Nothing Special   »   [go: up one dir, main page]

WO2013164945A1 - Electric circuit - Google Patents

Electric circuit Download PDF

Info

Publication number
WO2013164945A1
WO2013164945A1 PCT/JP2013/061197 JP2013061197W WO2013164945A1 WO 2013164945 A1 WO2013164945 A1 WO 2013164945A1 JP 2013061197 W JP2013061197 W JP 2013061197W WO 2013164945 A1 WO2013164945 A1 WO 2013164945A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
coils
voltage
voltage converter
magnetic flux
Prior art date
Application number
PCT/JP2013/061197
Other languages
French (fr)
Japanese (ja)
Inventor
文典 奈良
里奈 澤西
Original Assignee
オートリブ ディベロップメント エービー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オートリブ ディベロップメント エービー filed Critical オートリブ ディベロップメント エービー
Publication of WO2013164945A1 publication Critical patent/WO2013164945A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation

Definitions

  • the present invention relates to reduction of electromagnetic wave noise (EMI) generated from an electric circuit, and more particularly to an electric circuit designed to reduce electromagnetic wave noise from an electric circuit including a coil through which a high-frequency current flows.
  • EMI electromagnetic wave noise
  • the DC-DC converter includes a direct-current voltage source, a coil, a capacitor, a diode, a switch (transistor), etc., and obtains a boosted voltage or a step-down voltage by intermittently switching the coil current with the transistor, and converts the direct-current voltage of the power source to a desired voltage. Convert to DC voltage.
  • Such a DC-DC converter operates the switching element with a high-frequency signal to interrupt the coil current, but at that time, the magnetic flux leaks from the coil to the surroundings.
  • the coil current becomes a high-frequency current
  • the magnetic flux leaked from the coil is radiated to the surrounding environment as electromagnetic waves and becomes electromagnetic noise.
  • this electromagnetic wave noise level increases, other electronic components may be influenced by inducing noise, and therefore electromagnetic wave noise reduction measures are required.
  • a magnetized material is disposed between two windings (of a transformer) that are spaced apart from each other, or the entire transformer is covered with a magnetized material and magnetic flux leaks to the outside. (FIGS. 40A and 40B of Patent Document 1).
  • the shielding material occupies a certain space on the circuit board, which makes it difficult to reduce the size of the mounting circuit board and reduce the occupied space. Moreover, it is necessary to consider separately the heat dissipation countermeasure of the coil interrupted
  • the present invention has been made in view of such problems, and an object thereof is to reduce radiation of electromagnetic noise from an electric circuit board having a high frequency coil without using a magnetic shielding material or an electromagnetic shielding material.
  • An electrical circuit for solving the above-described problem is an electrical circuit including a voltage converter circuit, and the voltage converter circuit is configured to intermittently pass a current flowing through the first coil in response to a first control signal.
  • a switching element and a second switching element for intermittently passing a current flowing through the second coil in response to the second control signal, wherein the first and second coils are arranged adjacent to each other on the circuit board, At least one of the polarities of the first and second coils and the direction of the coil current is set so that the leakage magnetic flux generated by the second coil is canceled out, and the operation of the first and second switching elements is substantially the same. It is characterized by being synchronized.
  • the first switching element and the second switching element are provided in circuits of different systems in the electric circuit.
  • a system is a circuit having a certain function (or a circuit of a certain operation system) and is a unified circuit between an entrance portion and an exit portion of an electric signal.
  • Different systems indicate that these systems are different, more specifically, circuits having different functions (or circuits having different operation systems).
  • electric signals that are mutually used for canceling leakage magnetic flux do not flow in circuits of different systems.
  • adjacent is a state in which the first coil and the second coil are close to each other at a distance that is affected by the leakage magnetic flux. Desirable for.
  • the “polarity of the coil” represents the winding direction of the coil winding, and it is generally determined whether the conductor is wound clockwise or counterclockwise when the coil is viewed from one direction. However, the direction of the magnetic flux generated from the coil may be indicated by the direction of the current flowing through the coil regardless of the winding direction.
  • the operations of the first and second switching elements are substantially synchronized means that the effect of canceling out the leakage magnetic flux of the first and second coils is obtained. This means that there may be a slight deviation between the operation or the first and second control signals.
  • the phase of the two coil currents may not be the same (there is a deviation) due to the difference in the load of each voltage converter. Even in such a case, if the directions of the magnetic fluxes generated by the two coils are opposite to each other, the leakage magnetic flux is canceled out.
  • the meaning of “cancellation” does not mean that the leakage magnetic flux must be canceled out 100%, but includes a case where the leakage magnetic flux can be reduced by canceling even a little. More preferably, the “cancellation” situation indicates a case where the leakage magnetic flux can be reduced by about 10 dB ( ⁇ A / m) or more.
  • the voltage converter circuit includes a first voltage converter including the first switching element and a second voltage converter including the second switching element.
  • first voltage converter including the first switching element
  • second voltage converter including the second switching element.
  • the leakage magnetic flux of the first coil and the second coil is effectively canceled out, the leakage magnetic flux radiated to the outside is reduced, and electromagnetic noise is reduced.
  • EMI radiation
  • EMI radiation
  • two (or a plurality of) coils originally provided in different circuits are adjacent to each other.
  • Leakage magnetic flux can be reduced by devising a signal (more specifically, the polarity of each coil and the current direction of each coil) that flows through each coil. In addition, this eliminates the need to provide an extra leakage flux canceling coil.
  • the first and second control signals are both PWM signals, and the conversion voltage is set according to the on / off ratio.
  • the current waveform (generated magnetic flux) flowing through the first and second coils is changed to a similar waveform or an approximate waveform, and the amount of cancellation of the leakage magnetic flux (cancellation efficiency) can be increased.
  • the power (voltage) conversion amount can be adjusted by the on / off ratio of the switching element. It is preferable to use the switching duty ratio at 50% or less because the influence of the canceling magnetic field can be almost ignored and the influence of the conversion efficiency of the voltage converter is almost eliminated.
  • the rising or falling of the waveforms of the first and second control signals are synchronized.
  • the current waveform (generated magnetic flux) flowing through the first and second coils can be synchronized as much as possible to increase the amount of cancellation of the leakage magnetic flux (cancellation efficiency). Even if the two current waveforms are not completely synchronized due to the difference in the load circuit, the effect of canceling the leakage magnetic flux is recognized as it is.
  • the first voltage converter is a step-up operation (DC voltage up), and the second voltage converter is a step-down operation (DC voltage down).
  • DC voltage up DC voltage up
  • DC voltage down DC voltage down
  • the first and second voltage converters are both boosted (DC voltage up). With such a combination, since signals of substantially the same level flow, higher leakage flux canceling effects are recognized, and electromagnetic noise is reduced.
  • the first and second voltage converters both perform step-down operation (DC voltage down).
  • step-down operation DC voltage down
  • the first and second voltage converters are two of the plurality of voltage converters whose switching element ON or OFF timing is approximate.
  • the invention can be realized without separately providing a synchronization circuit between the switching operations by utilizing the switching operations of the voltage converters of different (power supply) systems. Thereby, size reduction, weight reduction, and power saving can be achieved.
  • the apparatus further includes a first control circuit that generates the first control signal and a second control circuit that generates the second control signal, and the first and second control circuits use a common clock signal. Is.
  • the switching operations of the first voltage converter and the second voltage converter can be actively synchronized.
  • the first and second control signals are used as PWM (pulse width modulation) signals, and the rising and falling edges of the signal waveform are synchronized, and the on / off ratio is set separately, whereby different power is supplied to the first and second voltage converter circuits. It is possible to set the conversion amount.
  • the coils of two voltage converters having similar switching operations are arranged adjacent to each other and cancel each other in the opposite direction, the leakage of magnetic flux to the outside is reduced. Further, without using a magnetic shielding material or an electromagnetic shielding material, an additional coil for canceling the leakage magnetic flux is not required, and it is possible to reduce radiation of electromagnetic waves (mainly magnetic waves) noise from the coil.
  • FIG. 5 is a circuit diagram illustrating an example in which two boost DC-DC converters are arranged so that two coils are close to each other.
  • FIG. 5 is a circuit diagram for explaining an example in which two step-down DC-DC converters are arranged so that two coils are close to each other.
  • FIG. 5 is a circuit diagram illustrating an example in which two coils are brought close to each other in a step-up DC-DC converter and a step-down DC-DC converter. It is a wave form diagram explaining the magnetic flux change of two coils of a reference example. It is a wave form diagram explaining the magnetic flux change of the two coils of an Example. It is explanatory drawing explaining the experimental result of a sample.
  • FIG. 1 shows an example in which an LSI (Large Scale Integrated Circuit) 14 such as a CPU is provided on the electric circuit board 1.
  • the CPU requires a plurality of types of DC voltage sources as circuit power supplies. For this reason, a constant voltage such as 24 volts, 12 volts, and 5 volts supplied from a power supply device (not shown) is boosted or lowered to a desired level of DC voltage by a voltage converter circuit.
  • a plurality of DC-DC converters (or DC-DC converter units) 11 are provided on the electric circuit board 1 in order to obtain a plurality of DC voltages.
  • a voltage converter circuit is configured including the plurality of DC-DC converters 11.
  • Each DC-DC converter 11 includes a switching element.
  • Each DC-DC converter 11 uses a coil L. When the DC-DC converter 11 is operated at a high frequency (switching is performed at a high frequency), electromagnetic waves may leak from the coil L.
  • two coils L having similar waveforms of the leakage magnetic flux from the coil L in different circuits are extracted so that the leakage magnetic flux cancels each other.
  • the two coils L are arranged adjacent to each other (or adjacent to each other).
  • “adjacent” is a state in which the distance between the two coils is such that the leakage magnetic flux can be offset.
  • the leakage magnetic flux is canceled by adjusting the direction of two adjacent coil currents or the winding direction (polarity) of the two coils L.
  • the inductance values of the two coils L need not be the same value.
  • the leakage magnetic flux can be measured by bringing the probe of the measuring instrument close to the coil L.
  • These two coils may be searched for on the same substrate, or those on another circuit substrate may be brought on the same substrate in the form of transplanting some of the functions.
  • the two coils may be arranged on the same substrate so that coils existing separately in separate electric circuit systems (for example, voltage converters) having different functions are adjacent to each other.
  • FIG. 3 and 4 are diagrams for explaining the leakage magnetic flux in the coils L1 and L2.
  • FIG. 3 shows an example in which magnetic fluxes ⁇ 1 and ⁇ 2 in the same direction are generated in the coils when the currents of the two coils L1 and L2 flow in opposite directions.
  • FIG. 4 shows that when the currents of the two coils L1 and L2 flow in opposite directions, the direction of one coil (winding direction) is reversed so that the magnetic fluxes ⁇ 1 and ⁇ 2 in the opposite directions are generated in the coils L1 and L2. An example that occurs is shown.
  • the leakage magnetic flux g1 and g2 of each coil are also offset in the opposite direction, and the leakage magnetic flux of the two coils L1 and L2 as a whole is Decrease. Therefore, if the waveforms of the currents flowing through the two coils are similar, more desirably, if the current waveforms are synchronized, electromagnetic wave leakage from the coils L1 and L2 is reduced.
  • the direction of the coil current and the direction of the magnetic flux generated in the coil are explained by the so-called right-handed screw law.
  • two of the plurality of DC-DC converters included in the electric circuit board that approximate the magnetic flux waveform of the coil L are selected, and one coil is selected.
  • the coils are arranged close to each other by changing the winding direction of L so that the leakage magnetic flux from the two coils is canceled.
  • the leakage magnetic flux from a coil should just be canceled, and the number of the coils arrange
  • the step-up DC-DC converter includes a coil L and a high-frequency rectifier diode (for example, a Schottky barrier diode SBD) connected in series between an input terminal VIN and an output terminal VOUT to which a DC voltage is supplied, An FET transistor Tr connected between the connection point of the diode SBD and the ground potential GND, a capacitor C holding a boosted voltage connected between the output terminal VOUT and the ground GND, and the like.
  • a high-frequency rectifier diode for example, a Schottky barrier diode SBD
  • An FET transistor Tr connected between the connection point of the diode SBD and the ground potential GND, a capacitor C holding a boosted voltage connected between the output terminal VOUT and the ground GND, and the like.
  • the gate G of the transistor Tr is a pulse control signal (PWM) from a controller (not shown) as a control circuit (can be included in a commercially available IC chip, custom IC, CPU, etc., or can be created with a transistor). A signal is supplied.
  • the controller adjusts the duty of the pulse width modulation signal in accordance with the difference between the output voltage and the target voltage.
  • Each controller has its own internal oscillator (OSC), but a clock signal common to the system (electric circuit board 1) may be used.
  • the step-down DC-DC converter includes a transistor Tr and a coil L connected in series between an input terminal VIN and an output terminal VOUT to which a DC voltage is supplied, and a connection point between the transistor Tr and the coil L and a ground potential GND. And a capacitor C holding a step-down voltage connected between the output terminal VOUT and the ground GND, and the like.
  • a gate control signal which is a pulse width modulation signal is supplied to the gate G of the transistor Tr from a controller chip (not shown) as in the above boosting example.
  • the controller chip adjusts the duty of the pulse width modulation signal in accordance with the difference between the output voltage and the target voltage.
  • Each controller chip has its own internal oscillator (OSC), but a lock signal common to the system may be used.
  • the boosted voltage is set by appropriately setting the ratio (duty) of the on-time and off-time of the transistor Tr.
  • a control circuit for the transistors T1 and T2, which are switching elements, is not shown, but a commercially available IC chip or the like can be used as described above.
  • the IC chip adjusts the duty ratio of the control signal (PWM) supplied to the gate of the switching transistor based on the difference signal between the detection voltage and the target value.
  • a first control signal is generated by a first IC chip corresponding to the first DC-DC converter, and a second control signal is generated by a second IC chip corresponding to the second DC-DC converter.
  • these IC chips can be incorporated into the LSI 12 described above. In this case, it becomes easier to set the first and second control signals to the same switching frequency or to synchronize the signal waveforms by the common clock signal inside the LSI.
  • the first and second control signals are used as PWM (pulse width modulation) signals, and the rising and falling edges of the signal waveform are synchronized, and the on / off ratio is set separately, so that the first and second voltage converter circuits
  • PWM pulse width modulation
  • the control signal may be a PAM signal, a signal for changing the pulse frequency, a sine wave signal, or the like.
  • the example shown in FIG. 7 shows an example in which two step-up DC-DC converter coils L are arranged side by side.
  • the first step-up DC-DC converter corresponds to a first voltage converter circuit including a first switching element (T1) for intermittently passing a current flowing through the first coil (L1) in response to a first control signal.
  • the second step-up DC-DC converter corresponds to a second voltage converter circuit including a second switching element (T2) that intermittently passes a current flowing through the second coil (L2) in response to a second control signal.
  • the first and second coils (L1, L2) are arranged adjacent to each other on the circuit board, and the first and second coils are offset so that the leakage magnetic flux generated by the first and second coils (L1, L2) is offset.
  • the polarity (winding direction) of the (L1, L2) or the direction of the coil current is set, and preferably the first and second control signals have waveforms that are approximate to each other.
  • the example shown in FIG. 8 shows an example in which two step-down DC-DC converter coils L are arranged adjacent to each other.
  • the first step-down DC-DC converter corresponds to a first voltage converter circuit including a first switching element (T1) that intermittently passes a current flowing through the first coil (L1) in response to a first control signal.
  • the second step-down DC-DC converter corresponds to a second voltage converter circuit including a second switching element (T2) that intermittently passes a current flowing through the second coil (L2) in response to a second control signal.
  • the first and second coils (L1, L2) are arranged adjacent to each other on the circuit board, and the first and second coils are offset so that the leakage magnetic flux generated by the first and second coils (L1, L2) is offset.
  • the polarity of (L1, L2) or the direction of the coil current is set, and preferably the first and second control signals have waveforms that are approximate to each other.
  • the example shown in FIG. 9 shows an example in which a step-up DC-DC converter coil L1 and a step-down DC-DC converter coil L2 are arranged adjacent to each other.
  • the step-up DC-DC converter corresponds to a first voltage converter circuit including a first switching element (T1) that intermittently passes a current flowing through the first coil (L1) in response to a first control signal. For example, DC 13.5 volts is boosted to DC 33.1 volts.
  • the step-down DC-DC converter corresponds to a second voltage converter circuit including a second switching element (T2) that intermittently passes a current flowing through the second coil (L2) in response to the second control signal. For example, DC 33.1 volts is stepped down to DC 9 volts.
  • the first and second coils (L1, L2) are arranged adjacent to each other on the circuit board, and the first and second coils are offset so that the leakage magnetic flux generated by the first and second coils (L1, L2) is offset.
  • the polarity of (L1, L2) or the direction of the coil current is set, and preferably the first and second control signals have waveforms that are approximate to each other.
  • At least one of the winding direction (polarity) and the coil current direction of each coil L is adjusted so that the leakage flux of the two coils L is canceled out. Is done.
  • FIGS. 10 and 11 are examples in which the levels of the magnetic flux ⁇ 1 of the coil L1 of the step-up DC-DC converter and the magnetic flux ⁇ 2 of the coil L2 of the step-down DC-DC converter in the example shown in FIG. It is explanatory drawing shown.
  • the horizontal direction of the screen is the time axis, and the vertical direction is the signal level.
  • the example shown in FIG. 10 shows an example (see FIG. 3) in which the magnetic flux ⁇ 1 of the coil L1 and the magnetic flux ⁇ 2 of the coil L2 are substantially in phase (the magnetic flux is in the same direction). In this case, the leakage magnetic flux from the two coils increases.
  • FIG. 11 shows an example (see FIG. 4) in which the magnetic flux ⁇ 1 of the coil L1 and the ⁇ 2 of the coil L2 are in substantially opposite phases (the magnetic flux is directed in the reverse direction).
  • the magnetic flux ⁇ 1 of the coil L1 and the magnetic flux ⁇ 2 of the coil L2 change in a complementary manner, thereby canceling out the leakage magnetic flux (radiated magnetic field) and greatly reducing electromagnetic noise.
  • the first and second control signals supplied to the gates of the transistors are not shown, but it is desirable that the rise or fall of the waveform of the PWM control signal be synchronized and have the same pulse frequency. Thereby, it is possible to synchronize the magnetic flux waveforms (generated magnetic fluxes) flowing through the first and second coils and to increase the amount of cancellation (cancellation efficiency) of the leakage magnetic flux.
  • the two magnetic flux waveforms (or waveform phases) flowing in the first and second coils do not have to be completely synchronized, and if there is a complementary level change tendency in the two magnetic flux waveforms, the effect of canceling the leakage magnetic flux is recognized. (See FIG. 11).
  • the transistor switching duty ratio is set to a ratio necessary for voltage conversion of 50% or less as appropriate.
  • FIG. 12 is an explanatory diagram for explaining the effect of the embodiment.
  • two coils L1 and L2 of a step-up DC-DC converter and a step-down DC-DC converter on a mounting circuit board (substrate finished product, not shown) to which the present invention is applied are arranged adjacent to each other.
  • Product) and the leakage magnetic flux around the substrate is measured.
  • the maximum leakage value at the measurement location when two DC-DC converters are operated in the switching frequency range of 100 kHz to 200 kHz is shown.
  • the measured value is a current value dB ( ⁇ A / m) detected in the probe (coil) by the leakage magnetic flux around the coil.
  • ESU26 made by ROHDE & SCHWARZ and 7604 made by loop antenna ETS / RINDGREN were used. Measurement was performed at an upper position at a distance of 70 mm from the product.
  • the leakage flux amount of the mounting circuit board before the countermeasure was 73.0 dB ( ⁇ A / m) at the operating frequency of 100 kHz to 200 kHz.
  • 58.5, 60.8, and 60.6 dB ( ⁇ A / m) were all good values.
  • the numerical value is improved by about 10 dB ( ⁇ A / m) as compared with a conventional mounting circuit board that does not take electromagnetic wave shielding measures.
  • the device including the electric circuit board to which the above-described countermeasure against electromagnetic wave noise is applied has an advantage that the electromagnetic radiation energy (electromagnetic wave noise) from the apparatus is also reduced because the noise from the board is reduced.
  • an electric circuit board including a plurality of DC-DC converters two DC-DC converters approximating the waveform of magnetic flux generated by a coil are selected, and both converters are selected.
  • the coils are arranged next to each other so that the leakage magnetic fluxes cancel each other.
  • electromagnetic noise from the coil of the converter can be greatly reduced without using special parts (or additional parts) such as a magnetic shielding material, an electromagnetic shielding material, and a magnetic shielding member as much as possible. .
  • the coil may be a sheet coil in which a spiral coil sheet is laminated in addition to a conductor wound.
  • the voltage converter circuit includes not only a DC-DC converter but also a DC-AC converter. Further, although not shown, the DC-DC converter may be of a boost / buck type.
  • the present invention is advantageous when applied to an electric circuit board on which a plurality of voltage converters are arranged, and can also be applied to an electric device including such an electric circuit board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dc-Dc Converters (AREA)

