサを備える必要がなく、一般的にどの車両にも搭載されている車輪速センサ5からばね上状態を推定することで、部品点数の削減及びコストの削減を図ることができ、車両搭載性を向上できる。 (2) It has thewheel speed sensor 5 that detects the wheel speed, and the third traveling state estimation unit 32 estimates the sprung vertical speed and the sprung vertical acceleration based on the detected wheel speed sensor value.
Therefore, it is not necessary to provide an expensive sensor such as a sprung vertical acceleration sensor or a stroke sensor, and the number of parts can be reduced by estimating the sprung state from thewheel speed sensor 5 that is generally mounted on any vehicle. In addition, the cost can be reduced and the vehicle mountability can be improved.
よって、ばね上上下加速度センサや、ストロークセンサといった高価なセンサを備える必要がなく、一般的にどの車両にも搭載されている車輪速センサ5からばね上状態を推定することで、部品点数の削減及びコストの削減を図ることができ、車両搭載性を向上できる。 (2) It has the
Therefore, it is not necessary to provide an expensive sensor such as a sprung vertical acceleration sensor or a stroke sensor, and the number of parts can be reduced by estimating the sprung state from the
(3)補正ゲイン演算部345は、人体共振周波数帯の振幅に対応するスカラー量にWh(第1の人間感覚重み係数)を乗算してWh*gを算出し、人体共振周波数帯よりも高周波数帯の振幅に対応するスカラー量にWhよりも大きなWb(第2の人間感覚重み係数)を乗算してWb*gを算出する。よって、人間の感じる感覚をより実際の制御に反映させることができ、更に乗り心地を確保できる。
(3) The correction gain calculation unit 345 calculates Wh * g by multiplying the scalar quantity corresponding to the amplitude of the human body resonance frequency band by Wh (first human sense weight coefficient), and is higher than the human body resonance frequency band. Wb * g is calculated by multiplying the scalar quantity corresponding to the amplitude of the frequency band by Wb (second human sensory weight coefficient) larger than Wh. Therefore, it is possible to reflect the sense of human feeling in actual control and to secure a ride comfort.
〔実施例2〕
次に、実施例2について説明する。基本的な構成は実施例1と同じであるため、異なる点についてのみ説明する。図24は実施例2のばね下制振制御の制御構成を表すブロック図である。実施例1では、第1EnvelopeFilter344a及び第2EnvelopeFilter344bにサスペンションの取り付け点におけるばね上上下加速度を入力した。これに対し、実施例2では、サスペンション取り付け点ではなく、座席位置におけるばね上上下加速度に換算し、更に、人体応答を考慮したばね上上下加速度に変換し、この値Ghiを第1及び第2EnvelopeFilter344a,344bに入力する点が異なる。 [Example 2]
Next, Example 2 will be described. Since the basic configuration is the same as that of the first embodiment, only different points will be described. FIG. 24 is a block diagram illustrating a control configuration of unsprung vibration suppression control according to the second embodiment. In Example 1, the sprung vertical acceleration at the suspension attachment point was input to thefirst envelope filter 344a and the second envelope filter 344b. On the other hand, in the second embodiment, instead of the suspension attachment point, it is converted into the sprung vertical acceleration at the seat position, and further converted into the sprung vertical acceleration considering the human body response, and this value Ghi is converted into the first and second envelope filter 344a. , 344b is different.
次に、実施例2について説明する。基本的な構成は実施例1と同じであるため、異なる点についてのみ説明する。図24は実施例2のばね下制振制御の制御構成を表すブロック図である。実施例1では、第1EnvelopeFilter344a及び第2EnvelopeFilter344bにサスペンションの取り付け点におけるばね上上下加速度を入力した。これに対し、実施例2では、サスペンション取り付け点ではなく、座席位置におけるばね上上下加速度に換算し、更に、人体応答を考慮したばね上上下加速度に変換し、この値Ghiを第1及び第2EnvelopeFilter344a,344bに入力する点が異なる。 [Example 2]
Next, Example 2 will be described. Since the basic configuration is the same as that of the first embodiment, only different points will be described. FIG. 24 is a block diagram illustrating a control configuration of unsprung vibration suppression control according to the second embodiment. In Example 1, the sprung vertical acceleration at the suspension attachment point was input to the
サスペンション取り付け点におけるばね上上下加速度をAi(i=1~4)、サスペンション取り付け点における力の入力をFi(i=1~4)とすると、伝達関数マトリクスaを用いて、以下の関係が得られる。
(式a1)
次に、座席位置応答変換部344cでは、座席位置におけるばね上上下加速度をGi(i=1~4)とすると、伝達関数マトリクスbを用いて、以下の関係を得る。
(式a2)
次に、人体応答変換部344dでは、人体伝達関数を設定し、座席位置における最終的なばね上上下加速度Ghiを、以下の関係により求める。
(式a3)
ここで算出されたばね上上下加速度Ghiを用いることで、更に、乗員が感じる振動の推定精度を向上することができ、より適切な補正ゲインK*gを設定できる。 Using the transfer function matrix a, the following relationship is obtained, assuming that the sprung vertical acceleration at the suspension attachment point is Ai (i = 1 to 4) and the force input at the suspension attachment point is Fi (i = 1 to 4). It is done.
