WO2013146415A1 - Heat pump-type heating device - Google Patents
Heat pump-type heating device Download PDFInfo
- Publication number
- WO2013146415A1 WO2013146415A1 PCT/JP2013/057649 JP2013057649W WO2013146415A1 WO 2013146415 A1 WO2013146415 A1 WO 2013146415A1 JP 2013057649 W JP2013057649 W JP 2013057649W WO 2013146415 A1 WO2013146415 A1 WO 2013146415A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- circuit
- heat pump
- heat exchanger
- compressor
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D3/00—Hot-water central heating systems
- F24D3/18—Hot-water central heating systems using heat pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D19/00—Details
- F24D19/0095—Devices for preventing damage by freezing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H4/00—Fluid heaters characterised by the use of heat pumps
- F24H4/02—Water heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/10—Compression machines, plants or systems with non-reversible cycle with multi-stage compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
- F25B41/24—Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/12—Heat pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2501—Bypass valves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/12—Hot water central heating systems using heat pumps
Definitions
- the present invention generally relates to a heat pump type heating device, and more particularly to a two-stage compression type heat pump type heating device in which two compressors are provided on a heat pump cycle.
- Japanese Patent Application Laid-Open No. 2010-236736 discloses a heat pump type hot water heater for the purpose of shortening the time of a defrosting operation for removing frost generated in an evaporator. (Patent Document 1).
- FIG. 16 is a configuration diagram showing the heat pump type water heater disclosed in Patent Document 1.
- the heat pump type hot water heater includes a hot water storage circuit 101K, a hot water supply circuit 102K, a refrigerant circuit R, and an intermediate injection circuit M.
- the refrigerant circuit R is configured by connecting refrigerant pipes in an annular shape.
- a compressor 101 capable of adjusting the capacity of the two-stage compression type, a refrigerant-to-water heat exchanger 103, a cooler 104, an internal heat exchanger 105, and a first electric expansion valve 106 and an evaporator 107 are provided.
- the intermediate injection circuit M is branched from the refrigerant circuit R between the refrigerant-to-water heat exchanger 103 and the cooler 104, and a part of the refrigerant discharged from the refrigerant-to-water heat exchanger 103 is transferred to the low-pressure side of the compressor 101. It is provided so as to return to the middle of the high pressure side.
- an electromagnetic on-off valve 110, a second electric expansion valve 111, and a cooler 104 are provided on the path of the intermediate injection circuit M.
- the heat pump water heater further includes a branch path 113 for removing frost generated and attached to the evaporator 107.
- the branch passage 113 is provided so as to branch from between the cooler 104 of the intermediate injection circuit M and the intermediate position between the high pressure side and the low pressure side of the compressor 101 and return to the evaporator 107 of the refrigerant circuit R.
- a defrosting electromagnetic valve 112 is provided on the branch path 113.
- the first electric expansion valve 106 When a temperature of minus 5 ° C. or lower is detected, the first electric expansion valve 106 is fully opened and the defrosting solenoid valve 112 is opened. At this time, the refrigerant is supplied to the refrigerant circuit R from the middle between the low pressure side and the high pressure side of the compressor 101 via the branch path 113. Thus, the medium-pressure high-temperature gas refrigerant via the branch passage 113 and the high-pressure high-temperature gas refrigerant via the fully opened first electric expansion valve 106 flow to the evaporator 107, and frost generated in the evaporator 107 is generated. Removed.
- a two-stage compression heat pump type heating device including a low-pressure compressor and a high-pressure compressor is known.
- the first electric expansion valve 106 is completely opened and the defrosting electromagnetic valve 112 is opened, so that the branch path 113 is opened.
- the flowing refrigerant merges with the refrigerant flowing in the refrigerant circuit R on the upstream side of the evaporator 107.
- the refrigerant since the refrigerant has the same pressure between the evaporator 107 and the intermediate position between the low pressure side and the high pressure side of the compressor 101, only the capability of the one-stage compression cycle can be substantially exhibited.
- the capacity of the two-stage compression cycle is limited even though the low-pressure side compressor and the high-pressure side compressor are provided, the heating performance is sufficient in a cryogenic outdoor environment. There are concerns that cannot be demonstrated.
- the outside air temperature when the evaporator is frosted is 0 ° C. or less.
- the temperature of the refrigerant in the evaporator must be at least higher than 0 ° C. Don't be.
- the refrigerant flowing through the branch path 113 and the refrigerant flowing through the refrigerant circuit R are merged and sent to the evaporator 107. Then, heat is radiated from the refrigerant to the outside air.
- the dehumidifying operation is a heat dissipation process from the evaporator 107 to the outside air
- the heating operation is an endothermic process from the outside air to the evaporator 107, and therefore the defrosting operation and the heating operation cannot be performed simultaneously.
- an object of the present invention is to solve the above-mentioned problem, and even in an extremely low temperature outside air environment, a heat pump type heating capable of simultaneously performing a defrosting operation while performing a heating operation of a fluid to be heated. Is to provide a device.
- a heat pump heating device includes a first heat exchanger that exchanges heat between a refrigerant and a fluid to be heated, a second heat exchanger that exchanges heat between the refrigerant and outdoor air, A refrigeration circuit having a low-pressure side compressor that compresses the refrigerant sent from the second heat exchanger, and a high-pressure side compressor that compresses the refrigerant sent from the low-pressure side compressor, and constituting a heat pump cycle; A bypass circuit that branches from the circuit and flows through the refrigerant for removing frost attached to the second heat exchanger.
- the bypass circuit is connected to the refrigeration circuit at a position where a refrigerant having a temperature higher than that of the refrigerant supplied to the second heat exchanger flows through the refrigeration circuit, and the refrigerant guided from the position is secondly independent of the refrigeration circuit. It is provided to circulate through the heat exchanger.
- the bypass circuit is provided so as to circulate the refrigerant to the second heat exchanger independently of the refrigeration circuit.
- a heat absorption process from the air to the second heat exchanger can be performed, and a heat dissipation process from the second heat exchanger to the outdoor air can be performed using a higher temperature refrigerant flowing through the bypass circuit.
- the ability of the two-stage compression cycle is exhibited by the low-pressure side compressor and the high-pressure side compressor, so that the defrosting operation is performed while performing the heating operation of the heated fluid even in an extremely low temperature outside air environment. Can be done at the same time.
- the refrigeration circuit is sent from the first pressure reducer and the first pressure reducer that depressurizes the refrigerant sent from the first heat exchanger between the first heat exchanger and the second heat exchanger.
- a gas-liquid separator that separates the refrigerant into a gas phase and a liquid phase
- a second decompressor that decompresses the liquid-phase refrigerant sent from the gas-liquid separator.
- the fuel cell further includes an injection circuit that guides a part of the gas-phase refrigerant separated by the gas-liquid separator to a refrigeration circuit between the low-pressure side compressor and the high-pressure side compressor.
- the low-temperature refrigerant is mixed in the refrigeration circuit between the low-pressure side compressor and the high-pressure side compressor through the injection circuit.
- coolant discharged from a high pressure side compressor can be reduced, and the reliability of a high pressure side compressor can be improved.
- the refrigerant inlet of the bypass circuit is connected to the gas phase side of the gas-liquid separator.
- the refrigerant inlet of the bypass circuit is connected to the liquid phase side of the gas-liquid separator.
- the refrigerant inlet of the bypass circuit is connected to a refrigeration circuit between the first pressure reducer and the gas-liquid separator.
- the refrigerant inlet of the bypass circuit is connected to a refrigeration circuit between the first heat exchanger and the first decompressor.
- the refrigerant inlet of the bypass circuit is connected to a refrigeration circuit between the high-pressure compressor and the first heat exchanger.
- a refrigerant having a temperature higher than that of the refrigerant supplied to the second heat exchanger through the refrigeration circuit is drawn into the bypass circuit, and the refrigerant is used to remove the refrigerant from the second heat exchanger. Perform heat dissipation process to outdoor air.
- the refrigerant outlet of the bypass circuit is connected to a refrigeration circuit between the low-pressure compressor and the high-pressure compressor.
- the refrigerant that has undergone the heat dissipation process from the second heat exchanger to the outdoor air is returned to the refrigeration circuit between the low-pressure compressor and the high-pressure compressor.
- the injection circuit and the bypass circuit have a first on-off valve and a second on-off valve that are provided on the path of each circuit and permit or block the refrigerant flow. At the time of defrosting the second heat exchanger in which the second on-off valve is opened, the first on-off valve is closed.
- the heat pump type heating apparatus instead of mixing the refrigerant in the refrigeration circuit between the low-pressure compressor and the high-pressure compressor through the injection circuit, the refrigerant flowing in the bypass circuit is fed to the low-pressure compressor.
- the heating operation and the defrosting operation of the fluid to be heated are translated by mixing in the refrigeration circuit between the compressor and the high-pressure compressor.
- the refrigerant outlet of the bypass circuit is connected to the liquid phase side of the gas-liquid separator.
- the refrigerant that has undergone the heat dissipation process from the second heat exchanger to the outdoor air is returned to the liquid phase side of the gas-liquid separator.
- the injection circuit and the bypass circuit have a first on-off valve and a second on-off valve that are provided on the path of each circuit and permit or block the refrigerant flow.
- the first on-off valve is opened.
- outdoor air is supplied from one direction to the second heat exchanger.
- the bypass circuit is disposed upstream of the flow of outdoor air supplied to the second heat exchanger with respect to the refrigeration circuit. According to the heat pump heating device configured in this way, frost is more likely to be generated on the upstream side of the flow of outdoor air supplied to the second heat exchanger, and thus a bypass circuit is disposed at that position.
- the refrigerant circulating through the heat pump cycle is R410A
- the condensation temperature of the refrigerant is 55 ° C.
- the maximum compression ratio of each of the low-pressure compressor and the high-pressure compressor is 7.5
- a heat pump heating device capable of simultaneously performing a defrosting operation while performing a heating operation of a fluid to be heated even in an extremely low temperature outside air environment. be able to.
- FIG. 8 It is a circuit diagram which shows the 8th modification of the heat pump type heating water heater in FIG. It is a circuit diagram which shows the 9th modification of the heat pump type heating water heater in FIG. It is a perspective view which shows the positional relationship of the piping of a freezing circuit and a bypass circuit in the evaporator in FIGS.
- It is a Mollier diagram which shows a 1 stage compression-type refrigerating cycle. It is a Mollier diagram showing a two-stage compression refrigeration cycle. It is a circuit diagram which shows the 1 stage compression-type refrigerating cycle. It is a graph which shows the relationship between external temperature and the temperature of the refrigerant
- FIG. 1 is a circuit diagram showing a heat pump type heating water heater in an embodiment of the present invention.
- the heat pump type heating water heater in the present embodiment includes a refrigeration circuit 21, an injection circuit 41, and a bypass circuit 51.
- the refrigeration circuit 21 has an annularly extending pipe and constitutes a heat pump cycle.
- a condenser 26 and an evaporator 27 are provided on the path of the refrigeration circuit 21.
- the condenser 26 performs heat exchange between the refrigerant circulating in the heat pump cycle and the fluid to be heated (water or air).
- the evaporator 27 performs heat exchange between the refrigerant circulating in the heat pump cycle and the outside air (outdoor air).
- a first expansion valve 36, a gas-liquid separator 38, and a second expansion valve 37 are further provided on the path of the refrigeration circuit 21.
- the first expansion valve 36, the gas-liquid separator 38 and the second expansion valve 37 are provided between the condenser 26 and the evaporator 27.
- the first expansion valve 36, the gas-liquid separator 38, and the second expansion valve 37 are arranged in series in the refrigerant flow direction in the refrigeration circuit 21.
- the first expansion valve 36, the gas-liquid separator 38, and the second expansion valve 37 are arranged in the order given.
- the first expansion valve 36 is provided as a first pressure reducer that depressurizes the refrigerant sent from the condenser 26.
- the gas-liquid separator 38 separates the refrigerant sent from the first expansion valve 36 into a gas phase refrigerant and a liquid phase refrigerant.
- the gas-liquid separator 38 has a gas phase refrigerant space 38a in which a gas phase refrigerant is disposed and a liquid phase refrigerant space 38b in which a liquid phase refrigerant is disposed.
- the second expansion valve 37 is provided as a second decompressor that decompresses the liquid-phase refrigerant sent from the gas-liquid separator 38.
- a lower compressor 31 and an upper compressor 32 are further provided on the path of the refrigeration circuit 21.
- the lower compressor 31 and the upper compressor 32 are provided between the evaporator 27 and the condenser 26.
- the lower compressor 31 and the upper compressor 32 are arranged in series in the refrigerant flow direction in the refrigeration circuit 21.
- the lower compressor 31 is provided as a low-pressure compressor that compresses the refrigerant sent from the evaporator 27.
- the upper compressor 32 is provided as a high-pressure compressor that further compresses the refrigerant sent from the lower compressor 31.
- the injection circuit 41 is provided so as to guide a part of the gas-phase refrigerant separated by the gas-liquid separator 38 to the refrigeration circuit 21 between the lower compressor 31 and the upper compressor 32.
- both ends of the injection circuit 41 are connected to the gas phase refrigerant space 38a of the gas-liquid separator 38 and the refrigeration circuit 21 between the lower compressor 31 and the upper compressor 32, respectively. Is provided.
- the refrigerant inlet of the injection circuit 41 is connected to the gas-phase refrigerant space 38 a of the gas-liquid separator 38, and the refrigerant outlet of the injection circuit 41 is connected to the refrigeration circuit 21 between the lower compressor 31 and the upper compressor 32. ing.
- a first on-off valve 42 On the path of the injection circuit 41, a first on-off valve 42 is provided.
- the first opening / closing valve 42 allows or blocks the refrigerant flow in the injection circuit 41 by being opened and closed.
- the bypass circuit 51 is connected to the refrigeration circuit 21 at a position where a refrigerant having a temperature higher than that of the refrigerant supplied to the evaporator 27 through the refrigeration circuit 21 flows, and the refrigerant guided from the position is independent of the refrigeration circuit 21. It is provided to circulate through the evaporator 27.
- the bypass circuit 51 has an injection circuit 41 between the gas-phase refrigerant space 38a of the gas-liquid separator 38 and the first on-off valve 42, the first on-off valve 42, and the refrigeration circuit 21 at both ends. Are connected to the injection circuit 41 between them.
- the refrigerant inlet of the bypass circuit 51 is connected to the gas phase side of the gas-liquid separator 38 via the injection circuit 41, and the refrigerant outlet of the bypass circuit 51 is connected to the lower compressor 31 and the upper compressor 32 via the injection circuit 41.
- a second on-off valve 52 and a third expansion valve 53 are provided on the path of the bypass circuit 51.
- the evaporator 27, the second on-off valve 52, and the third expansion valve 53 are arranged in series in the refrigerant flow direction in the bypass circuit 51.
- the evaporator 27, the second on-off valve 52, and the third expansion valve 53 are arranged in the order given.
- the second on-off valve 52 allows or blocks the refrigerant flow in the bypass circuit 51 by being opened and closed.
- the third expansion valve 53 is provided for the purpose of adjusting the flow rate of the refrigerant in the bypass circuit 51.
- the bypass circuit 51 is provided with two valves, the second on-off valve 52 and the third expansion valve 53.
- an electromagnetic expansion valve generally used in an air-conditioning refrigeration cycle cannot be completely closed even when the valve is most closed.
- the 2nd on-off valve 52 which can close a flow path completely is installed.
- the third expansion valve 53 has a structure capable of completely closing the flow path, the second on-off valve 52 can be omitted. In this case, the third expansion valve 53 functions as an on-off valve.
- FIGS. 2 to 10 are circuit diagrams showing modifications of the heat pump type heating and hot water heater in FIG.
- the connection position of either or both of the refrigerant inlet and the refrigerant outlet of the bypass circuit 51 is different from that of the heat pump type heating / water heater shown in FIG. .
- bypass circuit 51 the refrigerant inlet of bypass circuit 51 is connected to the gas phase side of gas-liquid separator 38 via injection circuit 41, and the refrigerant outlet of bypass circuit 51 is gas-liquid separated. It is connected to the liquid phase side of the vessel 38.
- bypass circuit 51 is connected to the liquid phase side of gas-liquid separator 38, and the refrigerant outlet of bypass circuit 51 is connected to the lower stage compressor via injection circuit 41. It is connected to the refrigeration circuit 21 between 31 and the upper compressor 32.
