Nothing Special   »   [go: up one dir, main page]

WO2013030921A1 - 車両制御システム - Google Patents

車両制御システム Download PDF

Info

Publication number
WO2013030921A1
WO2013030921A1 PCT/JP2011/069444 JP2011069444W WO2013030921A1 WO 2013030921 A1 WO2013030921 A1 WO 2013030921A1 JP 2011069444 W JP2011069444 W JP 2011069444W WO 2013030921 A1 WO2013030921 A1 WO 2013030921A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
engine
internal combustion
combustion engine
control system
Prior art date
Application number
PCT/JP2011/069444
Other languages
English (en)
French (fr)
Inventor
隆弘 横川
伊藤 良雄
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to DE112011105583.8T priority Critical patent/DE112011105583T5/de
Priority to PCT/JP2011/069444 priority patent/WO2013030921A1/ja
Priority to US14/239,743 priority patent/US9452756B2/en
Priority to JP2013530905A priority patent/JP5765426B2/ja
Priority to CN201180072903.5A priority patent/CN103748378B/zh
Publication of WO2013030921A1 publication Critical patent/WO2013030921A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/18008Propelling the vehicle related to particular drive situations
    • B60Y2300/18066Coasting
    • B60Y2300/18083Coasting without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/30401On-off signal indicating the engage or disengaged position of the clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3061Engine inlet air flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/31Signal inputs from the vehicle
    • F16D2500/3108Vehicle speed

