Nothing Special   »   [go: up one dir, main page]

WO2013183766A1 - 移動局装置、ネットワーク制御装置、通信システム、制御方法及び制御プログラム - Google Patents

移動局装置、ネットワーク制御装置、通信システム、制御方法及び制御プログラム Download PDF

Info

Publication number
WO2013183766A1
WO2013183766A1 PCT/JP2013/065852 JP2013065852W WO2013183766A1 WO 2013183766 A1 WO2013183766 A1 WO 2013183766A1 JP 2013065852 W JP2013065852 W JP 2013065852W WO 2013183766 A1 WO2013183766 A1 WO 2013183766A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
mobile station
component carrier
determination unit
picocell
Prior art date
Application number
PCT/JP2013/065852
Other languages
English (en)
French (fr)
Inventor
佑介 高木
勝利 石倉
重人 鈴木
眞一 澤田
俊平 布施
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013183766A1 publication Critical patent/WO2013183766A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/324Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic

Definitions

  • the present invention relates to a mobile station device, a network control device, a communication system, a control method, and a control program.
  • the present application claims priority based on the Paris Convention or the laws and regulations in the country to which the transition is based on Japanese Patent Application No. 2012-130893 filed on June 8, 2012. The contents of the application are hereby incorporated by reference in their entirety.
  • LTE-A Long Term Evolution-Advanced
  • LTE-A Long Term Evolution-Advanced
  • LTE-A Long Term Evolution-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CC Component Carrier
  • CA carrier aggregation
  • a component carrier used in communication using CA technology is allocated from the base station in a UE-specific manner (UE specific) when CA communication is started or reconfigured.
  • a Serving Cell that performs communication is configured by a combination of one PCell (Primary Serving Cell) and one or more SCells (Secondary Serving Cell).
  • the PCell communicates control information (C-Plane: Control Plane) and data information (U-Plane: User Plane).
  • C-Plane Control Plane
  • U-Plane User Plane
  • the component carrier corresponding to PCell is called PCC (Primary Component Carrier).
  • the SCell performs communication of only data information (U-Plane).
  • the component carrier corresponding to SCell is called SCC (Secondary Component Carrier) (refer to Section 7.5 of Non-Patent Document 1).
  • the SCC has a configuration state and a non-configuration state. Furthermore, the configure state includes an activate state and a deactivate state.
  • CA When CA is not performed, all the cells other than the PCell are in a non-configured state.
  • SCell is added. At this time, the added SCC is in a deactivated configure state.
  • quality measurement such as CQI (Channel Quality Indicator) that enables immediate communication is performed, but communication of the individual channel itself does not occur.
  • CQI Channel Quality Indicator
  • the change is performed by handover using a random access procedure.
  • the 3GPP RAN2 # 70bis meeting that the SCC is once deactivated, communication with the SCC is terminated, and if necessary, a new PCell is connected and then the SCC is activated again.
  • CA carrier aggregation
  • the present invention has been made in view of the above problems, and it is an object to provide a mobile station device, a network control device, a communication system, a control method, and a control program that can reduce the possibility of congestion.
  • the present invention has been made in view of the above circumstances, and one aspect of the present invention has a communication range that overlaps a communication range of a macro cell base station and the macro cell base station, and the communication range is larger than the macro cell base station.
  • the mobile station apparatus includes a determination unit that determines that a primary component carrier is allocated to the picocell base station based on information related to movement of the own mobile station apparatus within a communication range of both picocell base stations.
  • the determination unit determines that the allocation of a primary component carrier is changed from the macro cell base station to the pico cell base station.
  • an aspect of the present invention determines that a primary component carrier is allocated to the picocell base station and a secondary component carrier is allocated to the macrocell base station.
  • the information on the movement is a movement speed of the own apparatus
  • the determination unit is based on the movement speed of the own mobile station apparatus. It determines with assigning a primary component carrier to the said picocell base station.
  • one aspect of the present invention is that the determination unit is configured to transmit a primary component to the picocell base station based on a moving speed of the mobile station apparatus and reception quality of a secondary component carrier. It is determined that a carrier is allocated.
  • the determination unit is configured to determine a difference between a moving speed of the mobile station apparatus and a reception quality of a primary component carrier and a reception quality of a secondary component carrier. And determining that a primary component carrier is allocated to the picocell base station.
  • the determination unit includes: a moving speed of the own mobile station apparatus; a difference between reception quality of a primary component carrier and reception quality of a secondary component carrier; It is determined that a primary component carrier is allocated to the picocell base station based on a comparison with a threshold corresponding to the moving speed of the own mobile station device.
  • the information on the movement is a position of the own mobile station apparatus, and the determination unit is based on the position of the own mobile station apparatus. It determines with assigning a primary component carrier to the said picocell base station.
  • One aspect of the present invention is based on information related to movement of a mobile station apparatus in a communication range of both a macro cell base station and a pico cell base station having a communication range overlapping the communication range of the macro cell base station. It is a network control apparatus provided with the determination part determined to allocate a primary component carrier to a base station.
  • the information on the movement is a movement speed of a mobile station apparatus
  • the determination unit is configured to perform the operation based on the movement speed of the mobile station apparatus. It determines with assigning a primary component carrier to a picocell base station.
  • the determination unit is configured to transmit a primary component carrier to the picocell base station based on a moving speed of the mobile station device and a reception quality of a secondary component carrier. Is determined to be assigned.
  • the determination unit is based on a moving speed of the mobile station device and a difference between reception quality of a primary component carrier and reception quality of a secondary component carrier. Then, it is determined that a primary component carrier is allocated to the picocell base station.
  • the determination unit includes: a moving speed of the mobile station device; a difference between reception quality of a primary component carrier and reception quality of a secondary component carrier; It is determined that a primary component carrier is allocated to the picocell base station based on a comparison with a threshold corresponding to the moving speed of the mobile station device.
  • the information on the movement is a position of a mobile station device
  • the determination unit is configured to generate the pico cell based on the position of the mobile station device. It is determined that a primary component carrier is allocated to the base station.
  • One aspect of the present invention has a communication range that overlaps with a communication range of a macrocell base station and the macrocell base station, and is in a communication range of both picocell base stations having a communication range narrower than the macrocell base station
  • the communication system includes a determination unit that determines to allocate a primary component carrier to the picocell base station based on information related to movement of a station apparatus.
  • the determination unit has a communication range that overlaps with a communication range of a macro cell base station and the macro cell base station, and communication between both pico cell base stations having a communication range narrower than the macro cell base station. It is a control method including a procedure for determining that a primary component carrier is allocated to the picocell base station based on information related to movement of a mobile station device within a range.
  • a computer has a communication range overlapping a macro cell base station and a communication range of the macro cell base station, and a communication range of both pico cell base stations having a communication range narrower than the macro cell base station
  • the possibility of congestion can be reduced.
  • FIG. 1 is a schematic diagram of a communication system according to the first embodiment.
  • a picocell base station 200 is arranged in a macrocell 11 which is a communication area of the macrocell base station 100.
  • the picocell base station 200 is a base station having a communication range that overlaps the communication range of the macrocell base station 100 and having a communication range narrower than that of the macrocell base station 100.
  • the picocell base station 200 is a small base station having a communication range with a radius of several meters to several tens of meters, and mainly used indoors.
  • Each base station is connected to a core network control device (also referred to as a network control device) 300 that controls the base station.
  • a core network control device also referred to as a network control device 300 that controls the base station.
  • control information and data information are transmitted via PCC, and only data information is transmitted via SCC.
  • a mobile station (hereinafter also referred to as a mobile station apparatus or a terminal apparatus) 500 measures the movement speed of its own mobile station, and if the measured movement speed is zero or low, the mobile station (PCC) 500 And switch the SCC assignment.
  • the low speed is a speed equal to or lower than a predetermined threshold speed.
  • the macro cell base station 100 switches allocation of PCC and SCC with the pico cell base station 200 based on the switching request. That is, the macro cell base station 100 changes the assignment of the macro cell base station 100 from PCC to SCC and the assignment of the pico cell base station 200 from SCC to PCC.
  • the component carrier A (CC_A: Component Carrier_A) used by the macrocell base station 100 is assumed to be PCC.
  • CC_A uses frequency band 1.
  • Macrocell base station 100 communicates with CC_A.
  • the component carrier B (CC_B: Component Carrier_B) used by the picocell base station 200 is set as the SCC.
  • CC_B uses a frequency band 2 different from the frequency band 1 as an example.
  • the picocell base station 200 communicates with CC_B.
  • the mobile station 500 moves (moves at a low speed) after moving from the position P1 to the position P2 in the picocell 12 which is the communication area of the picocell base station 200 as shown in FIG. This will be described below.
  • FIG. 2 is a schematic block diagram illustrating a configuration of the communication system according to the first embodiment.
  • the communication system 1 includes a macro cell base station 100, a pico cell base station 200, a core network control device 300, and a mobile station 500.
  • the mobile station 500 includes an antenna 511, an antenna 521, an antenna 531, an antenna 541, a P reception unit 512, an S reception unit 522, a P transmission unit 532, an S transmission unit 542, a control unit 551, a speed detection unit 561, and a cell determination unit 571.
  • Antennas 511, 521, 531 and 541 are radio communication antennas. It should be noted that only the components necessary for the description of the present embodiment are shown as the components of the mobile station 500, and description and illustration of the components used for normal wireless communication provided in the other mobile stations 500 are omitted.
  • the macrocell base station 100 includes antennas 111 and 121, an A transmission unit 112, an A reception unit 122, and a control unit 131.
  • the antennas 111 and 112 of the macro cell base station are radio communication antennas.
  • the picocell base station 200 includes antennas 211 and 221, a B transmission unit 212, a B reception unit 222, and a control unit 231.
  • the antennas 211 and 212 of the picocell base station are radio communication antennas.
  • the core network control device 300 includes a control unit 311.
  • the components of the macro cell base station 100, the pico cell base station 200, and the core network control device 300 only those necessary for the description of the present embodiment are shown, and the other macro cell base station 100, the pico cell base station 200, and the core network control device are shown. Description and illustration of components used for normal wireless communication provided in the apparatus 300 are omitted.
  • the P receiving unit 512 receives a signal transmitted from the antenna 111 of the macrocell base station 100 via the antenna 511. Then, the P receiving unit 512 drops the received signal to the baseband, performs a Fourier transform on the digital signal after AD conversion, and a signal in the frequency band of CC_A from the signal on the frequency axis after the Fourier transform. Extract. The P receiving unit 512 demodulates and decodes the extracted CC_A signal. Thereby, the P receiving unit 512 can restore the signal transmitted from the macro cell base station 100. Then, the P receiver 512 outputs the decoded signal to the controller 551.
  • the S receiver 522 receives the signal transmitted from the antenna 211 of the picocell base station 200 via the antenna 521. Then, the S receiver 522 drops the received signal to the baseband, performs a Fourier transform on the digital signal after AD conversion, and a signal in the frequency band of CC_B from the signal on the frequency axis after the Fourier transform. Extract. The S receiver 522 demodulates and decodes the extracted CC_B signal. Thereby, the S receiver 522 can restore the signal transmitted from the macrocell base station 100. Then, the S reception unit 522 outputs the decoded signal to the control unit 551.
  • the P transmission unit 532 encodes the signal input from the control unit 551 based on the control by the control unit 551, and modulates the encoded signal. Then, the P transmission unit 532 superimposes the modulated signal on CC_A. Then, the P transmission unit 532 performs inverse Fourier transform on the superimposed signal. Then, P transmission section 532 transmits a signal based on the signal after inverse Fourier transform from antenna 531 to antenna 121 of macro cell base station 100.
  • the S transmission unit 532 encodes the signal input from the control unit 551 based on the control by the control unit 551, and modulates the encoded signal. Then, the S transmission unit 532 superimposes the modulated signal on the CC_B frequency band. Then, the S transmission unit 532 performs an inverse Fourier transform on the superimposed signal. Then, the S transmission unit 532 DA-converts a signal based on the signal on the time axis after the inverse Fourier transform and then up-converts the signal to a radio frequency band, and transmits the signal from the antenna 541 to the antenna 221 of the picocell base station 200. To do.
  • the speed detector 561 detects the moving speed of the mobile station 500 at a predetermined cycle, for example. Specifically, for example, the speed detection unit 561 detects the moving speed of the mobile station 500 by the following process.
  • the speed detection unit 561 includes, for example, an acceleration sensor, and holds stride information indicating the stride of the user who moves while holding the mobile station 500.
  • the speed detection unit 561 detects, for example, the walking pitch of the user during a predetermined detection period (for example, 10 seconds) using an acceleration sensor.
  • the speed detection part 561 detects the moving speed of the mobile station 500, for example by dividing the value which multiplied the step by the walking pitch by the detection period which detected the walking pitch.
  • the method of detecting the moving speed in the speed detecting unit 561 is not limited to this. Then, the speed detection unit 561 outputs movement speed information indicating the detected movement speed to the control unit 551. Then, the control unit 551 outputs the movement speed information input from the speed detection unit 561 to the cell determination unit 571.
  • the cell determination unit 571 determines whether or not it is within the communication range of both the macrocell base station 100 and the picocell base station 200. When the cell determination result indicates that the cell determination result is within the communication range of both the macro cell base station 100 and the pico cell base station 200, the cell determination unit 571 performs the following processing.
  • the cell determination unit 571 determines to change the assignment of the primary component carrier from the macro cell base station 100 to the pico cell base station 200 based on the movement speed indicated by the movement speed information input from the speed detection unit 561. More specifically, the cell determination unit 571 determines that a primary component carrier is allocated to the picocell base station 200 and a secondary component carrier is allocated to the macrocell base station 100 based on the moving speed. In other words, the cell determination unit 571 determines whether to switch the allocation of the primary component carrier and the secondary component carrier between the macrocell base station 100 and the picocell base station 200 based on the moving speed.
  • the cell determination unit 571 assigns a primary component carrier to the picocell base station 200 and sets a secondary component carrier to the macrocell base station 100. Is determined to be assigned. This is because when the mobile station 500 detects the stationary or low-speed movement of the mobile station 500, it can be considered that the mobile station 500 stays in the area of the picocell base station 200 for a long time.
  • a predetermined threshold speed that is, when moving at a low speed
  • the cell determination unit 571 assigns a primary component carrier to the picocell base station 200 and sets a secondary component carrier to the macrocell base station 100. Is determined to be assigned. This is because when the mobile station 500 detects the stationary or low-speed movement of the mobile station 500, it can be considered that the mobile station 500 stays in the area of the picocell base station 200 for a long time.
  • a predetermined threshold speed it is assumed that the stop is included.
  • the cell determination unit 571 outputs a switching instruction signal for instructing switching between PCC and SCC to the control unit 551.
  • the cell determination unit 571 holds PCC base station information indicating a base station to which a PCC is assigned and SCC base station information indicating a base station to which an SCC is assigned.
  • the control unit 551 switches data to be output to the P transmission unit 532 and the S transmission unit 542 in accordance with switching between PCC and SCC indicated by the switching instruction signal input from the cell determination unit 571. Specifically, for example, when the mobile station 500 is moving at a high speed, the PCC is assigned to the macro cell base station 100, so the control unit 551 outputs control information and data information to the P transmission unit 532. .
  • the high speed is a speed exceeding a predetermined threshold speed.
  • the control unit 551 outputs only the data information to the P transmission unit 532.
  • the control unit 551 outputs only the data information to the S transmission unit 542.
  • the mobile station 500 when the mobile station 500 is stationary (or moves at a low speed), the mobile station 500 switches the assignment between the PCC and the SCC, and the PCC is assigned to the picocell base station 200. The information is output to the P transmission unit 532.
  • the process of the macrocell base station 100 when the mobile station 500 is moving at high speed will be described.
  • the control unit 131 outputs control information and data information to the A transmission unit 112 and controls the A transmission unit 112.
  • the A transmission unit 112 encodes control information and data information under the control of the control unit 131, and modulates the encoded signal.
  • the A transmission unit 112 superimposes the modulated signal on the CC_A frequency band, and transmits the signal from the antenna 111 to the mobile station 500 after DA conversion and up-conversion to the radio frequency band.
  • the A receiver 122 receives a signal transmitted from the mobile station 500 via the antenna 121.
  • the A receiving unit 122 drops the signal transmitted from the P transmitting unit 532 of the mobile station 500 to the baseband, performs AD conversion, performs Fourier transform (FFT: Fast Fourier Transform) on the converted digital signal, and after Fourier transform
  • FFT Fast Fourier Transform
  • the signal in the frequency band of CC_A is extracted from the signal on the frequency axis.
  • the A receiving unit 122 demodulates the extracted signal and decodes the demodulated signal.
  • the A receiving unit 122 restores the control information and data information transmitted from the mobile station 500.
  • the A receiving unit 122 outputs the restored control information and data information to the control unit 131.
  • the control unit 131 communicates with the core network control device 300 and performs processing related to handover (HO).
  • the control unit 131 has the same function as when the PCC is assigned to the macrocell base station 100, but differs in the following points.
  • the control unit 131 outputs only data information to the A transmission unit 112.
  • the A transmission unit 112 has the same function as when the PCC is assigned to the macrocell base station 100, but differs in the following points. That is, the A transmission unit 112 encodes only the data information according to the control of the control unit 131.
  • the A receiving unit 122 has the same function as when the PCC is assigned to the macrocell base station 100, but differs in the following points. That is, in the A receiving unit 122, the decoded signal includes only data information. The A receiving unit 122 outputs the data information to the control unit 131.
  • each unit of the picocell base station 200 will be described. First, each part of the picocell base station 200 when the SCC is assigned to the picocell base station 200 will be described. When the SCC is assigned to the picocell base station 200, the picocell base station 200 performs communication only with data information with the mobile station 500.
  • the control unit 231 outputs data information to the B transmission unit 212 and controls the B transmission unit 212.
  • the B transmission unit 212 encodes data information and modulates the encoded signal under the control of the control unit 231.
  • the B transmission unit 212 superimposes the modulated signal on the CC_B frequency band.
  • the B transmission unit 212 performs inverse Fourier transform on the superimposed signal.
  • the B transmission unit 212 generates a transmission signal by performing DA conversion and up-conversion to a radio frequency band based on the signal after the inverse Fourier transform. Then, the B transmission unit 212 transmits a transmission signal from the antenna 211 to the mobile station 500.
  • the B receiving unit 222 receives a signal transmitted from the mobile station 500 via the antenna 221.