- bypass circuit 51 the refrigerant inlet of bypass circuit 51 is connected to the liquid phase side of gas-liquid separator 38, and the refrigerant outlet of bypass circuit 51 is the liquid phase side of gas-liquid separator 38. It is connected to the.
- bypass circuit 51 the refrigerant inlet of bypass circuit 51 is connected to refrigeration circuit 21 between first expansion valve 36 and gas-liquid separator 38, and the refrigerant outlet of bypass circuit 51 is It is connected to the refrigeration circuit 21 between the lower compressor 31 and the upper compressor 32 via an injection circuit 41.
- bypass circuit 51 the refrigerant inlet of bypass circuit 51 is connected to refrigeration circuit 21 between first expansion valve 36 and gas-liquid separator 38, and the refrigerant outlet of bypass circuit 51 is The gas-liquid separator 38 is connected to the liquid phase side.
- bypass circuit 51 the refrigerant inlet of bypass circuit 51 is connected to refrigeration circuit 21 between condenser 26 and first expansion valve 36, and the refrigerant outlet of bypass circuit 51 is an injection circuit. 41 is connected to the refrigeration circuit 21 between the lower compressor 31 and the upper compressor 32.
- bypass circuit 51 the refrigerant inlet of bypass circuit 51 is connected to refrigeration circuit 21 between condenser 26 and first expansion valve 36, and the refrigerant outlet of bypass circuit 51 is gas-liquid. It is connected to the liquid phase side of the separator 38.
- bypass circuit 51 the refrigerant inlet of bypass circuit 51 is connected to refrigeration circuit 21 between upper compressor 32 and condenser 26, and the refrigerant outlet of bypass circuit 51 is injection circuit 41. Is connected to the refrigeration circuit 21 between the lower compressor 31 and the upper compressor 32.
- bypass circuit 51 the refrigerant inlet of bypass circuit 51 is connected to refrigeration circuit 21 between upper compressor 32 and condenser 26, and the refrigerant outlet of bypass circuit 51 is gas-liquid separation. It is connected to the liquid phase side of the vessel 38.
- the refrigeration circuit 21 will be described. First, the refrigerant is compressed by the lower compressor 31. Further, the refrigerant is compressed to a higher pressure by the upper compressor 32.
- the reason for adopting the two-stage compression method in this way is as follows. That is, when the refrigerant temperature difference between the condenser 26 and the evaporator 27 is small, the pressure difference is also small, and when the refrigerant temperature difference between the condenser 26 and the evaporator 27 is large, the pressure difference is large. Obviously, If the refrigerant temperature difference between the condenser 26 and the evaporator 27 is small, for example, if the outside air temperature is relatively high and the refrigerant temperature in the evaporator 27 is in a range below the compression ratio possible with the one-stage compression method.
- the heat pump cycle can be configured by a one-stage compression method.
- the temperature difference of the refrigerant between the condenser 26 and the evaporator 27 becomes large and the required pressure difference cannot be obtained by the one-stage compression method, it is necessary to adopt the two-stage compression method.
- the refrigerant sent from the upper compressor 32 dissipates heat in the condenser 26 by heat exchange with the heated fluid.
- the refrigerant that exchanges heat with the fluid to be heated in the condenser 26 is deprived of heat.
- the refrigerant that was in the gas phase at the refrigerant inlet of the condenser 26 becomes a liquid phase at the refrigerant outlet of the condenser 26.
- the refrigerant sent from the condenser 26 passes through the first expansion valve 36, the pressure and temperature thereof are lowered, and the liquid phase enters the gas-liquid mixed state.
- the gas-liquid mixed refrigerant sent from the first expansion valve 36 is separated into a gas phase and a liquid phase in the gas-liquid separator 38.
- a part of the liquid-phase refrigerant sent from the liquid-phase refrigerant space 38b passes through the second expansion valve 37, so that its pressure and temperature are further reduced, and a gas-liquid mixed state starts from the liquid phase.
- the refrigerant in the gas-liquid mixed state sent from the second expansion valve 37 absorbs heat by heat exchange with the outside air in the evaporator 27 and becomes a gas phase.
- the refrigerant sent from the evaporator 27 is compressed again by the lower compressor 31.
- a heat pump cycle is executed by repeating the process described above.
- the injection circuit 41 mixes a part of the gas-phase refrigerant disposed in the gas-phase refrigerant space 38a of the gas-liquid separator 38 with the refrigerant discharged from the discharge port of the lower compressor 31, and the mixed refrigerant is in the upper stage. It is provided for the purpose of lowering the temperature of the refrigerant discharged from the discharge port of the upper compressor 32 by sending it to the suction port of the compressor 32.
- the refrigerant in which the refrigerant from the injection circuit 41 and the refrigerant discharged from the discharge port of the lower compressor 31 are mixed has a lower temperature than the refrigerant discharged from the discharge port of the lower compressor 31. That is, the temperature of the refrigerant sucked into the suction port of the upper compressor 32 can be lowered as compared with the case where the injection circuit 41 is not provided, and as a result, the temperature of the refrigerant discharged from the discharge port of the upper compressor 32 is lowered. Can be made. Thereby, the temperature of the refrigerant discharged from the upper compressor 32 is suppressed, and the reliability of the upper compressor 32 can be improved and the operation with a larger pressure difference (temperature difference) can be performed.
- the bypass circuit 51 will be described.
- the bypass circuit 51 is provided for the purpose of branching off a part of the refrigerant flowing through the refrigeration circuit 21 and supplying it to the evaporator 27 to remove frost attached to the evaporator 27.
- the first on-off valve 42 is opened in order to allow the refrigerant to flow through the injection circuit 41. Further, since the defrosting operation is not performed, the second opening / closing valve 52 is closed.
- the refrigerant flow during the defrosting operation is indicated by arrows.
- subjected to the arrow of the 1st on-off valve 42 has shown the closed state which does not flow a refrigerant
- the refrigerant outlet of the bypass circuit 51 is connected to the refrigeration circuit 21 between the lower compressor 31 and the upper compressor 32 via the injection circuit 41 in FIGS. 1, 3, 5, 7, and 9.
- the second on-off valve 52 and the third expansion valve 53 on the bypass circuit 51 are opened, and the first on-off valve 42 on the injection circuit 41 is closed.
- a part of the gas phase refrigerant disposed in the gas phase refrigerant space 38 a of the gas-liquid separator 38 flows through the bypass circuit 51 and is supplied to the evaporator 27.
- the refrigerant that has radiated heat to the outside air in the evaporator 27 is returned to the refrigeration circuit 21 between the lower compressor 31 and the upper compressor 32.
- the refrigerant flowing through the bypass circuit 51 exhibits the function of the injection circuit 41 in addition to the function of defrosting the evaporator 27.
- FIG. 11 is a perspective view showing the positional relationship between the piping of the refrigeration circuit and the bypass circuit in the evaporator shown in FIGS.
- outside air is supplied to evaporator 27 from one direction indicated by arrow 71 by rotation of a fan (not shown).
- the side surface of the evaporator 27 corresponding to the right side in the figure is an outside air inlet, and the side surface of the evaporator 27 corresponding to the left side in the figure is an outside air outlet.
- the evaporator 27 has heat exchange fins 60 for exchanging heat between the outside air supplied to the evaporator 27 and the refrigerant flowing through the evaporator 27.
- the refrigeration circuit 21 and the bypass circuit 51 have a refrigerant pipe 66 and a refrigerant pipe 61, respectively.
- the refrigerant pipe 66 and the refrigerant pipe 61 extend in the vertical direction in FIG. 11 while penetrating the heat exchange fins 60.
- the refrigerant pipe 66 and the refrigerant pipe 61 are provided as pipes independent from each other, and the refrigerant flowing through each pipe does not mix.
- the refrigeration circuit 21 and the bypass circuit 51 have a plurality of refrigerant pipes 66 and a plurality of refrigerant pipes 61, respectively.
- the plurality of refrigerant pipes 66 are arranged in a direction orthogonal to the outside air flow supplied to the evaporator 27, and the plurality of refrigerant pipes 61 are arranged in a direction orthogonal to the outside air flow supplied to the evaporator 27.
- the plurality of refrigerant pipes 66 and the plurality of refrigerant pipes 61 are provided at positions shifted in the flow direction of the outside air supplied to the evaporator 27.
- the refrigerant pipe 66 and the refrigerant pipe 61 are provided at positions that do not overlap each other when viewed from the flow direction of the outside air supplied to the evaporator 27.
- the bypass circuit 51 is arranged on the upstream side of the outside air flow supplied to the evaporator 27 from the refrigeration circuit 21. That is, the refrigerant pipe 61 of the bypass circuit 51 is arranged on the outside air inlet side of the evaporator 27, and the refrigerant pipe 66 of the refrigeration circuit 21 is arranged on the outside air outlet side of the evaporator 27.
- frost easily attaches to the outside air suction port side. Therefore, by arranging the refrigerant pipe 61 of the bypass circuit 51 at such a position, the frost attached to the evaporator 27 is efficiently removed during the defrosting operation. Can be removed.
- coolant piping 61 shown in FIG. 11 is an example, and is not specifically limited by this invention.
- the flow of the refrigerant flowing through each pipe may be any of parallel flow, alternating current and cross flow, or may be other flow.
- the defrosting operation can be performed at the same time while performing the heating operation even in an extremely low temperature (for example, ⁇ 17 ° C. or lower) outside air environment. Then, such an effect produced by the heat pump type heating water heater in this Embodiment is demonstrated.
- FIG. 12 is a Mollier diagram showing a one-stage compression refrigeration cycle.
- FIG. 13 is a Mollier diagram showing a two-stage compression refrigeration cycle.
- FIG. 14 is a circuit diagram showing a one-stage compression refrigeration cycle.
- the refrigerant flowing through the refrigeration circuit 21 is R410A
- the refrigerant temperature (condensation temperature) in the condenser 26 is 55 ° C. (the refrigerant pressure at this time is 3.43 MPa)
- the degree of supercooling at the outlet of the condenser 26 Is 10 ° C.
- the degree of superheat at the outlet of the evaporator 27 is 10 ° C.
- the pressure in the injection circuit 41 in the two-stage compression is the square root of (pressure in the evaporator 27) ⁇ (pressure in the condenser 26)
- compressor The compression process is adiabatic compression (isentropic process)
- the maximum compression ratio permissible maximum value obtained by dividing the compressor discharge pressure by the compressor suction pressure
- the Mollier diagram is also called a Ph diagram, and the vertical axis represents pressure and the horizontal axis represents specific enthalpy.
- the Mollier diagram is a diagram showing characteristics unique to the refrigerant such as the pressure, specific enthalpy, temperature, phase state, enthalpy, and specific volume of the refrigerant used in the refrigeration cycle.
- the gaseous refrigerant is compressed by the compressor 30 and discharged to the condenser 26 side.
- the discharge pressure of the compressor 30 and the pressure of the refrigerant in the condenser 26 are 3.43 MPa according to the Mollier diagram shown in FIG.
- the refrigerant gradually changes its phase from a gas state to a liquid state by exchanging heat with the fluid to be heated in the condenser 26.
- the phase change state is 55 ° C. at a constant temperature.
- the refrigerant is completely liquefied in the condenser 26, and the temperature of the refrigerant at the outlet of the condenser is 45 ° C. under the above condition where the degree of supercooling is 10 ° C.
- the refrigerant expanded by the expansion valve 35 enters a gas-liquid two-phase state, and the pressure and temperature of the refrigerant decrease.
- the temperature of the refrigerant is uniquely determined by the reduced pressure. That is, since the maximum compression ratio of the compressor 30 is 7.5, the minimum pressure on the low pressure side of the compressor 30 is 0.46 MPa, and the temperature of the refrigerant at this time is ⁇ 16.3 ° C.
- the temperature of the refrigerant in the evaporator 27 cannot be set to a temperature lower than ⁇ 16.3 ° C. Therefore, in terms of the feasibility of “heating operation in an outside air environment of ⁇ 17 ° C. or lower”, it is theoretically impossible in the one-stage compression refrigeration cycle.
- the temperature of the refrigerant in the evaporator 27 is about 10 ° C. lower than the outside air temperature. That is, in the one-stage compression refrigeration cycle, when the temperature of the refrigerant in the evaporator 27 is ⁇ 16.3 ° C., the corresponding outside air temperature is approximately ⁇ 6.3 ° C.
- the gaseous refrigerant is compressed by the upper compressor 32 and discharged to the condenser 26 side.
- the discharge pressure of the upper compressor 32 and the pressure of the refrigerant in the condenser 26 are 3.43 MPa according to the Mollier diagram shown in FIG.
- the refrigerant gradually changes its phase from a gas state to a liquid state by exchanging heat with the fluid to be heated in the condenser 26.
- the phase change state is 55 ° C. at a constant temperature.
- the refrigerant is completely liquefied in the condenser 26, and the temperature of the refrigerant at the outlet of the condenser is 45 ° C. under the above condition where the degree of supercooling is 10 ° C.
- the refrigerant expanded by the first expansion valve 36 is in a gas-liquid two-phase state, and the refrigerant pressure and temperature are reduced to the refrigerant pressure and temperature in the injection circuit 41, respectively.
- the temperature of the refrigerant in the evaporator 27 is about 10 ° C. lower than the outside air temperature, for example, to realize the heating operation under the outside air temperature of ⁇ 25 ° C.
- the temperature of the refrigerant in the evaporator 27 must be about ⁇ 35 ° C.
- the pressure of the refrigerant R410A is 0.22 MPa.
- the refrigerant pressure in the injection circuit 41 is 0.87 MPa from the square root of (pressure in the evaporator 27) ⁇ (pressure in the condenser 26). 4 ° C.
- the refrigerant sent out from the first expansion valve 36 enters the gas-liquid separator 38 and is separated into a gas phase and a liquid phase therein.
- the separated liquid refrigerant flows in the direction of the evaporator 27 (direction of the second expansion valve 37), and the separated gas-phase refrigerant flows through the injection circuit 41 and is finally discharged from the lower compressor 31.
- the combined refrigerant is sucked into the upper compressor 32.
- the first on-off valve 42 is opened, and the refrigerant flows through the injection circuit 41.
- the refrigerant separated into the liquid phase by the gas-liquid separator 38 is in a two-phase state where the pressure is further reduced and lowered by the second expansion valve 37.
- the refrigerant absorbs heat from the outside air while flowing through the evaporator 27. Thereafter, the refrigerant is sucked, compressed and discharged into the lower compressor 31 and again sucked into the upper compressor 32.
- the maximum compression ratio allowed per compressor is 7.5.
- the compression ratios of the lower compressor 31 and the upper compressor 32 in the two-stage compression during the heating operation are both 3.95, which is smaller than the allowable maximum compression ratio 7.5.
- the two-stage compression enables heating operation under the conditions of a condensation temperature of 55 ° C. and an evaporation temperature of ⁇ 35 ° C.
- the refrigeration circuit 21 and the bypass circuit 51 are provided as independent paths in the evaporator 27. For this reason, the pressure and temperature of the refrigerant flowing through each circuit of the refrigeration circuit 21 and the bypass circuit 51 can be controlled independently.
- the state of the refrigerant in the bypass circuit 51 during the defrosting operation will be described typically with reference to the circuit in FIG. 8.
- the starting point of the bypass circuit 51 between the condenser 26 and the first expansion valve 36 When the third expansion valve 53 and the second on-off valve 52 are opened, the refrigerant flows into the bypass circuit 51.
- the refrigerant at the starting point of the bypass circuit 51 is in a liquid phase, its pressure is 3.43 MPa, and its temperature is 45 ° C.
- the liquid-phase refrigerant flows through the evaporator 27 through another path without being mixed with the refrigerant discharged from the second expansion valve 37, exchanges heat with the evaporator 27, and defrosts.
- the temperature of the refrigerant in the refrigeration circuit 21 sent from the second expansion valve 37 to the evaporator 27 is ⁇ 35 ° C.
- the temperature of the refrigerant in the bypass circuit 51 is 45 ° C.
- the pressure in the injection circuit 41 is the square root of (pressure in the evaporator) ⁇ (pressure in the condenser)
- the pressure of the refrigerant in the injection circuit 41 at this time is 0.87 MPa.
- the temperature is 3.4 ° C.
