Nothing Special   »   [go: up one dir, main page]

WO2013039097A1 - Wire coated with solid microparticles, and method for producing wire coated with solid microparticles - Google Patents

Wire coated with solid microparticles, and method for producing wire coated with solid microparticles Download PDF

Info

Publication number
WO2013039097A1
WO2013039097A1 PCT/JP2012/073304 JP2012073304W WO2013039097A1 WO 2013039097 A1 WO2013039097 A1 WO 2013039097A1 JP 2012073304 W JP2012073304 W JP 2012073304W WO 2013039097 A1 WO2013039097 A1 WO 2013039097A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid fine
wire
fine particle
fine particles
nickel plating
Prior art date
Application number
PCT/JP2012/073304
Other languages
French (fr)
Japanese (ja)
Inventor
一之 岸
秀雄 三井
Original Assignee
株式会社ファシリティ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ファシリティ filed Critical 株式会社ファシリティ
Priority to JP2013533686A priority Critical patent/JP5802275B2/en
Publication of WO2013039097A1 publication Critical patent/WO2013039097A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • B23D61/18Sawing tools of special type, e.g. wire saw strands, saw blades or saw wire equipped with diamonds or other abrasive particles in selected individual positions
    • B23D61/185Saw wires; Saw cables; Twisted saw strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/06Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a solid fine particle adhering wire in which solid fine particles such as diamond are fixed to the outer peripheral surface of the wire, and a method for producing the solid fine particle adhering wire.
  • Solid particle adhesion wire made by fixing solid particles such as diamond to the outer peripheral surface of the wire is hard and brittle like silicon wafers for solar cells, silicon wafers for semiconductors, sapphire in LED applications, ceramics and stones. It is suitable for cutting highly difficult-to-process materials, and its demand is increasing. In recent years, there has been a demand for further improvement in the performance of a tool (wire saw) for cutting a highly brittle material provided with such a solid fine particle-attached wire and a longer life of the product.
  • Patent Document 1 and Patent Document 2 disclose a method of performing composite plating using a solid fine particle having a nickel coating layer added to a nickel plating solution and eutecting nickel and solid fine particles on the wire surface. Has been.
  • an attempt has been made to improve the amount of solid fine particles adhering to the wire surface by previously performing nickel plating as a base on the surface of the wire.
  • the solid fine particles having a nickel coating layer added to the nickel plating solution are difficult to disperse and precipitate on the wire surface, that is, a plurality of solid fine particles are likely to aggregate. There was a problem that analysis control was difficult. Further, when solid fine particles having a titanium coat layer are used, there is a problem that the plating layer formed on the wire surface is easily peeled off, the life of the plating solution is short, and the operation stability is lacking.
  • the present invention has been made to solve the conventional technical problem, and can solidly fix solid fine particles such as diamond on a wire, has high performance, and has long-term performance.
  • An object of the present invention is to provide a usable solid fine particle-attached wire and a method for producing the solid fine particle-attached wire.
  • the inventors of the present invention have achieved the above-mentioned problems by adopting the solid fine particle-attached wire and the method for producing the solid fine particle-attached wire described below.
  • the solid fine particle adhesion wire according to the present invention is a solid fine particle adhesion wire in which solid fine particles are fixed to the outer peripheral surface of the wire, and the surface of the wire is provided with an inorganic coating layer subjected to surface modification treatment.
  • a solid fine particle-attached wire according to the present invention that has an inorganic protective layer on the surface of the wire.
  • the particle surface is made a charged surface by surface modification treatment of the particle surface of the solid fine particle with an inorganic coat layer.
  • solid fine particle-attached wire it is preferable that 10 to 60 solid fine particles with an inorganic coat layer having a particle size of 0.01 to 100 ⁇ m are attached within a length range of 500 ⁇ m of the wire.
  • the solid fine particle-attached wire according to the present invention preferably uses one or more selected from palladium-coated diamond particles, nickel-coated diamond particles, and titanium-coated diamond particles as the solid fine particles with an inorganic coat layer.
  • Production method of solid fine particle-attached wire The production method of the solid fine particle-attached wire according to the present invention described above preferably employs a production method including the following steps a to d.
  • Step a A step of preparing solid fine particles with an inorganic coat layer comprising an inorganic coat layer on the surface of the solid fine particles.
  • Step b A step of subjecting the surface of the solid fine particles with an inorganic coat layer to surface modification treatment of the solid fine particles with an inorganic coat layer using a surface modifier in order to impart a predetermined polarity.
  • Step c The solid fine particles with inorganic coat layer that have been subjected to the surface modification treatment are placed in a nickel plating solution to be suspended, and nickel is deposited on the wire surface by electrolytic plating, and at the same time, the solid fine particles with inorganic coat layer are attached.
  • Step d The process of overcoating nickel plating on the solid fine particle content nickel plating layer of the wire surface.
  • the surface modifier in the step b preferably includes one or more of an amine-based, non-ionic, and cationic surfactant.
  • alcohol amines and a nonionic surfactant are included as the surface modifier in the step b.
  • the solid fine particles have a particle diameter of 0.01 to 100 ⁇ m.
  • the overcoat nickel plating layer formed in the step d preferably has a thickness in the range of 0.1 to 40 ⁇ m.
  • a wire having a diameter of 0.02 mm to 3.0 mm it is preferable to use a wire having a diameter of 0.02 mm to 3.0 mm.
  • the solid fine particle-attached wire includes a solid fine particle-containing electrolytic nickel plating layer in which solid fine particles with an inorganic coat layer are dispersed and contained on the surface of the wire, and an overcoat nickel plating layer on the surface of the solid fine particle-containing electrolytic nickel plating layer And.
  • the solid fine particle-attached wire is stably provided with 20 or more solid fine particles with an inorganic coat layer having a particle size of 0.01 to 100 ⁇ m within a length range of 500 ⁇ m of the wire.
  • the solid fine particle-attached wire according to the present application is obtained by subjecting the particle surface to a surface modification treatment using a predetermined surface modifier in advance as a solid fine particle with an inorganic coat layer in the production process.
  • the solid fine particles with the inorganic coat layer are appropriately dispersed and uniformly attached to the outer peripheral surface of the wire.
  • the amount of solid fine particles with inorganic coat layer attached to the wire can be increased in proportion to the amount of solid fine particles with inorganic coat layer, and the amount of solid fine particles with inorganic coat layer attached to the surface of the wire can be controlled. Became.
  • FIG. 1 It is a mimetic diagram of the section of the solid particulate adhesion wire concerning this application. It is a photograph which shows the state of the wire surface which gave electrolytic nickel plating using the electroplating liquid of diamond content 5g / L of Example 1.
  • FIG. It is a photograph which shows the state of the wire surface which gave electrolytic nickel plating using the electrolytic plating liquid of diamond content 10g / L of Example 2.
  • FIG. It is a photograph which shows the state of the wire surface which gave electrolytic nickel plating using the electroplating liquid of diamond content 15g / L of Example 3.
  • FIG. It is a photograph which shows the state of the wire surface which gave electrolytic nickel plating using the electroplating liquid of diamond content 10g / L of Example 4.
  • FIG. 1 It is a photograph which shows the state of the wire surface which gave electrolytic nickel plating using the electroplating liquid of diamond content 5g / L of Example 1.
  • FIG. It is a photograph which shows the state of the wire surface which gave electrolytic nickel plat
  • FIG. It is a photograph which shows the state of the wire surface which gave electrolytic nickel plating using the electrolytic plating liquid of diamond content 10g / L of Example 5.
  • FIG. It is a photograph which shows the state of the wire surface which gave electrolytic nickel plating using the electroplating liquid of diamond content 5g / L of the comparative example 1.
  • the solid fine particle adhesion wire according to the present invention is a wire with solid fine particles formed by fixing solid fine particles to the outer peripheral surface of the wire. That is, the solid fine particle-attached wire according to the present invention has a solid fine particle-containing electrolytic nickel plating layer dispersedly containing “solid fine particles with an inorganic coating layer” on the surface of the wire, and the surface of the solid fine particle-containing electrolytic nickel plating layer. A coat nickel plating layer is provided. The following is a breakdown of each necessary element and term.
  • This solid fine particle-containing electrolytic nickel plating layer directly contacts and covers the surface of the wire, and solid fine particles with an inorganic coating layer are dispersed and contained in the electrolytic nickel plating layer. That is, the nickel component plays a role as a binder for fixing the solid fine particles with the inorganic coat layer to the wire surface.
  • the nickel component contained in the solid fine particle-containing electrolytic nickel plating layer is not limited to a mere surface coating, but has a good wettability with a wire described later and exhibits chemical affinity. Therefore, the electrolytic nickel layer provided on the wire surface by an electrolytic method has good adhesion.
  • nickel plating solution used for the configuration of the solid fine particle-containing electrolytic nickel plating layer a pure nickel plating solution or a nickel alloy (nickel-phosphorous, nickel-cobalt, nickel-zinc or other nickel-based alloy) plating solution should be used. Is possible.
  • Wire The wire used in the present application is not particularly limited as long as the surface can be electroplated and has a certain strength, and can be appropriately selected according to the intended use.
  • wires include steel wires such as piano wires, tungsten wires, molybdenum wires, and stainless steel wires.
  • the diameter of the wire which is the core material of the solid fine particle-attached wire, should not be limited if originally intended, and may be selected as appropriate according to the application. However, considering that most of the applications of the solid fine particle-attached wire are “wire saws”, the diameter of the wire is preferably 0.02 mm to 3.0 mm. In the case of a solid fine particle-attached wire that functions as a wire saw, when the wire diameter is less than 0.02 mm, the solid with an inorganic coat layer with respect to the wire surface in the manufacturing method using the solid fine particles with an inorganic coat layer having a predetermined particle diameter described later This is not preferable because it tends to make it difficult to attach fine particles efficiently.
  • the upper limit of the diameter of this wire changes with uses, it is defined as a temporary standard.
  • the upper limit is 0.8 mm. If the diameter of the wire exceeds 0.8 mm, it is not always necessary to use a wire saw from the viewpoint of cutting accuracy of the object to be cut.
  • the solid fine particle-attached wire is used for cutting a silicon wafer of a solar cell, it is best to use a wire having a diameter of 0.06 mm to 0.23 mm to meet the market demand.
  • 3.0 mm is an upper limit. This is because if the diameter of the wire exceeds 3.0 mm, the flexibility as the wire is lost and the handling becomes difficult.
  • the solid fine particle adhering wire according to the present invention provided with an inorganic protective layer on the surface of the wire.
  • an inorganic protective layer By the presence of the inorganic protective layer on the surface of the wire, it is possible to prevent the occurrence of microcracks on the wire surface during the processing, the occurrence of disconnection, and the corrosion of the wire.
  • the inorganic protective layer nickel, nickel alloy (Ni—Co, Ni—Sn, Ni—Zn), Cu, copper alloy (Cu—Zn, Cu—Sn), or the like can be used.
  • Solid fine particles The solid fine particles used as the core material of the solid fine particles with the inorganic coat layer used in the present application will be described.
  • the solid fine particles mentioned here can be appropriately selected according to the use of the solid fine particle-attached wire.
  • cerium oxide, silicon oxide (quartz, fused silica, etc.) alumina, silicon carbide, silicon nitride, zirconium oxide, diamond, etc.
  • Fine particles In particular, when the solid fine particle-attached wire is used as a wire saw for cutting a silicon wafer or the like, it is preferable to employ diamond particles.
  • the solid fine particles having a particle diameter of 0.01 to 100 ⁇ m are preferably used.
  • the particle size of the solid fine particles is less than 0.01 ⁇ m, the surface of the solid fine particle adhering wire becomes too smooth, and the significance of adhering the solid fine particles to the wire is not limited to wire saw use but also in other uses. It is not preferable because it will be sunk.
  • the particle size of the solid fine particles exceeds 100 ⁇ m, even if a wire of 0.8 mm, which is the maximum diameter of the wire used by the invention according to the present application, is used, a uniform dispersibility is maintained on the wire surface. There is a tendency for solid particulates to be difficult to attach, and there is no such market requirement.
  • the solid fine particle adhering wire for the purpose of cutting a silicon wafer for solar cells, the solid fine particle having a particle size of 4 to 40 ⁇ m is used. This is more preferable because it shows good cutting performance suitable for wire saw applications, and the solid fine particles adhering to the wire surface are less likely to fall off during cutting, and the life of the wire saw can be extended.
  • Solid fine particles with inorganic coat layer are those having an inorganic coat layer composed of a metal component on the surface of the solid fine particles. And the component of this inorganic coat layer can be appropriately selected and used according to the application of the solid fine particle-attached wire. More specifically, the inorganic fine particles with an inorganic coat layer mentioned here are assumed to be solid fine particles with a palladium coat layer, solid fine particles with a nickel coat layer, solid fine particles with a titanium coat layer, and the like. The solid fine particles with an inorganic coat layer provided with these inorganic coat layers have good wettability with the precipitation component of nickel or nickel alloy formed by a plating method, and good adhesion is obtained.
  • These solid fine particles with an inorganic coating layer are uniformly dispersed in the solid fine particle-containing electrolytic nickel plating layer.
  • the solid fine particles with an inorganic coat layer are preferably subjected to a surface modification treatment with a surface modifier in advance, and the surface of the solid fine particles with an inorganic coat layer is used as a charged surface to give a predetermined polarity to the particle surface.
  • the solid particles with a palladium coat layer can selectively use any charged state of nonionic particles and cationic particles according to the polarization state of the wire.
  • the wire when the wire is polarized to the cathode during electrolytic nickel plating, the surface of the solid fine particles with inorganic coating layer is charged to the opposite positive electrode with respect to the plating solution. become.
  • the solid fine particles are uniformly dispersed and adhered to the wire surface during the electrolytic plating in the manufacturing method of the following solid fine particle-attached wire,
  • the amount of the solid fine particles with the inorganic coat layer attached to the solid fine particle attachment wire can be obtained in proportion to the amount of the solid fine particles with the inorganic coat layer.
  • This surface modification treatment will be further described in a later manufacturing method.
  • the overcoat nickel plating layer is provided on the surface of the solid fine particle-containing electrolytic nickel plating layer containing the solid fine particles and constitutes the outermost layer of the solid fine particle-attached wire. Therefore, the overcoat nickel plating layer functions to prevent the solid fine particles contained in the solid fine particle-containing electrolytic nickel plating layer from falling off.
  • the “overcoat nickel plating layer” referred to here is preferably composed of a pure nickel plating solution and a nickel alloy (nickel-based alloy such as nickel-phosphorus, nickel-cobalt, nickel-zinc) plating solution.
  • the nickel component contained in this “overcoat nickel plating layer” is not limited to a mere surface coating, and exhibits good wettability with the above-mentioned “solid nickel-containing electrolytic nickel plating layer”, and the foundation is made of solid fine particles. Even if there are irregularities, the film is thin and uniform with good throwing power.
  • Wire cleaning treatment It is preferable to first degrease the surface of the wire used in the production of the solid fine particle-attached wire according to the present invention and clean it.
  • the degreasing method at this time is not particularly limited, and for example, acid soaking, solvent degreasing, emulsifier degreasing, alkaline degreasing and the like can be applied. Furthermore, it is also possible to apply electrolytic degreasing as required.
  • the method for producing a solid fine particle-attached wire according to the present invention includes the following steps a to d.
  • Step a. solid particles with an inorganic coat layer having an inorganic coat layer on the surface of the solid particles are prepared. Therefore, a solid fine particle core material with an inorganic coat layer (the fine particles such as cerium oxide, silicon oxide (quartz, fused silica, etc.), alumina, silicon carbide, zirconium oxide, diamond, Teflon (registered trademark), etc.)
  • the particles provided with an inorganic coat layer composed of a metal component on the particle surface solid fine particles with a palladium coat layer, solid fine particles with a nickel coat layer, solid fine particles with a titanium coat layer, and the like are prepared. Commercial products corresponding to these solid fine particles with an inorganic coat layer may be used.
  • the solid fine particles with the inorganic coat layer are preferably coated with palladium by the following method.
  • the first palladium coating method is as follows: “After palladium and tin are co-deposited on the surface of the solid fine particles, only the tin on the surface of the solid fine particles is decomposed and removed, so that only palladium exists on the surface of the solid fine particles. It is a method to make it a state. " This method will be described with a specific example.
  • a solution containing tin and palladium a solution containing a palladium / tin colloidal catalyst as a main component can be used. When solid fine particles are immersed in such a solution, palladium / tin colloid is adsorbed on the surface of the solid fine particles.
  • the amount of palladium adsorbed at this time is preferably 0.1 to 20 mg per 1 g of solid fine particles.
  • the palladium adsorption amount is less than 0.1 mg per 1 g of solid fine particles, the amount of palladium adsorption on the particle surface of the solid fine particles is small, and the wettability with the nickel or nickel alloy precipitation component formed by plating is sufficiently improved. This is not preferable because good adhesion cannot be obtained.
  • the palladium adsorption amount exceeds 20 mg per 1 g of the solid fine particles, the eutectoid effect of nickel and the solid fine particles is saturated and cannot be improved.
  • the amount of palladium adsorbed exceeds 10 mg per gram of solid fine particles, the eutectoid effect of nickel and solid fine particles is improved only moderately. Therefore, a more preferable amount of palladium adsorbed is 0.1 per gram of solid fine particles. ⁇ 10 mg.
  • the solid fine particles having palladium / tin colloids adsorbed on the particle surface are brought into contact with an acid such as chlorine, sulfuric acid, borohydrofluoric acid, etc. to dissolve and remove the tin component. Precipitate.
  • an acid such as chlorine, sulfuric acid, borohydrofluoric acid, etc.
  • a palladium coat layer is formed on the surface of the solid fine particles.
  • the second palladium coating method is as follows: “Solid fine particles are immersed in a tin solution for a predetermined time to deposit tin on the surface of the solid fine particles, and then immersed in a palladium solution for a predetermined time to perform a substitution reaction between tin and palladium. A method of using this method to deposit palladium on the particle surface.
  • chlorine, sulfuric acid, borofluoric acid, carboxylic acid in order to reliably remove tin contained in the palladium coat layer, chlorine, sulfuric acid, borofluoric acid, carboxylic acid, It can also be removed using an acidic solution such as oxycarboxylic acid or aromatic carboxylic acid.
  • the first palladium coating method and the second palladium coating method are merely examples, and in the invention according to the present application, it is sufficient that the surface of the solid fine particles can be covered with the palladium coat layer. Note that the method is not to be construed as limited.
  • Step b is a surface modification treatment step in which the surface of the solid fine particles with an inorganic coat layer is brought into contact with a surface modifier in the step a to charge it to a predetermined polarity.
  • This process is a process that is not present in the production of a conventional solid fine particle-attached wire.
  • surface modification treatment with a surface modifying agent is performed in advance to stabilize the polarity of the surface. I thought of that.
  • the amount of solid fine particles attached to the wire surface can be arbitrarily controlled in the step of forming the solid fine particle-containing electrolytic nickel plating layer, the amount of attachment can be significantly increased, and evenly dispersed. is there.
  • the surface of the solid fine particles with the inorganic coating layer is charged to the positive electrode in advance. Apply the process to be.
  • solid fine particles easily adhere to the surface of the later wire. This is because the surface of the solid fine particles is charged to the positive electrode against the wire polarized to the cathode during electrolytic plating, and the solid fine particles themselves are stabilized in a positively charged state. This is because solid fine particles are easily attracted to the wire during plating.