(Formula a1)
Next, in the seat positionresponse conversion unit 344c, when the sprung vertical acceleration at the seat position is Gi (i = 1 to 4), the following relationship is obtained using the transfer function matrix b.
(Formula a2)
Next, the human bodyresponse conversion unit 344d sets a human body transfer function, and obtains the final sprung vertical acceleration Ghi at the seat position according to the following relationship.
(Formula a3)
By using the sprung vertical acceleration Ghi calculated here, it is possible to further improve the estimation accuracy of vibration felt by the occupant and set a more appropriate correction gain K * g.
(式a1)
次に、座席位置応答変換部344cでは、座席位置におけるばね上上下加速度をGi(i=1~4)とすると、伝達関数マトリクスbを用いて、以下の関係を得る。
(式a2)
次に、人体応答変換部344dでは、人体伝達関数を設定し、座席位置における最終的なばね上上下加速度Ghiを、以下の関係により求める。
(式a3)
ここで算出されたばね上上下加速度Ghiを用いることで、更に、乗員が感じる振動の推定精度を向上することができ、より適切な補正ゲインK*gを設定できる。 Using the transfer function matrix a, the following relationship is obtained, assuming that the sprung vertical acceleration at the suspension attachment point is Ai (i = 1 to 4) and the force input at the suspension attachment point is Fi (i = 1 to 4). It is done.
(Formula a1)
Next, in the seat position
(Formula a2)
Next, the human body
(Formula a3)
By using the sprung vertical acceleration Ghi calculated here, it is possible to further improve the estimation accuracy of vibration felt by the occupant and set a more appropriate correction gain K * g.
上述のように、実施例2にあっては、下記の作用効果が得られる。
(4)ばね上上下加速度検出手段は、減衰力可変ショックアブソーバの取り付け点における上下加速度を検出する手段であり、補正ゲイン演算部345は、ばね上上下加速度検出手段により検出されたばね上上下加速度から乗員の乗車位置における搭乗位置上下加速度を推定し、該搭乗位置上下加速度に基づいて前記減衰力制御量を低減補正する。よって、乗員が感じる上下加速度成分に応じて減衰力を設定することができ、より精度の高い適切な減衰力を設定することができる。 As described above, in the second embodiment, the following operational effects can be obtained.
(4) The sprung vertical acceleration detecting means is a means for detecting the vertical acceleration at the attachment point of the damping force variable shock absorber. The boarding position vertical acceleration at the boarding position of the occupant is estimated, and the damping force control amount is reduced and corrected based on the boarding position vertical acceleration. Therefore, the damping force can be set according to the vertical acceleration component felt by the occupant, and an appropriate damping force with higher accuracy can be set.
(4)ばね上上下加速度検出手段は、減衰力可変ショックアブソーバの取り付け点における上下加速度を検出する手段であり、補正ゲイン演算部345は、ばね上上下加速度検出手段により検出されたばね上上下加速度から乗員の乗車位置における搭乗位置上下加速度を推定し、該搭乗位置上下加速度に基づいて前記減衰力制御量を低減補正する。よって、乗員が感じる上下加速度成分に応じて減衰力を設定することができ、より精度の高い適切な減衰力を設定することができる。 As described above, in the second embodiment, the following operational effects can be obtained.
(4) The sprung vertical acceleration detecting means is a means for detecting the vertical acceleration at the attachment point of the damping force variable shock absorber. The boarding position vertical acceleration at the boarding position of the occupant is estimated, and the damping force control amount is reduced and corrected based on the boarding position vertical acceleration. Therefore, the damping force can be set according to the vertical acceleration component felt by the occupant, and an appropriate damping force with higher accuracy can be set.