Abstract

To reduce radiation of electromagnetic wave noise from an electric circuit board without using magnetic blocking materials or electromagnetic wave blocking materials, said electric circuit board having a high frequency coil. This electric circuit that includes a voltage converter circuit is characterized in that the voltage converter circuit includes: a voltage converter which includes a first switching element (T1) that interrupts, corresponding to first control signals, a current flowing in a first coil (L1); and a second voltage converter which includes a second switching element (T2) that interrupts, corresponding to second control signals, a current flowing in a second coil (L2). The electric circuit is also characterized in that: the first and second coils (L1, L2) are disposed adjacent to each other on the circuit board; the polarities or the coil current directions of the first and second coils are set such that leakage magnetic fluxes (g1, g2) to be generated by the first and second coils are cancelled out; and operations of the first and second switching elements are substantially synchronized with each other.

Description

電気回路electric circuit
 本発明は、電気回路から発生する電磁波ノイズ(EMI)の軽減に関し、特に高周波電流が流れるコイルを含む電気回路からの電磁波ノイズの低減を図った電気回路に関する。 The present invention relates to reduction of electromagnetic wave noise (EMI) generated from an electric circuit, and more particularly to an electric circuit designed to reduce electromagnetic wave noise from an electric circuit including a coil through which a high-frequency current flows.
 LSI等の集積回路では内部回路で複数種類の直流電圧を使用している。これ等の電圧値(電源)を得るために直流電圧源の出力をDC-DCコンバータ(スイッチングレギュレータ)によって昇圧したり、降圧したりして必要な電圧値を得ている。DC-DCコンバータは、直流電圧源、コイル、コンデンサ、ダイオード、スイッチ(トランジスタ)等を備え、コイル電流をトランジスタで断続することによって昇圧電圧あるいは降圧電圧を得て、電源の直流電圧を所望電圧の直流電圧に変換する。 In integrated circuits such as LSI, multiple types of DC voltage are used in the internal circuit. In order to obtain these voltage values (power supply), the output of the DC voltage source is boosted or lowered by a DC-DC converter (switching regulator) to obtain a necessary voltage value. The DC-DC converter includes a direct-current voltage source, a coil, a capacitor, a diode, a switch (transistor), etc., and obtains a boosted voltage or a step-down voltage by intermittently switching the coil current with the transistor, and converts the direct-current voltage of the power source to a desired voltage. Convert to DC voltage.
 このような、DC-DCコンバータは高周波信号でスイッチング素子を動作させてコイル電流を断続するが、その際にコイルから周囲に磁束が漏洩する。コイル電流が高周波電流になるとコイルからの漏洩磁束が電磁波として周囲環境に放射されて電磁波ノイズとなる。この電磁波ノイズのレベルが大きくなると他の電子部品にノイズを誘起して影響を与える場合があるので電磁波ノイズ軽減対策が必要になる。例えば、特許文献1に記載のコンバータを有する電力装置では離間して配置された(トランスの)2つの巻き線間に磁化素材を配置し、あるいはトランス全体を磁化素材で覆って外部に磁束が漏れないようにしている(特許文献1の図40A,図40B)。 Such a DC-DC converter operates the switching element with a high-frequency signal to interrupt the coil current, but at that time, the magnetic flux leaks from the coil to the surroundings. When the coil current becomes a high-frequency current, the magnetic flux leaked from the coil is radiated to the surrounding environment as electromagnetic waves and becomes electromagnetic noise. If this electromagnetic wave noise level increases, other electronic components may be influenced by inducing noise, and therefore electromagnetic wave noise reduction measures are required. For example, in a power device having a converter described in Patent Document 1, a magnetized material is disposed between two windings (of a transformer) that are spaced apart from each other, or the entire transformer is covered with a magnetized material and magnetic flux leaks to the outside. (FIGS. 40A and 40B of Patent Document 1).
特開2004-159485号公報JP 2004-159485 A
 しかしながら、コイル全体を磁性材料で覆って磁気遮蔽する場合には、遮蔽材が回路基板上の一定の空間を占有するため、実装回路基板の小型化や占有空間の減少を図ることが難しくなる。また、遮蔽材によって外部空間から遮断されたコイルの放熱対策を別途考慮する必要がある。また、フェライトなどの磁性材料による遮蔽構造体の製作には費用が掛かる。 However, when the entire coil is covered with a magnetic material to be magnetically shielded, the shielding material occupies a certain space on the circuit board, which makes it difficult to reduce the size of the mounting circuit board and reduce the occupied space. Moreover, it is necessary to consider separately the heat dissipation countermeasure of the coil interrupted | blocked from the external space by the shielding material. Further, it is expensive to manufacture a shielding structure made of a magnetic material such as ferrite.
 本発明はこのような課題に鑑みてなされたものであり、磁気遮蔽材料あるいは電磁波遮蔽材料などを用いずに高周波コイルを有する電気回路基板からの電磁波ノイズの放射を軽減することを目的とする。 The present invention has been made in view of such problems, and an object thereof is to reduce radiation of electromagnetic noise from an electric circuit board having a high frequency coil without using a magnetic shielding material or an electromagnetic shielding material.
 上記課題を解決する本発明の一態様の電気回路は、電圧コンバータ回路を含む電気回路であって、上記電圧コンバータ回路は、第1制御信号に応じて第1コイルに流れる電流を断続する第1スイッチング素子と、第2制御信号に応じて第2コイルに流れる電流を断続する第2スイッチング素子と、を含み、上記第1及び第2コイルは回路基板上に隣り合わせに配置され、該第1及び第2コイルが発生する漏洩磁束が相殺されるように、上記第1及び第2コイルの極性及びコイル電流の方向のうち少なくともいずれかが設定され、上記第1及び第2スイッチング素子の動作が略同期している、ことを特徴とする。ここで、第1のスイッチング素子と第2のスイッチング素子は、当該電気回路の中にあって、違う系統の回路の中に設けられている。系統とは、ある機能を有する回路(またはある動作系の回路)であって電気信号の入り口部分から出口部分の間の統一化された回路を示す。違う系統とは、この系統が異なっていることを示し、より具体的には、違う機能を有する回路(または違う動作系の回路)を示している。本来、異なる系統の回路には、漏洩磁束を打ち消すために相互に用いるような電気信号が流れていない。 An electrical circuit according to an aspect of the present invention for solving the above-described problem is an electrical circuit including a voltage converter circuit, and the voltage converter circuit is configured to intermittently pass a current flowing through the first coil in response to a first control signal. A switching element and a second switching element for intermittently passing a current flowing through the second coil in response to the second control signal, wherein the first and second coils are arranged adjacent to each other on the circuit board, At least one of the polarities of the first and second coils and the direction of the coil current is set so that the leakage magnetic flux generated by the second coil is canceled out, and the operation of the first and second switching elements is substantially the same. It is characterized by being synchronized. Here, the first switching element and the second switching element are provided in circuits of different systems in the electric circuit. A system is a circuit having a certain function (or a circuit of a certain operation system) and is a unified circuit between an entrance portion and an exit portion of an electric signal. Different systems indicate that these systems are different, more specifically, circuits having different functions (or circuits having different operation systems). Originally, electric signals that are mutually used for canceling leakage magnetic flux do not flow in circuits of different systems.
 ここで、「隣り合わせ」とは第1コイル及び第2コイル相互間で漏洩磁束の影響を受ける程度の距離で近接している状態であるが、可及的に近接している方が漏洩磁束相殺のために望ましい。また、「コイルの極性」とは、コイル巻線の巻回方向を表し、コイルをある一方向から見て導線が時計回りに巻かれているか、反時計回りに巻かれているかで一般的には示されるが、この巻回方向に依らずにコイルを流れる電流の方向によってコイルから発生する磁束の方向で示される場合もある。また、「第1及び第2スイッチング素子の動作が略同期している」とは、第1及び第2コイルの漏洩磁束が相殺されるという効果が得られれば、第1及び第2スイッチング素子の動作あるいは第1及び第2制御信号間に多少のずれがあってもよいという意味である。第1及び第2制御信号が同期していても各電圧コンバータの負荷の相違によって2つのコイル電流の位相が同じにはならない(ずれがある)場合がある。そのような場合であっても、2つのコイルの発生磁束の向きが互いに逆方向であれば漏洩磁束が相殺される。また、「相殺」という意味は、漏洩磁束を100%打ち消さなければならないということではなく、少しでも打ち消して漏洩磁束を減らすことができる場合を含む。より好ましくは、「相殺」状況は、漏洩磁束を10dB(μA/m)程度以上減じることが出来る場合を示す。 Here, “adjacent” is a state in which the first coil and the second coil are close to each other at a distance that is affected by the leakage magnetic flux. Desirable for. The “polarity of the coil” represents the winding direction of the coil winding, and it is generally determined whether the conductor is wound clockwise or counterclockwise when the coil is viewed from one direction. However, the direction of the magnetic flux generated from the coil may be indicated by the direction of the current flowing through the coil regardless of the winding direction. Further, “the operations of the first and second switching elements are substantially synchronized” means that the effect of canceling out the leakage magnetic flux of the first and second coils is obtained. This means that there may be a slight deviation between the operation or the first and second control signals. Even if the first and second control signals are synchronized, the phase of the two coil currents may not be the same (there is a deviation) due to the difference in the load of each voltage converter. Even in such a case, if the directions of the magnetic fluxes generated by the two coils are opposite to each other, the leakage magnetic flux is canceled out. The meaning of “cancellation” does not mean that the leakage magnetic flux must be canceled out 100%, but includes a case where the leakage magnetic flux can be reduced by canceling even a little. More preferably, the “cancellation” situation indicates a case where the leakage magnetic flux can be reduced by about 10 dB (μA / m) or more.
 望ましくは、上記電圧コンバータ回路は、上記第1スイッチング素子を含む第1電圧コンバータと、上記第2スイッチング素子を含む第2電圧コンバータと、を有する。
