WO2013024799A1 - 医療デバイス、コーティング溶液の組合せおよび医療デバイスの製造方法 - Google Patents
医療デバイス、コーティング溶液の組合せおよび医療デバイスの製造方法 Download PDFInfo
- Publication number
- WO2013024799A1 WO2013024799A1 PCT/JP2012/070435 JP2012070435W WO2013024799A1 WO 2013024799 A1 WO2013024799 A1 WO 2013024799A1 JP 2012070435 W JP2012070435 W JP 2012070435W WO 2013024799 A1 WO2013024799 A1 WO 2013024799A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solution
- medical device
- group
- polymer
- less
- Prior art date
Links
- 238000000576 coating method Methods 0.000 title claims description 93
- 239000011248 coating agent Substances 0.000 title claims description 89
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 238000011282 treatment Methods 0.000 title abstract description 23
- 238000000034 method Methods 0.000 title description 64
- 239000000203 mixture Substances 0.000 title description 35
- 239000007853 buffer solution Substances 0.000 claims abstract description 22
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000004327 boric acid Substances 0.000 claims abstract description 5
- 239000000243 solution Substances 0.000 claims description 266
- 229920000642 polymer Polymers 0.000 claims description 259
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 129
- 230000002378 acidificating effect Effects 0.000 claims description 115
- 239000000758 substrate Substances 0.000 claims description 103
- 239000000463 material Substances 0.000 claims description 99
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 claims description 69
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 56
- 239000000872 buffer Substances 0.000 claims description 52
- 239000010453 quartz Substances 0.000 claims description 35
- 238000003380 quartz crystal microbalance Methods 0.000 claims description 35
- 238000005259 measurement Methods 0.000 claims description 31
- 239000007788 liquid Substances 0.000 claims description 30
- 230000001737 promoting effect Effects 0.000 claims description 29
- 239000013078 crystal Substances 0.000 claims description 25
- 239000002504 physiological saline solution Substances 0.000 claims description 17
- 210000001747 pupil Anatomy 0.000 claims description 13
- 239000011347 resin Substances 0.000 claims description 13
- 229920005989 resin Polymers 0.000 claims description 13
- 239000003086 colorant Substances 0.000 claims description 11
- 230000003287 optical effect Effects 0.000 claims description 11
- 238000005406 washing Methods 0.000 claims description 11
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052737 gold Inorganic materials 0.000 claims description 8
- 239000010931 gold Substances 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 7
- 238000000691 measurement method Methods 0.000 claims description 3
- -1 polydimethylsiloxane Polymers 0.000 description 91
- 239000000178 monomer Substances 0.000 description 86
- 239000002585 base Substances 0.000 description 70
- 229920002125 Sokalan® Polymers 0.000 description 64
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 57
- 229920001577 copolymer Polymers 0.000 description 57
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 54
- 238000011156 evaluation Methods 0.000 description 48
- 239000011247 coating layer Substances 0.000 description 41
- 125000000524 functional group Chemical group 0.000 description 41
- 239000010410 layer Substances 0.000 description 40
- 208000016339 iris pattern Diseases 0.000 description 36
- 239000007864 aqueous solution Substances 0.000 description 34
- BZUNJUAMQZRJIP-UHFFFAOYSA-N CPDA Natural products OCCCCCCCCCCCCCCC(O)=O BZUNJUAMQZRJIP-UHFFFAOYSA-N 0.000 description 28
- 230000000052 comparative effect Effects 0.000 description 28
- GISJHCLTIVIGLX-UHFFFAOYSA-N n-[4-[(4-chlorophenyl)methoxy]pyridin-2-yl]-2-(2,6-difluorophenyl)acetamide Chemical compound FC1=CC=CC(F)=C1CC(=O)NC1=CC(OCC=2C=CC(Cl)=CC=2)=CC=N1 GISJHCLTIVIGLX-UHFFFAOYSA-N 0.000 description 28
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 27
- 239000001301 oxygen Substances 0.000 description 27
- 229910052760 oxygen Inorganic materials 0.000 description 27
- 238000006116 polymerization reaction Methods 0.000 description 27
- 239000000126 substance Substances 0.000 description 25
- 238000012360 testing method Methods 0.000 description 24
- 150000001875 compounds Chemical class 0.000 description 23
- 210000001508 eye Anatomy 0.000 description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 21
- 125000003368 amide group Chemical group 0.000 description 21
- 230000035699 permeability Effects 0.000 description 20
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 19
- 230000000694 effects Effects 0.000 description 19
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 19
- 229920001296 polysiloxane Polymers 0.000 description 19
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 18
- 239000011521 glass Substances 0.000 description 17
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 16
- 238000005452 bending Methods 0.000 description 16
- 210000004087 cornea Anatomy 0.000 description 16
- 150000003839 salts Chemical class 0.000 description 16
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 15
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 15
- 229920002873 Polyethylenimine Polymers 0.000 description 15
- 125000004432 carbon atom Chemical group C* 0.000 description 15
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 14
- 125000003709 fluoroalkyl group Chemical group 0.000 description 14
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 description 14
- 230000000704 physical effect Effects 0.000 description 14
- 210000003811 finger Anatomy 0.000 description 13
- 239000012530 fluid Substances 0.000 description 13
- 239000002904 solvent Substances 0.000 description 13
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 12
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- 238000010586 diagram Methods 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 11
- 238000004132 cross linking Methods 0.000 description 11
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 11
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 11
- 238000000465 moulding Methods 0.000 description 11
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 239000003505 polymerization initiator Substances 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 11
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 10
- 101150096517 PAA2 gene Proteins 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- 238000007654 immersion Methods 0.000 description 10
- 239000004584 polyacrylic acid Substances 0.000 description 10
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 9
- MSXVEPNJUHWQHW-UHFFFAOYSA-N 2-methylbutan-2-ol Chemical compound CCC(C)(C)O MSXVEPNJUHWQHW-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- 125000003277 amino group Chemical group 0.000 description 9
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 9
- 229920001223 polyethylene glycol Polymers 0.000 description 9
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 8
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 125000000217 alkyl group Chemical group 0.000 description 8
- 230000003373 anti-fouling effect Effects 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000005855 radiation Effects 0.000 description 8
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 8
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 8
- GNWBLLYJQXKPIP-ZOGIJGBBSA-N (1s,3as,3bs,5ar,9ar,9bs,11as)-n,n-diethyl-6,9a,11a-trimethyl-7-oxo-2,3,3a,3b,4,5,5a,8,9,9b,10,11-dodecahydro-1h-indeno[5,4-f]quinoline-1-carboxamide Chemical compound CN([C@@H]1CC2)C(=O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](C(=O)N(CC)CC)[C@@]2(C)CC1 GNWBLLYJQXKPIP-ZOGIJGBBSA-N 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- 101150082238 PAH1 gene Proteins 0.000 description 7
- 239000002202 Polyethylene glycol Substances 0.000 description 7
- 238000004040 coloring Methods 0.000 description 7
- 239000004205 dimethyl polysiloxane Substances 0.000 description 7
- 229910001873 dinitrogen Inorganic materials 0.000 description 7
- 239000000017 hydrogel Substances 0.000 description 7
- LVHBHZANLOWSRM-UHFFFAOYSA-N itaconic acid Chemical group OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 7
- DFENKTCEEGOWLB-UHFFFAOYSA-N n,n-bis(methylamino)-2-methylidenepentanamide Chemical compound CCCC(=C)C(=O)N(NC)NC DFENKTCEEGOWLB-UHFFFAOYSA-N 0.000 description 7
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 description 6
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 6
- FLIACVVOZYBSBS-UHFFFAOYSA-N Methyl palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC FLIACVVOZYBSBS-UHFFFAOYSA-N 0.000 description 6
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 6
- 229920002518 Polyallylamine hydrochloride Polymers 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 210000001124 body fluid Anatomy 0.000 description 6
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 6
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical group OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 6
- 230000008602 contraction Effects 0.000 description 6
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical group C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- VZCYOOQTPOCHFL-OWOJBTEDSA-N fumaric acid group Chemical group C(\C=C\C(=O)O)(=O)O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- LDHQCZJRKDOVOX-IHWYPQMZSA-N isocrotonic acid Chemical compound C\C=C/C(O)=O LDHQCZJRKDOVOX-IHWYPQMZSA-N 0.000 description 6
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid group Chemical group C(\C=C/C(=O)O)(=O)O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 125000005401 siloxanyl group Chemical group 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 6
- VBHXIMACZBQHPX-UHFFFAOYSA-N 2,2,2-trifluoroethyl prop-2-enoate Chemical compound FC(F)(F)COC(=O)C=C VBHXIMACZBQHPX-UHFFFAOYSA-N 0.000 description 5
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 101150033824 PAA1 gene Proteins 0.000 description 5
- 229920003082 Povidone K 90 Polymers 0.000 description 5
- 239000000607 artificial tear Substances 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 238000007664 blowing Methods 0.000 description 5
- 239000010839 body fluid Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000005227 gel permeation chromatography Methods 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 5
- 230000000379 polymerizing effect Effects 0.000 description 5
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 5
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 5
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 150000003254 radicals Chemical class 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 125000004205 trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 4
- 239000002537 cosmetic Substances 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 230000004438 eyesight Effects 0.000 description 4
- 229920001519 homopolymer Polymers 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 125000000725 trifluoropropyl group Chemical group [H]C([H])(*)C([H])([H])C(F)(F)F 0.000 description 4
- MJYFYGVCLHNRKB-UHFFFAOYSA-N 1,1,2-trifluoroethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(F)(F)CF MJYFYGVCLHNRKB-UHFFFAOYSA-N 0.000 description 3
- JWYVGKFDLWWQJX-UHFFFAOYSA-N 1-ethenylazepan-2-one Chemical compound C=CN1CCCCCC1=O JWYVGKFDLWWQJX-UHFFFAOYSA-N 0.000 description 3
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 3
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 3
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 229910002808 Si–O–Si Inorganic materials 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 235000010338 boric acid Nutrition 0.000 description 3
- 229960002645 boric acid Drugs 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000007334 copolymerization reaction Methods 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- RQAKESSLMFZVMC-UHFFFAOYSA-N n-ethenylacetamide Chemical compound CC(=O)NC=C RQAKESSLMFZVMC-UHFFFAOYSA-N 0.000 description 3
- ZQXSMRAEXCEDJD-UHFFFAOYSA-N n-ethenylformamide Chemical compound C=CNC=O ZQXSMRAEXCEDJD-UHFFFAOYSA-N 0.000 description 3
- 150000002978 peroxides Chemical class 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 238000004904 shortening Methods 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 238000012719 thermal polymerization Methods 0.000 description 3
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- XFCMNSHQOZQILR-UHFFFAOYSA-N 2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOC(=O)C(C)=C XFCMNSHQOZQILR-UHFFFAOYSA-N 0.000 description 2
- HWSSEYVMGDIFMH-UHFFFAOYSA-N 2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOC(=O)C(C)=C HWSSEYVMGDIFMH-UHFFFAOYSA-N 0.000 description 2
- XUDBVJCTLZTSDC-UHFFFAOYSA-N 2-ethenylbenzoic acid Chemical compound OC(=O)C1=CC=CC=C1C=C XUDBVJCTLZTSDC-UHFFFAOYSA-N 0.000 description 2
- DLHQZZUEERVIGQ-UHFFFAOYSA-N 3,7-dimethyl-3-octanol Chemical compound CCC(C)(O)CCCC(C)C DLHQZZUEERVIGQ-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 206010020675 Hypermetropia Diseases 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- 229910003849 O-Si Inorganic materials 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 229910003872 O—Si Inorganic materials 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 235000002597 Solanum melongena Nutrition 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 239000005456 alcohol based solvent Substances 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- AFYNADDZULBEJA-UHFFFAOYSA-N bicinchoninic acid Chemical compound C1=CC=CC2=NC(C=3C=C(C4=CC=CC=C4N=3)C(=O)O)=CC(C(O)=O)=C21 AFYNADDZULBEJA-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 210000000795 conjunctiva Anatomy 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 238000010908 decantation Methods 0.000 description 2
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000003759 ester based solvent Substances 0.000 description 2
- UYMKPFRHYYNDTL-UHFFFAOYSA-N ethenamine Chemical compound NC=C UYMKPFRHYYNDTL-UHFFFAOYSA-N 0.000 description 2
- 239000004210 ether based solvent Substances 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- IIEWJVIFRVWJOD-UHFFFAOYSA-N ethylcyclohexane Chemical compound CCC1CCCCC1 IIEWJVIFRVWJOD-UHFFFAOYSA-N 0.000 description 2
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 2
- 210000000744 eyelid Anatomy 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 201000006318 hyperopia Diseases 0.000 description 2
- 230000004305 hyperopia Effects 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 229910001867 inorganic solvent Inorganic materials 0.000 description 2
- 239000003049 inorganic solvent Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000005453 ketone based solvent Substances 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229940095102 methyl benzoate Drugs 0.000 description 2
- 208000001491 myopia Diseases 0.000 description 2
- 230000004379 myopia Effects 0.000 description 2
- 125000001419 myristoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 2
- XCWHOBZHKZPWSB-UHFFFAOYSA-N n,n-dimethyl-1-phenylbut-3-en-2-amine Chemical compound CN(C)C(C=C)CC1=CC=CC=C1 XCWHOBZHKZPWSB-UHFFFAOYSA-N 0.000 description 2
- OMNKZBIFPJNNIO-UHFFFAOYSA-N n-(2-methyl-4-oxopentan-2-yl)prop-2-enamide Chemical compound CC(=O)CC(C)(C)NC(=O)C=C OMNKZBIFPJNNIO-UHFFFAOYSA-N 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- PNLUGRYDUHRLOF-UHFFFAOYSA-N n-ethenyl-n-methylacetamide Chemical compound C=CN(C)C(C)=O PNLUGRYDUHRLOF-UHFFFAOYSA-N 0.000 description 2
- YPHQUSNPXDGUHL-UHFFFAOYSA-N n-methylprop-2-enamide Chemical compound CNC(=O)C=C YPHQUSNPXDGUHL-UHFFFAOYSA-N 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N n-octadecyl alcohol Natural products CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- 125000005246 nonafluorobutyl group Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)* 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 125000005007 perfluorooctyl group Chemical group FC(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)* 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 201000010041 presbyopia Diseases 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 125000001453 quaternary ammonium group Chemical group 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000012487 rinsing solution Substances 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 235000010339 sodium tetraborate Nutrition 0.000 description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000006337 tetrafluoro ethyl group Chemical group 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical group CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- DZSVIVLGBJKQAP-UHFFFAOYSA-N 1-(2-methyl-5-propan-2-ylcyclohex-2-en-1-yl)propan-1-one Chemical compound CCC(=O)C1CC(C(C)C)CC=C1C DZSVIVLGBJKQAP-UHFFFAOYSA-N 0.000 description 1
- BLLFPKZTBLMEFG-UHFFFAOYSA-N 1-(4-hydroxyphenyl)pyrrole-2,5-dione Chemical compound C1=CC(O)=CC=C1N1C(=O)C=CC1=O BLLFPKZTBLMEFG-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- XLPJNCYCZORXHG-UHFFFAOYSA-N 1-morpholin-4-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCOCC1 XLPJNCYCZORXHG-UHFFFAOYSA-N 0.000 description 1
- QRIMLDXJAPZHJE-UHFFFAOYSA-N 2,3-dihydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(O)CO QRIMLDXJAPZHJE-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical compound CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 description 1
- JTXMVXSTHSMVQF-UHFFFAOYSA-N 2-acetyloxyethyl acetate Chemical compound CC(=O)OCCOC(C)=O JTXMVXSTHSMVQF-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- VHSHLMUCYSAUQU-UHFFFAOYSA-N 2-hydroxypropyl methacrylate Chemical compound CC(O)COC(=O)C(C)=C VHSHLMUCYSAUQU-UHFFFAOYSA-N 0.000 description 1
- GWZMWHWAWHPNHN-UHFFFAOYSA-N 2-hydroxypropyl prop-2-enoate Chemical compound CC(O)COC(=O)C=C GWZMWHWAWHPNHN-UHFFFAOYSA-N 0.000 description 1
- UWRZIZXBOLBCON-UHFFFAOYSA-N 2-phenylethenamine Chemical compound NC=CC1=CC=CC=C1 UWRZIZXBOLBCON-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- XLLXMBCBJGATSP-UHFFFAOYSA-N 2-phenylethenol Chemical compound OC=CC1=CC=CC=C1 XLLXMBCBJGATSP-UHFFFAOYSA-N 0.000 description 1
- HCGFUIQPSOCUHI-UHFFFAOYSA-N 2-propan-2-yloxyethanol Chemical compound CC(C)OCCO HCGFUIQPSOCUHI-UHFFFAOYSA-N 0.000 description 1
- RCNOGGGBSSVMAS-UHFFFAOYSA-N 2-thiophen-3-ylacetic acid Chemical compound OC(=O)CC=1C=CSC=1 RCNOGGGBSSVMAS-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- DXIJHCSGLOHNES-UHFFFAOYSA-N 3,3-dimethylbut-1-enylbenzene Chemical compound CC(C)(C)C=CC1=CC=CC=C1 DXIJHCSGLOHNES-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- MAGFQRLKWCCTQJ-UHFFFAOYSA-N 4-ethenylbenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=C(C=C)C=C1 MAGFQRLKWCCTQJ-UHFFFAOYSA-N 0.000 description 1
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical group FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N Bisphenol A Natural products C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Chemical group 0.000 description 1
- 241000206601 Carnobacterium mobile Species 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 229920001287 Chondroitin sulfate Chemical group 0.000 description 1
- 102100026735 Coagulation factor VIII Human genes 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- 208000003556 Dry Eye Syndromes Diseases 0.000 description 1
- 206010013774 Dry eye Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 241001469893 Oxyzygonectes dovii Species 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- 229920006322 acrylamide copolymer Polymers 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 229940072049 amyl acetate Drugs 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- PGMYKACGEOXYJE-UHFFFAOYSA-N anhydrous amyl acetate Natural products CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 125000000751 azo group Chemical class [*]N=N[*] 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 210000005252 bulbus oculi Anatomy 0.000 description 1
- 229940043232 butyl acetate Drugs 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 239000001768 carboxy methyl cellulose Chemical group 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Chemical group 0.000 description 1
- 229940105329 carboxymethylcellulose Drugs 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229940059329 chondroitin sulfate Drugs 0.000 description 1
- 229920001688 coating polymer Polymers 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 150000001983 dialkylethers Chemical class 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- CDMADVZSLOHIFP-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane;decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 CDMADVZSLOHIFP-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- FFYWKOUKJFCBAM-UHFFFAOYSA-N ethenyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC=C FFYWKOUKJFCBAM-UHFFFAOYSA-N 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 210000005224 forefinger Anatomy 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-M heptanoate Chemical compound CCCCCCC([O-])=O MNWFXJYAOYHMED-UHFFFAOYSA-M 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229940035429 isobutyl alcohol Drugs 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- JESXATFQYMPTNL-UHFFFAOYSA-N mono-hydroxyphenyl-ethylene Natural products OC1=CC=CC=C1C=C JESXATFQYMPTNL-UHFFFAOYSA-N 0.000 description 1
- UUORTJUPDJJXST-UHFFFAOYSA-N n-(2-hydroxyethyl)prop-2-enamide Chemical compound OCCNC(=O)C=C UUORTJUPDJJXST-UHFFFAOYSA-N 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 229940023490 ophthalmic product Drugs 0.000 description 1
- 125000005375 organosiloxane group Chemical group 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- BVWMJLIIGRDFEI-QXMHVHEDSA-N propyl (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCCC BVWMJLIIGRDFEI-QXMHVHEDSA-N 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000015541 sensory perception of touch Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000012748 slip agent Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- ANOULJGZTVOIFB-UHFFFAOYSA-M sodium;1-amino-4-(3-ethenylsulfonylanilino)-9,10-dioxoanthracene-2-sulfonate Chemical compound [Na+].C1=C(S([O-])(=O)=O)C(N)=C2C(=O)C3=CC=CC=C3C(=O)C2=C1NC1=CC=CC(S(=O)(=O)C=C)=C1 ANOULJGZTVOIFB-UHFFFAOYSA-M 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 210000001913 submandibular gland Anatomy 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/04—Contact lenses for the eyes
- G02C7/049—Contact lenses having special fitting or structural features achieved by special materials or material structures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/18—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/34—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/52—Hydrogels or hydrocolloids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00865—Applying coatings; tinting; colouring
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
- G02B1/043—Contact lenses
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/16—Shades; shields; Obturators, e.g. with pinhole, with slot
- G02C7/165—Shades; shields; Obturators, e.g. with pinhole, with slot with stenopaeic apertures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/10—Materials for lubricating medical devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2420/00—Materials or methods for coatings medical devices
- A61L2420/06—Coatings containing a mixture of two or more compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/16—Materials or treatment for tissue regeneration for reconstruction of eye parts, e.g. intraocular lens, cornea
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/04—Contact lenses for the eyes
- G02C7/046—Contact lenses having an iris pattern
Definitions
- the present invention relates to a medical device, a combination of coating solutions, and a method for manufacturing a medical device.