〔実施例3〕
次に、実施例3について説明する。基本的な構成は実施例2と同じであるため、異なる点についてのみ説明する。図25は実施例3のばね下制振制御の制御構成を表すブロック図である。実施例2では、座席位置及び人体応答を考慮したばね上上下加速度を用いた。これに対し、実施例3では、座席のシート伝達関数を更に考慮する点が異なる。 Example 3
Next, Example 3 will be described. Since the basic configuration is the same as that of the second embodiment, only different points will be described. FIG. 25 is a block diagram illustrating a control configuration of unsprung vibration suppression control according to the third embodiment. In Example 2, the sprung vertical acceleration considering the seat position and the human body response was used. In contrast, the third embodiment is different in that the seat transfer function of the seat is further considered.
次に、実施例3について説明する。基本的な構成は実施例2と同じであるため、異なる点についてのみ説明する。図25は実施例3のばね下制振制御の制御構成を表すブロック図である。実施例2では、座席位置及び人体応答を考慮したばね上上下加速度を用いた。これに対し、実施例3では、座席のシート伝達関数を更に考慮する点が異なる。 Example 3
Next, Example 3 will be described. Since the basic configuration is the same as that of the second embodiment, only different points will be described. FIG. 25 is a block diagram illustrating a control configuration of unsprung vibration suppression control according to the third embodiment. In Example 2, the sprung vertical acceleration considering the seat position and the human body response was used. In contrast, the third embodiment is different in that the seat transfer function of the seat is further considered.
座席位置応答変換部344cにおいて変換された座席位置におけるばね上上下加速度に、座席シートの弾性振動を考慮したシート伝達関数を設定すると、以下の関係が得られる。
(式b1)
次に、人体応答変換部344dを作用させると、以下の関係を得る。
(式b2)
ここで算出されたばね上上下加速度Ghiを用いることで、更に、乗員が感じる振動の推定精度を向上することができ、より適切な補正ゲインK*gを設定できる。 When a seat transfer function considering the elastic vibration of the seat is set in the sprung vertical acceleration at the seat position converted by the seat positionresponse conversion unit 344c, the following relationship is obtained.
(Formula b1)
Next, when the human bodyresponse conversion unit 344d is operated, the following relationship is obtained.
(Formula b2)
By using the sprung vertical acceleration Ghi calculated here, it is possible to further improve the estimation accuracy of vibration felt by the occupant and set a more appropriate correction gain K * g.
(式b1)
次に、人体応答変換部344dを作用させると、以下の関係を得る。
(式b2)
ここで算出されたばね上上下加速度Ghiを用いることで、更に、乗員が感じる振動の推定精度を向上することができ、より適切な補正ゲインK*gを設定できる。 When a seat transfer function considering the elastic vibration of the seat is set in the sprung vertical acceleration at the seat position converted by the seat position
(Formula b1)
Next, when the human body
(Formula b2)
By using the sprung vertical acceleration Ghi calculated here, it is possible to further improve the estimation accuracy of vibration felt by the occupant and set a more appropriate correction gain K * g.
上述したように、実施例3にあっては、下記の作用効果が得られる。
(5)補正ゲイン演算部345は、乗員の乗車位置におけるシートの弾性振動を考慮して搭乗位置上下加速度を推定し、該搭乗位置上下加速度に基づいて減衰力制御量を低減補正する。よって、乗員が感じる上下加速度成分を更に精度よく推定することができ、より精度の高い適切な減衰力を設定することができる。 As described above, in the third embodiment, the following operational effects can be obtained.
(5) The correctiongain calculation unit 345 estimates the boarding position vertical acceleration in consideration of the elastic vibration of the seat at the occupant's boarding position, and reduces and corrects the damping force control amount based on the boarding position vertical acceleration. Therefore, the vertical acceleration component felt by the occupant can be estimated with higher accuracy, and an appropriate damping force with higher accuracy can be set.
(5)補正ゲイン演算部345は、乗員の乗車位置におけるシートの弾性振動を考慮して搭乗位置上下加速度を推定し、該搭乗位置上下加速度に基づいて減衰力制御量を低減補正する。よって、乗員が感じる上下加速度成分を更に精度よく推定することができ、より精度の高い適切な減衰力を設定することができる。 As described above, in the third embodiment, the following operational effects can be obtained.