  • the surface modification treatment at this time can be carried out by selecting an optimum method from a method of immersing solid fine particles in a surface treatment agent, a method of spraying the surface treatment agent on the surface of the solid fine particles, and the like. If the dipping method is adopted, the solid fine particles are put into a treatment tank containing a surface modifier, and the dipping process is performed for a predetermined time while stirring. When the treatment for a predetermined time is completed, the solid fine particles are separated and collected from the treatment tank, washed with water, and dried.
  • solid fine particles with an inorganic coating layer are attached to the wire surface, and at the same time, nickel components are precipitated from nickel ions having a positive charge. Therefore, in this surface modification treatment, it is necessary to use a surface modifier that can be stabilized by imparting a positive polarity to the surface of the solid fine particles with the inorganic coat layer.
  • a surface modifier it is preferable to use one containing an amine surfactant, a nonionic surfactant or a cationic surfactant, and in particular, a nonion containing an alcohol amine. It is preferable to use a system surfactant.
  • the surface modifier and the solid fine particles are brought into contact with each other for a predetermined time, whereby the surface of the solid fine particles with an inorganic coat layer is efficiently charged to the positive electrode, and the positive electrode is charged. This is because stabilization can be achieved.
  • Step c. This step is a step of forming a solid fine particle-containing electrolytic nickel plating layer in which composite plating is performed to form an electrolytic nickel plating layer containing inorganic coated solid fine particles on the surface of the wire by an electrolytic plating method.
  • the solid nickel-containing electrolytic nickel plating method applied here will be described below.
  • the wire used here is preferably one having an inorganic protective layer on its surface.
  • nickel, nickel alloy (Ni—Co, Ni—Sn, Ni—Zn), Cu, copper alloy (Cu—Zn, Cu—Sn), etc. can be used as the metal component constituting the inorganic protective layer.
  • nickel or a nickel alloy is optimal.
  • the inorganic protective layer made of nickel or nickel alloy is preferably formed using a so-called “strike plating method”.
  • This strike plating uses a low ion concentration electrolytic solution to perform a short plating process at a high current density to form a thin plating layer having a thickness of 0.1 ⁇ m or less.
  • a current supply method at this time, it is naturally possible to perform plating with a simple direct current, but in order to prevent deterioration in quality due to the use of a high current density, a “pulse” that repeats an energized state and a current stopped state is used. It is also preferable to employ the “plating method”.
  • pulse plating there is no particular limitation on the pulse waveform, and a rectangular wave, a triangular wave, or the like can be used.
  • the rectification method is not limited, and half-wave rectification and full-wave rectification can be used. It is possible to adopt conditions such as a frequency of 200 Hz to 2000 Hz, a duty ratio (on: 20, off: 80), and a current density of 3 A / dm 2 to 10 A / dm 2 .
  • nickel strike plating it is possible to use a sulfamic acid-based nickel plating bath and a watt bath described later.
  • copper cyanide strike plating an electrolytic solution containing 20 to 35 g / L of copper cyanide, 37 to 60 g / L of sodium cyanide, 3 to 5 g / L of potassium hydroxide, and 10 to 20 g / L of Rochelle salt. A liquid can be used.
  • an electrolytic solution containing 16 g / L of copper pyrophosphate, 120 g / L of potassium pyrophosphate, and 10 g / L of potassium oxalate can be used.
  • the plating solution for forming the solid fine particle-containing electrolytic nickel plating layer the solid fine particles with the inorganic coating layer subjected to the surface modification treatment in the step b are suspended in the plating solution containing the nickel component.
  • a commercially available electrolytic nickel plating solution obtained by suspending solid fine particles with an inorganic coating layer surface-modified in step b can be used, or a Watt bath or a sulfamic acid bath applied to nickel plating. Or the like, in which solid fine particles with an inorganic coat layer subjected to surface modification treatment in step b are suspended may be used.
  • the nickel plating solution at this time there is no particular limitation on the nickel plating solution at this time, and it is possible to adopt a bath composition and electrolytic conditions that allow smooth nickel plating. As an example, several nickel plating baths and plating conditions are listed below.
  • nickel sulfamate tetrahydrate is 200 to 800 g / L
  • nickel chloride hexahydrate is 1 to 10 g / L
  • boric acid is 20 to 50 g / L
  • a nickel plating composition having a pH of 3 to 5 is employed.
  • nickel sulfate heptahydrate is 200 to 500 g / L
  • nickel chloride heptahydrate is 10 to 100 g / L
  • boric acid is 20 to 50 g / L
  • a nickel plating composition having a pH of 3 to 5 is employed.
  • the content of solid fine particles with an inorganic coat layer in the plating solution for forming the solid nickel-containing electrolytic nickel plating layer is arbitrarily determined in consideration of the relationship with the amount of solid fine particles co-deposited with nickel on the surface of the wire. It is possible to adopt an addition amount.
  • the solid fine particle content is preferably about 4 g / l to 40 g / l depending on the type of the object to be cut. This is because if the solid fine particle content is less than 4 g / l, the wire saw does not have good cutting performance.
  • the solid fine particle content exceeds 40 g / l, the amount of solid fine particles adhering to the wire surface becomes excessive, and it becomes difficult to uniformly adhere the solid fine particles to the wire surface.
  • nickel and solid fine particles can be co-deposited on the surface of the wire.
  • the number of the solid fine particles is less than 10, it is not preferable because cutting performance as a wire saw is deteriorated.
  • the number of solid fine particles exceeds 60, the solid fine particles easily fall off during handling of the wire saw, and the cut surface of the workpiece tends to become rough, which is not preferable.
  • the solid nickel containing electrolytic nickel plating layer which contains the solid fine particle with a palladium coat layer in the form disperse
  • Step d This step is an overcoat nickel plating layer forming step of further performing nickel plating on the surface of the solid fine particle-containing electrolytic nickel plating layer obtained in the step c.
  • the nickel plating method applied here is preferably an electrolytic plating method from the viewpoint of production speed.
  • a commercially available nickel plating bath may be used, or a watt bath, a sulfamic acid bath or the like prepared by itself as described in detail in the above step c may be used. Absent.
  • the above-mentioned wire on which the solid fine particle-containing electrolytic nickel plating layer is formed is immersed in a nickel plating solution having a liquid temperature of 30 to 60 ° C., and the wire is polarized to the cathode to Then, an overcoat nickel plating layer having a desired thickness is formed.
  • a nickel plating solution having a liquid temperature of 30 to 60 ° C.
  • the wire is polarized to the cathode to
  • an overcoat nickel plating layer having a desired thickness is formed.
  • the temperature of the nickel plating solution is less than 30 ° C.
  • the amount of saturated nickel that can be contained in the plating solution is reduced, the plating rate is reduced, and the industrial productivity is reduced.
  • the smoothness of the surface of the overcoated nickel plating layer tends to decrease, which is not preferable.
  • the overcoat nickel plating layer formed in this step d is provided on the outer surface of the solid fine particle-containing electrolytic nickel plating layer, and is located on the outermost layer of the solid fine particle-attached wire. Therefore, the overcoat nickel plating layer can effectively prevent the solid fine particles included in the solid fine particle-containing electrolytic nickel plating layer from falling off.
  • the overcoat nickel plating layer preferably has a thickness of 0.1 to 40 ⁇ m. When the thickness of the overcoat nickel plating layer is less than 0.1 ⁇ m, the solid fine particles contained in the solid fine particle-containing electrolytic nickel plating layer, which occurs during the handling or cutting operation of the solid fine particle adhesion wire, can be effectively removed. It cannot be prevented.
  • the thickness of the overcoat nickel plating exceeds 40 ⁇ m by employing the electrolytic plating method, current concentration occurs at the top of the diamond particle, and abnormal precipitation of nickel occurs at the current concentration point.
  • the plating thickness at the top of the particle increases. Assuming a solid fine particle-attached wire to be used as a wire saw at this time, it is difficult to expose the top of the diamond immediately after the start of use as a wire saw when the plating thickness of the top of the diamond particle is increased. Since the initial cutting performance is deteriorated, it is not preferable.
  • the thickness of the overcoat nickel plating layer is 2 to 4 ⁇ m.
  • the overcoat nickel plating layer preferably has a thickness of 0.1 to 40 ⁇ m.
  • the thickness of the overcoat nickel plating layer is 2 ⁇ m, it is possible to almost completely prevent the solid fine particles contained in the solid fine particle-containing electrolytic nickel plating layer from falling off during handling or cutting operation of the solid fine particle adhesion wire.
  • the thickness of the overcoat nickel plating layer exceeds 4 ⁇ m, the effect of preventing the solid fine particles contained in the solid nickel-containing electrolytic nickel plating layer is already saturated, rather, the current concentration at the top of the diamond particles This is because the process management tends to be complicated.
  • the thickness of the overcoat nickel plating layer 5 is measured at a location where the solid fine particles 4 do not exist in the overcoat nickel plating layer 5.
  • a steel wire wire having a diameter of 0.12 mm was used.
  • the wire Prior to the formation of the solid fine particle-containing electrolytic nickel plating layer in step c, which will be described later, the wire was degreased and then pretreated by immersion in 10% sulfuric acid. Thereafter, nickel strike plating was applied to the surface of the wire to provide an inorganic protective layer having a thickness of about 0.08 ⁇ m.
  • the nickel strike plating at this time uses an electrolytic solution containing 240 g / L of nickel chloride and 125 g / L of hydrochloric acid, a pulse waveform is a rectangular wave, a frequency of 1000 Hz, a duty ratio (on: 20, off: 80), and a current density. It adopted the pulse electrolysis conditions of the 6A / dm 2 ⁇ 10A / dm 2. Similar wires are used in other examples and comparative examples.
  • Solid fine particles In the examples, diamond particles having an average particle diameter of 15 ⁇ m were used as the solid fine particles. And using this diamond particle, the solid fine particle adhesion wire was manufactured with the following method. Similar diamond particles are used in Example 2, Example 3 and Comparative Example described later.
  • Step a In Example 1, a method of precipitating palladium and tin on the surface of diamond particles using a solution containing diamond particles as a main component of a palladium / tin colloid catalyst was adopted.
  • a solution having a palladium concentration of 0.1 g / l, a tin concentration of 2 g / l, and 40 ° C. was used.
  • the diamond particles were immersed in this solution for 10 minutes, the diamond particles were taken out of the solution and washed with water. Thereafter, the diamond particles were immersed in sulfuric acid having a concentration of 50 g / l for 10 minutes. As a result, a palladium-coated layer was formed on the surface of the diamond particles to obtain “palladium-coated diamond particles”.
  • Step b In this step, a surface modification treatment was performed on the particle surface of the “palladium-coated diamond particles” using a solution containing a nonionic surfactant containing an alcoholamine as a surface modifier.
  • the surface modifier is a solution of 2-aminoethanol (primary amine) 1.0 to 30% by mass, nonionic surfactant 0.1 to 5.0% by mass, pH 9.0 to 12.5. Was used.
  • “palladium-coated diamond particles” were placed in the surface modifier maintained at a liquid temperature of about 30 ° C. and immersed for 10 minutes, and then washed with water.
  • Step c In this step, the surface-modified palladium-coated diamond particles after step b are put into an electrolytic nickel plating solution, and the “diamond particle-containing electrolytic nickel” in a suspended state with a palladium-coated diamond particle concentration of 5 g / L.
  • a plating solution "was obtained.
  • the diamond particle-containing electrolytic nickel plating solution uses a nickel sulfamate plating bath of 400 g / L nickel sulfamate tetrahydrate, 2 g / L nickel chloride hexahydrate, 35 g / L boric acid, pH 4.0. It was.
  • the temperature of the diamond particle-containing electrolytic nickel plating solution is set to 50 ° C.
  • electrolysis is performed at a current density of 15 A / dm 2
  • composite plating is performed on the surface of the degreased wire, and the palladium-coated diamond particles are dispersed.
  • the contained “diamond particle-containing electrolytic nickel plating layer” was formed.
  • Step d In this step, as a plating solution, nickel sulfamate tetrahydrate 450 g / L, nickel chloride hexahydrate 3 g / L, boric acid 40 g / L, pH 4.0 nickel sulfamate A plating bath was adopted. Then, on the surface of the diamond particle-containing electrolytic nickel plating layer provided on the wire surface in step c under the conditions that the temperature of the nickel plating solution is 50 ° C. and the current density is 15 A / dm 2 , an “overcoat having a thickness of about 4 ⁇ m is formed. A “nickel plating layer” was formed, and a “diamond fine particle-attached wire” was manufactured.
  • the diamond fine particle-attached wire produced in Example 1 had about 24 palladium-coated diamond particles attached to the length of 500 ⁇ m of the wire as shown in FIG.
  • the converted thickness of the “overcoat nickel plating layer” was 4.1 ⁇ m.
  • Example 2 only the content of the palladium-coated diamond particles in step c was different from that in Example 1, and the other conditions were the same as in Example 1 to produce a diamond fine particle-attached wire. Below, only the conditions of the process c different from Example 1 are demonstrated.
  • Example 2 an electrolytic plating solution was prepared by setting the concentration of palladium-coated diamond particles suspended in the sulfamic acid bath in step c to 10 g / L.
  • the other conditions such as the temperature of the plating solution and the current density were the same as in Example 1.
  • the diamond fine particle-attached wire produced in Example 2 had about 31 palladium-coated diamond particles attached to the length of 500 ⁇ m of the wire.
  • the converted thickness of the “overcoat nickel plating layer” was 4.2 ⁇ m.
  • Example 3 only the diamond particle content in step c was different from that in Example 1, and all other conditions were the same as in Example 1 to produce a diamond particle-attached wire. Below, only the conditions of the process c different from Example 1 are demonstrated.
  • Example 3 an electrolytic plating solution was prepared by setting the concentration of the palladium-coated diamond particles suspended in the sulfamic acid bath in step c to 15 g / L.
  • the other conditions such as the temperature of the plating solution and the current density were the same as in Example 1.
  • Example 3 In the diamond fine particle-attached wire manufactured in Example 3, about 46 palladium-coated diamond particles were attached to the length of 500 ⁇ m of the wire as shown in FIG. Further, the converted thickness of the “overcoat nickel plating layer” was 4.3 ⁇ m.
  • Example 4 instead of the palladium-coated diamond particles prepared in Step a of Example 1, commercially available nickel-coated diamond particles having the same particle diameter were used.
  • step b is completed and the surface-modified nickel-coated diamond particles are placed in an electrolytic nickel plating solution, and the solid particles containing suspended solid particles having a diamond particle concentration of 10 g / L are contained.
  • An electrolytic nickel plating solution was obtained "except that the point was different from that of Example 1, and all other conditions were the same as in Example 1 to produce a nickel-coated diamond particle-attached wire.
  • the diamond fine particle-attached wire manufactured in Example 4 had about 30 nickel-coated diamond particles attached to the length of 500 ⁇ m of the wire.
  • the converted thickness of the “overcoat nickel plating layer” was 4.1 ⁇ m.
  • Example 4 instead of the palladium-coated diamond particles prepared in Step a of Example 1, commercially available titanium-coated diamond particles having the same particle diameter were used.
  • Step c of Example 4 “Step b is completed and the surface-modified titanium-coated diamond particles are put in an electrolytic nickel plating solution, and the solid particles containing suspended solid particles having a diamond particle concentration of 10 g / L are contained.
  • An electrolytic nickel plating solution was obtained ”except that the point was different from Example 1, and the other conditions were the same as in Example 1 to produce a titanium-coated diamond particle-attached wire.
  • Example 4 In the diamond fine particle-attached wire manufactured in Example 4, about 32 titanium-coated diamond particles were attached to the length of 500 ⁇ m of the wire as shown in FIG.
  • the converted thickness of the “overcoat nickel plating layer” was 4.2 ⁇ m.
  • Comparative Example 1 In Comparative Example 1, the palladium-coated diamond particles obtained in Step a of Example 1 were subjected to the plating in Step c without performing the surface modification treatment in Step b to produce a solid fine particle-attached wire. Thereby, the adhesion amount of diamond particles to the wire when the surface modification treatment in the step b was not performed was verified.
  • Comparative Example 1 the surface-modifying treatment step of the surface modifier in Step b of Example 1 was not performed, and the diamond particles coated with palladium obtained in Step a of Example 1 were replaced with Step c of Example 1.
  • a plating solution was prepared by suspending in the sulfamic acid bath described in 1) at a concentration of 5 g / L. Note that Comparative Example 1 is different from Example 1 only in that step b is not performed, and other steps, diamond particles to be used, wires, plating conditions, etc. are all the same as those in the above-described example. did.
  • the diamond fine particle-attached wire produced in Comparative Example 1 had about 8 palladium-coated diamond particles attached to the 500 ⁇ m length of the wire as shown in FIG.
  • the converted thickness of the “overcoat nickel plating layer” was 4.1 ⁇ m.
  • Comparative Example 2 In Comparative Example 2, the palladium-coated diamond particles obtained in Step a of Example 1 were subjected to the plating in Step c without performing the surface modification treatment in Step b to produce a solid fine particle-attached wire. Thereby, the adhesion amount of diamond particles to the wire when the surface modification treatment in the step b was not performed was verified.
  • Comparative Example 1 the surface-modifying treatment step of the surface modifier in Step b of Example 1 was not performed, and the diamond particles coated with palladium obtained in Step a of Example 1 were replaced with Step c of Example 1.
  • a plating solution was prepared by suspending in the sulfamic acid bath described in 1) at a concentration of 10 g / L. Note that Comparative Example 1 is different from Example 1 only in that step b is not performed, and other steps, diamond particles to be used, wires, plating conditions, etc. are all the same as those in the above-described example. did.
  • the diamond fine particle-attached wire manufactured in Comparative Example 2 had the same form as in FIG. 7 and had about 8 palladium-coated diamond particles attached to the length of 500 ⁇ m of the wire.
  • the converted thickness of the “overcoat nickel plating layer” was 4.0 ⁇ m.
  • Comparative Example 3 In Comparative Example 3, the palladium-coated diamond particles obtained in Step a of Example 1 were subjected to the plating in Step c without performing the surface modification treatment in Step b to produce a solid fine particle-attached wire. Thereby, the adhesion amount of diamond particles to the wire when the surface modification treatment in the step b was not performed was verified.
  • Comparative Example 1 the surface-modifying treatment step of the surface modifier in Step b of Example 1 was not performed, and the diamond particles coated with palladium obtained in Step a of Example 1 were replaced with Step c of Example 1.
  • a plating solution was prepared by suspending in the sulfamic acid bath described in 1) at a concentration of 15 g / L. Note that Comparative Example 1 is different from Example 1 only in that step b is not performed, and other steps, diamond particles to be used, wires, plating conditions, etc. are all the same as those in the above-described example. did.
  • the diamond fine particle-attached wire manufactured in Comparative Example 2 had the same form as that shown in FIG. 7, and about 9 palladium-coated diamond particles were attached to the 500 ⁇ m length of the wire.
  • the converted thickness of the “overcoat nickel plating layer” was 4.1 ⁇ m.
  • a surface modification treatment is performed on the surface of the palladium-coated diamond particles using a solution containing a nonionic surfactant containing an alcoholamine as a surface modifier.
  • a surface modification treatment is performed on the surface of the palladium-coated diamond particles using a solution containing a nonionic surfactant containing an alcoholamine as a surface modifier.
  • the solid fine particle-attached wire according to the example described above and the solid fine particle-attached wire according to the comparative example are used as a wire saw, the solid fine particle according to the example is compared with the solid fine particle-attached wire according to the comparative example. It can be seen that the cutting performance of the attached wire is remarkably high and can be used for a long time.
  • the solid fine particle adhesion wire obtained by adopting the manufacturing method according to the present invention significantly improves the adhesion amount of the solid fine particles adhering to the wire, and effectively suppresses the falling off of the adhering solid fine particles. It is what. Thereby, it becomes possible to provide the solid fine particle adhesion wire which is excellent in the cutting performance as a wire saw, and can be used for a long term at low cost.
  • Such solid fine particle adhering wire can be used suitably in the manufacturing process of solar cells, silicon wafers for semiconductors, etc., because it can cut high brittle materials such as single crystal silicon ingots with high precision. It is.
  • the excellent polishing performance of the solid fine particle-attached wire according to the present invention is suitable for various uses such as a file and a sharpening knife, and can be applied to various uses that require cutting or grinding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