 また、1つの電圧コンバータが2つ(または複数)のコイルを備える場合に、同じ原理を適用してこれら2つ(または複数)のコイル間で漏洩磁束が相殺されるようにしてもよい。
Preferably, the voltage converter circuit includes a first voltage converter including the first switching element and a second voltage converter including the second switching element.
Further, when one voltage converter includes two (or plural) coils, the same principle may be applied so that the leakage magnetic flux is canceled between the two (or plural) coils.
 かかる構成とすることによって、第1コイルと第2コイルの漏洩磁束が有効に相殺されて、外部に放射される漏洩磁束が減少して電磁波ノイズが減少する。それにより、別途に電磁波遮蔽部品(材料)を用いずとも電圧コンバータのコイルからの漏洩磁束の放射(EMI)を軽減することが可能となる。コイルからの漏洩磁束を打ち消すために漏洩磁束と逆方向の磁束をつくる補償コイルを別途設けることも考えられるが、本願では元々異なる系統の回路に備えられる2つ(又は複数)のコイルを隣接させ各コイルに流す信号(より具体的には各コイルの極性と各コイルの電流方向)を工夫することで漏洩磁束を小さくすることができる。また、これにより余分に漏洩磁束打消し用コイルを設ける必要性がなくなる。 By adopting such a configuration, the leakage magnetic flux of the first coil and the second coil is effectively canceled out, the leakage magnetic flux radiated to the outside is reduced, and electromagnetic noise is reduced. Thereby, it is possible to reduce the radiation (EMI) of leakage magnetic flux from the coil of the voltage converter without separately using an electromagnetic shielding component (material). In order to cancel the leakage flux from the coil, it is conceivable to separately provide a compensation coil that creates a magnetic flux in the opposite direction to the leakage flux. However, in this application, two (or a plurality of) coils originally provided in different circuits are adjacent to each other. Leakage magnetic flux can be reduced by devising a signal (more specifically, the polarity of each coil and the current direction of each coil) that flows through each coil. In addition, this eliminates the need to provide an extra leakage flux canceling coil.
 望ましくは、上記第1及び第2制御信号は共にPWM信号であり、オンオフ比によって変換電圧を設定する。それにより、第1及び第2コイルに流れる電流波形(発生磁束)を類似波形あるいは近似した波形とし、漏洩磁束の相殺量(相殺効率)を高めることが可能となる。また、スイッチング素子のオンオフ比によって電力(電圧)変換量を調整することが可能である。このスイッチングのduty比を50%以下で使用すると、打ち消し合う磁界の影響をほとんど無視でき、電圧コンバータの変換効率の影響がほぼなくなるので好ましい。 Desirably, the first and second control signals are both PWM signals, and the conversion voltage is set according to the on / off ratio. As a result, the current waveform (generated magnetic flux) flowing through the first and second coils is changed to a similar waveform or an approximate waveform, and the amount of cancellation of the leakage magnetic flux (cancellation efficiency) can be increased. In addition, the power (voltage) conversion amount can be adjusted by the on / off ratio of the switching element. It is preferable to use the switching duty ratio at 50% or less because the influence of the canceling magnetic field can be almost ignored and the influence of the conversion efficiency of the voltage converter is almost eliminated.
 望ましくは、上記第1及び第2制御信号の波形の立ち上がり又は立ち下がりが同期している。それにより、可及的に第1及び第2コイルに流れる電流波形(発生磁束)を同期させて漏洩磁束の相殺量(相殺効率)を高めることが可能となる。なお、負荷回路の相違によって2つの電流波形が完全に同期しなくとも、それなりに漏洩磁束相殺の効果が認められる。 Desirably, the rising or falling of the waveforms of the first and second control signals are synchronized. As a result, the current waveform (generated magnetic flux) flowing through the first and second coils can be synchronized as much as possible to increase the amount of cancellation of the leakage magnetic flux (cancellation efficiency). Even if the two current waveforms are not completely synchronized due to the difference in the load circuit, the effect of canceling the leakage magnetic flux is recognized as it is.
 望ましくは、上記第1電圧コンバータは昇圧動作(DC電圧アップ)であり、上記第2電圧コンバータは降圧動作(DC電圧ダウン)である。このような組み合わせであれば、より漏洩磁束相殺の効果が高くなることが認められ、電磁波ノイズが減少する。 Desirably, the first voltage converter is a step-up operation (DC voltage up), and the second voltage converter is a step-down operation (DC voltage down). With such a combination, it is recognized that the effect of canceling the leakage magnetic flux becomes higher, and electromagnetic noise is reduced.
 望ましくは、上記第1及び第2電圧コンバータは共に昇圧動作(DC電圧アップ)である。このような組み合わせであれば、ほぼ同じレベルの信号が流れるのでより高い漏洩磁束相殺の効果が認められ、電磁波ノイズが減少する。 Desirably, the first and second voltage converters are both boosted (DC voltage up). With such a combination, since signals of substantially the same level flow, higher leakage flux canceling effects are recognized, and electromagnetic noise is reduced.
 望ましくは、上記第1及び第2電圧コンバータは共に降圧動作(DC電圧ダウン)である。このような組み合わせであれば、ほぼ同じレベルの信号が流れるのでより高い漏洩磁束相殺の効果が認められ、電磁波ノイズが減少する。 Desirably, the first and second voltage converters both perform step-down operation (DC voltage down). With such a combination, since signals of substantially the same level flow, higher leakage flux canceling effects are recognized, and electromagnetic noise is reduced.
 望ましくは、上記第1及び第2電圧コンバータは上記複数の電圧コンバータのうちスイッチング素子のオン又はオフタイミングが近似している2つのものである。それにより、(電源)系統の異なる電圧コンバータのスイッチング動作を活用して別途スイッチング動作相互の同期回路などを設けることなく発明を実現することが可能となる。これにより、より小型化、軽量化、省電力化ができる。 Desirably, the first and second voltage converters are two of the plurality of voltage converters whose switching element ON or OFF timing is approximate. Thus, the invention can be realized without separately providing a synchronization circuit between the switching operations by utilizing the switching operations of the voltage converters of different (power supply) systems. Thereby, size reduction, weight reduction, and power saving can be achieved.
 望ましくは、更に、上記第1制御信号を発生する第1制御回路と上記第2制御信号を発生する第2制御回路とを備え、上記第1及び第2制御回路が共通のクロック信号を利用するものである。それにより、第1電圧コンバータと第2電圧コンバータのスイッチング動作を積極的に同期させることが可能となる。例えば、第1及び第2制御信号をPWM(パルス幅変調)信号として信号波形の立ち上がり又は立ち下がりを同期させ、オンオフ比を別個に設定することによって第1及び第2電圧コンバータ回路に別々の電力変換量に設定することが可能となる。制御信号のPWM波形が同じではなくとも似た波形であれば(2つのコイルに逆方向の磁束を発生させれば)漏洩磁束低減の効果がある。これらは余分に漏洩磁束打消しコイルを設ける必要性をなくす。 Preferably, the apparatus further includes a first control circuit that generates the first control signal and a second control circuit that generates the second control signal, and the first and second control circuits use a common clock signal. Is. Thereby, the switching operations of the first voltage converter and the second voltage converter can be actively synchronized. For example, the first and second control signals are used as PWM (pulse width modulation) signals, and the rising and falling edges of the signal waveform are synchronized, and the on / off ratio is set separately, whereby different power is supplied to the first and second voltage converter circuits. It is possible to set the conversion amount. If the PWM waveforms of the control signals are not the same, but have similar waveforms (if magnetic fluxes in opposite directions are generated in the two coils), there is an effect of reducing leakage magnetic flux. These eliminate the need for an extra leakage flux canceling coil.
 本発明の電気回路によれば、スイッチング動作が類似した2つの電圧コンバータのコイル同士を隣接して配置し、相互の漏れ磁束を逆方向にして相殺することによって外部への磁束漏洩を軽減するので、磁気遮蔽材料や電磁波遮蔽材料などを用いずにさらに漏洩磁束打消しのための追加コイルなども不要でコイルからの電磁波(主に磁波)ノイズの放射を軽減することが可能となる。 According to the electric circuit of the present invention, since the coils of two voltage converters having similar switching operations are arranged adjacent to each other and cancel each other in the opposite direction, the leakage of magnetic flux to the outside is reduced. Further, without using a magnetic shielding material or an electromagnetic shielding material, an additional coil for canceling the leakage magnetic flux is not required, and it is possible to reduce radiation of electromagnetic waves (mainly magnetic waves) noise from the coil.
本発明の複数のDC-DCコンバータを含む電気回路基板を説明する説明図である。It is explanatory drawing explaining the electric circuit board containing the some DC-DC converter of this invention. 本発明の2つのDC-DCコンバータの各コイルを隣り合わせに配置する例を説明する説明図である。It is explanatory drawing explaining the example which arrange | positions each coil of two DC-DC converters of this invention adjacently. 2つのコイルによる発生磁束の例を説明する説明図である。It is explanatory drawing explaining the example of the magnetic flux generated by two coils. 2つのコイルによる漏洩磁束の相殺を説明する説明図である。It is explanatory drawing explaining cancellation of the leakage magnetic flux by two coils. 昇圧型DC-DCコンバータの例を説明する回路図である。It is a circuit diagram explaining an example of a step-up DC-DC converter. 降圧型DC-DCコンバータの例を説明する回路図である。It is a circuit diagram explaining an example of a step-down DC-DC converter. 2つの昇圧型DC-DCコンバータで2つのコイルを近接させて配置する例を説明する回路図である。FIG. 5 is a circuit diagram illustrating an example in which two boost DC-DC converters are arranged so that two coils are close to each other. 2つの降圧型DC-DCコンバータで2つのコイルを近接させて配置する例を説明する回路図である。FIG. 5 is a circuit diagram for explaining an example in which two step-down DC-DC converters are arranged so that two coils are close to each other. 昇圧型DC-DCコンバータと降圧型DC-DCコンバータで2つのコイルを近接させる例を説明する回路図である。FIG. 5 is a circuit diagram illustrating an example in which two coils are brought close to each other in a step-up DC-DC converter and a step-down DC-DC converter. 参考例の2つのコイルの磁束変化を説明する波形図である。It is a wave form diagram explaining the magnetic flux change of two coils of a reference example. 実施例の2つのコイルの磁束変化を説明する波形図である。It is a wave form diagram explaining the magnetic flux change of the two coils of an Example. サンプルの実験結果を説明する説明図である。It is explanatory drawing explaining the experimental result of a sample.