Definitions

  • the present invention relates to a vehicle control system.
  • Patent Document 1 discloses an engine, a friction engagement device that is engaged and released to control torque transmitted from the engine to wheels, and an engine. There is disclosed a power train control device having a hydraulic pressure source that is driven by the motive power of the pressure generator and generates an original pressure of the hydraulic pressure acting on the friction engagement device. The power train control device can automatically change the engine from an operating state to a stopped state based on a predetermined condition.
  • the power train control device described in Patent Document 1 described above reduces the hydraulic pressure acting on the friction engagement device before automatically stopping the engine, thereby reducing the shock caused by the automatic engine stop. Although the occurrence is suppressed, there is room for further improvement in terms of improving fuel efficiency.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a vehicle control system capable of improving fuel efficiency.
  • a vehicle control system can transmit power between an internal combustion engine that can be switched between an operating state and a non-operating state while the vehicle is running, and the internal combustion engine and the drive wheels.
  • An engagement device that can be switched between an engaged state engaged with the vehicle and a released state released from the engagement, a vehicle speed parameter related to the traveling speed of the vehicle, and a determination parameter different from the vehicle speed parameter.
  • the internal combustion engine and the engagement device are controlled based on the vehicle speed parameter, and the engagement device is disengaged when a stop permission condition for the internal combustion engine related to the determination parameter is satisfied while the vehicle is decelerating, and the vehicle speed parameter And a control device that deactivates the internal combustion engine when the stop permission condition for the internal combustion engine is satisfied.
  • the determination parameter may be a parameter related to a load of an auxiliary machine that can be driven by power from the internal combustion engine.
  • the determination parameter includes a state of charge of a battery mounted on the vehicle, a temperature of a cooling medium that cools the internal combustion engine, a temperature of oil supplied to the vehicle, or a vehicle mounted on the vehicle.
  • the parameter may correspond to the load of the air conditioner to be performed.
  • the engagement device engages the internal combustion engine side rotation member and the drive wheel side rotation member so that power can be transmitted, and the internal combustion engine side rotation member
  • the engagement force for engaging the rotating member on the drive wheel side can be adjusted, and the control device can rotate the internal combustion engine side rotating member and the drive when the internal combustion engine stop permission condition regarding the vehicle speed parameter is satisfied.
  • the control device releases the engagement device at the beginning of the release based on an engagement force adjustment value corresponding to a deviation between the actual differential rotation speed and the determined differential rotation speed.
  • the starting initial engagement force can be reduced.
  • control device is configured so that the actual differential rotational speed is not less than the determined differential rotational speed when the internal combustion engine stop permission condition regarding the vehicle speed parameter is satisfied.
  • the internal combustion engine may be deactivated.
  • the vehicle control system according to the present invention has an effect that fuel efficiency can be improved.
  • FIG. 1 is a schematic configuration diagram of a vehicle control system according to the first embodiment.
  • FIG. 2 is a flowchart illustrating an example of control in the vehicle control system according to the first embodiment.
  • FIG. 3 is a time chart for explaining an example of the operation of the vehicle control system according to the first embodiment.
  • FIG. 4 is a flowchart illustrating an example of control in the vehicle control system according to the second embodiment.
  • FIG. 5 is a time chart for explaining an example of the operation of the vehicle control system according to the second embodiment.
  • FIG. 6 is a time chart for explaining an example of the operation of the vehicle control system according to the second embodiment.
  • FIG. 1 is a schematic configuration diagram of a vehicle control system according to the first embodiment
  • FIG. 2 is a flowchart illustrating an example of control in the vehicle control system according to the first embodiment
  • FIG. 3 is a vehicle control system according to the first embodiment. It is a time chart explaining an example of operation
  • the vehicle control system according to the present embodiment is applied to a vehicle.
  • a clutch is used to suppress shock transmission when the engine is stopped. (Engagement device) is released, and the engine is stopped after the clutch is released.
  • the vehicle control system starts releasing the clutch after the engine stop request is generated, it takes time until the clutch is completely released. There is a risk that the fuel efficiency improvement effect due to the engine stop will decrease. Therefore, the vehicle control system according to the present embodiment releases the clutch before the actual engine stop request is generated when the engine stop permission condition related to the determination parameter other than the vehicle speed parameter is satisfied while the vehicle is decelerating. Therefore, the engine operating time is relatively shortened to improve fuel efficiency.
  • the vehicle control system 1 of the present embodiment is applied to a vehicle 2.
  • the vehicle control system 1 is a system for controlling each part of the vehicle 2.
  • the vehicle control system 1 can execute, for example, S & S (stop and start) control in which the engine 4 is automatically stopped and automatically restarted while the vehicle 2 is traveling. This is a system that improves fuel efficiency by suppressing fuel consumption by using the running state.
  • the vehicle control system 1 includes an engine 4 as an internal combustion engine that generates power for driving the drive wheels 3, a power transmission device 5 that forms a power transmission system that transmits the power generated by the engine 4 to the drive wheels 3, A brake device 6 as a braking device of the vehicle 2, a state detection device 7 that detects the state of the vehicle 2, and an ECU 8 as a control device that controls each part of the vehicle 2 including the vehicle control system 1 are provided.
  • the engine 4 is a driving source (motor) for driving the vehicle 2.
  • the engine 4 generates power that acts on the drive wheels 3 of the vehicle 2 as the fuel burns in the combustion chamber 4a.
  • the engine 4 can switch between an operating state and a non-operating state while the vehicle 2 is traveling.
  • the operating state of the engine 4 (the state in which the engine 4 is operated) is a state in which power to be applied to the drive wheels 3 is generated, and thermal energy generated by burning fuel in the combustion chamber 4a is converted to torque or the like. It is in a state of outputting in the form of mechanical energy. That is, the engine 4 generates power that burns fuel in the combustion chamber 4a and acts on the drive wheels 3 of the vehicle 2 in the operating state.
  • the non-operating state of the engine 4 that is, the state where the operation of the engine 4 is stopped is a state where generation of power is stopped, fuel supply to the combustion chamber 4a is cut (fuel cut), and combustion is performed. In this state, no fuel is burned in the chamber 4a and no mechanical energy such as torque is output.
  • the power transmission device 5 includes a torque converter 9 that is a fluid transmission device with a lock-up clutch, and a clutch 10 as an engagement device, and a transmission 11 that shifts and outputs power from the engine 4, and a transmission 11. And a drive shaft 13 for connecting the differential gear 12 and the drive wheel 3 to each other.
  • the power transmission device 5 can be switched at the clutch 10 between an engaged state in which the engine 4 and the drive wheel 3 are engaged so that power can be transmitted and an open state in which the engagement is released.
  • the clutch 10 can use various clutches, and controls the torque transmitted from the engine 4 to the drive wheels 3.
  • the clutch 10 can be switched between an engaged state in which the rotating member 10a on the engine 4 side and a rotating member 10b on the drive wheel 3 side are engaged so that power can be transmitted, and a released state in which the engagement is released.
  • the clutch 10 is in the engaged state, the rotating member 10 a and the rotating member 10 b are connected, and power transmission between the engine 4 and the drive wheel 3 is possible.
  • the clutch 10 is in the released state, the rotating member 10a and the rotating member 10b are disconnected, and the power transmission between the engine 4 and the drive wheel 3 is cut off.
  • the rotation member 10a on the engine 4 side corresponds to the output shaft (turbine shaft) of the torque converter 9, and the rotation member 10b on the drive wheel 3 side is the main body of the transmission 11 (a transmission mechanism that actually performs a shift). ). That is, in the power transmission device 5, the output shaft of the torque converter 9 and the input shaft of the main body of the transmission 11 are connected via the clutch 10.
  • the clutch 10 can adjust the engagement force for engaging the rotating member 10a on the engine 4 side and the rotating member 10b on the drive wheel 3 side.
  • the clutch 10 is in a released state in which the engagement is released.
  • the clutch 10 enters a fully engaged state through a half-engaged state (slip state).
  • the clutch 10 is a hydraulic device that is operated by a clutch hydraulic pressure that is a hydraulic pressure of hydraulic oil supplied from the TM hydraulic control device 14 as will be described later.
  • the clutch oil pressure is an oil pressure for engaging the rotating member 10a and the rotating member 10b in the clutch 10
  • the engaging force for engaging the rotating member 10a and the rotating member 10b in the clutch 10 is the clutch oil pressure. It becomes the size according to.
  • the transmission 11 is a so-called automatic transmission that automatically changes the gear ratio (gear stage) according to the traveling state of the vehicle 2.
  • the transmission 11 includes, for example, a stepped automatic transmission (AT), a continuously variable automatic transmission (CVT), a multimode manual transmission (MMT), a sequential manual transmission (SMT), a dual clutch transmission (DCT), and the like.
  • Automatic transmission is applied.
  • a belt-type CVT is applied to the transmission 11, and the operation is controlled by the ECU 8.
  • the above-mentioned clutch 10 demonstrates here as an input clutch provided in the front
  • the clutch 10 may be various clutches or the like for realizing each gear stage in the transmission 11.
  • the motive power generated by the engine 4 is input to the clutch 10 via the torque converter 9, is shifted at a predetermined gear ratio by the transmission 11, and is transmitted to the drive wheels 3 via the differential gear 12 and the drive shaft 13.
  • the driving force [N] is generated on the contact surface with the road surface of the driving wheel 3, and the vehicle 2 can travel by this.
  • the brake device 6 applies a braking force to the wheels including the drive wheels 3.
  • the vehicle 2 can be braked by the braking force [N] generated on the contact surface with the road surface of the drive wheel 3.
  • the state detection device 7 is electrically connected to the ECU 8 and can exchange information such as a detection signal, a drive signal, and a control command with each other.
  • the state detection device 7 includes an engine speed sensor 7a, an accelerator opening sensor 7b, a brake sensor 7c, a vehicle speed sensor 7d, an acceleration / deceleration sensor 7e, a turbine speed sensor 7f, an input speed sensor 7g, a charge state detector 7h, a water temperature.
  • the sensor 7i, the oil temperature sensor 7j, the load detector 7k, and the like are included in various parts of the vehicle 2, such as various sensors and detection devices.
  • the engine speed sensor 7 a detects an engine speed (rotation speed) that is the output shaft speed (rotation speed) of the engine 4.
  • the accelerator opening sensor 7b detects an accelerator opening that is an operation amount (accelerator operation amount) of the accelerator pedal 71 by the driver.
  • the brake sensor 7c detects a brake force by detecting an operation amount of the brake pedal 72 by the driver, for example, a master cylinder pressure.
  • the vehicle speed sensor 7 d detects the vehicle speed that is the traveling speed of the vehicle 2.
  • the acceleration / deceleration sensor 7e detects the acceleration / deceleration acting on the vehicle body of the vehicle 2.
  • the turbine rotation speed sensor 7f detects the turbine rotation speed that is the rotation speed (rotation speed) of the rotating member 10a. This turbine rotational speed corresponds to the output rotational speed from the torque converter 9.
  • the input rotational speed sensor 7g detects the input rotational speed that is the rotational speed (rotational speed) of the rotating member 10b. This input rotation speed corresponds to the input rotation speed to the main body of the transmission 11 (for example, the primary sheave in the belt type CVT).
  • the charge state detector 7h detects the state of charge SOC corresponding to the amount of charge (charge amount) of the battery 73 mounted on the vehicle 2, the battery voltage, and the like.
  • the water temperature sensor 7 i detects a water temperature that is a temperature of cooling water as a cooling medium for cooling the engine 4.
  • the oil temperature sensor 7j detects an oil temperature that is supplied to the vehicle 2 and used in a TM hydraulic control device 14 and a brake hydraulic control device 15 described later.
  • the load detector 7k detects the load of the air conditioner 74 (air conditioner) mounted on the vehicle 2.
  • the ECU 8 is an electronic circuit mainly composed of a known microcomputer including a CPU, a ROM, a RAM, and an interface.
  • the ECU 8 receives an electric signal corresponding to the detection result from the state detection device 7, and in response to the input detection result, the ECU 8 controls the power transmission device 5 including the engine 4, the transmission 11, etc., the brake device 6, etc. Control.
  • the power transmission device 5 and the brake device 6 including the transmission 11 and the like are hydraulic devices that are operated by the pressure (hydraulic pressure) of hydraulic oil as a medium, and the ECU 8 includes a TM hydraulic control device 14 and a brake, respectively.
  • the operations of the transmission 11 and the brake device 6 are controlled via the hydraulic control device 15 and the like, and for example, the transmission operation of the transmission 11 and the engagement / release operation of the clutch 10 are controlled.
  • the ECU 8 can detect the ON / OFF of the accelerator operation, which is an acceleration request operation for the vehicle 2 by the driver, based on the detection result by the accelerator opening sensor 7b, for example. Similarly, the ECU 8 can detect ON / OFF of a brake operation, which is a brake request operation for the vehicle 2 by the driver, based on a detection result by the brake sensor 7c, for example.
  • the ECU 8 basically controls the throttle device 16 of the engine 4 based on the accelerator opening, the vehicle speed, etc., adjusts the throttle opening of the intake passage 17, adjusts the intake air amount, and changes them.
  • the fuel injection amount is controlled in response to the above, and the output of the engine 4 is controlled by adjusting the amount of the air-fuel mixture filled in the combustion chamber 4a.
  • the ECU 8 controls the TM hydraulic control device 14 based on the accelerator opening, the vehicle speed, etc., and controls the operating state of the clutch 10 and the gear ratio of the transmission 11.
  • the ECU 8 can switch between an operating state and a non-operating state of the engine 4 by starting or stopping the operation of the engine 4 while the vehicle 2 is traveling.
  • the ECU 8 can execute S & S control in which the engine 4 is automatically stopped and automatically restarted while the vehicle 2 is traveling.
  • the ECU 8 cuts off the fuel supply to the combustion chamber 4a of the engine 4 (fuel cut) when an engine stop permission condition (stop permission condition for the engine 4) for stopping the engine 4 is satisfied while the vehicle 2 is traveling.