The purpose of this invention is to provide a durable, high-performance wire coated with solid microparticles, the wire allowing solid microparticles such as diamond particles to be affixed to the wire in a stable manner; and to provide a method for producing the wire coated with solid microparticles. In order to achieve this objective, there is provided a wire coated with solid microparticles or the like in which the solid microparticles are affixed to the outer peripheral surface of the wire, wherein the wire or the like coated with solid microparticles is characterized that the surface of the wire is provided with: a nickel electroplating layer containing solid microparticles, the microparticles being dispersed, surface-modified solid microparticles with an inorganic coating layer; and a nickel plating overcoat layer on the surface of the nickel electroplating layer containing solid microparticles.

Description

固体微粒子付着ワイヤー及びその固体微粒子付着ワイヤーの製造方法Solid particulate adhering wire and method for producing the solid particulate adhering wire
 本件発明は、ワイヤーの外周面にダイヤモンド等の固体微粒子を固着した固体微粒子付着ワイヤー及びその固体微粒子付着ワイヤーの製造方法に関する。 The present invention relates to a solid fine particle adhering wire in which solid fine particles such as diamond are fixed to the outer peripheral surface of the wire, and a method for producing the solid fine particle adhering wire.
 ダイヤモンドなどの固体微粒子をワイヤーの外周面に固着してなる固体微粒子付着ワイヤーは、太陽電池用のシリコンウェハー、半導体用のシリコンウェハー、LED用途におけるサファイア、セラミックや石材のように硬質で脆性特性の高い難加工材料の切断に好適なものであり、その需要が高まっている。近年、このような固体微粒子付着ワイヤーを備えた高脆性材料切断用の工具(ワイヤーソー)の更なる性能の向上と製品の長寿命化が求められている。 Solid particle adhesion wire made by fixing solid particles such as diamond to the outer peripheral surface of the wire is hard and brittle like silicon wafers for solar cells, silicon wafers for semiconductors, sapphire in LED applications, ceramics and stones. It is suitable for cutting highly difficult-to-process materials, and its demand is increasing. In recent years, there has been a demand for further improvement in the performance of a tool (wire saw) for cutting a highly brittle material provided with such a solid fine particle-attached wire and a longer life of the product.
 係る固体微粒子付着ワイヤーの製造方法として、固体微粒子の表面にニッケル又はチタンのコート層を形成し、当該ニッケル又はチタンのコート層を有する固体微粒子をニッケルめっき液に添加したものをめっき液として用いて、ワイヤーの表面にニッケルと共に固体微粒子を析出させる複合めっき法が知られている。例えば、特許文献1及び特許文献2には、ニッケルコート層を有する固体微粒子をニッケルめっき液に添加したものを用いて複合めっきを行い、ワイヤー表面にニッケルと固体微粒子とを共析させる方法が開示されている。また、このような複合めっきの前に、予めワイヤーの表面に下地となるニッケルめっきを施して、固体微粒子のワイヤー表面への付着量を向上させる試みもなされている。 As a method for producing such a solid fine particle-attached wire, a nickel or titanium coat layer is formed on the surface of the solid fine particle, and the solid fine particle having the nickel or titanium coat layer is added to a nickel plating solution. A composite plating method in which solid fine particles are deposited together with nickel on the surface of the wire is known. For example, Patent Document 1 and Patent Document 2 disclose a method of performing composite plating using a solid fine particle having a nickel coating layer added to a nickel plating solution and eutecting nickel and solid fine particles on the wire surface. Has been. In addition, prior to such composite plating, an attempt has been made to improve the amount of solid fine particles adhering to the wire surface by previously performing nickel plating as a base on the surface of the wire.
特開2006-55952号公報JP 2006-55952 A 特開2011-140095号公報JP 2011-140095 A
 しかしながら、ニッケルコート層を有する固体微粒子をニッケルめっき液に添加したものを用いた複合めっきでは、ワイヤー表面に固体微粒子が分散して析出し難い、即ち、複数の固体微粒子が凝集し易いといった、共析制御が困難であるという問題が生じていた。また、チタンコート層を有する固体微粒子を用いた場合には、ワイヤー表面に形成されためっき層が剥がれやすく、更に、めっき液の寿命も短く、操業安定性に欠けるという問題があった。 However, in the composite plating using the solid fine particles having a nickel coating layer added to the nickel plating solution, the solid fine particles are difficult to disperse and precipitate on the wire surface, that is, a plurality of solid fine particles are likely to aggregate. There was a problem that analysis control was difficult. Further, when solid fine particles having a titanium coat layer are used, there is a problem that the plating layer formed on the wire surface is easily peeled off, the life of the plating solution is short, and the operation stability is lacking.
 従って、本件発明は、係る従来の技術的課題を解決するために成されたものであり、ダイヤモンド等の固体微粒子を安定的にワイヤーに定着させることができ、高性能であって、且つ、長期使用可能な固体微粒子付着ワイヤーとその固体微粒子付着ワイヤーの製造方法の提供を目的とする。 Accordingly, the present invention has been made to solve the conventional technical problem, and can solidly fix solid fine particles such as diamond on a wire, has high performance, and has long-term performance. An object of the present invention is to provide a usable solid fine particle-attached wire and a method for producing the solid fine particle-attached wire.
 そこで、本件発明者等は鋭意研究を行った結果、以下に述べる固体微粒子付着ワイヤーと、その固体微粒子付着ワイヤーの製造方法を採用することで上記課題を達成するに到った。 Therefore, as a result of intensive studies, the inventors of the present invention have achieved the above-mentioned problems by adopting the solid fine particle-attached wire and the method for producing the solid fine particle-attached wire described below.
固体微粒子付着ワイヤー: 本件発明に係る固体微粒子付着ワイヤーは、ワイヤーの外周面に固体微粒子を固着してなる固体微粒子付着ワイヤーにおいて、当該ワイヤーの表面に、表面改質処理を施した無機コート層付き固体微粒子を分散含有する固体微粒子含有電解ニッケルめっき層と、該固体微粒子含有電解ニッケルめっき層の表面にオーバーコートニッケルめっき層を備えることを特徴とする。 Solid fine particle adhesion wire: The solid fine particle adhesion wire according to the present invention is a solid fine particle adhesion wire in which solid fine particles are fixed to the outer peripheral surface of the wire, and the surface of the wire is provided with an inorganic coating layer subjected to surface modification treatment. A solid fine particle-containing electrolytic nickel plating layer containing dispersed solid fine particles, and an overcoat nickel plating layer on the surface of the solid fine particle-containing electrolytic nickel plating layer.
 本件発明に係る固体微粒子付着ワイヤーは、前記ワイヤーの表面に無機保護層を備えるものを用いることが好ましい。 It is preferable to use a solid fine particle-attached wire according to the present invention that has an inorganic protective layer on the surface of the wire.
 本件発明に係る固体微粒子付着ワイヤーは、前記無機コート層付き固体微粒子の粒子表面の表面改質処理によって、当該粒子表面を帯電表面とすることが好ましい。 In the solid fine particle adhesion wire according to the present invention, it is preferable that the particle surface is made a charged surface by surface modification treatment of the particle surface of the solid fine particle with an inorganic coat layer.
 本件発明に係る固体微粒子付着ワイヤーは、ワイヤーの500μmの長さの範囲に、粒径が0.01~100μmの無機コート層付き固体微粒子が10個~60個付着していることが好ましい。 In the solid fine particle-attached wire according to the present invention, it is preferable that 10 to 60 solid fine particles with an inorganic coat layer having a particle size of 0.01 to 100 μm are attached within a length range of 500 μm of the wire.
 本件発明に係る固体微粒子付着ワイヤーは、前記無機コート層付き固体微粒子として、パラジウムコートダイヤモンド粒子、ニッケルコートダイヤモンド粒子、チタンコートダイヤモンド粒子から選ばれる1種又は2種以上を用いることが好ましい。 The solid fine particle-attached wire according to the present invention preferably uses one or more selected from palladium-coated diamond particles, nickel-coated diamond particles, and titanium-coated diamond particles as the solid fine particles with an inorganic coat layer.
固体微粒子付着ワイヤーの製造方法: 上述の本件発明に係る固体微粒子付着ワイヤーの製造には、以下の工程a~工程dを含むことを特徴とする製造方法を採用することが好ましい。 Production method of solid fine particle-attached wire: The production method of the solid fine particle-attached wire according to the present invention described above preferably employs a production method including the following steps a to d.
工程a.固体微粒子の表面に無機コート層を備える無機コート層付き固体微粒子を準備する工程。
工程b.無機コート層付き固体微粒子の表面を、所定の極性を付与するため、表面改質剤を用いて、無機コート層付き固体微粒子の表面改質処理を施す工程。
工程c.当該表面改質処理を施した無機コート層付き固体微粒子を、ニッケルめっき液中に入れ懸濁状態とし、電解めっき法により、ワイヤー表面にニッケルを析出させると同時に、無機コート層付き固体微粒子を付着させる複合めっきを施し、ワイヤーの表面に固体微粒子含有ニッケルめっき層を形成する工程。
工程d.ワイヤー表面の固体微粒子含有ニッケルめっき層の上に、オーバーコートニッケルめっきを施す工程。
Step a. A step of preparing solid fine particles with an inorganic coat layer comprising an inorganic coat layer on the surface of the solid fine particles.
Step b. A step of subjecting the surface of the solid fine particles with an inorganic coat layer to surface modification treatment of the solid fine particles with an inorganic coat layer using a surface modifier in order to impart a predetermined polarity.
Step c. The solid fine particles with inorganic coat layer that have been subjected to the surface modification treatment are placed in a nickel plating solution to be suspended, and nickel is deposited on the wire surface by electrolytic plating, and at the same time, the solid fine particles with inorganic coat layer are attached. A step of applying composite plating to form a solid fine particle-containing nickel plating layer on the surface of the wire.
Step d. The process of overcoating nickel plating on the solid fine particle content nickel plating layer of the wire surface.
 本件発明に係る固体微粒子付着ワイヤーの製造方法において、前記ワイヤーは、その表面に無機保護層を備えるものを用いることが好ましい。 In the method for producing a solid fine particle-attached wire according to the present invention, it is preferable to use a wire having an inorganic protective layer on its surface.
 本件出願に係る固体微粒子付着ワイヤーの製造方法において、前記工程bの表面改質剤は、アミン系、ノニオン系、カチオン系のいずれかの界面活性剤の1種以上を含むことが好ましい。 In the method for producing a solid fine particle-attached wire according to the present application, the surface modifier in the step b preferably includes one or more of an amine-based, non-ionic, and cationic surfactant.
 また、本件出願に係る固体微粒子付着ワイヤーの製造方法において、前記工程bの表面改質剤として、アルコールアミン類及びノニオン系界面活性剤を含むことも好ましい。 Moreover, in the method for producing a solid fine particle-attached wire according to the present application, it is also preferable that alcohol amines and a nonionic surfactant are included as the surface modifier in the step b.
 本件出願に係る固体微粒子付着ワイヤーの製造方法において、前記固体微粒子は、粒径が0.01~100μmのものを用いることが好ましい。 In the method for producing a solid fine particle-attached wire according to the present application, it is preferable that the solid fine particles have a particle diameter of 0.01 to 100 μm.
 本件出願に係る固体微粒子付着ワイヤーの製造方法において、前記工程dで形成されるオーバーコートニッケルめっき層は、厚さが0.1~40μmの範囲であることが好ましい。 In the method for producing a solid fine particle-attached wire according to the present application, the overcoat nickel plating layer formed in the step d preferably has a thickness in the range of 0.1 to 40 μm.
 本件出願に係る固体微粒子付着ワイヤーの製造方法において、前記ワイヤーは、直径が0.02mm~3.0mmのものを用いることが好ましい。 In the method for producing a solid fine particle-attached wire according to the present application, it is preferable to use a wire having a diameter of 0.02 mm to 3.0 mm.
 本件出願に係る固体微粒子付着ワイヤーは、ワイヤーの表面に、無機コート層付き固体微粒子を分散含有する固体微粒子含有電解ニッケルめっき層と、該固体微粒子含有電解ニッケルめっき層の表面にオーバーコートニッケルめっき層とを備えている。そして、この固体微粒子付着ワイヤーは、ワイヤーの500μmの長さの範囲に、粒径が0.01~100μmの無機コート層付き固体微粒子が20個以上を安定的に備えるものである。その結果、ワイヤーソーとして、良好な切断性能を発揮し、被切断対象物の切断作業時に、ワイヤーの外周面にある無機コート層付き固体微粒子の脱落が起こり難く、長期の安定使用が可能となる。 The solid fine particle-attached wire according to the present application includes a solid fine particle-containing electrolytic nickel plating layer in which solid fine particles with an inorganic coat layer are dispersed and contained on the surface of the wire, and an overcoat nickel plating layer on the surface of the solid fine particle-containing electrolytic nickel plating layer And. The solid fine particle-attached wire is stably provided with 20 or more solid fine particles with an inorganic coat layer having a particle size of 0.01 to 100 μm within a length range of 500 μm of the wire. As a result, as a wire saw, it exhibits good cutting performance, and solid fine particles with an inorganic coat layer on the outer peripheral surface of the wire are less likely to fall off during the cutting work of the object to be cut, enabling long-term stable use. .
 また、本件出願に係る固体微粒子付着ワイヤーは、その製造過程において、無機コート層付き固体微粒子として、予め、その粒子表面を、所定の表面改質剤を用いて表面改質処理を施したものを用いることで、ワイヤーの外周面に対して無機コート層付き固体微粒子を適度に分散した状態で、且つ、均一に付着させたものである。 In addition, the solid fine particle-attached wire according to the present application is obtained by subjecting the particle surface to a surface modification treatment using a predetermined surface modifier in advance as a solid fine particle with an inorganic coat layer in the production process. By using it, the solid fine particles with the inorganic coat layer are appropriately dispersed and uniformly attached to the outer peripheral surface of the wire.
 そして、本件出願に係る固体微粒子付着ワイヤーの製造方法として、めっき法を用いる中で、予め、所定の表面改質処理を施した無機コート層付き固体微粒子を用いる事で、めっき液中に添加した無機コート層付き固体微粒子の量に比例して、ワイヤーへの無機コート層付き固体微粒子の付着量を増加させることが可能となり、ワイヤーの表面に付着させる無機コート層付き固体微粒子量の制御が可能になった。 And, as a manufacturing method of the solid fine particle adhesion wire according to the present application, while using the plating method, it was added to the plating solution by using the solid fine particles with an inorganic coat layer that had been subjected to a predetermined surface modification treatment in advance. The amount of solid fine particles with inorganic coat layer attached to the wire can be increased in proportion to the amount of solid fine particles with inorganic coat layer, and the amount of solid fine particles with inorganic coat layer attached to the surface of the wire can be controlled. Became.
本件出願に係る固体微粒子付着ワイヤーの断面の模式図である。It is a mimetic diagram of the section of the solid particulate adhesion wire concerning this application. 実施例1のダイヤモンド含有量5g/Lの電解めっき液を用いて電解ニッケルめっきを施したワイヤー表面の状態を示す写真である。It is a photograph which shows the state of the wire surface which gave electrolytic nickel plating using the electroplating liquid of diamond content 5g / L of Example 1. FIG. 実施例2のダイヤモンド含有量10g/Lの電解めっき液を用いて電解ニッケルめっきを施したワイヤー表面の状態を示す写真である。It is a photograph which shows the state of the wire surface which gave electrolytic nickel plating using the electrolytic plating liquid of diamond content 10g / L of Example 2. FIG. 実施例3のダイヤモンド含有量15g/Lの電解めっき液を用いて電解ニッケルめっきを施したワイヤー表面の状態を示す写真である。It is a photograph which shows the state of the wire surface which gave electrolytic nickel plating using the electroplating liquid of diamond content 15g / L of Example 3. FIG. 実施例4のダイヤモンド含有量10g/Lの電解めっき液を用いて電解ニッケルめっきを施したワイヤー表面の状態を示す写真である。It is a photograph which shows the state of the wire surface which gave electrolytic nickel plating using the electroplating liquid of diamond content 10g / L of Example 4. FIG. 実施例5のダイヤモンド含有量10g/Lの電解めっき液を用いて電解ニッケルめっきを施したワイヤー表面の状態を示す写真である。It is a photograph which shows the state of the wire surface which gave electrolytic nickel plating using the electrolytic plating liquid of diamond content 10g / L of Example 5. FIG. 比較例1のダイヤモンド含有量5g/Lの電解めっき液を用いて電解ニッケルめっきを施したワイヤー表面の状態を示す写真である。It is a photograph which shows the state of the wire surface which gave electrolytic nickel plating using the electroplating liquid of diamond content 5g / L of the comparative example 1.
 以下、本件発明に係る固体微粒子付着ワイヤーとその固体微粒子付着ワイヤーの製造方法に関して、好ましい実施の形態について説明する。 Hereinafter, preferred embodiments of the solid fine particle-attached wire and the method for producing the solid fine particle-attached wire according to the present invention will be described.
[固体微粒子付着ワイヤーの形態]
 先ず、本件発明に係る固体微粒子付着ワイヤーの形態に関して説明する。本件発明に係る固体微粒子付着ワイヤーは、ワイヤーの外周面に固体微粒子を固着してなる固体微粒子付ワイヤーである。即ち、本発明に係る固体微粒子付着ワイヤーは、ワイヤーの表面に、「無機コート層付き固体微粒子」を分散含有する固体微粒子含有電解ニッケルめっき層と、この固体微粒子含有電解ニッケルめっき層の表面にオーバーコートニッケルめっき層を備えるものである。以下、必要な要素及び用語毎に分説する。
[Form of solid fine particle adhesion wire]
First, the form of the solid fine particle adhesion wire according to the present invention will be described. The solid fine particle adhesion wire according to the present invention is a wire with solid fine particles formed by fixing solid fine particles to the outer peripheral surface of the wire. That is, the solid fine particle-attached wire according to the present invention has a solid fine particle-containing electrolytic nickel plating layer dispersedly containing “solid fine particles with an inorganic coating layer” on the surface of the wire, and the surface of the solid fine particle-containing electrolytic nickel plating layer. A coat nickel plating layer is provided. The following is a breakdown of each necessary element and term.
<固体微粒子含有電解ニッケルめっき層>
 この固体微粒子含有電解ニッケルめっき層は、当該ワイヤーの表面に直接接触し被覆するものであり、電解ニッケルめっき層内に無機コート層付き固体微粒子が分散して含有されている。即ち、ニッケル成分は、無機コート層付き固体微粒子を、ワイヤー表面に定着させるバインダーとしての役割を果たしている。この固体微粒子含有電解ニッケルめっき層に含まれるニッケル成分は、単なる表面被覆に留まらず、後述するワイヤーと、良好な濡れ性を備え、且つ、化学的親和性を発揮する。そのため、ワイヤー表面に電解法で設けた電解ニッケル層は、良好な密着性を備えている。そして、この固体微粒子含有電解ニッケルめっき層の構成に用いるニッケルめっき液としては、純ニッケルめっき液、ニッケル合金(ニッケル-リン、ニッケル-コバルト、ニッケル-亜鉛等のニッケル基合金)めっき液を用いることが可能である。
<Electrolytic nickel plating layer containing solid fine particles>
This solid fine particle-containing electrolytic nickel plating layer directly contacts and covers the surface of the wire, and solid fine particles with an inorganic coating layer are dispersed and contained in the electrolytic nickel plating layer. That is, the nickel component plays a role as a binder for fixing the solid fine particles with the inorganic coat layer to the wire surface. The nickel component contained in the solid fine particle-containing electrolytic nickel plating layer is not limited to a mere surface coating, but has a good wettability with a wire described later and exhibits chemical affinity. Therefore, the electrolytic nickel layer provided on the wire surface by an electrolytic method has good adhesion. As the nickel plating solution used for the configuration of the solid fine particle-containing electrolytic nickel plating layer, a pure nickel plating solution or a nickel alloy (nickel-phosphorous, nickel-cobalt, nickel-zinc or other nickel-based alloy) plating solution should be used. Is possible.
ワイヤー: 本件出願において使用するワイヤーは、その表面に電気めっきが可能で、一定の強度を有するものであれば、特に制限はなく、使用用途に応じて適宜選択することができる。このようなワイヤーとしては、例えば、ピアノ線などの鋼線、タングステン線、モリブデン線、ステンレス線などが挙げられる。 Wire: The wire used in the present application is not particularly limited as long as the surface can be electroplated and has a certain strength, and can be appropriately selected according to the intended use. Examples of such wires include steel wires such as piano wires, tungsten wires, molybdenum wires, and stainless steel wires.
 この固体微粒子付着ワイヤーの芯材であるワイヤーの直径は、本来であれば、限定されるべきものではなく、用途に応じて、適宜選択すれば足りるものである。しかし、固体微粒子付着ワイヤーの用途の大部分が「ワイヤーソー」であることを考えると、当該ワイヤーの直径は、0.02mm~3.0mmであることが好ましい。ワイヤーソーとして機能する固体微粒子付着ワイヤーの場合、ワイヤーの直径が0.02mm未満になると、後述する所定の粒径の無機コート層付き固体微粒子を用いる製造方法において、ワイヤー表面に対する無機コート層付き固体微粒子の効率の良い付着が困難となる傾向があるため好ましくない。一方、このワイヤーの直径の上限は、用途によって異なるため、一応の目安として定めている。例えば、シリコンウェハの切断に用いる固体微粒子付着ワイヤーの場合には、0.8mmが上限である。当該ワイヤーの直径が0.8mmを超えると、被切断物の切断精度の観点からみて、必ずしもワイヤーソーを用いる必要が無くなるため、ワイヤーソーの必要性が没却するため好ましくない。なお、固体微粒子付着ワイヤーを太陽電池のシリコンウェハーの切断に使用する場合には、直径0.06mm~0.23mmのワイヤーを用いることが、最も良く市場要求に合致している。そして、鉄筋コンクリート、構造用鋼等の構造物を切断しようとする固体微粒子付着ワイヤーの場合には、3.0mmが上限である。当該ワイヤーの直径が3.0mmを超えると、ワイヤーとしての柔軟性が無くなり、取り扱いが困難となるからである。 The diameter of the wire, which is the core material of the solid fine particle-attached wire, should not be limited if originally intended, and may be selected as appropriate according to the application. However, considering that most of the applications of the solid fine particle-attached wire are “wire saws”, the diameter of the wire is preferably 0.02 mm to 3.0 mm. In the case of a solid fine particle-attached wire that functions as a wire saw, when the wire diameter is less than 0.02 mm, the solid with an inorganic coat layer with respect to the wire surface in the manufacturing method using the solid fine particles with an inorganic coat layer having a predetermined particle diameter described later This is not preferable because it tends to make it difficult to attach fine particles efficiently. On the other hand, since the upper limit of the diameter of this wire changes with uses, it is defined as a temporary standard. For example, in the case of a solid fine particle attached wire used for cutting a silicon wafer, the upper limit is 0.8 mm. If the diameter of the wire exceeds 0.8 mm, it is not always necessary to use a wire saw from the viewpoint of cutting accuracy of the object to be cut. When the solid fine particle-attached wire is used for cutting a silicon wafer of a solar cell, it is best to use a wire having a diameter of 0.06 mm to 0.23 mm to meet the market demand. And in the case of the solid fine particle adhesion wire which is going to cut structures, such as reinforced concrete and structural steel, 3.0 mm is an upper limit. This is because if the diameter of the wire exceeds 3.0 mm, the flexibility as the wire is lost and the handling becomes difficult.