- An example of a soft medical device is a soft contact lens that is a commercially available soft eye lens.
- a commercially available soft contact lens generally uses a hydrogel material having a moisture content of about 25% to about 80%.
- a hydrous soft contact lens made of a hydrogel material contains water, a phenomenon occurs in which water evaporates from the contact lens. As a result, a certain percentage of contact lens wearers may feel more uncomfortable and feel uncomfortable than when they are naked. Some complained of symptoms called contact lens dry eye.
- the hydrous soft contact lens made of a hydrogel material is easily contaminated by components in tears, and also contains a large amount of water, so there is also a risk of bacterial propagation.
- a platinum-based catalyst is added to a mixture of polydimethylsiloxane and methylhydrogenpolysiloxane having both molecular chain ends blocked with vinylmethylsilyl groups, A silicone rubber lens obtained by a method of heat-curing by a molding method is known (see, for example, Patent Document 1).
- Patent Document 6 discloses a contact lens material made of a polymer obtained by copolymerizing a bifunctional organosiloxane macromer alone or with another monomer, and as a monomer used for copolymerization, Acrylic acid fluoroalkyl esters or methacrylic acid fluoroalkyl esters, and acrylic acid alkyl esters or methacrylic acid alkyl esters are disclosed.
- silicone rubber lenses have drawbacks such as peeling of the hydrophilic treatment layer applied to improve the hydrophobicity of the lens surface, and sticking to the cornea due to excessive elasticity. It did not reach the point where it was widely put into practical use.
- a material mainly composed of polysiloxane having a plurality of polymerizable functional groups has high oxygen permeability and flexibility, and is considered to be one of materials suitable for contact lenses.
- the adhesiveness remains on the surface of the lens after polymerization, there is a concern that the lens surface adheres to the cornea, and the balance between mechanical properties such as flexibility and bending resistance of the lens is insufficient.
- the high oxygen-permeable soft ophthalmic lens in which the usefulness of the method disclosed in Patent Document 1 is specified is only of a silicone hydrogel material, and its usefulness for a low hydrous soft ophthalmic lens is It was not known.
- the conventional LbL coating is performed in multiple layers of about 4 to 20 layers, which may increase the manufacturing process and increase the manufacturing cost.
- a contact lens that can change the color or size of the iris portion of the lens wearer by forming an iris pattern that is an iris-like substantially annular mask on the lens is known.
- a contact lens is known that can be clearly seen without distinction between hyperopia, myopia, and presbyopia by forming a hole (pinhole) at substantially the center of the iris pattern described above (for example, Patent Document 13, 14).
- a hole pinhole
- an iris pattern is formed on a contact lens (low hydrous soft ophthalmic device) produced by the method described above, the same problem as described above has occurred.
- a contact lens that can exchange tear fluid during lens wearing by forming a tear fluid exchange promoting pattern on the contact lens (for example, Patent Documents 15 to 15). 18).
- a tear exchange promoting pattern is formed on a contact lens manufactured by the above-described method, the same problem as described above has occurred.
- the present invention has been made in view of the above, and while maintaining mechanical properties and low water content, the phenomenon of sticking to the surface at the time of contact with the body surface or the body surface or the feeling of sticking to the cornea is greatly increased. It is an object of the present invention to provide a medical device that can be reduced or avoided, a combination of coating solutions for application to the medical device, and a method for manufacturing the medical device.
- Another object of the present invention is to provide a low hydrous soft contact lens capable of exchanging good tears. Another object of the present invention is to produce an excellent low hydrous soft contact lens at a low cost by a simple process.
- the medical device according to the present invention includes the following aspects.
- Elastic modulus is 100 kPa or more and 2000 kPa or less, preferably 200 kPa or more and 1200 kPa or less, moisture content is 10% by mass or less, tensile elongation is 50% or more and 3000% or less, preferably 150% or more and 3000% or less, borate buffer A medical device having a dynamic contact angle (advance) with respect to 80 ° or less.
- [A2] The medical device according to [A1], wherein the surface friction coefficient ratio (Qa) when wetted with borate buffer is 2 or less.
- Qa MIUa / MIUo.
- MIUa represents the coefficient of surface friction between the medical device and a smooth quartz glass plate when wet with borate buffer.
- MIUo represents the surface friction coefficient between “Accuview (registered trademark) oasis” and a smooth quartz glass plate when wetted with a borate buffer.
- “Acueview (registered trademark) oasis” is a contact lens made of a material registered under the name senofilcon A in United States Adopted Names, and is preferably a product distributed in Japan as of August 2011 Is equivalent to contact lens.
- [A3] The medical device according to [A1], wherein the surface friction coefficient ratio (Qb) when wet with physiological saline is 3 or less.
- Qb MIUb / MIUo.
- MIUb represents the coefficient of surface friction between the medical device and a smooth quartz glass plate when wet with physiological saline.
- MIUo represents the surface friction coefficient between “Accuview (registered trademark) oasis” and a smooth quartz glass plate when wetted with a borate buffer.
- the surface friction coefficient ratio (Qb) when wet with the physiological saline is preferably 2 or less.
- the base material is mainly composed of a polymer of the following component A or a copolymer of the following component A and component B;
- Component A a polysiloxane compound having a plurality of polymerizable functional groups per molecule and having a number average molecular weight of 6000 or more;
- Component B a polymerizable monomer having a fluoroalkyl group.
- the layer composed of the acidic polymer and the basic polymer performs the treatment with the acidic polymer solution once or twice and the treatment with the basic polymer solution once or twice for a total of three times.
- the acidic polymer layer and the layer composed of the basic polymer are formed by performing the treatment with two kinds of acidic polymer solutions twice and the treatment with the basic polymer solution once [A5] to [A7] A medical device according to any one of the above.
- At least one of the acidic polymer and the basic polymer forming a layer composed of the acidic polymer and the basic polymer is a polymer having a group selected from a hydroxyl group and an amide group [A5] to The medical device according to any one of [A9].
- the oxygen permeation coefficient [(cm 2 / sec) mLO 2 / (mL ⁇ hPa)] is 113 ⁇ 10 ⁇ 11 to 1130 ⁇ 10 ⁇ 11 , according to any one of [A1] to [A10] Medical device.
- a substrate is contacted with a first solution containing a first polymer to apply the first polymer non-covalently onto the substrate from the first step.
- QCM quartz crystal sensor for quartz crystal microbalance measurement
- Measured value Fk-1 is obtained, Followinged by contacting the first k solution to this quartz oscillator sensor, then washed quickly the quartz oscillator sensor with pure water, dried, when obtaining the measured values F k by measuring the resonant frequency by the QCM
- the crystal oscillator sensor uses a resonance frequency of 9 MHz, an AT cut, and a gold electrode, and the QCM is measured at a fundamental frequency of 27 MHz and room temperature (about 25 ° C.).
- a coating solution combination for applying a LbL coating to a medical device the coating solution containing the first polymer for noncovalently applying the first polymer on a substrate
- the coating solution containing the k-th polymer for applying the k-th polymer non-covalently on the substrate is a k-th solution (k is an integer of 2 to n)
- a quartz crystal sensor for quartz crystal microbalance measurement (QCM) is placed in the first solution at 25 ° C., 30 minutes immersion, then washed quickly the quartz oscillator sensor with pure water and dried, to give the measured values F 1 by measuring the resonant frequency by the QCM, followed by This quartz crystal sensor is immersed in a second solution containing the second polymer at 25 ° C.
- the quartz crystal sensor is quickly washed with pure water and dried, and the resonance frequency is set by the QCM.
- the crystal oscillator sensor uses a resonance frequency of 9 MHz, an AT cut, and a gold electrode, and the QCM is measured at a fundamental frequency of 27 MHz and room temperature (about 25 ° C.).
- this invention includes the following aspects.
- An eye having an elastic modulus of 100 kPa to 2000 kPa, a moisture content of 10% by mass or less, a tensile elongation of 50% to 3000%, and a dynamic contact angle (advance) with respect to a borate buffer of 80 ° or less.
- a low hydrous soft ophthalmic device in which a layer comprising an acidic polymer and a basic polymer is formed on at least a part of the surface of the low hydrous soft substrate, A low hydrous soft ophthalmic device having an iris-like pattern formed at least in part.
- Component A a polysiloxane compound having a plurality of polymerizable functional groups per molecule and having a number average molecular weight of 6000 or more;
- Component B a polymerizable monomer having a fluoroalkyl group.
- X 1 and X 2 each independently represent a polymerizable functional group.
- R 1 to R 8 each independently represents a substituent selected from hydrogen, an alkyl group having 1 to 20 carbon atoms, a phenyl group, and a fluoroalkyl group having 1 to 20 carbon atoms.
- L 1 and L 2 each independently represents a divalent group.
- a and b each independently represents an integer of 0 to 1500. However, a and b are not 0 at the same time.
- the layer composed of the acidic polymer and the basic polymer is formed by performing the treatment with two kinds of acidic polymer solutions twice and the treatment with the basic polymer solution once.
- [B2] to [B8] The low hydrous soft ophthalmic device according to any one of the above.
- At least one of the acidic polymer and the basic polymer forming the layer composed of the acidic polymer and the basic polymer is a polymer having a group selected from a hydroxyl group and an amide group.
- the pattern is an annular light-shielding pattern, and an optical pupil having a diameter of 2.0 mm or less is formed at the center of the pattern, according to any one of [B1] to [B11] Low hydrous soft ophthalmic device.
- this invention includes the following aspects.
- [C1] A low hydrous soft contact lens to be worn on the eye, wherein a pattern for promoting tear exchange with the eye is formed.
- [C2] The low hydrous soft contact lens according to [C1], wherein the pattern is at least one selected from a through hole, a groove, and a pleat structure.
- [C3] The low hydrous soft contact lens according to [C2], wherein the pattern is the through hole.
- the layer composed of the acidic polymer and the basic polymer is treated once or twice with the acidic polymer solution and once or twice with the basic polymer solution for a total of three times.
- the low hydrous soft contact lens according to any one of [C4] to [C6].
- the layer composed of the acidic polymer and the basic polymer is formed by performing the treatment with two kinds of acidic polymer solutions twice and the treatment with the basic polymer solution once.
- the low hydrous soft contact lens according to any one of the above.
- At least one of the acidic polymer and the basic polymer that forms a layer composed of the acidic polymer and the basic polymer is a polymer having a group selected from a hydroxyl group and an amide group.
- the low hydrous soft contact lens according to any one of [C8].
- [C10] A method for producing a low hydrous soft contact lens, in which a substrate is molded using a resin mold and then the substrate is perforated before the substrate is separated from the resin mold.
- a medical device a coating liquid for application to the medical device, a combination of coating solutions, and a method for producing a medical device maintain mechanical properties and low water content, and are in contact with an external or internal surface.
- the phenomenon of sticking to the surface or the feeling of sticking to the cornea can be greatly reduced or avoided.
- the medical device of the present invention has a low water content, it can reduce the risk of bacterial growth.
- the medical device of the present invention has an advantage that it can be manufactured at a low cost by a simple process.
- the low hydrous soft contact lens which is an embodiment of the present invention and the method for producing the same can be expected to have an effect of maintaining good eye health by enabling good tear exchange together with the above-described effects. Further, the low hydrous soft contact lens which is one embodiment of the present invention has an advantage that it can be manufactured at a low cost by a simple process.
- FIG. 1 is a schematic diagram illustrating an apparatus for measuring a surface friction coefficient of a sample of a medical device according to an embodiment of the present invention.
- FIG. 1 shows a state in which a standard measuring jig and a friction piece are set.
- FIG. 2 is a schematic diagram showing a configuration of a main part of the measuring jig and the friction element for measuring the surface friction coefficient of the sample of the medical device according to the embodiment of the present invention as seen from the A direction shown in FIG.
- FIG. 3 is a partial cross-sectional view illustrating a configuration of a main part of a measurement jig and a friction element for measuring a surface friction coefficient of a sample of a medical device according to an embodiment of the present invention.
- FIG. 1 is a schematic diagram illustrating an apparatus for measuring a surface friction coefficient of a sample of a medical device according to an embodiment of the present invention.
- FIG. 1 shows a state in which a standard measuring jig and a friction piece are set.
- FIG. 4 is a schematic diagram showing an example of an iris pattern of the low hydrous soft ophthalmic device according to the embodiment of the present invention.
- FIG. 5 is a schematic diagram showing an example of an iris pattern of the low hydrous soft ophthalmic device according to the embodiment of the present invention.