  • the engine 4 is automatically stopped, and the engine 4 is deactivated.
  • the ECU 8 returns from the fuel cut state to the combustion chamber 4a when the engine restart condition for restarting the engine 4 is satisfied, for example, when the engine 4 is not operating while the vehicle 2 is running.
  • the ECU 8 typically causes the vehicle 2 to travel with the clutch 10 in a released state in the S & S control.
  • the vehicle control system 1 in the S & S control, the transmission of power between the drive wheels 3 and the engine 4 is interrupted by the clutch 10, and the engine brake is not applied to the drive wheels 3.
  • the vehicle control system 1 realizes the fuel efficiency improvement effect by suppressing the loss of the kinetic energy of the vehicle 2 due to the running resistance as much as possible in addition to the fuel efficiency improvement effect by stopping the fuel supply to the engine 4. be able to.
  • the ECU 8 can execute, for example, deceleration S & S control and free-run S & S control as S & S control performed while the vehicle 2 is traveling.
  • the deceleration S & S control is executed, for example, when the vehicle 2 decelerates at a low speed equal to or lower than a predetermined vehicle speed in a state where the accelerator operation is released by the driver and the brake operation is performed (accelerator operation OFF, brake operation ON).
  • the free-run S & S control is executed, for example, when the vehicle 2 decelerates in a state where both the accelerator operation and the brake operation are released by the driver (accelerator operation OFF and brake operation OFF).
  • the free-run S & S control also has a vehicle speed upper limit value that can be executed, and is basically executed when the vehicle 2 travels at a speed lower than the vehicle speed upper limit value.
  • the ECU 8 of the present embodiment controls the engine 4 and the clutch 10 based on a vehicle speed parameter related to the vehicle speed that is the traveling speed of the vehicle 2 and a determination parameter that is different from the vehicle speed parameter.
  • the ECU 8 mediates the conditions of these parameters, and actually stops the engine 4 when the engine stop permission condition regarding all parameters is satisfied.
  • a case where the ECU 8 performs the deceleration S & S control as the S & S control will be described as an example.
  • the vehicle speed parameter is a parameter that affects the vehicle speed of the vehicle 2 or the vehicle speed of the vehicle 2.
  • the vehicle speed parameter is, for example, a parameter corresponding to the vehicle speed detected by the vehicle speed sensor 7d, the deceleration detected by the acceleration / deceleration sensor 7e, or the master cylinder pressure (the operation amount of the brake pedal 72) detected by the brake sensor 7c. Any one or a plurality of these can be used.
  • the determination parameter is a parameter other than the vehicle speed parameter and indicating the state of the vehicle 2.
  • the determination parameter is typically a parameter related to the load of the auxiliary machine that can be driven by the power from the engine 4, and for example, the charge state SOC of the battery 73 detected by the charge state detector 7h, the water temperature sensor 7i.
  • the ECU 8 of the present embodiment releases the clutch 10 when the accelerator operation is turned off (that is, the acceleration request operation is canceled) and the engine stop permission condition regarding the determination parameter is satisfied while the vehicle 2 is decelerating.
  • the clutch release advance control for disabling the engine 4. That is, the ECU 8 releases the clutch 10 when the determination parameter satisfies the engine stop permission condition for stopping the engine 4, and the vehicle speed parameter satisfies the engine stop permission condition for stopping the engine 4.
  • the engine 4 is brought into a non-operating state. Thereby, the vehicle control system 1 makes it possible to stop the engine 4 at an early stage, and improves the fuel consumption performance.
  • the engine stop permission condition relating to the determination parameter is, for example, that the charge state SOC of the battery 73 detected by the charge state detector 7h, for example, the battery voltage, the charge amount, or the like is equal to or higher than a predetermined value, the water temperature
  • the coolant temperature detected by the sensor 7i is equal to or lower than a preset water temperature
  • the oil temperature detected by the oil temperature sensor 7j is equal to or lower than a preset oil temperature
  • the load detector 7k That is, the load of the air conditioner 74 to be detected is equal to or less than a predetermined load set in advance.
  • the predetermined value, the predetermined water temperature, the predetermined oil temperature, and the predetermined load are generators (for example, alternators), oil pumps, and water pumps that are driven by power from the engine 4 based on actual vehicle evaluation and the like. What is necessary is just to set according to whether it is a state which needs to operate the compressor (compressor) etc. of the air conditioner 74.
  • FIG. 1 A diagrammatic representation of an air conditioner 74.
  • the ECU8 prohibits the stop of the engine 4 when any of the engine stop permission conditions regarding the applied determination parameter is not satisfied. Then, the ECU 8 permits the engine stop permission regarding the vehicle speed parameter when all the engine stop permission conditions regarding the applied determination parameter are satisfied, that is, when the vehicle 2 decelerates and the vehicle speed decreases while the vehicle 2 is decelerated.
  • the operation of controlling the clutch 10 to the released state is started.
  • the ECU 8 controls the TM hydraulic control device 14 to reduce (depressurize) the clutch hydraulic pressure supplied to the clutch 10 when all the engine stop permission conditions regarding the determination parameters are satisfied.
  • the ECU 8 reduces the engagement force of the clutch 10, puts the clutch 10 in a released state, disconnects the rotating member 10 a and the rotating member 10 b, and shuts off the power transmission between the engine 4 and the drive wheel 3. To do.
  • the ECU 8 can keep the clutch 10 in a released state prior to the actual stop control of the engine 4.
  • the ECU 8 gradually reduces the clutch oil pressure by sweep control after reducing the clutch oil pressure at the initial stage of release to a predetermined oil pressure.
  • the clutch 10 is completely released.
  • this vehicle control system 1 can suppress that the transmission of power is suddenly interrupted when the clutch 10 is released, and suppress the occurrence of a shock due to the sudden interruption of power transmission. can do.
  • the engine stop permission condition related to the vehicle speed parameter is, for example, that the vehicle speed detected by the vehicle speed sensor 7d is equal to or lower than a predetermined vehicle speed set in advance, and the absolute value of the deceleration detected by the acceleration / deceleration sensor 7e is equal to or greater than a predetermined deceleration.
  • the master cylinder pressure (the amount of operation of the brake pedal 72) detected by the brake sensor 7c is equal to or higher than a predetermined pressure, and the like. What is necessary is just to set beforehand based on the said predetermined vehicle speed, the said predetermined deceleration, the said predetermined pressure, the specification of the vehicle 2, actual vehicle evaluation, etc.
  • the ECU 8 permits the engine 4 to be stopped and generates an engine stop request when all the engine stop permission conditions regarding the applied vehicle speed parameter are satisfied. Then, the ECU 8 cuts off the supply of fuel to the combustion chamber 4a of the engine 4 and stops the engine 4 to make the engine 4 inoperative.
  • the ECU 8 is activated when the accelerator operation is turned on, or when either of the engine stop permission condition regarding the determination parameter or the engine stop permission condition regarding the vehicle speed parameter is not satisfied, that is, when the engine restart condition is satisfied. Then, the fuel cut state is restored and the engine 4 is restarted to be in the operating state, and the clutch 10 is brought into the engaged state.
  • control routines are repeatedly executed at a control cycle of several ms to several tens of ms (the same applies hereinafter).
  • the ECU 8 determines whether or not the vehicle 2 is decelerating (ST1). For example, the ECU 8 determines whether or not the accelerator operation is OFF, that is, the acceleration requesting operation is released based on the accelerator opening detected by the accelerator opening sensor 7b, and the vehicle 2 responds accordingly. It is determined whether or not the vehicle is decelerating. When it is determined that the accelerator operation is ON and the vehicle 2 is not decelerating (ST1: No), the ECU 8 ends the current control cycle and shifts to the next control cycle.
  • the ECU8 determines whether the engine stop permission condition regarding the determination parameter is satisfied, when it is determined that the accelerator operation is OFF and the vehicle 2 is decelerating (ST1: Yes) (ST2). For example, the ECU 8 determines whether or not all the engine stop permission conditions regarding the determination parameters other than the vehicle speed parameter are satisfied based on the detection results by the charging state detector 7h, the water temperature sensor 7i, the oil temperature sensor 7j, the load detector 7k, and the like. Determine. When it is determined that any of the engine stop permission conditions regarding the determination parameter is not satisfied (ST2: No), the ECU 8 ends the current control cycle and shifts to the next control cycle.
  • the ECU 8 determines whether or not an engine stop permission condition regarding the vehicle speed parameter is satisfied (ST4). For example, the ECU 8 determines whether or not all engine stop permission conditions regarding the vehicle speed parameter are satisfied based on detection results of the vehicle speed sensor 7d, the acceleration / deceleration sensor 7e, the brake sensor 7c, and the like. When it is determined that any of the engine stop permission conditions regarding the vehicle speed parameter is not satisfied (ST4: No), the ECU 8 repeatedly performs this determination until it is determined that all the engine stop permission conditions regarding the vehicle speed parameter are satisfied.
  • the ECU 8 stops the engine 4 by stopping it (ST5), and ends the current control cycle. Transition to the control cycle.
  • the ECU 8 also performs engine restart condition establishment determination in parallel. If the engine restart condition is established, the ECU 8 restarts the engine 4 to return to the operating state and puts the clutch 10 into the engaged state. Then, the engine 4 is maintained in the operating state and the clutch 10 is maintained in the engaged state.
  • the horizontal axis is the time axis
  • the vertical axis is the engine speed, input speed, turbine speed, and clutch oil pressure.
  • the solid line L11 represents the engine speed
  • the solid line L12 represents the input speed
  • the dotted line L13 represents the turbine speed
  • the solid line L14 represents the clutch hydraulic pressure (the same applies to FIGS. 5 and 6 described later).
  • the vehicle control system 1 configured as described above is configured so that all engine stop permission conditions are satisfied and an engine stop request is generated while the vehicle 2 is traveling at a reduced speed.
  • the operation of releasing the clutch 10 can be started at the time t11 when the engine stop permission condition regarding the determination parameter is satisfied.
  • the ECU 8 controls the TM hydraulic control device 14 at the time t11 when the engine stop permission condition regarding the determination parameter is satisfied, and the clutch start hydraulic pressure is set in advance as the release start initial hydraulic pressure P1.
  • the engagement force is reduced to the initial engagement force at the start of release.
  • the ECU 8 gradually reduces the clutch hydraulic pressure by sweep control, and finally brings the clutch 10 into a completely released state.
  • the vehicle control system 1 can suppress the occurrence of a shock accompanying a sudden interruption of power transmission.
  • the vehicle control system 1 At time t12 when the engine stop permission condition relating to the vehicle speed parameter is satisfied and the engine stop request is actually generated, the vehicle control system 1 already has the input rotational speed and the turbine rotational speed as indicated by the solid line L12 and the dotted line L13. Is equal to or greater than a predetermined value, that is, the clutch 10 is disengaged and the drive wheel 3 and the engine 4 are disconnected. For this reason, the vehicle control system 1 can suppress the shock at the time of stop being transmitted to the drive wheel 3 side even if the engine 4 is stopped immediately after the engine stop request is generated at time t12. Therefore, the occurrence of shock can be suppressed.
  • the vehicle control system 1 can release the clutch 10 in advance before the engine stop permission condition of the vehicle speed parameter is satisfied and the engine stop request is actually generated, the engine stop request is generated.
  • the engine 4 can be stopped early without waiting for the releasing operation of the clutch 10.
  • the vehicle control system 1 as indicated by the solid line L11, the engine speed decreases accordingly. That is, for example, the vehicle control system 1 immediately stops the engine 4 and puts it into a non-operating state when the vehicle 2 decelerates and the vehicle speed reaches a predetermined vehicle speed (engine stop vehicle speed) that permits the engine 4 to stop. Can do.
  • the vehicle control system 1 can relatively shorten the engine operating time, can make the actual engine stop region substantially coincide with the required engine stop region, and can reduce excess fuel consumption. This can improve fuel efficiency. Therefore, the vehicle control system 1 can obtain a further fuel efficiency improvement effect, and can achieve both the suppression of shock when the engine is stopped and the improvement of the fuel efficiency performance.
  • the vehicle control system 1 can achieve both suppression of shock when the engine is stopped and improvement of fuel efficiency.
  • the ECU 8 completely releases the clutch 10 based on the actual differential rotation speed (differential rotation speed) between the rotating member 10a and the rotating member 10b when the stop permission condition of the engine 4 regarding the vehicle speed parameter is satisfied. It may be determined and confirmed that the engine 4 is in the state, and then the engine 4 may be actually controlled to be in a non-operating state. In this case, the ECU 8 calculates the actual differential rotational speed between the turbine rotational speed detected by the turbine rotational speed sensor 7f and the input rotational speed detected by the input rotational speed sensor 7g. Then, the ECU 8 may perform control so that the engine 4 is actually inactivated in a state where the actual differential rotational speed is equal to or higher than a preset release determination differential rotational speed (determination differential rotational speed).
  • the release determination differential rotational speed is a differential rotational speed for determining that the clutch 10 is in the released state. In this case, since it is possible for the vehicle control system 1 to stop the engine 4 after confirming that the clutch 10 is reliably released, it is possible to reliably suppress a shock when the engine is stopped.
  • the vehicle control system 1 includes the engine 4, the clutch 10, and the ECU 8.
  • the engine 4 can switch between an operating state and a non-operating state while the vehicle 2 is traveling.
  • the clutch 10 can be switched between an engaged state in which the engine 4 and the drive wheel 3 are engaged so that power can be transmitted and a released state in which the engagement is released.
  • the ECU 8 controls the engine 4 and the clutch 10 based on a vehicle speed parameter related to the traveling speed of the vehicle 2 and a determination parameter different from the vehicle speed parameter.
  • the ECU 8 releases the clutch 10 when the stop permission condition for the engine 4 related to the determination parameter is satisfied while the vehicle 2 is decelerating, and disables the engine 4 when the stop permission condition for the engine 4 related to the vehicle speed parameter is satisfied. Activated.
  • the vehicle control system 1 can stop the engine 4 early without waiting for the release operation of the clutch 10 when the engine stop permission condition of the vehicle speed parameter is satisfied and the engine stop request is actually generated.