 そして、本件発明に係る固体微粒子付着ワイヤーは、前記ワイヤーの表面に無機保護層を備えるものを用いることが好ましい。ワイヤーの表面に無機保護層が存在することにより、加工の途中におけるワイヤー表面におけるマイクロクラックの発生防止、断線の発生を防止し、且つ、ワイヤーの腐食防止を行うことが出来る。また、無機保護層の種類によっては、後述する固体微粒子の付着状態を安定化することも可能となる。この無機保護層としては、ニッケル、ニッケル合金(Ni-Co,Ni-Sn,Ni-Zn)、Cu、銅合金(Cu-Zn,Cu-Sn)等の使用が可能である。 And it is preferable to use the solid fine particle adhering wire according to the present invention provided with an inorganic protective layer on the surface of the wire. By the presence of the inorganic protective layer on the surface of the wire, it is possible to prevent the occurrence of microcracks on the wire surface during the processing, the occurrence of disconnection, and the corrosion of the wire. In addition, depending on the type of the inorganic protective layer, it becomes possible to stabilize the adhesion state of solid fine particles described later. As the inorganic protective layer, nickel, nickel alloy (Ni—Co, Ni—Sn, Ni—Zn), Cu, copper alloy (Cu—Zn, Cu—Sn), or the like can be used.
固体微粒子: 本件出願において用いる無機コート層付き固体微粒子の芯材として用いる固体微粒子に関して説明する。ここで言う固体微粒子は、固体微粒子付着ワイヤーの用途に応じて適宜選択可能であり、例えば、酸化セリウム、酸化ケイ素(石英、溶融シリカなど)、アルミナ、炭化ケイ素、窒化ケイ素、酸化ジルコニウム、ダイヤモンドなどの微粒子等が挙げられる。特に、固体微粒子付着ワイヤーを、ワイヤーソーとしてシリコンウェハー等の切断に用いる場合には、ダイヤモンド粒子を採用することが好ましい。 Solid fine particles: The solid fine particles used as the core material of the solid fine particles with the inorganic coat layer used in the present application will be described. The solid fine particles mentioned here can be appropriately selected according to the use of the solid fine particle-attached wire. For example, cerium oxide, silicon oxide (quartz, fused silica, etc.), alumina, silicon carbide, silicon nitride, zirconium oxide, diamond, etc. Fine particles. In particular, when the solid fine particle-attached wire is used as a wire saw for cutting a silicon wafer or the like, it is preferable to employ diamond particles.
 この固体微粒子は、粒径が0.01~100μmのものを用いることが好ましい。固体微粒子の粒径が0.01μm未満の場合には、固体微粒子付着ワイヤーの表面が滑らかになり過ぎて、ワイヤーソー用途に限らず、その他の用途においても、ワイヤーに固体微粒子を付着させる意義が没却するため好ましくない。一方、固体微粒子の粒径が100μmを超える場合には、本件出願に係る発明が用いるワイヤーの最大直径である0.8mmのワイヤーを用いても、そのワイヤー表面に均一な分散性を維持して固体微粒子を付着させることが困難となる傾向があり、且つ、そのような市場要求も存在しない。特に、固体微粒子付着ワイヤーを、太陽電池用のシリコンウェハーを切断する目的で使用する場合の直径が0.08~0.2mmのワイヤーに対しては、粒径が4~40μmの固体微粒子を用いることが、ワイヤーソー用途に適した良好な切断性能を示し、且つ、ワイヤー表面に付着した固体微粒子の切断時の脱落が少なく、ワイヤーソーとしての長寿命化が可能となるため、より好ましい。 The solid fine particles having a particle diameter of 0.01 to 100 μm are preferably used. When the particle size of the solid fine particles is less than 0.01 μm, the surface of the solid fine particle adhering wire becomes too smooth, and the significance of adhering the solid fine particles to the wire is not limited to wire saw use but also in other uses. It is not preferable because it will be sunk. On the other hand, when the particle size of the solid fine particles exceeds 100 μm, even if a wire of 0.8 mm, which is the maximum diameter of the wire used by the invention according to the present application, is used, a uniform dispersibility is maintained on the wire surface. There is a tendency for solid particulates to be difficult to attach, and there is no such market requirement. In particular, for the wire having a diameter of 0.08 to 0.2 mm when the solid fine particle adhering wire is used for the purpose of cutting a silicon wafer for solar cells, the solid fine particle having a particle size of 4 to 40 μm is used. This is more preferable because it shows good cutting performance suitable for wire saw applications, and the solid fine particles adhering to the wire surface are less likely to fall off during cutting, and the life of the wire saw can be extended.
無機コート層付き固体微粒子: ここで言う無機コート層付き固体微粒子は、固体微粒子の表面に、金属成分で構成した無機コート層を備えたものである。そして、この無機コート層の構成成分は、固体微粒子付着ワイヤーの用途に応じて、適宜選択使用することが可能である。ここで言う無機コート層付き固体微粒子を、より具体的に例示すれば、パラジウムコート層付き固体微粒子、ニッケルコート層付き固体微粒子、チタンコート層付き固体微粒子等を想定している。これらの無機コート層を備える無機コート層付き固体微粒子は、めっき法で形成するニッケル又はニッケル合金の析出成分との濡れ性が良く、良好な密着性が得られる。 Solid fine particles with inorganic coat layer: The solid fine particles with inorganic coat layer referred to here are those having an inorganic coat layer composed of a metal component on the surface of the solid fine particles. And the component of this inorganic coat layer can be appropriately selected and used according to the application of the solid fine particle-attached wire. More specifically, the inorganic fine particles with an inorganic coat layer mentioned here are assumed to be solid fine particles with a palladium coat layer, solid fine particles with a nickel coat layer, solid fine particles with a titanium coat layer, and the like. The solid fine particles with an inorganic coat layer provided with these inorganic coat layers have good wettability with the precipitation component of nickel or nickel alloy formed by a plating method, and good adhesion is obtained.
 これらの無機コート層付き固体微粒子は、固体微粒子含有電解ニッケルめっき層の中に均一に分散して存在することになる。この無機コート層付き固体微粒子は、予め表面改質剤による表面改質処理を施し、無機コート層付き固体微粒子の表面を帯電表面とし、粒子表面に所定の極性を付与することが好ましい。この場合のパラジウムコート層付き固体微粒子は、ワイヤーの分極状態に応じて、ノニオン粒子、カチオン粒子のいずれの帯電状態も選択的に使用することができる。即ち、具体的な一例を示せば、電解ニッケルめっきの際に、ワイヤーを陰極に分極する場合には、当該めっき液に対し、無機コート層付き固体微粒子の粒子表面を逆の正極に帯電させることになる。このような無機コート層付き固体微粒子の表面改質処理により、以下の固体微粒子付着ワイヤーの製造方法における電解めっきの際に、ワイヤー表面へ固体微粒子が均一に分散して付着し、当該めっき液中の無機コート層付き固体微粒子量に比例した、固体微粒子付着ワイヤーへの無機コート層付き固体微粒子の付着量が得られる。この表面改質処理に関しては、後の製造方法で、更に説明する。 These solid fine particles with an inorganic coating layer are uniformly dispersed in the solid fine particle-containing electrolytic nickel plating layer. The solid fine particles with an inorganic coat layer are preferably subjected to a surface modification treatment with a surface modifier in advance, and the surface of the solid fine particles with an inorganic coat layer is used as a charged surface to give a predetermined polarity to the particle surface. In this case, the solid particles with a palladium coat layer can selectively use any charged state of nonionic particles and cationic particles according to the polarization state of the wire. That is, to give a specific example, when the wire is polarized to the cathode during electrolytic nickel plating, the surface of the solid fine particles with inorganic coating layer is charged to the opposite positive electrode with respect to the plating solution. become. By such surface modification treatment of the solid fine particles with an inorganic coat layer, the solid fine particles are uniformly dispersed and adhered to the wire surface during the electrolytic plating in the manufacturing method of the following solid fine particle-attached wire, The amount of the solid fine particles with the inorganic coat layer attached to the solid fine particle attachment wire can be obtained in proportion to the amount of the solid fine particles with the inorganic coat layer. This surface modification treatment will be further described in a later manufacturing method.
<オーバーコートニッケルめっき層>
 そして、前記オーバーコートニッケルめっき層は、上述の固体微粒子を含む固体微粒子含有電解ニッケルめっき層の表面に設けられ、固体微粒子付着ワイヤーの最外層を構成するものである。このため、オーバーコートニッケルめっき層は、前記固体微粒子含有電解ニッケルめっき層が含有する固体微粒子の脱落を防止するように機能している。
<Overcoat nickel plating layer>
The overcoat nickel plating layer is provided on the surface of the solid fine particle-containing electrolytic nickel plating layer containing the solid fine particles and constitutes the outermost layer of the solid fine particle-attached wire. Therefore, the overcoat nickel plating layer functions to prevent the solid fine particles contained in the solid fine particle-containing electrolytic nickel plating layer from falling off.
 ここで言う「オーバーコートニッケルめっき層」は、純ニッケルめっき液、ニッケル合金(ニッケル-リン、ニッケル-コバルト、ニッケル-亜鉛等のニッケル基合金)めっき液を用いて構成することが好ましい。この「オーバーコートニッケルめっき層」に含まれるニッケル成分も、単なる表面被覆に留まらず、前述の「固体微粒子含有電解ニッケルめっき層」と、良好な濡れ性を発揮し、且つ、下地に固体微粒子による凹凸があっても、薄く均一な付回り性の良い被膜となる。 The “overcoat nickel plating layer” referred to here is preferably composed of a pure nickel plating solution and a nickel alloy (nickel-based alloy such as nickel-phosphorus, nickel-cobalt, nickel-zinc) plating solution. The nickel component contained in this “overcoat nickel plating layer” is not limited to a mere surface coating, and exhibits good wettability with the above-mentioned “solid nickel-containing electrolytic nickel plating layer”, and the foundation is made of solid fine particles. Even if there are irregularities, the film is thin and uniform with good throwing power.
 以上に説明したワイヤー表面に、パラジウムコート層付き固体微粒子を分散含有する固体微粒子含有電解ニッケルめっき層と、その表面にオーバーコートニッケルめっき層を備えた固体微粒子付着ワイヤーを採用することにより、ワイヤーに付着した固体微粒子の脱落を効果的に防止することが可能となる。これにより、信頼性が高く、且つ、長期使用可能な固体微粒子付着ワイヤーを実現することができる。 By adopting a solid fine particle-containing electrolytic nickel plating layer in which the solid fine particles with a palladium coat layer are dispersed and contained on the wire surface described above, and a solid fine particle adhesion wire having an overcoat nickel plating layer on the surface thereof, It is possible to effectively prevent the attached solid fine particles from falling off. Thereby, it is possible to realize a solid particulate adhering wire that is highly reliable and can be used for a long time.
[固体微粒子付着ワイヤーの製造形態]
 次に、本件発明に係る固体微粒子付着ワイヤーの製造方法に関して説明する。
[Manufacturing form of wire with solid fine particles]
Next, the manufacturing method of the solid fine particle adhesion wire which concerns on this invention is demonstrated.
ワイヤーの清浄化処理: 本件発明に係る固体微粒子付着ワイヤーの製造に用いるワイヤーは、最初に、表面を脱脂し、清浄にすることが好ましい。このときの脱脂方法について、特に限定はなく、例えば、酸浸漬、溶剤脱脂、乳化剤脱脂、アルカリ脱脂等の適用が可能である。更に、必要に応じて、電解脱脂を適用することも可能である。 Wire cleaning treatment: It is preferable to first degrease the surface of the wire used in the production of the solid fine particle-attached wire according to the present invention and clean it. The degreasing method at this time is not particularly limited, and for example, acid soaking, solvent degreasing, emulsifier degreasing, alkaline degreasing and the like can be applied. Furthermore, it is also possible to apply electrolytic degreasing as required.
 そして、本件発明に係る固体微粒子付着ワイヤーの製造方法は、以下の工程a~工程dを含むことを特徴とする。 The method for producing a solid fine particle-attached wire according to the present invention includes the following steps a to d.
工程a.: この工程では、固体微粒子の表面に無機コート層を備える無機コート層付き固体微粒子を準備する。従って、無機コート層付き固体微粒子の芯材(上述の酸化セリウム、酸化ケイ素(石英、溶融シリカなど)、アルミナ、炭化ケイ素、酸化ジルコニウム、ダイヤモンド、テフロン(登録商標)などの微粒子等である。)として、この粒子表面に金属成分で構成した無機コート層を備えたものとして、パラジウムコート層付き固体微粒子、ニッケルコート層付き固体微粒子、チタンコート層付き固体微粒子等を準備する。これらの無機コート層付き固体微粒子に相当する市販品を使用しても構わない。 Step a. : In this step, solid particles with an inorganic coat layer having an inorganic coat layer on the surface of the solid particles are prepared. Therefore, a solid fine particle core material with an inorganic coat layer (the fine particles such as cerium oxide, silicon oxide (quartz, fused silica, etc.), alumina, silicon carbide, zirconium oxide, diamond, Teflon (registered trademark), etc.) As the particles provided with an inorganic coat layer composed of a metal component on the particle surface, solid fine particles with a palladium coat layer, solid fine particles with a nickel coat layer, solid fine particles with a titanium coat layer, and the like are prepared. Commercial products corresponding to these solid fine particles with an inorganic coat layer may be used.
 しかしながら、無機コート層付き固体微粒子の内、パラジウムコート層付き固体微粒子については、以下のような方法で固体微粒子の表面をパラジウムでコーティングすることが好ましい。 However, among the solid fine particles with the inorganic coat layer, the solid fine particles with the palladium coat layer are preferably coated with palladium by the following method.
 第1のパラジウムコート方法は、「固体微粒子の粒子表面に、パラジウムと錫とを共析させた後、固体微粒子の表面の錫のみを分解除去することで、パラジウムのみが固体微粒子の表面に存在した状態とする方法。」である。この方法について、具体的に一例を挙げて説明する。錫とパラジウムとを含有する溶液として、パラジウム・錫コロイド触媒を主成分とした溶液を用いることができる。このような溶液中に固体微粒子を浸漬すると、固体微粒子の表面にパラジウム・錫コロイドが吸着する。このときのパラジウムの吸着量は、固体微粒子1gあたり0.1~20mgであることが好ましい。このパラジウム吸着量が、固体微粒子1gあたり0.1mg未満の場合、固体微粒子の粒子表面へのパラジウム吸着量が少なく、十分にめっき法で形成するニッケル又はニッケル合金の析出成分との濡れ性を改善し得ず、良好な密着性が得られないため好ましくない。一方、このパラジウム吸着量が、固体微粒子1gあたり20mgを超えるものとしても、ニッケルと固体微粒子との共析効果が飽和して、向上しなくなるため好ましくない。このパラジウム吸着量が、固体微粒子1gあたり10mgを超えたあたりから、ニッケルと固体微粒子との共析効果が、緩やかにしか向上しないため、より好ましいパラジウムの吸着量は、固体微粒子1gあたり0.1~10mgである。 The first palladium coating method is as follows: “After palladium and tin are co-deposited on the surface of the solid fine particles, only the tin on the surface of the solid fine particles is decomposed and removed, so that only palladium exists on the surface of the solid fine particles. It is a method to make it a state. " This method will be described with a specific example. As a solution containing tin and palladium, a solution containing a palladium / tin colloidal catalyst as a main component can be used. When solid fine particles are immersed in such a solution, palladium / tin colloid is adsorbed on the surface of the solid fine particles. The amount of palladium adsorbed at this time is preferably 0.1 to 20 mg per 1 g of solid fine particles. When the palladium adsorption amount is less than 0.1 mg per 1 g of solid fine particles, the amount of palladium adsorption on the particle surface of the solid fine particles is small, and the wettability with the nickel or nickel alloy precipitation component formed by plating is sufficiently improved. This is not preferable because good adhesion cannot be obtained. On the other hand, even if the palladium adsorption amount exceeds 20 mg per 1 g of the solid fine particles, the eutectoid effect of nickel and the solid fine particles is saturated and cannot be improved. Since the amount of palladium adsorbed exceeds 10 mg per gram of solid fine particles, the eutectoid effect of nickel and solid fine particles is improved only moderately. Therefore, a more preferable amount of palladium adsorbed is 0.1 per gram of solid fine particles. ~ 10 mg.
 次に、粒子表面にパラジウム・錫コロイドを吸着させた固体微粒子を、塩素、硫酸、ホウフッ化水素酸等の酸に接触させて、錫成分を溶解除去しつつ、固体微粒子の表面にパラジウム微粒子を析出させる。この段階で、固体微粒子の粒子表面にパラジウムコート層が形成された状態になる。 Next, the solid fine particles having palladium / tin colloids adsorbed on the particle surface are brought into contact with an acid such as chlorine, sulfuric acid, borohydrofluoric acid, etc. to dissolve and remove the tin component. Precipitate. At this stage, a palladium coat layer is formed on the surface of the solid fine particles.
 第2のパラジウムコート方法は、「固体微粒子を錫溶液に所定時間浸漬して、固体微粒子の表面に錫を析出させ、次いで、パラジウム溶液に所定時間浸漬して、錫とパラジウムとの置換反応を利用して、粒子表面にパラジウムを析出させる方法。」である。 The second palladium coating method is as follows: “Solid fine particles are immersed in a tin solution for a predetermined time to deposit tin on the surface of the solid fine particles, and then immersed in a palladium solution for a predetermined time to perform a substitution reaction between tin and palladium. A method of using this method to deposit palladium on the particle surface.
 上述の第1のパラジウムコート方法及び第2のパラジウムコート方法ともに、当該パラジウムコート層に含まれる錫を確実に除去するためには、事後的に、塩素、硫酸、ホウフッ化水素酸、カルボン酸、オキシカルボン酸、芳香族カルボン酸等の酸性溶液を使用して除去することも可能である。 In both the first palladium coating method and the second palladium coating method described above, in order to reliably remove tin contained in the palladium coat layer, chlorine, sulfuric acid, borofluoric acid, carboxylic acid, It can also be removed using an acidic solution such as oxycarboxylic acid or aromatic carboxylic acid.
 なお、第1のパラジウムコート方法及び第2のパラジウムコート方法は、単なる例示であり、本件出願に係る発明においては、固体微粒子の表面をパラジウムコート層で被覆することができれば足りるのであり、これらの方法に限定解釈されるものでないことを明記しておく。 The first palladium coating method and the second palladium coating method are merely examples, and in the invention according to the present application, it is sufficient that the surface of the solid fine particles can be covered with the palladium coat layer. Note that the method is not to be construed as limited.
工程b.: この工程は、上記工程aにて無機コート層付き固体微粒子の表面を表面改質剤と接触させて所定の極性に帯電させる表面改質処理工程である。この工程は、従来の固体微粒子付着ワイヤーの製造には無い工程である。従来の固体微粒子付着ワイヤーの製造方法では、ワイヤーに固体微粒子を効果的に付着させることが困難であった。そこで、本件発明者等が、鋭意研究を行った結果、固体微粒子の表面に無機コート層を設けた後に、予め表面改質剤による表面改質処理を施して、当該表面の極性を安定化させることに想到した。その結果、固体微粒子含有電解ニッケルめっき層形成工程において、ワイヤー表面へ付着させる固体微粒子の付着量を任意に制御し、付着量を著しく増加させ、且つ、均一に分散可能であることを見出したのである。 Step b. This step is a surface modification treatment step in which the surface of the solid fine particles with an inorganic coat layer is brought into contact with a surface modifier in the step a to charge it to a predetermined polarity. This process is a process that is not present in the production of a conventional solid fine particle-attached wire. In the conventional method for producing a solid fine particle-attached wire, it has been difficult to effectively attach the solid fine particles to the wire. Therefore, as a result of intensive studies by the present inventors, after providing an inorganic coat layer on the surface of solid fine particles, surface modification treatment with a surface modifying agent is performed in advance to stabilize the polarity of the surface. I thought of that. As a result, it was found that the amount of solid fine particles attached to the wire surface can be arbitrarily controlled in the step of forming the solid fine particle-containing electrolytic nickel plating layer, the amount of attachment can be significantly increased, and evenly dispersed. is there.
 具体的には、後述する工程c(固体微粒子含有電解ニッケルめっき層形成工程)におけるめっき液中で、ワイヤーを陰極に分極する場合には、無機コート層付き固体微粒子の表面を、予め正極に帯電させる処理を施す。このようにすることで、後のワイヤーの表面に固体微粒子が付着し易くなることに想到した。これは、電解めっきの際に、陰極に分極されるワイヤーに対し、固体微粒子の表面を正極に帯電させて、固体微粒子自体を正の電荷を帯びた状態で安定化させておくことで、電解めっきの際に、固体微粒子がワイヤーに引き寄せられ易くなるためである。 Specifically, when the wire is polarized to the cathode in the plating solution in the step c (solid fine particle-containing electrolytic nickel plating layer forming step) described later, the surface of the solid fine particles with the inorganic coating layer is charged to the positive electrode in advance. Apply the process to be. By so doing, it was conceived that solid fine particles easily adhere to the surface of the later wire. This is because the surface of the solid fine particles is charged to the positive electrode against the wire polarized to the cathode during electrolytic plating, and the solid fine particles themselves are stabilized in a positively charged state. This is because solid fine particles are easily attracted to the wire during plating.
 このときの表面改質処理は、固体微粒子を、表面処理剤に浸漬する方法、該表面処理剤を固体微粒子の表面に噴霧する方法等から、最適な方法を選択して実施できる。浸漬法を採用するのであれば、表面改質剤の入った処理槽に、固体微粒子を投入し、攪拌しつつ、所定時間浸漬処理する。そして、所定時間の処理が終了したら、固体微粒子を処理槽から分離採取し、水洗し、乾燥する。 The surface modification treatment at this time can be carried out by selecting an optimum method from a method of immersing solid fine particles in a surface treatment agent, a method of spraying the surface treatment agent on the surface of the solid fine particles, and the like. If the dipping method is adopted, the solid fine particles are put into a treatment tank containing a surface modifier, and the dipping process is performed for a predetermined time while stirring. When the treatment for a predetermined time is completed, the solid fine particles are separated and collected from the treatment tank, washed with water, and dried.