- the refrigerant in the injection circuit 41 can also be used as a refrigerant that flows to the bypass circuit 51 during the defrosting operation. is there.
- the refrigerant in the bypass circuit 51 exiting the evaporator 27 passes through the second on-off valve 52 and the third expansion valve 53 in order. Thereafter, the refrigerant drops to the pressure of the injection circuit 41 and merges with the liquid-phase refrigerant between the gas-liquid separator 38 and the second expansion valve 37.
- a heating operation and a defrosting operation can be performed simultaneously even under an outside air temperature of -25 ° C.
- the amount of heat absorbed from the outside air to the refrigerant in the evaporator 27 is reduced as compared with the heating only operation. For this reason, the heating capacity is reduced by the amount of heat of the refrigerant used for defrosting.
- the heating capacity of the condenser 26 can be maintained by increasing the operating speed of the lower compressor 31 or the upper compressor 32 and increasing the total refrigerant flow rate.
- FIG. 15 is a graph showing the relationship between the outside air temperature and the temperature of the refrigerant in the injection circuit. The relationship shown in FIG. 15 is when the refrigerant is R410A and the temperature of the refrigerant in the condenser 26 is about 55 ° C.
- the position of the start point of the bypass circuit 51 needs to be determined so that at least a refrigerant having a temperature higher than 0 ° C. at which water is frozen is introduced into the bypass circuit 51 for defrosting. Since the refrigerant pressure in the injection circuit 41 is the square root of (pressure in the evaporator) ⁇ (pressure in the condenser), as described above, the refrigerant pressure in the evaporator 27 in the bypass circuit 51 is even when the outside temperature is ⁇ 25 ° C. As shown in FIG. 15, if the refrigerant upstream of the injection circuit 41 is used, the temperature of the refrigerant is higher than 0 ° C., so that it can be defrosted.
- a condenser 26 as a first heat exchanger for exchanging heat between them
- an evaporator 27 as a second heat exchanger for exchanging heat between the refrigerant and outdoor air
- a refrigerant sent from the evaporator 27
- a refrigeration circuit 21 having a lower compressor 31 as a low-pressure compressor that compresses the refrigerant and an upper compressor 32 as a high-pressure compressor that compresses the refrigerant sent from the lower compressor 31, and constituting a heat pump cycle.
- a bypass circuit 51 that branches from the refrigeration circuit 21 and through which a refrigerant for removing frost attached to the evaporator 27 flows.
- the bypass circuit 51 is connected to the refrigeration circuit 21 at a position where a refrigerant having a temperature higher than that of the refrigerant supplied to the evaporator 27 through the refrigeration circuit 21 flows, and the refrigerant guided from the position is independent of the refrigeration circuit 21. It is provided to circulate through the evaporator 27.
- the refrigeration circuit 21 is sent from the first expansion valve 36 and the first expansion valve 36 as a first pressure reducer that depressurizes the refrigerant sent from the condenser 26 between the condenser 26 and the evaporator 27. It further has a gas-liquid separator 38 that separates the refrigerant into a gas phase and a liquid phase, and a second expansion valve 37 as a second decompressor that decompresses the liquid-phase refrigerant sent from the gas-liquid separator 38.
- the heat pump type hot water heater further includes an injection circuit 41 that guides a part of the gas-phase refrigerant separated by the gas-liquid separator 38 to the refrigeration circuit 21 between the lower compressor 31 and the upper compressor 32. .
- the refrigerant outlet of the bypass circuit is connected to the refrigeration circuit 21 between the lower compressor 31 and the upper compressor 32 or the liquid phase side of the gas-liquid separator 38, and the refrigerant flows through the bypass circuit 51 during the defrosting operation. Is done.
- defrosting is performed while performing the heating operation of the fluid to be heated even in the environment of a low outside air temperature of ⁇ 17 ° C. or lower. Driving can be done at the same time.
- the present invention is applied to, for example, a heat pump type hot water heater or a heat pump type hot water heater.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
A heat pump-type heating/hot-water supply machine has: a refrigeration circuit (21) which has a condenser (26) for exchanging heat between a refrigerant and fluid to be heated, an evaporator (27) for exchanging heat between a refrigerant and outdoor air, a lower-stage compressor (31) for compressing a refrigerant supplied from the evaporator (27), and an upper-stage compressor (32) for compressing a refrigerant supplied from the lower-stage compressor (31), and which forms a heat pump cycle; and a bypass circuit (51) branched from the refrigeration circuit (21) and allowing a refrigerant to flow therethrough, the refrigerant being used to remove frost adhering to the evaporator (27). The bypass circuit (51) is connected with the refrigeration circuit (21) at a position where a refrigerant having a higher temperature than a refrigerant supplied to the evaporator (27) through the refrigeration circuit (21) flows, and the bypass circuit (51) is provided so as to cause, independently of the refrigeration circuit (21), a refrigerant to flow to the evaporator (27), the refrigerant being conducted from the position at which the bypass circuit (51) is connected with the refrigeration circuit (21). As a result of this configuration, even under an environment in which the temperature of outside air is very low, the heat pump-type heating device can perform defrosting operation while simultaneously performing operation for heating the fluid to be heated.
Description
この発明は、一般的には、ヒートポンプ式加熱装置に関し、より特定的には、ヒートポンプサイクル上に2つの圧縮機が設けられた2段圧縮式のヒートポンプ式加熱装置に関する。
The present invention generally relates to a heat pump type heating device, and more particularly to a two-stage compression type heat pump type heating device in which two compressors are provided on a heat pump cycle.
従来のヒートポンプ式加熱装置に関して、たとえば、特開2010-236736号公報には、蒸発器に発生した霜を取り除く除霜運転の時間を短縮することを目的としたヒートポンプ式給湯機が開示されている(特許文献1)。
Regarding a conventional heat pump type heating apparatus, for example, Japanese Patent Application Laid-Open No. 2010-236736 discloses a heat pump type hot water heater for the purpose of shortening the time of a defrosting operation for removing frost generated in an evaporator. (Patent Document 1).
図16は、特許文献1に開示されたヒートポンプ式給湯機を示す構成図である。図16を参照して、ヒートポンプ式給湯機は、貯湯回路101Kと、給湯回路102Kと、冷媒回路Rと、中間インジェクション回路Mとを有する。
FIG. 16 is a configuration diagram showing the heat pump type water heater disclosed in Patent Document 1. Referring to FIG. 16, the heat pump type hot water heater includes a hot water storage circuit 101K, a hot water supply circuit 102K, a refrigerant circuit R, and an intermediate injection circuit M.
冷媒回路Rは、冷媒配管を環状に接続して構成されている。冷媒回路Rの経路上には、2段圧縮式の能力を調節可能な圧縮機101と、冷媒対水熱交換器103と、冷却器104と、内部熱交換器105と、第1電動膨張弁106と、蒸発器107とが設けられている。中間インジェクション回路Mは、冷媒対水熱交換器103と冷却器104との間の冷媒回路Rから分岐され、冷媒対水熱交換器103から吐出した冷媒の一部を圧縮機101の低圧側と高圧側との中間に戻すように設けられている。中間インジェクション回路Mの経路上には、電磁開閉弁110と、第2電動膨張弁111と、冷却器104とが設けられている。
The refrigerant circuit R is configured by connecting refrigerant pipes in an annular shape. On the path of the refrigerant circuit R, a compressor 101 capable of adjusting the capacity of the two-stage compression type, a refrigerant-to-water heat exchanger 103, a cooler 104, an internal heat exchanger 105, and a first electric expansion valve 106 and an evaporator 107 are provided. The intermediate injection circuit M is branched from the refrigerant circuit R between the refrigerant-to-water heat exchanger 103 and the cooler 104, and a part of the refrigerant discharged from the refrigerant-to-water heat exchanger 103 is transferred to the low-pressure side of the compressor 101. It is provided so as to return to the middle of the high pressure side. On the path of the intermediate injection circuit M, an electromagnetic on-off valve 110, a second electric expansion valve 111, and a cooler 104 are provided.
ヒートポンプ式給湯機は、蒸発器107に発生付着した霜を取り除くための分岐路113をさらに有する。分岐路113は、中間インジェクション回路Mの冷却器104と、圧縮機101の高圧側および低圧側の中間位置との間から分岐し、冷媒回路Rの蒸発器107に戻るように設けられている。分岐路113の経路上には、除霜用電磁弁112が設けられている。
The heat pump water heater further includes a branch path 113 for removing frost generated and attached to the evaporator 107. The branch passage 113 is provided so as to branch from between the cooler 104 of the intermediate injection circuit M and the intermediate position between the high pressure side and the low pressure side of the compressor 101 and return to the evaporator 107 of the refrigerant circuit R. A defrosting electromagnetic valve 112 is provided on the branch path 113.
マイナス5℃以下の温度が検出された場合、第1電動膨張弁106が完全開成状態とされるとともに、除霜用電磁弁112が開操作される。このとき、冷媒が、圧縮機101の低圧側と高圧側との中間から分岐路113を介して冷媒回路Rに供給される。これにより、分岐路113を介する中圧の高温ガス冷媒と、完全開成状態の第1電動膨張弁106を介する高圧の高温ガス冷媒とが、蒸発器107に流れ、蒸発器107に発生した霜が取り除かれる。
When a temperature of minus 5 ° C. or lower is detected, the first electric expansion valve 106 is fully opened and the defrosting solenoid valve 112 is opened. At this time, the refrigerant is supplied to the refrigerant circuit R from the middle between the low pressure side and the high pressure side of the compressor 101 via the branch path 113. Thus, the medium-pressure high-temperature gas refrigerant via the branch passage 113 and the high-pressure high-temperature gas refrigerant via the fully opened first electric expansion valve 106 flow to the evaporator 107, and frost generated in the evaporator 107 is generated. Removed.
特許文献1に開示されるように、低圧側の圧縮機と高圧側の圧縮機とを備える2段圧縮式のヒートポンプ式加熱装置が知られている。しかしながら、特許文献1に開示されたヒートポンプ式給湯機では、除霜運転時に、第1電動膨張弁106を完全開成状態とし、除霜用電磁弁112を開状態とすることにより、分岐路113を流れる冷媒が、蒸発器107の上流側で冷媒回路Rを流れる冷媒と合流する。この場合、冷媒が、圧縮機101の低圧側と高圧側との中間位置と、蒸発器107との間で同一圧力となるため、実質的には1段圧縮サイクルの能力しか発揮できなくなる。このように、低圧側の圧縮機と高圧側の圧縮機とを備えているにもかかわらず、2段圧縮サイクルの能力が制限されるような場合、極低温の外気環境下で暖房性能が十分に発揮されない懸念がある。
As disclosed in Patent Document 1, a two-stage compression heat pump type heating device including a low-pressure compressor and a high-pressure compressor is known. However, in the heat pump type water heater disclosed in Patent Document 1, during the defrosting operation, the first electric expansion valve 106 is completely opened and the defrosting electromagnetic valve 112 is opened, so that the branch path 113 is opened. The flowing refrigerant merges with the refrigerant flowing in the refrigerant circuit R on the upstream side of the evaporator 107. In this case, since the refrigerant has the same pressure between the evaporator 107 and the intermediate position between the low pressure side and the high pressure side of the compressor 101, only the capability of the one-stage compression cycle can be substantially exhibited. As described above, when the capacity of the two-stage compression cycle is limited even though the low-pressure side compressor and the high-pressure side compressor are provided, the heating performance is sufficient in a cryogenic outdoor environment. There are concerns that cannot be demonstrated.
また、蒸発器に着霜する時の外気温は0℃以下であるが、その外気温において除霜運転を実行しようとすると、蒸発器内の冷媒の温度を少なくとも0℃よりも高くしなければならない。一方、暖房運転時には、蒸発器内の冷媒の温度を外気よりも低い温度に設定して、外気から冷媒に吸熱する必要がある。
Further, the outside air temperature when the evaporator is frosted is 0 ° C. or less. However, if the defrosting operation is performed at the outside air temperature, the temperature of the refrigerant in the evaporator must be at least higher than 0 ° C. Don't be. On the other hand, at the time of heating operation, it is necessary to set the temperature of the refrigerant in the evaporator to a temperature lower than the outside air and to absorb heat from the outside air to the refrigerant.
これに対して、特許文献1に開示されたヒートポンプ式給湯機では、除霜運転時、分岐路113を流れる冷媒と冷媒回路Rを流れる冷媒とを合流させて蒸発器107に送り込み、蒸発器107では冷媒から外気に放熱している。この場合、除湿運転が蒸発器107から外気への放熱過程である一方、暖房運転は外気から蒸発器107への吸熱過程であるため、除霜運転と暖房運転とを同時に行なうことができない。
On the other hand, in the heat pump water heater disclosed in Patent Document 1, during the defrosting operation, the refrigerant flowing through the branch path 113 and the refrigerant flowing through the refrigerant circuit R are merged and sent to the evaporator 107. Then, heat is radiated from the refrigerant to the outside air. In this case, since the dehumidifying operation is a heat dissipation process from the evaporator 107 to the outside air, the heating operation is an endothermic process from the outside air to the evaporator 107, and therefore the defrosting operation and the heating operation cannot be performed simultaneously.
そこでこの発明の目的は、上記の課題を解決することであり、極低温の外気環境下であっても、被加熱流体の加熱運転を行ないながら除霜運転も同時に行なうことが可能なヒートポンプ式加熱装置を提供することである。
Accordingly, an object of the present invention is to solve the above-mentioned problem, and even in an extremely low temperature outside air environment, a heat pump type heating capable of simultaneously performing a defrosting operation while performing a heating operation of a fluid to be heated. Is to provide a device.
この発明に従ったヒートポンプ式加熱装置は、冷媒と被加熱流体との間で熱交換を行なう第1熱交換器と、冷媒と室外空気との間で熱交換を行なう第2熱交換器と、第2熱交換器から送られた冷媒を圧縮する低圧側圧縮機と、低圧側圧縮機から送られた冷媒を圧縮する高圧側圧縮機とを有し、ヒートポンプサイクルを構成する冷凍回路と、冷凍回路から分岐し、第2熱交換器に付着した霜を取り除くための冷媒が流れるバイパス回路とを備える。バイパス回路は、冷凍回路を通じて第2熱交換器に供給される冷媒よりも高温の冷媒が流通する位置で冷凍回路に接続され、その位置から導いた冷媒を、冷凍回路とは独立して第2熱交換器に流通させるように設けられる。
A heat pump heating device according to the present invention includes a first heat exchanger that exchanges heat between a refrigerant and a fluid to be heated, a second heat exchanger that exchanges heat between the refrigerant and outdoor air, A refrigeration circuit having a low-pressure side compressor that compresses the refrigerant sent from the second heat exchanger, and a high-pressure side compressor that compresses the refrigerant sent from the low-pressure side compressor, and constituting a heat pump cycle; A bypass circuit that branches from the circuit and flows through the refrigerant for removing frost attached to the second heat exchanger. The bypass circuit is connected to the refrigeration circuit at a position where a refrigerant having a temperature higher than that of the refrigerant supplied to the second heat exchanger flows through the refrigeration circuit, and the refrigerant guided from the position is secondly independent of the refrigeration circuit. It is provided to circulate through the heat exchanger.
このように構成されたヒートポンプ式加熱装置によれば、バイパス回路が、冷媒を冷凍回路とは独立して第2熱交換器に流通させるように設けられるため、冷凍回路に流れる冷媒を用いて室外空気から第2熱交換器への吸熱過程を実行し、バイパス回路を流れるより高温の冷媒を用いて第2熱交換器から室外空気への放熱過程を実行することができる。この際、低圧側圧縮機と高圧側圧縮機とによって2段圧縮サイクルの能力が発揮されることにより、極低温の外気環境下であっても、被加熱流体の加熱運転を行ないながら除霜運転も同時に行なうことができる。
According to the heat pump type heating apparatus configured as described above, the bypass circuit is provided so as to circulate the refrigerant to the second heat exchanger independently of the refrigeration circuit. A heat absorption process from the air to the second heat exchanger can be performed, and a heat dissipation process from the second heat exchanger to the outdoor air can be performed using a higher temperature refrigerant flowing through the bypass circuit. At this time, the ability of the two-stage compression cycle is exhibited by the low-pressure side compressor and the high-pressure side compressor, so that the defrosting operation is performed while performing the heating operation of the heated fluid even in an extremely low temperature outside air environment. Can be done at the same time.