  • the engine operating time can be relatively shortened, and the fuel efficiency can be improved.
  • the vehicle control system 1 can achieve both suppression of shock when the engine is stopped and improvement of fuel efficiency.
  • FIG. 4 is a flowchart for explaining an example of control in the vehicle control system according to the second embodiment
  • FIGS. 5 and 6 are time charts for explaining an example of operation of the vehicle control system according to the second embodiment.
  • the vehicle control system according to the second embodiment is different from the first embodiment in that the engagement force when the engagement device is released is variable.
  • the overlapping description is abbreviate
  • the vehicle control system 201 includes an actual differential rotation speed between the rotation member 10a on the engine 4 side and the rotation member 10b on the drive wheel 3 side when the engine stop permission condition regarding the vehicle speed parameter is satisfied, and the clutch 10 Based on the deviation from the determination differential rotational speed for determining that the clutch is in the disengaged state, the engagement force for changing the clutch 10 to the disengaged state is changed.
  • the ECU 8 calculates the actual differential rotational speed between the turbine rotational speed detected by the turbine rotational speed sensor 7f and the input rotational speed detected by the input rotational speed sensor 7g, and based on this actual differential rotational speed. It can be confirmed that the clutch 10 is completely released. That is, the ECU 8 can determine that the clutch 10 is completely released when it is determined that the actual differential rotational speed between the turbine rotational speed and the input rotational speed is greater than or equal to the release determination differential rotational speed. it can.
  • the vehicle control system 201 for example, there may be variations in machine differences depending on variations in parts (for example, variations in various pack clearances and variations in various return spring set loads), deterioration with time, and the like.
  • the clutch 10 is always released using a preset fixed release initial hydraulic pressure or pressure reduction gradient that has been set in advance, the vehicle control system 201 may cause the vehicle speed to be
  • the clutch 10 may not be fully released when the engine stop permission condition regarding the parameter is satisfied. That is, in this case, the vehicle control system 201 may not be able to fully release the clutch 10 when the engine stop request is generated, and cannot immediately stop the engine 4 when the engine stop request is generated. .
  • the ECU 8 of the present embodiment compensates for such variations based on the difference in rotational speed difference when the stop request occurs.
  • the difference in rotational speed deviation when the stop request is generated is the difference between the actual rotational speed of the turbine speed and the input speed when the engine stop permission condition regarding the vehicle speed parameter is satisfied, that is, when the engine stop request is generated.
  • the deviation from the release determination difference rotational speed is determined to be a release determination when the requested engine stop vehicle speed and the actual engine stop vehicle speed do not match (that is, different).
  • the variation is learned based on the differential rotational speed deviation when the stop request is generated, and the engagement force when the clutch 10 is released is made variable. That is, when the actual engine stop region does not coincide with the requested engine stop region, the ECU 8 changes the clutch hydraulic pressure when releasing the clutch 10 based on the difference in rotational speed difference when the stop request is generated, Is variable.
  • the required engine stop vehicle speed is a vehicle speed when an engine stop permission condition relating to a vehicle speed parameter is satisfied and an engine stop request is generated.
  • the actual engine stop vehicle speed is a vehicle speed when the release of the clutch 10 is confirmed based on the actual differential rotation speed and the release determination differential rotation speed and the engine 4 is actually stopped.
  • the ECU 8 calculates an engagement force adjustment value (learned value) in accordance with the difference in rotation speed difference when the stop request is generated, which is a deviation between the actual differential rotation speed and the determination differential rotation speed, and based on the engagement force adjustment value.
  • the release start initial hydraulic pressure at the beginning of the release of the clutch 10 is reduced, and the release start initial engagement force is reduced.
  • the ECU 8 responds to the engagement force adjustment value from the current release start initial hydraulic pressure when the clutch release advance control is executed.
  • the hydraulic pressure minus the hydraulic pressure is set as the initial hydraulic pressure for starting the release in the next and subsequent clutch release advance control.
  • the relationship between the difference in rotational speed difference when the stop request is generated and the engagement force adjustment value is mapped in advance as an engagement force adjustment value map based on actual vehicle evaluation and stored in the storage unit of the ECU 8. Based on this engagement force adjustment value map, the ECU 8 calculates an engagement force adjustment value from the difference in rotational speed difference when the stop request is generated. Note that the relationship between the difference in rotational speed difference when the stop request is generated and the engagement force adjustment value may be stored in the storage unit as a mathematical model instead of the engagement force adjustment value map.
  • the ECU 8 releases the clutch 10 when the engine stop permission condition related to the determination parameter is satisfied, and turns off the engine 4 when the engine stop permission condition related to the vehicle speed parameter is satisfied. It is determined whether or not the clutch release advance control is performed (ST21). If the ECU 8 determines that the clutch release advance control is not performed (ST21: No), the ECU 8 ends the current control cycle and shifts to the next control cycle.
  • the ECU 8 determines whether or not the requested engine stop vehicle speed matches the actual engine stop vehicle speed in the clutch release advance control (ST22). For example, the ECU 8 compares the vehicle speed when the engine stop permission condition regarding the vehicle speed parameter is satisfied and the engine stop request is generated based on the detection result by the vehicle speed sensor 7d with the vehicle speed when the engine 4 is actually stopped. Thus, it is determined whether or not the requested engine stop vehicle speed matches the actual engine stop vehicle speed.
  • the ECU 8 is not limited to this, for example, based on the deviation between the actual rotational speed between the turbine rotational speed and the input rotational speed when the engine stop request is generated and the release determination differential rotational speed.
  • the ECU 8 determines that the requested engine stop vehicle speed does not match the actual engine stop vehicle speed when the actual differential rotation speed at the time when the engine stop request is generated is less than the release determination differential rotation speed. can do. If the ECU 8 determines that the requested engine stop vehicle speed matches the actual engine stop vehicle speed (ST22: Yes), the ECU 8 ends the current control cycle and shifts to the next control cycle.
  • the engine stop permission condition is satisfied and the engine stop is performed.
  • the actual differential rotational speed between the turbine rotational speed detected by the turbine rotational speed sensor 7f when the request is generated and the input rotational speed detected by the input rotational speed sensor 7g is calculated.
  • the ECU 8 compares the release determination differential rotational speed with the actual differential rotational speed at the required engine stop vehicle speed, and calculates the release determination differential rotational speed and the actual differential rotational speed as a differential rotational speed deviation when the stop request is generated. Is calculated (ST23).
  • the ECU 8 corrects the release start initial hydraulic pressure according to the difference between the release determination difference rotation speed calculated as the difference in rotation speed difference when the stop request occurs and the actual difference rotation speed by the clutch release advance control from the next time on (ST24). ), The current control cycle is terminated, and the next control cycle is started.
  • the ECU 8 calculates an engagement force adjustment value (learned value) from the difference between the release determination difference rotation speed calculated as the difference in rotation speed difference when the stop request is generated and the actual difference rotation speed based on the engagement force adjustment value map. calculate.
  • the ECU 8 subtracts the hydraulic pressure corresponding to the engagement force adjustment value from the initial release hydraulic pressure in the current clutch release advance control and releases the initial release hydraulic pressure after this subtraction in the subsequent clutch release advance control. Use the initial hydraulic pressure.
  • the vehicle control system 201 configured as described above starts an operation for disengaging the clutch 10 at time t11 when the engine stop permission condition regarding the determination parameter is satisfied.
  • the ECU 8 controls the TM hydraulic control device 14 at time t11 to reduce the clutch hydraulic pressure to the release start initial hydraulic pressure P1, thereby reducing the engagement force to the release start initial engagement force. To do.
  • the ECU 8 gradually reduces the clutch hydraulic pressure by sweep control, and finally brings the clutch 10 into a completely released state.
  • the vehicle control system 201 actually issues an engine stop request at time t12 when the engine stop permission condition regarding the vehicle speed parameter is satisfied.
  • the vehicle control system 201 determines that the actual difference rotation speed ⁇ N between the input rotation speed and the turbine rotation speed is still less than the release determination difference rotation speed at time t12 due to, for example, variation in machine difference. That is, if the clutch 10 is not yet fully released, the engine 4 cannot be stopped at this time t12, and after a predetermined time has elapsed, the engine 4 can finally be stopped at the time t13 when the clutch 10 is sufficiently released. . In this case, the vehicle control system 201 cannot stop the engine 4 immediately after the engine stop request is generated, and the requested engine stop vehicle speed and the actual engine stop vehicle speed do not match, and the actual engine stop region is not The engine stop area becomes relatively narrow.
  • the vehicle control system 201 When the required engine stop vehicle speed and the actual engine stop vehicle speed do not coincide with each other and the actual engine stop region becomes relatively narrow with respect to the request engine stop region as described above, the vehicle control system 201 The difference between the rotation speed ⁇ N and the release determination difference rotation speed is calculated to calculate a difference in rotation speed deviation when a stop request is generated, and an engagement force adjustment value is calculated according to the difference in rotation speed deviation when the stop request is generated. Then, as illustrated in FIG. 6, the vehicle control system 201 obtains the hydraulic pressure obtained by subtracting the hydraulic pressure ⁇ P corresponding to the engagement force adjustment value from the initial hydraulic pressure P1 at the start of release in the current clutch release advance control. The release start initial hydraulic pressure P2 in the first-out control is set.
  • the vehicle control system 201 uses the release start initial hydraulic pressure P2 to release the clutch 10 in the next and subsequent clutch release advance control, thereby causing variations in machine differences.
  • the clutch 10 can be sufficiently released when the engine stop permission condition regarding the vehicle speed parameter is satisfied. That is, the vehicle control system 201 can complete the release of the clutch 10 before the vehicle 2 reaches the required engine stop vehicle speed.
  • the vehicle control system 201 can stop the engine 4 immediately at the time t12 when the engine stop request is generated. Therefore, the vehicle control system 201 can stop the engine 4 as soon as the engine stop request is generated regardless of the difference in machine difference, and make the requested engine stop vehicle speed and the actual engine stop vehicle speed coincide with each other. Therefore, the requested engine stop area and the actual engine stop area can be matched. Therefore, the vehicle control system 201 can relatively shorten the engine operating time in response to a difference in machine difference and the like, and can surely improve the fuel consumption performance.
  • the ECU 8 has been described as reducing the release start initial hydraulic pressure and reducing the release start initial engagement force based on the engagement force adjustment value corresponding to the difference in rotational speed difference when the stop request is generated. Not exclusively.
  • the ECU 8 increases the clutch hydraulic pressure depressurization gradient in the sweep control within a range where no shock is generated due to sudden interruption of power transmission based on the difference in rotational speed when the stop request is generated.
  • the hydraulic pressure may be variable and the engagement force may be variable.
  • the vehicle control system 201 allows the engine 4 to be started early without waiting for the release operation of the clutch 10 when the engine stop permission condition of the vehicle speed parameter is satisfied and the engine stop request is actually generated. Since the engine can be stopped, the engine operation time can be relatively shortened, and the fuel efficiency can be improved. As a result, the vehicle control system 1 can achieve both suppression of shock when the engine is stopped and improvement of fuel efficiency.
  • the clutch 10 engages the rotating member 10a on the engine 4 side and the rotating member 10b on the drive wheel 3 side so that power can be transmitted,
  • the engaging force for engaging the rotating member 10a on the engine 4 side and the rotating member 10b on the drive wheel 3 side can be adjusted.
  • the ECU 8 determines that the actual differential rotational speed between the rotation member 10a on the engine 4 side and the rotation member 10b on the drive wheel 3 side when the stop permission condition for the engine 4 related to the vehicle speed parameter is satisfied, and that the clutch 10 is in the released state.
  • the engagement force when the clutch 10 is brought into the released state is changed.
  • the ECU 8 reduces the initial release start engagement force at the start of the release of the clutch 10 based on the engagement force adjustment value corresponding to the deviation between the actual differential rotation speed and the determination differential rotation speed.
  • the vehicle control system 201 is in a state in which the clutch 10 is sufficiently released when the engine stop permission condition regarding the vehicle speed parameter is satisfied, regardless of the variation of each part, the variation of machine differences according to the deterioration with time, and the like.
  • the engine 4 can be stopped as soon as an engine stop request is generated.
  • the vehicle control system 201 can improve the fuel consumption performance more reliably.
  • the clutch release advance control described above can be performed not only when the deceleration S & S control is executed but also when the S & S control including the free-run S & S control is executed.
  • the vehicle described above may be a so-called “hybrid vehicle” provided with a motor generator as an electric motor capable of generating electricity in addition to the engine 4 as a driving power source.
  • Vehicle control system Vehicle 3 Drive wheel 4 Engine (internal combustion engine) 5 Power Transmission Device 6 Brake Device 7 State Detection Device 8 ECU (Control Device) 9 Torque converter 10 Clutch (engagement device) 10a, 10b Rotating member 11 Transmission 12 Differential gear 13 Drive shaft 14 TM hydraulic control device 15 Brake hydraulic control device 16 Throttle device 17 Intake passage 71 Accelerator pedal 72 Brake pedal 73 Battery 74 Air conditioner