 この固体微粒子含有電解ニッケルめっき層を形成する際には、ワイヤー表面へ無機コート層付き固体微粒子を付着させ、同時に正の電荷を持つニッケルイオンからニッケル成分を析出させる。よって、この表面改質処理において、使用する表面改質剤は、無機コート層付き固体微粒子の表面に正の極性を付与して安定化できるものを用いる必要がある。このような界面改質剤として、アミン系界面活性剤、ノニオン系界面活性剤又はカチオン系界面活性剤のいずれかの界面活性剤を含むものを用いることが好ましく、中でもアルコールアミン類を含んだノニオン系界面活性剤を用いることが好ましい。このような表面改質剤は、当該表面改質剤と固体微粒子とを所定時間接触させることで、無機コート層付き固体微粒子の表面を、効率よく正極に帯電させ、正極に帯電した状態での安定化が図れるからである。 When forming the solid nickel-containing electrolytic nickel plating layer, solid fine particles with an inorganic coating layer are attached to the wire surface, and at the same time, nickel components are precipitated from nickel ions having a positive charge. Therefore, in this surface modification treatment, it is necessary to use a surface modifier that can be stabilized by imparting a positive polarity to the surface of the solid fine particles with the inorganic coat layer. As such a surface modifier, it is preferable to use one containing an amine surfactant, a nonionic surfactant or a cationic surfactant, and in particular, a nonion containing an alcohol amine. It is preferable to use a system surfactant. In such a surface modifier, the surface modifier and the solid fine particles are brought into contact with each other for a predetermined time, whereby the surface of the solid fine particles with an inorganic coat layer is efficiently charged to the positive electrode, and the positive electrode is charged. This is because stabilization can be achieved.
工程c.: この工程は、電解めっき法により、ワイヤーの表面に無機コート固体微粒子を含有した電解ニッケルめっき層を形成するための複合めっきを施す固体微粒子含有電解ニッケルめっき層の形成工程である。ここで施す固体微粒子含有電解ニッケルめっき方法を以下に述べる。 Step c. : This step is a step of forming a solid fine particle-containing electrolytic nickel plating layer in which composite plating is performed to form an electrolytic nickel plating layer containing inorganic coated solid fine particles on the surface of the wire by an electrolytic plating method. The solid nickel-containing electrolytic nickel plating method applied here will be described below.
 最初に、ワイヤーについて述べる。ここで使用するワイヤーは、その表面に無機保護層を備えるものを用いることが好ましい。上述のように無機保護層を構成する金属成分として、ニッケル、ニッケル合金(Ni-Co,Ni-Sn,Ni-Zn)、Cu、銅合金(Cu-Zn,Cu-Sn)等の使用が可能であるが、耐腐食性能及び固体微粒子の付着安定性を考慮すると、ニッケル又はニッケル合金の使用が最適である。そして、このニッケル又はニッケル合金からなる無機保護層は、所謂「ストライクめっき法」を用いて形成することが好ましい。このストライクめっきは、低イオン濃度の電解液を用いて、高い電流密度で短時間のめっき処理を行い、厚さ0.1μm以下の薄いめっき層を形成するものである。このときの電流供給方法としては、単純な直流電流でめっきを行うことも当然可能であるが、高電流密度を使用することによる品質低下を防止するため、通電状態と電流停止状態を繰り返す「パルスめっき法」を採用することも好ましい。パルスめっきを採用する場合、パルス波形に関しては、特段の限定は無く、矩形波・三角波等の使用が可能である。そして、整流方式に関しても、限定は無く、半波整流・全波整流の使用が可能である。そして、周波数200Hz~2000Hz、Duty Ratio(on:20、off:80)、電流密度3A/dm~10A/dmの条件等を採用することが可能である。 First, wire will be described. The wire used here is preferably one having an inorganic protective layer on its surface. As described above, nickel, nickel alloy (Ni—Co, Ni—Sn, Ni—Zn), Cu, copper alloy (Cu—Zn, Cu—Sn), etc. can be used as the metal component constituting the inorganic protective layer. However, in consideration of the corrosion resistance performance and the adhesion stability of the solid fine particles, the use of nickel or a nickel alloy is optimal. The inorganic protective layer made of nickel or nickel alloy is preferably formed using a so-called “strike plating method”. This strike plating uses a low ion concentration electrolytic solution to perform a short plating process at a high current density to form a thin plating layer having a thickness of 0.1 μm or less. As a current supply method at this time, it is naturally possible to perform plating with a simple direct current, but in order to prevent deterioration in quality due to the use of a high current density, a “pulse” that repeats an energized state and a current stopped state is used. It is also preferable to employ the “plating method”. When employing pulse plating, there is no particular limitation on the pulse waveform, and a rectangular wave, a triangular wave, or the like can be used. The rectification method is not limited, and half-wave rectification and full-wave rectification can be used. It is possible to adopt conditions such as a frequency of 200 Hz to 2000 Hz, a duty ratio (on: 20, off: 80), and a current density of 3 A / dm 2 to 10 A / dm 2 .
 以下、ストライクめっきに使用する代表的な浴組成を、念のために挙げておく。一例として、ニッケルストライクめっきの場合には、後述するスルファミン酸系ニッケルめっき浴、ワット浴の使用が可能である。シアン化銅ストライクめっきの場合には、シアン化銅を20~35g/L、シアン化ナトリウムを37~60g/L、水酸化カリウムを3~5g/L、ロッシェル塩10~20g/L含有する電解液を用いることが出来る。ピロりん酸銅ストライクめっきの場合、ピロリン酸銅を16g/L、ピロリン酸カリウムを 120g/L、シュウ酸カリウム10g/L含有する電解液を用いることが出来る。 The following is a list of typical bath compositions used for strike plating. As an example, in the case of nickel strike plating, it is possible to use a sulfamic acid-based nickel plating bath and a watt bath described later. In the case of copper cyanide strike plating, an electrolytic solution containing 20 to 35 g / L of copper cyanide, 37 to 60 g / L of sodium cyanide, 3 to 5 g / L of potassium hydroxide, and 10 to 20 g / L of Rochelle salt. A liquid can be used. In the case of copper pyrophosphate strike plating, an electrolytic solution containing 16 g / L of copper pyrophosphate, 120 g / L of potassium pyrophosphate, and 10 g / L of potassium oxalate can be used.
 次に、この固体微粒子含有電解ニッケルめっき層を形成するためのめっき液として、前記工程bで表面改質処理を施した無機コート層付き固体微粒子を、ニッケル成分を含むめっき液中に懸濁させたものを用いる。当該めっき液は、市販の電解ニッケルめっき液に、工程bで表面改質処理した無機コート層付き固体微粒子を懸濁させたものを用いることも、ニッケルめっきに適用されるワット浴、スルファミン酸浴等を建浴して、工程bで表面改質処理した無機コート層付き固体微粒子を懸濁させたものを用いても構わない。例えば、このときのニッケルめっき液には、特段の限定は無く、平滑ニッケルめっきの可能な浴組成、電解条件を採用することが可能である。一例として、以下にいくつかのニッケルめっき浴及びめっき条件を列挙しておく。 Next, as the plating solution for forming the solid fine particle-containing electrolytic nickel plating layer, the solid fine particles with the inorganic coating layer subjected to the surface modification treatment in the step b are suspended in the plating solution containing the nickel component. Use the same thing. As the plating solution, a commercially available electrolytic nickel plating solution obtained by suspending solid fine particles with an inorganic coating layer surface-modified in step b can be used, or a Watt bath or a sulfamic acid bath applied to nickel plating. Or the like, in which solid fine particles with an inorganic coat layer subjected to surface modification treatment in step b are suspended may be used. For example, there is no particular limitation on the nickel plating solution at this time, and it is possible to adopt a bath composition and electrolytic conditions that allow smooth nickel plating. As an example, several nickel plating baths and plating conditions are listed below.
 スルファミン酸系ニッケルめっき浴を用いるのであれば、スルファミン酸ニッケル・4水和物を200~800g/L、塩化ニッケル・6水和物を1~10g/L、ホウ酸を20~50g/L、pH3~5のニッケルめっき組成を採用する等である。 If a sulfamic acid nickel plating bath is used, nickel sulfamate tetrahydrate is 200 to 800 g / L, nickel chloride hexahydrate is 1 to 10 g / L, boric acid is 20 to 50 g / L, For example, a nickel plating composition having a pH of 3 to 5 is employed.
 ワット浴系のニッケルめっき浴を用いるのであれば、硫酸ニッケル・7水和物が200~500g/L、塩化ニッケル・7水和物が10~100g/L、ホウ酸が20~50g/L、pH3~5のニッケルめっき組成を採用する等である。 If a Watt-type nickel plating bath is used, nickel sulfate heptahydrate is 200 to 500 g / L, nickel chloride heptahydrate is 10 to 100 g / L, boric acid is 20 to 50 g / L, For example, a nickel plating composition having a pH of 3 to 5 is employed.
 固体微粒子含有電解ニッケルめっき層を形成するためのめっき液に対する無機コート層付き固体微粒子の含有量は、ワイヤーの表面に、ニッケルと同時に共析させる固体微粒子量との関係を考慮して、任意に添加量を採用することが可能である。例えば、ワイヤーソー用途の固体微粒子付着ワイヤーを得ようとすると、被切断体の種類に応じて、固体微粒子含有量を4g/l~40g/l程度とすることが好ましい。固体微粒子含有量が4g/l未満であると、良好な切断性能を備えていないワイヤーソーとなるからである。一方、固体微粒子含有量が40g/lを超えると、ワイヤー表面に付着する固体微粒子量が過剰となり、ワイヤー表面への均一な固体微粒子の付着が困難となるため好ましくない。 The content of solid fine particles with an inorganic coat layer in the plating solution for forming the solid nickel-containing electrolytic nickel plating layer is arbitrarily determined in consideration of the relationship with the amount of solid fine particles co-deposited with nickel on the surface of the wire. It is possible to adopt an addition amount. For example, when obtaining a solid fine particle-attached wire for use in a wire saw, the solid fine particle content is preferably about 4 g / l to 40 g / l depending on the type of the object to be cut. This is because if the solid fine particle content is less than 4 g / l, the wire saw does not have good cutting performance. On the other hand, if the solid fine particle content exceeds 40 g / l, the amount of solid fine particles adhering to the wire surface becomes excessive, and it becomes difficult to uniformly adhere the solid fine particles to the wire surface.
 そして、上述した固体微粒子を懸濁しためっき液を用い、一般的なめっき条件を適用することで、ワイヤーの表面にニッケルと固体微粒子とを共析させることができる。このときワイヤーの500μmの長さに対し、固体微粒子を10個~60個、より好ましくは20個~50個が付着するように共析させることが好ましい。当該固体微粒子が10個未満の場合には、ワイヤーソーとしての切断性能が低下するため好ましくない。一方、固体微粒子が60個を超えると、ワイヤーソーのハンドリング時に固体微粒子の脱落が起こりやすくなり、被切断物の切断面が粗くなる傾向になるため好ましくない。これにより、ワイヤーの表面にパラジウムコート層付き固体微粒子を分散する形で含有する固体微粒子含有電解ニッケルめっき層を形成することができる。 Then, by using a plating solution in which the above-described solid fine particles are suspended and applying general plating conditions, nickel and solid fine particles can be co-deposited on the surface of the wire. At this time, it is preferable to co-deposit so that 10 to 60, more preferably 20 to 50 solid fine particles adhere to the length of 500 μm of the wire. When the number of the solid fine particles is less than 10, it is not preferable because cutting performance as a wire saw is deteriorated. On the other hand, if the number of solid fine particles exceeds 60, the solid fine particles easily fall off during handling of the wire saw, and the cut surface of the workpiece tends to become rough, which is not preferable. Thereby, the solid nickel containing electrolytic nickel plating layer which contains the solid fine particle with a palladium coat layer in the form disperse | distributed on the surface of a wire can be formed.
工程d. この工程は、前記工程cで得られた固体微粒子含有電解ニッケルめっき層の表面に、更にニッケルめっきを施すオーバーコートニッケルめっき層形成工程である。ここで施すニッケルめっきの手法は、電解めっき法を採用することが、生産速度の観点から見て好ましい。この工程dで使用するめっき液は、市販のニッケルめっき浴を用いても良いし、上記工程cで詳述したように、ワット浴やスルファミン酸浴等を自身で調製したものを用いても構わない。 Step d. This step is an overcoat nickel plating layer forming step of further performing nickel plating on the surface of the solid fine particle-containing electrolytic nickel plating layer obtained in the step c. The nickel plating method applied here is preferably an electrolytic plating method from the viewpoint of production speed. As the plating solution used in this step d, a commercially available nickel plating bath may be used, or a watt bath, a sulfamic acid bath or the like prepared by itself as described in detail in the above step c may be used. Absent.
 そして、液温30~60℃のニッケルめっき液に、固体微粒子含有電解ニッケルめっき層が形成された上記ワイヤーを浸漬して、当該ワイヤーを陰極に分極して、固体微粒子含有電解ニッケルめっき層の上に所望の厚さのオーバーコートニッケルめっき層を形成する。ここで、ニッケルめっき液の液温が30℃未満の場合には、めっき液中に含有させることの出来る飽和ニッケル量が低下し、めっき速度が低下し工業的生産性の低下を招くと共に、形成したオーバーコートニッケルめっき層の表面の平滑性が低下する傾向があり好ましくない。一方、ニッケルめっき液の液温が60℃を超えると、塩化ビニル配管の使用が困難となるため製造設備の構成材料の制約が大きくなり、且つ、めっき液の水分の蒸発速度が速くなりめっき液の組成変動が大きくなるため、安定しためっき操業が困難となるため好ましくない。その他のめっき条件に関しては、ニッケルの平滑めっきが可能である限り、特段の限定は無い。 Then, the above-mentioned wire on which the solid fine particle-containing electrolytic nickel plating layer is formed is immersed in a nickel plating solution having a liquid temperature of 30 to 60 ° C., and the wire is polarized to the cathode to Then, an overcoat nickel plating layer having a desired thickness is formed. Here, when the temperature of the nickel plating solution is less than 30 ° C., the amount of saturated nickel that can be contained in the plating solution is reduced, the plating rate is reduced, and the industrial productivity is reduced. The smoothness of the surface of the overcoated nickel plating layer tends to decrease, which is not preferable. On the other hand, when the temperature of the nickel plating solution exceeds 60 ° C., it becomes difficult to use the vinyl chloride pipe, so that the restrictions on the constituent materials of the manufacturing equipment increase, and the water evaporation rate of the plating solution increases and the plating solution increases. This is not preferable because the variation in the composition of the material becomes large and stable plating operation becomes difficult. Other plating conditions are not particularly limited as long as smooth nickel plating is possible.
 この工程dで形成するオーバーコートニッケルめっき層は、固体微粒子含有電解ニッケルめっき層の外表面に設けられるものであり、固体微粒子付着ワイヤーの最外層に位置するものである。従って、オーバーコートニッケルめっき層は、固体微粒子含有電解ニッケルめっき層に含まれる固体微粒子の脱落を、効果的に防止することが可能となる。このオーバーコートニッケルめっき層は、0.1~40μmの厚さとすることが好ましい。オーバーコートニッケルめっき層の厚さが0.1μm未満の場合には、固体微粒子付着ワイヤーのハンドリング時又は切断操業時に起こる、固体微粒子含有電解ニッケルめっき層に含まれる固体微粒子の脱落を、効果的に防止することができなくなる。一方、オーバーコートニッケルめっき厚の厚さを、電解めっき法を採用して40μmを超えるものとすると、ダイヤモンド粒子の頭頂部における電流集中を起こし、その電流集中箇所でニッケルの異常析出が起き、ダイヤモンド粒子の頭頂部のめっき厚が厚くなる。このときワイヤーソーとして使用する固体微粒子付着ワイヤーを想定すると、ダイヤモンド粒子の頭頂部のめっき厚が厚くなった状態では、ワイヤーソーとしての使用開始直後に、ダイヤモンドの頭頂部が露出した状態となりにくいため、初期の切断性能が低下するため好ましくない。 The overcoat nickel plating layer formed in this step d is provided on the outer surface of the solid fine particle-containing electrolytic nickel plating layer, and is located on the outermost layer of the solid fine particle-attached wire. Therefore, the overcoat nickel plating layer can effectively prevent the solid fine particles included in the solid fine particle-containing electrolytic nickel plating layer from falling off. The overcoat nickel plating layer preferably has a thickness of 0.1 to 40 μm. When the thickness of the overcoat nickel plating layer is less than 0.1 μm, the solid fine particles contained in the solid fine particle-containing electrolytic nickel plating layer, which occurs during the handling or cutting operation of the solid fine particle adhesion wire, can be effectively removed. It cannot be prevented. On the other hand, if the thickness of the overcoat nickel plating exceeds 40 μm by employing the electrolytic plating method, current concentration occurs at the top of the diamond particle, and abnormal precipitation of nickel occurs at the current concentration point. The plating thickness at the top of the particle increases. Assuming a solid fine particle-attached wire to be used as a wire saw at this time, it is difficult to expose the top of the diamond immediately after the start of use as a wire saw when the plating thickness of the top of the diamond particle is increased. Since the initial cutting performance is deteriorated, it is not preferable.
 また、このオーバーコートニッケルめっき層の厚さを、2~4μmとすることが、より好ましい。オーバーコートニッケルめっき層は、0.1~40μmの厚さとすることが好ましい。オーバーコートニッケルめっき層の厚さが2μmになると、固体微粒子付着ワイヤーのハンドリング時又は切断操業時に起こる、固体微粒子含有電解ニッケルめっき層に含まれる固体微粒子の脱落を、ほぼ完全に防止できる。そして、オーバーコートニッケルめっき層の厚さが4μmを超えるものとしても、固体微粒子含有電解ニッケルめっき層に含まれる固体微粒子の脱落防止効果は既に飽和しており、むしろダイヤモンド粒子の頭頂部における電流集中を起こし易くなり、工程管理が煩雑化する傾向にあるからである。 Further, it is more preferable that the thickness of the overcoat nickel plating layer is 2 to 4 μm. The overcoat nickel plating layer preferably has a thickness of 0.1 to 40 μm. When the thickness of the overcoat nickel plating layer is 2 μm, it is possible to almost completely prevent the solid fine particles contained in the solid fine particle-containing electrolytic nickel plating layer from falling off during handling or cutting operation of the solid fine particle adhesion wire. And even if the thickness of the overcoat nickel plating layer exceeds 4 μm, the effect of preventing the solid fine particles contained in the solid nickel-containing electrolytic nickel plating layer is already saturated, rather, the current concentration at the top of the diamond particles This is because the process management tends to be complicated.
 ここで、このオーバーコートニッケルめっき層の厚さの測定方法に関して述べておく。固体微粒子付着ワイヤー1の断面を、金属顕微鏡で直接観察すると、図1に模式的に示したように、ワイヤー2、無機保護層(ストライクめっき層)3、固体微粒子4、オーバーコートニッケルめっき層5が、明瞭に観察できる。このとき、オーバーコートニッケルめっき層5の固体微粒子4の存在しない箇所で、オーバーコートニッケルめっき層5の厚さを測定する。 Here, a method for measuring the thickness of the overcoat nickel plating layer will be described. When the cross section of the solid fine particle adhering wire 1 is directly observed with a metal microscope, as schematically shown in FIG. 1, the wire 2, the inorganic protective layer (strike plating layer) 3, the solid fine particle 4, the overcoat nickel plating layer 5 However, it can be observed clearly. At this time, the thickness of the overcoat nickel plating layer 5 is measured at a location where the solid fine particles 4 do not exist in the overcoat nickel plating layer 5.
 以下、実施例を示して本件発明を具体的に説明する。なお、本件発明は以下の実施例に限定して解釈されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. In addition, this invention is limited to a following example and is not interpreted.
ワイヤー: 実施例では、直径0.12mmの鋼線ワイヤーを用いた。後述する工程cの固体微粒子含有電解ニッケルめっき層の形成に先だって、ワイヤーを脱脂処理した後、10%硫酸に浸漬する前処理を施した。その後、ワイヤーの表面に、ニッケルストライクめっきを施し、厚さ約0.08μmの無機保護層を設けた。このときのニッケルストライクめっきは、塩化ニッケルを240g/L、塩酸を125g/L含有する電解液を用い、パルス波形が矩形波、周波数1000Hz、Duty Ratio(on:20、off:80)、電流密度6A/dm~10A/dmのパルス電解条件を採用した。なお、他の実施例及び比較例においても同様のワイヤーを用いている。 Wire: In the examples, a steel wire wire having a diameter of 0.12 mm was used. Prior to the formation of the solid fine particle-containing electrolytic nickel plating layer in step c, which will be described later, the wire was degreased and then pretreated by immersion in 10% sulfuric acid. Thereafter, nickel strike plating was applied to the surface of the wire to provide an inorganic protective layer having a thickness of about 0.08 μm. The nickel strike plating at this time uses an electrolytic solution containing 240 g / L of nickel chloride and 125 g / L of hydrochloric acid, a pulse waveform is a rectangular wave, a frequency of 1000 Hz, a duty ratio (on: 20, off: 80), and a current density. It adopted the pulse electrolysis conditions of the 6A / dm 2 ~ 10A / dm 2. Similar wires are used in other examples and comparative examples.
固体微粒子: 実施例では、固体微粒子として、平均粒径が15μmのダイヤモンド粒子を用いた。そして、このダイヤモンド粒子を用いて、以下の方法で固体微粒子付着ワイヤーを製造した。後述する実施例2、実施例3及び比較例においても同様のダイヤモンド粒子を用いている。 Solid fine particles: In the examples, diamond particles having an average particle diameter of 15 μm were used as the solid fine particles. And using this diamond particle, the solid fine particle adhesion wire was manufactured with the following method. Similar diamond particles are used in Example 2, Example 3 and Comparative Example described later.
工程a: 実施例1では、ダイヤモンド粒子をパラジウム・錫コロイド触媒を主成分とする溶液を用いて、ダイヤモンド粒子の表面にパラジウムと錫とを析出させる方法を採用した。この実施例では溶液として、パラジウム濃度0.1g/l、錫濃度2g/l、40℃の溶液を用いた。この溶液にダイヤモンド粒子を10分浸漬した後、ダイヤモンド粒子を溶液から取り出して、水洗いした。その後、濃度50g/lの硫酸にダイヤモンド粒子を10分浸漬した。これにより、ダイヤモンド粒子の表面にパラジウムコート層を形成し、「パラジウムコートダイヤモンド粒子」を得た。 Step a: In Example 1, a method of precipitating palladium and tin on the surface of diamond particles using a solution containing diamond particles as a main component of a palladium / tin colloid catalyst was adopted. In this example, a solution having a palladium concentration of 0.1 g / l, a tin concentration of 2 g / l, and 40 ° C. was used. After the diamond particles were immersed in this solution for 10 minutes, the diamond particles were taken out of the solution and washed with water. Thereafter, the diamond particles were immersed in sulfuric acid having a concentration of 50 g / l for 10 minutes. As a result, a palladium-coated layer was formed on the surface of the diamond particles to obtain “palladium-coated diamond particles”.