また好ましくは、冷凍回路は、第1熱交換器と第2熱交換器との間に、第1熱交換器から送られた冷媒を減圧する第1減圧器と、第1減圧器から送られた冷媒を気相と液相とに分離する気液分離器と、気液分離器から送られた液相の冷媒を減圧する第2減圧器とをさらに有する。気液分離器で分離された気相の冷媒の一部を、低圧側圧縮機と高圧側圧縮機との間の冷凍回路へと導くインジェクション回路をさらに備える。
Preferably, the refrigeration circuit is sent from the first pressure reducer and the first pressure reducer that depressurizes the refrigerant sent from the first heat exchanger between the first heat exchanger and the second heat exchanger. And a gas-liquid separator that separates the refrigerant into a gas phase and a liquid phase, and a second decompressor that decompresses the liquid-phase refrigerant sent from the gas-liquid separator. The fuel cell further includes an injection circuit that guides a part of the gas-phase refrigerant separated by the gas-liquid separator to a refrigeration circuit between the low-pressure side compressor and the high-pressure side compressor.
このように構成されたヒートポンプ式加熱装置によれば、インジェクション回路を通じて、低圧側圧縮機と高圧側圧縮機との間の冷凍回路に低温の冷媒を混合させる。これにより、高圧側圧縮機から吐出される冷媒の温度を低下させ、高圧側圧縮機の信頼性を向上させることができる。
According to the heat pump type heating apparatus configured as described above, the low-temperature refrigerant is mixed in the refrigeration circuit between the low-pressure side compressor and the high-pressure side compressor through the injection circuit. Thereby, the temperature of the refrigerant | coolant discharged from a high pressure side compressor can be reduced, and the reliability of a high pressure side compressor can be improved.
また好ましくは、バイパス回路の冷媒入り口が、気液分離器の気相側に接続される。また好ましくは、バイパス回路の冷媒入り口が、気液分離器の液相側に接続される。また好ましくは、バイパス回路の冷媒入り口が、第1減圧器と気液分離器との間の冷凍回路に接続される。また好ましくは、バイパス回路の冷媒入り口が、第1熱交換器と第1減圧器との間の冷凍回路に接続される。また好ましくは、バイパス回路の冷媒入り口が、高圧側圧縮機と第1熱交換器との間の冷凍回路に接続される。
Also preferably, the refrigerant inlet of the bypass circuit is connected to the gas phase side of the gas-liquid separator. Preferably, the refrigerant inlet of the bypass circuit is connected to the liquid phase side of the gas-liquid separator. Preferably, the refrigerant inlet of the bypass circuit is connected to a refrigeration circuit between the first pressure reducer and the gas-liquid separator. Preferably, the refrigerant inlet of the bypass circuit is connected to a refrigeration circuit between the first heat exchanger and the first decompressor. Preferably, the refrigerant inlet of the bypass circuit is connected to a refrigeration circuit between the high-pressure compressor and the first heat exchanger.
このように構成されたヒートポンプ式加熱装置によれば、バイパス回路に、冷凍回路を通じて第2熱交換器に供給される冷媒よりも高温の冷媒を引き込み、その冷媒を用いて第2熱交換器から室外空気への放熱過程を実行する。
According to the heat pump type heating apparatus configured as described above, a refrigerant having a temperature higher than that of the refrigerant supplied to the second heat exchanger through the refrigeration circuit is drawn into the bypass circuit, and the refrigerant is used to remove the refrigerant from the second heat exchanger. Perform heat dissipation process to outdoor air.
また好ましくは、バイパス回路の冷媒出口が、低圧側圧縮機と高圧側圧縮機との間の冷凍回路に接続される。このように構成されたヒートポンプ式加熱装置によれば、第2熱交換器から室外空気への放熱過程を経た冷媒を、低圧側圧縮機と高圧側圧縮機との間の冷凍回路に戻す。
Also preferably, the refrigerant outlet of the bypass circuit is connected to a refrigeration circuit between the low-pressure compressor and the high-pressure compressor. According to the heat pump type heating apparatus configured as described above, the refrigerant that has undergone the heat dissipation process from the second heat exchanger to the outdoor air is returned to the refrigeration circuit between the low-pressure compressor and the high-pressure compressor.
また好ましくは、インジェクション回路およびバイパス回路は、各回路の経路上に設けられ、冷媒流れを許容もしくは遮断する第1開閉弁および第2開閉弁をそれぞれ有する。第2開閉弁が開状態とされる第2熱交換器の除霜時、第1開閉弁が閉状態とされる。
Also preferably, the injection circuit and the bypass circuit have a first on-off valve and a second on-off valve that are provided on the path of each circuit and permit or block the refrigerant flow. At the time of defrosting the second heat exchanger in which the second on-off valve is opened, the first on-off valve is closed.
このように構成されたヒートポンプ式加熱装置によれば、インジェクション回路を通じて低圧側圧縮機と高圧側圧縮機との間の冷凍回路に冷媒を混合させる替わりに、バイパス回路を流れる冷媒を低圧側圧縮機と高圧側圧縮機との間の冷凍回路に混合させることによって、被加熱流体の加熱運転と除霜運転とを並進させる。
According to the heat pump type heating apparatus configured as described above, instead of mixing the refrigerant in the refrigeration circuit between the low-pressure compressor and the high-pressure compressor through the injection circuit, the refrigerant flowing in the bypass circuit is fed to the low-pressure compressor. The heating operation and the defrosting operation of the fluid to be heated are translated by mixing in the refrigeration circuit between the compressor and the high-pressure compressor.
また好ましくは、バイパス回路の冷媒出口が、気液分離器の液相側に接続される。このように構成されたヒートポンプ式加熱装置によれば、第2熱交換器から室外空気への放熱過程を経た冷媒を、気液分離器の液相側に戻す。
Also preferably, the refrigerant outlet of the bypass circuit is connected to the liquid phase side of the gas-liquid separator. According to the heat pump type heating apparatus configured as described above, the refrigerant that has undergone the heat dissipation process from the second heat exchanger to the outdoor air is returned to the liquid phase side of the gas-liquid separator.
また好ましくは、インジェクション回路およびバイパス回路は、各回路の経路上に設けられ、冷媒流れを許容もしくは遮断する第1開閉弁および第2開閉弁をそれぞれ有する。第2開閉弁が開状態とされる第2熱交換器の除霜時、第1開閉弁が開状態とされる。このように構成されたヒートポンプ式加熱装置によれば、インジェクション回路を通じて低圧側圧縮機と高圧側圧縮機との間の冷凍回路に冷媒を混合させることによって、被加熱流体の加熱運転と除霜運転とを並進させる。
Also preferably, the injection circuit and the bypass circuit have a first on-off valve and a second on-off valve that are provided on the path of each circuit and permit or block the refrigerant flow. At the time of defrosting the second heat exchanger in which the second on-off valve is opened, the first on-off valve is opened. According to the heat pump type heating device configured as described above, the heating operation and the defrosting operation of the heated fluid are performed by mixing the refrigerant in the refrigeration circuit between the low-pressure compressor and the high-pressure compressor through the injection circuit. And translate.
また好ましくは、第2熱交換器には、一方向から室外空気が供給される。第2熱交換器において、バイパス回路は、冷凍回路よりも第2熱交換器に供給される室外空気の流れの上流側に配置される。このように構成されたヒートポンプ式加熱装置によれば、第2熱交換器に供給される室外空気の流れの上流側でより霜が発生し易いため、その位置にバイパス回路が配置される。
Also preferably, outdoor air is supplied from one direction to the second heat exchanger. In the second heat exchanger, the bypass circuit is disposed upstream of the flow of outdoor air supplied to the second heat exchanger with respect to the refrigeration circuit. According to the heat pump heating device configured in this way, frost is more likely to be generated on the upstream side of the flow of outdoor air supplied to the second heat exchanger, and thus a bypass circuit is disposed at that position.
また好ましくは、ヒートポンプサイクルを循環する冷媒がR410Aであり、冷媒の凝縮温度が55℃であり、低圧側圧縮機および高圧側圧縮機の各圧縮機の最大圧縮比が7.5である時に、冷媒の蒸発温度が-17℃以下の場合であっても、第1熱交換器による被加熱流体の加熱運転と、第2熱交換器の除霜運転とが同時に実施可能である。
Also preferably, when the refrigerant circulating through the heat pump cycle is R410A, the condensation temperature of the refrigerant is 55 ° C., and the maximum compression ratio of each of the low-pressure compressor and the high-pressure compressor is 7.5, Even when the evaporation temperature of the refrigerant is −17 ° C. or lower, the heating operation of the fluid to be heated by the first heat exchanger and the defrosting operation of the second heat exchanger can be performed simultaneously.
以上に説明したように、この発明に従えば、極低温の外気環境下であっても、被加熱流体の加熱運転を行ないながら除霜運転も同時に行なうことが可能なヒートポンプ式加熱装置を提供することができる。
As described above, according to the present invention, there is provided a heat pump heating device capable of simultaneously performing a defrosting operation while performing a heating operation of a fluid to be heated even in an extremely low temperature outside air environment. be able to.
この発明の実施の形態について、図面を参照して説明する。なお、以下で参照する図面では、同一またはそれに相当する部材には、同じ番号が付されている。
Embodiments of the present invention will be described with reference to the drawings. In the drawings referred to below, the same or corresponding members are denoted by the same reference numerals.
図1は、この発明の実施の形態におけるヒートポンプ式暖房給湯機を示す回路図である。図1を参照して、本実施の形態におけるヒートポンプ式暖房給湯機は、冷凍回路21と、インジェクション回路41と、バイパス回路51とを有する。
FIG. 1 is a circuit diagram showing a heat pump type heating water heater in an embodiment of the present invention. Referring to FIG. 1, the heat pump type heating water heater in the present embodiment includes a refrigeration circuit 21, an injection circuit 41, and a bypass circuit 51.
冷凍回路21は、環状に延びる配管を有し、ヒートポンプサイクルを構成している。冷凍回路21の経路上には、凝縮器26および蒸発器27が設けられている。凝縮器26は、ヒートポンプサイクルを循環する冷媒と、被加熱流体(水または空気)との間で熱交換を行なう。蒸発器27は、ヒートポンプサイクルを循環する冷媒と外気(室外空気)との間で熱交換を行なう。
The refrigeration circuit 21 has an annularly extending pipe and constitutes a heat pump cycle. A condenser 26 and an evaporator 27 are provided on the path of the refrigeration circuit 21. The condenser 26 performs heat exchange between the refrigerant circulating in the heat pump cycle and the fluid to be heated (water or air). The evaporator 27 performs heat exchange between the refrigerant circulating in the heat pump cycle and the outside air (outdoor air).
冷凍回路21の経路上には、第1膨張弁36、気液分離器38および第2膨張弁37がさらに設けられている。第1膨張弁36、気液分離器38および第2膨張弁37は、凝縮器26と蒸発器27との間に設けられている。第1膨張弁36、気液分離器38および第2膨張弁37は、冷凍回路21における冷媒の流れ方向において直列に並んでいる。凝縮器26から蒸発器27に向かう冷凍回路21の経路上において、第1膨張弁36、気液分離器38および第2膨張弁37は挙げた順に並んでいる。第1膨張弁36は、凝縮器26から送られた冷媒を減圧する第1減圧器として設けられている。気液分離器38は、第1膨張弁36から送られた冷媒を気相冷媒と液相冷媒とに分離する。気液分離器38は、気相冷媒が配置される気相冷媒空間38aと、液相冷媒が配置される液相冷媒空間38bとを有する。第2膨張弁37は、気液分離器38から送られた液相冷媒を減圧する第2減圧器として設けられている。
A first expansion valve 36, a gas-liquid separator 38, and a second expansion valve 37 are further provided on the path of the refrigeration circuit 21. The first expansion valve 36, the gas-liquid separator 38 and the second expansion valve 37 are provided between the condenser 26 and the evaporator 27. The first expansion valve 36, the gas-liquid separator 38, and the second expansion valve 37 are arranged in series in the refrigerant flow direction in the refrigeration circuit 21. On the path of the refrigeration circuit 21 from the condenser 26 to the evaporator 27, the first expansion valve 36, the gas-liquid separator 38, and the second expansion valve 37 are arranged in the order given. The first expansion valve 36 is provided as a first pressure reducer that depressurizes the refrigerant sent from the condenser 26. The gas-liquid separator 38 separates the refrigerant sent from the first expansion valve 36 into a gas phase refrigerant and a liquid phase refrigerant. The gas-liquid separator 38 has a gas phase refrigerant space 38a in which a gas phase refrigerant is disposed and a liquid phase refrigerant space 38b in which a liquid phase refrigerant is disposed. The second expansion valve 37 is provided as a second decompressor that decompresses the liquid-phase refrigerant sent from the gas-liquid separator 38.
冷凍回路21の経路上には、下段圧縮機31および上段圧縮機32がさらに設けられている。下段圧縮機31および上段圧縮機32は、蒸発器27と凝縮器26との間に設けら
れている。下段圧縮機31および上段圧縮機32は、冷凍回路21における冷媒の流れ方向において直列に並んでいる。蒸発器27から凝縮器26に向かう冷凍回路21の経路上において、下段圧縮機31および上段圧縮機32は挙げた順に並んでいる。下段圧縮機31は、蒸発器27から送られた冷媒を圧縮する低圧側圧縮機として設けられている。上段圧縮機32は、下段圧縮機31から送られた冷媒をさらに圧縮する高圧側圧縮機として設けられている。 Alower compressor 31 and an upper compressor 32 are further provided on the path of the refrigeration circuit 21. The lower compressor 31 and the upper compressor 32 are provided between the evaporator 27 and the condenser 26. The lower compressor 31 and the upper compressor 32 are arranged in series in the refrigerant flow direction in the refrigeration circuit 21. On the path of the refrigeration circuit 21 from the evaporator 27 to the condenser 26, the lower compressor 31 and the upper compressor 32 are arranged in the order given. The lower compressor 31 is provided as a low-pressure compressor that compresses the refrigerant sent from the evaporator 27. The upper compressor 32 is provided as a high-pressure compressor that further compresses the refrigerant sent from the lower compressor 31.
れている。下段圧縮機31および上段圧縮機32は、冷凍回路21における冷媒の流れ方向において直列に並んでいる。蒸発器27から凝縮器26に向かう冷凍回路21の経路上において、下段圧縮機31および上段圧縮機32は挙げた順に並んでいる。下段圧縮機31は、蒸発器27から送られた冷媒を圧縮する低圧側圧縮機として設けられている。上段圧縮機32は、下段圧縮機31から送られた冷媒をさらに圧縮する高圧側圧縮機として設けられている。 A
インジェクション回路41は、気液分離器38で分離された気相冷媒の一部を、下段圧縮機31と上段圧縮機32との間の冷凍回路21へと導くように設けられている。
The injection circuit 41 is provided so as to guide a part of the gas-phase refrigerant separated by the gas-liquid separator 38 to the refrigeration circuit 21 between the lower compressor 31 and the upper compressor 32.
より具体的には、インジェクション回路41は、その両端が、気液分離器38の気相冷媒空間38aと、下段圧縮機31と上段圧縮機32との間の冷凍回路21とにそれぞれ繋がるように設けられている。インジェクション回路41の冷媒入り口は、気液分離器38の気相冷媒空間38aに接続され、インジェクション回路41の冷媒出口は、下段圧縮機31と上段圧縮機32との間の冷凍回路21に接続されている。
More specifically, both ends of the injection circuit 41 are connected to the gas phase refrigerant space 38a of the gas-liquid separator 38 and the refrigeration circuit 21 between the lower compressor 31 and the upper compressor 32, respectively. Is provided. The refrigerant inlet of the injection circuit 41 is connected to the gas-phase refrigerant space 38 a of the gas-liquid separator 38, and the refrigerant outlet of the injection circuit 41 is connected to the refrigeration circuit 21 between the lower compressor 31 and the upper compressor 32. ing.
インジェクション回路41の経路上には、第1開閉弁42が設けられている。第1開閉弁42は、開閉操作されることによって、インジェクション回路41における冷媒流れを許容もしくは遮断する。
On the path of the injection circuit 41, a first on-off valve 42 is provided. The first opening / closing valve 42 allows or blocks the refrigerant flow in the injection circuit 41 by being opened and closed.