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

 車両制御システム(1)は、車両(2)の走行中に、作動状態と非作動状態とを切り替え可能な内燃機関(4)と、内燃機関(4)と駆動輪(3)とを動力伝達可能に係合した係合状態と、係合を解除した解放状態とに切り替え可能である係合装置(10)と、車両(2)の走行速度に関連する車速パラメータと、当該車速パラメータとは異なる判定パラメータとに基づいて内燃機関(4)及び係合装置(10)を制御し、車両(2)の減速走行中に、判定パラメータに関する内燃機関(4)の停止許可条件が成立した際に係合装置(10)を解放状態とし、車速パラメータに関する内燃機関(4)の停止許可条件が成立した際に内燃機関(4)を非作動状態とする制御装置(8)とを備える。したがって、車両制御システム(1)は、燃費性能を向上させることができる。

Description

車両制御システム
 本発明は、車両制御システムに関する。
 車両の燃費向上を図る従来の車両制御システムとして、例えば、特許文献1には、エンジンと、エンジンから車輪に伝達されるトルクを制御するために係合・解放される摩擦係合装置と、エンジンの動力により駆動され、かつ、摩擦係合装置に作用する油圧の元圧を発生する油圧源とを有するパワートレーンの制御装置が開示されている。このパワートレーンの制御装置は、所定条件に基づいてエンジンを自動的に運転状態から停止状態に変更することが可能である。
特開2000-170894号公報
 ところで、上述のような特許文献1に記載のパワートレーンの制御装置は、エンジンを自動停止する前に、摩擦係合装置に作用している油圧を低下させることで、エンジンの自動停止によるショックの発生を抑制しているが、燃費性能向上の点で更なる改善の余地がある。
 本発明は、上記の事情に鑑みてなされたものであって、燃費性能を向上させることができる車両制御システムを提供することを目的とする。
 上記目的を達成するために、本発明に係る車両制御システムは、車両の走行中に、作動状態と非作動状態とを切り替え可能な内燃機関と、前記内燃機関と前記駆動輪とを動力伝達可能に係合した係合状態と、前記係合を解除した解放状態とに切り替え可能である係合装置と、前記車両の走行速度に関連する車速パラメータと、当該車速パラメータとは異なる判定パラメータとに基づいて前記内燃機関及び前記係合装置を制御し、前記車両の減速走行中に、前記判定パラメータに関する前記内燃機関の停止許可条件が成立した際に前記係合装置を解放状態とし、前記車速パラメータに関する前記内燃機関の停止許可条件が成立した際に前記内燃機関を非作動状態とする制御装置とを備えることを特徴とする。
 また、上記車両制御システムでは、前記判定パラメータは、前記内燃機関からの動力によって駆動可能である補機の負荷に関連するパラメータであるものとすることができる。
 また、上記車両制御システムでは、前記判定パラメータは、前記車両が搭載するバッテリの充電状態、前記内燃機関を冷却する冷却媒体の温度、前記車両に供給されるオイルの温度、あるいは、前記車両が搭載する空調装置の負荷に相当するパラメータであるものとすることができる。
 また、上記車両制御システムでは、前記係合装置は、前記内燃機関側の回転部材と前記駆動輪側の回転部材とを動力伝達可能に係合であると共に、前記内燃機関側の回転部材と前記駆動輪側の回転部材とを係合する係合力を調節可能であり、前記制御装置は、前記車速パラメータに関する前記内燃機関の停止許可条件が成立した際の前記内燃機関側の回転部材と前記駆動輪側の回転部材との実際の差回転速度と、前記係合装置が解放状態であることを判定するための判定差回転速度との偏差に基づいて、前記係合装置を解放状態とする際の前記係合力を変更するものとすることができる。
 また、上記車両制御システムでは、前記制御装置は、前記実際の差回転速度と前記判定差回転速度との偏差に応じた係合力調整値に基づいて、前記係合装置の解放の開始初期の解放開始初期係合力を低減するものとすることができる。
 また、上記車両制御システムでは、前記制御装置は、前記車速パラメータに関する前記内燃機関の停止許可条件が成立した際に、前記実際の差回転速度が前記判定差回転速度以上である状態で、実際に前記内燃機関を非作動状態とするものとすることができる。
 本発明に係る車両制御システムは、燃費性能を向上させることができる、という効果を奏する。
図1は、実施形態1に係る車両制御システムの概略構成図である。 図2は、実施形態1に係る車両制御システムにおける制御の一例を説明するフローチャートである。 図3は、実施形態1に係る車両制御システムの動作の一例を説明するタイムチャートである。 図4は、実施形態2に係る車両制御システムにおける制御の一例を説明するフローチャートである。 図5は、実施形態2に係る車両制御システムの動作の一例を説明するタイムチャートである。 図6は、実施形態2に係る車両制御システムの動作の一例を説明するタイムチャートである。
 以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。
[実施形態1]
 図1は、実施形態1に係る車両制御システムの概略構成図、図2は、実施形態1に係る車両制御システムにおける制御の一例を説明するフローチャート、図3は、実施形態1に係る車両制御システムの動作の一例を説明するタイムチャートである。
 本実施形態に係る車両制御システムは、車両に適用され、典型的には、車両の走行中にエンジン(内燃機関)の停止要求が発生した場合、エンジン停止時のショック伝達抑制のために、クラッチ(係合装置)を解放し、クラッチが解放された後にエンジンを停止するものである。このとき、車両制御システムは、エンジン停止要求が発生してからクラッチ解放を開始していてはクラッチの完全解放までに時間が掛かり、エンジン停止が遅れることで、その分エンジン稼動時間が長くなるので、エンジン停止による燃費向上効果が減少してしまうおそれがある。そこで、本実施形態の車両制御システムは、車両の減速走行中に車速パラメータ以外の判定パラメータに関するエンジン停止許可条件が成立している場合、実際のエンジン停止要求の発生より先にクラッチを解放することで、エンジン稼動時間を相対的に短くし、燃費性能の向上を図るものである。
 具体的には、図1に示すように、本実施形態の車両制御システム1は、車両2に適用される。車両制御システム1は、この車両2の各部を制御するためのシステムである。そして、車両制御システム1は、例えば、車両2の走行中にエンジン4を自動で停止し、かつ自動で再始動するS&S(ストップ&スタート)制御を実行可能であり、これに伴う車両2の惰性走行状態を利用することで、燃料の消費を抑制して燃費の向上を図るシステムである。
 車両制御システム1は、駆動輪3を駆動するための動力を発生させる内燃機関としてのエンジン4と、エンジン4が発生した動力を駆動輪3に伝達する動力伝達系をなす動力伝達装置5と、車両2の制動装置としてのブレーキ装置6と、車両2の状態を検出する状態検出装置7と、車両制御システム1を含む車両2の各部を制御する制御装置としてのECU8とを備える。
 エンジン4は、車両2を走行させる走行用駆動源(原動機)である。エンジン4は、燃焼室4aにおける燃料の燃焼に伴って車両2の駆動輪3に作用させる動力を発生させる。エンジン4は、車両2の走行中に、作動状態と非作動状態とを切り替え可能である。
 ここで、エンジン4の作動状態(エンジン4を作動させた状態)とは、駆動輪3に作用させる動力を発生する状態であり、燃焼室4aで燃料を燃焼して生じる熱エネルギをトルクなどの機械的エネルギの形で出力する状態である。つまり、エンジン4は、作動状態では燃焼室4aで燃料を燃焼させて車両2の駆動輪3に作用させる動力を発生する。
 一方、エンジン4の非作動状態、すなわち、エンジン4の作動を停止させた状態とは、動力の発生を停止した状態であり、燃焼室4aへの燃料の供給をカットし(フューエルカット)、燃焼室4aで燃料を燃焼させずトルクなどの機械的エネルギを出力しない状態である。 
 動力伝達装置5は、ロックアップクラッチ付きの流体伝達装置であるトルクコンバータ9、係合装置としてのクラッチ10を含んで構成されエンジン4からの動力を変速して出力する変速機11、変速機11に連結されるデファレンシャルギヤ12、デファレンシャルギヤ12と駆動輪3とを連結するドライブシャフト13等を含んで構成される。動力伝達装置5は、クラッチ10にて、エンジン4と駆動輪3とを動力伝達可能に係合した係合状態とこの係合を解除した開放状態とに切り替え可能である。
 クラッチ10は、種々のクラッチを用いることができ、エンジン4から駆動輪3に伝達されるトルクを制御するものである。クラッチ10は、エンジン4側の回転部材10aと駆動輪3側の回転部材10bとを動力伝達可能に係合した係合状態と、この係合を解除した解放状態とに切り替え可能である。クラッチ10は、係合状態となることで回転部材10aと回転部材10bとが連結され、エンジン4と駆動輪3との間での動力伝達が可能な状態となる。一方、クラッチ10は、解放状態となることで回転部材10aと回転部材10bとを切り離しエンジン4と駆動輪3との間での動力伝達が遮断された状態となる。ここでは、エンジン4側の回転部材10aは、トルクコンバータ9の出力軸(タービン軸)に相当し、駆動輪3側の回転部材10bは、変速機11の本体部(実際に変速を行う変速機構)の入力軸に相当する。つまり、動力伝達装置5は、トルクコンバータ9の出力軸と変速機11の本体部の入力軸とがクラッチ10を介して接続される。
 また、クラッチ10は、エンジン4側の回転部材10aと駆動輪3側の回転部材10bとを係合する係合力を調節可能である。クラッチ10は、係合力が0である場合に係合が解除された解放状態となり、係合力が大きくなるにしたがって半係合状態(スリップ状態)を経て完全係合状態となる。ここでは、クラッチ10は、後述するようにTM油圧制御装置14から供給される作動油の油圧であるクラッチ油圧によって作動する油圧式の装置である。このクラッチ油圧とは、クラッチ10において回転部材10aと回転部材10bとを係合させるための油圧であり、クラッチ10において回転部材10aと回転部材10bとを係合させる係合力は、このクラッチ油圧に応じた大きさとなる。
 変速機11は、車両2の走行状態に応じて自動で変速比(変速段)を変更するいわゆる自動変速機である。変速機11は、例えば、有段自動変速機(AT)、無段自動変速機(CVT)、マルチモードマニュアルトランスミッション(MMT)、シーケンシャルマニュアルトランスミッション(SMT)、デュアルクラッチトランスミッション(DCT)等、種々の自動変速機が適用される。ここでは、変速機11は、例えば、ベルト式のCVTが適用され、ECU8によって動作が制御される。
 なお、上述のクラッチ10は、ここでは変速機11の本体部の前段に設けられた入力クラッチであるものとして説明するが、これに限らず、設置箇所はこれに限定されない。クラッチ10は、例えば、変速機11がATである場合には変速機11にて各変速段を実現するための種々のクラッチ等であってもよい。
 エンジン4が発生した動力は、トルクコンバータ9を介してクラッチ10に入力され、変速機11にて所定の変速比で変速されて、デファレンシャルギヤ12及びドライブシャフト13を介して駆動輪3に伝達される。この結果、車両2は、駆動輪3の路面との接地面に駆動力[N]が生じ、これにより走行することができる。
 ブレーキ装置6は、駆動輪3を含む車輪に制動力を作用させる。この結果、車両2は、駆動輪3の路面との接地面に制動力[N]が生じ、これにより制動することができる。
 状態検出装置7は、ECU8と電気的に接続されており、相互に検出信号や駆動信号、制御指令等の情報の授受を行うことができる。状態検出装置7は、エンジン回転数センサ7a、アクセル開度センサ7b、ブレーキセンサ7c、車速センサ7d、加減速度センサ7e、タービン回転数センサ7f、インプット回転数センサ7g、充電状態検出器7h、水温センサ7i、油温センサ7j、負荷検出器7k等の車両2の各部に設けられた種々のセンサ、検出装置等を含む。エンジン回転数センサ7aは、エンジン4の出力軸回転数(回転速度)であるエンジン回転数(回転速度)を検出する。アクセル開度センサ7bは、運転者によるアクセルペダル71の操作量(アクセル操作量)であるアクセル開度を検出する。ブレーキセンサ7cは、運転者によるブレーキペダル72の操作量、例えば、マスタシリンダ圧等を検出しブレーキ力を検出する。車速センサ7dは、車両2の走行速度である車速を検出する。加減速度センサ7eは、車両2の車体に作用する加減速度を検出する。タービン回転数センサ7fは、回転部材10aの回転数(回転速度)であるタービン回転数を検出する。このタービン回転数は、トルクコンバータ9からの出力回転数に相当する。インプット回転数センサ7gは、回転部材10bの回転数(回転速度)であるインプット回転数を検出する。このインプット回転数は、変速機11の本体部(例えば、ベルト式CVTにおけるプライマリシーブ)への入力回転数に相当する。充電状態検出器7hは、車両2が搭載するバッテリ73の蓄電量(充電量)やバッテリ電圧等に応じた充電状態SOCを検出する。水温センサ7iは、エンジン4を冷却する冷却媒体としての冷却水の温度である水温を検出する。油温センサ7jは、車両2に供給され後述のTM油圧制御装置14、ブレーキ油圧制御装置15等で用いられるオイルの温度である油温を検出する。負荷検出器7kは、車両2に搭載される空調装置74(エアコンディショナ)の負荷を検出する。
 ECU8は、CPU、ROM、RAM及びインターフェースを含む周知のマイクロコンピュータを主体とする電子回路である。ECU8は、状態検出装置7からの検出結果等に対応した電気信号が入力され、入力された検出結果等に応じて、エンジン4、変速機11等を含む動力伝達装置5、ブレーキ装置6等を制御する。ここでは、変速機11等を含む動力伝達装置5、ブレーキ装置6は、媒体としての作動油の圧力(油圧)によって作動する油圧式の装置であり、ECU8は、それぞれTM油圧制御装置14、ブレーキ油圧制御装置15等を介してこれら変速機11、ブレーキ装置6の動作を制御し、例えば、変速機11の変速動作やクラッチ10の係合・解放動作等を制御する。
 また、ECU8は、例えば、アクセル開度センサ7bによる検出結果に基づいて、運転者による車両2に対する加速要求操作であるアクセル操作のON/OFFを検出することができる。同様に、ECU8は、例えば、ブレーキセンサ7cによる検出結果に基づいて、運転者による車両2に対する制動要求操作であるブレーキ操作のON/OFFを検出することができる。
 ECU8は、例えば、基本的には、アクセル開度、車速等に基づいてエンジン4のスロットル装置16を制御し、吸気通路17のスロットル開度を調節し、吸入空気量を調節して、その変化に対応して燃料噴射量を制御し、燃焼室4aに充填される混合気の量を調節してエンジン4の出力を制御する。また、ECU8は、アクセル開度、車速等に基づいてTM油圧制御装置14を制御し、クラッチ10の作動状態や変速機11の変速比を制御する。