工程b: この工程では、表面改質剤としてアルコールアミン類を含んだノニオン系界面活性剤を含む溶液を用い、当該「パラジウムコートダイヤモンド粒子」の粒子表面の表面改質処理を行った。このときの表面改質剤には、2-アミノエタノール(一級アミン)1.0~30質量%、ノニオン系界面活性剤0.1~5.0質量%、pH9.0~12.5の溶液を用いた。そして、表面改質処理は、液温約30℃に維持した当該表面改質剤の中に、「パラジウムコートダイヤモンド粒子」を入れ、10分間浸漬した後、水洗を施した。 Step b: In this step, a surface modification treatment was performed on the particle surface of the “palladium-coated diamond particles” using a solution containing a nonionic surfactant containing an alcoholamine as a surface modifier. In this case, the surface modifier is a solution of 2-aminoethanol (primary amine) 1.0 to 30% by mass, nonionic surfactant 0.1 to 5.0% by mass, pH 9.0 to 12.5. Was used. In the surface modification treatment, “palladium-coated diamond particles” were placed in the surface modifier maintained at a liquid temperature of about 30 ° C. and immersed for 10 minutes, and then washed with water.
工程c: この工程では、工程bが終了した表面改質処理されたパラジウムコートダイヤモンド粒子を電解ニッケルめっき液に入れ、パラジウムコートダイヤモンド粒子濃度が5g/Lの懸濁状態の「ダイヤモンド粒子含有電解ニッケルめっき液」を得た。当該ダイヤモンド粒子含有電解ニッケルめっき液は、スルファミン酸ニッケル・4水和物400g/L、塩化ニッケル・6水和物2g/L、ホウ酸35g/L、pH4.0のスルファミン酸ニッケルめっき浴を用いた。 Step c: In this step, the surface-modified palladium-coated diamond particles after step b are put into an electrolytic nickel plating solution, and the “diamond particle-containing electrolytic nickel” in a suspended state with a palladium-coated diamond particle concentration of 5 g / L. A plating solution "was obtained. The diamond particle-containing electrolytic nickel plating solution uses a nickel sulfamate plating bath of 400 g / L nickel sulfamate tetrahydrate, 2 g / L nickel chloride hexahydrate, 35 g / L boric acid, pH 4.0. It was.
 そして、当該ダイヤモンド粒子含有電解ニッケルめっき液の液温を50℃とし、電流密度15A/dmで電解して、上述の脱脂処理したワイヤーの表面に複合めっきを施して、パラジウムコートダイヤモンド粒子を分散含有する「ダイヤモンド粒子含有電解ニッケルめっき層」を形成した。 Then, the temperature of the diamond particle-containing electrolytic nickel plating solution is set to 50 ° C., electrolysis is performed at a current density of 15 A / dm 2 , composite plating is performed on the surface of the degreased wire, and the palladium-coated diamond particles are dispersed. The contained “diamond particle-containing electrolytic nickel plating layer” was formed.
工程d: この工程では、めっき液として、スルファミン酸ニッケル・4水和物を450g/L、塩化ニッケル・6水和物を3g/L、ホウ酸を40g/L、pH4.0のスルファミン酸ニッケルめっき浴を採用した。そして、当該ニッケルめっき液の液温を50℃、電流密度15A/dmの条件で、工程cでワイヤー表面に設けたダイヤモンド粒子含有電解ニッケルめっき層の表面に、厚さ約4μmの「オーバーコートニッケルめっき層」を形成し、「ダイヤモンド微粒子付着ワイヤー」を製造した。 Step d: In this step, as a plating solution, nickel sulfamate tetrahydrate 450 g / L, nickel chloride hexahydrate 3 g / L, boric acid 40 g / L, pH 4.0 nickel sulfamate A plating bath was adopted. Then, on the surface of the diamond particle-containing electrolytic nickel plating layer provided on the wire surface in step c under the conditions that the temperature of the nickel plating solution is 50 ° C. and the current density is 15 A / dm 2 , an “overcoat having a thickness of about 4 μm is formed. A “nickel plating layer” was formed, and a “diamond fine particle-attached wire” was manufactured.
 この実施例1で製造したダイヤモンド微粒子付着ワイヤーは、図2に示すようにワイヤーの500μmの長さに対し、パラジウムコートダイヤモンド粒子が約24個付着していた。また、「オーバーコートニッケルめっき層」の換算厚さは、4.1μmであった。 The diamond fine particle-attached wire produced in Example 1 had about 24 palladium-coated diamond particles attached to the length of 500 μm of the wire as shown in FIG. The converted thickness of the “overcoat nickel plating layer” was 4.1 μm.
 実施例2では、工程cのパラジウムコートダイヤモンド粒子の含有量のみが実施例1と相違するだけで、その他は全て実施例1の同じ条件を採用し、ダイヤモンド微粒子付着ワイヤーを製造した。以下に、実施例1と相違する工程cの条件についてのみ、説明する。 In Example 2, only the content of the palladium-coated diamond particles in step c was different from that in Example 1, and the other conditions were the same as in Example 1 to produce a diamond fine particle-attached wire. Below, only the conditions of the process c different from Example 1 are demonstrated.
 実施例2では、工程cにおける、前記スルファミン酸浴に懸濁させるパラジウムコートダイヤモンド粒子の濃度を10g/Lとして、電解めっき液を調製した。なお、その他の、めっき液の温度、電流密度等の条件は、実施例1と同一の条件を採用した。 In Example 2, an electrolytic plating solution was prepared by setting the concentration of palladium-coated diamond particles suspended in the sulfamic acid bath in step c to 10 g / L. The other conditions such as the temperature of the plating solution and the current density were the same as in Example 1.
 この実施例2で製造したダイヤモンド微粒子付着ワイヤーは、図3に示すようにワイヤーの500μmの長さに対し、パラジウムコートダイヤモンド粒子が約31個付着していた。また、「オーバーコートニッケルめっき層」の換算厚さは、4.2μmであった。 As shown in FIG. 3, the diamond fine particle-attached wire produced in Example 2 had about 31 palladium-coated diamond particles attached to the length of 500 μm of the wire. The converted thickness of the “overcoat nickel plating layer” was 4.2 μm.
 実施例3では、工程cのダイヤモンド粒子の含有量のみが実施例1と相違するだけで、その他は全て実施例1の同じ条件を採用し、ダイヤモンド微粒子付着ワイヤーを製造した。以下に、実施例1と相違する工程cの条件についてのみ、説明する。 In Example 3, only the diamond particle content in step c was different from that in Example 1, and all other conditions were the same as in Example 1 to produce a diamond particle-attached wire. Below, only the conditions of the process c different from Example 1 are demonstrated.
 実施例3では、工程cにおける、前記スルファミン酸浴に懸濁させるパラジウムコートダイヤモンド粒子の濃度を15g/Lとして、電解めっき液を調製した。なお、その他の、めっき液の温度、電流密度等の条件は、実施例1と同一の条件を採用した。 In Example 3, an electrolytic plating solution was prepared by setting the concentration of the palladium-coated diamond particles suspended in the sulfamic acid bath in step c to 15 g / L. The other conditions such as the temperature of the plating solution and the current density were the same as in Example 1.
 この実施例3で製造したダイヤモンド微粒子付着ワイヤーは、図4に示すようにワイヤーの500μmの長さに対し、パラジウムコートダイヤモンド粒子が約46個付着していた。また、「オーバーコートニッケルめっき層」の換算厚さは、4.3μmであった。 In the diamond fine particle-attached wire manufactured in Example 3, about 46 palladium-coated diamond particles were attached to the length of 500 μm of the wire as shown in FIG. Further, the converted thickness of the “overcoat nickel plating layer” was 4.3 μm.
 この実施例4では、実施例1の工程aで調製したパラジウムコートダイヤモンド粒子の代わりに、同一粒径の市販のニッケルコートダイヤモンド粒子を用いた。 In this Example 4, instead of the palladium-coated diamond particles prepared in Step a of Example 1, commercially available nickel-coated diamond particles having the same particle diameter were used.
 そして、実施例2の工程cのダイヤモンド粒子の含有量と同様の含有量を採用している。即ち、実施例4の工程cでは、「工程bが終了し、表面改質処理されたニッケルコートダイヤモンド粒子を電解ニッケルめっき液に入れ、ダイヤモンド粒子濃度が10g/Lの懸濁状態の固体微粒子含有電解ニッケルめっき液を得た。」点が、実施例1と相違するだけで、その他は全て実施例1の同じ条件を採用し、ニッケルコートダイヤモンド粒子付着ワイヤーを製造した。 And the content similar to the content of diamond particles in step c of Example 2 is adopted. That is, in step c of Example 4, “step b is completed and the surface-modified nickel-coated diamond particles are placed in an electrolytic nickel plating solution, and the solid particles containing suspended solid particles having a diamond particle concentration of 10 g / L are contained. An electrolytic nickel plating solution was obtained "except that the point was different from that of Example 1, and all other conditions were the same as in Example 1 to produce a nickel-coated diamond particle-attached wire.
 この実施例4で製造したダイヤモンド微粒子付着ワイヤーは、図5に示すようにワイヤーの500μmの長さに対し、ニッケルコートダイヤモンド粒子が約30個付着していた。また、「オーバーコートニッケルめっき層」の換算厚さは、4.1μmであった。 As shown in FIG. 5, the diamond fine particle-attached wire manufactured in Example 4 had about 30 nickel-coated diamond particles attached to the length of 500 μm of the wire. The converted thickness of the “overcoat nickel plating layer” was 4.1 μm.
 この実施例4では、実施例1の工程aで調製したパラジウムコートダイヤモンド粒子の代わりに、同一粒径の市販のチタンコートダイヤモンド粒子を用いた。 In this Example 4, instead of the palladium-coated diamond particles prepared in Step a of Example 1, commercially available titanium-coated diamond particles having the same particle diameter were used.
 そして、実施例2の工程cのダイヤモンド粒子の含有量と同様の含有量を採用している。即ち、実施例4の工程cでは、「工程bが終了し、表面改質処理されたチタンコートダイヤモンド粒子を電解ニッケルめっき液に入れ、ダイヤモンド粒子濃度が10g/Lの懸濁状態の固体微粒子含有電解ニッケルめっき液を得た。」点が、実施例1と相違するだけで、その他は全て実施例1の同じ条件を採用し、チタンコートダイヤモンド粒子付着ワイヤーを製造した。 And the content similar to the content of diamond particles in step c of Example 2 is adopted. That is, in Step c of Example 4, “Step b is completed and the surface-modified titanium-coated diamond particles are put in an electrolytic nickel plating solution, and the solid particles containing suspended solid particles having a diamond particle concentration of 10 g / L are contained. An electrolytic nickel plating solution was obtained ”except that the point was different from Example 1, and the other conditions were the same as in Example 1 to produce a titanium-coated diamond particle-attached wire.
 この実施例4で製造したダイヤモンド微粒子付着ワイヤーは、図6に示すようにワイヤーの500μmの長さに対し、チタンコートダイヤモンド粒子が約32個付着していた。また、「オーバーコートニッケルめっき層」の換算厚さは、4.2μmであった。 In the diamond fine particle-attached wire manufactured in Example 4, about 32 titanium-coated diamond particles were attached to the length of 500 μm of the wire as shown in FIG. The converted thickness of the “overcoat nickel plating layer” was 4.2 μm.
比較例Comparative example
[比較例1]
 この比較例1は、実施例1の工程aで得られたパラジウムコートダイヤモンド粒子に、工程bの表面改質処理を行わずに、工程cのめっきを施して固体微粒子付着ワイヤーを製造した。これにより、工程bの表面改質処理を行わない場合のワイヤーへのダイヤモンド粒子の付着量を検証した。
[Comparative Example 1]
In Comparative Example 1, the palladium-coated diamond particles obtained in Step a of Example 1 were subjected to the plating in Step c without performing the surface modification treatment in Step b to produce a solid fine particle-attached wire. Thereby, the adhesion amount of diamond particles to the wire when the surface modification treatment in the step b was not performed was verified.
 比較例1では、実施例1の工程bの表面改質剤の表面改質処理工程を行わず、実施例1の工程aで得られたパラジウムでコーティングしたダイヤモンド粒子を、実施例1の工程cに記載のスルファミン酸浴に5g/Lの濃度で懸濁させてめっき液を調製した。なお、比較例1では、工程bを行わない点のみが実施例1と相違するだけで、その他の工程、使用するダイヤモンド粒子、ワイヤー、めっき条件等は全て上述した実施例と同一の条件を採用した。 In Comparative Example 1, the surface-modifying treatment step of the surface modifier in Step b of Example 1 was not performed, and the diamond particles coated with palladium obtained in Step a of Example 1 were replaced with Step c of Example 1. A plating solution was prepared by suspending in the sulfamic acid bath described in 1) at a concentration of 5 g / L. Note that Comparative Example 1 is different from Example 1 only in that step b is not performed, and other steps, diamond particles to be used, wires, plating conditions, etc. are all the same as those in the above-described example. did.
 この比較例1で製造したダイヤモンド微粒子付着ワイヤーは、図7に示すようにワイヤーの500μmの長さに対し、パラジウムコートダイヤモンド粒子が約8個付着していた。また、「オーバーコートニッケルめっき層」の換算厚さは、4.1μmであった。 The diamond fine particle-attached wire produced in Comparative Example 1 had about 8 palladium-coated diamond particles attached to the 500 μm length of the wire as shown in FIG. The converted thickness of the “overcoat nickel plating layer” was 4.1 μm.
[比較例2]
 この比較例2は、実施例1の工程aで得られたパラジウムコートダイヤモンド粒子に、工程bの表面改質処理を行わずに、工程cのめっきを施して固体微粒子付着ワイヤーを製造した。これにより、工程bの表面改質処理を行わない場合のワイヤーへのダイヤモンド粒子の付着量を検証した。
[Comparative Example 2]
In Comparative Example 2, the palladium-coated diamond particles obtained in Step a of Example 1 were subjected to the plating in Step c without performing the surface modification treatment in Step b to produce a solid fine particle-attached wire. Thereby, the adhesion amount of diamond particles to the wire when the surface modification treatment in the step b was not performed was verified.
 比較例1では、実施例1の工程bの表面改質剤の表面改質処理工程を行わず、実施例1の工程aで得られたパラジウムでコーティングしたダイヤモンド粒子を、実施例1の工程cに記載のスルファミン酸浴に10g/Lの濃度で懸濁させてめっき液を調製した。なお、比較例1では、工程bを行わない点のみが実施例1と相違するだけで、その他の工程、使用するダイヤモンド粒子、ワイヤー、めっき条件等は全て上述した実施例と同一の条件を採用した。 In Comparative Example 1, the surface-modifying treatment step of the surface modifier in Step b of Example 1 was not performed, and the diamond particles coated with palladium obtained in Step a of Example 1 were replaced with Step c of Example 1. A plating solution was prepared by suspending in the sulfamic acid bath described in 1) at a concentration of 10 g / L. Note that Comparative Example 1 is different from Example 1 only in that step b is not performed, and other steps, diamond particles to be used, wires, plating conditions, etc. are all the same as those in the above-described example. did.
 この比較例2で製造したダイヤモンド微粒子付着ワイヤーは、図7と同様の形態で、ワイヤーの500μmの長さに対し、パラジウムコートダイヤモンド粒子が約8個付着していた。また、「オーバーコートニッケルめっき層」の換算厚さは、4.0μmであった。 The diamond fine particle-attached wire manufactured in Comparative Example 2 had the same form as in FIG. 7 and had about 8 palladium-coated diamond particles attached to the length of 500 μm of the wire. The converted thickness of the “overcoat nickel plating layer” was 4.0 μm.
[比較例3]
 この比較例3は、実施例1の工程aで得られたパラジウムコートダイヤモンド粒子に、工程bの表面改質処理を行わずに、工程cのめっきを施して固体微粒子付着ワイヤーを製造した。これにより、工程bの表面改質処理を行わない場合のワイヤーへのダイヤモンド粒子の付着量を検証した。
[Comparative Example 3]
In Comparative Example 3, the palladium-coated diamond particles obtained in Step a of Example 1 were subjected to the plating in Step c without performing the surface modification treatment in Step b to produce a solid fine particle-attached wire. Thereby, the adhesion amount of diamond particles to the wire when the surface modification treatment in the step b was not performed was verified.
 比較例1では、実施例1の工程bの表面改質剤の表面改質処理工程を行わず、実施例1の工程aで得られたパラジウムでコーティングしたダイヤモンド粒子を、実施例1の工程cに記載のスルファミン酸浴に15g/Lの濃度で懸濁させてめっき液を調製した。なお、比較例1では、工程bを行わない点のみが実施例1と相違するだけで、その他の工程、使用するダイヤモンド粒子、ワイヤー、めっき条件等は全て上述した実施例と同一の条件を採用した。 In Comparative Example 1, the surface-modifying treatment step of the surface modifier in Step b of Example 1 was not performed, and the diamond particles coated with palladium obtained in Step a of Example 1 were replaced with Step c of Example 1. A plating solution was prepared by suspending in the sulfamic acid bath described in 1) at a concentration of 15 g / L. Note that Comparative Example 1 is different from Example 1 only in that step b is not performed, and other steps, diamond particles to be used, wires, plating conditions, etc. are all the same as those in the above-described example. did.
 この比較例2で製造したダイヤモンド微粒子付着ワイヤーは、図7と同様の形態で、ワイヤーの500μmの長さに対し、パラジウムコートダイヤモンド粒子が約9個付着していた。また、「オーバーコートニッケルめっき層」の換算厚さは、4.1μmであった。 The diamond fine particle-attached wire manufactured in Comparative Example 2 had the same form as that shown in FIG. 7, and about 9 palladium-coated diamond particles were attached to the 500 μm length of the wire. The converted thickness of the “overcoat nickel plating layer” was 4.1 μm.
[実施例と比較例との対比からの考察]
 実施例と比較例との対比が容易なように、以下の表1に、製造したダイヤモンド微粒子付着ワイヤーの観察結果を示す。
[Consideration from comparison between Example and Comparative Example]
The following Table 1 shows the observation results of the manufactured diamond fine particle-attached wires so that the comparison between Examples and Comparative Examples is easy.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表面改質処理の有無による影響について、表1を参照しつつ説明する。最初に、実施例から分かる事に関して述べる。実施例1~実施例3は、工程cの電解ニッケルめっき液に含有させたダイヤモンド粒子の含有量を変化させたものである。この実施例1~実施例3から分かることは、電解ニッケルめっき液に含有させるダイヤモンド粒子の含有量を、5g/l→10g/l→15g/lと変化させると、ダイヤモンド微粒子付着ワイヤーに付着するダイヤモンド粒子の個数が、24個→31個→46個と、電解ニッケルめっき液に含有させたダイヤモンド粒子の含有量の増加に伴い、ダイヤモンド粒子のダイヤモンド微粒子付着ワイヤーへの付着個数も比例して増加することが分かる。 The effect of the presence or absence of surface modification treatment will be described with reference to Table 1. First, what can be understood from the embodiment will be described. In Examples 1 to 3, the content of diamond particles contained in the electrolytic nickel plating solution in step c was changed. As can be seen from Examples 1 to 3, when the content of diamond particles contained in the electrolytic nickel plating solution is changed from 5 g / l → 10 g / l → 15 g / l, it adheres to the diamond fine particle adhering wire. As the number of diamond particles increases from 24 to 31 to 46, the number of diamond particles adhering to the diamond fine particle attachment wire increases proportionally with the increase in the amount of diamond particles contained in the electrolytic nickel plating solution. I understand that
 ここで、比較例1~比較例3を見てみると、これらの比較例も、電解ニッケルめっき液に含有させるダイヤモンド粒子の含有量を、5g/l→10g/l→15g/lと変化させているが、ダイヤモンド微粒子付着ワイヤーに付着するダイヤモンド粒子の個数が、8個~9個であり、ダイヤモンド粒子の付着量の変化が少ないことが理解できる。即ち、比較例の場合、電解ニッケルめっき液に含有させるダイヤモンド粒子の含有量を増やしても、ダイヤモンド粒子のダイヤモンド微粒子付着ワイヤーへの付着個数は、比例して増加していないことが分かる。しかも、電解ニッケルめっき液に含有させるダイヤモンド粒子の含有量が同じ場合で、実施例と比較例とを対比すると明らかなように、実施例の方が付着個数が多くなっていることが、容易に理解できる。 Here, looking at Comparative Examples 1 to 3, these Comparative Examples also changed the content of diamond particles contained in the electrolytic nickel plating solution from 5 g / l → 10 g / l → 15 g / l. However, it can be understood that the number of diamond particles adhering to the diamond fine particle adhering wire is 8 to 9, and the change in the adhering amount of diamond particles is small. In other words, in the case of the comparative example, it can be seen that even when the content of diamond particles contained in the electrolytic nickel plating solution is increased, the number of diamond particles attached to the diamond fine particle attachment wire does not increase in proportion. Moreover, in the case where the content of diamond particles contained in the electrolytic nickel plating solution is the same, it is easy to see that the number of adhered particles in the example is larger as compared with the example and the comparative example. Understandable.
 以上のことから、ダイヤモンド微粒子付着ワイヤーの製造において、表面改質剤としてアルコールアミン類を含んだノニオン系界面活性剤を含む溶液を用い、当該パラジウムコートダイヤモンド粒子の粒子表面の表面改質処理を行うことで、ダイヤモンド微粒子付着ワイヤーの表面に、ダイヤモンド粒子を均一且つ確実に付着させることが可能で、付着させるダイヤモンド粒子量の制御も可能となる事が理解できる。 From the above, in the production of the diamond fine particle-attached wire, a surface modification treatment is performed on the surface of the palladium-coated diamond particles using a solution containing a nonionic surfactant containing an alcoholamine as a surface modifier. Thus, it can be understood that the diamond particles can be uniformly and reliably attached to the surface of the diamond fine particle-attached wire, and the amount of the diamond particles to be attached can be controlled.
 以上に述べてきた実施例に係る固体微粒子付着ワイヤーと比較例に係る固体微粒子付着ワイヤーとを、ワイヤーソーとして用いてみると、比較例に係る固体微粒子付着ワイヤーに比べ、実施例に係る固体微粒子付着ワイヤーの切断性能は飛躍的に高く、且つ、長時間の使用が可能であることが分かる。 When the solid fine particle-attached wire according to the example described above and the solid fine particle-attached wire according to the comparative example are used as a wire saw, the solid fine particle according to the example is compared with the solid fine particle-attached wire according to the comparative example. It can be seen that the cutting performance of the attached wire is remarkably high and can be used for a long time.
 以上のように、本件発明に係る製造方法を採用して得られる固体微粒子付着ワイヤーは、ワイヤーに付着する固体微粒子の付着量が著しく向上し、且つ、付着した固体微粒子の脱落も効果的に抑制したものである。これにより、ワイヤーソーとしての切断性能に優れ、長期使用可能な固体微粒子付着ワイヤーを低コストで提供することが可能となる。係る固体微粒子付着ワイヤーは、単結晶シリコンのインゴット等の高脆性材料の切断作業を、高精度で行うことが出来るため、太陽電池や半導体用シリコンウェハ等のの製造工程において好適に用いることが可能である。また、本件発明に係る固体微粒子付着ワイヤーの優れた研磨性能により、ヤスリや包丁研ぎ等の種々の用途にも適しており、切断又は研削を必要とする様々な用途での適用が可能である。 As described above, the solid fine particle adhesion wire obtained by adopting the manufacturing method according to the present invention significantly improves the adhesion amount of the solid fine particles adhering to the wire, and effectively suppresses the falling off of the adhering solid fine particles. It is what. Thereby, it becomes possible to provide the solid fine particle adhesion wire which is excellent in the cutting performance as a wire saw, and can be used for a long term at low cost. Such solid fine particle adhering wire can be used suitably in the manufacturing process of solar cells, silicon wafers for semiconductors, etc., because it can cut high brittle materials such as single crystal silicon ingots with high precision. It is. Further, the excellent polishing performance of the solid fine particle-attached wire according to the present invention is suitable for various uses such as a file and a sharpening knife, and can be applied to various uses that require cutting or grinding.
1 固体微粒子付着ワイヤー
2 ワイヤー
3 無機保護層(ストライクめっき層)
4 固体微粒子
5 オーバーコートニッケルめっき層
1 Solid fine particle adhesion wire 2 Wire 3 Inorganic protective layer (Strike plating layer)
4 Solid fine particles 5 Overcoat nickel plating layer