- FIG. 6 is a schematic diagram showing an example of a tear exchange promotion pattern of the low hydrous soft contact lens according to the embodiment of the present invention.
- FIG. 7 is a schematic diagram showing an example of a tear exchange promotion pattern of a low hydrous soft contact lens according to Modification 1 of the embodiment of the present invention.
- FIG. 8 is a schematic diagram showing an example of a tear exchange promotion pattern of a low hydrous soft contact lens according to Modification 2 of the embodiment of the present invention.
- the medical device of the present invention is a device that comes into contact with a body surface containing body fluid or the like, or a device that is introduced into the body, and includes, for example, a contact lens (ophthalmic lens), an endoscope, a catheter, an infusion tube, and gas transport. Includes tubes, stents, sheaths, cuffs, tube connectors, access ports, drainage bags, blood circuits, skin materials and drug carriers.
- the medical device of the present invention is a low water content medical device having a water content of 10% by mass or less.
- the medical device of the present invention is a soft medical device having a tensile elastic modulus of 10 MPa or less.
- the moisture content is the mass of the test piece in the dry state (mass in the dry state), the mass when the surface moisture of the test piece in the wet state with borate buffer is wiped off (mass in the wet state), and [(Mass in the wet state) ⁇ (mass in the dry state)] / (mass in the wet state)].
- the medical device of the present invention has low water content, for example, it has a feature that the dry feeling felt by the patient while touching the surface of a living body (in the case of an ophthalmic lens) is small and the wearing feeling is excellent. Moreover, since the medical device of the present invention has a low water content, it has an advantage that the risk of bacterial propagation is low.
- the moisture content is more preferably 5% or less, further preferably 2% or less, and most preferably 1% or less. An excessively high water content is not preferable because it increases the dryness of the patient who uses the medical device and increases the risk of bacterial growth.
- the tensile elastic modulus of the medical device of the present invention is 100 kPa or more, preferably 200 kPa or more, more preferably 250 kPa or more, and further preferably 300 kPa or more.
- the tensile elastic modulus of the medical device of the present invention is 2000 kPa or less, preferably 1200 kPa or less, more preferably 1000 kPa or less, further preferably 800 kPa or less, even more preferably 700 kPa or less, and most preferably 600 kPa or less. If the tensile modulus is too small, it tends to be too soft and difficult to handle. On the other hand, if the tensile modulus is too large, it tends to be too hard to wear.
- the tensile modulus is 2000 kPa, preferably 1200 kPa or less, a good wearing feeling can be obtained, and therefore the range is from 100 kPa to 2000 kPa, and preferably from 200 kPa to 1200 kPa.
- the tensile modulus is measured on a sample in a wet state with a borate buffer.
- the tensile elongation (breaking elongation) of the medical device of the present invention is 50% or more, preferably 150% or more, more preferably 170% or more, still more preferably 200% or more, still more preferably 300% or more, 400% The above is more preferable.
- the tensile elongation of the medical device of the present invention is 3000% or less, more preferably 2500% or less, further preferably 2000% or less, still more preferably 1500% or less, and most preferably 1000% or less. If the tensile elongation is small, the medical device is easily broken, which is not preferable. Further, when the tensile elongation is too large, the medical device tends to be easily deformed, which is not preferable. The tensile elongation is measured on a sample in a wet state with a borate buffer.
- the dynamic contact angle (advancing, immersion speed: 0.1 mm / sec) is 80 ° or less, 75 ° or less is more preferable, and 70 ° or less is more preferable.
- the dynamic contact angle is preferably lower, preferably 65 ° or less, more preferably 60 ° or less, even more preferably 55 ° or less, and even more preferably 50 ° or less.
- 45 ° or less is even more preferable, and 40 ° or less is most preferable.
- the dynamic contact angle is measured against a borate buffer in a sample wet with borate buffer.
- the liquid film retention time on the surface of the medical device is long.
- the liquid film retention time means that when a medical device immersed in a borate buffer is pulled up from the liquid and held in the air so that the surface (diameter direction in the case of an ophthalmic lens) is vertical, the medical device This is the time during which the liquid film on the surface is held without breaking.
- the liquid film holding time is preferably 5 seconds or longer, more preferably 10 seconds or longer, and most preferably 20 seconds or longer.
- the diameter is the diameter of a circle formed by the edge of the lens. Further, the liquid film retention time is measured on a sample in a wet state with a borate buffer.
- the surface of the medical device has excellent slidability.
- the surface friction coefficient ratio (Qa and Qb) described later measured by the method shown in the examples of the present specification is small.
- the medical device of the present invention preferably has a surface friction coefficient ratio (Qa) of 2 or less, more preferably 1.6 or less, even more preferably 1 or less when wet with borate buffer.
- Qa MIUa / MIUo
- MIUa represents the surface friction coefficient between the medical device and a smooth quartz glass plate when wetted with a borate buffer.
- MIUo represents the coefficient of surface friction between a commercially available contact lens “Acuvue® Oasis” and a smooth quartz glass plate when wetted with borate buffer.
- the surface friction coefficient ratio Qa is preferably 1 or less, more preferably 0.8 or less, and most preferably 0.6 or less.
- the surface friction coefficient ratio (Qb) when wet with physiological saline is preferably 3 or less, more preferably 2 or less, and further preferably 1.5 or less.
- Qb MIUb / MIUo
- MIUb represents the surface friction coefficient between the medical device and a smooth quartz glass plate when wet with physiological saline.
- Qb tends to be larger than Qa. It has been found that in some cases Qb can be very large.
- physiological saline is a liquid similar to bodily fluids (for example, tear fluid in the case of contact lenses), and from the viewpoint of preventing sticking to the biological surface of a medical device (cornea in the case of ophthalmic lenses) It is also preferable that the surface friction coefficient ratio (Qb) when wetted with saline is small.
- the surface friction coefficient ratio Qb is preferably 1.5 or less, more preferably 1.0 or less, and most preferably 0.8 or less.
- the difference (Qb ⁇ Qa) between the surface friction coefficient ratio Qb when wetted with physiological saline and the surface friction coefficient ratio Qa when wetted with borate buffer is 1.6 or less. Is preferable, 1.3 or less is more preferable, and 1.0 or less is more preferable. If the difference between the surface friction coefficient ratio Qb and the surface friction coefficient ratio Qa is small, the difference between the slipperiness when the medical device is applied to a living body and the slipperiness before application (for example, when opened) tends to be small. Is preferable.
- the antifouling property of the medical device of the present invention can be evaluated by mucin adhesion, lipid (methyl palmitate) adhesion, and artificial tear immersion test.
- the mucin adhesion amount is preferably 5 ⁇ g / cm 2 or less, more preferably 4 ⁇ g / cm 2 or less, and most preferably 3 ⁇ g / cm 2 or less.
- the medical device preferably has high oxygen permeability.
- the oxygen permeability coefficient [ ⁇ 10 ⁇ 11 (cm 2 / sec) mLO 2 / (mL ⁇ hPa)] is preferably 50 or more, more preferably 100 or more, further preferably 200 or more, and most preferably 300 or more.
- the oxygen permeability coefficient [ ⁇ 10 ⁇ 11 (cm 2 / sec) mLO 2 / (mL ⁇ hPa)] is preferably 2000 or less, more preferably 1500 or less, still more preferably 1000 or less, and most preferably 700 or less. If the oxygen permeability is excessively increased, other physical properties such as mechanical properties may be adversely affected, which is not preferable.
- the oxygen permeability coefficient is measured on a dry sample.
- the medical device of the present invention has the above-described characteristics, it can maintain mechanical properties and low water content, and can greatly reduce or avoid the phenomenon of sticking to the surface when contacting with the external surface or the internal surface.
- the medical device of the present invention is preferably a medical device including a base material, and a layer made of an acidic polymer and a basic polymer is formed on at least a part of the surface of the base material.
- the base material preferably contains 5% by mass or more of silicon atoms in order to have high oxygen permeability and to obtain strong adhesion without using a covalent bond with the polymer coated on the surface. .
- the silicon atom content (% by mass) is calculated based on the dry substrate mass (100% by mass).
- the silicon atom content of the substrate is preferably 5% by mass or more, more preferably 7% by mass or more, further preferably 10% by mass or more, and most preferably 12% by mass or more.
- the silicon atom content of the substrate is preferably 36% by mass or less, more preferably 30% by mass or less, and further preferably 26% by mass or less. If the content of silicon atoms is too large, the tensile elastic modulus may increase, which is not preferable.
- the content of silicon atoms in the substrate can be measured by the following method.
- the sufficiently dried substrate is weighed in a platinum crucible, sulfuric acid is added, and heat ashing is performed with a hot plate and a burner.
- the ashed product is melted with sodium carbonate, and water is added to dissolve it by heating.
- nitric acid is added and the volume is adjusted with water.
- a silicon atom is measured by ICP emission spectrometry, and content in a base material is calculated
- the substrate is a polymer of component A which is a polysiloxane compound having a plurality of polymerizable functional groups per molecule and a number average molecular weight of 6,000 or more, or a compound having the component A and a polymerizable functional group.
- the main component is a copolymer with a compound different from Component A.
- the main component means a component that is contained in an amount of 50% by mass or more based on the mass of the base material in a dry state (100% by mass).
- a polysiloxane compound is a compound having a Si—O—Si—O—Si bond.
- the number average molecular weight of component A is preferably 6000 or more. The inventors have found that when the number average molecular weight of component A is within this range, a medical device having flexibility and excellent wearing feeling and excellent mechanical properties such as bending resistance can be obtained.
- the number average molecular weight of the component A polysiloxane compound is preferably 8000 or more, more preferably 9000 or more, and even more preferably 10,000 or more because a medical device having excellent mechanical properties such as bending resistance can be obtained.
- the number average molecular weight of component A is preferably 100,000 or less, more preferably 70,000 or less, and even more preferably 50,000 or less.
- the medical device of the present invention (especially when it is an ophthalmic lens) preferably has high transparency.
- the material is transparent and free from turbidity when visually observed.
- the ophthalmic lens preferably has little or no turbidity when observed with a lens projector, and most preferably no turbidity is observed.
- the dispersity of component A (a value obtained by dividing the mass average molecular weight by the number average molecular weight) is preferably 6 or less, more preferably 3 or less, and even more preferably 2 or less. 1.5 or less is most preferable.
- the dispersity of the component A is small, the compatibility with other components is improved, and the transparency of the obtained ophthalmic lens is improved.
- the extractable component contained in the obtained ophthalmic lens And the like, and the shrinkage rate associated with ocular lens molding is reduced.
- the molding ratio is preferably 0.85 or more, more preferably 0.9 or more, and most preferably 0.91 or more.
- the molding ratio is preferably 2.0 or less, more preferably 1.5 or less, and most preferably 1.3 or less.
- the number average molecular weight of component A is a polystyrene-equivalent number average molecular weight measured by a gel permeation chromatography method (GPC method) using chloroform as a solvent.
- GPC method gel permeation chromatography method
- the mass average molecular weight and the dispersity are also measured by the same method.
- a mass average molecular weight may be represented by Mw and a number average molecular weight may be represented by Mn.
- molecular weight 1000 may be described as 1 kD.
- the notation “Mw33 kD” represents “mass average molecular weight 33000”.
- Component A is a polysiloxane compound having a plurality of polymerizable functional groups.
- the number of polymerizable functional groups of component A may be two or more per molecule, but two per molecule is preferable from the viewpoint that a more flexible (low elastic modulus) medical device is easily obtained.
- Component A may have a polymerizable functional group at any position of the molecular chain, but a structure having a polymerizable functional group at both ends of the molecular chain is particularly preferable.
- polymerizable functional group of Component A a functional group capable of radical polymerization is preferable, and one having a carbon-carbon double bond is more preferable.
- preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, ⁇ -alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid Examples include acid residues and citraconic acid residues. Of these, a (meth) acryloyl group is most preferred because of its high polymerizability. Two or more polymerizable functional groups may be the same or different.
- (meth) acryloyl represents both methacryloyl and acryloyl, and the same applies to terms such as (meth) acryl and (meth) acrylate.
- Component A preferably has the structure of the following formula (A1).
- X 1 and X 2 each independently represent a polymerizable functional group.
- R 1 to R 8 each independently represents a substituent selected from hydrogen, an alkyl group having 1 to 20 carbon atoms, a phenyl group, and a fluoroalkyl group having 1 to 20 carbon atoms.
- L 1 and L 2 each independently represents a divalent group.
- a and b each independently represents an integer of 0 to 1500. However, a and b are not 0 at the same time.
- X 1 and X 2 are preferably radical polymerizable functional groups, preferably those having a carbon-carbon double bond.
- preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, ⁇ -alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid Examples include acid residues and citraconic acid residues. Of these, a (meth) acryloyl group is most preferred because of its high polymerizability.
- R 1 to R 8 include hydrogen; a C 1-20 carbon atom such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, t-butyl group, decyl group, dodecyl group, octadecyl group, etc.
- Alkyl group phenyl group, trifluoromethyl group, trifluoroethyl group, trifluoropropyl group, tetrafluoropropyl group, hexafluoroisopropyl group, pentafluorobutyl group, heptafluoropentyl group, nonafluorohexyl group, hexafluorobutyl group , Heptafluorobutyl group, octafluoropentyl group, nonafluoropentyl group, dodecafluoroheptyl group, tridecafluoroheptyl group, dodecafluorooctyl group, tridecafluorooctyl group, hexadecafluorodecyl group, heptadecafluorodecyl group, Tetrafluorop Propyl group, a pentafluoropropyl group, tetradecanoyl per
- L 1 and L 2 are preferably divalent groups having 1 to 20 carbon atoms.
- the group represented by the following formulas (LE1) to (LE12) is preferable because the compound of the formula (A1) has an advantage that it can be easily obtained with high purity.
- the following formulas (LE1), (LE3), (LE9) ) And (LE11) are more preferred, groups represented by the following formulas (LE1) and (LE3) are more preferred, and groups represented by the following formula (LE1) are most preferred.
- the following formula (LE1) ⁇ (LE12) the terminal of the left is attached to the polymerizable functional group X 1 or X 2, is depicted as an end of the right side is attached to a silicon atom.
- a and b each independently represent an integer of 0 to 1500. However, a and b are not 0 at the same time. a and b each independently preferably ranges from 0 to 1500.
- the total value of a and b (a + b) is preferably 80 or more, more preferably 100 or more, more preferably 100 to 1400, more preferably 120 to 950, and still more preferably 130 to 700.
- R 1 to R 8 are all methyl groups
- b 0, and a is preferably 80 to 1500, more preferably 100 to 1400, more preferably 120 to 950, and still more preferably 130 to 700.
- the value of a is determined by the molecular weight of the polysiloxane compound of component A.
- the component A of the present invention may be used alone or in combination of two or more.
- Component B which is a polymerizable monomer having a fluoroalkyl group is preferable.
- Component B has water and oil repellency due to a decrease in the critical surface tension caused by the fluoroalkyl group, so that the surface of the medical device is free of proteins and lipids in body fluids (tears in the case of ophthalmic lenses). There is an effect of suppressing contamination by components.
- Component B has an effect of providing a medical device that is flexible and excellent in wearing feeling and excellent in mechanical properties such as bending resistance.
- fluoroalkyl group of Component B are trifluoromethyl group, trifluoroethyl group, trifluoropropyl group, tetrafluoropropyl group, hexafluoroisopropyl group, pentafluorobutyl group, heptafluoropentyl group, nonafluoro group.
- it is a C2-C8 fluoroalkyl group such as a trifluoroethyl group, a tetrafluoropropyl group, a hexafluoroisopropyl group, an octafluoropentyl group, and a dodecafluorooctyl group, most preferably trifluoroethyl group It is a group.
- the polymerizable functional group of Component B is preferably a radical polymerizable functional group, more preferably a carbon-carbon double bond.
- preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, ⁇ -alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid
- acid residue and citraconic acid residue include a (meth) acryloyl group because of high polymerizability among them.
- (Meth) acrylic acid fluoroalkyl ester is most preferred as component B because it is highly effective in obtaining a medical device that is flexible and excellent in wearing feeling and excellent in mechanical properties such as bending resistance.
- Specific examples of such (meth) acrylic acid fluoroalkyl esters include trifluoroethyl (meth) acrylate, tetrafluoroethyl (meth) acrylate, trifluoropropyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, and pentafluoropropyl.
- Trifluoroethyl (meth) acrylate, tetrafluoroethyl (meth) acrylate, hexafluoroisopropyl (meth) acrylate, octafluoropentyl (meth) acrylate, and dodecafluorooctyl (meth) acrylate are preferably used. Most preferred is trifluoroethyl (meth) acrylate.
- the B component of the present invention may be used alone or in combination of two or more.