  • the B receiver 222 drops the signal transmitted from the S transmitter 542 of the mobile station 500 to the baseband, performs a Fourier transform on the digital signal after AD conversion, and a signal in the frequency band of CC_B from the signal after the Fourier transform To extract. Then, the B receiving unit 222 demodulates the extracted signal and decodes the demodulated signal. Thereby, the B receiving unit 222 restores the data information transmitted from the mobile station 500.
  • the B receiving unit 222 outputs the restored data information to the control unit 231.
  • the control unit 231 performs communication related to handover (HO) with the core network control device 300. .
  • the control unit 231 has the same function as when the SCC is assigned to the picocell base station 200, but differs in the following points. That is, the control unit 231 outputs control information and data information to the B transmission unit 212.
  • the B transmission unit 212 has the same function as when the SCC is assigned to the picocell base station 200, but differs in the following points. That is, the B transmission unit 212 encodes control information and data information.
  • the B receiver 222 has the same function as that when the SCC is assigned to the picocell base station 200, but differs in the following points. That is, the output of the B receiver 222 includes control information and data information that are signals obtained after demodulation. The B receiving unit 222 outputs the control information and the data information to the control unit 231.
  • the control unit 311 of the core network control device 300 controls communication between the macrocell base station 100 and the picocell base station 200. For example, when receiving a HO request from the macro cell base station 100, the control unit 311 controls communication regarding the HO between the macro cell base station 100 and the pico cell base station 200. Details of the processing of the control unit 311 will be described later.
  • FIG. 3 is a sequence diagram illustrating an example of processing of the communication system 1 according to the first embodiment.
  • the mobile station 500 uses the macro cell base station 100 as the PCC (CC_A) and the pico cell base station 200 as the SCC (CC_B), performs the speed detection periodically while performing CA communication, Move from P1 to position P2.
  • the cell determination unit 571 of the mobile station 500 stores that the picocell base station is used as the SCC.
  • the mobile station 500 stops (or moves at a low speed) at the position P2 in FIG. 1 it is determined that the mobile station 500 stays in the area of the picocell base station 200 for a while.
  • mobile station 500 changes picocell base station 200 from SCC that transmits only data information to PCC that transmits control information and data information.
  • the communication system 1 operates as follows.
  • the mobile station 500 communicates with the macrocell base station 100 by PCC.
  • mobile station 500 communicates with picocell base station 200 using SCC.
  • the mobile station 500 measures the moving speed of the mobile station 500 while grasping that CA communication is performed using the picocell base station as the SCC. Since the moving speed is high, the cell determination unit 571 determines not to switch between PCC and SCC.
  • the high speed is a speed exceeding a predetermined threshold speed, for example.
  • the mobile station 500 communicates with the macrocell base station 100 by PCC.
  • mobile station 500 communicates with picocell base station 200 by SCC.
  • T106 the mobile station 500 measures the moving speed of the mobile station 500. Since the moving speed is zero, that is, the mobile station 500 is stationary, the cell determination unit 571 of the mobile station 500 determines to switch between PCC and SCC.
  • the mobile station 500 since the mobile station 500 detects the low speed of the mobile station 500, the mobile station 500 notifies the macro cell base station 100 of a switching request so that CC_B used as the SCC is used as the PCC.
  • the switching request notification includes switching information for using which frequency band of the PCC as the SCC and also using the SCC as the PCC. Note that the speed of the mobile station 500 is not limited to a low speed, and even when the mobile station 500 is stationary, the mobile station 500 notifies the switching request so that CC_B used as the SCC is used as the PCC.
  • the macro cell base station 100 receives the switching request notification from the mobile station 500, and transmits a HO request to the core network control apparatus 300 so as to switch CC_B from SCC to PCC.
  • the core network control apparatus 300 determines whether or not HO is possible from the resource status of the picocell base station 200 in response to the HO request received from the macrocell base station 100. Core network control apparatus 300 then notifies HO request to picocell base station 200 if HO is possible.
  • the picocell base station 200 prepares for HO according to the HO request from the core network control apparatus 300.
  • the picocell base station 200 notifies the core network control apparatus 300 of a HO response for permitting HO after completing the HO preparation.
  • the core network control apparatus 300 notifies the macro cell base station 100 of the HO response received from the pico cell base station 200.
  • the macro cell base station 100 transmits the HO response to the mobile station 500.
  • the mobile station 500 that has received the HO request from the macrocell base station 100 transmits a random access request to the picocell base station 200 in order to perform HO to the picocell base station 200.
  • the picocell base station 200 transmits a random access response to the mobile station 500 in response to the random access request received from the mobile station 500.
  • the pico cell base station 200 transmits a HO completion response to the macro cell base station 100 to the core network control apparatus 300.
  • the core network control apparatus 300 transmits the received HO completion response to the macro cell base station 100.
  • the mobile station 500, the macrocell base station 100, and the picocell base station 200 switch between PCC and SCC assignment.
  • the mobile station 500 starts communication with the macrocell base station 100 using the SCC.
  • the mobile station 500 starts communication with the picocell base station 200 using the PCC.
  • the process of this sequence is complete
  • FIG. 4 is a flowchart illustrating an example of a process flow of the mobile station 500 according to the first embodiment.
  • the mobile station 500 executes CA with the PCC assigned to the macrocell base station 100 and the SCC assigned to the picocell base station 200.
  • the cell determination unit 571 determines whether or not the SCC is assigned to the picocell base station 200.
  • the control unit 551 maintains the communication in which the PCC is assigned to the picocell base station 200, and returns to the process of step S101.
  • step S102 when the SCC is assigned to the picocell base station 200 (YES in step S102), the control unit 551 acquires the moving speed of the mobile station 500 from the speed detecting unit 561 (step S104), and proceeds to the process of step S105. move on.
  • step S105 the cell determination unit 571 determines whether the moving speed is zero or low. When the moving speed is not zero or not low (NO in step S105), the cell determination unit 571 determines that the PCC maintains communication assigned to the macrocell base station 100, and returns to the process of step S101.
  • step S105 when the moving speed is zero or low in step S105 (YES in step S105), the cell determination unit 571 determines switching between assignment of PCC and SCC (step S107).
  • step S108 the control unit 551 notifies the macro cell base station 100 of a switching request through PCC.
  • step S109 the control unit 551 receives the HO response transmitted from the macrocell base station 100 by PCC.
  • step S110 the control unit 551 performs HO processing for transmitting a random access request to the picocell base station 200.
  • step S111 the control unit 551 switches the assignment between the PCC and the SCC. That is, the control unit 551 sets CC_B as PCC and CC_A as SCC. Above, the process of this flowchart is complete
  • the mobile station 500 in the first embodiment detects the moving speed of the mobile station 500 while the macrocell base station 100 and the picocell base station 200 are executing CA. Then, when detecting the stationary or low speed, the mobile station 500 determines to change the base station to which the PCC is allocated from the macro cell base station 100 to the pico cell base station 200. The mobile station 500 executes this process even if the communication quality of the macrocell base station is better than the communication quality of the picocell base station 200.
  • the macro cell base station 100 can distribute the load to the pico cell base station 200, the load on the macro cell base station 100 can be reduced. In addition, it is possible to reduce the concentration of users on the macrocell base station 100, and to reduce the possibility of congestion.
  • the conventional macro cell base station has a problem that resource allocation cannot be sufficiently performed because there is a possibility that many users use the macro cell base station having a large cell size.
  • the resources of the macro cell base station 100 are opened by assigning the PCC to the pico cell base station 200, so that a large number of users can use the macro cell base station 100.
  • the speed detection unit 561 of the first embodiment has an advantage that it can be realized at low cost using an acceleration sensor.
  • the mobile station 500 determines whether or not to switch the assignment of PCC and SCC based only on the moving speed of the mobile station 500, and switches the assignment of PCC and SCC when stationary (or low speed).
  • this is not a limitation.
  • the cell determination unit 571 of the mobile station 500 may determine whether to switch the assignment of the PCC and the SCC based on the periodically measured moving speed, the reception quality of the PCC, and the reception quality of the SCC.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • path loss may be used as the reception quality.
  • the cell determination unit 571 checks the reception quality of the PCC and SCC. If the difference between the PCC reception quality and the SCC reception quality is within the threshold value Sp [dB] (PS ⁇ Sp), the cell determination unit 571 uses CC_B used as the SCC as the PCC. May be notified of the switching request.
  • the measurement report may be transmitted to the macro cell base station 100 when the cell determination unit 571 detects PS ⁇ Sp.
  • the macro cell base station 100 may operate by determining the Measurement Report as a switching request from the mobile station 500.
  • the value of the threshold value Sp may be changed according to the moving speed.
  • the cell determination unit 571 may increase the value of the threshold value Sp compared to that at the medium speed.
  • the low speed is, for example, a speed that is equal to or lower than a predetermined first threshold speed
  • the medium speed is, for example, a speed that is faster than the first threshold speed, and is a predetermined second speed.
  • the speed is equal to or less than the threshold speed (however, faster than the first threshold speed).
  • the threshold Sp may tend to increase as the moving speed of the mobile station 500 decreases.
  • the control unit 551 may set the value of the threshold value Sp in consideration of not only the moving speed but also the value specific to each base station depending on the cell size and the like. As a method for notifying the mobile station 500 of the value of the threshold value Sp, it may be stored in the broadcast information of each base station, or may be notified to the mobile station 500 by a Measurement Control message.
  • the cell determination unit 571 determines to allocate the primary component carrier to the picocell base station 200 based on the moving speed of the mobile station 500 and the difference between the reception quality of the primary component carrier and the reception quality of the secondary component carrier. To do. More specifically, the cell determination unit 571 is based on a comparison between the moving speed of the mobile station 500, the difference between the reception quality of the primary component carrier and the reception quality of the secondary component carrier, and a threshold corresponding to the moving speed of the mobile station 500. Thus, it is determined that the primary component carrier is allocated to the picocell base station 200.
  • the cell determination unit 571 performs primary control to the picocell base station 200 when the mobile station 500 moves at a low speed (or is stationary) and the reception quality of the secondary component carrier is better than a predetermined threshold reception quality. It is determined that a component carrier is allocated. That is, the cell determination unit 571 may determine to allocate a primary component carrier to the picocell base station 200 based on the moving speed of the mobile station 500 and the reception quality of the secondary component carrier.
  • the mobile station 500 determines that the mobile station 500 is stationary (or moves at a low speed) by detecting the moving speed of the mobile station 500.
  • the mobile station 500b in the second embodiment determines that it is stationary (or moves at a low speed) by periodically performing GPS (Global Positioning System) positioning instead of speed detection.
  • GPS Global Positioning System
  • FIG. 5 is a schematic block diagram showing the configuration of the communication system 1b in the second embodiment. Elements common to those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the configuration of the communication system 1b in FIG. 5 is such that the mobile station 500 is changed to the mobile station 500b with respect to the configuration of the communication system 1 in FIG.
  • the configuration of the mobile station 500b in FIG. 5 is the same as the configuration of the mobile station 500 in FIG. 2 except that the speed detection unit 561 is deleted, the GPS reception unit 581 is added, and the control unit 551 is changed to the control unit 551b.
  • the cell determination unit 571 is changed to a cell determination unit (determination unit) 571b.
  • the GPS receiving unit 581 measures the current position of the mobile station 500 at a predetermined cycle by receiving radio waves from a plurality of GPS satellites and determining the distances between them.
  • the current position includes latitude and longitude.
  • the GPS receiving unit 581 outputs position information indicating the current position of the mobile station 500 to the control unit 551b.
  • the control unit 551b has the same function as the control unit 551 of the first embodiment, but differs in the following points.
  • the control unit 551b outputs the position information input from the GPS reception unit 581 to the cell determination unit 571b.
  • the cell determination unit 571b determines whether or not the mobile station 500 stays in the picocell base station 200 based on the position information input from the control unit 551b. When it is determined that the mobile station 500 is staying in the picocell base station 200, the cell determination unit 571b switches between PCC and SCC allocation, allocates SCC to the macrocell base station 100, and allocates PCC to the picocell base station 200. Is determined. Then, the cell determination unit 571b outputs a switching instruction signal for instructing switching of allocation of PCC and SCC to the control unit 551b.
  • control part 551b requests
  • the macrocell base station 100 executes a process of switching the PCC and SCC allocation with the picocell base station 200 based on the switching request.
  • the cell determination unit (571 or 571b) is configured so that its own mobile station (500 or 500) in the communication range of both the macrocell base station 100 and the picocell base station 200.
  • 500b) functions as a determination unit that determines to allocate a primary component carrier to the picocell base station 200 based on the information related to movement.
  • the information regarding movement includes the speed or position of the mobile station (500 or 500b).
  • the information related to the movement of the mobile station 500b is the position of the mobile station 500b.
  • the cell determination unit 571b determines to allocate a primary component carrier to the picocell base station 200 based on the position of the mobile station 500b.
  • the macro cell base station 100 can distribute the load to the pico cell base station 200, the load on the macro cell base station 100 can be reduced. In addition, it is possible to reduce the concentration of users on the macrocell base station 100, and to reduce the possibility of congestion.
  • the conventional macro cell base station has a problem that resource allocation cannot be sufficiently performed because there is a possibility that many users use the macro cell base station having a large cell size.
  • the resources of the macro cell base station 100 are opened by assigning the PCC to the pico cell base station 200, so that a large number of users can use the macro cell base station 100.
  • the mobile station 500b since the mobile station 500b detects the position by GPS, the allocation of the primary component carrier and the secondary component carrier is switched according to the position instead of the speed. Therefore, the mobile station 500b of the second embodiment can perform the switching determination more appropriately than the mobile station 500 of the first embodiment.
  • the mobile station 500 detects the moving speed of the mobile station 500 itself, and determines whether to switch the assignment of PCC and SCC based on the detected moving speed.
  • the macro cell base station 100 measures the moving speed and reports the moving speed to the core network control apparatus (network control apparatus) 300c. When the moving speed is zero or low, the core network control apparatus 300c determines to switch the PCC and SCC to the macrocell base station 100.
  • FIG. 6 is a schematic block diagram showing the configuration of the communication system 1c in the third embodiment. Elements common to those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the configuration of the communication system 1c in FIG. 6 is different from the configuration of the communication system 1 in FIG. 2 in that the mobile station 500 is changed to the mobile station 500c and the macrocell base station 100 is changed to the macrocell base station 100c. 300 is changed to the core network control device 300c.
  • the core network control apparatus 300c When the moving speed of the mobile station 500 is reported from the macro cell base station 100c to zero (or low speed), the core network control apparatus 300c performs the following processing.
  • the core network control apparatus 300c confirms the resource status of the picocell base station 200c and transmits a switching request notification to the macrocell base station 100 so that CC_B used as SCC is used as PCC if HO is possible.
  • the switching request notification includes switching information for indicating which frequency band of the PCC is used as the SCC and which SCC is used as the PCC.
  • the configuration of the mobile station 500b in FIG. 6 is the same as the configuration of the mobile station 500 in FIG. 2 except that the speed detection unit 561 and the cell determination unit 571 are deleted and the control unit 551 is changed to the control unit 551c. Yes. Further, the configuration of the macro cell base station 100c in FIG. 6 is such that a speed detection unit 141 is added to the configuration of the macro cell base station 100 in FIG. 2 and the control unit 131 is changed to the control unit 131c. .
  • the speed detector 141 detects the moving speed of the mobile station 500c at a predetermined cycle, for example. For example, the moving speed of the mobile station 500c is detected based on a reference signal periodically transmitted from the mobile station 500c.
  • the moving speed of the mobile station 500c is set based on the change in the power of the reference signal received from the mobile station 500c. To detect. Then, the speed detection unit 141 outputs movement speed information indicating the detected movement speed to the control unit 131c.
  • the control unit 131c has the same function as the control unit 131 of the first embodiment, but differs in the following points. That is, the control unit 131c outputs the movement speed information from the speed detection unit 141 to the core network control apparatus 300c. In addition, the control unit 131c outputs first presence information indicating whether or not the mobile station 500c exists in the macro cell to the core network control apparatus 300c.
  • the configuration of the pico cell base station 200c in FIG. 6 is such that the control unit 231 is changed to a control unit 231c with respect to the configuration of the pico cell base station 200 in FIG.
  • the control unit 231c has the same function as the control unit 231 of the first embodiment, but differs in the following points. That is, the control unit 231c outputs the second presence information indicating whether or not the mobile station 500c exists in the pico cell to the core network control apparatus 300c.
  • the configuration of the core network control device 300c in FIG. 6 is a configuration in which the control unit 311 is changed to the control unit 311c and a cell determination unit (determination unit) 321 is added to the configuration of the core network control device 300 in FIG. It has become.
  • the control unit 311c has the same function as the control unit 311 of the first embodiment, but differs in the following points.
  • the control unit 311c outputs the first presence information received from the macro cell base station 100c to the cell determination unit 321.
  • the control unit 311c outputs the second presence information received from the picocell base station 200c to the cell determination unit 321.
  • the control unit 311c outputs the moving speed information received from the macro cell base station 100c to the cell determination unit 321.
  • the cell determination unit 321 Based on the first presence information input from the macrocell base station 100c and the second presence information input from the picocell base station 200c, the cell determination unit 321 allows the mobile station 500c to perform the macrocell base station 100 and the picocell base station 200c. It is determined whether or not both communication ranges are present. When it is determined that the cell determination unit 321 is within the communication range of both the macro cell base station 100 and the pico cell base station 200c, the cell determination unit 321 is based on the moving speed of the mobile station 500c indicated by the moving speed information input from the control unit 311c. It is determined whether or not a primary component carrier is allocated to the station 200c.
  • the cell determination unit 321 when it is determined that the cell determination unit 321 is not within the communication range of both the macro cell base station 100 and the pico cell base station 200, the cell determination unit 321 does not determine whether or not to assign a primary component carrier to the pico cell base station 200c.
  • the cell determining unit 321 determines whether to allocate a primary component carrier to the picocell base station 200c.
  • the cell determination unit 321 outputs a switching instruction signal instructing switching between PCC and SCC to the control unit 311c.
  • the control unit 311 c notifies the macro cell base station 100 c of a switching request.
  • the cell determination unit 321 holds PCC base station information indicating a base station to which a PCC is allocated and SCC base station information indicating a base station to which an SCC is allocated.