Claims (12)

  1. ワイヤーの外周面に固体微粒子を固着してなる固体微粒子付着ワイヤーにおいて、
     当該ワイヤーの表面に、表面改質処理を施した無機コート層付き固体微粒子を分散含有する固体微粒子含有電解ニッケルめっき層と、
     該固体微粒子含有電解ニッケルめっき層の表面にオーバーコートニッケルめっき層を備えることを特徴とする固体微粒子付着ワイヤー。
    In the solid fine particle adhesion wire formed by fixing solid fine particles to the outer peripheral surface of the wire,
    On the surface of the wire, a solid fine particle-containing electrolytic nickel plating layer containing dispersed inorganic fine particles with an inorganic coat layer subjected to a surface modification treatment,
    A solid fine particle adhesion wire comprising an overcoat nickel plating layer on a surface of the solid fine particle-containing electrolytic nickel plating layer.
  2. 前記ワイヤーは、その表面に無機保護層を備えるものである請求項1に記載の固体微粒子付着ワイヤー。 The solid fine particle-attached wire according to claim 1, wherein the wire includes an inorganic protective layer on a surface thereof.
  3. 前記表面改質処理は、前記無機コート層付き固体微粒子の粒子表面を帯電表面とすることのできる表面改質剤を用いたものである請求項1又は請求項2に記載の固体微粒子付着ワイヤー。 3. The solid fine particle-attached wire according to claim 1, wherein the surface modification treatment uses a surface modifying agent capable of making the particle surface of the solid fine particles with an inorganic coat layer a charged surface. 4.
  4. 前記ワイヤーの500μmの長さの範囲に、粒径が0.01~100μmの無機コート層付き固体微粒子が10個~60個付着している請求項1~請求項3のいずれかに記載の固体微粒子付着ワイヤー。 The solid according to any one of claims 1 to 3, wherein 10 to 60 solid fine particles with an inorganic coat layer having a particle size of 0.01 to 100 µm are attached in a length range of 500 µm of the wire. Fine particle adhesion wire.
  5. 前記無機コート層付き固体微粒子は、パラジウムコートダイヤモンド粒子、ニッケルコートダイヤモンド粒子、チタンコートダイヤモンド粒子から選ばれる1種又は2種以上である請求項1~請求項4のいずれかに記載の固体微粒子付着ワイヤー。 The solid fine particle adhesion according to any one of claims 1 to 4, wherein the solid fine particles with an inorganic coat layer are one or more selected from palladium-coated diamond particles, nickel-coated diamond particles, and titanium-coated diamond particles. wire.
  6. 請求項1~請求項5のいずれかに記載の固体微粒子付着ワイヤーの製造方法であって、
     以下の工程a~工程dを含むことを特徴とする固体微粒子付着ワイヤーの製造方法。
     工程a.固体微粒子の表面に無機コート層を備える無機コート層付き固体微粒子を準備する工程。
     工程b.無機コート層付き固体微粒子の表面を、所定の極性を付与するため、表面改質剤を用いて、無機コート層付き固体微粒子の表面改質処理を施す工程。
     工程c.当該表面改質処理を施した無機コート層付き固体微粒子を、ニッケルめっき液中に入れ懸濁状態とし、電解めっき法により、ワイヤー表面にニッケルを析出させると同時に、無機コート層付き固体微粒子を付着させる複合めっきを施し、ワイヤーの表面に固体微粒子含有ニッケルめっき層を形成する工程。
     工程d.ワイヤー表面の固体微粒子含有ニッケルめっき層の上に、オーバーコートニッケルめっきを施す工程。
    A method for producing a solid fine particle-attached wire according to any one of claims 1 to 5,
    A method for producing a solid fine particle-attached wire, comprising the following steps a to d.
    Step a. A step of preparing solid fine particles with an inorganic coat layer comprising an inorganic coat layer on the surface of the solid fine particles.
    Step b. A step of subjecting the surface of the solid fine particles with an inorganic coat layer to surface modification treatment of the solid fine particles with an inorganic coat layer using a surface modifier in order to impart a predetermined polarity.
    Step c. The solid fine particles with inorganic coat layer that have been subjected to the surface modification treatment are placed in a nickel plating solution to be suspended, and nickel is deposited on the wire surface by electrolytic plating, and at the same time, the solid fine particles with inorganic coat layer are attached. A step of applying composite plating to form a solid fine particle-containing nickel plating layer on the surface of the wire.
    Step d. The process of overcoating nickel plating on the solid fine particle content nickel plating layer of the wire surface.
  7. 前記ワイヤーは、その表面に無機保護層を備えるものを用いる請求項6に記載の固体微粒子付着ワイヤーの製造方法。 The said wire is a manufacturing method of the solid fine particle adhesion wire of Claim 6 using what equips the surface with an inorganic protective layer.
  8. 前記工程bの表面改質剤は、アミン系、ノニオン系、カチオン系のいずれかの界面活性剤の1種以上を含む請求項6又は請求項7に記載の固体微粒子付着ワイヤーの製造方法。 The method for producing a solid fine particle-attached wire according to claim 6 or 7, wherein the surface modifier in the step b includes one or more of any one of an amine-based, non-ionic, and cationic surfactant.
  9. 前記工程bの表面改質剤は、アルコールアミン類及びノニオン系界面活性剤を含む請求項6~請求項8のいずれかに記載の固体微粒子付着ワイヤーの製造方法。 The method for producing a solid fine particle-attached wire according to any one of claims 6 to 8, wherein the surface modifier in the step b includes alcohol amines and a nonionic surfactant.
  10. 前記固体微粒子は、粒径が0.01~100μmのものを用いる請求項6~請求項9のいずれかに記載の固体微粒子付着ワイヤーの製造方法。 10. The method for producing a solid fine particle-attached wire according to claim 6, wherein the solid fine particles have a particle diameter of 0.01 to 100 μm.
  11. 前記工程dで形成されるオーバーコートニッケルめっき層は、厚さが0.1~40μmとする請求項6~請求項10のいずれかに記載の固体微粒子付着ワイヤーの製造方法。 11. The method for producing a solid fine particle-attached wire according to claim 6, wherein the overcoat nickel plating layer formed in the step d has a thickness of 0.1 to 40 μm.
  12. 前記ワイヤーは、直径が0.02mm~3.0mmのものを用いる請求項6~請求項11のいずれかに記載の固体微粒子付着ワイヤーの製造方法。 12. The method for producing a solid fine particle-attached wire according to claim 6, wherein the wire has a diameter of 0.02 mm to 3.0 mm.
PCT/JP2012/073304 2011-09-14 2012-09-12 Wire coated with solid microparticles, and method for producing wire coated with solid microparticles WO2013039097A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013533686A JP5802275B2 (en) 2011-09-14 2012-09-12 Solid particulate adhering wire and method for producing the solid particulate adhering wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011200719 2011-09-14
JP2011-200719 2011-09-14