(5) The correction
〔実施例4〕
次に、実施例4について説明する。基本的な構成は実施例1と同じであるため、異なる点についてのみ説明する。図26は実施例4のブル領域の人間感覚重みWbの値を表す特性図である。実施例1では、ブル領域の人間感覚重みWbを一定値として設定したが、実施例4では横加速度に応じて増大する値としている点が異なる。すなわち、このWbが大きいときは、減衰力として高めの値が設定されることとなり、Wbが小さいときは、減衰力として小さめの値が設定されることになる。ここで、直進走行中は、快適性が最も重視されることから、横加速度が小さな領域では、比較的小さめのWbを設定して減衰力を小さめに設定する。一方、旋回中は、乗り心地よりも操舵安定性が重視され、車両の安定性は接地荷重変動の抑制により得られることから、横加速度が大きな領域では、比較的大きめのWbを設定して減衰力を大きめに設定する。これにより、走行状態に応じた減衰力を設定でき、乗り心地と車両安定性の両立を図ることができる。 Example 4
Next, Example 4 will be described. Since the basic configuration is the same as that of the first embodiment, only different points will be described. FIG. 26 is a characteristic diagram illustrating the value of the human sense weight Wb in the bull area according to the fourth embodiment. In the first embodiment, the human sense weight Wb of the bull area is set as a constant value. However, the fourth embodiment is different in that the weight increases in accordance with the lateral acceleration. That is, when Wb is large, a higher value is set as the damping force, and when Wb is small, a smaller value is set as the damping force. Here, since comfort is the most important during straight traveling, a relatively small Wb is set and the damping force is set small in a region where the lateral acceleration is small. On the other hand, during turning, steering stability is more important than ride comfort, and vehicle stability is obtained by suppressing ground load fluctuations. Therefore, in a region where the lateral acceleration is large, a relatively large Wb is set and attenuated. Set the force larger. Thereby, the damping force according to the running state can be set, and both riding comfort and vehicle stability can be achieved.
次に、実施例4について説明する。基本的な構成は実施例1と同じであるため、異なる点についてのみ説明する。図26は実施例4のブル領域の人間感覚重みWbの値を表す特性図である。実施例1では、ブル領域の人間感覚重みWbを一定値として設定したが、実施例4では横加速度に応じて増大する値としている点が異なる。すなわち、このWbが大きいときは、減衰力として高めの値が設定されることとなり、Wbが小さいときは、減衰力として小さめの値が設定されることになる。ここで、直進走行中は、快適性が最も重視されることから、横加速度が小さな領域では、比較的小さめのWbを設定して減衰力を小さめに設定する。一方、旋回中は、乗り心地よりも操舵安定性が重視され、車両の安定性は接地荷重変動の抑制により得られることから、横加速度が大きな領域では、比較的大きめのWbを設定して減衰力を大きめに設定する。これにより、走行状態に応じた減衰力を設定でき、乗り心地と車両安定性の両立を図ることができる。 Example 4
Next, Example 4 will be described. Since the basic configuration is the same as that of the first embodiment, only different points will be described. FIG. 26 is a characteristic diagram illustrating the value of the human sense weight Wb in the bull area according to the fourth embodiment. In the first embodiment, the human sense weight Wb of the bull area is set as a constant value. However, the fourth embodiment is different in that the weight increases in accordance with the lateral acceleration. That is, when Wb is large, a higher value is set as the damping force, and when Wb is small, a smaller value is set as the damping force. Here, since comfort is the most important during straight traveling, a relatively small Wb is set and the damping force is set small in a region where the lateral acceleration is small. On the other hand, during turning, steering stability is more important than ride comfort, and vehicle stability is obtained by suppressing ground load fluctuations. Therefore, in a region where the lateral acceleration is large, a relatively large Wb is set and attenuated. Set the force larger. Thereby, the damping force according to the running state can be set, and both riding comfort and vehicle stability can be achieved.
以上説明したように、実施例4にあっては、下記の作用効果が得られる。
(6)直進状態か否かを横加速度に基づいて判断し(走行状態判断手段)、直進状態と判断した場合は、旋回状態と判断した場合よりもWb(第2の人間感覚重み係数)を小さく設定する。これにより、直進中は減衰力を低くして乗り心地を確保し、旋回中は減衰力を高くして車両安定性を確保することができる。 As described above, in the fourth embodiment, the following operational effects can be obtained.
(6) Judgment is made based on the lateral acceleration based on the lateral acceleration (traveling state judging means), and when it is judged that the vehicle is running straight, Wb (second human sensory weighting coefficient) is determined more than when it is judged that the vehicle is turning. Set smaller. As a result, the damping force can be lowered during straight traveling to ensure riding comfort, and the vehicle can be secured during turning by increasing the damping force.
(6)直進状態か否かを横加速度に基づいて判断し(走行状態判断手段)、直進状態と判断した場合は、旋回状態と判断した場合よりもWb(第2の人間感覚重み係数)を小さく設定する。これにより、直進中は減衰力を低くして乗り心地を確保し、旋回中は減衰力を高くして車両安定性を確保することができる。 As described above, in the fourth embodiment, the following operational effects can be obtained.