バイパス回路51は、冷凍回路21を通じて蒸発器27に供給される冷媒よりも高温の冷媒が流通する位置で冷凍回路21に接続され、その位置から導いた冷媒を、冷凍回路21とは独立して蒸発器27に流通させるように設けられている。
The bypass circuit 51 is connected to the refrigeration circuit 21 at a position where a refrigerant having a temperature higher than that of the refrigerant supplied to the evaporator 27 through the refrigeration circuit 21 flows, and the refrigerant guided from the position is independent of the refrigeration circuit 21. It is provided to circulate through the evaporator 27.
より具体的には、バイパス回路51は、その両端が、気液分離器38の気相冷媒空間38aと第1開閉弁42との間のインジェクション回路41と、第1開閉弁42と冷凍回路21との間のインジェクション回路41とにそれぞれ繋がるように設けられている。バイパス回路51の冷媒入り口は、インジェクション回路41を介して気液分離器38の気相側に接続され、バイパス回路51の冷媒出口は、インジェクション回路41を介して下段圧縮機31と上段圧縮機32との間の冷凍回路21に接続されている。
More specifically, the bypass circuit 51 has an injection circuit 41 between the gas-phase refrigerant space 38a of the gas-liquid separator 38 and the first on-off valve 42, the first on-off valve 42, and the refrigeration circuit 21 at both ends. Are connected to the injection circuit 41 between them. The refrigerant inlet of the bypass circuit 51 is connected to the gas phase side of the gas-liquid separator 38 via the injection circuit 41, and the refrigerant outlet of the bypass circuit 51 is connected to the lower compressor 31 and the upper compressor 32 via the injection circuit 41. Are connected to the refrigeration circuit 21 between the two.
バイパス回路51の経路上には、蒸発器27に加えて、第2開閉弁52および第3膨張弁53が設けられている。蒸発器27、第2開閉弁52および第3膨張弁53は、バイパス回路51における冷媒の流れ方向において直列に並んでいる。気液分離器38の気相冷媒空間38aから冷凍回路21に向かうバイパス回路51の経路上において、蒸発器27、第2開閉弁52および第3膨張弁53は挙げた順に並んでいる。第2開閉弁52は、開閉操作されることによって、バイパス回路51における冷媒流れを許容もしくは遮断する。第3膨張弁53は、バイパス回路51における冷媒の流量を調整することを目的に設けられている。
In addition to the evaporator 27, a second on-off valve 52 and a third expansion valve 53 are provided on the path of the bypass circuit 51. The evaporator 27, the second on-off valve 52, and the third expansion valve 53 are arranged in series in the refrigerant flow direction in the bypass circuit 51. On the path of the bypass circuit 51 from the gas-phase refrigerant space 38a of the gas-liquid separator 38 toward the refrigeration circuit 21, the evaporator 27, the second on-off valve 52, and the third expansion valve 53 are arranged in the order given. The second on-off valve 52 allows or blocks the refrigerant flow in the bypass circuit 51 by being opened and closed. The third expansion valve 53 is provided for the purpose of adjusting the flow rate of the refrigerant in the bypass circuit 51.
なお、バイパス回路51に第2開閉弁52および第3膨張弁53の2つの弁を設ける理由は、以下の通りである。すなわち、一般的に空調冷凍サイクルに用いられる電磁膨張弁は、最も弁を閉じた状態でも完全に閉じることはできない。このため、本実施の形態では、バイパス回路51における冷媒の流量をゼロとするために、流路を完全に閉じることが可能な第2開閉弁52が設置されている。第3膨張弁53が流路を完全に閉じることができる構造を有すれば、第2開閉弁52を省略することが可能であり、この場合、第3膨張弁53が開閉弁として機能する。
The reason why the bypass circuit 51 is provided with two valves, the second on-off valve 52 and the third expansion valve 53, is as follows. That is, an electromagnetic expansion valve generally used in an air-conditioning refrigeration cycle cannot be completely closed even when the valve is most closed. For this reason, in this Embodiment, in order to make the flow volume of the refrigerant | coolant in the bypass circuit 51 into zero, the 2nd on-off valve 52 which can close a flow path completely is installed. If the third expansion valve 53 has a structure capable of completely closing the flow path, the second on-off valve 52 can be omitted. In this case, the third expansion valve 53 functions as an on-off valve.
図2から図10は、図1中のヒートポンプ式暖房給湯機の変形例を示す回路図である。図2から図10中に示すヒートポンプ式暖房給湯機の変形例では、バイパス回路51の冷媒入り口および冷媒出口のいずれか、もしくはその両方の接続位置が、図1中のヒートポンプ式暖房給湯機と異なる。
FIGS. 2 to 10 are circuit diagrams showing modifications of the heat pump type heating and hot water heater in FIG. In the modification of the heat pump type heating / water heater shown in FIG. 2 to FIG. 10, the connection position of either or both of the refrigerant inlet and the refrigerant outlet of the bypass circuit 51 is different from that of the heat pump type heating / water heater shown in FIG. .
図2を参照して、本変形例では、バイパス回路51の冷媒入り口が、インジェクション回路41を介して気液分離器38の気相側に接続され、バイパス回路51の冷媒出口が、気液分離器38の液相側に接続されている。
Referring to FIG. 2, in this modification, the refrigerant inlet of bypass circuit 51 is connected to the gas phase side of gas-liquid separator 38 via injection circuit 41, and the refrigerant outlet of bypass circuit 51 is gas-liquid separated. It is connected to the liquid phase side of the vessel 38.
図3を参照して、本変形例では、バイパス回路51の冷媒入り口が、気液分離器38の液相側に接続され、バイパス回路51の冷媒出口が、インジェクション回路41を介して下段圧縮機31と上段圧縮機32との間の冷凍回路21に接続されている。
Referring to FIG. 3, in this modification, the refrigerant inlet of bypass circuit 51 is connected to the liquid phase side of gas-liquid separator 38, and the refrigerant outlet of bypass circuit 51 is connected to the lower stage compressor via injection circuit 41. It is connected to the refrigeration circuit 21 between 31 and the upper compressor 32.
図4を参照して、本変形例では、バイパス回路51の冷媒入り口が、気液分離器38の液相側に接続され、バイパス回路51の冷媒出口が、気液分離器38の液相側に接続されている。
Referring to FIG. 4, in this modification, the refrigerant inlet of bypass circuit 51 is connected to the liquid phase side of gas-liquid separator 38, and the refrigerant outlet of bypass circuit 51 is the liquid phase side of gas-liquid separator 38. It is connected to the.
図5を参照して、本変形例では、バイパス回路51の冷媒入り口が、第1膨張弁36と気液分離器38との間の冷凍回路21に接続され、バイパス回路51の冷媒出口が、インジェクション回路41を介して下段圧縮機31と上段圧縮機32との間の冷凍回路21に接続されている。
Referring to FIG. 5, in this modification, the refrigerant inlet of bypass circuit 51 is connected to refrigeration circuit 21 between first expansion valve 36 and gas-liquid separator 38, and the refrigerant outlet of bypass circuit 51 is It is connected to the refrigeration circuit 21 between the lower compressor 31 and the upper compressor 32 via an injection circuit 41.
図6を参照して、本変形例では、バイパス回路51の冷媒入り口が、第1膨張弁36と気液分離器38との間の冷凍回路21に接続され、バイパス回路51の冷媒出口が、気液分離器38の液相側に接続されている。
With reference to FIG. 6, in this modification, the refrigerant inlet of bypass circuit 51 is connected to refrigeration circuit 21 between first expansion valve 36 and gas-liquid separator 38, and the refrigerant outlet of bypass circuit 51 is The gas-liquid separator 38 is connected to the liquid phase side.
図7を参照して、本変形例では、バイパス回路51の冷媒入り口が、凝縮器26と第1膨張弁36との間の冷凍回路21に接続され、バイパス回路51の冷媒出口が、インジェクション回路41を介して下段圧縮機31と上段圧縮機32との間の冷凍回路21に接続されている。
Referring to FIG. 7, in this modification, the refrigerant inlet of bypass circuit 51 is connected to refrigeration circuit 21 between condenser 26 and first expansion valve 36, and the refrigerant outlet of bypass circuit 51 is an injection circuit. 41 is connected to the refrigeration circuit 21 between the lower compressor 31 and the upper compressor 32.
図8を参照して、本変形例では、バイパス回路51の冷媒入り口が、凝縮器26と第1膨張弁36との間の冷凍回路21に接続され、バイパス回路51の冷媒出口が、気液分離器38の液相側に接続されている。
Referring to FIG. 8, in this modification, the refrigerant inlet of bypass circuit 51 is connected to refrigeration circuit 21 between condenser 26 and first expansion valve 36, and the refrigerant outlet of bypass circuit 51 is gas-liquid. It is connected to the liquid phase side of the separator 38.
図9を参照して、本変形例では、バイパス回路51の冷媒入り口が、上段圧縮機32と凝縮器26との間の冷凍回路21に接続され、バイパス回路51の冷媒出口が、インジェクション回路41を介して下段圧縮機31と上段圧縮機32との間の冷凍回路21に接続されている。
Referring to FIG. 9, in this modification, the refrigerant inlet of bypass circuit 51 is connected to refrigeration circuit 21 between upper compressor 32 and condenser 26, and the refrigerant outlet of bypass circuit 51 is injection circuit 41. Is connected to the refrigeration circuit 21 between the lower compressor 31 and the upper compressor 32.
図10を参照して、本変形例では、バイパス回路51の冷媒入り口が、上段圧縮機32と凝縮器26との間の冷凍回路21に接続され、バイパス回路51の冷媒出口が、気液分離器38の液相側に接続されている。
Referring to FIG. 10, in this modification, the refrigerant inlet of bypass circuit 51 is connected to refrigeration circuit 21 between upper compressor 32 and condenser 26, and the refrigerant outlet of bypass circuit 51 is gas-liquid separation. It is connected to the liquid phase side of the vessel 38.
続いて、冷凍回路21、インジェクション回路41およびバイパス回路51の各回路における冷媒流れについて説明する。
Subsequently, the refrigerant flow in each circuit of the refrigeration circuit 21, the injection circuit 41, and the bypass circuit 51 will be described.
最初に、冷凍回路21について説明する。まず、下段圧縮機31で冷媒が圧縮される。さらにその冷媒が上段圧縮機32によりさらに高圧に圧縮される。
First, the refrigeration circuit 21 will be described. First, the refrigerant is compressed by the lower compressor 31. Further, the refrigerant is compressed to a higher pressure by the upper compressor 32.
このように2段圧縮方式を採る理由は、以下の通りである。すなわち、凝縮器26と蒸発器27との間の冷媒の温度差が小さいとその圧力差も小さくなり、凝縮器26と蒸発器27との間の冷媒の温度差が大きいとその圧力差も大きくなる。凝縮器26と蒸発器27との間の冷媒の温度差が小さい場合、たとえば、外気温が比較的高く、蒸発器27における冷媒の温度が一段圧縮方式で可能な圧縮比以下の範囲であれば、一段圧縮方式によりヒートポンプサイクルを構成することができる。一方、凝縮器26と蒸発器27との間の冷媒の温度差が大きくなり、1段圧縮方式では必要な圧力差が得られない場合は、2段圧縮方式とする必要がある。
The reason for adopting the two-stage compression method in this way is as follows. That is, when the refrigerant temperature difference between the condenser 26 and the evaporator 27 is small, the pressure difference is also small, and when the refrigerant temperature difference between the condenser 26 and the evaporator 27 is large, the pressure difference is large. Become. If the refrigerant temperature difference between the condenser 26 and the evaporator 27 is small, for example, if the outside air temperature is relatively high and the refrigerant temperature in the evaporator 27 is in a range below the compression ratio possible with the one-stage compression method. The heat pump cycle can be configured by a one-stage compression method. On the other hand, when the temperature difference of the refrigerant between the condenser 26 and the evaporator 27 becomes large and the required pressure difference cannot be obtained by the one-stage compression method, it is necessary to adopt the two-stage compression method.
次に、上段圧縮機32から送られた冷媒は、凝縮器26において被加熱流体との熱交換によって放熱する。たとえば、被加熱流体として室内の空気が供給された場合、暖房の熱源として利用することができ、被加熱流体として水が供給された場合、給湯や床暖房等のセントラルヒーティングの熱源として利用することができる。凝縮器26において被加熱流体と熱交換した冷媒は、熱を奪われる。その結果、凝縮器26の冷媒入り口で気相であった冷媒が、凝縮器26の冷媒出口で液相になる。
Next, the refrigerant sent from the upper compressor 32 dissipates heat in the condenser 26 by heat exchange with the heated fluid. For example, when indoor air is supplied as a fluid to be heated, it can be used as a heat source for heating, and when water is supplied as a fluid to be heated, it is used as a heat source for central heating such as hot water supply or floor heating. be able to. The refrigerant that exchanges heat with the fluid to be heated in the condenser 26 is deprived of heat. As a result, the refrigerant that was in the gas phase at the refrigerant inlet of the condenser 26 becomes a liquid phase at the refrigerant outlet of the condenser 26.
次に、凝縮器26から送られた冷媒は、第1膨張弁36を通過することによって、その圧力と温度とが低下し、液相から気液混合状態となる。次に、第1膨張弁36から送られた気液混合状態の冷媒は、気液分離器38において気相と液相とに分離される。液相冷媒空間38bから送られた液相冷媒の一部は、第2膨張弁37を通過することによって、その圧力と温度とがさらに低下し、液相から気液混合状態となる。
Next, when the refrigerant sent from the condenser 26 passes through the first expansion valve 36, the pressure and temperature thereof are lowered, and the liquid phase enters the gas-liquid mixed state. Next, the gas-liquid mixed refrigerant sent from the first expansion valve 36 is separated into a gas phase and a liquid phase in the gas-liquid separator 38. A part of the liquid-phase refrigerant sent from the liquid-phase refrigerant space 38b passes through the second expansion valve 37, so that its pressure and temperature are further reduced, and a gas-liquid mixed state starts from the liquid phase.
次に、第2膨張弁37から送られた気液混合状態の冷媒は、蒸発器27において外気との熱交換によって吸熱し、気相となる。蒸発器27から送られた冷媒は、下段圧縮機31で再び圧縮される。冷凍回路21では、以上に説明した過程が繰り返されることによって、ヒートポンプサイクルが実行される。
Next, the refrigerant in the gas-liquid mixed state sent from the second expansion valve 37 absorbs heat by heat exchange with the outside air in the evaporator 27 and becomes a gas phase. The refrigerant sent from the evaporator 27 is compressed again by the lower compressor 31. In the refrigeration circuit 21, a heat pump cycle is executed by repeating the process described above.
インジェクション回路41について説明する。インジェクション回路41は、気液分離器38の気相冷媒空間38aに配置された気相冷媒の一部を、下段圧縮機31の吐出口から吐出される冷媒と混合し、混合された冷媒を上段圧縮機32の吸い込み口に送り込むことによって、上段圧縮機32の吐出口から吐出される冷媒温度を低下させることを目的に設けられている。
The injection circuit 41 will be described. The injection circuit 41 mixes a part of the gas-phase refrigerant disposed in the gas-phase refrigerant space 38a of the gas-liquid separator 38 with the refrigerant discharged from the discharge port of the lower compressor 31, and the mixed refrigerant is in the upper stage. It is provided for the purpose of lowering the temperature of the refrigerant discharged from the discharge port of the upper compressor 32 by sending it to the suction port of the compressor 32.
インジェクション回路41からの冷媒と、下段圧縮機31の吐出口から吐出された冷媒とが混合された冷媒は、下段圧縮機31の吐出口から吐出される冷媒よりも低い温度を有する。すなわち、上段圧縮機32の吸い込み口に吸い込まれる冷媒の温度を、インジェクション回路41がない場合よりも低下させることができ、その結果、上段圧縮機32の吐出口から吐出される冷媒の温度を低下させることができる。これにより、上段圧縮機32から吐出される冷媒温度を抑制し、上段圧縮機32の信頼性向上や、より大きな圧力差(温度差)での運転が可能となる。
The refrigerant in which the refrigerant from the injection circuit 41 and the refrigerant discharged from the discharge port of the lower compressor 31 are mixed has a lower temperature than the refrigerant discharged from the discharge port of the lower compressor 31. That is, the temperature of the refrigerant sucked into the suction port of the upper compressor 32 can be lowered as compared with the case where the injection circuit 41 is not provided, and as a result, the temperature of the refrigerant discharged from the discharge port of the upper compressor 32 is lowered. Can be made. Thereby, the temperature of the refrigerant discharged from the upper compressor 32 is suppressed, and the reliability of the upper compressor 32 can be improved and the operation with a larger pressure difference (temperature difference) can be performed.