Publications (1)

Publication Number Publication Date
WO2013039097A1 true WO2013039097A1 (en) 2013-03-21

Family

ID=47883322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073304 WO2013039097A1 (en) 2011-09-14 2012-09-12 Wire coated with solid microparticles, and method for producing wire coated with solid microparticles

Country Status (3)

Country Link
JP (1) JP5802275B2 (en)
TW (1) TW201321556A (en)
WO (1) WO2013039097A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136142A (en) * 2011-12-02 2013-07-11 Furukawa Electric Co Ltd:The Manufacturing method of diamond abrasive grain, manufacturing method of wire tool and wire tool
JP2015030071A (en) * 2013-08-05 2015-02-16 新日鐵住金株式会社 Saw wire and core wire
JP2016519002A (en) * 2013-05-14 2016-06-30 コミッサリア ア レネルジ アトミック エ オー エネルジス アルテルナティヴスCommissariat A L‘Energie Atomique Et Aux Energies Alternatives Grinding sawing wire and its manufacturing method and use
DE112015003772B4 (en) 2015-05-29 2024-10-24 Facility Co., Ltd. Nickel plating solution, method for producing a particulate-coated wire, and particulate-coated wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108286066A (en) * 2018-02-07 2018-07-17 浙江新瑞欣精密线锯有限公司 A kind of diamond cutting secant processing method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340729A (en) * 2002-05-20 2003-12-02 Noritake Co Ltd Wire saw and method for manufacturing the same
JP2006181698A (en) * 2004-12-28 2006-07-13 Asahi Diamond Industrial Co Ltd Electro-deposited wire tool
JP2010201542A (en) * 2009-03-02 2010-09-16 Sumitomo Electric Ind Ltd Diamond wire saw, and method of manufacturing the same
WO2011042931A1 (en) * 2009-10-06 2011-04-14 ジャパンファインスチール株式会社 Fixed abrasive grain wire, process for producing the fixed abrasive grain wire, and abrasive grains for use in fixed abrasive grain wire
JP2011121161A (en) * 2009-12-09 2011-06-23 Nippon Seisen Co Ltd Wire tool

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101194113B1 (en) * 2008-04-11 2012-10-24 가부시끼가이샤 아라이도 마테리아루 Electrodeposited wire tool and method of producing same
CN101812710A (en) * 2010-04-26 2010-08-25 长沙岱勒金刚石制品有限公司 Diamond wire saw production method of surface modified diamond

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340729A (en) * 2002-05-20 2003-12-02 Noritake Co Ltd Wire saw and method for manufacturing the same
JP2006181698A (en) * 2004-12-28 2006-07-13 Asahi Diamond Industrial Co Ltd Electro-deposited wire tool
JP2010201542A (en) * 2009-03-02 2010-09-16 Sumitomo Electric Ind Ltd Diamond wire saw, and method of manufacturing the same
WO2011042931A1 (en) * 2009-10-06 2011-04-14 ジャパンファインスチール株式会社 Fixed abrasive grain wire, process for producing the fixed abrasive grain wire, and abrasive grains for use in fixed abrasive grain wire
JP2011121161A (en) * 2009-12-09 2011-06-23 Nippon Seisen Co Ltd Wire tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136142A (en) * 2011-12-02 2013-07-11 Furukawa Electric Co Ltd:The Manufacturing method of diamond abrasive grain, manufacturing method of wire tool and wire tool
JP2016519002A (en) * 2013-05-14 2016-06-30 コミッサリア ア レネルジ アトミック エ オー エネルジス アルテルナティヴスCommissariat A L‘Energie Atomique Et Aux Energies Alternatives Grinding sawing wire and its manufacturing method and use
JP2015030071A (en) * 2013-08-05 2015-02-16 新日鐵住金株式会社 Saw wire and core wire
DE112015003772B4 (en) 2015-05-29 2024-10-24 Facility Co., Ltd. Nickel plating solution, method for producing a particulate-coated wire, and particulate-coated wire

Also Published As

Publication number Publication date
TW201321556A (en) 2013-06-01
JP5802275B2 (en) 2015-10-28
JPWO2013039097A1 (en) 2015-03-26
TWI551732B (en) 2016-10-01

Similar Documents

Publication Publication Date Title
JP5820950B1 (en) Method for producing nickel plating solution and solid fine particle-attached wire
US7309412B2 (en) Compositions and coatings including quasicrystals
JP5802275B2 (en) Solid particulate adhering wire and method for producing the solid particulate adhering wire
TW201111106A (en) Diamond wire saw, process for manufacturing diamond wire saw
JP2007152485A (en) Manufacturing method of saw wire
JP2011056660A (en) Electrodeposited wire tool
CN103266341A (en) Preparation method for producing diamond cutting line through steel wire magnetization
JP2010201542A (en) Diamond wire saw, and method of manufacturing the same
JP2016519002A (en) Grinding sawing wire and its manufacturing method and use
JP2009535511A (en) Precious metal-containing nickel coating layer
JP6422948B2 (en) Grinding sawing wire and its manufacturing method and use
KR102150161B1 (en) Nickel-coated super-abrasive particles with excellent magnetic properties and wire saw using the same
CN111334827A (en) Ultrasonic-assisted nano cerium oxide doped Ni-W-TiN composite coating and preparation method thereof
JP2010120116A (en) Fixed abrasive grain wire saw
CN106191968B (en) A kind of production method for electroplating super hard abrasive line of cut
CN110438550B (en) Preparation method of ultra-sharp diamond wire saw and diamond wire saw
CN105887170B (en) A kind of manufacture method of electroplated diamond line of cut
JP6130247B2 (en) Abrasive electrodeposition liquid, method for producing fixed abrasive saw wire, and fixed abrasive saw wire
JP2023008886A (en) Production method for antimicrobial fiber
CN111286768B (en) Nickel-cobalt-manganese-lanthanum alloy plating solution and preparation method and application thereof
JP2013144352A (en) Method for manufacturing saw wire and manufacturing apparatus therefor
TW201325780A (en) Diamond nickel-cobalt jigsaw and production method
TWI473154B (en) Method and apparatus for fixed abrasive grain wire
JP6698682B2 (en) Method for manufacturing fixed abrasive saw wire having metal alloy fixing layer and wire obtained thereby
KR101277468B1 (en) Wire cutting tool and method of fabricating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831097

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013533686

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831097

Country of ref document: EP

Kind code of ref document: A1