 以下、本発明の実施の形態について図面を参照しつつ説明する。なお、各図において対応する部分には同一符号を付している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the corresponding part in each figure.
 まず、図1乃至図3を参照して本発明の概念について説明する。図1は、電気回路基板1にCPU等のLSI(大規模集積回路)14が設けられている例を示している。CPUは回路電源として複数種類の直流電圧源を必要としている。このため、図示しない電源装置から供給される24ボルト、12ボルト、5ボルトなどの一定電圧を電圧コンバータ回路によって所望レベルの直流電圧に昇圧し、あるいは降圧する。図1に点線で領域を示すように、複数のDC電圧を得るために電気回路基板1には複数のDC-DCコンバータ(あるいはDC-DCコンバータ部)11が設けられている。これら複数のDC-DCコンバータ11を含んで電圧コンバータ回路が構成されている。各DC-DCコンバータ11はスイッチング素子を含んでいる。また、各DC-DCコンバータ11ではコイルLが使用されており、DC-DCコンバータ11を高周波数で動作させる(高周波数でスイッチングを行う)と、コイルLから電磁波が漏洩する場合がある。 First, the concept of the present invention will be described with reference to FIGS. FIG. 1 shows an example in which an LSI (Large Scale Integrated Circuit) 14 such as a CPU is provided on the electric circuit board 1. The CPU requires a plurality of types of DC voltage sources as circuit power supplies. For this reason, a constant voltage such as 24 volts, 12 volts, and 5 volts supplied from a power supply device (not shown) is boosted or lowered to a desired level of DC voltage by a voltage converter circuit. As indicated by dotted lines in FIG. 1, a plurality of DC-DC converters (or DC-DC converter units) 11 are provided on the electric circuit board 1 in order to obtain a plurality of DC voltages. A voltage converter circuit is configured including the plurality of DC-DC converters 11. Each DC-DC converter 11 includes a switching element. Each DC-DC converter 11 uses a coil L. When the DC-DC converter 11 is operated at a high frequency (switching is performed at a high frequency), electromagnetic waves may leak from the coil L.
 そこで、本発明では図2に1示すように、違う系統の回路の中にあってコイルLからの漏洩磁束の波形が似ている2つのコイルLを抽出し、漏洩磁束同士が相殺し合うように2つのコイルLが隣り合うように(あるいは隣接するように)配置する。既述のように、「隣り合う」とは、2つのコイル間の距離が互いの漏洩磁束を相殺できる程度の距離にある状態である。漏洩磁束の相殺は隣接した2つのコイル電流の向き、あるいは2つのコイルLの巻線方向(極性)を調整することによってなされる。2つのコイルLのインダクタンス値は同じ値でなくとも良い。なお、漏洩磁束は計測器のプローブをコイルLに接近させて計測することが可能である。この2つのコイルは同一基板の中で探しても良いし、他の回路基板にあるものを機能の一部を移植する形で同じ基板上に持ってきたものでも良い。この2つのコイルは異なった機能を有する別途の電気回路系統(例えば、電圧コンバータ)に別途に存在したコイルを隣接するように同一基板上に配置したものであってもよい。 Therefore, in the present invention, as shown by 1 in FIG. 2, two coils L having similar waveforms of the leakage magnetic flux from the coil L in different circuits are extracted so that the leakage magnetic flux cancels each other. The two coils L are arranged adjacent to each other (or adjacent to each other). As described above, “adjacent” is a state in which the distance between the two coils is such that the leakage magnetic flux can be offset. The leakage magnetic flux is canceled by adjusting the direction of two adjacent coil currents or the winding direction (polarity) of the two coils L. The inductance values of the two coils L need not be the same value. The leakage magnetic flux can be measured by bringing the probe of the measuring instrument close to the coil L. These two coils may be searched for on the same substrate, or those on another circuit substrate may be brought on the same substrate in the form of transplanting some of the functions. The two coils may be arranged on the same substrate so that coils existing separately in separate electric circuit systems (for example, voltage converters) having different functions are adjacent to each other.
 図3及び図4は、コイルL1及びL2における漏洩磁束を説明する図である。図3は、2つのコイルL1及びL2の各電流が互いに逆方向に流れるときに各コイルに同方向の磁束Φ1及びΦ2が発生する例を示している。図4は、2つのコイルL1及びL2の各電流が互いに逆方向に流れるときに、一方のコイルの向き(巻線方向)を反転したことによってコイルL1及びL2に逆方向の磁束Φ1及びΦ2が発生する例を示している。2つのコイルL1及びL2にそれぞれ逆方向の磁束Φ1及びΦ2が発生する場合には各コイルの漏洩磁束g1及びg2も互いに逆向きとなって相殺されて2つのコイルL1及びL2全体の漏洩磁束は減少する。したがって、両コイルを流れる電流の波形が類似していれば、より望ましくは電流波形が同期していれば、コイルL1及びL2からの電磁波漏洩が減少する。なお、コイル電流の向きとコイルに発生する磁束の方向はいわゆる右ねじの法則によって説明される。 3 and 4 are diagrams for explaining the leakage magnetic flux in the coils L1 and L2. FIG. 3 shows an example in which magnetic fluxes Φ1 and Φ2 in the same direction are generated in the coils when the currents of the two coils L1 and L2 flow in opposite directions. FIG. 4 shows that when the currents of the two coils L1 and L2 flow in opposite directions, the direction of one coil (winding direction) is reversed so that the magnetic fluxes Φ1 and Φ2 in the opposite directions are generated in the coils L1 and L2. An example that occurs is shown. When magnetic fluxes Φ1 and Φ2 in opposite directions are generated in the two coils L1 and L2, respectively, the leakage magnetic flux g1 and g2 of each coil are also offset in the opposite direction, and the leakage magnetic flux of the two coils L1 and L2 as a whole is Decrease. Therefore, if the waveforms of the currents flowing through the two coils are similar, more desirably, if the current waveforms are synchronized, electromagnetic wave leakage from the coils L1 and L2 is reduced. The direction of the coil current and the direction of the magnetic flux generated in the coil are explained by the so-called right-handed screw law.
 そこで、実施例では、図1及び図2に示したように、電気回路基板に含まれる複数のDC-DCコンバータの中からコイルLの磁束波形が近似するもの2つを選択し、一方のコイルLの巻線方向を変えるなどしてコイル同士を近接配置して2つのコイルからの漏洩磁束が相殺されるようにする。なお、コイルからの漏洩磁束が相殺されればよく、近接して配置されるコイルの数は2つに限定されるものではない。コイルが3つ、4つ、それ以上(複数)の組み合わせであってもコイルからの漏洩磁束が相殺されればよい。 Therefore, in the embodiment, as shown in FIGS. 1 and 2, two of the plurality of DC-DC converters included in the electric circuit board that approximate the magnetic flux waveform of the coil L are selected, and one coil is selected. The coils are arranged close to each other by changing the winding direction of L so that the leakage magnetic flux from the two coils is canceled. In addition, the leakage magnetic flux from a coil should just be canceled, and the number of the coils arrange | positioned closely is not limited to two. Even if there are three, four, or more (plural) coils, it is only necessary to cancel the leakage magnetic flux from the coils.
 上記2つのコイルLを隣接させたDC-DCコンバータの例を説明する前にDC-DCコンバータの2つのタイプについて説明する。 Before describing an example of a DC-DC converter in which the two coils L are adjacent to each other, two types of DC-DC converters will be described.
 図5(A)及び同(B)は、上述したコイルLを備える昇圧型DC-DCコンバータの一例を説明する回路図である。昇圧型のDC-DCコンバータは、直流電圧が供給される入力端子VINと出力端子VOUT間に直列に接続されたコイルL及び高周波整流用のダイオード(例えば、ショットキバリアダイオードSBD)と、コイルL及びダイオードSBDとの接続点と接地電位GND間に接続されたFETトランジスタTrと、出力端子VOUTと接地GND間に接続された昇圧電圧を保持するコンデンサC、等によって構成されている。 5A and 5B are circuit diagrams illustrating an example of a step-up DC-DC converter including the coil L described above. The step-up DC-DC converter includes a coil L and a high-frequency rectifier diode (for example, a Schottky barrier diode SBD) connected in series between an input terminal VIN and an output terminal VOUT to which a DC voltage is supplied, An FET transistor Tr connected between the connection point of the diode SBD and the ground potential GND, a capacitor C holding a boosted voltage connected between the output terminal VOUT and the ground GND, and the like.
 トランジスタTrのゲートGには制御回路としての図示しないコントローラ(市販品ICチップ、カスタムIC、CPU等に含めたり、トランジスタ等で作成可能である。)からパルス幅変調信号(PWM)であるゲート制御信号が供給される。コントローラは出力電圧と目標電圧との差分に対応してパルス幅変調信号のデューティを調整する。各コントローラは独自に内部発振器(OSC)を持つがシステム(電気回路基板1)共通のクロック信号を利用しても良い。 The gate G of the transistor Tr is a pulse control signal (PWM) from a controller (not shown) as a control circuit (can be included in a commercially available IC chip, custom IC, CPU, etc., or can be created with a transistor). A signal is supplied. The controller adjusts the duty of the pulse width modulation signal in accordance with the difference between the output voltage and the target voltage. Each controller has its own internal oscillator (OSC), but a clock signal common to the system (electric circuit board 1) may be used.
 次に,昇圧型のDC-DCコンバータの動作について説明する。図5(A)に示すように、ゲートに供給される制御信号によってトランジスタTrがオンになると、コイルLとダイオードSBDとの接続点が接地され、ダイオードSBDは逆バイアスとなって遮断される。それにより、端子電圧VINによりコイルLに電流が流れてエネルギーが蓄えられる(エネルギーは磁界の形で蓄えられる。)。 Next, the operation of the step-up DC-DC converter will be described. As shown in FIG. 5A, when the transistor Tr is turned on by the control signal supplied to the gate, the connection point between the coil L and the diode SBD is grounded, and the diode SBD is reverse biased and cut off. Thereby, a current flows through the coil L by the terminal voltage VIN and energy is stored (energy is stored in the form of a magnetic field).
 次に、図5(B)に示すように、制御信号によってトランジスタTrがオフになると、接続点の電位が上昇してダイオードSBDが順方向にバイアスされて導通する。端子電圧VINにコイルLに誘起した電圧VLが付け加えられて出力端VOUTに供給される。それにより、端子電圧VINを昇圧した電圧(VIN+VL)が出力端VOUTに得られる。図5(A)及び同(B)に示す動作を繰り返して昇圧動作が行われる。トランジスタTrのオン時間とオフ時間の比(デューティ)を適宜に設定することによって昇圧電圧が設定される。 Next, as shown in FIG. 5B, when the transistor Tr is turned off by the control signal, the potential at the connection point rises, and the diode SBD is forward biased and becomes conductive. A voltage VL induced in the coil L is added to the terminal voltage VIN and supplied to the output terminal VOUT. As a result, a voltage (VIN + VL) obtained by boosting the terminal voltage VIN is obtained at the output terminal VOUT. The voltage boosting operation is performed by repeating the operations shown in FIGS. The boosted voltage is set by appropriately setting the ratio (duty) of the on-time and off-time of the transistor Tr.