  • FIG. 7 is a sequence diagram showing an example of processing of the communication system 1c in the third embodiment.
  • the mobile station 500c moves from the position P11 of FIG. 1 to the position P12 while performing CA communication by assigning the macrocell base station 100c to the PCC and assigning the picocell base station 200 to the SCC.
  • the macrocell base station 100c periodically measures the moving speed of the mobile station 500c and reports it to the core network control apparatus 300c.
  • the core network control device 300c monitors the moving speed result from the macrocell base station 100 while grasping that the CA communication is performed using the picocell base station 200c as the SCC.
  • the core network control device 300c stores in the cell determination unit 321 that the mobile station 500c uses the picocell base station 200c as the SCC.
  • the core network control device 300c determines that the mobile station 500c stays in the area of the picocell base station 200c for a while. Then, the communication system 1c changes the picocell base station 200 from SCC that transmits only data information to PCC that transmits control information and data information. Details of the above processing will be described below.
  • the mobile station 500c communicates with the macro cell base station 100c as PCC.
  • the mobile station 500c communicates with the picocell base station 200c as SCC.
  • the macro cell base station 100c reports the speed detection result to the core network control apparatus 300c.
  • the cell determination unit 321 of the core network control apparatus 300c determines that the allocation of PCC and SCC is not switched when the moving speed is high from the speed detection result received from the macrocell base station 100c.
  • the mobile station 500c communicates with the macrocell base station 100c as PCC.
  • the mobile station 500c communicates with the picocell base station 200c as SCC.
  • the macro cell base station 100c reports the speed detection result to the core network control apparatus 300c.
  • the cell determination unit 321 of the core network control apparatus 300c assigns the PCC and the SCC. Is determined to be switched.
  • the core network control apparatus 300c transmits a switch request notification to the macro cell base station 100 so that CC_B used as the SCC is used as the PCC.
  • a switching request notification is transmitted to the mobile station 500c by PCC (CC_A).
  • the core network control apparatus 300c requests HO from the picocell base station 200c.
  • the picocell base station 200 prepares for HO according to the HO request from the core network control apparatus 300.
  • the picocell base station 200c transmits a HO response to permit the HO to the core network control apparatus 300c after completing the HO preparation.
  • the core network control apparatus 300c transmits the HO response received from the picocell base station 200c to the macrocell base station 100c.
  • the macro cell base station 100c transmits the HO response to the mobile station 500c.
  • the mobile station 500c makes a random access request to the picocell base station 200c in order to perform HO to the picocell base station 200.
  • the picocell base station 200c transmits a random access response to the mobile station 500c in response to the random access request.
  • the picocell base station 200c transmits to the core network control apparatus 300 a HO completion response indicating that the HO process is completed to the macrocell base station 100.
  • the core network control apparatus 300 transmits the HO completion response received from the picocell base station 200c to the macrocell base station 100c.
  • the mobile station 500c, the macro cell base station 100c, and the pico cell base station 200c switch base stations to which PCC and SCC are allocated.
  • the macrocell base station 100c starts communication with the mobile station 500c by SCC.
  • the picocell base station 200 starts communication with the mobile station 500c by PCC.
  • FIG. 8 is a flowchart illustrating an example of a processing flow of the core network control apparatus 300c in the third embodiment.
  • the processing of the core network control apparatus 300c in this flowchart is the same processing as the processing of the mobile station 500 in FIG.
  • step S ⁇ b> 201 the mobile station 500 executes CA with the PCC assigned to the macrocell base station 100 and the SCC assigned to the picocell base station 200.
  • step S202 the cell determination unit 321 of the core network control apparatus 300c determines whether or not an SCC is assigned to the picocell base station 200.
  • the mobile station 500 maintains the communication in which the PCC is assigned to the picocell base station 200, and returns to the process of step S201.
  • step S202 when the SCC is assigned to the picocell base station 200 (YES in step S202), the cell determination unit 321 acquires the moving speed of the mobile station 500 from the speed detecting unit 141 of the macrocell base station 100c (step S204). The process proceeds to step S205.
  • step S205 the cell determination unit 321 determines whether the moving speed is zero or low.
  • the cell determination unit 571 determines that the PCC maintains the communication assigned to the macrocell base station 100c, and returns to the process of step S201.
  • step S205 when the moving speed is zero or low (YES in step S205), the cell determination unit 321 determines switching between assignment of PCC and SCC (step S207).
  • step S208 the macrocell base station 100c notifies the switching request to the mobile station 500c by PCC (corresponding to T210 in FIG. 7).
  • step S209 the macro cell base station 100c transmits a HO request to the mobile station 500c by PCC (corresponding to T214 in FIG. 7).
  • step S210 the mobile station 500 performs HO processing for transmitting a random access request to the picocell base station 200 (corresponding to T215 in FIG. 7).
  • step S211 the mobile station 500c, the macro cell base station 100c, and the pico cell base station 200c switch assignment of PCC and SCC. That is, the mobile station 500c, the macro cell base station 100c, and the pico cell base station 200c set CC_B as PCC and CC_A as SCC.
  • the macro cell base station 100 c in the third embodiment detects the moving speed of the mobile station 500 c while the mobile station 500 c is executing CA in the macro cell base station 100 c and the pico cell base station 200 c. Then, when the cell determination unit 321 of the core network 300c detects the stationary or low-speed movement of the mobile station 500c, it determines that the base station to which the PCC is assigned is changed from the macrocell base station 100c to the picocell base station 200c. The mobile station 500c executes this process even if the communication quality of the macrocell base station is better than the communication quality of the picocell base station 200.
  • the macro cell base station 100c can distribute a load to the pico cell base station 200c, the load of the macro cell base station 100c can be reduced. In addition, it is possible to reduce the concentration of users on the macrocell base station 100c, and to reduce the possibility of congestion. Further, according to the configuration of the third embodiment, since the mobile station 500c does not detect the speed or position, the load on the mobile station 500c can be reduced.
  • the conventional macro cell base station has a problem that resource allocation cannot be sufficiently performed because there is a possibility that many users use the macro cell base station having a large cell size.
  • the resources of the macro cell base station 100c are opened by allocating the PCC to the pico cell base station 200c, so that a large number of users can use the macro cell base station 100.
  • the cell determination unit 321 determines whether to switch the assignment of PCC and SCC based only on the moving speed of the mobile station 500c. Not a thing.
  • the cell determination unit 321 may perform determination in consideration of not only the moving speed but also a value unique to each base station, such as a cell size.
  • the macro cell base station 100c may determine whether the cell determination unit 321 switches the assignment of the PCC and the SCC based on the moving speed of the mobile station 500c, the reception quality of the PCC, and the reception quality of the SCC. This determination process may be realized by the following process.
  • the macro cell base station 100c may confirm the PCC reception quality and the SCC reception quality from the Measurement Report message from the mobile station 500c, respectively.
  • the quality of each base station may be confirmed using RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), or path loss.
  • the macrocell base station 100 detects that the mobile station 500c is stationary (or low-speed movement), the result of the movement speed indicating that the mobile station 500c is stationary (or low-speed movement), the reception quality of the PCC, and the reception quality of the SCC Report to the controller 300c.
  • the core network control apparatus 300c confirms the moving speed result received from the macro cell base station 100, the PCC reception quality, and the SCC reception quality. If the difference between the reception quality of the PCC and the reception quality of the SCC is within the threshold value Sp [dB] (PS ⁇ Sp), the core network control apparatus 300c uses the CC_B used as the SCC to the macro cell base station 100 to the PCC The switching request may be notified so as to be used as
  • the macro cell base station 100c determines whether or not the difference between the moving speed, the PCC reception quality, and the SCC reception quality is within the threshold Sp [dB]. If the moving speed is zero (or low speed) and the difference in reception quality is within the threshold value Sp [dB] (PS ⁇ Sp), the macrocell base station 100c uses CC_B used as SCC as PCC. The switching request may be notified to the core network control device 300c.
  • the value of the threshold value Sp may be changed according to the moving speed.
  • the value of the threshold value Sp may be larger than that at medium speed. This makes it easier to satisfy the conditions for requesting the core network control device 300 to switch between PCC and SCC.
  • the threshold Sp may be changed so as to decrease as the moving speed of the mobile station 500c decreases.
  • the cell determination unit 321 assigns a primary component carrier to the picocell base station 200c based on the moving speed of the mobile station device and the difference between the reception quality of the primary component carrier and the reception quality of the secondary component carrier. It may be determined whether or not. More specifically, the cell determination unit 321 is based on a comparison between the moving speed of the mobile station apparatus, the difference between the reception quality of the primary component carrier and the reception quality of the secondary component carrier, and a threshold corresponding to the moving speed of the mobile station apparatus. Thus, it may be determined whether or not a primary component carrier is allocated to the picocell base station 200c.
  • the cell determination unit 321 is primary to the picocell base station 200c when the mobile station 500c is stationary (or moves at a low speed) and the reception quality of the secondary component carrier is better than a predetermined threshold reception quality. It may be determined whether or not to allocate a component carrier. That is, the cell determination unit 321 may determine whether to assign a primary component carrier to the picocell base station 200c based on the moving speed of the mobile station 500c and the reception quality of the secondary component carrier.
  • the macro cell base station 100c determines that the mobile station 500c is stationary (or moves at a low speed) by detecting the moving speed of the mobile station 500c.
  • the macro cell base station 100d in the fourth embodiment determines that it is stationary (or moves at a low speed) by periodically performing GPS (Global Positioning System) positioning instead of speed detection.
  • GPS Global Positioning System
  • FIG. 9 is a schematic block diagram showing the configuration of the communication system 1d in the fourth embodiment. Elements common to those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted. 9 is different from the configuration of the communication system 1 in FIG. 2 in that the mobile station 500 is changed to the mobile station 500d, the macro cell base station 100 is changed to the macro cell base station 100d, and the mobile station 500 is The mobile station is changed to 500d.
  • the core network control device 300 grasps the position of the mobile station 500d by periodically reporting the GPS positioning result from the mobile station 500d.
  • the core network control device (network control device) 300d determines that the mobile station 500d is staying in the picocell base station 200d
  • the core network control device (network control device) 300d requests the mobile station 500d to switch the allocation of PCC and SCC.
  • the mobile station 500d performs PCC and SCC allocation switching processing based on the switching request.
  • the configuration of the mobile station 500d in FIG. 9 is the same as the configuration of the mobile station 500 in FIG. 2 except that the speed detection unit 561 is deleted, the GPS reception unit 581 is added, and the control unit 551 is changed to the control unit 551d. It is a thing. Since the GPS receiving unit 581 performs the same processing as the GPS receiving unit 581 of the second embodiment, the description thereof is omitted.
  • the control unit 551d transmits the position information input from the GPS reception unit 581 as a GPS positioning result from the P transmission unit 532 to the macro cell base station 100d.
  • the configuration of the macro cell base station 100d in FIG. 9 is such that the control unit 131 is changed to the control unit 131d with respect to the configuration of the macro cell base station 100 in FIG.
  • the control unit 131d transmits the GPS positioning result transmitted from the mobile station 500d to the core network control device 300d.
  • the configuration of the core network control apparatus 300d in FIG. 9 is obtained by adding a cell determination unit (determination unit) 321d to the configuration of the core network control apparatus 300 in FIG.
  • the cell determination unit 321d has the same function as the cell determination unit 321 of the third embodiment in FIG. 6, but differs in the following points.
  • the cell determination unit 321d determines whether the mobile station 500d is within the communication range of both the macrocell base station 100 and the picocell base station 200 based on the GPS positioning result transmitted from the macrocell base station 100d. When the mobile station 500d is within the communication range of both the macrocell base station 100 and the picocell base station 200, the cell determination unit 321d calculates the moving speed of the mobile station 500d based on the GPS positioning result transmitted from the macrocell base station 100d. To do. Then, the cell determination unit 321d determines whether to assign a primary component carrier to the picocell base station 200 based on the calculated moving speed. On the other hand, when the mobile station 500d is not within the communication range of both the macrocell base station 100 and the picocell base station 200, the mobile speed is not calculated and it is not determined whether or not the primary component carrier is allocated to the picocell base station 200.
  • FIG. 10 is a sequence diagram illustrating an example of processing of the communication system 1d according to the fourth embodiment.
  • the mobile station 500d moves from the position P11 of FIG. 1 to the position P12 while allocating the macrocell base station 100d to the PCC and assigning the picocell base station 200 to the SCC and performing CA communication.
  • the mobile station 500d communicates with the macro cell base station 100d as a PCC.
  • the mobile station 500d communicates with the picocell base station 200 as SCC.
  • the mobile station 500d acquires the current position of the mobile station 500d, and transmits a GPS positioning result indicating the acquired current position to the macro cell base station 100d.
  • the macro cell base station 100d transmits the GPS positioning result received from the mobile station 500d to the core network control apparatus 300d.
  • the cell determination unit 321d of the core network control apparatus 300d calculates the moving speed of the mobile station 500d based on the GPS positioning result received from the macrocell base station 100d. Then, when the calculated moving speed is high, the cell determination unit 321d determines that the PCC and SCC assignment is not switched between the macro cell base station 100d and the pico cell base station 200.
  • the mobile station 500d communicates with the macro cell base station 100d as PCC.
  • the mobile station 500d communicates with the picocell base station 200 as SCC.
  • the mobile station 500d acquires the current position of the mobile station 500d, and transmits a GPS positioning result indicating the acquired current position to the macro cell base station 100d.
  • the macro cell base station 100d transmits the GPS positioning result received from the mobile station 500d to the core network control apparatus 300d.
  • the cell determination unit 321d of the core network control apparatus 300d calculates the moving speed of the mobile station 500d based on the GPS positioning result received from the macrocell base station 100d. Then, when the calculated moving speed is zero, that is, when the mobile station 500d is stationary, the cell determination unit 321d determines to switch the PCC and SCC assignment between the macro cell base station 100d and the pico cell base station 200.
  • the cell determination unit 321d of the core network control apparatus 300d calculates the moving speed of the mobile station 500d based on the GPS positioning result. Then, the cell determination unit 321d determines whether to assign a primary component carrier to the picocell base station 200 based on the calculated moving speed.
  • the macro cell base station 100d can distribute the load to the pico cell base station 200, the load on the macro cell base station 100d can be reduced.
  • the concentration of users on the macro cell base station 100d can be reduced, and the possibility of congestion can be reduced.
  • the conventional macro cell base station has a problem that resource allocation cannot be sufficiently performed because there is a possibility that many users use the macro cell base station having a large cell size.
  • the resources of the macro cell base station 100d are opened by assigning the PCC to the pico cell base station 200, so that a large number of users can use the macro cell base station 100d.
  • the cell determination unit 321d determines whether to switch the assignment of PCC and SCC based on the calculated moving speed, but is not limited to this. In the modification of the fourth embodiment, the cell determination unit 321d may switch the assignment between the PCC and the SCC based on the current position of the mobile station 500d indicated by the GPS positioning result. Specifically, for example, the cell determination unit 321d determines whether or not the current position of the mobile station 500d is within the communication range of the picocell base station 200.
  • the cell determination unit 321d may switch the assignment between the PCC and the SCC, assign the PCC to the picocell base station 200, and assign the SCC to the macrocell base station 100d.
  • the cell determination unit 321d is a mobile station device in the communication range of both the macrocell base station 100d and the picocell base station 200. Based on the information regarding movement, it is determined whether or not the assignment of PCC and SCC is switched between the macrocell base station 100d and the picocell base station 200.
  • the information regarding movement is, for example, the moving speed of the mobile station 500d or the position of the mobile station 500d.
  • each device of the communication system switches between PCC and SCC, a HO (handover) message is used in a HO request, a HO response, or the like.
  • a HO (handover) message is used in a HO request, a HO response, or the like.
  • the present invention is not limited to this.
  • each device of the communication system may be notified by providing another message such as a CC switching request and a CC switching response.
  • each device of the communication system distinguishes between the conventional HO request and the CC switching request used in this modification by adding another parameter for CC switching to the HO message. May be separated. Specifically, in the HO processing of the current standard, when communication is started using another new frequency band, communication previously connected after HO is disconnected. On the other hand, in the present modification, a parameter for the purpose of continuing communication as an SCC may be added without performing the disconnection process of the CC that was initially connected as the PCC. Further, the mobile station may connect to the picocell base station without using the random access request and the random access response.
  • the communication system may switch the allocation of the PCC and the SCC while diverting the timing information before notifying the CC switching request.
  • the communication range of the macro cell base station includes the communication range of the pico cell base station.
  • the present invention is not limited thereto, and the communication range of the macro cell base station and the communication range of the pico cell base station are at least one. It suffices if the parts overlap.
  • the mobile station or the core network control device has been described as including a macro cell determination unit.
  • the present invention is not limited thereto, and the macro cell base station or the pico cell base station may include a macro cell determination unit. That is, any one device included in the communication system 1 only needs to include the macro cell determination unit.
  • the cell determination unit May determine that the primary component carrier is allocated to the picocell base station. From this, the cell determination unit may determine that the primary component carrier is allocated to the picocell base station based on the information regarding the movement of the mobile station.
  • a program for executing each process of the mobile station device or the core network control device of each embodiment is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system, By executing, the above-described various processes related to the mobile station apparatus or the core network control apparatus may be performed.
  • the “computer system” referred to here may include an OS and hardware such as peripheral devices. Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
  • the “computer-readable recording medium” means a flexible disk, a magneto-optical disk, a ROM, a writable nonvolatile memory such as a flash memory, a portable medium such as a CD-ROM, a hard disk built in a computer system, etc. This is a storage device.
  • the “computer-readable recording medium” refers to a volatile memory (for example, DRAM (Dynamic) in a computer system serving as a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. Random Access Memory)), etc. that hold a program for a certain period of time.
  • the program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium.
  • the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the program may be for realizing a part of the functions described above. Furthermore, what can implement
  • the present invention can be used in communication business, communication device manufacturing industry, computer software industry, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 マクロセル基地局(100)及びマクロセル基地局(100)の通信範囲と重複する通信範囲を有し、マクロセル基地局(100)よりも通信範囲が狭いピコセル基地局(200)双方の通信範囲にある移動局装置(500)の移動に関する情報に基づいて、ピコセル基地局(200)にプライマリコンポーネントキャリアを割り当てると判定するセル判定部(571)を備える。