- the content of Component B in the copolymer is preferably 10 to 500 parts by weight, more preferably 20 to 400 parts by weight, and still more preferably 20 to 200 parts by weight with respect to 100 parts by weight of Component A.
- the amount of component B used is too small, the substrate tends to become cloudy or mechanical properties such as bending resistance tend to be insufficient.
- component C a copolymer obtained by further copolymerizing a component different from component A and component B (hereinafter referred to as component C) may be used as the copolymer used for the substrate.
- Component C is preferably one that lowers the glass transition point of the copolymer to room temperature or below 0 ° C. Since these reduce the cohesive energy, they have the effect of imparting rubber elasticity and softness to the copolymer.
- the polymerizable functional group of Component C is preferably a radical polymerizable functional group, and more preferably has a carbon-carbon double bond.
- preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, ⁇ -alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid
- acid residue and citraconic acid residue include a (meth) acryloyl group because of high polymerizability among them.
- component C suitable for improving mechanical properties such as flexibility and bending resistance are (meth) acrylic acid alkyl esters, preferably (meth) acrylic acid having an alkyl group having 1 to 20 carbon atoms. Specific examples thereof include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, tert-butyl (meth) acrylate, isobutyl (meth) ) Acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-heptyl (meth) acrylate, n-nonyl (meth) acrylate, n-decyl (meth) acrylate , Isodecyl (meth) acrylate, n-lauryl (meth)
- (Meth) acrylate, n-octyl (meth) acrylate, n-lauryl (meth) acrylate, and n-stearyl (meth) acrylate are more preferred. If the carbon number of the alkyl group is too large, the transparency of the resulting medical device may decrease, which is not preferable.
- the monomers described below can be copolymerized as desired.
- Examples of the monomer for improving mechanical properties include aromatic vinyl compounds such as styrene, tert-butylstyrene, and ⁇ -methylstyrene.
- Examples of the monomer for improving the surface wettability include methacrylic acid, acrylic acid, itaconic acid, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl methacrylate, 2-hydroxypropyl acrylate, glycerol methacrylate, polyethylene Glycol methacrylate, N, N-dimethylacrylamide, N-methylacrylamide, dimethylaminoethyl methacrylate, methylenebisacrylamide, diacetone acrylamide, N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylacetamide, and N-vinyl-N- And methyl acetamide.
- Examples of monomers for improving the dimensional stability of medical devices include ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, pentaerythritol tetramethacrylate, and bisphenol A diester.
- Methacrylate, vinyl methacrylate, acrylic methacrylate and acrylates corresponding to these methacrylates, divinylbenzene, triallyl isocyanurate and the like can be mentioned.
- Component C may be used alone or in combination of two or more.
- Component C is preferably used in an amount of 0.001 to 400 parts by weight, more preferably 0.01 to 300 parts by weight, still more preferably 0.01 to 200 parts by weight, and most preferably 0 to 100 parts by weight of Component A. 0.01 to 30 parts by mass.
- amount of component C used is too small, it is difficult to obtain the effect expected of component C.
- amount of component C used is too large, the resulting medical device tends to become cloudy or mechanical properties such as bending resistance tend to be insufficient.
- component M is “a monofunctional monomer having one polymerizable functional group and a siloxanyl group per molecule”.
- the siloxanyl group means a group having a Si—O—Si bond.
- the siloxanyl group of component M is preferably linear. If the siloxanyl group is linear, the shape recoverability of the resulting medical device is improved.
- the term “linear” refers to a structure represented by a single linearly connected Si— (O—Si) n ⁇ 1 —O—Si bond starting from a silicon atom bonded to a group having a polymerizable group. (Where n represents an integer of 2 or more). In order for the obtained medical device to obtain sufficient shape recoverability, n is preferably an integer of 3 or more, more preferably 4 or more, further preferably 5 or more, and most preferably 6 or more. Further, “the siloxanyl group is linear” means that the siloxanyl group has the linear structure described above and does not have a Si—O—Si bond that does not satisfy the conditions of the linear structure. To do.
- the number average molecular weight of component M is preferably 300 to 120,000. When the number average molecular weight of the component M is in this range, a base material that is flexible (low elastic modulus), excellent in wearing feeling, and excellent in mechanical properties such as bending resistance can be obtained.
- the number average molecular weight of component M is more preferably 500 or more because a base material excellent in mechanical properties such as bending resistance and excellent in shape recoverability can be obtained.
- the number average molecular weight of the component M is more preferably in the range of 1000 to 25000, and still more preferably in the range of 5000 to 15000.
- the number average molecular weight of the component M When the number average molecular weight of the component M is too small, mechanical properties such as bending resistance and shape recovery tend to be low, and particularly when the number is less than 500, bending resistance and shape recovery may be low. When the number average molecular weight of the component M is too large, flexibility and transparency tend to decrease, which is not preferable.
- a radical polymerizable functional group is preferable, and one having a carbon-carbon double bond is more preferable.
- preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, ⁇ -alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid Examples include acid residues and citraconic acid residues. Of these, a (meth) acryloyl group is most preferred because of its high polymerizability.
- Component M preferably has a structure represented by the following formula (ML1).
- X 3 represents a polymerizable functional group.
- R 11 to R 19 each independently represents a substituent selected from hydrogen, an alkyl group having 1 to 20 carbon atoms, a phenyl group, and a fluoroalkyl group having 1 to 20 carbon atoms.
- L 3 represents a divalent group.
- c and d each independently represents an integer of 0 to 700. However, c and d are not 0 at the same time.
- X 3 is preferably a radical polymerizable functional group, and preferably has a carbon-carbon double bond.
- preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, ⁇ -alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid Examples include acid residues and citraconic acid residues. Of these, a (meth) acryloyl group is most preferred because of its high polymerizability.
- the polymerizable functional group of Component M is more preferably copolymerizable with the polymerizable functional group of Component A because a medical device having good mechanical properties is easily obtained. By uniformly copolymerizing component M and component A, a medical device having good surface characteristics can be easily obtained. More preferably, the polymerizable functional group of Component M is the same as the polymerizable functional group of Component A.
- R 11 to R 19 are hydrogen; those having 1 to 20 carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, t-butyl group, decyl group, dodecyl group, octadecyl group and the like.
- Alkyl group phenyl group, trifluoromethyl group, trifluoroethyl group, trifluoropropyl group, tetrafluoropropyl group, hexafluoroisopropyl group, pentafluorobutyl group, heptafluoropentyl group, nonafluorohexyl group, hexafluorobutyl group , Heptafluorobutyl group, octafluoropentyl group, nonafluoropentyl group, dodecafluoroheptyl group, tridecafluoroheptyl group, dodecafluorooctyl group, tridecafluorooctyl group, hexadecafluorodecyl group, heptadecafluorodecyl group, Tetrafluo Propyl group, a pentafluoropropyl group, tetradecanoyl perflu
- L 3 is preferably a divalent group having 1 to 20 carbon atoms.
- the group represented by the following formulas (LE1) to (LE12) is preferable because the compound of the formula (ML1) has an advantage of being easily obtained with high purity, and among them, the following formulas (LE1), (LE3), (LE9) ) And (LE11) are more preferred, groups represented by the following formulas (LE1) and (LE3) are more preferred, and groups represented by the following formula (LE1) are most preferred.
- the following formula (LE1) ⁇ (LE12) the terminal of the left is attached to the polymerizable functional group X 3, is depicted as an end of the right side is attached to a silicon atom.
- c and d each independently represent an integer of 0 to 700. However, c and d are not 0 at the same time.
- the total value of c and d (c + d) is preferably 3 or more, more preferably 10 or more, more preferably 10 to 500, more preferably 30 to 300, and even more preferably 50 to 200.
- c is preferably 3 to 700, more preferably 10 to 500, more preferably 30 to 300, and further preferably 50 to 200. In this case, the value of c is determined by the molecular weight of component M.
- only one type of component M may be used, or two or more types may be used in combination.
- the base material of the medical device of the present invention contains an appropriate amount of component M
- the crosslink density is reduced, the degree of freedom of the polymer is increased, and a moderately soft base material having a low elastic modulus can be realized.
- a crosslinking density will become high and a base material will become hard.
- a base material becomes too soft and it becomes easy to tear, it is unpreferable.
- the mass ratio of the component M to the component A is 5 to 200 parts by mass, more preferably 7 to 150 parts by mass, most preferably 100 parts by mass of the component A. Is preferably 10 to 100 parts by mass.
- content of the component M is less than 5 mass parts with respect to 100 mass parts of component A, a crosslinking density will become high and a base material will become hard.
- content of Component M exceeds 200 parts by mass with respect to 100 parts by mass of Component A, it is not preferable because it becomes too soft and easily broken.
- the medical device of the present invention may further contain components such as an ultraviolet absorber, a dye, a colorant, a wetting agent, a slip agent, a medicine and a nutritional supplement component, a compatibilizing component, an antibacterial component, and a release agent. Any of the above-described components can be contained in a non-reactive form or a copolymerized form.
- the body tissue of the patient who uses the medical device (the eye in the case of an ophthalmic lens) can be protected from harmful ultraviolet rays.
- a coloring agent is included, a medical device is colored, identification becomes easy, and the convenience at the time of handling improves.
- any of the above-described components can be contained in a non-reactive form or a copolymerized form.
- the above components are copolymerized, that is, when a UV absorber having a polymerizable group or a colorant having a polymerizable group is used, the component is copolymerized and immobilized on the base material, so that elution is possible This is preferable because the property is reduced.
- the base material is preferably composed of a component selected from an ultraviolet absorber and a colorant, and two or more other components C (hereinafter referred to as component Ck).
- component Ck is selected from at least one alkyl (meth) acrylic acid ester having 1 to 10 carbon atoms and at least one monomer selected from the monomers for improving the surface wettability.
- the preferred amount to be used is 0.01 to 20 parts by weight, more preferably 0.05 to 10 parts by weight, and even more preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of Component A. It is.
- the preferred amount of use is 0.00001 to 5 parts by weight, more preferably 0.0001 to 1 part by weight, and still more preferably 0.0001 to 0.5 parts by weight with respect to 100 parts by weight of Component A Part.
- the amount of component Ck used is preferably 0.1 to 100 parts by weight, more preferably 1 to 80 parts by weight, and still more preferably 2 to 50 parts by weight with respect to 100 parts by weight of component A.
- amount of the component Ck used is too small, there is a tendency that it becomes difficult to obtain a transparent substrate due to insufficient affinity with the ultraviolet absorber or the colorant. Even when the amount of the component Ck used is too large, the resulting medical device tends to become cloudy or mechanical properties such as bending resistance tend to be insufficient.
- the base material of the medical device of the present invention preferably has a crosslinking degree in the range of 2.0 to 18.3.
- the degree of crosslinking is represented by the following formula (Q1).
- Qn represents the total millimolar amount of monomers having n polymerizable groups per molecule
- Wn represents the total mass (kg) of monomers having n polymerizable groups per molecule.
- the degree of cross-linking of the substrate of the present invention is less than 2.0, it is too soft and difficult to handle, and if it exceeds 18.3, it is too hard and the feeling of wearing tends to be unfavorable.
- a more preferable range of the degree of crosslinking is 3.5 to 16.0, a further preferable range is 8.0 to 15.0, and a most preferable range is 9.0 to 14.0.
- a known method can be used as a method of manufacturing the base material of the medical device. For example, a method of once obtaining a round bar or a plate-like polymer and processing it into a desired shape by cutting or the like, a mold polymerization method, a spin cast polymerization method, or the like can be used. When a medical device is obtained by cutting, freezing cutting at a low temperature is suitable.
- a method for producing an ophthalmic lens by polymerizing a raw material composition containing component A by a mold polymerization method will be described.
- a raw material composition is filled in a gap between two mold members having a certain shape.
- the material for the mold member include resin, glass, ceramics, and metal.
- an optically transparent material is preferable, and therefore resin or glass is preferably used.
- a gasket may be used to give a constant thickness to the ophthalmic lens and prevent liquid leakage of the raw material composition filled in the gap.
- the mold filled with the raw material composition in the gap is subsequently irradiated with active light such as ultraviolet rays, visible light, or a combination thereof, or heated in an oven or a liquid tank, etc. Is polymerized.
- active light such as ultraviolet rays, visible light, or a combination thereof
- Is polymerized There may be a method in which two polymerization methods are used in combination. That is, heat polymerization can be performed after photopolymerization, or photopolymerization can be performed after heat polymerization.
- light containing ultraviolet light such as light from a mercury lamp or ultraviolet lamp (for example, FL15BL, Toshiba) is irradiated for a short time (usually 1 hour or less).
- the temperature of the composition is gradually raised from around room temperature, and the temperature is raised to 60 ° C. to 200 ° C. over several hours to several tens of hours. It is preferred for maintaining the quality and quality and enhancing the reproducibility.
- a thermal polymerization initiator or a photopolymerization initiator typified by a peroxide or an azo compound in order to facilitate the polymerization.
- thermal polymerization those having optimum decomposition characteristics at a desired reaction temperature are selected.
- azo initiators and peroxide initiators having a 10-hour half-life temperature of 40 to 120 ° C. are suitable.
- Photoinitiators for photopolymerization include carbonyl compounds, peroxides, azo compounds, sulfur compounds, halogen compounds, and metal salts. These polymerization initiators are used alone or in combination.
- the amount of the polymerization initiator is preferably up to 5% by mass with respect to the polymerization mixture.
- a polymerization solvent can be used.
- Various organic and inorganic solvents can be used as the solvent.
- solvents include water; methyl alcohol, ethyl alcohol, normal propyl alcohol, isopropyl alcohol, normal butyl alcohol, isobutyl alcohol, t-butyl alcohol, t-amyl alcohol, tetrahydrolinalol, ethylene glycol, diethylene glycol, triethylene glycol, Alcohol solvents such as tetraethylene glycol and polyethylene glycol; methyl cellosolve, ethyl cellosolve, isopropyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, polyethylene glycol monomethyl ether, ethylene glycol dimethyl ether, diethylene glycol di Glycol ether solvents such as tilether, triethylene glycol dimethyl ether and polyethylene glycol dimethyl ether; ester solvents
- a layer made of an acidic polymer and a basic polymer (hereinafter referred to as a coating layer) is formed on at least a part of the substrate surface.
- the inventors form a coating layer composed of an acidic polymer and a basic polymer on the surface even if the medical device of the present invention is low in water content and softness and the substrate is neutral.
- the medical device of the present invention greatly reduces or avoids the phenomenon of sticking to the cornea during wearing (the phenomenon of sticking to the body surface or contact with the body surface), which has been a problem in conventional medical devices. can do.
- the coating layer does not need to have a covalent bond with the base material. It is preferable that the coating layer does not have a covalent bond with the base material because it can be manufactured in a simple process. Even if the coating layer does not have a covalent bond with the substrate, it has practical durability.
- the coating layer is obtained by treating the substrate surface with an acidic polymer solution (“solution” means an aqueous solution), which will be described in detail below, and a basic polymer solution (“solution” means an aqueous solution).
- solution means an aqueous solution
- aqueous solution means a solution containing water as a main component.
- the coating layer is preferably composed of one or more kinds of acidic polymers and one or more kinds of basic polymers.
- Use of two or more kinds of acidic polymers or two or more kinds of basic polymers is more preferable because properties such as slipperiness and antifouling properties are easily expressed on the surface of the medical device.
- the tendency becomes stronger, which is more preferable.
- one type of polymer means a group of polymers produced by one synthesis reaction.
- the number of polymers synthesized by changing the compounding ratio is not one.
- the coating layer is preferably formed by performing treatment with one or more acidic polymer solutions one or more times and treatment with one or more basic polymer solutions one or more times.
- the coating layer is preferably treated 1 to 5 times, more preferably 1 to 3 times, and still more preferably 1 each of the treatment with one or more acidic polymer solutions and the treatment with one or more basic polymer solutions. Formed on the surface of the substrate by performing twice. The number of treatments with the acidic polymer solution and the number of treatments with the basic polymer solution may be different.
- the inventors of the medical device of the present invention have excellent wettability and easiness in a very small number of times of treatment with one or more acidic polymer solutions and treatment with one or more basic polymer solutions two or three times in total. It has been found that lubricity can be imparted. This is very important industrially from the viewpoint of shortening the manufacturing process. In that sense, in the medical device of the present invention, the total number of treatments by the acidic polymer solution treatment and the basic polymer solution treatment for forming the coating layer is preferably 2 or 3.
- the coating layer is preferably treated twice with one or more acidic polymer solutions and once with a basic polymer solution, preferably twice (one time each) with two acidic polymer solutions. It is preferable to perform the process according to (1) once.
- the inventors have also confirmed that the wettability and the slipperiness are hardly observed when the coating layer contains only one of the acidic polymer and the basic polymer.
- the basic polymer a homopolymer or copolymer having a plurality of basic groups along the polymer chain can be suitably used.