 図6及び同(B)は、上述したコイルLを備える降圧型DC-DCコンバータの一例を説明する回路図である。降圧型のDC-DCコンバータは、直流電圧が供給される入力端子VINと出力端子VOUT間に直列に接続されたトランジスタTr及びコイルLと、トランジスタTr及びコイルLとの接続点と接地電位GND間に接続されたダイオードSBDと、出力端子VOUTと接地GND間に接続された降圧電圧を保持するコンデンサC、等によって構成されている。 6 and (B) are circuit diagrams illustrating an example of a step-down DC-DC converter including the coil L described above. The step-down DC-DC converter includes a transistor Tr and a coil L connected in series between an input terminal VIN and an output terminal VOUT to which a DC voltage is supplied, and a connection point between the transistor Tr and the coil L and a ground potential GND. And a capacitor C holding a step-down voltage connected between the output terminal VOUT and the ground GND, and the like.
 トランジスタTrのゲートGには上記昇圧例と同様に図示しないコントローラチップからパルス幅変調信号であるゲート制御信号が供給される。コントローラチップは出力電圧と目標電圧との差分に対応してパルス幅変調信号のデューティを調整する。各コントローラチップは独自に内部発振器(OSC)を持つがシステム共通のロック信号を利用しても良いものである。トランジスタTrのオン時間とオフ時間の比(デューティ)を適宜に設定することによって昇圧電圧が設定される。 A gate control signal which is a pulse width modulation signal is supplied to the gate G of the transistor Tr from a controller chip (not shown) as in the above boosting example. The controller chip adjusts the duty of the pulse width modulation signal in accordance with the difference between the output voltage and the target voltage. Each controller chip has its own internal oscillator (OSC), but a lock signal common to the system may be used. The boosted voltage is set by appropriately setting the ratio (duty) of the on-time and off-time of the transistor Tr.
 次に、降圧型のDC-DCコンバータの動作について説明する。図6(A)に示すように、ゲートに供給される制御信号によってトランジスタTrがオンになると、ダイオードSBDは逆バイアスとなって遮断し、端子電圧VINの電圧が出力端VOUTに供給されると共に、コイルLにエネルギーが蓄えられる(エネルギーは磁界の形で蓄えられる。)。 Next, the operation of the step-down DC-DC converter will be described. As shown in FIG. 6A, when the transistor Tr is turned on by the control signal supplied to the gate, the diode SBD is reverse-biased and cut off, and the terminal voltage VIN is supplied to the output terminal VOUT. , Energy is stored in the coil L (energy is stored in the form of a magnetic field).
 次に、図6(B)に示すように、制御信号によってトランジスタTrがオフになると、コイルLが直前の電流を維持するように作用してダイオードSBDを導通させる。このとき、コイルLの左端がダイオードを介して接地されるため端子VOUTの電圧は低下する。トランジスタTrのオン時間とオフ時間の比(デューティ)を適宜に設定することによって端子電圧VINよりも降圧した電圧が出力端子VOUTに設定される。図6(A)及び同(B)の動作を繰り返して降圧動作が行われる。 Next, as shown in FIG. 6 (B), when the transistor Tr is turned off by the control signal, the coil L acts to maintain the immediately preceding current, and the diode SBD is made conductive. At this time, since the left end of the coil L is grounded via the diode, the voltage at the terminal VOUT decreases. By appropriately setting the ratio (duty) of the on-time and off-time of the transistor Tr, a voltage lower than the terminal voltage VIN is set at the output terminal VOUT. The step-down operation is performed by repeating the operations of FIGS. 6 (A) and 6 (B).
 図7乃至図9は、電気回路基板1に設けられている電圧コンバータ回路が備える2つのDC-DCコンバータ(電圧コンバータ)の各コイルL1,L2を隣り合わせで(隣接して)配置して漏洩磁束を軽減する例を説明する回路図である。 7 to 9 show the leakage flux by arranging the coils L1 and L2 of two DC-DC converters (voltage converters) provided in the voltage converter circuit provided on the electric circuit board 1 next to each other (adjacent). It is a circuit diagram explaining the example which reduces this.
 なお、スイッチング素子であるトランジスタT1,T2の制御回路は図示していないが、前述のように市販のICチップ等が使用可能である。ICチップは、検出電圧と目標値との差信号に基づいてスイッチング・トランジスタのゲートに供給する制御信号(PWM)のデューティ比を調節する。第1のDC-DCコンバータに対応した第1のICチップによって第1制御信号を発生し、第2のDC-DCコンバータに対応した第2のICチップによって第2制御信号を発生する構成とすることができるが、これらのICチップを既述LSI12に組み込むことができる。このようにした場合には、LSI内部の共通クロック信号によって第1及び第2制御信号を同じスイッチング周波数としたり、信号波形を同期させたりすることがより容易になる。 A control circuit for the transistors T1 and T2, which are switching elements, is not shown, but a commercially available IC chip or the like can be used as described above. The IC chip adjusts the duty ratio of the control signal (PWM) supplied to the gate of the switching transistor based on the difference signal between the detection voltage and the target value. A first control signal is generated by a first IC chip corresponding to the first DC-DC converter, and a second control signal is generated by a second IC chip corresponding to the second DC-DC converter. However, these IC chips can be incorporated into the LSI 12 described above. In this case, it becomes easier to set the first and second control signals to the same switching frequency or to synchronize the signal waveforms by the common clock signal inside the LSI.
 上述したように、第1及び第2制御信号をPWM(パルス幅変調)信号として信号波形の立ち上がり又は立ち下がりを同期させ、オンオフ比を別個に設定することによって第1及び第2電圧コンバータ回路に別々の電力変換量に設定することが可能となるが、制御信号のPWM波形が同じではなくとも似た波形であれば(2つのコイルに逆方向の磁束を発生させれば)漏洩磁束低減の効果がある。また、2つのコイルに逆方向の磁束を発生させるのであれば、制御信号はPAM信号やパルス周波数を変化させる信号、正弦波信号等であっても良い。 As described above, the first and second control signals are used as PWM (pulse width modulation) signals, and the rising and falling edges of the signal waveform are synchronized, and the on / off ratio is set separately, so that the first and second voltage converter circuits Although it is possible to set different power conversion amounts, if the PWM waveform of the control signal is not the same, but has a similar waveform (if two magnetic fluxes are generated in opposite directions), the leakage flux can be reduced. effective. In addition, if the magnetic fluxes in opposite directions are generated in the two coils, the control signal may be a PAM signal, a signal for changing the pulse frequency, a sine wave signal, or the like.
 図7に示す例は、昇圧型の2つのDC-DCコンバータのコイルLを隣り合わせで配置した例を示している。第1の昇圧型のDC-DCコンバータが、第1制御信号に応じて第1コイル(L1)に流れる電流を断続する第1スイッチング素子(T1)を含む第1電圧コンバータ回路に相当する。また、第2の昇圧型のDC-DCコンバータが、第2制御信号に応じて第2コイル(L2)に流れる電流を断続する第2スイッチング素子(T2)を含む第2電圧コンバータ回路に相当する。第1及び第2コイル(L1,L2)は回路基板上に隣り合わせに配置され、第1及び第2コイル(L1,L2)が発生する漏洩磁束が相殺されるように、第1及び第2コイル(L1,L2)の極性(巻線の方向)又はコイル電流の方向が設定され、望ましくは第1及び第2制御信号は互いに近似した波形である。 The example shown in FIG. 7 shows an example in which two step-up DC-DC converter coils L are arranged side by side. The first step-up DC-DC converter corresponds to a first voltage converter circuit including a first switching element (T1) for intermittently passing a current flowing through the first coil (L1) in response to a first control signal. The second step-up DC-DC converter corresponds to a second voltage converter circuit including a second switching element (T2) that intermittently passes a current flowing through the second coil (L2) in response to a second control signal. . The first and second coils (L1, L2) are arranged adjacent to each other on the circuit board, and the first and second coils are offset so that the leakage magnetic flux generated by the first and second coils (L1, L2) is offset. The polarity (winding direction) of the (L1, L2) or the direction of the coil current is set, and preferably the first and second control signals have waveforms that are approximate to each other.
 図8に示す例は、降圧型の2つのDC-DCコンバータのコイルLを隣り合わせで配置した例を示している。第1の降圧型のDC-DCコンバータが、第1制御信号に応じて第1コイル(L1)に流れる電流を断続する第1スイッチング素子(T1)を含む第1電圧コンバータ回路に相当する。また、第2の降圧型のDC-DCコンバータが、第2制御信号に応じて第2コイル(L2)に流れる電流を断続する第2スイッチング素子(T2)を含む第2電圧コンバータ回路に相当する。第1及び第2コイル(L1,L2)は回路基板上に隣り合わせに配置され、第1及び第2コイル(L1,L2)が発生する漏洩磁束が相殺されるように、第1及び第2コイル(L1,L2)の極性又はコイル電流の方向が設定され、望ましくは第1及び第2制御信号は互いに近似した波形である。 The example shown in FIG. 8 shows an example in which two step-down DC-DC converter coils L are arranged adjacent to each other. The first step-down DC-DC converter corresponds to a first voltage converter circuit including a first switching element (T1) that intermittently passes a current flowing through the first coil (L1) in response to a first control signal. The second step-down DC-DC converter corresponds to a second voltage converter circuit including a second switching element (T2) that intermittently passes a current flowing through the second coil (L2) in response to a second control signal. . The first and second coils (L1, L2) are arranged adjacent to each other on the circuit board, and the first and second coils are offset so that the leakage magnetic flux generated by the first and second coils (L1, L2) is offset. The polarity of (L1, L2) or the direction of the coil current is set, and preferably the first and second control signals have waveforms that are approximate to each other.