(6) Judgment is made based on the lateral acceleration based on the lateral acceleration (traveling state judging means), and when it is judged that the vehicle is running straight, Wb (second human sensory weighting coefficient) is determined more than when it is judged that the vehicle is turning. Set smaller. As a result, the damping force can be lowered during straight traveling to ensure riding comfort, and the vehicle can be secured during turning by increasing the damping force.
〔実施例5〕
次に、実施例5について説明する。基本的な構成は実施例1と同じであるため、異なる点についてのみ説明する。図27は実施例5のばね下制振制御の制御構成を表すブロック図である。実施例1では、ばね上上下加速度のヒョコ成分やブル成分との大小関係に応じて補正ゲインを設定した。これに対し、実施例5では、補正ゲイン設定部347において、周波数感応制御部33b内の重み決定手段355で演算された各周波数帯の重みのうち、ブル領域の周波数帯が占める割合であるブル領域の重み係数(c/(a+b+c))に応じて補正ゲインを設定する点が異なる。 Example 5
Next, Example 5 will be described. Since the basic configuration is the same as that of the first embodiment, only different points will be described. FIG. 27 is a block diagram illustrating a control configuration of unsprung vibration suppression control according to the fifth embodiment. In the first embodiment, the correction gain is set in accordance with the magnitude relationship between the horizontal and vertical components of the sprung vertical acceleration. On the other hand, in the fifth embodiment, in the correctiongain setting unit 347, the bull region frequency band accounts for the ratio of the frequency band of each frequency band calculated by the weight determination unit 355 in the frequency sensitive control unit 33b. The difference is that the correction gain is set according to the weighting factor (c / (a + b + c)) of the region.
次に、実施例5について説明する。基本的な構成は実施例1と同じであるため、異なる点についてのみ説明する。図27は実施例5のばね下制振制御の制御構成を表すブロック図である。実施例1では、ばね上上下加速度のヒョコ成分やブル成分との大小関係に応じて補正ゲインを設定した。これに対し、実施例5では、補正ゲイン設定部347において、周波数感応制御部33b内の重み決定手段355で演算された各周波数帯の重みのうち、ブル領域の周波数帯が占める割合であるブル領域の重み係数(c/(a+b+c))に応じて補正ゲインを設定する点が異なる。 Example 5
Next, Example 5 will be described. Since the basic configuration is the same as that of the first embodiment, only different points will be described. FIG. 27 is a block diagram illustrating a control configuration of unsprung vibration suppression control according to the fifth embodiment. In the first embodiment, the correction gain is set in accordance with the magnitude relationship between the horizontal and vertical components of the sprung vertical acceleration. On the other hand, in the fifth embodiment, in the correction
この補正ゲインが小さい場合、ばね下制振制御において設定される減衰力は小さくなる。すなわち、フワ領域やヒョコ領域の成分が多い場合には、ばね上制振制御部33のスカイフック制御部33aにおいて設定される減衰力特性を優先することが好ましい状況である。この場合、仮にばね下制振制御による減衰力が大きな値となると、スカイフック制御側の要求減衰力よりもばね下制振制御側の要求減衰力が大きくなり、スカイフック制御による減衰力よりもばね下制振制御の減衰力が選択されてしまう。すると、ばね上側のフワフワした動きを抑制する能力が十分に発揮しにくい。そこで、ブル領域の周波数帯が占める割合が小さい場合は、スカイフック制御による性能を確保する観点から補正ゲインを小さくするものである。
When the correction gain is small, the damping force set in the unsprung vibration suppression control is small. That is, when there are many components in the wing region and the leopard region, it is preferable to give priority to the damping force characteristic set in the skyhook control unit 33a of the sprung mass damping control unit 33. In this case, if the damping force by the unsprung vibration suppression control becomes a large value, the requested damping force on the unsprung vibration control side becomes larger than the requested damping force on the skyhook control side, and than the damping force by the skyhook control side. The damping force for the unsprung vibration suppression control is selected. Then, the ability to suppress the fluffy movement on the upper side of the spring is not sufficiently exhibited. Therefore, when the ratio occupied by the frequency band of the bull region is small, the correction gain is reduced from the viewpoint of securing the performance by the skyhook control.