Description

移動局装置、ネットワーク制御装置、通信システム、制御方法及び制御プログラム
 本発明は、移動局装置、ネットワーク制御装置、通信システム、制御方法及び制御プログラムに関する。
 なお、本願は、2012年6月8日に出願された日本国特許出願2012―130893号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
 3GPP(3rd Generation Partnership Project)では、現在LTE-A(Long Term Evolution-Advanced)の仕様検討が行われている。LTE-Aでは、LTEよりも高速の通信を実現することが要求されており、LTEよりも広帯域(LTEの20MHzの帯域を越える100MHzまでの帯域)をサポートすることが求められている。しかしながら、世界的に連続した広帯域の周波数領域をLTE-A用として確保することは難しい。そこで、LTEとの互換性を可能な限り維持する目的から、コンポーネントキャリア(CC:Component Career)と呼ばれる帯域幅が20MHzまでの周波数帯域を複数まとめて通信を行うことが検討されている。その通信では、最大100MHzの帯域幅を確保し、高速かつ大容量の通信を実現させるキャリアアグリゲーション(CA:Career Aggregation)技術が検討されている。
 CA技術を用いた通信で使用されるコンポーネントキャリアはCA通信開始時や再設定時に基地局から端末固有(UE specific)で割り当てられる。通信を行うServing Cellは一つのPCell(Primary Serving Cell)と一つ以上のSCell(Secondary Serving Cell)との組み合わせにより構成される。PCellは制御情報(C-Plane:Control Plane)とデータ情報(U-Plane:User Plane)の通信を行う。ここで、PCellに対応するコンポーネントキャリアをPCC(Primary Component Carrier)と呼ぶ。SCellはデータ情報(U-Plane)のみの通信を行う。ここで、SCellに対応するコンポーネントキャリアをSCC(Secondary Component Carrier)と呼ぶ(非特許文献1の7.5節参照)。
 SCCにはconfigure状態と非configure状態がある。さらにconfigure状態にはactivate状態とdeactivate状態がある。CAを行っていない場合、PCell以外の全てのCellは非configure状態である。CAを行う場合、SCellを追加するが、このとき追加されたSCCはdeactivateなconfigure状態となる。deactivateの状態ではCQI(Channel Quality Indicator)などすぐに通信ができるような品質測定が行われるが、個別チャネルの通信自体は発生しない。基地局は移動局から報告されるdeactivateなSCellからの無線品質が良くなるとactivate状態に変更し、通信を開始する。
 通信中に、移動局がPCellを変更する場合、ランダムアクセス手順を用いたハンドオーバにより変更を行う。このとき、一度SCCをdeactivationして、SCCとの通信を終え、必要であれば新しいPCellの接続を行った後に、再度SCCをactivateすることが3GPP RAN2#70bis会合で合意されている。
GPP TS 36.300 V11.0.0 (2011-12)
 現在、異なる基地局間でのキャリアアグリゲーション(CA)については3GPPで検討中である。UEが、マクロセル基地局の通信領域内にあるピコセル基地局と、マクロセル基地局とを利用してCAを実現している最中に、ピコセル基地局の領域内で静止(もしくは低速移動)した場合を考える。マクロセル基地局をPCCとして継続利用した場合、ユーザの利用がマクロセル基地局100に集中することで、マクロセル基地局の負荷が増大し、輻輳する可能性があるという問題があった。
 そこで本発明は、上記問題に鑑みてなされたものであり、輻輳する可能性を低くすることを可能とする移動局装置、ネットワーク制御装置、通信システム、制御方法及び制御プログラムを提供することを課題とする。
 (1)本発明は前記事情に鑑みなされたもので、本発明の一態様は、マクロセル基地局及び前記マクロセル基地局の通信範囲と重複する通信範囲を有し、前記マクロセル基地局よりも通信範囲が狭いピコセル基地局双方の通信範囲にある自移動局装置の移動に関する情報に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する判定部を備える移動局装置である。
 (2)上記に記載の移動局装置において、本発明の一態様は、前記判定部は、プライマリコンポーネントキャリアの割り当てを、前記マクロセル基地局から前記ピコセル基地局に変更すると判定する。
 (3)上記に記載の移動局装置において、本発明の一態様は、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当て、前記マクロセル基地局にセカンダリコンポーネントキャリアを割り当てると判定する。
 (4)上記に記載の移動局装置において、本発明の一態様は、前記移動に関する情報は、自装置の移動速度であり、前記判定部は、前記自移動局装置の移動速度に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する。
 (5)上記に記載の移動局装置において、本発明の一態様は、前記判定部は、前記自移動局装置の移動速度とセカンダリコンポーネントキャリアの受信品質に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する。
 (6)上記に記載の移動局装置において、本発明の一態様は、前記判定部は、前記自移動局装置の移動速度と、プライマリコンポーネントキャリアの受信品質及びセカンダリコンポーネントキャリアの受信品質の差に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する。
 (7)上記に記載の移動局装置において、本発明の一態様は、前記判定部は、前記自移動局装置の移動速度と、プライマリコンポーネントキャリアの受信品質及びセカンダリコンポーネントキャリアの受信品質の差と自移動局装置の移動速度に応じた閾値との比較に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する。
 (8)上記に記載の移動局装置において、本発明の一態様は、前記移動に関する情報は、自移動局装置の位置であり、前記判定部は、前記自移動局装置の位置に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する。
 (9)本発明の一態様は、マクロセル基地局及び前記マクロセル基地局の通信範囲と重複する通信範囲を有するピコセル基地局双方の通信範囲にある移動局装置の移動に関する情報に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する判定部を備えるネットワーク制御装置である。
 (10)上記に記載のネットワーク制御装置において、本発明の一態様は、前記移動に関する情報は、移動局装置の移動速度であり、前記判定部は、移動局装置の移動速度に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する。
 (11)上記に記載のネットワーク制御装置において、本発明の一態様は、前記判定部は、前記移動局装置の移動速度とセカンダリコンポーネントキャリアの受信品質に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する。
 (12)上記に記載のネットワーク制御装置において、本発明の一態様は、前記判定部は、前記移動局装置の移動速度と、プライマリコンポーネントキャリアの受信品質及びセカンダリコンポーネントキャリアの受信品質の差に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する。
 (13)上記に記載のネットワーク制御装置において、本発明の一態様は、前記判定部は、前記移動局装置の移動速度と、プライマリコンポーネントキャリアの受信品質及びセカンダリコンポーネントキャリアの受信品質の差と前記移動局装置の移動速度に応じた閾値との比較に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する。
 (14)上記に記載のネットワーク制御装置において、本発明の一態様は、前記移動に関する情報は、移動局装置の位置であり、前記判定部は、前記移動局装置の位置に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する。
 (15)本発明の一態様は、マクロセル基地局及び前記マクロセル基地局の通信範囲と重複する通信範囲を有し、前記マクロセル基地局よりも通信範囲が狭いピコセル基地局双方の通信範囲にある移動局装置の移動に関する情報に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する判定部を備える通信システムである。
 (16)本発明の一態様は、判定部が、マクロセル基地局及び前記マクロセル基地局の通信範囲と重複する通信範囲を有し、前記マクロセル基地局よりも通信範囲が狭いピコセル基地局双方の通信範囲にある移動局装置の移動に関する情報に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する手順を有する制御方法である。
 (17)本発明の一態様は、コンピュータに、マクロセル基地局及び前記マクロセル基地局の通信範囲と重複する通信範囲を有し、前記マクロセル基地局よりも通信範囲が狭いピコセル基地局双方の通信範囲にある移動局装置の移動に関する情報に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定するステップを実行させるための制御プログラムである。
 本発明によれば、輻輳する可能性を低くすることができる。
第1の実施形態における通信システムの概略図である。 第1の実施形態における通信システムの構成を示す概略ブロック図である。 第1の実施形態における通信システムの処理の一例を示すシーケンス図である。 第1の実施形態における移動局の処理の流れの一例を示すフローチャートである。 第2の実施形態における通信システムの構成を示す概略ブロック図である。 第3の実施形態における通信システム1cの構成を示す概略ブロック図である。 第3の実施形態における通信システムの処理の一例を示すシーケンス図である。 第3の実施形態におけるコアネットワーク制御装置の処理の流れの一例を示すフローチャートである。 第4の実施形態における通信システムの構成を示す概略ブロック図である。 第4の実施形態における通信システムの処理の一例を示すシーケンス図である。
 <第1の実施形態>
  以下、本発明の実施形態について、図面を参照して詳細に説明する。図1は、第1の実施形態における通信システムの概略図である。同図に置いて、マクロセル基地局100の通信領域であるマクロセル11内にピコセル基地局200が配置されている。ピコセル基地局200は、マクロセル基地局100の通信範囲と重複する通信範囲を有し、マクロセル基地局100よりも通信範囲が狭い基地局である。ピコセル基地局200は、例えば、半径数メートルから数十メートルの通信範囲を有し、おもに屋内で使用される小型基地局である。それぞれの基地局は、基地局を制御するコアネットワーク制御装置(ネットワーク制御装置ともいう)300と接続している。CA通信では、PCCを介して制御情報とデータ情報が送信され、SCCを介してデータ情報のみが送信される。
 続いて、本実施形態の概要について説明する。本実施形態において、移動局(以下、移動局装置、端末装置ともいう)500は、自移動局の移動速度を測定し、測定した移動速度がゼロもしくは低速だった場合、マクロセル基地局100へPCCとSCCの割り当ての切り替えを要求する。ここで、低速とは、予め決められた閾値速度以下の速度のことである。マクロセル基地局100は、その切り替え要求を基に、ピコセル基地局200との間で、PCCとSCCの割り当ての切り替えを行う。すなわち、マクロセル基地局100はマクロセル基地局100の割り当てをPCCからSCCへ、ピコセル基地局200の割り当てをSCCからPCCへ変更する。
 本実施形態の初期の設定では、一例として、マクロセル基地局100が利用するコンポーネントキャリアA(CC_A:Component Career_A)をPCCとする。ここで、CC_Aは、周波数帯域1を利用する。マクロセル基地局100は、CC_Aで通信を行う。
 また、初期の設定では、一例として、ピコセル基地局200が利用するコンポーネントキャリアB(CC_B:Component Career_B)をSCCとする。ここで、CC_Bは、一例として周波数帯域1とは異なる周波数帯域2を利用する。ピコセル基地局200は、CC_Bで通信を行う。
 そして、この想定で、移動局500が、図1のようにピコセル基地局200の通信領域であるピコセル12内を位置P1から位置P2へ移動した後に静止(または低速移動)する場合を想定して以下、説明する。
 図2は、第1の実施形態における通信システムの構成を示す概略ブロック図である。同図において、通信システム1は、マクロセル基地局100と、ピコセル基地局200と、コアネットワーク制御装置300と、移動局500とを備える。
 移動局500は、アンテナ511、アンテナ521、アンテナ531、アンテナ541、P受信部512、S受信部522、P送信部532、S送信部542、制御部551、速度検出部561及びセル判定部571を備える。アンテナ511、521、531、541は無線通信用アンテナである。なお、移動局500の構成要素としては、本実施形態の説明に必要なもののみ示し、その他の移動局500が備える通常の無線通信に用いられる構成要素の説明及び図示は省略する。
 マクロセル基地局100は、アンテナ111、121、A送信部112、A受信部122及び制御部131を備える。マクロセル基地局のアンテナ111、112は無線通信用アンテナである。
 ピコセル基地局200は、アンテナ211、221、B送信部212、B受信部222及び制御部231を備える。ピコセル基地局のアンテナ211及び212は無線通信用アンテナである。
 コアネットワーク制御装置300は、制御部311を備える。
 また、マクロセル基地局100、ピコセル基地局200及びコアネットワーク制御装置300の構成要素としては、本実施形態の説明に必要なもののみ示し、その他のマクロセル基地局100、ピコセル基地局200及びコアネットワーク制御装置300が備える通常の無線通信に用いられる構成要素の説明及び図示は省略する。
 以下、本実施形態の通信ネットワーク1の処理を説明する。まず、移動局500が備える各部の処理について説明する。
 P受信部512は、マクロセル基地局100のアンテナ111から送信された信号を、アンテナ511を介して受信する。そして、P受信部512は、受信した信号をベースバンドへ落とし、AD変換を行った後のディジタル信号に対してフーリエ変換し、フーリエ変換後の周波数軸上の信号からCC_Aの周波数帯域の信号を抽出する。P受信部512は、抽出したCC_Aの信号を復調及び復号する。これにより、P受信部512は、マクロセル基地局100から送信された信号を復元することができる。そして、P受信部512は、復号後の信号を制御部551へ出力する。
 S受信部522は、ピコセル基地局200のアンテナ211から送信された信号を、アンテナ521を介して受信する。そして、S受信部522は、受信した信号をベースバンドへ落とし、AD変換を行った後のディジタル信号に対してフーリエ変換し、フーリエ変換後の周波数軸上の信号からCC_Bの周波数帯域の信号を抽出する。S受信部522は、抽出したCC_Bの信号を復調及び復号する。これにより、S受信部522は、マクロセル基地局100から送信された信号を復元することができる。そして、S受信部522は、復号後の信号を制御部551へ出力する。
 P送信部532は、制御部551による制御に基づいて、制御部551から入力された信号を符合化し、符合化後の信号を変調する。そして、P送信部532は、変調後の信号をCC_Aに重畳する。そして、P送信部532は、重畳後の信号を逆フーリエ変換する。そして、P送信部532は、逆フーリエ変換後の信号に基づく信号をアンテナ531からマクロセル基地局100のアンテナ121へ信号を送信する。
 S送信部532は、制御部551による制御に基づいて、制御部551から入力された信号を符合化し、符合化後の信号を変調する。そして、S送信部532は、変調後の信号をCC_Bの周波数帯域に重畳する。そして、S送信部532は、重畳後の信号を逆フーリエ変換する。そして、S送信部532は、逆フーリエ変換後の時間軸上の信号に基づく信号をDA変換してから無線周波数帯にアップコンバージョンして、アンテナ541からピコセル基地局200のアンテナ221へ信号を送信する。
 速度検出部561は、例えば、予め決められた周期で、移動局500の移動速度を検出する。具体的には、例えば、速度検出部561は、以下の処理により、移動局500の移動速度を検出する。速度検出部561は、例えば、加速度センサを備え、移動局500を保持して移動するユーザの歩幅を示す歩幅情報を保持する。速度検出部561は、例えば、予め決められた検出期間(例えば、10秒)におけるそのユーザの歩行ピッチを加速度センサにより検出する。そして、速度検出部561は、例えば、歩行ピッチに歩幅を乗じた値を、歩行ピッチを検出した検出期間で割ることにより、移動局500の移動速度を検出する。なお、速度検出部561における移動速度の検出方式は、これに限定するものではない。
 そして、速度検出部561は、検出した移動速度を示す移動速度情報を制御部551へ出力する。そして、制御部551は、速度検出部561から入力された移動速度情報をセル判定部571へ出力する。