- the basic group an amino group and a salt thereof are preferable.
- suitable examples of such basic polymers include poly (allylamine), poly (vinylamine), poly (ethyleneimine), poly (vinylbenzyltrimethylamine), polyaniline, poly (aminostyrene), poly (N, N Amino group-containing (meth) acrylate polymers such as -dialkylaminoethyl methacrylate), amino group-containing (meth) acrylamide polymers such as poly (N, N-dimethylaminopropylacrylamide), and salts thereof.
- the above are examples of homopolymers, but these copolymers (that is, copolymers of basic monomers constituting the basic polymer, or copolymers of basic monomers and other monomers) are also preferably used. be able to.
- the basic monomer constituting the copolymer is preferably a monomer having an allyl group, a vinyl group, and a (meth) acryloyl group in terms of high polymerizability. Most preferred are monomers having a (meth) acryloyl group.
- suitable basic monomers constituting the copolymer include allylamine, vinylamine (N-vinylcarboxylic acid amide as a precursor), vinylbenzyltrimethylamine, amino group-containing styrene, amino group-containing (meth) acrylate. Amino group-containing (meth) acrylamide, and salts thereof.
- amino group-containing (meth) acrylates amino group-containing (meth) acrylamides, and salts thereof are more preferable because of their high polymerizability.
- N, N-dimethylaminoethyl methacrylate, N, N-dimethylaminopropylacrylamide And their salts are most preferred.
- the basic polymer may be a polymer having a quaternary ammonium structure.
- a polymer compound having a quaternary ammonium structure can impart antimicrobial properties to a medical device when used for coating a medical device.
- the acidic polymer a homopolymer or copolymer having a plurality of acidic groups along the polymer chain can be suitably used.
- the group having acidity a carboxyl group, a sulfonic acid group, and a salt thereof are preferable, and a carboxyl group and a salt thereof are most preferable.
- suitable examples of such acidic polymers include polymethacrylic acid, polyacrylic acid, poly (vinyl benzoic acid), poly (thiophene-3-acetic acid), poly (4-styrene sulfonic acid), polyvinyl sulfonic acid, Poly (2-acrylamido-2-methylpropanesulfonic acid) and salts thereof.
- the acidic monomer constituting the copolymer is preferably a monomer having an allyl group, a vinyl group, and a (meth) acryloyl group in terms of high polymerizability.
- Monomers having an acryloyl group are most preferred.
- suitable acidic monomers constituting the copolymer include (meth) acrylic acid, vinyl benzoic acid, styrene sulfonic acid, vinyl sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, and these It is salt. Of these, (meth) acrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, and salts thereof are more preferable, and (meth) acrylic acid and salts thereof are most preferable.
- At least one of the basic polymer and the acidic polymer is a polymer having a group selected from an amide group and a hydroxyl group.
- the basic polymer and / or the acidic polymer has an amide bond, it is preferable because a surface having not only wettability but also slipperiness can be formed.
- the basic polymer and / or the acidic polymer has a hydroxyl group, it is preferable because a surface excellent not only in wettability but also in antifouling property against tears can be formed.
- the acidic polymer and the basic polymer are polymers having a group selected from a hydroxyl group and an amide group. That is, it is preferable that the medical device includes two or more selected from an acidic polymer having a hydroxyl group, a basic polymer having a hydroxyl group, an acidic polymer having an amide group, and a basic polymer having an amide group. In this case, it is preferable because the effect of forming a slippery surface or the effect of forming a surface excellent in antifouling property against tears can be more remarkably exhibited.
- the coating layer contains at least one selected from an acidic polymer having a hydroxyl group and a basic polymer having a hydroxyl group, and at least one selected from an acidic polymer having an amide group and a basic polymer having an amide group. More preferably. In this case, it is preferable because both the effect of forming a slippery surface and the effect of forming a surface excellent in antifouling property against tears can be exhibited.
- Examples of the basic polymer having an amide group include polyamides having an amino group, partially hydrolyzed chitosan, and a copolymer of a basic monomer and a monomer having an amide group.
- Examples of the acidic polymer having an amide group include a polyamide having a carboxyl group and a copolymer of an acidic monomer and a monomer having an amide group.
- Examples of the basic polymer having a hydroxyl group include an aminopolysaccharide such as chitin, a copolymer of a basic monomer and a monomer having a hydroxyl group, and the like.
- Examples of the acidic polymer having a hydroxyl group include polysaccharides having acidic groups such as hyaluronic acid, chondroitin sulfate, carboxymethylcellulose, and carboxypropylcellulose, and copolymers of acidic monomers and monomers having amide groups.
- a monomer having an amide group a monomer having a (meth) acrylamide group and N-vinylcarboxylic acid amide (including cyclic ones) are preferable from the viewpoint of ease of polymerization.
- Preferable examples of such monomers include N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylacetamide, N-methyl-N-vinylacetamide, N-vinylformamide, N, N-dimethylacrylamide, N, N-diethyl Mention may be made of acrylamide, N-isopropylacrylamide, N- (2-hydroxyethyl) acrylamide, acryloylmorpholine, and acrylamide. Among these, N-vinylpyrrolidone and N, N-dimethylacrylamide are preferable from the viewpoint of easy slipping, and N, N-dimethylacrylamide is most preferable.
- the monomer having a hydroxyl group examples include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxyethyl (meth) acrylamide, glycerol (meth) acrylate, caprolactone-modified 2-hydroxy
- examples thereof include ethyl (meth) acrylate, N- (4-hydroxyphenyl) maleimide, hydroxystyrene, and vinyl alcohol (a carboxylic acid vinyl ester as a precursor).
- a monomer having a (meth) acryloyl group is preferable from the viewpoint of ease of polymerization, and a (meth) acrylic acid ester monomer is more preferable.
- hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and glycerol (meth) acrylate are preferred in terms of antifouling properties against tears, and hydroxyethyl (meth) acrylate is the most preferred. preferable.
- Preferred examples of the copolymer of the basic monomer and the monomer having an amide group include N, N-dimethylaminoethyl methacrylate / N-vinylpyrrolidone copolymer, N, N-dimethylaminoethyl methacrylate / N, N-dimethyl.
- Most preferred is N, N-dimethylaminopropylacrylamide / N, N-dimethylacrylamide copolymer.
- the copolymer of the acidic monomer and the monomer having an amide group include (meth) acrylic acid / N-vinylpyrrolidone copolymer, (meth) acrylic acid / N, N-dimethylacrylamide copolymer, 2- Acrylamide-2-methylpropanesulfonic acid / N-vinylpyrrolidone copolymer and 2-acrylamido-2-methylpropanesulfonic acid / N, N-dimethylacrylamide copolymer. Most preferred is a (meth) acrylic acid / N, N-dimethylacrylamide copolymer.
- the copolymer of the basic monomer and the monomer having a hydroxyl group include N, N-dimethylaminoethyl methacrylate / hydroxyethyl (meth) acrylate copolymer, N, N-dimethylaminoethyl methacrylate / glycerol (meth).
- Acrylate copolymers N, N-dimethylaminopropylacrylamide / hydroxyethyl (meth) acrylate, and N, N-dimethylaminopropylacrylamide / glycerol (meth) acrylate copolymers.
- Most preferred is N, N-dimethylaminoethyl methacrylate / hydroxyethyl (meth) acrylate copolymer.
- the copolymer of the acidic monomer and the monomer having an amide group include (meth) acrylic acid / hydroxyethyl (meth) acrylate copolymer, (meth) acrylic acid / glycerol (meth) acrylate copolymer, 2 -Acrylamido-2-methylpropanesulfonic acid / hydroxyethyl (meth) acrylate copolymer and 2-acrylamido-2-methylpropanesulfonic acid / glycerol (meth) acrylate copolymer. Most preferred is a (meth) acrylic acid / hydroxyethyl (meth) acrylate copolymer.
- the copolymerization ratio of [mass of basic monomer or acidic monomer] / [mass of other monomer] is 1/99 to 99. / 1 is preferable, 2/98 to 90/10 is more preferable, and 10/90 to 80/20 is further preferable.
- the copolymerization ratio is within this range, functions such as easy slipperiness and antifouling property against tears are easily developed.
- the molecular weight of the acidic polymer and the basic polymer can be changed to change various properties of the coating layer, such as thickness. Specifically, increasing the molecular weight generally increases the thickness of the coating layer. However, if the molecular weight is too large, handling may increase due to increased viscosity. Therefore, the acidic polymer and basic polymer used in the present invention preferably have a molecular weight of 2000 to 150,000. More preferably, the molecular weight is 5000 to 100,000, and even more preferably 75,000 to 100,000.
- the molecular weight of the acidic polymer and the basic polymer is a mass average molecular weight in terms of polyethylene glycol measured by a gel permeation chromatography method (aqueous solvent).
- coating layer can be accomplished in a number of ways, as described, for example, in WO 99/35520, WO 01/57118 or US Patent Publication No. 2001-0045676.
- a layer made of an acidic polymer and a basic polymer (hereinafter referred to as a coating layer) is formed on at least a part of the surface of the base material. At least a part of the layer is crosslinked. May be. Moreover, in the medical device of this invention, at least one part may be bridge
- crosslinking means that the polymers are bonded by creating a bridge structure using their own functional groups or crosslinking agents.
- the cross-linking can be caused by irradiating radiation with at least an acidic polymer and a basic polymer attached to the substrate.
- the radiation is preferably various ion beams, electron beams, positron beams, X-rays, ⁇ rays and neutron beams, and more preferably electron beams and ⁇ rays. Most preferred is gamma rays.
- the medical device By causing cross-linking in the coating layer or between the coating layer and the substrate as described above, good wettability and easy slipperiness are imparted to the surface of the medical device, and an excellent wearing feeling can be given. .
- the medical device may become too hard due to cross-linking inside the substrate due to irradiation. In that case, excessive crosslinking inside the substrate can be suppressed by appropriately replacing component A in the substrate with component M and copolymerizing.
- the inventors use in so-called LbL coatings in which a plurality of polymers are applied non-covalently to a substrate in devices (including medical devices of the present invention) that are preferably used in wet and semi-wet states.
- the coating solution is applied to a quartz crystal sensor (resonance frequency 9 MHz, AT cut, gold electrode) instead of the base material, the resonance frequency of each polymer to be measured increases (becomes larger). I found the phenomenon.
- a coating layer with a large increase in resonance frequency can form a good surface as such a device (for example, a medical device).
- a device is preferably a soft resin device (tensile elastic modulus is 10 MPa or less).
- Such a device preferably has a low water content (water content of 10% by mass or less).
- the crystal resonator resonates and vibrates due to the piezoelectric effect when an AC voltage is applied to the electrode, but the resonance frequency decreases (decreases) when the mass increases due to adhesion of a substance to the electrode surface.
- the mass change on the electrode surface is proportional to the change in the resonance frequency to be measured.
- QCM quartz crystal microbalance measurement method
- the resonance frequency measured by the above-mentioned QCM with respect to the crystal resonator sensor obtained by bringing the above-described crystal resonator sensor into contact with the first solution containing the first polymer is F 1
- the resonance frequency measured for the quartz crystal sensor obtained by contacting the quartz crystal sensor with the second solution containing the second polymer is defined as F 2
- the quartz crystal sensor and the third polymer are further measured.
- the resonance frequency measured with respect to the quartz vibrator sensor obtained by contacting with the third solution containing is F 3 .
- a coating layer forming a good surface minus the F 1 from F 2 (F 2 -F 1) is preferably 1500 or more, more preferably 2000 or more, still more preferably 3000 or more, and most preferably 4000 or more.
- the first solution or the second solution is poly (meth) acrylic acid or polyethyleneimine, it is particularly preferable that the above condition is satisfied. Since the outermost surface portion is considered to have a great influence on the surface characteristics, when the third polymer is the outermost surface, F 3 -F 2 is preferably 1500 or more, more preferably 2000 or more. Preferably, it is 3000 or more, more preferably 4000 or more.
- the substrate is contacted with the first solution containing the first polymer, and the substrate is removed from the first step of applying the first polymer onto the substrate non-covalently.
- any one of the first solution to the nth solution (k-1) solution (k is 2 or more and n or less)
- QCM quartz crystal microbalance measurement
- F k minus F k-1 (F k -F k-1 ) is preferably 1500 or more, more preferably 2000 or more, further preferably 3000 or more. The above is most preferable. In the examples described later, particularly good results are shown when (F k ⁇ F k ⁇ 1 ) is not less than 4000 and not more than 6000.
- (F n -F n-1 ) is preferably 1500 or more, more preferably 2000 or more, and 3000 or more. More preferably, it is most preferably 4000 or more.
- F k -F k-1 is preferably 30000 or less, more preferably 20000 or less, and even more preferably 10,000 or less.
- the outermost surface portion has a great influence on the properties of the surface, minus the F n-1 from the F n (F n -F n- 1) is 1500 or more, more preferably 2,000 or more, more preferably It is preferable to apply an n-th solution that is 3000 or more, most preferably 4000 or more.
- a combination of coating solutions for applying an LbL coating to a medical device the coating solution containing the first polymer for noncovalently applying the first polymer on a substrate.
- a coating solution containing the k-th polymer for applying the k-th polymer on the substrate in a non-covalent manner is a k-th solution (k is an integer of 2 to n, n is 2
- any one of F k -F k-1 is 1500 or more, more preferably 2000 or more, still more preferably 3000 or more, Most preferably, it is 4000 or more.
- F k -F k-1 is preferably 30000 or less, more preferably 20000 or less, and even more preferably 10,000 or less. Since the outermost surface portion is considered to have a great influence on the surface characteristics, the combination of coating solutions is such that F n -F n-1 is 1500 or more, more preferably 2000 or more, more preferably 3000 or more, most preferably It is preferable that the (n-1) th solution and the nth solution to be 4000 or more are applied.
- the coating liquid is preferably an acidic polymer or basic polymer solution as described above, or a combination thereof.
- the coating layer is preferably a layer made of an acidic polymer and a basic polymer as described above. Furthermore, the polymer-containing concentration of the solution containing the polymer is preferably high.
- the acidic polymer solution and the basic polymer solution are applied to the surface of the molded body (base material) 1 to 5 times, more preferably 1 to 3 times, more preferably 1 to 2 times, respectively. Then, it is obtained by forming a coating layer.
- the number of application steps of the acidic polymer solution and the application step of the basic polymer solution may be different.
- the inventors of the present invention are excellent in the medical device manufacturing method of the present invention, in which the application process of one or more kinds of acidic polymer solutions and the application process of one or more kinds of basic polymer solutions are extremely few, such as 2 or 3 times in total. It has been found that wettability and slipperiness can be imparted. This is very important industrially from the viewpoint of shortening the manufacturing process. In that sense, the total of the application step of the acidic polymer solution and the application step of the basic polymer solution is preferably twice or three times, and most preferably twice.
- the inventors of the medical device of the present invention have almost no expression of wettability or slipperiness when only one of the application step of the acidic polymer solution or the application step of the basic solution is performed once. It is confirmed that it is not possible.
- the coating solution is preferably applied in any of the configurations selected from the following configurations 1 to 4.
- the following notation indicates that each coating process is performed on the surface of the molded body in order from the left.
- Configuration 1 Application of basic polymer solution / Application of acidic polymer solution
- Configuration 2 Application of acidic polymer solution / Application of basic polymer solution
- Configuration 3 Application of basic polymer solution / Application of acidic polymer solution /
- Configuration 4 Application of acidic polymer solution / Application of basic polymer solution / Application of acidic polymer solution Among these configurations, Configuration 4 is more preferable because the obtained medical device exhibits particularly excellent wettability.
- At least one of the acidic polymer and the basic polymer used in each coating step is preferably a polymer having a group selected from a hydroxyl group and an amide group.
- at least one of the acidic polymer and the basic polymer is preferably a polymer having a hydroxyl group.
- at least two of the acidic polymer and the basic polymer are more preferably polymers having a group selected from a hydroxyl group and an amide group.
- one or more basic polymer solutions and / or one or more acidic polymer solutions can be used.
- the acidic polymer solution used for the first applied solution and the last applied solution in the configuration 4 may be the same type and the same concentration (or different concentration) acidic polymer solution, or different types of acidic polymer solutions.
- a polymer solution may be used.
- the surface of the substrate may be untreated or treated.
- that the surface of the substrate has been treated means that the surface of the substrate is subjected to surface treatment or surface modification by a known method.
- Suitable examples of the surface treatment or surface modification include plasma treatment, chemical modification, chemical functionalization, and plasma coating.
- One of the preferred embodiments of the method for producing a medical device of the present invention includes the following steps 1 to 4 in this order.
- ⁇ Step 1> A mixture comprising a component A which is a polysiloxane compound having a plurality of polymerizable functional groups per molecule and having a number average molecular weight of 6000 or more, and component B which is a polymerizable monomer having a fluoroalkyl group A step of polymerizing to obtain a molded body.