Claims (6)
- 減衰力を変更可能な減衰力可変ショックアブソーバと、
ばね下上下速度を検出するばね下上下速度検出手段と、
ばね上上下加速度を検出するばね上上下加速度検出手段と、
前記ばね下上下速度検出手段により検出されたばね下上下速度に応じて前記減衰力可変ショックアブソーバの減衰力制御量を演算する減衰力制御量演算手段と、
前記ばね上上下加速度検出手段により検出されたばね上上下加速度の任意の周波数帯の振幅の大きさを周波数スカラー量としたとき、高周波数帯の周波数スカラー量が低周波数帯の周波数スカラー量より大きいときは、前記減衰力制御量を低減補正する補正手段と、
を備えたことを特徴とする車両の制御装置。 A damping force variable shock absorber that can change the damping force,
Unsprung vertical speed detecting means for detecting the unsprung vertical speed;
A sprung vertical acceleration detecting means for detecting a sprung vertical acceleration;
Damping force control amount calculating means for calculating a damping force control amount of the damping force variable shock absorber according to the unsprung vertical speed detected by the unsprung vertical speed detecting means;
When the magnitude of the amplitude of an arbitrary frequency band of the sprung vertical acceleration detected by the sprung vertical acceleration detecting means is a frequency scalar quantity, the frequency scalar quantity in the high frequency band is larger than the frequency scalar quantity in the low frequency band Is a correction means for reducing and correcting the damping force control amount;
A vehicle control device comprising: - 請求項1に記載の車両の制御装置において、
前記ばね上上下加速度検出手段は、前記減衰力可変ショックアブソーバの取り付け点における上下加速度を検出する手段であり、
前記補正手段は、前記ばね上上下加速度検出手段により検出されたばね上上下加速度から乗員の乗車位置における搭乗位置上下加速度を推定し、該搭乗位置上下加速度に基づいて前記減衰力制御量を低減補正することを特徴とする車両の制御装置。 The vehicle control device according to claim 1,
The sprung vertical acceleration detecting means is means for detecting vertical acceleration at an attachment point of the damping force variable shock absorber,
The correction means estimates the boarding position vertical acceleration at the occupant's boarding position from the spring top / bottom acceleration detected by the spring top / bottom acceleration detection means, and reduces and corrects the damping force control amount based on the boarding position vertical acceleration. A control apparatus for a vehicle. - 請求項2に記載の車両の制御装置において、
前記補正手段は、前記乗員の乗車位置におけるシートの弾性振動を考慮して搭乗位置上下加速度を推定し、該搭乗位置上下加速度に基づいて前記減衰力制御量を低減補正することを特徴とする車両の制御装置。 The vehicle control device according to claim 2,
The correction means estimates a boarding position vertical acceleration in consideration of elastic vibration of a seat at the occupant's boarding position, and reduces and corrects the damping force control amount based on the boarding position vertical acceleration. Control device. - 請求項1ないし3いずれか1つに記載の車両の制御装置において、
前記補正手段は、前記人体共振周波数帯の振幅に対応するスカラー量に第1の人間感覚重み係数を乗算して前記第1のスカラー量を算出し、前記人体共振周波数帯よりも高周波数帯の振幅に対応するスカラー量に前記第1の人間感覚重み係数よりも大きな第2の人間感覚重み係数を乗算して前記第2のスカラー量を算出することを特徴とする車両の制御装置。 The vehicle control device according to any one of claims 1 to 3,
The correcting means calculates the first scalar quantity by multiplying a scalar quantity corresponding to the amplitude of the human body resonance frequency band by a first human sense weight coefficient, and has a higher frequency band than the human body resonance frequency band. A vehicle control apparatus, wherein the second scalar quantity is calculated by multiplying a scalar quantity corresponding to an amplitude by a second human sense weight coefficient larger than the first human sense weight coefficient. - 請求項4に記載の車両の制御装置において、
直進状態か否かを判断する走行状態判断手段と、
直進状態と判断した場合は、旋回状態と判断した場合よりも前記第2の人間感覚重み係数を小さく設定する走行状態係数補正手段と、
を備えたことを特徴等する車両の制御装置。 The vehicle control device according to claim 4,
Traveling state determining means for determining whether or not the vehicle is in a straight traveling state;
When it is determined that the vehicle is in a straight traveling state, a traveling state coefficient correction unit that sets the second human sensory weighting coefficient smaller than that when it is determined that the vehicle is in a turning state;
A vehicle control device characterized by comprising: - 請求項1ないし5いずれか1つに記載の車両の制御装置において、
車輪速を検出するセンサを有し、
前記ばね下上下速度検出手段及び前記ばね上上下加速度検出手段は、検出された車輪速センサ値に基づいてばね上上下速度及びばね上上下加速度を推定することを特徴とする車両の制御装置。 The vehicle control device according to any one of claims 1 to 5,
Having a sensor to detect the wheel speed,