バイパス回路51について説明する。バイパス回路51は、冷凍回路21を流れる冷媒の一部を分岐して蒸発器27に供給し、蒸発器27に付着した霜を取り除くことを目的に設けられている。
The bypass circuit 51 will be described. The bypass circuit 51 is provided for the purpose of branching off a part of the refrigerant flowing through the refrigeration circuit 21 and supplying it to the evaporator 27 to remove frost attached to the evaporator 27.
図1から図10中に示す全ての形態において、除霜運転をせずに暖房運転のみを行なう場合には、インジェクション回路41に冷媒を流すために、第1開閉弁42を開状態とする。また、除霜運転は実施しないため、第2開閉弁52を閉状態とする。
1 to 10, when only the heating operation is performed without performing the defrosting operation, the first on-off valve 42 is opened in order to allow the refrigerant to flow through the injection circuit 41. Further, since the defrosting operation is not performed, the second opening / closing valve 52 is closed.
図1から図10中には、除霜運転時の冷媒流れが矢印によって示されている。また、第1開閉弁42の矢印に付された×印は、弁として冷媒を流さない閉状態を示している。
1 to 10, the refrigerant flow during the defrosting operation is indicated by arrows. Moreover, the x attached | subjected to the arrow of the 1st on-off valve 42 has shown the closed state which does not flow a refrigerant | coolant as a valve.
バイパス回路51の冷媒出口が、インジェクション回路41を介して下段圧縮機31と上段圧縮機32との間の冷凍回路21に接続されている図1、図3、図5、図7および図9の形態では、除霜運転時、バイパス回路51上の第2開閉弁52および第3膨張弁53を開状態とし、インジェクション回路41上の第1開閉弁42を閉状態とする。これにより、気液分離器38の気相冷媒空間38aに配置された気相冷媒の一部が、バイパス回路51を流れて蒸発器27に供給される。蒸発器27において外気に放熱した冷媒は、下段圧縮機31と上段圧縮機32との間の冷凍回路21に戻される。このとき、バイパス回路51を流れる冷媒は、蒸発器27の除霜の機能に加えて、インジェクション回路41による機能も発揮している。
The refrigerant outlet of the bypass circuit 51 is connected to the refrigeration circuit 21 between the lower compressor 31 and the upper compressor 32 via the injection circuit 41 in FIGS. 1, 3, 5, 7, and 9. In the embodiment, during the defrosting operation, the second on-off valve 52 and the third expansion valve 53 on the bypass circuit 51 are opened, and the first on-off valve 42 on the injection circuit 41 is closed. As a result, a part of the gas phase refrigerant disposed in the gas phase refrigerant space 38 a of the gas-liquid separator 38 flows through the bypass circuit 51 and is supplied to the evaporator 27. The refrigerant that has radiated heat to the outside air in the evaporator 27 is returned to the refrigeration circuit 21 between the lower compressor 31 and the upper compressor 32. At this time, the refrigerant flowing through the bypass circuit 51 exhibits the function of the injection circuit 41 in addition to the function of defrosting the evaporator 27.
バイパス回路51の冷媒出口が、気液分離器38の液相側に接続されている図2、図4、図6、図8および図10の形態では、除霜運転時、バイパス回路51上の第2開閉弁52および第3膨張弁53を開状態とし、インジェクション回路41上の第1開閉弁42を開状態とする。本形態では、バイパス回路51において蒸発器27の除霜によって液化された冷媒を、第2膨張弁37の上流側で冷凍回路21に戻す。これにより、蒸発器27に供給される冷媒の流量の低下を防ぐことができる。
2, 4, 6, 8, and 10 in which the refrigerant outlet of the bypass circuit 51 is connected to the liquid phase side of the gas-liquid separator 38, on the bypass circuit 51 during the defrosting operation. The second on-off valve 52 and the third expansion valve 53 are opened, and the first on-off valve 42 on the injection circuit 41 is opened. In this embodiment, the refrigerant liquefied by the defrosting of the evaporator 27 in the bypass circuit 51 is returned to the refrigeration circuit 21 on the upstream side of the second expansion valve 37. Thereby, the fall of the flow volume of the refrigerant | coolant supplied to the evaporator 27 can be prevented.
図11は、図1から図10中の蒸発器における、冷凍回路およびバイパス回路の配管の位置関係を示す斜視図である。図11を参照して、蒸発器27には、図示しないファンの回転によって、矢印71に示す一方向から外気が供給される。図中の右側に相当する蒸発器27の側面が、外気の吸い込み口であり、図中の左側に相当する蒸発器27の側面が、外気の吹き出し口である。
FIG. 11 is a perspective view showing the positional relationship between the piping of the refrigeration circuit and the bypass circuit in the evaporator shown in FIGS. Referring to FIG. 11, outside air is supplied to evaporator 27 from one direction indicated by arrow 71 by rotation of a fan (not shown). The side surface of the evaporator 27 corresponding to the right side in the figure is an outside air inlet, and the side surface of the evaporator 27 corresponding to the left side in the figure is an outside air outlet.
蒸発器27は、蒸発器27に供給される外気と、蒸発器27に流れる冷媒との間で熱交換するための熱交換フィン60を有する。冷凍回路21およびバイパス回路51は、それぞれ、冷媒配管66および冷媒配管61を有する。冷媒配管66および冷媒配管61は、熱交換フィン60を貫通しながら図11中の上下方向に延びている。冷媒配管66と冷媒配管61とは、互いに独立した配管として設けられており、各配管を流れる冷媒が交じり合うことはない。
The evaporator 27 has heat exchange fins 60 for exchanging heat between the outside air supplied to the evaporator 27 and the refrigerant flowing through the evaporator 27. The refrigeration circuit 21 and the bypass circuit 51 have a refrigerant pipe 66 and a refrigerant pipe 61, respectively. The refrigerant pipe 66 and the refrigerant pipe 61 extend in the vertical direction in FIG. 11 while penetrating the heat exchange fins 60. The refrigerant pipe 66 and the refrigerant pipe 61 are provided as pipes independent from each other, and the refrigerant flowing through each pipe does not mix.
本実施の形態では、冷凍回路21およびバイパス回路51が、それぞれ、複数本の冷媒配管66および複数本の冷媒配管61を有する。複数本の冷媒配管66は、蒸発器27に供給される外気流れに直交する方向に並び、複数本の冷媒配管61は、蒸発器27に供給される外気流れに直交する方向に並んでいる。複数本の冷媒配管66と複数本の冷媒配管61とは、蒸発器27に供給される外気の流れ方向においてずれた位置に設けられている。冷媒配管66と冷媒配管61とは、蒸発器27に供給される外気の流れ方向から見て、互いに重なり合わない位置に設けられている。
In this embodiment, the refrigeration circuit 21 and the bypass circuit 51 have a plurality of refrigerant pipes 66 and a plurality of refrigerant pipes 61, respectively. The plurality of refrigerant pipes 66 are arranged in a direction orthogonal to the outside air flow supplied to the evaporator 27, and the plurality of refrigerant pipes 61 are arranged in a direction orthogonal to the outside air flow supplied to the evaporator 27. The plurality of refrigerant pipes 66 and the plurality of refrigerant pipes 61 are provided at positions shifted in the flow direction of the outside air supplied to the evaporator 27. The refrigerant pipe 66 and the refrigerant pipe 61 are provided at positions that do not overlap each other when viewed from the flow direction of the outside air supplied to the evaporator 27.
バイパス回路51は、冷凍回路21よりも蒸発器27に供給される外気流れの上流側に配置されている。すなわち、バイパス回路51の冷媒配管61は、蒸発器27における外気の吸い込み口側に配置され、冷凍回路21の冷媒配管66は、蒸発器27における外気の吹き出し口側に配置されている。蒸発器27では、外気の吸い込み口側に霜が付着し易いため、そのような位置にバイパス回路51の冷媒配管61を配置することによって、除霜運転時、蒸発器27に付着した霜を効率的に取り除くことができる。
The bypass circuit 51 is arranged on the upstream side of the outside air flow supplied to the evaporator 27 from the refrigeration circuit 21. That is, the refrigerant pipe 61 of the bypass circuit 51 is arranged on the outside air inlet side of the evaporator 27, and the refrigerant pipe 66 of the refrigeration circuit 21 is arranged on the outside air outlet side of the evaporator 27. In the evaporator 27, frost easily attaches to the outside air suction port side. Therefore, by arranging the refrigerant pipe 61 of the bypass circuit 51 at such a position, the frost attached to the evaporator 27 is efficiently removed during the defrosting operation. Can be removed.
なお、図11中に示す冷媒配管66および冷媒配管61の配置は一例であり、本発明では特に限定されない。各配管に流れる冷媒の流れは、平行流、対交流および直交流のいずれであってもよいし、その他の流れであってもよい。
In addition, arrangement | positioning of the refrigerant | coolant piping 66 and the refrigerant | coolant piping 61 shown in FIG. 11 is an example, and is not specifically limited by this invention. The flow of the refrigerant flowing through each pipe may be any of parallel flow, alternating current and cross flow, or may be other flow.
本実施の形態におけるヒートポンプ式暖房給湯機によれば、極低温(たとえば、-17℃以下)の外気環境下であっても、暖房運転を行ないながら除霜運転も同時に行なうことができる。続いて、本実施の形態におけるヒートポンプ式暖房給湯機によって奏されるこのような作用効果について説明する。
According to the heat pump type heating water heater in the present embodiment, the defrosting operation can be performed at the same time while performing the heating operation even in an extremely low temperature (for example, −17 ° C. or lower) outside air environment. Then, such an effect produced by the heat pump type heating water heater in this Embodiment is demonstrated.
図12は、1段圧縮式の冷凍サイクルを示すモリエル線図である。図13は、2段圧縮式の冷凍サイクルを示すモリエル線図である。図14は、1段圧縮式の冷凍サイクルを示す回路図である。
FIG. 12 is a Mollier diagram showing a one-stage compression refrigeration cycle. FIG. 13 is a Mollier diagram showing a two-stage compression refrigeration cycle. FIG. 14 is a circuit diagram showing a one-stage compression refrigeration cycle.
一例として、冷凍回路21に流す冷媒がR410A、凝縮器26での冷媒の温度(凝縮温度)が55℃(このときの冷媒の圧力は3.43MPa)、凝縮器26の出口での過冷却度が10℃、蒸発器27出口での過熱度が10℃、二段圧縮でのインジェクション回路41での圧力が(蒸発器27内の圧力)×(凝縮器26内の圧力)の平方根、圧縮機での圧縮工程が断熱圧縮(等エントロピ過程)、圧縮機1台当たりに許容される最大圧縮比(圧縮機の吐出圧力を圧縮機の吸い込み圧力で割った値の許容最大値)が7.5である条件を想定する。図12中には、上記条件における1段圧縮式の冷凍サイクルが示され、図13中には、上記条件における2段圧縮式の冷凍サイクルが示されている。
As an example, the refrigerant flowing through the refrigeration circuit 21 is R410A, the refrigerant temperature (condensation temperature) in the condenser 26 is 55 ° C. (the refrigerant pressure at this time is 3.43 MPa), and the degree of supercooling at the outlet of the condenser 26 Is 10 ° C., the degree of superheat at the outlet of the evaporator 27 is 10 ° C., the pressure in the injection circuit 41 in the two-stage compression is the square root of (pressure in the evaporator 27) × (pressure in the condenser 26), compressor The compression process is adiabatic compression (isentropic process), and the maximum compression ratio (permissible maximum value obtained by dividing the compressor discharge pressure by the compressor suction pressure) is 7.5. Assume a condition of FIG. 12 shows a one-stage compression refrigeration cycle under the above conditions, and FIG. 13 shows a two-stage compression refrigeration cycle under the above conditions.
なお、モリエル線図はP-h線図ともいわれ、縦軸を圧力、横軸を比エンタルピとしている。モリエル線図は、冷凍サイクルに用いる冷媒の圧力や比エンタルピ、温度、相状態、エンタルピ、比体積などの冷媒固有の特性を示す図である。
The Mollier diagram is also called a Ph diagram, and the vertical axis represents pressure and the horizontal axis represents specific enthalpy. The Mollier diagram is a diagram showing characteristics unique to the refrigerant such as the pressure, specific enthalpy, temperature, phase state, enthalpy, and specific volume of the refrigerant used in the refrigeration cycle.
最初に、「-17℃以下の外気環境下での暖房運転」の実現性に関連して、1段圧縮式の冷凍サイクルの限界を説明する。
First, the limitations of the single-stage compression refrigeration cycle will be described in relation to the feasibility of “heating operation in an outside air environment of −17 ° C. or lower”.
図12および図14を参照して、1段圧縮式の冷凍サイクルにおける暖房運転の状態を考えると、まず、ガス状の冷媒が、圧縮機30で圧縮されて凝縮器26側に吐出される。このとき、上記条件のもと、図12中に示すモリエル線図により、圧縮機30の吐出圧力および凝縮器26内の冷媒の圧力は3.43MPaである。冷媒は、凝縮器26内で被加熱流体と熱交換することにより、ガス状態から徐々に液状態に相変化する。但し、相変化状態は、温度一定で55℃である。冷媒は凝縮器26内で完全に液化され、過冷却度10℃の上記条件では、凝縮器出口における冷媒の温度が45℃となる。
Referring to FIG. 12 and FIG. 14, when considering the heating operation state in the one-stage compression refrigeration cycle, first, the gaseous refrigerant is compressed by the compressor 30 and discharged to the condenser 26 side. Under this condition, the discharge pressure of the compressor 30 and the pressure of the refrigerant in the condenser 26 are 3.43 MPa according to the Mollier diagram shown in FIG. The refrigerant gradually changes its phase from a gas state to a liquid state by exchanging heat with the fluid to be heated in the condenser 26. However, the phase change state is 55 ° C. at a constant temperature. The refrigerant is completely liquefied in the condenser 26, and the temperature of the refrigerant at the outlet of the condenser is 45 ° C. under the above condition where the degree of supercooling is 10 ° C.
その後、膨張弁35で膨張された冷媒は気液二相状態となり、冷媒の圧力と温度とが低下する。冷媒の温度は、減圧された圧力によって一義的に決まる。すなわち、圧縮機30の最大圧縮比が7.5であるため、圧縮機30の低圧側の最低圧力は0.46MPaとなり、このときの冷媒の温度は-16.3℃となる。
Thereafter, the refrigerant expanded by the expansion valve 35 enters a gas-liquid two-phase state, and the pressure and temperature of the refrigerant decrease. The temperature of the refrigerant is uniquely determined by the reduced pressure. That is, since the maximum compression ratio of the compressor 30 is 7.5, the minimum pressure on the low pressure side of the compressor 30 is 0.46 MPa, and the temperature of the refrigerant at this time is −16.3 ° C.
このため、暖房運転において、凝縮器26内の冷媒の温度を55℃とする必要がある場合、蒸発器27内の冷媒の温度を-16.3℃より低い温度に設定することができない。したがって、「-17℃以下の外気環境下での暖房運転」の実現性についてはいえば、1段圧縮冷凍サイクルでは原理的に不可能となる。なお、ここでは、蒸発器27内の冷媒の温度は外気温と比較して10℃程度低い温度と仮定している。つまり、一段圧縮冷凍サイクルにおいては、蒸発器27内の冷媒の温度が上記-16.3℃の場合、対応できる外気温はおおよそ-6.3℃となる。
For this reason, in the heating operation, when the temperature of the refrigerant in the condenser 26 needs to be 55 ° C., the temperature of the refrigerant in the evaporator 27 cannot be set to a temperature lower than −16.3 ° C. Therefore, in terms of the feasibility of “heating operation in an outside air environment of −17 ° C. or lower”, it is theoretically impossible in the one-stage compression refrigeration cycle. Here, it is assumed that the temperature of the refrigerant in the evaporator 27 is about 10 ° C. lower than the outside air temperature. That is, in the one-stage compression refrigeration cycle, when the temperature of the refrigerant in the evaporator 27 is −16.3 ° C., the corresponding outside air temperature is approximately −6.3 ° C.