- ⁇ Step 2> A step of washing and removing excess acidic polymer solution after bringing the molded body into contact with the acidic polymer solution.
- Step 3> A step of washing and removing excess basic polymer solution after bringing the molded body into contact with the basic polymer solution.
- Step 4> A step of washing and removing excess acidic polymer solution after bringing the molded body into contact with the acidic polymer solution.
- a layer composed of the acidic polymer and the basic polymer can be formed on the molded body. Thereafter, it is preferable to sufficiently wash away excess polymer.
- various coating methods such as a dipping method (dip method), a brush coating method, a spray coating method, a spin coating method, a die coating method, and a squeegee method can be used. Applicable.
- the immersion time can be changed according to many factors.
- the immersion of the shaped body in the acidic polymer solution or the basic polymer solution is preferably performed for 1 to 30 minutes, more preferably 2 to 20 minutes, and most preferably 1 to 5 minutes.
- the concentration of the acidic polymer solution and the basic polymer solution can be varied depending on the nature of the acidic polymer or basic polymer, the desired coating layer thickness, and many other factors.
- Preferred acidic or basic polymer concentrations are greater than 0.001% and less than 10%, more preferably greater than 0.6% and less than 5%, and most preferably greater than 1% and 3% by weight. Is less than.
- the pH of the acidic polymer solution and the basic polymer solution is preferably maintained at 2 to 5, more preferably 2.5 to 4.5.
- the washing and removal of excess acidic polymer and basic polymer is generally performed by rinsing the molded body after coating with clean water or an organic solvent.
- the rinsing is preferably performed by immersing the molded body in water or an organic solvent, or by exposing the molded body to a water stream or an organic solvent stream. Although rinsing may be completed in one step, it has been found that it is more efficient to perform the rinsing step multiple times.
- Rinsing is preferably performed in steps 2-5. It is preferred to spend 1-3 minutes for each immersion in the rinse solution.
- Pure water is also preferred as the rinsing solution, but is preferably buffered to a pH of 2-7, more preferably 2-5, and even more preferably 2.5-4.5 to increase the adhesion of the coating layer.
- An aqueous solution is also preferably used.
- a step of drying or removing the excess rinsing solution may be included.
- the molded body can be dried to some extent by simply leaving the molded body in an air atmosphere, but it is preferable to enhance drying by sending a gentle air flow to the surface.
- the flow rate of the air flow can be adjusted as a function of the strength of the material to be dried and the mechanical fixing of the material. It is not necessary to dry the molded body completely. Here, rather than drying the molded body, it is important to remove droplets of the solution adhered to the surface of the molded body. Therefore, it is only necessary to dry to the extent that the film of water or solution on the surface of the molded body is removed, which is preferable because the process time can be shortened.
- the acidic polymer and the basic polymer are preferable to apply alternately. By applying alternately, it is possible to obtain a medical device having excellent wettability and slipperiness which cannot be obtained by only one of them, and also excellent wearing feeling.
- the coating layer can be asymmetric.
- asymmetric means having a coating layer different between the first surface of the medical device and the second surface opposite to the first surface.
- the “different coating layer” means that the coating layer formed on the first surface and the coating layer formed on the second surface have different surface characteristics or functionality.
- the thickness of the coating layer can be adjusted by adding one or more salts such as sodium chloride to the acidic polymer solution or the basic polymer solution.
- a preferable salt concentration is 0.1 to 2.0% by mass. As the salt concentration increases, the polyelectrolyte takes a more spherical conformation. However, if the concentration is too high, the polymer electrolyte does not deposit well even if it is deposited on the surface of the molded body. A more preferable salt concentration is 0.7 to 1.3% by mass.
- Another preferred embodiment of the method for producing a medical device of the present invention further includes the following step 5.
- Step 5> A step of irradiating a molded body obtained by the method including the steps 1 to 4 in this order.
- the irradiation of radiation may be performed in a state where the molded body is immersed in the coating liquid, or may be performed after the molded body is drawn out of the coating liquid and washed. Moreover, it is also preferable to perform radiation irradiation in a state where the molded body is immersed in a liquid other than the coating liquid. In this case, it is preferable because the irradiation rays act more efficiently.
- the solvent for the liquid used for immersing the coated molded body is applicable to various organic and inorganic solvents and is not particularly limited.
- Examples include water, methanol, ethanol, propanol, 2-propanol, butanol, tert-butanol, tert-amyl alcohol, various alcohol solvents such as 3,7-dimethyl-3-octanol, benzene, toluene, xylene, etc.
- water is most preferred.
- physiological saline preferably pH 7.1 to 7.3
- boric acid buffer solutions preferably pH 7.1 to 7.3
- the molded body If the molded body is irradiated with radiation in a sealed state, the molded body can be sterilized at the same time.
- ⁇ rays are preferably used as radiation.
- the dose of ⁇ -rays to be irradiated is too small, sufficient bonding between the molded body and the coating layer cannot be obtained, and if it is too large, the physical properties of the molded body are lowered, so 0.1 to 100 kGy is preferable, and 15 to 50 kGy is more preferable, and 20 to 40 kGy is most preferable.
- the durability for example, scuffing durability
- the medical device of the present invention is useful as an ophthalmic lens such as a low hydrous soft contact lens, an intraocular lens, an artificial cornea, a corneal inlay, a corneal onlay, and an eyeglass lens. Among them, it is particularly suitable for a low water content soft contact lens. Moreover, it is applicable as a medical device mentioned above by changing the shape of the medical device of this invention.
- the elastic modulus is 100 kPa or more and 2000 kPa or less
- the moisture content is 10% by mass or less
- the tensile elongation is 50% or more and 3000% or less
- the dynamic contact angle (advance) with respect to the borate buffer is 80 ° or less.
- Another embodiment of the low hydrous soft ophthalmic device according to the present invention includes a low hydrous soft layer in which a layer comprising an acidic polymer and a basic polymer is formed on at least a part of the surface of the low hydrous soft substrate.
- low water content means that the water content is 10% by mass or less.
- soft means that the tensile elastic modulus is 10,000 kPa or less.
- the formation position of the iris pattern may be the surface of the base material, the inside of the base material, or the inside of the coating layer.
- the iris pattern can be formed at a location that is not exposed on the outer surface of the low hydrous soft ophthalmic lens.
- the oxygen permeability is further reduced by printing or sandwiching the iris pattern.
- the low hydrous soft ophthalmic device according to the present invention has high oxygen permeability, it maintains high oxygen permeability even when an iris pattern is applied, and does not give fatigue to the wearer.
- the cornea is prevented from becoming a serious oxygen deficiency.
- the low hydrous soft ophthalmic device according to the present invention is low hydrous, there is a tendency that the movement of the lens in the eye during wearing is smaller than that of the hydrous lens. It can be used as an ophthalmic lens that prevents the deviation of the iris pattern at the time of wearing and has excellent cosmetic properties.
- the wearer's iris and the iris pattern shift, for example, the wearer appears to have an elliptical iris, or the iris pattern and the iris It is not preferable because the white eye portion is exposed from the middle and cosmetics are impaired.
- iris-like pattern is to artificially color the iris by covering the surface of the iris of the eye.
- the low hydrous soft ophthalmic lens according to the first embodiment is formed with an iris pattern that is a pattern replicating the iris.
- an iris pattern as shown in FIG. 4 is given to the low hydrous soft ophthalmic lens according to the first embodiment by printing.
- the iris pattern can be applied by a method other than printing.
- a method of applying a film-like product having an iris pattern on or in a substrate of a low hydrous soft ophthalmic lens can be mentioned.
- the iris pattern 410 of the low hydrous soft ophthalmic lens 41 shown in FIG. 4 is a pattern in which the outer periphery has a substantially annular shape with a diameter equal to or larger than the iris, and the light transmission increases toward the center. is there.
- the iris pattern 410 When the lens is worn on the eye, the iris pattern 410 is located on the iris and covers at least a part of the iris, thereby artificially coloring the iris portion. Therefore, by forming the iris pattern 410, the color or size of the iris portion of the lens wearer can be changed in a pseudo manner, and excellent cosmetic properties can be given to the lens wearer.
- the iris pattern 410 can improve the design of the low hydrous soft ophthalmic lens 41 itself.
- the iris pattern 410 preferably has an outer diameter of 9.0 to 11.0 mm. Further, from the viewpoint of giving good vision to the wearer, the iris pattern preferably has an optically transparent portion at the center of the lens. This optically transparent portion is preferably the entire area inside a circle with a radius of 1 mm centered on the center of the lens. The optically transparent portion is more preferably the entire area inside the circle with a radius of 1.5 mm centered on the center of the contact lens, more preferably the entire area inside the circle with a radius of 2 mm, most preferably the radius 2. It is the entire area inside the 5 mm circle. The optically transparent portion may be colored, but is preferably substantially colorless.
- the iris-like pattern is an annular light-shielding pattern in which an optical pupil having a diameter of 2.0 mm or less is formed at the center of the pattern.
- FIG. 5 is a schematic diagram showing an example of an iris pattern of the low hydrous soft ophthalmic lens according to the second embodiment.
- An iris pattern 420 of the low hydrous soft ophthalmic lens 42 shown in FIG. 5 is an annular light-shielding pattern, and an optical pupil 421 (pinhole) having a diameter of 2.0 mm or less at the center. Is formed.
- the iris pattern 420 can continuously vividly illuminate objects at any distance without distinction between hyperopia, myopia, astigmatism, and presbyopia. For this reason, it is possible to keep following the object in a clear state at the center of the eye without changing the lens.
- the shape of the optical pupil 421 is preferably a substantially circular shape and most preferably a perfect circle in order to obtain clear vision.
- the diameter of the optical pupil 421 is preferably 1.0 to 1.6 mm.
- the diameter of the optical pupil 421 is the maximum value of the lengths of line segments connecting any two points on the circumference (circular in the case of a circle) of the optical pupil.
- the iris pattern 420 preferably has a diameter on the outer peripheral side of 4.0 to 9.0 mm. Further, the iris pattern may be formed on the substrate surface, inside the substrate, or inside the coating layer. In other words, the iris pattern can be formed at a location that is not exposed on the outer surface of the low hydrous soft ophthalmic lens.
- the low hydrous soft contact lens according to another aspect of the present invention is a low hydrous soft contact lens that is worn on the eye, and promotes tear exchange that promotes tear exchange with the eye.
- a pattern is formed.
- the tear exchange promoting pattern is formed on the base material. Then, it is preferable that the coating layer mentioned above is formed with respect to the base material in which the tear exchange promotion pattern was formed.
- a low hydrous soft contact lens that forms a tear exchange promoting pattern on the substrate and is coated with the above-mentioned coating layer (a layer comprising an acidic polymer and a basic polymer) contacts the cornea when worn.
- a layer comprising an acidic polymer and a basic polymer contacts the cornea when worn.
- the tear exchange promoting pattern is at least selected from a hole (hereinafter referred to as a through hole), a groove, and a pleat structure penetrating from the rear surface (eyeball side) to the front surface (eyelid side) of the contact lens when worn.
- a through hole preferably has a shape selected from a polygon, a circle and an ellipse, and more preferably a shape selected from a circle and an ellipse.
- the diameter of the through hole is preferably 0.1 mm or more, more preferably 0.2 mm or more, further preferably 0.5 mm or more, and most preferably 0.8 mm or more. If the diameter of the through hole is too large, the contact lens tends to be damaged, which is not preferable.
- the diameter of the through hole is preferably 5 mm or less, more preferably 4 mm or less, further preferably 3 mm or less, and most preferably 2 mm or less.
- the diameter of the through hole is the maximum value of the lengths of line segments connecting any two points on the circumference of the through hole (for example, the circumference in the case of a circle).
- the number of through-holes is preferably 2 or more, more preferably 3 or more, still more preferably 6 or more, and most preferably 8 or more per contact lens. If the number of through holes is too large, the contact lens tends to be damaged, which is not preferable.
- the number of through-holes is preferably 1000 or less, more preferably 240 or less, still more preferably 120 or less, and most preferably 60 or less.
- the groove is preferably formed on the rear surface of the molded body. It is preferable that a part of the groove penetrates the front surface of the molded body.
- the groove is preferably formed along the radial direction of the contact lens. Moreover, although it is preferable that a plurality of grooves are arranged, a structure in which the grooves are connected by different grooves may be used.
- the width of the groove is preferably 0.1 mm or more, more preferably 0.2 mm or more, further preferably 0.5 mm or more, and most preferably 0.8 mm or more. If the width of the groove is too large, the contact lens tends to be damaged, which is not preferable.
- the diameter of the through hole is preferably 5 mm or less, more preferably 4 mm or less, further preferably 3 mm or less, and most preferably 2 mm or less.
- the number of through holes is preferably 2 or more, more preferably 3 or more, still more preferably 6 or more, and most preferably 8 or more per contact lens. If the number of grooves (when counted) is too large, the contact lens tends to be damaged, which is not preferable.
- the number of grooves of 1000 or less is preferable, 240 or less is more preferable, 120 or less is more preferable, and 60 or less is most preferable.
- the tear exchange promoting pattern is preferably not formed at the center of the low hydrous soft contact lens from the viewpoint of giving the wearer good vision.
- the region where the tear exchange promoting pattern is to be formed is preferably outside the circle with a radius of 1 mm centered on the center of the contact lens, more preferably outside the circle with a radius of 2 mm, and more preferably also with the radius. Outside the 3 mm circle.
- the outer side of the circle with a radius of 3.5 mm is also the same.
- the outer side of a circle having a radius of 4 mm is more preferable, and the outer side of a circle having a radius of 4.5 mm is more preferable.
- the tear exchange promoting pattern 510 of the low hydrous soft contact lens 51 shown in FIG. 6 has a plurality of through holes 511 formed between the radial center of the low hydrous soft contact lens 51 and the outer edge. Is provided.
- the eye health can be maintained by promoting tear exchange between the low hydrous soft contact lens 51 and the eye via the through hole 511 of the tear exchange promoting pattern 510 described above. Moreover, since the low hydrous soft contact lens 51 in which the tear fluid exchange promoting pattern 510 is formed can promote tear fluid exchange, an excellent wearing feeling can be obtained.
- FIG. 7 is a schematic diagram of an example of a tear exchange promotion pattern of a low hydrous soft contact lens according to Modification 1 of the embodiment of the present invention.
- the tear fluid exchange promoting pattern 520 of the low hydrous soft contact lens 52 shown in FIG. 7 has a plurality of substantially elliptical through-holes 521 and the major axis direction of the ellipse and the radial direction of the low hydrous soft contact lens 52. Are arranged so as to match.
- FIG. 8 is a schematic diagram of an example of a tear exchange promotion pattern of the low hydrous soft contact lens according to the second modification of the embodiment of the present invention.
- the tear fluid exchange promoting pattern 530 of the low hydrous soft contact lens 53 shown in FIG. 8 has a plurality of substantially rectangular grooves 531 with one end of the major axis extending along the outer edge of the low hydrous soft contact lens 53.
- the long axis direction and the radial direction of the low hydrous soft contact lens 3 are arranged so as to coincide with each other.
- the tear exchange promoting patterns 510 to 530 shown in FIGS. 6 to 8 are formed on the base material. Thereafter, the above-described coating layer is formed on the base material on which the tear fluid exchange promoting pattern is formed. Further, the tear exchange promotion pattern formed on the base material may be a combination of the tear exchange promotion patterns 510 to 530 shown in FIGS.
- One of the preferred embodiments of the method for producing a low hydrous soft contact lens of this embodiment includes the following steps 1 to 3 in this order.
- ⁇ Step 1> A step of polymerizing a mixture of monomers to obtain a lens-shaped molded body having a tear exchange promoting pattern.
- ⁇ Step 2> A step of washing and removing excess basic polymer solution after bringing the molded body into contact with the basic polymer solution.
- ⁇ Step 3> A step of washing and removing excess acidic polymer solution after bringing the molded body into contact with the acidic polymer solution.
- a layer composed of the acidic polymer and the basic polymer can be formed on the molded body. Thereafter, it is preferable to sufficiently wash away excess polymer.
- step 1 it is preferable to obtain a lens-shaped molded body having a tear exchange promotion pattern by using a mold having a shape that gives a tear exchange promotion pattern.
- Another preferred embodiment (embodiment P2) of the method for producing a low hydrous soft contact lens of the present invention includes the following steps 1 to 4 in this order.
- ⁇ Step 1> A step of polymerizing a mixture of monomers to obtain a lens-shaped molding.
- ⁇ Step 2> A step of forming a tear exchange promoting pattern on the molded body.
- ⁇ Step 3> A step of washing and removing excess basic polymer solution after bringing the molded body into contact with the basic polymer solution.