 図9に示す例は、昇圧型のDC-DCコンバータのコイルL1と降圧型のDC-DCコンバータのコイルL2を隣り合わせで配置した例を示している。昇圧型のDC-DCコンバータが、第1制御信号に応じて第1コイル(L1)に流れる電流を断続する第1スイッチング素子(T1)を含む第1電圧コンバータ回路に相当する。例えば、直流13.5ボルトを直流33.1ボルトに昇圧する。また、降圧型のDC-DCコンバータが、第2制御信号に応じて第2コイル(L2)に流れる電流を断続する第2スイッチング素子(T2)を含む第2電圧コンバータ回路に相当する。例えば、直流33.1ボルトを直流9ボルトに降圧する。第1及び第2コイル(L1,L2)は回路基板上に隣り合わせに配置され、第1及び第2コイル(L1,L2)が発生する漏洩磁束が相殺されるように、第1及び第2コイル(L1,L2)の極性又はコイル電流の方向が設定され、望ましくは第1及び第2制御信号は互いに近似した波形である。 The example shown in FIG. 9 shows an example in which a step-up DC-DC converter coil L1 and a step-down DC-DC converter coil L2 are arranged adjacent to each other. The step-up DC-DC converter corresponds to a first voltage converter circuit including a first switching element (T1) that intermittently passes a current flowing through the first coil (L1) in response to a first control signal. For example, DC 13.5 volts is boosted to DC 33.1 volts. The step-down DC-DC converter corresponds to a second voltage converter circuit including a second switching element (T2) that intermittently passes a current flowing through the second coil (L2) in response to the second control signal. For example, DC 33.1 volts is stepped down to DC 9 volts. The first and second coils (L1, L2) are arranged adjacent to each other on the circuit board, and the first and second coils are offset so that the leakage magnetic flux generated by the first and second coils (L1, L2) is offset. The polarity of (L1, L2) or the direction of the coil current is set, and preferably the first and second control signals have waveforms that are approximate to each other.
 図7乃至図9に示すいずれの構成においても、2つのコイルLの漏洩磁束が相殺されるように、各コイルLの巻線の方向(極性)及びコイル電流の方向のうち少なくともいずれかが調整される。 7 to 9, at least one of the winding direction (polarity) and the coil current direction of each coil L is adjusted so that the leakage flux of the two coils L is canceled out. Is done.
 図10及び図11は図9に示す例において、昇圧型のDC-DCコンバータのコイルL1の磁束Φ1及び降圧型のDC-DCコンバータのコイルL2の磁束Φ2の各レベルをオシロスコープで観察した例を示す説明図である。画面の横方向が時間軸、縦方向が信号レベルである。図10に示す例ではコイルL1の磁束Φ1及びコイルL2の磁束Φ2が略同相(磁束が同方向の向き)である例(図3参照)を示している。この場合には、2つのコイルからの漏洩磁束が増加する。 FIGS. 10 and 11 are examples in which the levels of the magnetic flux Φ1 of the coil L1 of the step-up DC-DC converter and the magnetic flux Φ2 of the coil L2 of the step-down DC-DC converter in the example shown in FIG. It is explanatory drawing shown. The horizontal direction of the screen is the time axis, and the vertical direction is the signal level. The example shown in FIG. 10 shows an example (see FIG. 3) in which the magnetic flux Φ1 of the coil L1 and the magnetic flux Φ2 of the coil L2 are substantially in phase (the magnetic flux is in the same direction). In this case, the leakage magnetic flux from the two coils increases.
 一方、図11に示す例ではコイルL1の磁束Φ1及びコイルL2のΦ2が略逆相(磁束が逆方向の向き)である例(図4参照)を示している。コイルL1の磁束Φ1とコイルL2の磁束Φ2が相補的に変化することによって漏洩磁束(放射磁界)が相殺されて電磁波ノイズが大幅に軽減される。 On the other hand, the example shown in FIG. 11 shows an example (see FIG. 4) in which the magnetic flux Φ1 of the coil L1 and the Φ2 of the coil L2 are in substantially opposite phases (the magnetic flux is directed in the reverse direction). The magnetic flux Φ1 of the coil L1 and the magnetic flux Φ2 of the coil L2 change in a complementary manner, thereby canceling out the leakage magnetic flux (radiated magnetic field) and greatly reducing electromagnetic noise.
 なお、トランジスタのゲートに供給される第1及び第2制御信号については、図示していないが、PWM制御信号の波形の立ち上がり又は立ち下がりが同期し、同じパルス周波数であることが望ましい。それにより、第1及び第2コイルに流れる磁束波形(発生磁束)を同期させて漏洩磁束の相殺量(相殺効率)を高めることが可能となる。もっとも、第1及び第2コイルに流れる2つの磁束波形(あるいは波形の位相)は完全に同期しなくともよく、2つの磁束波形に相補的なレベル変化傾向があれば漏洩磁束相殺の効果が認められる(図11参照)。本実施例では、トランジスタのスイッチングのデューティー比を50%かそれ以下の適宜電圧のコンバージョンに必要な比率に設定している。これにより、打ち消し合う磁界の影響をほとんど無視することができ、磁束の相殺による電圧コンバータの変換効率への影響をほぼなくすことができる。 The first and second control signals supplied to the gates of the transistors are not shown, but it is desirable that the rise or fall of the waveform of the PWM control signal be synchronized and have the same pulse frequency. Thereby, it is possible to synchronize the magnetic flux waveforms (generated magnetic fluxes) flowing through the first and second coils and to increase the amount of cancellation (cancellation efficiency) of the leakage magnetic flux. However, the two magnetic flux waveforms (or waveform phases) flowing in the first and second coils do not have to be completely synchronized, and if there is a complementary level change tendency in the two magnetic flux waveforms, the effect of canceling the leakage magnetic flux is recognized. (See FIG. 11). In this embodiment, the transistor switching duty ratio is set to a ratio necessary for voltage conversion of 50% or less as appropriate. Thereby, the influence of the canceling magnetic fields can be almost ignored, and the influence on the conversion efficiency of the voltage converter due to the cancellation of the magnetic flux can be almost eliminated.
 図12は実施例の効果を説明する説明図である。この例は、本発明を適用した実装回路基板(基板完成品、図示せず)上の昇圧型DC-DCコンバータと降圧型DC-DCコンバータの2つのコイルL1,L2を隣接配置として回路基板(製品)の周囲(例えば、基板の上、左、右、前、後ろ等)の漏洩磁束を計測したものである。2つのDC-DCコンバータをスイッチング周波数100kHz~200kHzの範囲で動作させたときの当該測定場所における最大漏洩値を示している。なお、計測値はコイル周囲の漏洩磁束によってプルーブ(のコイル)に検出された電流値dB(μA/m)である。計測にはROHDE & SCHWARZ製のESU26とループアンテナETS・RINDGREN製の7604を使用した。製品からの距離70[mm]の上方位置で計測を行った。 FIG. 12 is an explanatory diagram for explaining the effect of the embodiment. In this example, two coils L1 and L2 of a step-up DC-DC converter and a step-down DC-DC converter on a mounting circuit board (substrate finished product, not shown) to which the present invention is applied are arranged adjacent to each other. Product) and the leakage magnetic flux around the substrate (for example, above, left, right, front, back, etc.) is measured. The maximum leakage value at the measurement location when two DC-DC converters are operated in the switching frequency range of 100 kHz to 200 kHz is shown. The measured value is a current value dB (μA / m) detected in the probe (coil) by the leakage magnetic flux around the coil. For measurement, ESU26 made by ROHDE & SCHWARZ and 7604 made by loop antenna ETS / RINDGREN were used. Measurement was performed at an upper position at a distance of 70 mm from the product.
 図12に示すように、対策前の実装回路基板の漏洩磁束量が動作周波数100kHz~200kHzにおいて73.0dB(μA/m)であったものが、対策後の実装回路基板(サンプル1-3)では、58.5、60.8、60.6dB(μA/m)といずれも良好な値となった。数値は従来の電磁波シールド対策を行わない実装回路基板と比べて10dB(μA/m)程度も改善されている。 As shown in FIG. 12, the leakage flux amount of the mounting circuit board before the countermeasure was 73.0 dB (μA / m) at the operating frequency of 100 kHz to 200 kHz. Thus, 58.5, 60.8, and 60.6 dB (μA / m) were all good values. The numerical value is improved by about 10 dB (μA / m) as compared with a conventional mounting circuit board that does not take electromagnetic wave shielding measures.
 上述した電磁波ノイズ対策が施された電気回路基板を含む装置(電気機器)は同基板からのノイズが減少しているので装置からの電磁放射エネルギ(電磁波ノイズ)も減少する利点がある。 The device (electric equipment) including the electric circuit board to which the above-described countermeasure against electromagnetic wave noise is applied has an advantage that the electromagnetic radiation energy (electromagnetic wave noise) from the apparatus is also reduced because the noise from the board is reduced.
 以上説明したように、本発明の実施例によれば、複数のDC-DCコンバータを含む電気回路基板において、コイルが発生する磁束の波形が近似する2つのDC-DCコンバータを選択し、両コンバータのコイルを隣り合わせに配置して互いの漏洩磁束が相殺し合うようにしている。それにより、磁気遮蔽材料、電磁波遮蔽材料、磁気シールド部材などの格別の部品(あるいは追加部品)をなるべく用いずにコンバータのコイルからの電磁波ノイズを大幅に軽減することが可能となって具合が良い。 As described above, according to the embodiment of the present invention, in an electric circuit board including a plurality of DC-DC converters, two DC-DC converters approximating the waveform of magnetic flux generated by a coil are selected, and both converters are selected. The coils are arranged next to each other so that the leakage magnetic fluxes cancel each other. Thereby, electromagnetic noise from the coil of the converter can be greatly reduced without using special parts (or additional parts) such as a magnetic shielding material, an electromagnetic shielding material, and a magnetic shielding member as much as possible. .
 以上述べてきた実施の形態の例は、本発明の好ましい例であって、本明細書に記載されている以外の実施態様も各種の方法で実施又は遂行可能である。特に本願明細書中で限定する主旨の記載がない限り、本発明は本願明細書や添付図面に示した部品の形状、大きさ、種類、及び構成配置等に制約されるものではない。また本願明細書の中に用いられる表現及び用語は説明を目的としたもので、特に限定する主旨の記載がない限り、それらに限定されるものでもない。
 例えば、コイルは、導体を巻回したものの他、螺旋状のコイルシートを積層したシートコイルであってもよい。電圧コンバータ回路は、DC-DCコンバータのみならずDC-ACコンバータを含む。
 また、図示しないが、DC-DCコンバータは昇圧・降圧両用型のものであってもよい。
The embodiments described above are preferred examples of the present invention, and embodiments other than those described in this specification can be implemented or performed by various methods. The present invention is not limited to the shape, size, type, configuration, and the like of the parts shown in the present specification and the accompanying drawings unless otherwise specified in the present specification. In addition, expressions and terms used in the present specification are for the purpose of explanation, and are not limited to those unless specifically stated.
For example, the coil may be a sheet coil in which a spiral coil sheet is laminated in addition to a conductor wound. The voltage converter circuit includes not only a DC-DC converter but also a DC-AC converter.
Further, although not shown, the DC-DC converter may be of a boost / buck type.
 本発明は複数の電圧コンバータが配置される電気回路基板に適用して好都合であり、このような電気回路基板を含む電気機器にも適用することができる。 The present invention is advantageous when applied to an electric circuit board on which a plurality of voltage converters are arranged, and can also be applied to an electric device including such an electric circuit board.
1 電気回路基板
11 DC-DCコンバータ
12 LSI
L,L1,L2 コイル
Tr,T1,T2 FETトランジスタ
SBD (ショットキバリア)ダイオード
1 Electric Circuit Board 11 DC-DC Converter 12 LSI
L, L1, L2 Coil Tr, T1, T2 FET transistor SBD (Schottky barrier) diode