 セル判定部571は、マクロセル基地局100及びピコセル基地局200双方の通信範囲にあるか否か判定する。セル判定部571は、セル判定結果がマクロセル基地局100及びピコセル基地局200双方の通信範囲にあることを示す場合、以下の処理を行う。
 セル判定部571は、速度検出部561から入力された移動速度情報が示す移動速度に基づいて、プライマリコンポーネントキャリアの割り当てを、マクロセル基地局100からピコセル基地局200に変更すると判定する。より詳細には、セル判定部571は、移動速度に基づいて、ピコセル基地局200にプライマリコンポーネントキャリアを割り当て、マクロセル基地局100にセカンダリコンポーネントキャリアを割り当てると判定する。換言すれば、セル判定部571は、移動速度に基づいて、マクロセル基地局100とピコセル基地局200との間で、プライマリコンポーネントキャリアとセカンダリコンポーネントキャリアの割り当てを切り替えるか否か判定する。
 具体的には、例えば、セル判定部571は、移動速度が予め決められた閾値速度より遅い場合すなわち低速移動の場合、ピコセル基地局200にプライマリコンポーネントキャリアを割り当て、マクロセル基地局100にセカンダリコンポーネントキャリアを割り当てると判定する。移動局500が移動局500の静止または低速移動を検出した時は、ピコセル基地局200の領域内に長時間滞在するとみなせるからである。ここで、移動速度が予め決められた閾値速度より遅い場合には、停止を含むものとする。
 セル判定部571は、PCCとSCCの切り替えを指示する切替指示信号を制御部551へ出力する。また、セル判定部571は、PCCが割り当てられた基地局を示すPCC基地局情報及びSCCが割り当てられた基地局を示すSCC基地局情報を保持する。
 制御部551は、セル判定部571から入力された切替指示信号が示すPCCとSCCの切り替えに応じて、P送信部532とS送信部542へ出力するデータを切り替える。
具体的には、例えば、移動局500が高速で移動しているときには、マクロセル基地局100にPCCが割り当てられているので、制御部551は、制御情報とデータ情報をP送信部532へ出力する。ここで、高速とは、予め決められた閾値速度を越える速度である。一方、PCCとSCCの割り当てが切り替わりマクロセル基地局100にSCCが割り当てられた場合、制御部551は、データ情報のみをP送信部532へ出力する。
 また、例えば、移動局500が高速で移動している場合、ピコセル基地局200にSCCが割り当てられているので、制御部551は、データ情報のみをS送信部542へ出力する。一方、移動局500が静止(または低速移動)している場合、移動局500は、PCCとSCCの割り当てを切り替え、ピコセル基地局200にPCCが割り当てられるので、制御部551は、制御情報とデータ情報をP送信部532へ出力する。
 続いて、マクロセル基地局100の各部の処理を説明する。
 まず、移動局500が高速で移動している場合の、マクロセル基地局100の処理を説明する。マクロセル基地局100にはPCCが割り当てられているので、マクロセル基地局100は、移動局500との間で、制御情報とデータ情報の通信を行う。
 制御部131は、制御情報とデータ情報をA送信部112へ出力し、A送信部112を制御する。A送信部112は、制御部131の制御に従って、制御情報とデータ情報を符号化し、符号化された信号を変調する。A送信部112は、変調後の信号をCC_Aの周波数帯域に重畳し、DA変換、無線周波数帯域へのアップコンバージョンの後にアンテナ111から移動局500へ送信する。
 A受信部122は、アンテナ121を介して移動局500から送信された信号を受信する。A受信部122は、移動局500のP送信部532から送信された信号をベースバンドへ落とした後にAD変換し、変換後のディジタル信号をフーリエ変換(FFT:Fast Fourier Transform)し、フーリエ変換後の周波数軸上の信号からCC_Aの周波数帯域の信号を抽出する。そして、A受信部122は、抽出した信号を復調し、復調後の信号を復号する。これにより、A受信部122は、移動局500から送信された制御情報とデータ情報を復元する。A受信部122は、復元した制御情報とデータ情報を制御部131へ出力する。
 制御部131は、コアネットワーク制御装置300と通信し、ハンドオーバー(HO)に関する処理を行う。
 続いて、ハンドオーバー(HO)により、マクロセル基地局100にSCCが割り当てられた場合の、マクロセル基地局100の各部の処理について説明する。マクロセル基地局100にSCCが割り当てられているので、この場合は、マクロセル基地局100は、移動局500との間で、データ情報のみの通信を行う。
 制御部131は、マクロセル基地局100にPCCが割り当てられている場合と同様の機能を有するが、以下の点で異なる。制御部131は、データ情報のみをA送信部112へ出力する。
 A送信部112は、マクロセル基地局100にPCCが割り当てられている場合と同様の機能を有するが、以下の点で異なる。すなわち、A送信部112は、制御部131の制御に従って、データ情報のみを符号化する。
 A受信部122は、マクロセル基地局100にPCCが割り当てられている場合と同様の機能を有するが、以下の点で異なる。すなわち、A受信部122は、復号後の信号がデータ情報のみを含む。A受信部122は、そのデータ情報を制御部131へ出力する。
 続いて、ピコセル基地局200の各部の処理を説明する。
 まず、ピコセル基地局200にSCCが割り当てられている場合のピコセル基地局200の各部を説明する。ピコセル基地局200にSCCが割り当てられている場合、ピコセル基地局200は、移動局500との間で、データ情報のみの通信を行う。
 制御部231は、データ情報をB送信部212へ出力し、B送信部212を制御する。
B送信部212は、制御部231の制御に従って、データ情報を符号化し、符号化された信号を変調する。B送信部212は、変調後の信号をCC_Bの周波数帯域に重畳する。
B送信部212は、重畳後の信号に対して逆フーリエ変換を施す。B送信部212は、逆フーリエ変換を施した後の信号に基づいて、DA変換、無線周波数帯域へのアップコンバージョンを行って送信信号を生成する。そして、B送信部212は、送信信号をアンテナ211から移動局500へ送信する。
 B受信部222は、アンテナ221を介して移動局500から送信された信号を受信する。B受信部222は、移動局500のS送信部542から送信された信号をベースバンドへ落とし、AD変換後のディジタル信号に対してフーリエ変換し、フーリエ変換後の信号からCC_Bの周波数帯域の信号を抽出する。そして、B受信部222は、抽出した信号を復調し、復調後の信号を復号する。これにより、B受信部222は、移動局500から送信されたデータ情報を復元する。B受信部222は、復元したデータ情報を制御部231へ出力する。
 続いて、制御部231は、移動局500からPCCとSCCの切替要求がマクロセル基地局100に対してあった場合、制御部231は、コアネットワーク制御装置300とハンドオーバー(HO)に関する通信を行う。
 続いて、ハンドオーバー(HO)により、ピコセル基地局200にPCCが割り当てられた場合の、ピコセル基地局200の各部の処理について説明する。
 制御部231は、ピコセル基地局200にSCCが割り当てられた場合と同様の機能を有するが、以下の点で異なる。すなわち、制御部231は、制御情報とデータ情報をB送信部212へ出力する。
 B送信部212は、ピコセル基地局200にSCCが割り当てられた場合と同様の機能を有するが以下の点で異なる。すなわち、B送信部212は、制御情報とデータ情報を符号化する。
 B受信部222は、ピコセル基地局200にSCCが割り当てられた場合と同様の機能を有するが以下の点で異なる。すなわち、B受信部222の出力は、復調後に得られる信号であるところの制御情報とデータ情報とを含む。B受信部222は、この制御情報とデータ情報を制御部231へ出力する。
 コアネットワーク制御装置300の制御部311は、マクロセル基地局100とピコセル基地局200との通信を制御する。例えば、マクロセル基地局100からHO要求を受信した場合、制御部311は、マクロセル基地局100とピコセル基地局200との、HOに関する通信を制御する。制御部311の処理の詳細は、後述する。
 図3は、第1の実施形態における通信システム1の処理の一例を示すシーケンス図である。移動局500がマクロセル基地局100をPCC(CC_A)として利用し、ピコセル基地局200をSCC(CC_B)として利用して、CA通信を行いながら、周期的に速度検出を行いつつ、図1の位置P1から位置P2まで移動する。この時、移動局500のセル判定部571は、ピコセル基地局をSCCとして利用していることを記憶している。そして、移動局500が図1の位置P2の地点で静止(または低速移動)した時、移動局500はピコセル基地局200の領域内にしばらく滞在すると判断する。そして、移動局500は、ピコセル基地局200をデータ情報のみ送信するSCCから制御情報とデータ情報を送信するPCCに変更する。具体的には、例えば、通信システム1は、以下のような動作する。
 まず、T101において、移動局500は、PCCでマクロセル基地局100と通信する。また、T102において、それと並行して、移動局500は、SCCでピコセル基地局200と通信する。
 次に、T103において、移動局500は、ピコセル基地局をSCCとしてCA通信していることを把握しつつ、移動局500の移動速度を測定する。移動速度が高速であるので、セル判定部571は、PCCとSCCとを切り替えないと判定する。ここで、高速とは、例えば、予め決められた閾値速度を超える速度である。
 次に、T104において、移動局500は、PCCでマクロセル基地局100と通信する。また、T105において、それと並行して、移動局500は、SCCでピコセル基地局200と通信する。
 次に、T106において、移動局500は、移動局500の移動速度を測定する。移動速度がゼロすなわち移動局500が静止しているので、移動局500のセル判定部571は、PCCとSCCとを切り替えると判定する。
 次に、T107において、移動局500は、移動局500の低速を検出したので、SCCとして利用していたCC_BをPCCとして利用するように切替要求をマクロセル基地局100へ通知する。ここで、切替要求通知には、どの周波数帯域のPCCをSCCとして利用し、また、SCCをPCCとして利用するための切り替え情報が含まれる。なお、移動局500の速度が低速に限らず、移動局500が静止した場合も、移動局500は、SCCとして利用していたCC_BをPCCとして利用するように切替要求を通知する。
 次に、T108において、マクロセル基地局100は、移動局500から切替要求通知を受信し、CC_BをSCCからPCCへ切り替えるようにHO要求をコアネットワーク制御装置300へ送信する。
 次に、T109において、コアネットワーク制御装置300はマクロセル基地局100から受信したHO要求に対して、HO可能か否かをピコセル基地局200のリソース状況等から判断する。そして、コアネットワーク制御装置300はHO可能ならばピコセル基地局200へHO要求を通知する。
 次に、ピコセル基地局200はコアネットワーク制御装置300からのHO要求に従ってHOの準備をする。次に、T110において、ピコセル基地局200は、HO準備完了後、コアネットワーク制御装置300にHOを許諾するHO応答を通知する。
 次に、T111において、コアネットワーク制御装置300は、ピコセル基地局200から受信したHO応答をマクロセル基地局100へ通知する。次に、T112において、マクロセル基地局100はHO応答を受信した後に、そのHO応答を移動局500へ送信する。
 次に、T113において、マクロセル基地局100からHO要求を受信した移動局500は、ピコセル基地局200へHOするためランダムアクセス要求をピコセル基地局200へ送信する。次に、T114において、ピコセル基地局200は、移動局500から受信したランダムアクセス要求に応じて、移動局500へランダムアクセス応答を送信する。
 次に、T115において、ピコセル基地局200へのHO処理が完了したら、ピコセル基地局200は、マクロセル基地局100へHO完了応答をコアネットワーク制御装置300へ送信する。
 次に、T116において、コアネットワーク制御装置300は、受信したHO完了応答をマクロセル基地局100へ送信する。
 次に、T117において、移動局500、マクロセル基地局100及びピコセル基地局200は、PCCとSCCの割り当てを切り替える。
 次に、T118において、移動局500は、マクロセル基地局100とSCCで通信を開始する。また、それと並行して、T119において、移動局500は、ピコセル基地局200とPCCで通信を開始する。以上で、本シーケンスの処理を終了する。
 図4は、第1の実施形態における移動局500の処理の流れの一例を示すフローチャートである。まず、ステップS101において、移動局500は、マクロセル基地局100に割り当てられたPCCとピコセル基地局200に割り当てられたSCCでCAを実行する。
 次に、ステップS102において、セル判定部571は、SCCがピコセル基地局200に割り当てられている否か判定する。SCCがピコセル基地局200に割り当てられていない場合(ステップS102 NO)、制御部551は、PCCがピコセル基地局200に割り当てられた通信を維持し、ステップS101の処理に戻る。
 一方、SCCがピコセル基地局200に割り当てられている場合(ステップS102 YES)、制御部551は、移動局500の移動速度を速度検出部561から取得し、(ステップS104)、ステップS105の処理へ進む。
 次に、ステップS105において、セル判定部571は、移動速度がゼロまたは低速であるか否か判定する。移動速度がゼロまたは低速でない場合(ステップS105 NO)、セル判定部571はPCCがマクロセル基地局100に割り当てられた通信を維持すると判定し、ステップS101の処理に戻る。
 一方、ステップS105において、移動速度がゼロまたは低速である場合(ステップS105 YES)、セル判定部571はPCCとSCCの割り当ての切り替えを決定する(ステップS107)。次に、ステップS108において、制御部551は、PCCでマクロセル基地局100へ切替要求を通知する。次に、ステップS109において、制御部551は、PCCでマクロセル基地局100から送信されたHO応答を受信する。
 次に、ステップS110において、制御部551は、ピコセル基地局200に対してランダムアクセス要求を送信するHO処理を行う。次に、HO処理が完了した場合、ステップS111において、制御部551は、PCCとSCCの割り当てを切り替える。すなわち、制御部551は、CC_BをPCCとし、CC_AをSCCとする。以上で、本フローチャートの処理を終了する。
 <第1の実施形態の効果>
 以上、第1の実施形態における移動局500は、マクロセル基地局100とピコセル基地局200でCAを実行中に、移動局500の移動速度の検出を行う。そして、移動局500は、静止もしくは低速を検出した場合、PCCを割り当てる基地局をマクロセル基地局100からピコセル基地局200に変更すると判定する。移動局500は、マクロセル基地局の通信品質がピコセル基地局200の通信品質より良くてもこの処理を実行する。
 これにより、マクロセル基地局100は、負荷をピコセル基地局200へ分散させることができるので、マクロセル基地局100の負荷を減らすことができる。また、ユーザがマクロセル基地局100に集中することを軽減することができ、輻輳の可能性を低くすることができる。
 また、従来のマクロセル基地局は、セルサイズの大きいマクロセル基地局を多数のユーザが利用する可能性があるので、リソース割り当てが十分取れないという問題があった。
それに対し、本実施形態によれば、PCCをピコセル基地局200に割り当てることにより、マクロセル基地局100のリソースを開けておくので、多数のユーザがマクロセル基地局100を利用することができる。また、第1の実施形態の速度検出部561は、加速度センサを用いて安価に実現できるという利点がある。
 なお、本実施形態では、移動局500が、移動局500の移動速度だけに基づいてPCCとSCCの割り当てを切り替えるか否か判定し、静止(もしくは低速)の時にPCCとSCCの割り当てを切り替える例を説明したが、これに限ったものではない。
 移動局500にセル判定部571は、周期的に測定された移動速度とPCCの受信品質とSCCの受信品質に基づいて、PCCとSCCの割り当てを切り替えるか否か判定してもよい。ここで、この受信品質として、RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)又はパスロスを用いてもよい。
 速度検出部561が、移動速度として静止(または低速移動)を検出した場合、セル判定部571は、PCCとSCCの受信品質を確認する。そして、セル判定部571は、PCCの受信品質とSCCの受信品質の差が閾値Sp[dB]以内であれば(P-S≦Sp)、SCCとして利用していたCC_BをPCCとして利用するように切替要求を通知してもよい。
 もしくは、セル判定部571がP-S≦Spを検出したことによって、Measurement Reportをマクロセル基地局100へ送信してもよい。その場合、マクロセル基地局100は、Measurement Reportを移動局500からの切替要求と判断して動作してもよい。
 ここで、閾値Spの値は、移動速度に応じて変更されてもよい。例えば、セル判定部571は、移動局500が静止(または低速移動)している場合は、閾値Spの値を中速時よりも大きくしてもよい。ここで、低速とは、例えば、予め決められた第1の閾値速度以下の速度で、中速とは、例えば、その第1の閾値速度よりも速い速度であって、予め決められた第2の閾値速度(但し、第1の閾値速度より速い速度)以下の速度である。これにより、セル判定部571が、切替の条件を満たしやすくなり、移動局500がコアネットワーク制御装置300へPCCとSCCの切り替えを要求しやすくなる。