次に、2段圧縮サイクルの暖房運転について、代表的に図8中の回路図を参考にして同様に考察する。
Next, the heating operation of the two-stage compression cycle will be considered similarly with reference to the circuit diagram in FIG.
図8および図13を参照して、まず、ガス状の冷媒が、上段圧縮機32で圧縮されて凝縮器26側へ吐出される。このとき、上記条件のもと、図13中に示すモリエル線図により、上段圧縮機32の吐出圧力および凝縮器26内の冷媒の圧力は3.43MPaである。冷媒は、凝縮器26内で被加熱流体と熱交換することにより、ガス状態から徐々に液状態に相変化する。但し、相変化状態は温度一定で55℃である。冷媒は凝縮器26内で完全に液化され、過冷却度10℃の上記条件では、凝縮器出口における冷媒の温度が45℃となる。
8 and 13, first, the gaseous refrigerant is compressed by the upper compressor 32 and discharged to the condenser 26 side. Under this condition, the discharge pressure of the upper compressor 32 and the pressure of the refrigerant in the condenser 26 are 3.43 MPa according to the Mollier diagram shown in FIG. The refrigerant gradually changes its phase from a gas state to a liquid state by exchanging heat with the fluid to be heated in the condenser 26. However, the phase change state is 55 ° C. at a constant temperature. The refrigerant is completely liquefied in the condenser 26, and the temperature of the refrigerant at the outlet of the condenser is 45 ° C. under the above condition where the degree of supercooling is 10 ° C.
その後、第1膨張弁36で膨張された冷媒は気液二相状態となり、冷媒の圧力と温度とが低下し、それぞれ、インジェクション回路41での冷媒の圧力と温度とになる。ここで、前述と同様に、蒸発器27内の冷媒の温度が、外気温と比較して10℃程度低い温度と仮定すると、たとえば、-25℃の外気温下での暖房運転を実現するには、蒸発器27内の冷媒の温度は-35℃程度でなければならない。このとき、冷媒R410Aの圧力は0.22MPaである。インジェクション回路41での冷媒の圧力は、上記条件のもと、(蒸発器27内の圧力)×(凝縮器26内の圧力)の平方根より0.87MPaであり、このときの冷媒温度は3.4℃である。
Thereafter, the refrigerant expanded by the first expansion valve 36 is in a gas-liquid two-phase state, and the refrigerant pressure and temperature are reduced to the refrigerant pressure and temperature in the injection circuit 41, respectively. Here, as described above, assuming that the temperature of the refrigerant in the evaporator 27 is about 10 ° C. lower than the outside air temperature, for example, to realize the heating operation under the outside air temperature of −25 ° C. The temperature of the refrigerant in the evaporator 27 must be about −35 ° C. At this time, the pressure of the refrigerant R410A is 0.22 MPa. Under the above conditions, the refrigerant pressure in the injection circuit 41 is 0.87 MPa from the square root of (pressure in the evaporator 27) × (pressure in the condenser 26). 4 ° C.
第1膨張弁36から送り出された冷媒は気液分離器38に入り、その内部で気相と液相に分離される。分離された液相冷媒は、蒸発器27の方向(第2膨張弁37の方向)に流れ、分離された気相冷媒は、インジェクション回路41を流れて、最終的には下段圧縮機31から吐出された冷媒と合流して上段圧縮機32に吸い込まれる。
The refrigerant sent out from the first expansion valve 36 enters the gas-liquid separator 38 and is separated into a gas phase and a liquid phase therein. The separated liquid refrigerant flows in the direction of the evaporator 27 (direction of the second expansion valve 37), and the separated gas-phase refrigerant flows through the injection circuit 41 and is finally discharged from the lower compressor 31. The combined refrigerant is sucked into the upper compressor 32.
なお、暖房運転時、第1開閉弁42は開状態とされ、インジェクション回路41に冷媒が流される。一方、気液分離器38で液相に分離された冷媒は、第2膨張弁37によってさらに減圧、低温とされた二相状態となる。その冷媒は、蒸発器27を流れる間、外気から吸熱する。その後、冷媒は、下段圧縮機31に吸入、圧縮、吐出され、再び上段圧縮機32に吸入される。
During the heating operation, the first on-off valve 42 is opened, and the refrigerant flows through the injection circuit 41. On the other hand, the refrigerant separated into the liquid phase by the gas-liquid separator 38 is in a two-phase state where the pressure is further reduced and lowered by the second expansion valve 37. The refrigerant absorbs heat from the outside air while flowing through the evaporator 27. Thereafter, the refrigerant is sucked, compressed and discharged into the lower compressor 31 and again sucked into the upper compressor 32.
上記条件により、圧縮機1台当たりに許容される最大圧縮比は7.5である。これに対して、暖房運転時の2段圧縮における下段圧縮機31および上段圧縮機32の圧縮比はともに3.95であり、許容される最大圧縮比7.5よりも小さい。このため、2段圧縮とすることにより、凝縮温度55℃および蒸発温度-35℃の条件での暖房運転が可能となる。
Due to the above conditions, the maximum compression ratio allowed per compressor is 7.5. On the other hand, the compression ratios of the lower compressor 31 and the upper compressor 32 in the two-stage compression during the heating operation are both 3.95, which is smaller than the allowable maximum compression ratio 7.5. For this reason, the two-stage compression enables heating operation under the conditions of a condensation temperature of 55 ° C. and an evaporation temperature of −35 ° C.
次に、「暖房運転を行ないながら除霜運転も同時に行なうこと」の実現性について説明する。
Next, the feasibility of “performing defrosting operation simultaneously with heating operation” will be described.
本実施の形態におけるヒートポンプ式暖房給湯機では、冷凍回路21とバイパス回路51とが、蒸発器27内で互いに独立した経路として設けられている。このため、冷凍回路21およびバイパス回路51の各回路を流れる冷媒の圧力、温度を、独立して制御することができる。
In the heat pump type heating water heater in the present embodiment, the refrigeration circuit 21 and the bypass circuit 51 are provided as independent paths in the evaporator 27. For this reason, the pressure and temperature of the refrigerant flowing through each circuit of the refrigeration circuit 21 and the bypass circuit 51 can be controlled independently.
代表的に図8中の回路を参照して除霜運転時のバイパス回路51内の冷媒の状態を説明すると、まず、凝縮器26と第1膨張弁36との間にバイパス回路51の始点(冷媒流れの上流側の始点)があり、第3膨張弁53および第2開閉弁52を開状態とすることにより、バイパス回路51に冷媒が流れる。このとき、バイパス回路51の始点における冷媒は、液相であり、その圧力は3.43MPa、温度は45℃である。その液相冷媒が、第2膨張弁37から吐出された冷媒と混じり合うことなく、別の経路で蒸発器27内を流れて蒸発器27と熱交換し、除霜する。
The state of the refrigerant in the bypass circuit 51 during the defrosting operation will be described typically with reference to the circuit in FIG. 8. First, the starting point of the bypass circuit 51 between the condenser 26 and the first expansion valve 36 ( When the third expansion valve 53 and the second on-off valve 52 are opened, the refrigerant flows into the bypass circuit 51. At this time, the refrigerant at the starting point of the bypass circuit 51 is in a liquid phase, its pressure is 3.43 MPa, and its temperature is 45 ° C. The liquid-phase refrigerant flows through the evaporator 27 through another path without being mixed with the refrigerant discharged from the second expansion valve 37, exchanges heat with the evaporator 27, and defrosts.
外気温が-25℃である場合、第2膨張弁37から蒸発器27に送り出された冷凍回路21の冷媒の温度は-35℃である。一方、バイパス回路51の冷媒の温度は45℃である。上記条件のもと、インジェクション回路41での圧力を(蒸発器内の圧力)×(凝縮器内の圧力)の平方根とすると、このときのインジェクション回路41での冷媒の圧力は0.87MPaであり、温度は3.4℃である。
When the outside air temperature is −25 ° C., the temperature of the refrigerant in the refrigeration circuit 21 sent from the second expansion valve 37 to the evaporator 27 is −35 ° C. On the other hand, the temperature of the refrigerant in the bypass circuit 51 is 45 ° C. Under the above conditions, when the pressure in the injection circuit 41 is the square root of (pressure in the evaporator) × (pressure in the condenser), the pressure of the refrigerant in the injection circuit 41 at this time is 0.87 MPa. The temperature is 3.4 ° C.
このようにインジェクション回路41での冷媒の温度は0℃よりも高いため、図1などに示すように、インジェクション回路41の冷媒を、除霜運転時にバイパス回路51に流す冷媒として用いることも可能である。
Thus, since the temperature of the refrigerant in the injection circuit 41 is higher than 0 ° C., as shown in FIG. 1 and the like, the refrigerant in the injection circuit 41 can also be used as a refrigerant that flows to the bypass circuit 51 during the defrosting operation. is there.
蒸発器27を出たバイパス回路51内の冷媒は、第2開閉弁52および第3膨張弁53を順に通過する。その後、冷媒は、インジェクション回路41の圧力まで低下し、気液分離器38と第2膨張弁37との間の液相の冷媒と合流する。
The refrigerant in the bypass circuit 51 exiting the evaporator 27 passes through the second on-off valve 52 and the third expansion valve 53 in order. Thereafter, the refrigerant drops to the pressure of the injection circuit 41 and merges with the liquid-phase refrigerant between the gas-liquid separator 38 and the second expansion valve 37.
このような構成により、2段圧縮冷凍サイクルにおいて、たとえば、外気温-25℃環境下であっても、暖房運転と除霜運転との同時運転が可能となる。暖房のみの運転時と比較して、暖房運転に加えて除霜運転を行なう場合、蒸発器27における外気から冷媒への吸熱量が減少する。このため、暖房能力は除霜に利用される冷媒が有する熱量分だけ減少することになる。この際、下段圧縮機31または上段圧縮機32の運転回転数を大きくして全冷媒流量を増加することによって、凝縮器26での暖房能力を維持することができる。
With such a configuration, in the two-stage compression refrigeration cycle, for example, a heating operation and a defrosting operation can be performed simultaneously even under an outside air temperature of -25 ° C. When performing defrosting operation in addition to heating operation, the amount of heat absorbed from the outside air to the refrigerant in the evaporator 27 is reduced as compared with the heating only operation. For this reason, the heating capacity is reduced by the amount of heat of the refrigerant used for defrosting. At this time, the heating capacity of the condenser 26 can be maintained by increasing the operating speed of the lower compressor 31 or the upper compressor 32 and increasing the total refrigerant flow rate.
図15は、外気温と、インジェクション回路における冷媒の温度との関係を示すグラフである。図15中に示す関係は、冷媒がR410A、凝縮器26内の冷媒の温度が55℃程度である場合である。
FIG. 15 is a graph showing the relationship between the outside air temperature and the temperature of the refrigerant in the injection circuit. The relationship shown in FIG. 15 is when the refrigerant is R410A and the temperature of the refrigerant in the condenser 26 is about 55 ° C.
バイパス回路51の始点の位置は、除霜のため、少なくとも水が凍結する温度0℃より高い温度を有する冷媒がバイパス回路51に導入されるように、決定される必要がある。インジェクション回路41における冷媒圧力は(蒸発器内の圧力)×(凝縮器内の圧力)の平方根であるため、前述の通り、外気温-25℃のときでもバイパス回路51内の蒸発器27での冷媒の温度は、図15中に示すとおり、インジェクション回路41よりも上流の冷媒を用いれば、0℃より高い温度であるので除霜することができる。
The position of the start point of the bypass circuit 51 needs to be determined so that at least a refrigerant having a temperature higher than 0 ° C. at which water is frozen is introduced into the bypass circuit 51 for defrosting. Since the refrigerant pressure in the injection circuit 41 is the square root of (pressure in the evaporator) × (pressure in the condenser), as described above, the refrigerant pressure in the evaporator 27 in the bypass circuit 51 is even when the outside temperature is −25 ° C. As shown in FIG. 15, if the refrigerant upstream of the injection circuit 41 is used, the temperature of the refrigerant is higher than 0 ° C., so that it can be defrosted.
以上に説明した、この発明の実施の形態におけるヒートポンプ式暖房給湯機の構成についてまとめて説明すると、本実施の形態におけるヒートポンプ式加熱装置としてのヒートポンプ式暖房給湯機は、冷媒と被加熱流体との間で熱交換を行なう第1熱交換器としての凝縮器26と、冷媒と室外空気との間で熱交換を行なう第2熱交換器としての蒸発器27と、蒸発器27から送られた冷媒を圧縮する低圧側圧縮機としての下段圧縮機31と、下段圧縮機31から送られた冷媒を圧縮する高圧側圧縮機としての上段圧縮機32とを有し、ヒートポンプサイクルを構成する冷凍回路21と、冷凍回路21から分岐し、蒸発器27に付着した霜を取り除くための冷媒が流れるバイパス回路51とを備える。バイパス回路51は、冷凍回路21を通じて蒸発器27に供給される冷媒よりも高温の冷媒が流通する位置で冷凍回路21に接続され、その位置から導いた冷媒を、冷凍回路21とは独立して蒸発器27に流通させるように設けられる。
The configuration of the heat pump type heating and hot water heater in the embodiment of the present invention described above will be described in summary. A condenser 26 as a first heat exchanger for exchanging heat between them, an evaporator 27 as a second heat exchanger for exchanging heat between the refrigerant and outdoor air, and a refrigerant sent from the evaporator 27 A refrigeration circuit 21 having a lower compressor 31 as a low-pressure compressor that compresses the refrigerant and an upper compressor 32 as a high-pressure compressor that compresses the refrigerant sent from the lower compressor 31, and constituting a heat pump cycle. And a bypass circuit 51 that branches from the refrigeration circuit 21 and through which a refrigerant for removing frost attached to the evaporator 27 flows. The bypass circuit 51 is connected to the refrigeration circuit 21 at a position where a refrigerant having a temperature higher than that of the refrigerant supplied to the evaporator 27 through the refrigeration circuit 21 flows, and the refrigerant guided from the position is independent of the refrigeration circuit 21. It is provided to circulate through the evaporator 27.
冷凍回路21は、凝縮器26と蒸発器27との間に、凝縮器26から送られた冷媒を減圧する第1減圧器としての第1膨張弁36と、第1膨張弁36から送られた冷媒を気相と液相とに分離する気液分離器38と、気液分離器38から送られた液相の冷媒を減圧する第2減圧器としての第2膨張弁37とをさらに有する。ヒートポンプ式暖房給湯機は、気液分離器38で分離された気相の冷媒の一部を、下段圧縮機31と上段圧縮機32との間の冷凍回路21へと導くインジェクション回路41をさらに備える。
The refrigeration circuit 21 is sent from the first expansion valve 36 and the first expansion valve 36 as a first pressure reducer that depressurizes the refrigerant sent from the condenser 26 between the condenser 26 and the evaporator 27. It further has a gas-liquid separator 38 that separates the refrigerant into a gas phase and a liquid phase, and a second expansion valve 37 as a second decompressor that decompresses the liquid-phase refrigerant sent from the gas-liquid separator 38. The heat pump type hot water heater further includes an injection circuit 41 that guides a part of the gas-phase refrigerant separated by the gas-liquid separator 38 to the refrigeration circuit 21 between the lower compressor 31 and the upper compressor 32. .
バイパス回路の冷媒出口は、下段圧縮機31と上段圧縮機32との間の冷凍回路21、または気液分離器38の液相側に接続され、除霜運転時には、バイパス回路51に冷媒が流通される。
The refrigerant outlet of the bypass circuit is connected to the refrigeration circuit 21 between the lower compressor 31 and the upper compressor 32 or the liquid phase side of the gas-liquid separator 38, and the refrigerant flows through the bypass circuit 51 during the defrosting operation. Is done.
このように構成された、この発明の実施の形態におけるヒートポンプ式暖房給湯機によれば、-17℃以下の低外気温の環境下であっても、被加熱流体の加熱運転を行ないながら除霜運転も同時に行なうことができる。
According to the heat pump type heating water heater in the embodiment of the present invention configured as described above, defrosting is performed while performing the heating operation of the fluid to be heated even in the environment of a low outside air temperature of −17 ° C. or lower. Driving can be done at the same time.