- the tear exchange promotion pattern is a through-hole
- the step of forming the tear exchange promotion pattern on the lens-shaped molded body in the aspect P2 from the resin mold for molding the molded body It is preferable to form a tear exchange promoting pattern before separation.
- a hole can be stably bored in a state where the molded body is fixed.
- a method for forming the through hole a method of mechanically drilling with a drill, a punch, a die cutting blade or the like, a method of drilling with a laser, and a method of drilling with a chemical can be applied.
- the borate buffer is a “salt solution” described in Example 1 of JP-T-2004-517163. Specifically, it is an aqueous solution prepared by dissolving 8.48 g of sodium chloride, 9.26 g of boric acid, 1.0 g of sodium borate (sodium tetraborate decahydrate), and 0.10 g of ethylenediaminetetraacetic acid in pure water to make 1000 mL.
- the physiological saline refers to an aqueous solution in which sodium chloride is dissolved in pure water to 0.9 mass%.
- the wet state means a state in which a sample is immersed in pure water at room temperature (25 ° C.) or a predetermined aqueous solution for 24 hours or more.
- the measurement of physical property values in a wet state is performed as soon as possible after the sample is taken out from pure water or a predetermined aqueous solution.
- a dry state means the state which vacuum-dried the sample of the wet state at 40 degreeC for 16 hours. The degree of vacuum in the vacuum drying is 2 hPa or less.
- the measurement of physical property values in a dry state is performed as soon as possible after the vacuum drying.
- ⁇ Analysis method and evaluation method> (1) Molecular weight The polystyrene-reduced mass average molecular weight and number average molecular weight of each component used for the substrate under the following conditions were measured by the GPC method.
- Pump Tosoh DP-8020 Detector Tosoh RI-8010 Column oven Shimadzu CTO-6A Autosampler Tosoh AS-8010 Column: Tosoh TSKgel GMHHR-M (inner diameter 7.8 mm ⁇ 30 cm, particle diameter 5 ⁇ m) ⁇ 2 Column temperature: 35 ° C.
- Mobile phase Chloroform flow rate: 1.0 mL / min Sample concentration: 0.4% by mass Injection volume: 100 ⁇ L Standard sample: polystyrene (molecular weight 1010 to 1.09 million).
- the test piece was immersed in a borate buffer solution in a beaker at room temperature for 24 hours or more.
- the beaker containing the test piece and borate buffer was put on an ultrasonic cleaner (1 minute).
- the test piece was pulled up from the borate buffer solution, and the state of the surface was visually observed when it was held in the air so that the surface (diameter direction when the test piece was a contact lens shape) was vertical, and judged according to the following criteria: .
- the diameter is a diameter of a circle formed by the outer edge portion of the contact lens.
- Dynamic contact angle measurement It measured with the sample of the wet state by a boric-acid buffer.
- a dynamic contact angle sample a film-shaped test piece having a size of about 5 mm ⁇ 10 mm ⁇ 0.1 mm cut from a sample molded into a film shape, or a strip-shaped test piece having a width of 5 mm cut from a contact lens-like sample is used. Then, the dynamic contact angle during advance with respect to the borate buffer was measured.
- a dynamic wettability tester WET-6000 manufactured by RESCA Co., Ltd. was used, the immersion speed was 0.1 mm / sec, and the immersion depth was 7 mm.
- Easiness of lubrication was evaluated by sensitivity evaluation when a wet sample (contact lens shape or film shape) with a borate buffer solution was rubbed five times with a finger.
- Mucin adhesion Mucin, Bovine Submaxillary Gland (Catalog No. 499643) of CALBIOCHEM was used as mucin. After the contact lens-shaped sample was immersed in a 0.1% strength mucin aqueous solution for 20 hours at 37 ° C., the amount of mucin adhering to the sample was quantified by BCA (bicinchoninic acid) protein assay.
- the washed sample was placed in a screw tube containing a borate buffer and immersed in an ice bath for 1 hour. After removing the screw tube from the ice bath, the sample was visually observed for cloudiness, and the amount of methyl palmitate adhering to the sample was determined according to the following criteria.
- the sample was taken out, washed lightly with a phosphate buffered saline solution (PBS; pH about 7.2), and then immersed in a well in which 2 mL of artificial tear was replaced. Furthermore, after shaking at 100 rpm and 37 ° C. for 24 hours, the sample was lightly washed with PBS, and the amount of deposits was observed by visually evaluating the degree of white turbidity of the sample. Evaluation was performed according to the following criteria.
- PBS phosphate buffered saline solution
- A No cloudiness is observed; B: There is a slight cloudy part (less than 10% in area); C: There is a considerable degree of cloudiness (10% to 50% in area); D: Most of the area (50% to 100% in area) is cloudy but the back side can be seen through; E: The whole is dark and cloudy, and the back side is difficult to see through.
- FIG. 1 is a schematic diagram showing an apparatus for measuring a surface friction coefficient.
- FIG. 2 is a schematic diagram showing the configuration of the main parts of the measuring jig 11 and the friction piece 20 as viewed from the direction A shown in FIG.
- FIG. 3 is a partial cross-sectional view showing configurations of main parts of the measuring jig 11 and the friction piece 20.
- a Teflon (registered trademark) plate (65 mm ⁇ 100 mm ⁇ 1.0 mm, omitted in FIG. 3) is placed horizontally on the sample stage 10 of the apparatus 1, and a quartz glass plate 10 a (55 mm ⁇ 55 mm) having a smooth surface thereon. 90 mm ⁇ 1.0 mm) was placed horizontally and fixed. Teflon (registered trademark) plates and quartz glass plates having sufficiently high flatness were used.
- the surface of the quartz glass plate 10a is wiped with “Kimwipe” for each measurement to be in a clean and dry state.
- the sample S is placed on the tip of the mounting holder 21 of the friction element 20, and then pressed by the packing 22 and fixed by the nut 23.
- a borate buffer solution in the following condition A, a physiological saline in the following condition B, Each 0.1 mL was hung.
- the measuring jig 11 is quickly attached to the apparatus 1, and the sample stage 10 is moved in the horizontal direction (arrow Y) at a speed of 1.0 mm / sec in a state where all three samples S are in contact with the quartz glass plate 10a.
- the stress (F) in the horizontal direction when moved is detected by the friction detector 12 and measured by the force meter 13.
- the moving distance 30 mm, and MIU measurement was performed every 0.1 second.
- the surface friction coefficient was an average value of MIU in a section (minimum of 5 mm) in which the MIU was stable at a moving distance of 5 to 25 mm (a value obtained by dividing the total MIU at each time in the section by the number of MIU data).
- the surface friction coefficient in condition A at this time was MIUa
- the surface friction coefficient in condition B was MIUb.
- Condition A Measurement was performed using a sample in a wet state with a borate buffer.
- Condition B Measurement was performed using a sample in a wet state with physiological saline.
- Quartz crystal microbalance measurement method (QCM) The measurement was performed by a quartz resonator biosensing system QCM934 (Seiko Easy & G Inc.) and QCM measurement software WinQCM (Ver 1.05, Seiko Easy & G Inc.). QA-A9M-AU (E) (Seiko EG & G Co., Ltd.) was used as the quartz oscillator sensor.
- Reference Example 1 Preparation of Acid Type UniBlue A 20 g of pure water was placed in a 50 mL screw bottle. UniBlue A (product number 298409, Sigma-Aldrich) was added in an amount of 0.5 g and dissolved in an incubator at 37 ° C. After dissolution, 4 g of 1N hydrochloric acid was added, and a pH of about 1-2 was confirmed with a pH test paper. 24 g of ethyl acetate was added and lightly stirred. It moved to a 100 mL eggplant flask, and left still. Since UniBlue A moved to the ethyl acetate side, the lower aqueous layer was discarded.
- UniBlue A product number 298409, Sigma-Aldrich
- the ethyl acetate layer was transferred to a 100 mL eggplant flask and evaporated with a 20 ° C. evaporator. Then, it dried at 40 degreeC for 16 hours with the vacuum dryer, and obtained acid type UniBlue A [presumed structural formula (M1)].
- the mold was immersed in isopropyl alcohol, and the contact lens-shaped molded body was peeled from the mold.
- the obtained molded body was immersed in a large excess amount of isopropyl alcohol at 60 ° C. for 2 hours. Further, the obtained molded body was immersed in clean isopropyl alcohol at room temperature for 1 minute, and then the molded body was taken out and air-dried at room temperature for 12 hours or more.
- the substrate A has an edge diameter of about 13 mm and a center thickness of about 0.07 mm.
- the same operation was performed using two glass plates and a gasket as a mold to obtain a film-like sample of 30 mm ⁇ 30 mm ⁇ 0.1 mm. This was designated as base material AF .
- This monomer mixture was put into a test tube, deaerated while being stirred with a touch mixer at a reduced pressure of 20 Torr (27 hPa), and then returned to atmospheric pressure with argon gas. After repeating this operation three times, this monomer mixture was poured into a contact lens mold made of transparent resin (base curve side polypropylene, front curve side ZEONOR) in a nitrogen atmosphere glove box, and a fluorescent lamp (Toshiba, FL- Polymerization was performed by light irradiation (1.71 mW / cm 2 , 20 minutes) using 6D, daylight color, 6W, 4 pieces).
- the mold was immersed in a 60% by mass isopropyl alcohol aqueous solution, and the contact lens-shaped molded body was peeled from the mold.
- the obtained molding was immersed in a large excess of 80% by mass isopropyl alcohol aqueous solution at 60 ° C. for 2 hours. Further, the molded body was immersed in a large excess amount of 50 mass% isopropyl alcohol aqueous solution at room temperature for 30 minutes, then immersed in a large excess amount of 25 mass% isopropyl alcohol aqueous solution at room temperature for 30 minutes, and then a large excess amount of pure water. It was immersed in water at room temperature for 30 minutes. This was designated as substrate C.
- the base material C has an edge diameter of about 14 mm and a center thickness of about 0.07 mm.
- the monomer concentration was 20% by mass.
- the inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours.
- the polymerization reaction solution was cooled to room temperature, 100 mL of water was added, and then poured into 500 mL of acetone and left overnight. Thereafter, 200 mL of acetone and 100 mL of hexane were further added, and the supernatant was removed by decantation.
- the solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours.
- the inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours.
- the solid content was dried in a vacuum dryer at 60 ° C.
- the monomer concentration was 20% by mass.
- the inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 60 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 4.5 hours.
- the polymerization reaction solution was cooled to room temperature, 20 mL of ethanol was added, and then poured into 500 mL of water and allowed to stand overnight. Thereafter, the supernatant was discarded, and the obtained solid content was further washed twice with 500 mL of water. The solid content was dried in a vacuum dryer at 60 ° C. overnight.
- pure water refers to water that has been purified by filtration through a reverse osmosis membrane.
- ⁇ CPDA solution> CPDA obtained in Synthesis Example 2 was dissolved in pure water to obtain a 1.1% by mass aqueous solution.
- ⁇ CPHA solution> CPHA obtained in Synthesis Example 3 was dissolved in pure water to make a 0.01% by mass aqueous solution.
- ⁇ CPDA1 solution> The CPDA solution was diluted with pure water to 0.01M, and then adjusted by adding 1M hydrochloric acid so that the pH was about 2.5. The concentration of CPDA was calculated based on the molar average molecular weight of the repeating unit.
- ⁇ CPDA2 solution> The CPDA solution was diluted with pure water to 0.0001 M, and then adjusted by adding 1 M hydrochloric acid so that the pH was about 2.5. The concentration of CPDA was calculated based on the molar average molecular weight of the repeating unit.
- ⁇ AcOH> Glacial acetic acid was dissolved in pure water to make a 1.1% by mass aqueous solution.
- ⁇ P (DMAA / AA) solution> CPDA obtained in Synthesis Example 2 was dissolved in pure water to give a 1% by mass aqueous solution.
- Example 1 Substrate A (Reference Example 2) was immersed in the first solution (PAA solution) for 30 minutes, and then immersed in three pure water baths for 5 minutes. Next, after immersing in the second solution (PEI solution) for 30 minutes, each was immersed in three pure water baths for 5 minutes. Next, after immersing in the third solution (PAA solution) for 30 minutes, each was immersed in three pure water baths for 5 minutes.
- the coated substrate A was put in a glass bottle filled with a borate buffer solution and sealed, and autoclaved (121 ° C., 30 minutes) to obtain a low hydrous soft contact lens. The evaluation results of the obtained low hydrous soft contact lens are shown in Table 1.
- Example 2 to 8 The substrate shown in Table 1 was immersed in the first solution (PAA solution) shown in Table 1 for 30 minutes, and then immersed in three pure water baths for 5 minutes. Next, the substrate was immersed in the second solution (PEI solution) shown in Table 1 for 30 minutes, and then immersed in three pure water baths for 5 minutes. Next, the substrate was immersed in the third solution shown in Table 1 for 30 minutes and then immersed in three pure water baths for 5 minutes. The coated substrate was sealed in a glass bottle filled with borate buffer, and autoclaved (121 ° C., 30 minutes) to obtain a low hydrous soft contact lens. The evaluation results of the obtained low hydrous soft contact lens are shown in Table 1. The third solution is selected from any one of the above-described PAA solution, CPVPA solution, CPDA solution, and CPHA solution.
- coating was performed in the order of CPDA / PAH / CPDA / PAH / CPDA / PAH / CPDA / PAH / PAH / PAH / CPDA. Specifically, (a) Substrate A is immersed in a CPDA1 solution (0.01 M, pH 2.5) for 30 minutes to form the innermost layer. Thereafter, (b) the obtained base material A is immersed in a PAH1 solution (0.0001M, pH 2.5) for 5 minutes without rinsing. Further, (c) the obtained base material A is immersed in a CPDA2 solution (0.0001M, pH 2.5) for 5 minutes without rinsing.
- Steps (b) and (c) are further repeated 3 times for the obtained substrate A to obtain substrate A coated with coating E.
- the substrate A coated with the coating E was placed in a glass bottle filled with a borate buffer solution and sealed, and autoclaved (121 ° C., 30 minutes) to obtain a low hydrous soft contact lens.
- the evaluation results of the obtained low hydrous soft contact lens are shown in Table 1.
- Example 10 The coating E described in Example 4 of JP-T-2005-538418 was applied to the substrate B (Reference Example 3). However, a CPDA1 solution (0.01 M, pH 2.5) and a CPDA2 solution (0.0001 M, pH 2.5) were used instead of the PAA solution (PAA1 solution, 0.01 M, pH 2.5). That is, coating was performed in the order of CPDA / PAH / CPDA / PAH / CPDA / PAH / CPDA / PAH / PAH / CPDA. Specifically, (a) Substrate A is immersed in a CPDA1 solution (0.01 M, pH 2.5) for 30 minutes to form the innermost layer.
- a CPDA1 solution (0.01 M, pH 2.5
- Steps (b) and (c) are further repeated 3 times for the obtained substrate A to obtain substrate A coated with coating E.
- the substrate A coated with the coating E was placed in a glass bottle filled with a borate buffer solution and sealed, and autoclaved (121 ° C., 30 minutes) to obtain a low hydrous soft contact lens.
- the evaluation results of the obtained low hydrous soft contact lens are shown in Table 2.
- Example 11 The substrate A F (Reference Example 2) was immersed in the first solution (PAA solution) for 30 minutes, and then immersed in three pure water baths for 5 minutes. Next, after immersing in the second solution (PEI solution) for 30 minutes, each was immersed in three pure water baths for 5 minutes. Next, it was immersed in a third solution (CPDA solution) for 30 minutes, and then immersed in three pure water baths for 5 minutes.
- the coated substrate was placed in a glass bottle filled with a borate buffer and sealed, and autoclaved (121 ° C., 30 minutes) to obtain a medical device. The evaluation results of the obtained medical device are shown in Table 2.
- the coating C described in Example 4 of JP-T-2005-538418 was applied to the substrate A (Reference Example 2).
- the coating C is a coating in the order of PAA / PAH / PAA / PAH / PAA / PAH / PAA / PAH / PAH / PAA when polyacrylic acid is expressed as PAA and poly (allylamine hydrochloride) as PAH.
- a) Substrate A is immersed in a PAA2 solution (0.0001M, pH 2.5) for 30 minutes to form the innermost layer.
- the obtained base material A is immersed in a PAH1 solution (0.0001M, pH 2.5) for 5 minutes without rinsing.
- the obtained base material A is immersed in a PAA2 solution (0.0001M, pH 2.5) for 5 minutes without rinsing.
- the base material A coated with the coating C is obtained by repeating the steps (b) and (c) three more times for the base material A to be obtained.
- the substrate A coated with the coating C was placed in a glass bottle filled with a borate buffer solution and sealed, and autoclaved (121 ° C., 30 minutes) to obtain a low hydrous soft contact lens.
- the evaluation results of the obtained low hydrous soft contact lens are shown in Table 2.