 また、移動局500の移動速度が遅いほど、閾値Spが大きくなる傾向であってもよい。また、制御部551は、閾値Spの値を、移動速度のみではなく、セルのサイズ等により各基地局固有の値を考慮して設定してもよい。
 移動局500へ閾値Spの値を通知する方式としては、各基地局の報知情報に格納してもよいし、Measurement Control messageで移動局500へ通知してもよい。
 上記をまとめると、セル判定部571は、移動局500の移動速度と、プライマリコンポーネントキャリアの受信品質及びセカンダリコンポーネントキャリアの受信品質の差に基づいて、ピコセル基地局200にプライマリコンポーネントキャリアを割り当てると判定する。より詳細には、セル判定部571は、移動局500の移動速度と、プライマリコンポーネントキャリアの受信品質及びセカンダリコンポーネントキャリアの受信品質の差と移動局500の移動速度に応じた閾値との比較に基づいて、ピコセル基地局200にプライマリコンポーネントキャリアを割り当てると判定する。
 また、例えば、セル判定部571は、移動局500が低速移動(または静止)しており、かつセカンダリコンポーネントキャリアの受信品質が予め決められた閾値受信品質より良い場合に、ピコセル基地局200にプライマリコンポーネントキャリアを割り当てると判定する。すなわち、セル判定部571は、移動局500の移動速度とセカンダリコンポーネントキャリアの受信品質に基づいて、ピコセル基地局200にプライマリコンポーネントキャリアを割り当てると判定してもよい。
 <第2の実施形態>
 続いて、第2の実施形態について説明する。第1の実施形態において移動局500は、移動局500が静止(または低速移動)していることを、移動局500の移動速度を検出することで判断した。第2の実施形態における移動局500bは、速度検出の代わりにGPS(Global Positioning System)測位を周期的に行うことにより、静止(または低速移動)していることを判定する。
 図5は、第2の実施形態における通信システム1bの構成を示す概略ブロック図である。なお、図2と共通する要素には同一の符号を付し、その具体的な説明を省略する。図5の通信システム1bの構成は、図2の通信システム1の構成に対して、移動局500が移動局500bに変更されたものとなっている。図5の移動局500bの構成は、図2の移動局500の構成に対して、速度検出部561が削除されて、GPS受信部581が追加され、制御部551が制御部551bに変更され、セル判定部571がセル判定部(判定部)571bに変更されたものになっている。
 GPS受信部581は、複数のGPS衛星からの電波を受信してそれぞれとの距離を割り出すことにより、予め決められた周期で、移動局500の現在位置を測定する。ここで、現在位置は、緯度及び経度を含むものとする。そして、GPS受信部581は、移動局500の現在位置を示す位置情報を制御部551bへ出力する。
 制御部551bは、第1の実施形態の制御部551と同様の機能を有するが、以下の点で異なる。制御部551bは、GPS受信部581から入力された位置情報をセル判定部571bに出力する。
 セル判定部571bは、制御部551bから入力された位置情報に基づいて、移動局500がピコセル基地局200内に滞在しているか否か判定する。セル判定部571bは、移動局500がピコセル基地局200内に滞在していると判定した場合、PCCとSCCの割り当てを切り替え、マクロセル基地局100にSCCを割り当て、ピコセル基地局200にPCCを割り当てると判定する。そして、セル判定部571bは、PCCとSCCの割り当ての切り替えを指示する切替指示信号を制御部551bへ出力する。
 そして、制御部551bは、セル判定部571bが切替指示信号が入力された場合、マクロセル基地局100へPCCとSCCの割り当ての切り替えを要求する。これにより、マクロセル基地局100はその切り替え要求に基づいて、ピコセル基地局200との間で、PCCとSCCの割り当てを切り替える処理を実行する。
 以上、第1の実施形態と第2の実施形態の処理を鑑みると、セル判定部(571または571b)は、マクロセル基地局100及びピコセル基地局200双方の通信範囲にある自移動局(500または500b)の移動に関する情報に基づいて、ピコセル基地局200にプライマリコンポーネントキャリアを割り当てると判定する判定部として機能する。
ここで、移動に関する情報は、移動局(500または500b)の速度または位置を含むものである。
 <第2の実施形態の効果>
 第2の実施形態では、移動局500bの移動に関する情報は、移動局500bの位置である。セル判定部571bは、移動局500bの位置に基づいて、ピコセル基地局200にプライマリコンポーネントキャリアを割り当てると判定する。
 これにより、マクロセル基地局100は、負荷をピコセル基地局200へ分散させることができるので、マクロセル基地局100の負荷を減らすことができる。また、ユーザがマクロセル基地局100に集中することを軽減することができ、輻輳の可能性を低くすることができる。
 また、従来のマクロセル基地局は、セルサイズの大きいマクロセル基地局を多数のユーザが利用する可能性があるので、リソース割り当てが十分取れないという問題があった。
それに対し、本実施形態によれば、PCCをピコセル基地局200に割り当てることにより、マクロセル基地局100のリソースを開けておくので、多数のユーザがマクロセル基地局100を利用することができる。
 第2の実施形態によれば、移動局500bはGPSにより位置検出を行っているので、速度ではなく位置によって、プライマリコンポーネントキャリアとセカンダリコンポーネントキャリアの割り当てを切り替えている。そのため、第2の実施形態の移動局500bは、第1の実施形態の移動局500に比べて、その切り替えの判定を、より適切に行うことができる。
 <第3の実施形態>
 続いて、第3の実施形態について説明する。第1の実施形態において移動局500が、自ら移動局500の移動速度を検出し、検出した移動速度に基づいてPCCとSCCの割り当てを切り替えるか否か判定した。それに対し、第3の実施形態では、マクロセル基地局100が移動速度を測定し、コアネットワーク制御装置(ネットワーク制御装置)300cへ移動速度を報告する。移動速度がゼロもしくは低速だった場合、コアネットワーク制御装置300cは、マクロセル基地局100へPCCとSCCの切り替えると判定する。
 図6は、第3の実施形態における通信システム1cの構成を示す概略ブロック図である。なお、図2と共通する要素には同一の符号を付し、その具体的な説明を省略する。図6の通信システム1cの構成は、図2の通信システム1の構成に対して、移動局500が移動局500cに変更され、マクロセル基地局100がマクロセル基地局100cに変更され、コアネットワーク制御装置300がコアネットワーク制御装置300cに変更されたものになっている。
 以下、第3の実施形態の通信システム1の処理の概要について説明する。コアネットワーク制御装置300cは、マクロセル基地局100cから移動局500の移動速度がゼロ(または低速)を報告された場合、以下の処理を行う。コアネットワーク制御装置300cは、ピコセル基地局200cのリソース状況等を確認し、HO可能ならばSCCとして利用していたCC_BをPCCとして利用するようにマクロセル基地局100へ切替要求通知を送信する。切替要求通知には、どの周波数帯域のPCCをSCCとして利用し、また、どのSCCをPCCとして利用するかを示すための切り替え情報が含まれる。
 図6の移動局500bの構成は、図2の移動局500の構成に対して、速度検出部561とセル判定部571が削除され、制御部551が制御部551cに変更されたものになっている。
 また、図6のマクロセル基地局100cの構成は、図2のマクロセル基地局100の構成に対して、速度検出部141が追加され、制御部131が制御部131cに変更されたものになっている。
 速度検出部141は、例えば、予め決められた周期で、移動局500cの移動速度を検出する。例えば、移動局500cから周期的に送信するリファレンス信号に基づいて、移動局500cの移動速度を検出する。具体的には、例えば、移動局500cがマクロセル基地局100cから放射状方向へ移動したことを仮定して、移動局500cから受信したリファレンス信号の電力の変化に基づいて、移動局500cの移動速度を検出する。そして、速度検出部141は、検出した移動速度を示す移動速度情報を制御部131cへ出力する。
 制御部131cは、第1の実施形態の制御部131と同様の機能を有するが、以下の点で異なる。すなわち、制御部131cは、速度検出部141から移動速度情報をコアネットワーク制御装置300cへ出力する。また、制御部131cは、移動局500cがマクロセル内に存在するか否かの第1の存在情報をコアネットワーク制御装置300cへ出力する。
 図6のピコセル基地局200cの構成は、図2のピコセル基地局200の構成に対して、制御部231が制御部231cに変更されたものになっている。
 制御部231cは、第1の実施形態の制御部231と同様の機能を有するが、以下の点で異なる。すなわち、制御部231cは、移動局500cがピコセル内に存在するか否かの第2の存在情報をコアネットワーク制御装置300cへ出力する。
 図6のコアネットワーク制御装置300cの構成は、図2のコアネットワーク制御装置300の構成に対して、制御部311が制御部311cに変更され、セル判定部(判定部)321が追加されたものになっている。
 制御部311cは、第1の実施形態の制御部311と同様の機能を有するが、以下の点で異なる。制御部311cは、マクロセル基地局100cから受信した第1の存在情報をセル判定部321へ出力する。また、制御部311cは、ピコセル基地局200cから受信した第2の存在情報をセル判定部321へ出力する。また、制御部311cは、マクロセル基地局100cから受信した移動速度情報をセル判定部321へ出力する。
 セル判定部321は、マクロセル基地局100cから入力された第1の存在情報及びピコセル基地局200cから入力された第2の存在情報に基づいて、移動局500cがマクロセル基地局100及びピコセル基地局200c双方の通信範囲にあるか否か判定する。
セル判定部321は、マクロセル基地局100及びピコセル基地局200c双方の通信範囲にあると判定した場合、制御部311cから入力された移動速度情報が示す移動局500cの移動速度に基づいて、ピコセル基地局200cにプライマリコンポーネントキャリアを割り当てるか否か判定する。
 一方、セル判定部321は、マクロセル基地局100及びピコセル基地局200双方の通信範囲にないと判定した場合、ピコセル基地局200cにプライマリコンポーネントキャリアを割り当てるか否かの判定を行わない。
 具体的には、例えば、セル判定部321は、移動速度が予め決められた閾値速度より遅い場合すなわち低速の場合、ピコセル基地局200cにプライマリコンポーネントキャリアを割り当てるか否か判定する。ここで、移動速度が予め決められた閾値速度より遅い場合には、停止を含むものとする。セル判定部321は、PCCとSCCの切り替えを指示する切替指示信号を制御部311cへ出力する。制御部311cは、この切替指示信号がセル判定部321から入力された場合、切替要求をマクロセル基地局100cへ通知する。
 また、セル判定部321は、PCCが割り当てられた基地局を示すPCC基地局情報及びSCCが割り当てられた基地局を示すSCC基地局情報を保持する。
 図7は、第3の実施形態における通信システム1cの処理の一例を示すシーケンス図である。同図のシーケンスでは、移動局500cがマクロセル基地局100cをPCCに割り当て、ピコセル基地局200をSCCに割り当ててCA通信を行いながら、図1の位置P11から位置P12移動するケースを想定する。マクロセル基地局100cは周期的に移動局500cの移動速度を測定し、コアネットワーク制御装置300cに報告する。コアネットワーク制御装置300cはピコセル基地局200cをSCCとしてCA通信していることを把握しつつ、マクロセル基地局100からの移動速度結果を監視する。ここで、コアネットワーク制御装置300cは移動局500cがピコセル基地局200cをSCCとして利用していることをセル判定部321で記憶している。
 そして、移動局500cが図1の位置P12の地点で静止(または低速移動)しているとき、コアネットワーク制御装置300cは、移動局500cがピコセル基地局200cの領域内にしばらく滞在すると判断する。そして、通信システム1cは、ピコセル基地局200をデータ情報のみ送信するSCCから制御情報とデータ情報を送信するPCCに変更する。上記の処理の詳細を以下説明する。
 まず、T201において、移動局500cは、PCCとしてマクロセル基地局100cと通信する。次に、T202において、T201と並行して、移動局500cは、SCCとしてピコセル基地局200cと通信する。次に、T203において、マクロセル基地局100cは、速度検出結果をコアネットワーク制御装置300cへ報告する。
 次に、T204において、コアネットワーク制御装置300cのセル判定部321は、マクロセル基地局100cから受信した速度検出結果から移動速度が高速の場合、PCCとSCCの割り当てを切り替えないと判定する。
 次に、T205において、移動局500cは、PCCとしてマクロセル基地局100cと通信する。次に、T206において、T205と並行して、移動局500cは、SCCとしてピコセル基地局200cと通信する。次に、T207において、マクロセル基地局100cは、速度検出結果をコアネットワーク制御装置300cへ報告する。
 次に、T208において、速度検出結果から、移動局500cの移動速度がゼロである場合すなわち移動局500cが静止している場合、コアネットワーク制御装置300cのセル判定部321は、PCCとSCCの割り当てを切り替えると判定する。
 次に、T209において、コアネットワーク制御装置300cは、SCCとして利用していたCC_BをPCCとして利用するように、マクロセル基地局100へ切替要求通知を送信する。次に、T211において、PCC(CC_A)で移動局500cへ切替要求通知を送信する。
 次に、T211において、コアネットワーク制御装置300cは、ピコセル基地局200cに対してHOを要求する。これにより、ピコセル基地局200は、コアネットワーク制御装置300からのHO要求に従ってHOの準備をする。
 次に、T212において、ピコセル基地局200cは、HO準備完了後、HOを許諾する旨のHO応答をコアネットワーク制御装置300cへ送信する。次に、T213において、コアネットワーク制御装置300cは、ピコセル基地局200cから受信したHO応答をマクロセル基地局100cへ送信する。
 次に、T214において、マクロセル基地局100cはHO応答を受信した場合、そのHO応答を移動局500cへ送信する。次に、T215において、移動局500cは、ピコセル基地局200へHOするため、ランダムアクセス要求をピコセル基地局200cへする。
 次に、T216において、ピコセル基地局200cは、そのランダムアクセス要求に応じて、ランダムアクセス応答を移動局500cへ送信する。そして、T217において、ピコセル基地局200cは、ランダムアクセス処理が完了した場合、マクロセル基地局100へHO処理が完了したことを示すHO完了応答をコアネットワーク制御装置300へ送信する。そして、T218において、コアネットワーク制御装置300は、ピコセル基地局200cから受信したHO完了応答をマクロセル基地局100cへ送信する。
 次に、T219において、移動局500c、マクロセル基地局100c及びピコセル基地局200cは、PCCとSCCを割り当てる基地局を切り替える。これにより、T220において、マクロセル基地局100cは、SCCで移動局500cとの通信を開始する。また、T221において、ピコセル基地局200は、PCCで移動局500cとの通信を開始する。以上で、本シーケンスの処理を終了する。
 図8は、第3の実施形態におけるコアネットワーク制御装置300cの処理の流れの一例を示すフローチャートである。本フローチャートのコアネットワーク制御装置300cの処理は、図4の移動局500の処理と同様の処理である。
 まず、ステップS201において、移動局500は、マクロセル基地局100に割り当てられたPCCとピコセル基地局200に割り当てられたSCCでCAを実行する。
 次に、ステップS202において、コアネットワーク制御装置300cのセル判定部321は、SCCがピコセル基地局200に割り当てられている否か判定する。SCCがピコセル基地局200に割り当てられていない場合(ステップS202 NO)、移動局500は、PCCがピコセル基地局200に割り当てられた通信を維持し、ステップS201の処理に戻る。
 一方、SCCがピコセル基地局200に割り当てられている場合(ステップS202 YES)、セル判定部321は、移動局500の移動速度をマクロセル基地局100cの速度検出部141から取得し、(ステップS204)、ステップS205の処理へ進む。
 次に、ステップS205において、セル判定部321は、移動速度がゼロまたは低速であるか否か判定する。移動速度がゼロまたは低速でない場合(ステップS205 NO)、セル判定部571はPCCがマクロセル基地局100cに割り当てられた通信を維持すると判定し、ステップS201の処理に戻る。
 一方、ステップS205において、移動速度がゼロまたは低速である場合(ステップS205 YES)、セル判定部321はPCCとSCCの割り当ての切り替えを決定する(ステップS207)。次に、ステップS208において、マクロセル基地局100cは、PCCで移動局500cへ切替要求を通知する(図7のT210に対応)。次に、ステップS209において、マクロセル基地局100cは、PCCで移動局500cへHO要求を送信する(図7のT214に対応)。