 また、ECU8は、車両2の走行中において、エンジン4を始動し、又は作動を停止して、エンジン4の作動状態と非作動状態とを切り替えることが可能となっている。ここでは、ECU8は、車両2の走行中に、エンジン4を自動で停止し、かつ自動で再始動するS&S制御を実行可能である。ECU8は、車両2の走行中に、エンジン4を停止するエンジン停止許可条件(エンジン4の停止許可条件)が成立すると、エンジン4の燃焼室4aへの燃料の供給をカット(フューエルカット)してエンジン4を自動的に停止し、エンジン4を非作動状態とする。また、ECU8は、車両2の走行中でエンジン4が非作動状態である場合に、例えば、エンジン4を再始動するエンジン再始動条件が成立すると、燃焼室4aへの燃料カット状態から復帰しエンジン4を再始動し、エンジン4を作動状態とする。ECU8は、典型的には、S&S制御では、クラッチ10を解放状態として車両2を走行させる。これにより、この車両制御システム1は、S&S制御では、クラッチ10にて、駆動輪3とエンジン4との動力の伝達が遮断され、駆動輪3に対してエンジンブレーキが作用しない状態となる。この結果、車両制御システム1は、エンジン4に対する燃料の供給を停止することによる燃費向上効果に加えて、走行抵抗に起因する車両2の運動エネルギの損失を極力抑えることによる燃費向上効果を実現することができる。
 ECU8は、車両2の走行中に行うS&S制御として、例えば、減速S&S制御やフリーランS&S制御を実行することができる。減速S&S制御は、例えば、運転者によってアクセル操作が解除されかつブレーキ操作がなされた状態(アクセル操作OFF、ブレーキ操作ON)で車両2が所定車速以下の低速で減速走行する場合に実行される。フリーランS&S制御は、例えば、運転者によってアクセル操作、ブレーキ操作がともに解除された状態(アクセル操作OFF、ブレーキ操作OFF)で車両2が減速走行する場合に実行される。なお、このフリーランS&S制御も実行可能な車速上限値を有しており、基本的には、車両2がこの車速上限値以下で減速走行する場合に実行される。
 本実施形態のECU8は、S&S制御において、車両2の走行速度である車速に関連する車速パラメータと、この車速パラメータとは異なる判定パラメータとに基づいてエンジン4及びクラッチ10を制御する。ECU8は、これらのパラメータの条件を調停し、すべてのパラメータに関するエンジン停止許可条件が成立した際に、実際にエンジン4の停止を実施する。なお、以下の説明では、一例として、ECU8がS&S制御として減速S&S制御を行う場合を説明する。
 ここで、車速パラメータは、車両2の車速、あるいは、車両2の車速に影響を及ぼすパラメータである。車速パラメータは、例えば、車速センサ7dが検出する車速、加減速度センサ7eが検出する減速度、あるいは、ブレーキセンサ7cが検出するマスタシリンダ圧(ブレーキペダル72の操作量)等に相当するパラメータのうちのいずれか1つ、あるいは、複数を用いることができる。
 一方、判定パラメータは、車速パラメータ以外のパラメータであって車両2の状態を示すパラメータである。判定パラメータは、典型的には、エンジン4からの動力によって駆動可能である補機の負荷に関連するパラメータであり、例えば、充電状態検出器7hが検出するバッテリ73の充電状態SOC、水温センサ7iが検出する冷却水の水温、油温センサ7jが検出するオイルの油温、あるいは、負荷検出器7kが検出する空調装置74の負荷等に相当するパラメータのうちのいずれか1つ、あるいは、複数を用いることができる。
 そして、本実施形態のECU8は、アクセル操作がOFF(すなわち、加速要求操作が解除)され、車両2の減速走行中に、判定パラメータに関するエンジン停止許可条件が成立した際にクラッチ10を解放状態とし、車速パラメータに関するエンジン停止許可条件が成立した際にエンジン4を非作動状態とするクラッチ解放先出し制御を実行可能である。つまり、ECU8は、判定パラメータがエンジン4を停止するためのエンジン停止許可条件を満たした際にクラッチ10を解放状態とし、車速パラメータがエンジン4を停止するためのエンジン停止許可条件を満たした際に実際にエンジン4を非作動状態とする。これにより、車両制御システム1は、早期にエンジン4を停止することを可能とし、燃費性能を向上させている。
 ここで、判定パラメータに関するエンジン停止許可条件とは、例えば、充電状態検出器7hが検出するバッテリ73の充電状態SOC、例えばバッテリ電圧、充電量等が予め設定される所定値以上であること、水温センサ7iが検出する冷却水の水温が予め設定される所定水温以下であること、油温センサ7jが検出するオイルの油温が予め設定される所定油温以下であること、負荷検出器7kが検出する空調装置74の負荷が予め設定される所定負荷以下であること、等である。上記所定値、上記所定水温、上記所定油温、上記所定負荷は、実車評価等に基づいて、エンジン4からの動力によって駆動する補機である発電機(例えば、オルタネータ)、オイルポンプ、ウォーターポンプ、空調装置74の圧縮機(コンプレッサ)等を作動させる必要がある状態であるか否か等に応じて設定すればよい。
 ECU8は、適用している判定パラメータに関する上記エンジン停止許可条件のいずれかが不成立である場合、エンジン4の停止を禁止する。そして、ECU8は、車両2の減速走行中において、適用している判定パラメータに関する上記エンジン停止許可条件が全て成立した際、すなわち、車両2がこのまま減速し車速が低下すれば車速パラメータに関するエンジン停止許可条件も成立し減速S&S制御が実行されると推定できるときには、クラッチ10を制御して解放状態とする動作を開始する。ここでは、ECU8は、判定パラメータに関する上記エンジン停止許可条件が全て成立した際に、TM油圧制御装置14を制御してクラッチ10に供給するクラッチ油圧を低減(減圧)する。これにより、ECU8は、クラッチ10の係合力を低減し、クラッチ10を解放状態とし、回転部材10aと回転部材10bとを切り離しエンジン4と駆動輪3との間での動力伝達を遮断した状態とする。これにより、ECU8は、実際のエンジン4の停止制御に先行してクラッチ10を解放状態としておくことができる。
 なおこのとき、ECU8は、クラッチ油圧を低減しクラッチ10の係合力を低減する際には、解放開始初期のクラッチ油圧を所定油圧に低減した後、スイープ制御によりクラッチ油圧を徐々に減圧し、最終的にクラッチ10を完全な解放状態とする。これにより、この車両制御システム1は、クラッチ10の解放の際に動力の伝達が急激に遮断されることを抑制することができ、動力伝達の急激な遮断に伴ってショックが発生することを抑制することができる。
 一方、車速パラメータに関するエンジン停止許可条件とは、例えば、車速センサ7dが検出する車速が予め設定される所定車速以下であること、加減速度センサ7eが検出する減速度の絶対値が所定減速度以上であること、ブレーキセンサ7cが検出するマスタシリンダ圧(ブレーキペダル72の操作量)が所定圧以上であること、等である。上記所定車速、上記所定減速度、上記所定圧、車両2の仕様、実車評価等に基づいて予め設定すればよい。
 ECU8は、適用している車速パラメータに関する上記エンジン停止許可条件が全て成立した際に、エンジン4の停止を許可し、エンジン停止要求を生成する。そして、ECU8は、エンジン4の燃焼室4aへの燃料の供給をカットしてエンジン4を停止し、エンジン4を非作動状態とする。
 なお、ECU8は、アクセル操作がONされたり、判定パラメータに関する上記エンジン停止許可条件、車速パラメータに関する上記エンジン停止許可条件のいずれかが不成立となったりした場合、すなわち、エンジン再始動条件が成立した場合に、燃料カット状態から復帰しエンジン4を再始動し作動状態とすると共にクラッチ10を係合状態とする。
 次に、図2のフローチャートを参照して車両制御システム1におけるECU8による制御の一例を説明する。なお、これらの制御ルーチンは、数msないし数十ms毎の制御周期で繰り返し実行される(以下、同様。)。
 まず、ECU8は、車両2が減速中であるか否かを判定する(ST1)。ECU8は、例えば、アクセル開度センサ7bが検出するアクセル開度に基づいてアクセル操作がOFF、すなわち、加速要求操作が解除されている状態であるか否かを判定し、これに応じて車両2が減速中であるか否かを判定する。ECU8は、アクセル操作がONであり車両2が減速中でないと判定した場合(ST1:No)、今回の制御周期を終了し、次回の制御周期に移行する。
 ECU8は、アクセル操作がOFFであり車両2が減速中であると判定した場合(ST1:Yes)、判定パラメータに関するエンジン停止許可条件が成立したか否かを判定する(ST2)。ECU8は、例えば、充電状態検出器7h、水温センサ7i、油温センサ7j、負荷検出器7k等による検出結果に基づいて、車速パラメータ以外の判定パラメータに関するエンジン停止許可条件がすべて成立したか否かを判定する。ECU8は、判定パラメータに関するエンジン停止許可条件のいずれかが成立していないと判定した場合(ST2:No)、今回の制御周期を終了し、次回の制御周期に移行する。
 ECU8は、判定パラメータに関するエンジン停止許可条件がすべて成立したと判定した場合(ST2:Yes)、クラッチ10を制御して解放状態とする動作を開始する(ST3)。
 次に、ECU8は、車速パラメータに関するエンジン停止許可条件が成立したか否かを判定する(ST4)。ECU8は、例えば、車速センサ7d、加減速度センサ7e、ブレーキセンサ7c等による検出結果に基づいて、車速パラメータに関するエンジン停止許可条件がすべて成立したか否かを判定する。ECU8は、車速パラメータに関するエンジン停止許可条件のいずれかが成立していないと判定した場合(ST4:No)、車速パラメータに関するエンジン停止許可条件がすべて成立したと判定されるまでこの判定を繰り返し行う。
 ECU8は、車速パラメータに関するエンジン停止許可条件がすべて成立したと判定した場合(ST4:Yes)、エンジン4を制御して停止し非作動状態として(ST5)、今回の制御周期を終了し、次回の制御周期に移行する。
 この間、ECU8は、エンジン再始動条件成立判定も並行して行い、エンジン再始動条件が成立した場合には、エンジン4を再始動し作動状態に復帰すると共にクラッチ10を係合状態とする、あるいは、エンジン4を作動状態、クラッチ10を係合状態でそのまま維持する。
 次に、図3のタイムチャートを参照して上記のように構成された車両制御システム1の動作の一例を説明する。図3は、横軸を時間軸とし、縦軸をエンジン回転数、インプット回転数、タービン回転数、クラッチ油圧としている。図3中、実線L11はエンジン回転数、実線L12はインプット回転数、点線L13はタービン回転数、実線L14はクラッチ油圧を表している(後述の図5、図6も同様である。)。
 上記のように構成される車両制御システム1は、図3に例示するように、車両2の減速走行中に、全てのエンジン停止許可条件が成立しエンジン停止要求が発生する前に、車速パラメータ以外の判定パラメータに関する上記エンジン停止許可条件が成立した時点t11で、クラッチ10を解放状態とする動作を開始することができる。このとき、ECU8は、実線L14で表すように、判定パラメータに関する上記エンジン停止許可条件が成立した時点t11にて、TM油圧制御装置14を制御し、クラッチ油圧を予め設定される解放開始初期油圧P1まで低減することで係合力を解放開始初期係合力まで低減する。その後、ECU8は、スイープ制御によりクラッチ油圧を徐々に減圧し、最終的にクラッチ10を完全な解放状態とする。これにより、車両制御システム1は、動力伝達の急激な遮断に伴ってショックが発生することを抑制することができる。
 そして、車両制御システム1は、車速パラメータに関する上記エンジン停止許可条件が成立し実際にエンジン停止要求が発生した時点t12では、実線L12、点線L13で表すように、すでにインプット回転数とタービン回転数との差回転数が所定以上となっており、すなわち、クラッチ10が解放状態となって駆動輪3とエンジン4とが切り離されている。このため、車両制御システム1は、時点t12でエンジン停止要求が発生した後、即座にエンジン4を停止しても停止時のショックが駆動輪3側に伝達されることを抑制することができ、よって、ショックの発生を抑制することができる。
 この結果、車両制御システム1は、車速パラメータのエンジン停止許可条件が成立し実際にエンジン停止要求が発生する前に、事前にクラッチ10を解放しておくことができるため、エンジン停止要求が発生した際にはクラッチ10の解放動作を待つこと無く、早期にエンジン4を停止することができる。車両制御システム1は、実線L11で表すように、これに伴ってエンジン回転数が低下する。つまり、車両制御システム1は、例えば、車両2が減速し車速がエンジン4の停止を許可する所定車速(エンジン停止車速)となった時点で、即座にエンジン4を停止し非作動状態とすることができる。よって、車両制御システム1は、エンジン稼働時間を相対的に短くすることができ、要求エンジン停止領域に対して実エンジン停止領域をほぼ一致させることができ、余分な燃料消費量を低減することができ、燃費向上を図ることができる。したがって、車両制御システム1は、さらなる燃費向上効果を得ることができ、エンジン停止時のショック抑制と燃費性能の向上とを両立することができる。
 さらに言えば、車両制御システム1は、上述のようにスイープ制御により動力伝達の急激な遮断に伴ったショックの発生を抑制する制御を行った場合であっても、エンジン停止要求が発生する前に、クラッチ10を解放することができるので、実際にエンジン停止要求が発生した時点で即座にエンジン4を停止することができる。この点でも、車両制御システム1は、エンジン停止時のショック抑制と燃費性能の向上とを両立することができる。
 なお、ECU8は、車速パラメータに関するエンジン4の停止許可条件が成立した際に、回転部材10aと回転部材10bとの実際の差回転数(差回転速度)に基づいて、クラッチ10が完全に解放された状態であることを判定、確認し、その上で実際にエンジン4を非作動状態とするように制御してもよい。この場合、ECU8は、タービン回転数センサ7fが検出するタービン回転数とインプット回転数センサ7gが検出するインプット回転数との実際の差回転数を算出する。そして、ECU8は、この実際の差回転速度が予め設定される解放判定差回転数(判定差回転速度)以上である状態で、実際にエンジン4を非作動状態とするように制御するとよい。上記解放判定差回転数は、クラッチ10が解放状態であることを判定するための差回転数である。この場合、車両制御システム1は、クラッチ10が確実に解放状態となっていることを確認した後に、エンジン4を停止させることができるので、エンジン停止時のショックを確実に抑制することができる。