Claims (7)

  1.  電圧コンバータ回路を含む電気回路であって、
     前記電圧コンバータ回路は、
     第1制御信号に応じて第1コイルに流れる電流を断続する第1スイッチング素子と、第2制御信号に応じて第2コイルに流れる電流を断続する第2スイッチング素子と、を含み、
     前記第1及び第2コイルは回路基板上に隣り合わせに配置され、該第1及び第2コイルが発生する漏洩磁束が相殺されるように、前記第1及び第2コイルの極性及びコイル電流の方向のうち少なくともいずれかが設定され、前記第1及び第2スイッチング素子の動作が略同期している、電気回路。
    An electrical circuit including a voltage converter circuit,
    The voltage converter circuit is:
    A first switching element that interrupts the current flowing through the first coil in response to the first control signal; and a second switching element that interrupts the current flowing through the second coil in response to the second control signal;
    The first and second coils are arranged next to each other on the circuit board, and the polarity of the first and second coils and the direction of the coil current so that the leakage magnetic flux generated by the first and second coils is offset. An electrical circuit in which at least one of them is set and the operations of the first and second switching elements are substantially synchronized.
  2.  前記電圧コンバータ回路は、
     前記第1スイッチング素子を含む第1電圧コンバータと、
     前記第2スイッチング素子を含む第2電圧コンバータと、
     を有する請求項1に記載の電気回路。
    The voltage converter circuit is:
    A first voltage converter including the first switching element;
    A second voltage converter including the second switching element;
    The electric circuit according to claim 1.
  3.  前記第1及び第2制御信号は共にPWM信号であり、オンオフ比によって電圧コンバータの変換電圧を設定する、請求項1又は2に記載の電気回路。 The electric circuit according to claim 1 or 2, wherein both the first and second control signals are PWM signals, and a conversion voltage of the voltage converter is set by an on / off ratio.
  4.  前記第1電圧コンバータは昇圧動作であり、前記第2電圧コンバータは降圧動作である、請求項2又は3に記載の電気回路。 4. The electric circuit according to claim 2, wherein the first voltage converter is a step-up operation and the second voltage converter is a step-down operation.
  5.  前記電圧コンバータ回路は複数の電圧コンバータを含み、
     前記第1及び第2電圧コンバータは前記複数の電圧コンバータのうちスイッチング素子のオン又はオフタイミングが近似している2つのものである、請求項2乃至4のいずれかに記載の電気回路。
    The voltage converter circuit includes a plurality of voltage converters;
    5. The electric circuit according to claim 2, wherein the first and second voltage converters are two of the plurality of voltage converters whose switching element ON or OFF timings are approximated. 6.
  6.  更に、前記第1制御信号を発生する第1制御回路と前記第2制御信号を発生する第2制御回路とを備え、
     前記第1及び第2制御回路が共通のクロック信号を利用するものである、請求項1乃至5のいずれかに記載の電気回路。
    And a first control circuit for generating the first control signal and a second control circuit for generating the second control signal.
    The electric circuit according to claim 1, wherein the first and second control circuits use a common clock signal.
  7.  請求項1乃至6のいずれかに記載の電気回路を備える装置。  An apparatus comprising the electric circuit according to any one of claims 1 to 6.
PCT/JP2013/061197 2012-05-01 2013-04-15 Electric circuit WO2013164945A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-104874 2012-05-01
JP2012104874A JP2015073337A (en) 2012-05-01 2012-05-01 Electric circuit