 次に、ステップS210において、移動局500は、ピコセル基地局200に対してランダムアクセス要求を送信するHO処理を行う(図7のT215に対応)。次に、HO処理が完了した場合、ステップS211において、移動局500c、マクロセル基地局100c及びピコセル基地局200cは、PCCとSCCの割り当てを切り替える。すなわち、移動局500c、マクロセル基地局100c及びピコセル基地局200cは、CC_BをPCCとし、CC_AをSCCとする。以上で、本フローチャートの処理を終了する。
 <第3の実施形態の効果>
 以上、第3の実施形態におけるマクロセル基地局100cは、移動局500cがマクロセル基地局100cとピコセル基地局200cでCAを実行中に、移動局500cの移動速度の検出を行う。そして、コアネットワーク300cのセル判定部321が、移動局500cの静止もしくは低速移動を検出した場合、PCCを割り当てる基地局をマクロセル基地局100cからピコセル基地局200cに変更すると判定する。移動局500cは、マクロセル基地局の通信品質がピコセル基地局200の通信品質より良くてもこの処理を実行する。
 これにより、マクロセル基地局100cは、負荷をピコセル基地局200cへ分散させることができるので、マクロセル基地局100cの負荷を減らすことができる。また、ユーザがマクロセル基地局100cに集中することを軽減することができ、輻輳の可能性を低くすることができる。
 また、第3の実施形態の構成によれば、移動局500cが速度または位置の検出を行わないので、移動局500cの負荷を軽減することができる。
 また、従来のマクロセル基地局は、セルサイズの大きいマクロセル基地局を多数のユーザが利用する可能性があるので、リソース割り当てが十分取れないという問題があった。
それに対し、本実施形態によれば、PCCをピコセル基地局200cに割り当てることにより、マクロセル基地局100cのリソースを開けておくので、多数のユーザがマクロセル基地局100を利用することができる。
 なお、第3の実施形態では、第1の実施形態と同様に、セル判定部321が、移動局500cの移動速度だけに基づいて、PCCとSCCの割り当ての切り替えを判定したが、これに限ったものではない。セル判定部321は、移動速度のみではなく、セルのサイズ等、各基地局固有の値を考慮して判定してもよい。
 また、マクロセル基地局100cは、セル判定部321は、移動局500cの移動速度とPCCの受信品質とSCCの受信品質とに基づいて、PCCとSCCの割り当ての切り替えを判定してもよい。この判定処理を、以下の処理により実現してもよい。マクロセル基地局100cは、PCCの受信品質とSCCの受信品質を、それぞれ移動局500cからのMeasurement Report messageから確認してもよい。ここで、各基地局の品質については、RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)又はパスロスを用いることで確認してもよい。
 そして、マクロセル基地局100が、移動局500cの静止(または低速移動)を検出した場合、静止(または低速移動)である旨を示す移動速度結果とPCCの受信品質とSCCの受信品質をコアネットワーク制御装置300cへ報告する。
 コアネットワーク制御装置300cは、マクロセル基地局100から受信した移動速度結果とPCCの受信品質とSCCの受信品質を確認する。PCCの受信品質とSCCの受信品質の差が閾値Sp[dB]以内であれば(P-S≦Sp)、コアネットワーク制御装置300cは、マクロセル基地局100へSCCとして利用していたCC_BをPCCとして利用するように切替要求を通知してもよい。
 もしくは、マクロセル基地局100cが、移動速度とPCCの受信品質とSCCの受信品質の差が閾値Sp[dB]以内であるか否かを判定する。移動速度がゼロ(または低速)かつ受信品質の差が閾値Sp[dB]以内(P-S≦Sp)であれば、マクロセル基地局100cは、SCCとして利用していたCC_BをPCCとして利用するように切替要求をコアネットワーク制御装置300cへ通知してもよい。
 ここで、閾値Spの値は、移動速度応じて変更されてもよい。例えば、静止または低速移動の場合には、閾値Spの値を中速時よりも大きくしてもよい。これにより、コアネットワーク制御装置300へPCCとSCCの切替を要求するための条件が満たしやすくなる。また、移動局500cの移動速度が遅いほど、閾値Spが大きくなる傾向に変更されてもよい。
 上記の処理をまとめると、セル判定部321は、移動局装置の移動速度と、プライマリコンポーネントキャリアの受信品質及びセカンダリコンポーネントキャリアの受信品質の差に基づいて、ピコセル基地局200cにプライマリコンポーネントキャリアを割り当てるか否か判定してもよい。より詳細には、セル判定部321は、移動局装置の移動速度と、プライマリコンポーネントキャリアの受信品質及びセカンダリコンポーネントキャリアの受信品質の差と移動局装置の移動速度に応じた閾値との比較に基づいて、ピコセル基地局200cにプライマリコンポーネントキャリアを割り当てるか否か判定してもよい。
 また、例えば、セル判定部321は、移動局500cが静止(または低速移動)しており、かつセカンダリコンポーネントキャリアの受信品質が予め決められた閾値受信品質より良い場合に、ピコセル基地局200cにプライマリコンポーネントキャリアを割り当てるか否か判定してもよい。すなわち、セル判定部321は、移動局500cの移動速度とセカンダリコンポーネントキャリアの受信品質に基づいて、ピコセル基地局200cにプライマリコンポーネントキャリアを割り当てるか否か判定してもよい。
 <第4の実施形態>
 続いて、第4の実施形態について説明する。第3の実施形態においてマクロセル基地局100cは、移動局500cが静止(または低速移動)していることを、移動局500cの移動速度を検出することで判断した。第4の実施形態におけるマクロセル基地局100dは、は、速度検出の代わりにGPS(Global Positioning System)測位を周期的に行うことにより、静止(または低速移動)していることを判定する。
 図9は、第4の実施形態における通信システム1dの構成を示す概略ブロック図である。なお、図2と共通する要素には同一の符号を付し、その具体的な説明を省略する。図9の通信システム1dの構成は、図2の通信システム1の構成に対して、移動局500が移動局500dに変更され、マクロセル基地局100がマクロセル基地局100dに変更され、移動局500が移動局500dに変更されたものとなっている。
 第4の実施形態の通信システム1dの処理の概要について説明する。コアネットワーク制御装置300は、移動局500dから周期的にGPS測位の結果を報告させることにより、移動局500dの位置を把握する。コアネットワーク制御装置(ネットワーク制御装置)300dが、移動局500dがピコセル基地局200d内に滞在していると判定した場合、移動局500dへPCCとSCCの割り当ての切り替えを要求する。移動局500dは切り替え要求に基づいて、PCCとSCCの割り当ての切り替え処理を行う。
 図9の移動局500dの構成は、図2の移動局500の構成に対して、速度検出部561が削除されて、GPS受信部581が追加され、制御部551が制御部551dに変更されたものになっている。GPS受信部581は、第2の実施形態のGPS受信部581と同様の処理を行うので、その説明を省略する。
 制御部551dが、GPS受信部581から入力された位置情報をGPS測位結果として、P送信部532からマクロセル基地局100dへ送信する。
 図9のマクロセル基地局100dの構成は、図2のマクロセル基地局100の構成に対して、制御部131が制御部131dに変更されたものになっている。制御部131dは、移動局500dから送信されたGPS測位結果をコアネットワーク制御装置300dに送信する。
 図9のコアネットワーク制御装置300dの構成は、図2のコアネットワーク制御装置300の構成に対して、セル判定部(判定部)321dが追加されたものになっている。
セル判定部321dは、図6の第3の実施形態のセル判定部321と同様の機能を有するが、以下の点で異なる。
 セル判定部321dは、マクロセル基地局100dから送信されたGPS測位結果に基づいて、移動局500dがマクロセル基地局100及びピコセル基地局200双方の通信範囲にあるか否か判定する。移動局500dがマクロセル基地局100及びピコセル基地局200双方の通信範囲にある場合、セル判定部321dは、マクロセル基地局100dから送信されたGPS測位結果に基づいて、移動局500dの移動速度を算出する。そして、セル判定部321dは、算出した移動速度に基づいて、ピコセル基地局200にプライマリコンポーネントキャリアを割り当てるか否か判定する。
 一方、移動局500dがマクロセル基地局100及びピコセル基地局200双方の通信範囲にない場合、移動速度を算出せず、ピコセル基地局200にプライマリコンポーネントキャリアを割り当てるか否か判定しない。
 図10は、第4の実施形態における通信システム1dの処理の一例を示すシーケンス図である。同図のシーケンスでは、移動局500dがマクロセル基地局100dをPCCに割り当て、ピコセル基地局200をSCCに割り当ててCA通信を行いながら、図1の位置P11から位置P12移動するケースを想定する。
 まず、T301において、移動局500dは、PCCとしてマクロセル基地局100dと通信する。次に、T302において、T301と並行して、移動局500dは、SCCとしてピコセル基地局200と通信する。次に、T303において、移動局500dは、移動局500dの現在位置を取得し、取得した現在位置を示すGPS測位結果をマクロセル基地局100dへ送信する。
 次に、T304において、マクロセル基地局100dは、移動局500dから受信したGPS測位結果をコアネットワーク制御装置300dへ送信する。
 次に、T305において、コアネットワーク制御装置300dのセル判定部321dは、マクロセル基地局100dから受信したGPS測位結果に基づいて、移動局500dの移動速度を算出する。そして、セル判定部321dは、算出した移動速度が高速の場合、マクロセル基地局100dとピコセル基地局200との間で、PCCとSCCの割り当てを切り替えないと判定する。
 次に、T306において、移動局500dは、PCCとしてマクロセル基地局100dと通信する。次に、T307において、T306と並行して、移動局500dは、SCCとしてピコセル基地局200と通信する。
 次に、T308において、移動局500dは、移動局500dの現在位置を取得し、取得した現在位置を示すGPS測位結果をマクロセル基地局100dへ送信する。
 次に、T309において、マクロセル基地局100dは、移動局500dから受信したGPS測位結果をコアネットワーク制御装置300dへ送信する。
 次に、T310において、コアネットワーク制御装置300dのセル判定部321dは、マクロセル基地局100dから受信したGPS測位結果に基づいて、移動局500dの移動速度を算出する。そして、セル判定部321dは、算出した移動速度がゼロすなわち移動局500dが静止している場合、マクロセル基地局100dとピコセル基地局200との間で、PCCとSCCの割り当てを切り替えると判定する。
 T311~T323の処理は、図7のT209~T221の処理と同一であるので、その説明を省略する。以上で、本シーケンスの処理を終了する。
 <第4の実施形態の効果>
 以上、第4の実施形態によれば、コアネットワーク制御装置300dのセル判定部321dは、GPS測位結果に基づいて、移動局500dの移動速度を算出する。そして、セル判定部321dは、算出した移動速度に基づいて、ピコセル基地局200にプライマリコンポーネントキャリアを割り当てるか否か判定する。
 これにより、マクロセル基地局100dは、負荷をピコセル基地局200へ分散させることができるので、マクロセル基地局100dの負荷を減らすことができる。また、ユーザがマクロセル基地局100dに集中することを軽減することができ、輻輳の可能性を低くすることができる。
 また、従来のマクロセル基地局は、セルサイズの大きいマクロセル基地局を多数のユーザが利用する可能性があるので、リソース割り当てが十分取れないという問題があった。
それに対し、本実施形態によれば、PCCをピコセル基地局200に割り当てることにより、マクロセル基地局100dのリソースを開けておくので、多数のユーザがマクロセル基地局100dを利用することができる。
 なお、第4の実施形態では、セル判定部321dは、算出した移動速度に基づいて、PCCとSCCの割り当てを切り替えるか否か判定したがこれに限ったものではない。第4の実施形態の変形例において、セル判定部321dは、GPS測位結果が示す移動局500dの現在位置に基づいて、PCCとSCCの割り当てを切り替えてもよい。具体的には、例えば、セル判定部321dは、移動局500dの現在位置がピコセル基地局200の通信範囲内であるか否か判定する。そして、セル判定部321dは、ピコセル基地局200の通信範囲内である場合、PCCとSCCの割り当てを切り替えて、ピコセル基地局200にPCCを割り当て、マクロセル基地局100dにSCCを割り当ててもよい。
 以上の第4の実施形態本文と、第4の実施形態の変形例における処理とに鑑みると、セル判定部321dは、マクロセル基地局100d及びピコセル基地局200双方の通信範囲にある移動局装置の移動に関する情報に基づいて、マクロセル基地局100dとピコセル基地局200との間で、PCCとSCCの割り当てを切り替えるか否か判定する。ここで、移動に関する情報は、例えば、移動局500dの移動速度又は移動局500dの位置である。
 <各実施形態の変形例>
 上記、各実施形態において、通信システムの各装置が、PCCとSCCを切り替えるときに、HO要求や、HO応答などで、HO(ハンドオーバー)のメッセージを利用したが、これに限ったものではない。各実施形態において、通信システムの各装置は、CC切り替え要求,CC切替応答などの別なメッセージを設けて通知してもよい。
 また、各実施形態において、通信システムの各装置は、HOに関するメッセージの中に、CC切り替えのための別なパラメータを追加することで、従来のHO要求と本変形例で用いるCC切替要求を区別してもよい。具体的には、現在の規格のHO処理では、別な新たな周波数帯を利用して通信を開始すると、HO後にあらかじめ接続している通信は、切断処理してしまう。それに対し、本変形例では、最初にPCCとして接続していたCCの通信の切断処理を行わず、SCCとして通信を継続する目的のためのパラメータを追加してもよい。また、移動局は、ランダムアクセス要求及びランダムアクセス応答を利用せずにピコセル基地局に接続してもよい。
 各実施形態では、移動局とマクロセル基地局との間、又は移動局とピコセル基地局との間は、すでに通信接続が確立されており、移動局と各基地局とは、通信タイミングが分かっている。そこで、各実施形態において、通信システムは、CC切替要求を通知する以前のタイミング情報を流用しながら、PCCとSCCの割り当てを切り替えてもよい。
 なお、各実施形態において、マクロセル基地局の通信範囲がピコセル基地局の通信範囲を包含する例について説明したが、これに限らず、マクロセル基地局の通信範囲とピコセル基地局の通信範囲が少なくとも一部重複していればよい。
 また、各実施形態において、移動局又はコアネットワーク制御装置がマクロセル判定部を備えるとして説明したが、これに限らず、マクロセル基地局又はピコセル基地局がマクロセル判定部を備える構成でもよい。すなわち、通信システム1が有するいずれか一つの装置が、マクロセル判定部を備えていればよい。
 また、各実施形態において、ピコセル基地局の通信範囲に移動局が入った当初から、移動局の移動速度が予め決められた閾値速度より遅い場合すなわち低速移動の場合、セル判定部は、その当初からピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定してもよい。このことから、セル判定部は、移動局の移動に関する情報に基づいて、ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定してもよい。
 また、各実施形態の移動局装置またはコアネットワーク制御装置の各処理を実行するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、当該記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、移動局装置またはコアネットワーク制御装置に係る上述した種々の処理を行ってもよい。
 なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものであってもよい。また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、フラッシュメモリ等の書き込み可能な不揮発性メモリ、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(例えばDRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 本発明は、通信事業、通信装置の製造業、コンピュータソフトウェア産業等に利用することができる。
 1、1b、1c、1d 通信システム
 100、100c、100d マクロセル基地局
 112 A送信部
 122 A受信部
 131、131c、131d 制御部
 100、100c ピコセル基地局
 141 速度検出部
 212 B送信部
 222 B受信部
 231、231c 制御部
 300、300c、300d コアネットワーク制御装置(ネットワーク制御装置)
 311 311c 制御部
 321、321d セル判定部(判定部)
 500、500b 移動局(移動局装置)
 512 P受信部
 522 S受信部
 532 P送信部
 542 S送信部
 551、551b、551c、551d 制御部
 561 速度検出部
 571、571b セル判定部(判定部)
 581 GPS受信部