 以上で説明した実施形態に係る車両制御システム1によれば、エンジン4と、クラッチ10と、ECU8とを備える。エンジン4は、車両2の走行中に、作動状態と非作動状態とを切り替え可能である。クラッチ10は、エンジン4と駆動輪3とを動力伝達可能に係合した係合状態と、係合を解除した解放状態とに切り替え可能である。ECU8は、車両2の走行速度に関連する車速パラメータと、この車速パラメータとは異なる判定パラメータとに基づいてエンジン4及びクラッチ10を制御する。ECU8は、車両2の減速走行中に、判定パラメータに関するエンジン4の停止許可条件が成立した際にクラッチ10を解放状態とし、車速パラメータに関するエンジン4の停止許可条件が成立した際にエンジン4を非作動状態とする。
 したがって、車両制御システム1は、車速パラメータのエンジン停止許可条件が成立し実際にエンジン停止要求が発生した際にはクラッチ10の解放動作を待つこと無く、早期にエンジン4を停止することができるので、エンジン稼働時間を相対的に短くすることができ、燃費性能を向上することができる。この結果、車両制御システム1は、エンジン停止時のショック抑制と燃費性能の向上とを両立することができる。
[実施形態2]
 図4は、実施形態2に係る車両制御システムにおける制御の一例を説明するフローチャート、図5、図6は、実施形態2に係る車両制御システムの動作の一例を説明するタイムチャートである。実施形態2に係る車両制御システムは、係合装置を解放状態とする際の係合力を可変とする点で実施形態1とは異なる。その他、上述した実施形態と共通する構成、作用、効果については、重複した説明はできるだけ省略する。また、実施形態2に係る車両制御システムの各構成については、図1等を参照する。
 本実施形態に係る車両制御システム201は、車速パラメータに関するエンジン停止許可条件が成立した際のエンジン4側の回転部材10aと駆動輪3側の回転部材10bとの実際の差回転数と、クラッチ10が解放状態であることを判定するための判定差回転数との偏差に基づいて、クラッチ10を解放状態とする際の係合力を変更する。
 上述したようにECU8は、タービン回転数センサ7fが検出するタービン回転数とインプット回転数センサ7gが検出するインプット回転数との実際の差回転数を算出し、この実際の差回転数に基づいてクラッチ10が完全に解放された状態であることを確認することができる。すなわち、ECU8は、タービン回転数とインプット回転数との実際の差回転数が解放判定差回転数以上であると判定した場合に、クラッチ10が完全に解放された状態であると判定することができる。
 ここで、車両制御システム201は、例えば、各部品のバラツキ(例えば、種々のパッククリアランスのバラツキや種々のリターンスプリングセット荷重のバラツキ)、経時劣化等に応じて機差のバラツキが生じる場合がある。この場合、車両制御システム201は、例えば、常に予め設定された固定値の解放開始初期油圧や減圧勾配を用いてクラッチ10を解放していると、上記機差のバラツキ等に起因して、車速パラメータに関するエンジン停止許可条件が成立した際にクラッチ10が十分に解放しきれない場合が生じるおそれがある。すなわちこの場合、車両制御システム201は、エンジン停止要求が発生した時点で、クラッチ10が十分に解放しきれず、エンジン停止要求が発生した時点ですぐに、エンジン4を停止することができないおそれがある。
 これに対して、本実施形態のECU8は、停止要求発生時差回転数偏差に基づいて、上記のようなバラツキを補償する。ここで、停止要求発生時差回転数偏差は、車速パラメータに関するエンジン停止許可条件が成立した際、すなわち、エンジン停止要求が発生した時点でのタービン回転数とインプット回転数との実際の差回転数と、解放判定差回転数との偏差である。ここでは、ECU8は、要求エンジン停止車速と実エンジン停止車速とが一致しなかった場合(すなわち、異なる場合)に、言い換えれば、エンジン停止要求が発生した時点での実際の差回転数が解放判定差回転数未満であった場合に、この停止要求発生時差回転数偏差に基づいてバラツキを学習し、クラッチ10を解放する際の係合力を可変とする。つまり、ECU8は、要求エンジン停止領域に対して実エンジン停止領域が一致しなかった場合に、上記停止要求発生時差回転数偏差に基づいてクラッチ10を解放する際のクラッチ油圧を可変とし、係合力を可変とする。なおここで、要求エンジン停止車速とは、車速パラメータに関するエンジン停止許可条件が成立しエンジン停止要求が発生した際の車速である。また、実エンジン停止車速とは、実際の差回転数と解放判定差回転数とに基づいてクラッチ10の解放が確認され、エンジン4が実際に停止した際の車速である。
 ここでは、ECU8は、実際の差回転速度と判定差回転速度との偏差である停止要求発生時差回転数偏差に応じて係合力調整値(学習値)を算出し、この係合力調整値に基づいて、クラッチ10の解放の開始初期の解放開始初期油圧を低減し、解放開始初期係合力を低減する。ECU8は、例えば、クラッチ解放先出し制御を実行したものの、上記のように要求エンジン停止車速と実エンジン停止車速とが一致しなかった場合に、今回の解放開始初期油圧から係合力調整値に応じた油圧を差し引いた油圧を、次回以降のクラッチ解放先出し制御での解放開始初期油圧とする。この場合、停止要求発生時差回転数偏差と係合力調整値との関係は、例えば、予め実車評価等に基づいて係合力調整値マップとしてマップ化してECU8の記憶部に記憶しておく。ECU8は、この係合力調整値マップに基づいて、停止要求発生時差回転数偏差から係合力調整値を算出する。なお、停止要求発生時差回転数偏差と係合力調整値との関係は、係合力調整値マップにかえて数式モデルとして記憶部に記憶しておいてもよい。
 次に、図4のフローチャートを参照して車両制御システム201におけるECU8による制御の一例を説明する。
 まず、ECU8は、車両2の減速走行中に、判定パラメータに関するエンジン停止許可条件が成立した際にクラッチ10を解放状態とし、車速パラメータに関するエンジン停止許可条件が成立した際にエンジン4を非作動状態とするクラッチ解放先出し制御を実施したか否かを判定する(ST21)。ECU8は、クラッチ解放先出し制御を実施していないと判定した場合(ST21:No)、今回の制御周期を終了し、次回の制御周期に移行する。
 ECU8は、クラッチ解放先出し制御を実施したと判定した場合(ST21:Yes)、クラッチ解放先出し制御において、要求エンジン停止車速と実エンジン停止車速とが一致したか否かを判定する(ST22)。ECU8は、例えば、車速センサ7dによる検出結果に基づいて、車速パラメータに関するエンジン停止許可条件が成立しエンジン停止要求が発生した際の車速と、エンジン4が実際に停止した際の車速とを比較して、要求エンジン停止車速と実エンジン停止車速とが一致したか否かを判定する。なお、ECU8は、これに限らず、例えば、エンジン停止要求が発生した時点でのタービン回転数とインプット回転数との実際の差回転数と、解放判定差回転数との偏差に基づいて、要求エンジン停止車速と実エンジン停止車速とが一致したか否かを判定してもよい。この場合、ECU8は、エンジン停止要求が発生した時点での実際の差回転数が解放判定差回転数未満であった場合に、要求エンジン停止車速と実エンジン停止車速とが一致していないと判定することができる。ECU8は、要求エンジン停止車速と実エンジン停止車速とが一致したと判定した場合(ST22:Yes)、今回の制御周期を終了し、次回の制御周期に移行する。
 ECU8は、要求エンジン停止車速と実エンジン停止車速とが一致しない、すなわち、要求エンジン停止車速と実エンジン停止車速とが異なると判定した場合(ST22:No)、エンジン停止許可条件が成立しエンジン停止要求が発生した際にタービン回転数センサ7fが検出したタービン回転数とインプット回転数センサ7gが検出したインプット回転数との実際の差回転数を算出する。そして、ECU8は、解放判定差回転数と、この要求エンジン停止車速時の実際の差回転数とを比較し、停止要求発生時差回転数偏差として、解放判定差回転数と実際の差回転数との差分を算出する(ST23)。
 そして、ECU8は、停止要求発生時差回転数偏差として算出した解放判定差回転数と実際の差回転数との差分に応じた解放開始初期油圧を、次回以降のクラッチ解放先出し制御で補正し(ST24)、今回の制御周期を終了し、次回の制御周期に移行する。この場合、ECU8は、係合力調整値マップに基づいて、停止要求発生時差回転数偏差として算出した解放判定差回転数と実際の差回転数との差分から、係合力調整値(学習値)を算出する。そして、ECU8は、今回のクラッチ解放先出し制御での解放開始初期油圧から係合力調整値に応じた油圧を差し引いて、この差し引いた後の解放開始初期油圧を次回以降のクラッチ解放先出し制御での解放開始初期油圧とする。
 次に、図5、図6のタイムチャートを参照して上記のように構成された車両制御システム201の動作の一例を説明する。
 上記のように構成される車両制御システム201は、図5に例示するように、判定パラメータに関するエンジン停止許可条件が成立した時点t11でクラッチ10を解放状態とする動作を開始する。このとき、ECU8は、実線L14で表すように、時点t11にて、TM油圧制御装置14を制御し、クラッチ油圧を解放開始初期油圧P1まで低減することで係合力を解放開始初期係合力まで低減する。その後、ECU8は、スイープ制御によりクラッチ油圧を徐々に減圧し、最終的にクラッチ10を完全な解放状態とする。そして、車両制御システム201は、車速パラメータに関するエンジン停止許可条件が成立した時点t12で実際にエンジン停止要求が発生する。
 このとき、車両制御システム201は、時点t12で、例えば、機差のバラツキに起因して、インプット回転数とタービン回転数との実際の差回転数ΔNが未だ解放判定差回転数未満である場合、すなわち、クラッチ10が未だ十分に解放しきれない場合、この時点t12ではエンジン4を停止できず、所定時間経過後、クラッチ10が十分に解放した時点t13でようやくエンジン4を停止できる状態となる。この場合、車両制御システム201は、エンジン停止要求が発生した時点ですぐに、エンジン4を停止できず、要求エンジン停止車速と実エンジン停止車速とが一致せず、要求エンジン停止領域に対して実エンジン停止領域が相対的に狭くなってしまう。
 車両制御システム201は、上記のように要求エンジン停止車速と実エンジン停止車速とが一致せず、要求エンジン停止領域に対して実エンジン停止領域が相対的に狭くなった場合には、実際の差回転数ΔNと解放判定差回転数との差分をとって停止要求発生時差回転数偏差を算出し、この停止要求発生時差回転数偏差に応じた係合力調整値を算出する。そして、車両制御システム201は、図6に例示するように、今回のクラッチ解放先出し制御での解放開始初期油圧P1から係合力調整値に応じた油圧ΔPを差し引いた油圧を、次回以降のクラッチ解放先出し制御での解放開始初期油圧P2とする。
 この結果、車両制御システム201は、図6中に実線L14Aで表すように、次回以降のクラッチ解放先出し制御では解放開始初期油圧P2を用いてクラッチ10を解放することで、機差のバラツキにかかわらず、車速パラメータに関するエンジン停止許可条件が成立した際にクラッチ10が十分に解放した状態とすることができる。つまり、車両制御システム201は、車両2が要求エンジン停止車速となる前にクラッチ10の解放を完了することができる。これにより、車両制御システム201は、エンジン停止要求が発生した時点t12ですぐに、エンジン4を停止することができる。したがって、車両制御システム201は、機差のバラツキにかかわらず、エンジン停止要求が発生した時点ですぐに、エンジン4を停止することができ、要求エンジン停止車速と実エンジン停止車速とを一致させることができ、要求エンジン停止領域と実エンジン停止領域とを一致させることができる。よって、車両制御システム201は、機差のバラツキ等に対応してエンジン稼働時間を相対的に短くすることができ、確実に燃費性能を向上することができる。
 なお、以上の説明では、ECU8は、停止要求発生時差回転数偏差に応じた係合力調整値に基づいて解放開始初期油圧を低減し、解放開始初期係合力を低減するものとして説明したがこれに限らない。ECU8は、停止要求発生時差回転数偏差に基づいて、動力伝達の急激な遮断によりショックが生じない範囲で、スイープ制御におけるクラッチ油圧の減圧勾配を大きくすることで、クラッチ10を解放する際のクラッチ油圧を可変とし、係合力を可変としてもよい。
 以上で説明した実施形態に係る車両制御システム201は、車速パラメータのエンジン停止許可条件が成立し実際にエンジン停止要求が発生した際にはクラッチ10の解放動作を待つこと無く、早期にエンジン4を停止することができるので、エンジン稼働時間を相対的に短くすることができ、燃費性能を向上することができる。この結果、車両制御システム1は、エンジン停止時のショック抑制と燃費性能の向上とを両立することができる。
 さらに、以上で説明した実施形態に係る車両制御システム201によれば、クラッチ10は、エンジン4側の回転部材10aと駆動輪3側の回転部材10bとを動力伝達可能に係合であると共に、エンジン4側の回転部材10aと駆動輪3側の回転部材10bとを係合する係合力を調節可能である。ECU8は、車速パラメータに関するエンジン4の停止許可条件が成立した際のエンジン4側の回転部材10aと駆動輪3側の回転部材10bとの実際の差回転速度と、クラッチ10が解放状態であることを判定するための判定差回転速度との偏差に基づいて、クラッチ10を解放状態とする際の係合力を変更する。ECU8は、上記実際の差回転速度と判定差回転速度との偏差に応じた係合力調整値に基づいて、クラッチ10の解放の開始初期の解放開始初期係合力を低減する。
 したがって、車両制御システム201は、例えば、各部品のバラツキ、経時劣化等に応じた機差のバラツキにかかわらず、車速パラメータに関するエンジン停止許可条件が成立した際にクラッチ10が十分に解放した状態とすることができ、エンジン停止要求が発生した時点ですぐに、エンジン4を停止することができる。この結果、車両制御システム201は、より確実に燃費性能を向上することができる。
 なお、上述した本発明の実施形態に係る車両制御システムは、上述した実施形態に限定されず、請求の範囲に記載された範囲で種々の変更が可能である。
 以上で説明したクラッチ解放先出し制御は、減速S&S制御の実行時に限らず、フリーランS&S制御を含むS&S制御の実行時に行うことができるものである。
 以上で説明した車両は、走行用動力源として、エンジン4に加えてさらに、発電可能な電動機としてのモータジェネレータなどを備えたいわゆる「ハイブリッド車両」であってもよい。
1、201  車両制御システム
2  車両
3  駆動輪
4  エンジン(内燃機関)
5  動力伝達装置
6  ブレーキ装置
7  状態検出装置
8  ECU(制御装置)
9  トルクコンバータ
10  クラッチ(係合装置)
10a、10b  回転部材
11  変速機
12  デファレンシャルギヤ
13  ドライブシャフト
14  TM油圧制御装置
15  ブレーキ油圧制御装置
16  スロットル装置
17  吸気通路
71  アクセルペダル
72  ブレーキペダル
73  バッテリ
74  空調装置