Publications (1)

Publication Number Publication Date
WO2013164945A1 true WO2013164945A1 (en) 2013-11-07

Family

ID=49514346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061197 WO2013164945A1 (en) 2012-05-01 2013-04-15 Electric circuit

Country Status (2)

Country Link
JP (1) JP2015073337A (en)
WO (1) WO2013164945A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117811363A (en) * 2023-12-29 2024-04-02 卓品智能科技无锡股份有限公司 Switching power supply circuit and system meeting electromagnetic compatibility requirement of special product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7283185B2 (en) * 2019-04-04 2023-05-30 株式会社デンソー electronic controller

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006191705A (en) * 2004-12-28 2006-07-20 Sharp Corp Multi-output power supply
JP2009170620A (en) * 2008-01-16 2009-07-30 Honda Motor Co Ltd Multi-parallel magnetism-offsetting transformer and power conversion circuit
JP2011130572A (en) * 2009-12-17 2011-06-30 Nippon Soken Inc Dc-dc converter
JP2012060796A (en) * 2010-09-09 2012-03-22 Denso Corp Multiphase dc/dc converter circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006191705A (en) * 2004-12-28 2006-07-20 Sharp Corp Multi-output power supply
JP2009170620A (en) * 2008-01-16 2009-07-30 Honda Motor Co Ltd Multi-parallel magnetism-offsetting transformer and power conversion circuit
JP2011130572A (en) * 2009-12-17 2011-06-30 Nippon Soken Inc Dc-dc converter
JP2012060796A (en) * 2010-09-09 2012-03-22 Denso Corp Multiphase dc/dc converter circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117811363A (en) * 2023-12-29 2024-04-02 卓品智能科技无锡股份有限公司 Switching power supply circuit and system meeting electromagnetic compatibility requirement of special product

Also Published As

Publication number Publication date
JP2015073337A (en) 2015-04-16

Similar Documents

Publication Publication Date Title
US8098502B2 (en) System and method for emissions suppression in a switched-mode power supply
US7675762B2 (en) Multi-voltage power supply
US11502593B2 (en) Adjustable power supply device for supplying power to a power switch control device
US20100073967A1 (en) Switching control circuit and switching power supply
US10498255B2 (en) Multi-level inverter and method for providing multi-level output voltage by utilizing the multi-level inverter
US11251703B2 (en) Methods and apparatus to facilitate multiple modes of converter operation
CN107947576B (en) Low buck switching power supply with reduced switching losses
US10980109B2 (en) Printed circuit board and switching power supply
US9563214B2 (en) Power supply device including an electro-conductive cable wound around an output capacitor
US20200321857A1 (en) Conductive noise suppressor, power converter, and motor device
US20160079847A1 (en) Apparatus and system for noise cancellation of power converters
KR102050173B1 (en) Switching converters and control circuits thereof, lighting devices using them, electronic equipment
US8917021B2 (en) Power supply apparatus and luminaire
US9563241B2 (en) Power supply device including an electro-conductive cable wound around an inductor or output capacitor
New et al. Design and characterization of a neutral-point-clamped inverter using medium-voltage silicon carbide power modules
WO2013164945A1 (en) Electric circuit
US11258441B2 (en) Drive circuit
US8570777B2 (en) Power supply circuit with spike suppression circuit
KR20080101458A (en) Energy transfer element and converter including thereof
Zhiwen et al. EMI suppression of UAV power in aeromagnetic survey
US20200343814A1 (en) Switching power supply
RU178370U1 (en) DC / DC MINIATURE POWER MODULE
JP5338171B2 (en) Switching power supply
US11671007B2 (en) Power converter and control method of power converter that reduce ringing
US20230327546A1 (en) Switching power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13784169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 13784169

Country of ref document: EP

Kind code of ref document: A1