Claims (17)

  1.  マクロセル基地局及び前記マクロセル基地局の通信範囲と重複する通信範囲を有し、前記マクロセル基地局よりも通信範囲が狭いピコセル基地局双方の通信範囲にある自移動局装置の移動に関する情報に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する判定部を備える移動局装置。
  2.  前記判定部は、前記自移動局装置の移動に関する情報に基づいて、プライマリコンポーネントキャリアの割り当てを、前記マクロセル基地局から前記ピコセル基地局に変更すると判定する請求項1に記載の移動局装置。
  3.  前記判定部は、前記自移動局装置の移動に関する情報に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当て、前記マクロセル基地局にセカンダリコンポーネントキャリアを割り当てると判定する請求項1または請求項2に記載の移動局装置。
  4.  前記移動に関する情報は、自装置の移動速度であり、
     前記判定部は、前記自移動局装置の移動速度に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する請求項1から請求項3のいずれか一項に記載の移動局装置。
  5.  前記判定部は、前記自移動局装置の移動速度とセカンダリコンポーネントキャリアの受信品質に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する請求項4に記載の移動局装置。
  6.  前記判定部は、前記自移動局装置の移動速度と、プライマリコンポーネントキャリアの受信品質及びセカンダリコンポーネントキャリアの受信品質の差に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する請求項5に記載の移動局装置。
  7.  前記判定部は、前記自移動局装置の移動速度と、プライマリコンポーネントキャリアの受信品質及びセカンダリコンポーネントキャリアの受信品質の差と自移動局装置の移動速度に応じた閾値との比較に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する請求項6に記載の移動局装置。
  8.  前記移動に関する情報は、自移動局装置の位置であり、
     前記判定部は、前記自移動局装置の位置に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する請求項1に記載の移動局装置。
  9.  マクロセル基地局及び前記マクロセル基地局の通信範囲と重複する通信範囲を有するピコセル基地局双方の通信範囲にある移動局装置の移動に関する情報に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する判定部を備えるネットワーク制御装置。
  10.  前記移動に関する情報は、移動局装置の移動速度であり、
     前記判定部は、移動局装置の移動速度に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する請求項7に記載のネットワーク制御装置。
  11.  前記判定部は、前記移動局装置の移動速度とセカンダリコンポーネントキャリアの受信品質に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する請求項10に記載のネットワーク制御装置。
  12.  前記判定部は、前記移動局装置の移動速度と、プライマリコンポーネントキャリアの受信品質及びセカンダリコンポーネントキャリアの受信品質の差に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する請求項11に記載のネットワーク制御装置。
  13.  前記判定部は、前記移動局装置の移動速度と、プライマリコンポーネントキャリアの受信品質及びセカンダリコンポーネントキャリアの受信品質の差と前記移動局装置の移動速度に応じた閾値との比較に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する請求項12に記載のネットワーク制御装置。
  14.  前記移動に関する情報は、移動局装置の位置であり、
     前記判定部は、前記移動局装置の位置に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する請求項9に記載のネットワーク制御装置。
  15.  マクロセル基地局及び前記マクロセル基地局の通信範囲と重複する通信範囲を有し、前記マクロセル基地局よりも通信範囲が狭いピコセル基地局双方の通信範囲にある移動局装置の移動に関する情報に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する判定部を備える通信システム。
  16.  判定部が、マクロセル基地局及び前記マクロセル基地局の通信範囲と重複する通信範囲を有し、前記マクロセル基地局よりも通信範囲が狭いピコセル基地局双方の通信範囲にある移動局装置の移動に関する情報に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定する手順を有する制御方法。
  17.  コンピュータに、
     マクロセル基地局及び前記マクロセル基地局の通信範囲と重複する通信範囲を有し、前記マクロセル基地局よりも通信範囲が狭いピコセル基地局双方の通信範囲にある移動局装置の移動に関する情報に基づいて、前記ピコセル基地局にプライマリコンポーネントキャリアを割り当てると判定するステップを実行させるための制御プログラム。
PCT/JP2013/065852 2012-06-08 2013-06-07 移動局装置、ネットワーク制御装置、通信システム、制御方法及び制御プログラム WO2013183766A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012130893A JP5879662B2 (ja) 2012-06-08 2012-06-08 移動局装置、ネットワーク制御装置、通信システム、制御方法及び制御プログラム
JP2012-130893 2012-06-08

Publications (1)

Publication Number Publication Date
WO2013183766A1 true WO2013183766A1 (ja) 2013-12-12

Family

ID=49712152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065852 WO2013183766A1 (ja) 2012-06-08 2013-06-07 移動局装置、ネットワーク制御装置、通信システム、制御方法及び制御プログラム

Country Status (2)

Country Link
JP (1) JP5879662B2 (ja)
WO (1) WO2013183766A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015146285A1 (ja) * 2014-03-25 2017-04-13 ソニー株式会社 装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3029991A1 (en) 2012-12-28 2016-06-08 NEC Corporation Handover in a mobile communication system with dual connectivity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010126105A1 (ja) * 2009-04-28 2010-11-04 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、無線基地局及び制御方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010126105A1 (ja) * 2009-04-28 2010-11-04 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、無線基地局及び制御方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ALCATEL-LUCENT ET AL.: "PCell Change using Reconfiguration procedure", 3GPP, R2-104788, 27 August 2010 (2010-08-27) *
NEC CORPORATION: "Inter CSG carrier aggregation", 3GPP, R2-114063, 26 August 2011 (2011-08-26) *
SHARP: "PCell change without handover", R2-104352, 3GPP, 27 August 2010 (2010-08-27) *
SONY CORPORATION: "Pcell Management", R2-102764, 3GPP, 14 May 2010 (2010-05-14) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015146285A1 (ja) * 2014-03-25 2017-04-13 ソニー株式会社 装置
EP3125612A4 (en) * 2014-03-25 2017-11-01 Sony Corporation Device
US10979945B2 (en) 2014-03-25 2021-04-13 Sony Corporation Device to reduce consumption of radio resources of a macrocell

Also Published As

Publication number Publication date
JP5879662B2 (ja) 2016-03-08
JP2013255174A (ja) 2013-12-19

Similar Documents

Publication Publication Date Title
JP7221397B2 (ja) Rrcアイドルモードおよび非アクティブ状態におけるrsrp/rsrq測定を低減するためのueプロシージャ
US11259229B2 (en) Apparatus and method of speed based network selection
US9872204B2 (en) Idle mode load balancing
US20180049080A1 (en) Network controlled sharing of measurement gaps for intra and inter frequency measurements for wireless networks
US8958401B2 (en) Method and apparatus for assisted network discovery
EP2534872B1 (en) Method and apparatus for reporting of measurement data
JP2017022784A (ja) インターratハンドオーバ測定値を用いたカバレッジホールの識別
US10064241B2 (en) Dynamically enabled Wi-Fi
US10045283B2 (en) Method and system of providing small cell information to user equipments in a heterogeneous network environment
US20190349824A1 (en) Method and user equipment for mobility and classification based restricted measurement list creation in virtual cells
US20200084604A1 (en) Communication device and communication method
US20160174088A1 (en) Distributed small-cell search
JP7542731B2 (ja) ネットワーク切り替え方法、装置と機器
EP3852405A1 (en) Communication method and device
EP3469831A1 (en) Method, system and apparatus
EP3783943B1 (en) Coverage level updating method, base station, terminal, and readable storage medium
JP5879662B2 (ja) 移動局装置、ネットワーク制御装置、通信システム、制御方法及び制御プログラム
EP2982198A1 (en) Method and apparatus for data radio bearer configuration in a heterogeneous network
US20150139189A1 (en) Method and apparatus for managing information in a communication system
TWI843081B (zh) 多個廣播追踪區域代碼之使用者設備(ue)處理
EP3008963B1 (en) Reporting idle mode equipment data
JP2014060683A (ja) 移動局装置、ネットワーク制御装置、および通信システム
US20160088608A1 (en) Radio communication policy allocation in a network node
US20130315123A1 (en) Method and Apparatus for Cellular Signaling
US9497692B2 (en) Measurement configuration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800520

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13800520

Country of ref document: EP

Kind code of ref document: A1