Claims (6)

  1.  車両の走行中に、作動状態と非作動状態とを切り替え可能な内燃機関と、
     前記内燃機関と前記駆動輪とを動力伝達可能に係合した係合状態と、前記係合を解除した解放状態とに切り替え可能である係合装置と、
     前記車両の走行速度に関連する車速パラメータと、当該車速パラメータとは異なる判定パラメータとに基づいて前記内燃機関及び前記係合装置を制御し、前記車両の減速走行中に、前記判定パラメータに関する前記内燃機関の停止許可条件が成立した際に前記係合装置を解放状態とし、前記車速パラメータに関する前記内燃機関の停止許可条件が成立した際に前記内燃機関を非作動状態とする制御装置とを備えることを特徴とする、
     車両制御システム。
  2.  前記判定パラメータは、前記内燃機関からの動力によって駆動可能である補機の負荷に関連するパラメータである、
     請求項1に記載の車両制御システム。
  3.  前記判定パラメータは、前記車両が搭載するバッテリの充電状態、前記内燃機関を冷却する冷却媒体の温度、前記車両に供給されるオイルの温度、あるいは、前記車両が搭載する空調装置の負荷に相当するパラメータである、
     請求項1又は請求項2に記載の車両制御システム。
  4.  前記係合装置は、前記内燃機関側の回転部材と前記駆動輪側の回転部材とを動力伝達可能に係合であると共に、前記内燃機関側の回転部材と前記駆動輪側の回転部材とを係合する係合力を調節可能であり、
     前記制御装置は、前記車速パラメータに関する前記内燃機関の停止許可条件が成立した際の前記内燃機関側の回転部材と前記駆動輪側の回転部材との実際の差回転速度と、前記係合装置が解放状態であることを判定するための判定差回転速度との偏差に基づいて、前記係合装置を解放状態とする際の前記係合力を変更する、
     請求項1乃至請求項3のいずれか1項に記載の車両制御システム。
  5.  前記制御装置は、前記実際の差回転速度と前記判定差回転速度との偏差に応じた係合力調整値に基づいて、前記係合装置の解放の開始初期の解放開始初期係合力を低減する、
     請求項4に記載の車両制御システム。
  6.  前記制御装置は、前記車速パラメータに関する前記内燃機関の停止許可条件が成立した際に、前記実際の差回転速度が前記判定差回転速度以上である状態で、実際に前記内燃機関を非作動状態とする、
     請求項4又は請求項5に記載の車両制御システム。
PCT/JP2011/069444 2011-08-29 2011-08-29 車両制御システム WO2013030921A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112011105583.8T DE112011105583T5 (de) 2011-08-29 2011-08-29 Fahrzeugsteuersystem
PCT/JP2011/069444 WO2013030921A1 (ja) 2011-08-29 2011-08-29 車両制御システム
US14/239,743 US9452756B2 (en) 2011-08-29 2011-08-29 Vehicle control system
JP2013530905A JP5765426B2 (ja) 2011-08-29 2011-08-29 車両制御システム
CN201180072903.5A CN103748378B (zh) 2011-08-29 2011-08-29 车辆控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/069444 WO2013030921A1 (ja) 2011-08-29 2011-08-29 車両制御システム

Publications (1)

Publication Number Publication Date
WO2013030921A1 true WO2013030921A1 (ja) 2013-03-07

Family

ID=47755476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069444 WO2013030921A1 (ja) 2011-08-29 2011-08-29 車両制御システム

Country Status (5)

Country Link
US (1) US9452756B2 (ja)
JP (1) JP5765426B2 (ja)
CN (1) CN103748378B (ja)
DE (1) DE112011105583T5 (ja)
WO (1) WO2013030921A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013030921A1 (ja) * 2011-08-29 2015-03-23 トヨタ自動車株式会社 車両制御システム
JP2016117307A (ja) * 2014-12-18 2016-06-30 トヨタ自動車株式会社 車両制御装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013205245A1 (de) * 2013-03-25 2014-09-25 Continental Teves Ag & Co. Ohg Fahrzeugreferenzgeschwindigkeitsbestimmungsverfahren und Fahrzeugsteuergerät mit einem solchen Verfahren
CN104581574B (zh) * 2014-12-31 2018-08-14 苏州逸巛声学科技有限公司 改进型阻抗可调式磁力驱动机构及其受话器
JP7139972B2 (ja) * 2019-01-24 2022-09-21 トヨタ自動車株式会社 車載制御装置
CN109441976B (zh) * 2019-01-24 2019-07-05 盛瑞传动股份有限公司 离合器控制方法、自动变速箱控制单元及汽车
CN114718967B (zh) * 2022-02-25 2024-06-07 深圳绿米联创科技有限公司 驱动装置的校正方法、装置、系统、智能窗帘和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097696A (ja) * 2001-09-25 2003-04-03 Jatco Ltd トルクコンバータのコースト時ロックアップ容量制御装置
JP2005325805A (ja) * 2004-05-17 2005-11-24 Toyota Motor Corp ハイブリッド車両のエンジン自動停止・始動制御装置
JP2006273305A (ja) * 2005-03-04 2006-10-12 Toyota Motor Corp 車両用駆動装置の制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649037A (en) 1987-06-30 1989-01-12 Fuji Heavy Ind Ltd Automatic clutch controller for vehicle
JP3368816B2 (ja) * 1997-12-05 2003-01-20 日産自動車株式会社 ハイブリッド車の制御装置
JP4019529B2 (ja) * 1998-11-11 2007-12-12 スズキ株式会社 車両の運転制御装置
JP3776610B2 (ja) * 1998-12-08 2006-05-17 トヨタ自動車株式会社 パワートレーンの制御装置
JP4196915B2 (ja) 2004-09-17 2008-12-17 日産自動車株式会社 ハイブリッド車のモード遷移制御装置
JP4807697B2 (ja) * 2004-12-01 2011-11-02 本田技研工業株式会社 車両の制御装置
JP5055999B2 (ja) * 2006-12-18 2012-10-24 トヨタ自動車株式会社 ハイブリッド駆動装置の制御装置
JP5821285B2 (ja) * 2011-05-30 2015-11-24 日産自動車株式会社 ハイブリッド車両のエンジン停止制御装置
JP5765426B2 (ja) * 2011-08-29 2015-08-19 トヨタ自動車株式会社 車両制御システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097696A (ja) * 2001-09-25 2003-04-03 Jatco Ltd トルクコンバータのコースト時ロックアップ容量制御装置
JP2005325805A (ja) * 2004-05-17 2005-11-24 Toyota Motor Corp ハイブリッド車両のエンジン自動停止・始動制御装置
JP2006273305A (ja) * 2005-03-04 2006-10-12 Toyota Motor Corp 車両用駆動装置の制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013030921A1 (ja) * 2011-08-29 2015-03-23 トヨタ自動車株式会社 車両制御システム
JP2016117307A (ja) * 2014-12-18 2016-06-30 トヨタ自動車株式会社 車両制御装置

Also Published As

Publication number Publication date
CN103748378B (zh) 2016-08-17
JPWO2013030921A1 (ja) 2015-03-23
CN103748378A (zh) 2014-04-23
US9452756B2 (en) 2016-09-27
DE112011105583T5 (de) 2014-05-28
US20140200781A1 (en) 2014-07-17
JP5765426B2 (ja) 2015-08-19

Similar Documents

Publication Publication Date Title
JP5925079B2 (ja) モータ制御装置
JP5765426B2 (ja) 車両制御システム
US9216731B2 (en) Control device for hybrid vehicle
US7347803B2 (en) Drive apparatus for hybrid vehicle and control method and control device thereof
JP6222399B2 (ja) ハイブリッド車両のフェイルセーフ制御装置
KR101696586B1 (ko) 차량의 제어 장치
US9139077B2 (en) Vehicle control system and controller
US9067585B2 (en) Control device for hybrid vehicle
JP5561231B2 (ja) 車両制御システム
US20120316715A1 (en) Engine Start Control Device for Hybrid Vehicles
KR20100109421A (ko) 하이브리드 차량의 제어 장치
KR101558376B1 (ko) 하이브리드 차량의 엔진 클러치 제어 장치 및 방법
JP2015000718A (ja) ハイブリッド自動車のフェイルセーフ制御装置及び方法
KR101776761B1 (ko) 마일드 하이브리드 차량용 배터리 성능 판단 방법 및 장치
CN109072998B (zh) 车辆控制装置
GB2565995A (en) A Start-stop system
JP5272938B2 (ja) 惰行制御補助装置
JP2018177084A (ja) ハイブリッド車両の制御方法及びハイブリッド車両の制御装置
WO2014080721A1 (ja) ハイブリッド車両の制御装置
JP6194735B2 (ja) ハイブリッド車両の制御装置
JP2012106514A (ja) ハイブリッド車両のエンジン始動制御装置
JPWO2020026621A1 (ja) 車両の制御装置
JP2012072740A (ja) 車両制御システム
WO2014054534A1 (ja) ハイブリッド車両の制御装置
WO2012077188A1 (ja) 車両用制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871506

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013530905

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14239743

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112011105583

Country of ref document: DE

Ref document number: 1120111055838

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871506

Country of ref document: EP

Kind code of ref document: A1