2. The vehicle control apparatus according to claim 1, wherein the unsprung vertical speed detecting means and the sprung vertical acceleration detecting means estimate a sprung vertical speed and a sprung vertical acceleration based on the detected wheel speed sensor value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014503768A JP5979221B2 (en) | 2012-03-09 | 2013-02-25 | Vehicle control apparatus and vehicle control method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012053812 | 2012-03-09 | ||
JP2012-053812 | 2012-03-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013133059A1 true WO2013133059A1 (en) | 2013-09-12 |
Family
ID=49116541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/054681 WO2013133059A1 (en) | 2012-03-09 | 2013-02-25 | Vehicle control apparatus, and vehicle control method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5979221B2 (en) |
WO (1) | WO2013133059A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017149297A (en) * | 2016-02-25 | 2017-08-31 | 日立オートモティブシステムズ株式会社 | Vehicle control device |
JP2017206161A (en) * | 2016-05-19 | 2017-11-24 | トヨタ自動車株式会社 | Vehicular damping force control apparatus |
WO2019027010A1 (en) * | 2017-08-04 | 2019-02-07 | クラリオン株式会社 | Vehicular alarm device and vehicular alarm method |
KR102031921B1 (en) * | 2018-08-23 | 2019-10-14 | 경북대학교 산학협력단 | Device and method for optimizing ride comfort of vehicle-human model using parameter uncertainty, recording medium for performing the method |
CN112659995A (en) * | 2019-10-15 | 2021-04-16 | 丰田自动车株式会社 | Vibration damping control device for vehicle |
JP2022088717A (en) * | 2020-12-03 | 2022-06-15 | 本田技研工業株式会社 | Electric power suspension device |
WO2022168683A1 (en) * | 2021-02-03 | 2022-08-11 | 株式会社アイシン | Vehicle state quantity estimation device |
CN117124789A (en) * | 2023-10-26 | 2023-11-28 | 成都创一博通科技有限公司 | Vehicle suspension control method and system based on artificial intelligence and big data |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06247121A (en) * | 1993-02-24 | 1994-09-06 | Unisia Jecs Corp | Vehicle suspension device |
JPH08216641A (en) * | 1995-02-09 | 1996-08-27 | Nippondenso Co Ltd | Damping force control device for suspension |
JPH08238915A (en) * | 1995-03-06 | 1996-09-17 | Nippondenso Co Ltd | Vehicle body behavior controller |
JPH1120443A (en) * | 1997-06-27 | 1999-01-26 | Mitsubishi Motors Corp | Suspension controller for vehicle |
JP2001047835A (en) * | 1999-08-11 | 2001-02-20 | Nissan Motor Co Ltd | Active suspension |
JP2008183971A (en) * | 2007-01-29 | 2008-08-14 | Toyota Motor Corp | Vehicular state estimating device and shock absorber control device |
JP2008275336A (en) * | 2007-04-25 | 2008-11-13 | Toyota Central R&D Labs Inc | Evaluation device and program |
JP2011225040A (en) * | 2010-04-16 | 2011-11-10 | Nissan Motor Co Ltd | Suspension control device |
JP2012001076A (en) * | 2010-06-16 | 2012-01-05 | Nissan Motor Co Ltd | Device and method for controlling damping force for vehicle |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05286326A (en) * | 1992-04-07 | 1993-11-02 | Mitsubishi Motors Corp | Damping force control device |
JP3430321B2 (en) * | 1994-03-18 | 2003-07-28 | トキコ株式会社 | Damping force adjustable hydraulic shock absorber |
JPH0858338A (en) * | 1994-08-25 | 1996-03-05 | Nippondenso Co Ltd | Vehicle damping force control device |
JPH08230432A (en) * | 1995-02-23 | 1996-09-10 | Toyota Motor Corp | Damping force controller for vehicle |
JP4356544B2 (en) * | 2004-07-13 | 2009-11-04 | 日産自動車株式会社 | shock absorber |
-
2013
- 2013-02-25 WO PCT/JP2013/054681 patent/WO2013133059A1/en active Application Filing
- 2013-02-25 JP JP2014503768A patent/JP5979221B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06247121A (en) * | 1993-02-24 | 1994-09-06 | Unisia Jecs Corp | Vehicle suspension device |
JPH08216641A (en) * | 1995-02-09 | 1996-08-27 | Nippondenso Co Ltd | Damping force control device for suspension |
JPH08238915A (en) * | 1995-03-06 | 1996-09-17 | Nippondenso Co Ltd | Vehicle body behavior controller |