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
この発明は、たとえば、ヒートポンプ式給湯機やヒートポンプ式暖房給湯機などに適用される。
The present invention is applied to, for example, a heat pump type hot water heater or a heat pump type hot water heater.
21 冷凍回路、26 凝縮器、27 蒸発器、30 圧縮機、31 下段圧縮機、32 上段圧縮機、35 膨張弁、36 第1膨張弁、37 第2膨張弁、38 気液分離器、38a 気相冷媒空間、38b 液相冷媒空間、41 インジェクション回路、42 第1開閉弁、51 バイパス回路、52 第2開閉弁、53 第3膨張弁、60 熱交換フィン、61,66 冷媒配管、101 圧縮機、101K 貯湯回路、102K 給湯回路、103 冷媒対水熱交換器、104 冷却器、105 内部熱交換器、106 第1電動膨張弁、107 蒸発器、110 電磁開閉弁、111 第2電動膨張弁、112 除霜用電磁弁、113 分岐路。
21 Refrigeration circuit, 26 condenser, 27 evaporator, 30 compressor, 31 lower compressor, 32 upper compressor, 35 expansion valve, 36 first expansion valve, 37 second expansion valve, 38 gas-liquid separator, 38a gas Phase refrigerant space, 38b Liquid phase refrigerant space, 41 Injection circuit, 42 First open / close valve, 51 Bypass circuit, 52 Second open / close valve, 53 Third expansion valve, 60 Heat exchange fin, 61, 66 Refrigerant piping, 101 Compressor , 101K hot water storage circuit, 102K hot water supply circuit, 103 refrigerant-to-water heat exchanger, 104 cooler, 105 internal heat exchanger, 106 first electric expansion valve, 107 evaporator, 110 electromagnetic on-off valve, 111 second electric expansion valve, 112 Solenoid valve for defrosting, 113 branch.
Claims (13)
- 冷媒と被加熱流体との間で熱交換を行なう第1熱交換器と、冷媒と室外空気との間で熱交換を行なう第2熱交換器と、前記第2熱交換器から送られた冷媒を圧縮する低圧側圧縮機と、前記低圧側圧縮機から送られた冷媒を圧縮する高圧側圧縮機とを有し、ヒートポンプサイクルを構成する冷凍回路と、
前記冷凍回路から分岐し、前記第2熱交換器に付着した霜を取り除くための冷媒が流れるバイパス回路とを備え、
前記バイパス回路は、前記冷凍回路を通じて前記第2熱交換器に供給される冷媒よりも高温の冷媒が流通する位置で前記冷凍回路に接続され、その位置から導いた冷媒を、前記冷凍回路とは独立して前記第2熱交換器に流通させるように設けられる、ヒートポンプ式加熱装置。 A first heat exchanger that exchanges heat between the refrigerant and the fluid to be heated, a second heat exchanger that exchanges heat between the refrigerant and outdoor air, and a refrigerant sent from the second heat exchanger A low-pressure side compressor that compresses the refrigerant, and a high-pressure side compressor that compresses the refrigerant sent from the low-pressure side compressor, and a refrigeration circuit constituting a heat pump cycle,
A bypass circuit that branches from the refrigeration circuit and flows a refrigerant for removing frost attached to the second heat exchanger;
The bypass circuit is connected to the refrigeration circuit at a position where a refrigerant having a temperature higher than that of the refrigerant supplied to the second heat exchanger flows through the refrigeration circuit, and the refrigerant guided from the position is referred to as the refrigeration circuit. A heat pump type heating device provided to flow independently to the second heat exchanger. - 前記冷凍回路は、前記第1熱交換器と前記第2熱交換器との間に、前記第1熱交換器から送られた冷媒を減圧する第1減圧器と、前記第1減圧器から送られた冷媒を気相と液相とに分離する気液分離器と、前記気液分離器から送られた液相の冷媒を減圧する第2減圧器とをさらに有し、
前記気液分離器で分離された気相の冷媒の一部を、前記低圧側圧縮機と前記高圧側圧縮機との間の前記冷凍回路へと導くインジェクション回路をさらに備える、請求項1に記載のヒートポンプ式加熱装置。 The refrigeration circuit includes, between the first heat exchanger and the second heat exchanger, a first decompressor that decompresses the refrigerant sent from the first heat exchanger, and a pump that sends the refrigerant from the first decompressor. A gas-liquid separator that separates the obtained refrigerant into a gas phase and a liquid phase; and a second decompressor that decompresses the liquid-phase refrigerant sent from the gas-liquid separator,
2. The injection circuit according to claim 1, further comprising an injection circuit that guides a part of the gas-phase refrigerant separated by the gas-liquid separator to the refrigeration circuit between the low-pressure compressor and the high-pressure compressor. Heat pump type heating device. - 前記バイパス回路の冷媒入り口が、前記気液分離器の気相側に接続される、請求項2に記載のヒートポンプ式加熱装置。 The heat pump heating device according to claim 2, wherein a refrigerant inlet of the bypass circuit is connected to a gas phase side of the gas-liquid separator.
- 前記バイパス回路の冷媒入り口が、前記気液分離器の液相側に接続される、請求項2または3に記載のヒートポンプ式加熱装置。 The heat pump heating device according to claim 2 or 3, wherein a refrigerant inlet of the bypass circuit is connected to a liquid phase side of the gas-liquid separator.
- 前記バイパス回路の冷媒入り口が、前記第1減圧器と前記気液分離器との間の前記冷凍回路に接続される、請求項2から4のいずれか1項に記載のヒートポンプ式加熱装置。 The heat pump heating device according to any one of claims 2 to 4, wherein a refrigerant inlet of the bypass circuit is connected to the refrigeration circuit between the first pressure reducer and the gas-liquid separator.
- 前記バイパス回路の冷媒入り口が、前記第1熱交換器と前記第1減圧器との間の前記冷凍回路に接続される、請求項2から5のいずれか1項に記載のヒートポンプ式加熱装置。 The heat pump heating device according to any one of claims 2 to 5, wherein a refrigerant inlet of the bypass circuit is connected to the refrigeration circuit between the first heat exchanger and the first pressure reducer.
- 前記バイパス回路の冷媒入り口が、前記高圧側圧縮機と前記第1熱交換器との間の前記冷凍回路に接続される、請求項2から6のいずれか1項に記載のヒートポンプ式加熱装置。 The heat pump heating device according to any one of claims 2 to 6, wherein a refrigerant inlet of the bypass circuit is connected to the refrigeration circuit between the high-pressure compressor and the first heat exchanger.
- 前記バイパス回路の冷媒出口が、前記低圧側圧縮機と前記高圧側圧縮機との間の前記冷凍回路に接続される、請求項2から7のいずれか1項に記載のヒートポンプ式加熱装置。 The heat pump heating device according to any one of claims 2 to 7, wherein a refrigerant outlet of the bypass circuit is connected to the refrigeration circuit between the low-pressure side compressor and the high-pressure side compressor.
- 前記インジェクション回路および前記バイパス回路は、各回路の経路上に設けられ、冷媒流れを許容もしくは遮断する第1開閉弁および第2開閉弁をそれぞれ有し、
前記第2開閉弁が開状態とされる前記第2熱交換器の除霜時、前記第1開閉弁が閉状態とされる、請求項8に記載のヒートポンプ式加熱装置。 The injection circuit and the bypass circuit are provided on a path of each circuit, and each has a first on-off valve and a second on-off valve that allow or block the refrigerant flow,
The heat pump heating device according to claim 8, wherein the first on-off valve is closed at the time of defrosting the second heat exchanger in which the second on-off valve is opened. - 前記バイパス回路の冷媒出口が、前記気液分離器の液相側に接続される、請求項2から9のいずれか1項に記載のヒートポンプ式加熱装置。 The heat pump heating device according to any one of claims 2 to 9, wherein a refrigerant outlet of the bypass circuit is connected to a liquid phase side of the gas-liquid separator.
- 前記インジェクション回路および前記バイパス回路は、各回路の経路上に設けられ、冷媒流れを許容もしくは遮断する第1開閉弁および第2開閉弁をそれぞれ有し、
前記第2開閉弁が開状態とされる前記第2熱交換器の除霜時、前記第1開閉弁が開状態とされる、請求項10に記載のヒートポンプ式加熱装置。 The injection circuit and the bypass circuit are provided on a path of each circuit, and each has a first on-off valve and a second on-off valve that allow or block the refrigerant flow,
The heat pump heating device according to claim 10, wherein the first on-off valve is opened at the time of defrosting the second heat exchanger in which the second on-off valve is opened. - 前記第2熱交換器には、一方向から室外空気が供給され、
前記第2熱交換器において、前記バイパス回路は、前記冷凍回路よりも前記第2熱交換器に供給される室外空気の流れの上流側に配置される、請求項1から11のいずれか1項に記載のヒートポンプ式加熱装置。 Outdoor air is supplied to the second heat exchanger from one direction,
The said 2nd heat exchanger WHEREIN: The said bypass circuit is arrange | positioned in the upstream of the flow of the outdoor air supplied to a said 2nd heat exchanger rather than the said refrigerating circuit. The heat pump type heating device according to 1. - ヒートポンプサイクルを循環する冷媒がR410Aであり、冷媒の凝縮温度が55℃であり、前記低圧側圧縮機および前記高圧側圧縮機の各圧縮機の最大圧縮比が7.5である時に、
冷媒の蒸発温度が-17℃以下の場合であっても、前記第1熱交換器による被加熱流体の加熱運転と、前記第2熱交換器の除霜運転とが同時に実施可能である、請求項1から12のいずれか1項に記載のヒートポンプ式加熱装置。 When the refrigerant circulating through the heat pump cycle is R410A, the refrigerant condensing temperature is 55 ° C., and the maximum compression ratio of each compressor of the low-pressure side compressor and the high-pressure side compressor is 7.5,
The heating operation of the fluid to be heated by the first heat exchanger and the defrosting operation of the second heat exchanger can be performed simultaneously even when the evaporation temperature of the refrigerant is −17 ° C. or lower. Item 13. The heat pump heating apparatus according to any one of Items 1 to 12.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012071611A JP2013204851A (en) | 2012-03-27 | 2012-03-27 | Heat pump heating device |
JP2012-071611 | 2012-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013146415A1 true WO2013146415A1 (en) | 2013-10-03 |
Family
ID=49259676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/057649 WO2013146415A1 (en) | 2012-03-27 | 2013-03-18 | Heat pump-type heating device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013204851A (en) |
WO (1) | WO2013146415A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103629861A (en) * | 2013-12-06 | 2014-03-12 | 郭兴海 | Thermal pump air conditioner water heating system and control method thereof |
CN105928200A (en) * | 2016-04-28 | 2016-09-07 | 湖南科技大学 | Air source heat pump high-temperature water heating system suitable for low-temperature environment |
CN110332716A (en) * | 2019-07-16 | 2019-10-15 | 珠海格力电器股份有限公司 | defrosting control method and device for heat pump water heater and heat pump water heater |
JP2021096057A (en) * | 2019-12-19 | 2021-06-24 | 三菱重工サーマルシステムズ株式会社 | Outdoor unit and air conditioner including the same |
GB2621309A (en) * | 2022-07-01 | 2024-02-14 | Clade Eng Systems Ltd | Heat pump |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110762889A (en) * | 2019-10-23 | 2020-02-07 | 广东纽恩泰新能源科技发展有限公司 | Air source heat pump system for preventing frost accumulation |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50136846U (en) * | 1974-04-25 | 1975-11-11 | ||
JPS532215B2 (en) * | 1973-03-20 | 1978-01-26 | ||
JPS54163350U (en) * | 1978-05-08 | 1979-11-15 | ||
JP2004219060A (en) * | 2003-01-13 | 2004-08-05 | Lg Electronics Inc | Multiple air conditioner with defrost device |
JP2005214575A (en) * | 2004-02-02 | 2005-08-11 | Sanyo Electric Co Ltd | Refrigerator |
JP2005233551A (en) * | 2004-02-20 | 2005-09-02 | Mitsubishi Electric Corp | Refrigeration cycle device |
JP2009524797A (en) * | 2006-09-29 | 2009-07-02 | キャリア コーポレイション | Refrigerant vapor compression system with flash tank receiver |
JP2009270776A (en) * | 2008-05-08 | 2009-11-19 | Daikin Ind Ltd | Refrigerating device |
WO2012014345A1 (en) * | 2010-07-29 | 2012-02-02 | 三菱電機株式会社 | Heat pump |
-
2012
- 2012-03-27 JP JP2012071611A patent/JP2013204851A/en active Pending
-
2013
- 2013-03-18 WO PCT/JP2013/057649 patent/WO2013146415A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS532215B2 (en) * | 1973-03-20 | 1978-01-26 | ||
JPS50136846U (en) * | 1974-04-25 | 1975-11-11 | ||
JPS54163350U (en) * | 1978-05-08 | 1979-11-15 | ||
JP2004219060A (en) * | 2003-01-13 | 2004-08-05 | Lg Electronics Inc | Multiple air conditioner with defrost device |
JP2005214575A (en) * | 2004-02-02 | 2005-08-11 | Sanyo Electric Co Ltd | Refrigerator |
JP2005233551A (en) * | 2004-02-20 | 2005-09-02 | Mitsubishi Electric Corp | Refrigeration cycle device |
JP2009524797A (en) * | 2006-09-29 | 2009-07-02 | キャリア コーポレイション | Refrigerant vapor compression system with flash tank receiver |
JP2009270776A (en) * | 2008-05-08 | 2009-11-19 | Daikin Ind Ltd | Refrigerating device |
WO2012014345A1 (en) * | 2010-07-29 | 2012-02-02 | 三菱電機株式会社 | Heat pump |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103629861A (en) * | 2013-12-06 | 2014-03-12 | 郭兴海 | Thermal pump air conditioner water heating system and control method thereof |
CN105928200A (en) * | 2016-04-28 | 2016-09-07 | 湖南科技大学 | Air source heat pump high-temperature water heating system suitable for low-temperature environment |
CN105928200B (en) * | 2016-04-28 | 2019-03-01 | 湖南科技大学 | A kind of air source heat pump high temperature water heating system suitable for low temperature environment |
CN110332716A (en) * | 2019-07-16 | 2019-10-15 | 珠海格力电器股份有限公司 | defrosting control method and device for heat pump water heater and heat pump water heater |
JP2021096057A (en) * | 2019-12-19 | 2021-06-24 | 三菱重工サーマルシステムズ株式会社 | Outdoor unit and air conditioner including the same |
JP7458771B2 (en) | 2019-12-19 | 2024-04-01 | 三菱重工サーマルシステムズ株式会社 | Outdoor unit and air conditioner equipped with it |
GB2621309A (en) * | 2022-07-01 | 2024-02-14 | Clade Eng Systems Ltd | Heat pump |
Also Published As
Publication number | Publication date |
---|---|
JP2013204851A (en) | 2013-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5627713B2 (en) | Air conditioner | |
US9593872B2 (en) | Heat pump | |
JP6085255B2 (en) | Air conditioner | |
JP5430667B2 (en) | Heat pump equipment | |
JP5871959B2 (en) | Air conditioner | |
JP4752765B2 (en) | Air conditioner | |
WO2014020651A1 (en) | Air-conditioning device | |
WO2009150761A1 (en) | Refrigeration cycle device and control method therefor | |
WO2013146415A1 (en) | Heat pump-type heating device | |
WO2015140951A1 (en) | Air conditioner | |
JP2007240025A (en) | Refrigerating device | |
JP2011179689A (en) | Refrigeration cycle device | |
JP6161741B2 (en) | Air conditioner | |
WO2013171783A1 (en) | Multi-room air conditioner | |
US20130055754A1 (en) | Air conditioner | |
JP2002106995A (en) | Air conditioner | |
EP2584285A1 (en) | Refrigerating air-conditioning device | |
JP2010078164A (en) | Refrigeration and air conditioning device | |
JP2010078165A (en) | Refrigeration and air conditioning device | |
CN112432255B (en) | Outdoor unit and air conditioner | |
JP2008267653A (en) | Refrigerating device | |
US11397015B2 (en) | Air conditioning apparatus | |
JPH04268165A (en) | Double-stage compression and freezing cycle device | |
JP5194842B2 (en) | Refrigeration equipment | |
JP2015169347A (en) | Heat pump device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13769465 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13769465 Country of ref document: EP Kind code of ref document: A1 |