JPH1120443A (en) * | 1997-06-27 | 1999-01-26 | Mitsubishi Motors Corp | Suspension controller for vehicle |
JP2001047835A (en) * | 1999-08-11 | 2001-02-20 | Nissan Motor Co Ltd | Active suspension |
JP2008183971A (en) * | 2007-01-29 | 2008-08-14 | Toyota Motor Corp | Vehicular state estimating device and shock absorber control device |
JP2008275336A (en) * | 2007-04-25 | 2008-11-13 | Toyota Central R&D Labs Inc | Evaluation device and program |
JP2011225040A (en) * | 2010-04-16 | 2011-11-10 | Nissan Motor Co Ltd | Suspension control device |
JP2012001076A (en) * | 2010-06-16 | 2012-01-05 | Nissan Motor Co Ltd | Device and method for controlling damping force for vehicle |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017149297A (en) * | 2016-02-25 | 2017-08-31 | 日立オートモティブシステムズ株式会社 | Vehicle control device |
JP2017206161A (en) * | 2016-05-19 | 2017-11-24 | トヨタ自動車株式会社 | Vehicular damping force control apparatus |
WO2019027010A1 (en) * | 2017-08-04 | 2019-02-07 | クラリオン株式会社 | Vehicular alarm device and vehicular alarm method |
EP3647149A4 (en) * | 2017-08-04 | 2020-08-12 | Clarion Co., Ltd. | Vehicular alarm device and vehicular alarm method |
KR102031921B1 (en) * | 2018-08-23 | 2019-10-14 | 경북대학교 산학협력단 | Device and method for optimizing ride comfort of vehicle-human model using parameter uncertainty, recording medium for performing the method |
CN112659995A (en) * | 2019-10-15 | 2021-04-16 | 丰田自动车株式会社 | Vibration damping control device for vehicle |
JP2022088717A (en) * | 2020-12-03 | 2022-06-15 | 本田技研工業株式会社 | Electric power suspension device |
WO2022168683A1 (en) * | 2021-02-03 | 2022-08-11 | 株式会社アイシン | Vehicle state quantity estimation device |
JP7548341B2 (en) | 2021-02-03 | 2024-09-10 | 株式会社アイシン | Vehicle state quantity estimating device |
EP4289642A4 (en) * | 2021-02-03 | 2024-09-18 | Aisin Corp | Vehicle state quantity estimation device |
CN117124789A (en) * | 2023-10-26 | 2023-11-28 | 成都创一博通科技有限公司 | Vehicle suspension control method and system based on artificial intelligence and big data |
CN117124789B (en) * | 2023-10-26 | 2023-12-22 | 成都创一博通科技有限公司 | Vehicle suspension control method and system based on artificial intelligence and big data |
Also Published As
Publication number | Publication date |
---|---|
JP5979221B2 (en) | 2016-08-24 |
JPWO2013133059A1 (en) | 2015-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5733431B2 (en) | Vehicle control apparatus and vehicle control method | |
JP5668873B2 (en) | Vehicle control device | |
JP5783270B2 (en) | Vehicle control apparatus and vehicle control method | |
JP5733430B2 (en) | Vehicle control apparatus and vehicle control method | |
WO2013100121A1 (en) | Vehicle control device | |
WO2013111505A1 (en) | Vehicle control system and vehicle control method | |
JP5804088B2 (en) | Vehicle control apparatus and vehicle control method | |
JP5979221B2 (en) | Vehicle control apparatus and vehicle control method | |
JP5998492B2 (en) | Vehicle control device | |
JP5842935B2 (en) | Vehicle control apparatus and vehicle control method | |
JP5737432B2 (en) | Vehicle control apparatus and vehicle control method | |
JP5817849B2 (en) | Vehicle control apparatus and vehicle control method | |
WO2013161537A1 (en) | Vehicle control device and vehicle control method | |
JP5737433B2 (en) | Vehicle control device | |
JP5862685B2 (en) | Vehicle control apparatus and vehicle control method | |
JP5807684B2 (en) | Vehicle control apparatus and vehicle control method | |
JP5804091B2 (en) | Vehicle control device | |
JP5929923B2 (en) | Vehicle control apparatus and vehicle control method | |
JP5858054B2 (en) | Vehicle control device | |
JP5737430B2 (en) | Vehicle control apparatus and vehicle control method | |
WO2013111733A1 (en) | Vehicle control system and vehicle control method | |
WO2013161637A1 (en) | Vehicle control device and vehicle control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13758155 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014503768 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13758155 Country of ref document: EP Kind code of ref document: A1 |