- Example 2 The coating C described in Example 4 of JP-T-2005-538418 was applied to the substrate A (Reference Example 2) in the same procedure as in Comparative Example 1. However, CPDA2 solution (0.0001M, pH 2.5) was used instead of PAA2 solution (0.0001M, pH 2.5) for coating of the final layer. That is, coating was performed in the order of PAA / PAH / PAA / PAH / PAA / PAH / PAH / PAH / PAH / CPDA. The obtained base material was sealed in a glass bottle filled with a borate buffer, and autoclaved (121 ° C., 30 minutes) to obtain a low hydrous soft contact lens. The evaluation results of the obtained low hydrous soft contact lens are shown in Table 2.
- Coating E is a coating in the order of PAA / PAH / PAA / PAH / PAA / PAH / PAA / PAH / PAH / PAA when polyacrylic acid is expressed as PAA and poly (allylamine hydrochloride) as PAH.
- a) Substrate A is immersed in a PAA1 solution (0.01 M, pH 2.5) for 30 minutes to form the innermost layer. Thereafter, (b) the obtained base material A is immersed in a PAH1 solution (0.0001M, pH 2.5) for 5 minutes without rinsing.
- Steps (b) and (c) are further repeated 3 times for the obtained substrate A to obtain substrate A coated with coating E.
- the substrate A coated with the coating E was placed in a glass bottle filled with a borate buffer solution and sealed, and autoclaved (121 ° C., 30 minutes) to obtain a low hydrous soft contact lens.
- the evaluation results of the obtained low hydrous soft contact lens are shown in Table 2.
- Example 4 The coating E described in Example 4 of JP-T-2005-538418 was applied to the substrate A (Reference Example 2) in the same procedure as in Reference Example 12. However, CPDA2 solution (0.0001M, pH 2.5) was used instead of PAA2 solution (0.0001M, pH 2.5) for coating of the final layer. That is, coating was performed in the order of PAA / PAH / PAA / PAH / PAA / PAH / PAH / PAH / PAH / CPDA.
- the obtained base material was sealed in a glass bottle filled with a borate buffer, and autoclaved (121 ° C., 30 minutes) to obtain a low hydrous soft contact lens.
- the evaluation results of the obtained low hydrous soft contact lens are shown in Table 2.
- the substrate C (Reference Example 4) was immersed in the first solution (PAA solution) for 30 minutes and then immersed in three pure water baths for 5 minutes. Next, the substrate was immersed in the second solution (PEI solution) for 30 minutes and then immersed in three pure water baths for 5 minutes. Next, the substrate was immersed in a third solution (CPDA solution) for 30 minutes, and then immersed in three pure water baths for 5 minutes.
- the obtained base material was sealed in a glass bottle filled with a borate buffer, and autoclaved (121 ° C., 30 minutes) to obtain a soft contact lens.
- the evaluation results of the obtained silicone hydrogel soft contact lens are shown in Table 3.
- Coating E is a coating in the order of PAA / PAH / PAA / PAH / PAA / PAH / PAA / PAH / PAH / PAA when polyacrylic acid is expressed as PAA and poly (allylamine hydrochloride) as PAH.
- Substrate B is immersed in a PAA1 solution (0.01 M, pH 2.5) for 30 minutes to form the innermost layer.
- the obtained base material C is immersed in a PAH1 solution (0.0001M, pH 2.5) for 5 minutes without rinsing.
- the obtained base material C is immersed in a PAA2 solution (0.0001M, pH 2.5) for 5 minutes without rinsing.
- the base material C coated with the coating E is obtained by repeating the steps (b) and (c) three more times for the base material C to be obtained.
- the base material C coated with the coating E was placed in a glass bottle filled with a borate buffer solution, sealed, and subjected to autoclaving (121 ° C., 30 minutes) to obtain a soft contact lens.
- the evaluation results of the obtained silicone hydrogel soft contact lens are shown in Table 3.
- Example 8 The coating C described in Example 4 of JP-T-2005-538418 was applied to the substrate A F (Reference Example 2) in the same procedure as in Comparative Example 1. That is, coating was performed in the order of PAA / PAH / PAA / PAH / PAA / PAH / PAA / PAH / PAA.
- the obtained base material was sealed in a glass bottle filled with a borate buffer, and autoclaved (121 ° C., 30 minutes) to obtain a medical device.
- the evaluation results of the obtained medical device are shown in Table 3.
- Example 12 A quartz oscillator sensor (resonance frequency 9 MHz, AT cut, gold electrode) is immersed in a PAA solution for 30 minutes, then immersed in 3 pure water baths (100 mL each) for 1 minute each, dried by blowing dry nitrogen gas, and QCM The resonance frequency (F 1 ) was measured by (basic frequency 27 MHz, room temperature (about 25 ° C.)). Next, the quartz oscillator sensor was immersed in a PEI solution for 30 minutes, then immersed in (100 mL each) for 1 minute, and dried by blowing dry nitrogen gas, and QCM (basic frequency 27 MHz, room temperature (about 25 ° C.)) was used to measure the resonant frequency (F 2 ).
- the quartz resonator sensor is immersed in a PAA solution for 30 minutes, then immersed in three pure water baths (100 mL each) for 1 minute each, dried by blowing dry nitrogen gas, and QCM (basic frequency 27 MHz, room temperature (approximately The resonance frequency (F 3 ) was measured by 25 ° C.). The measurement results are shown in Table 4.
- Example 13 to 15 Using the first to third solutions shown in Table 4, the resonance frequencies F 1 to F 3 were measured in the same manner as in Example 12. The measurement results for Examples 13 to 15 are shown in Table 4.
- Example 9 A method according to the coating C of Example 4 of JP-T-2005-538418 as shown in Table 4 was carried out. Specifically, a quartz resonator sensor (resonance frequency 9 MHz, AT cut, gold electrode) is immersed in a PAA2 solution for 30 minutes, then immersed in three pure water baths (100 mL each) for 1 minute, and sprayed with dry nitrogen gas. The resonance frequency (F 1 ) was measured by QCM (basic frequency 27 MHz, room temperature (about 25 ° C.)).
- the quartz crystal sensor was immersed in a PAH1 solution for 5 minutes, then immersed in (100 mL each) for 1 minute, dried by blowing dry nitrogen gas, and QCM (basic frequency 27 MHz, room temperature (about 25 ° C.)) was used to measure the resonance frequency (F 2 ).
- the quartz resonator sensor is immersed in a PAA2 solution for 5 minutes, then immersed in three pure water baths (100 mL each) for 1 minute each, and dried by blowing dry nitrogen gas, and QCM (basic frequency 27 MHz, room temperature (approximately The resonance frequency (F 3 ) was measured by 25 ° C.).
- the resonance frequencies F 4 to F 9 were measured. The measurement results are shown in Table 4.
- Comparative Example 11 As in Comparative Example 8, a method according to Coating E described in Example 4 of JP-T-2005-538418 was performed. Using the first to ninth solutions shown in Table 4, the resonance frequencies F 1 to F 9 were measured in the same manner as in Comparative Example 9. The measurement results are shown in Table 4.
- Polydimethylsiloxane (FM7726, JNC, mass average molecular weight 29 kD, number average molecular weight 26 kD) (50 parts by mass) having methacryloyl groups at both ends represented by the formula, trifluoroethyl acrylate (Biscoat 3F, Osaka Organic Chemical Industries, Ltd.) as component B ) (46 parts by mass), methyl methacrylate as component C (3 parts by mass), ultraviolet absorber having a polymerizable group (RUVA-93, Otsuka Chemical) as component C (1 part by mass), polymerization initiator as component C Irgacure (registered trademark) "819 (Ciba Specialty Chemicals, 0.75 parts by mass) and t-amyl alcohol (10 parts by mass) were mixed and stirred to obtain a uniform and transparent monomer mixture.
- RUVA-93 polymerizable group
- RUVA-93 Otsuka Chemical
- polymerization initiator as component C Irga
- the monomer mixture was put in a test tube, deaerated while being stirred with a touch mixer and reduced in pressure to 20 Torr (27 hPa), and then returned to atmospheric pressure with argon gas. This operation was repeated three times. Thereafter, the monomer mixture was poured into a front curve (FC) mold for a contact lens made of a transparent resin (poly-4-methylpentene-1) in a glove box in a nitrogen atmosphere, and a light shielding portion (diameter: 8.0 mm). Then, a black polyethylene terephthalate film light-shielding material having an opening (diameter: 1.5 mm) was placed in the light-shielding body. Furthermore, the monomer mixture was added, and the light shielding material was adjusted to the center of the mold with tweezers.
- FC front curve
- a base curve (BC) mold was placed, and when the light shielding material was displaced from the mold center, the BC mold was rotated and adjusted. Polymerization was performed by light irradiation (8000 lux, 20 minutes) using a fluorescent lamp (Toshiba, FL-6D, daylight color, 6 W, 4 tubes). The mold was turned over and polymerized by light irradiation for another 20 minutes. After the polymerization, the mold was removed using a jig, and the mold was immersed in a 100% by mass isopropyl alcohol aqueous solution and heated to 60 ° C. After 30 minutes, the contact lens-shaped molded body was peeled off from the mold.
- BC base curve
- the obtained molded body was immersed in a large excess of 100% by mass isopropyl alcohol aqueous solution at 60 ° C. for 2 hours and extracted. After extraction, the lens was placed on a Kimwipe, dried, and transferred to a tray.
- the obtained molded body had an edge diameter of about 14 mm and a center thickness of about 0.07 mm.
- the monomer mixture was put in a test tube, deaerated while being stirred with a touch mixer and reduced in pressure to 20 Torr (27 hPa), and then returned to atmospheric pressure with argon gas. This operation was repeated three times. After that, the monomer mixture was injected into a contact lens mold made of transparent resin (poly-4-methylpentene-1) in a glove box in a nitrogen atmosphere, and fluorescent lamps (Toshiba, FL-6D, daylight color, 6W, 4 pieces) were installed. And polymerized by light irradiation (8000 lux, 20 minutes). After polymerization, the mold was immersed in a 60% by mass isopropyl alcohol aqueous solution, and the contact lens-shaped molded body was peeled from the mold.
- transparent resin poly-4-methylpentene-1
- fluorescent lamps Toshiba, FL-6D, daylight color, 6W, 4 pieces
- the obtained molding was immersed in a large excess of 80% by mass isopropyl alcohol aqueous solution at 60 ° C. for 2 hours. After extraction, the lens was placed on a Kimwipe, dried, and transferred to a tray.
- the obtained molded body had an edge diameter of about 14 mm and a center thickness of about 0.07 mm.
- the molded body was immersed in a large excess amount of 50 mass% isopropyl alcohol aqueous solution at room temperature for 30 minutes, then immersed in a large excess amount of 25 mass% isopropyl alcohol aqueous solution at room temperature for 30 minutes, and then a large excess amount of pure water. It was immersed in water at room temperature for 30 minutes. Finally, the molded body was placed in a sealed vial bottle soaked in clean pure water, and autoclaved at 121 ° C. for 30 minutes. The water content of the obtained molded body was less than 1%.
- the oxygen permeation coefficient of the molded body of Reference Example 7 60 mm ⁇ 60 mm ⁇ was performed in the same procedure as above except that two glass plates and a spacer (also serving as a gasket) were used instead of the above-described mold. A sample with a film shape of 0.25 mm was obtained.
- the oxygen permeability coefficient of this sample was 380 ⁇ 10 ⁇ 11 [(cm 2 / sec) mLO 2 / (mL ⁇ hPa)] (510 Barr), which was a very high value as an ophthalmic lens material.
- (Reference Example 8) 4 was printed on the front curve surface of the molded body (contact lens) obtained in Reference Example 7 to obtain a contact lens-shaped sample.
- the diameter of the printed iris pattern was about 11 mm.
- the maximum diameter of the optically transparent portion at the center of the iris pattern was about 6.5 mm.
- the obtained molded body had an edge diameter of about 14 mm and a center thickness of about 0.07 mm.
- Reference Example 9 5 was printed on the front curve surface of the molded body (contact lens) obtained in Reference Example 7 to obtain a contact lens-shaped sample.
- the diameter of the printed iris pattern was about 8.0 mm and the diameter of the optical pupil was about 1.35 mm.
- the monomer mixture was put in a test tube, deaerated while being stirred with a touch mixer at a reduced pressure of 20 Torr (27 hPa), and then returned to atmospheric pressure with argon gas. This operation was repeated three times. Thereafter, the monomer mixture was poured into an FC mold for contact lenses made of transparent resin (poly-4-methylpentene-1) in a glove box in a nitrogen atmosphere. A BC mold for contact lenses was placed from above. Polymerization was performed by light irradiation (8000 lux, 20 minutes) using a fluorescent lamp (Toshiba, FL-6D, daylight color, 6 W, 4 tubes). The BC mold was removed, and the iris pattern 410 shown in FIG. 4 (the same as in Reference Example 8) was printed on the lens surface.
- FC mold for contact lenses made of transparent resin (poly-4-methylpentene-1) in a glove box in a nitrogen atmosphere.
- a BC mold for contact lenses was placed from above. Polymerization was performed by light irradiation (8000 lux
- a BC mold was placed and polymerized by light irradiation for another 20 minutes. After polymerization, the mold was removed using a jig. The mold was immersed in a 100 mass% isopropyl alcohol aqueous solution and heated at 60 ° C. After 30 minutes, the contact lens-shaped molded body was peeled off from the mold. The obtained molded body was immersed in a large excess of 100% by mass isopropyl alcohol aqueous solution at 60 ° C. for 2 hours and extracted. After extraction, the lens was placed on a Kimwipe, dried, and transferred to a tray. The obtained lens had an edge diameter of about 14 mm and a center thickness of about 0.07 mm.
- Reference Example 11 A lens was manufactured in the same manner as in Reference Example 10 except that the iris pattern 420 in FIG. 5 (same as in Reference Example 9) was changed.
- the obtained lens had an edge diameter of about 14 mm and a center thickness of about 0.07 mm.
- Example 16 The molded body obtained in Reference Example 6 was immersed in a PAA solution at room temperature for 30 minutes, and then rinsed lightly with pure water in a beaker. The molded body was transferred to a beaker containing new pure water and put on an ultrasonic cleaner (30 seconds). Furthermore, it was rinsed lightly in a beaker containing fresh pure water. Subsequently, the same operation was repeated in the order of the PEI solution and the p (DMAA / AA) solution. After finishing the coating operation, the coated lens was immersed in a borate buffer solution in a sealed vial and autoclaved at 121 ° C. for 30 minutes. A lens with little dryness, a pinhole, and a far and near focus was obtained. In addition, Table 5 shows the physical property evaluation results of the obtained lens. When the lens was allowed to stand at 23 ° C. and a humidity of 60% for 24 hours, no contraction or deformation of the lens was observed.
- Example 17 The molded body obtained in Reference Example 8 was immersed in a PAA solution at room temperature for 30 minutes, and then lightly rinsed with pure water in a beaker. The molded body was transferred to a beaker containing new pure water and put on an ultrasonic cleaner (30 seconds). Furthermore, it was rinsed lightly in a beaker containing fresh pure water. Subsequently, the same operation was repeated in the order of the PEI solution and the p (DMAA / AA) solution. After finishing the coating operation, the coated lens was immersed in a borate buffer solution in a sealed vial and autoclaved at 121 ° C. for 30 minutes. A lens with good design characteristics was obtained with little dryness and a large pupil of the wearer. In addition, Table 5 shows the physical property evaluation results of the obtained lens. When the lens was allowed to stand at 23 ° C. and a humidity of 60% for 24 hours, no contraction or deformation of the lens was observed.
- Example 18 The molded body obtained in Reference Example 9 was immersed in a PAA solution at room temperature for 30 minutes, and then lightly rinsed with pure water in a beaker. The molded body was transferred to a beaker containing new pure water and put on an ultrasonic cleaner (30 seconds). Furthermore, it was rinsed lightly in a beaker containing fresh pure water. Subsequently, the same operation was repeated in the order of the PEI solution and the p (DMAA / AA) solution. After finishing the coating operation, the coated lens was immersed in a borate buffer solution in a sealed vial and autoclaved at 121 ° C. for 30 minutes. A lens with little dryness, a pinhole, and a far and near focus was obtained. In addition, Table 5 shows the physical property evaluation results of the obtained lens. When the lens was allowed to stand at 23 ° C. and a humidity of 60% for 24 hours, no contraction or deformation of the lens was observed.
- Example 19 The molded body (lens) obtained in Reference Example 10 was immersed in a PAA solution at room temperature for 30 minutes, and then lightly rinsed with pure water in a beaker. The molded body was transferred to a beaker containing new pure water and put on an ultrasonic cleaner (30 seconds). Furthermore, it was rinsed lightly in a beaker containing fresh pure water. Subsequently, the same operation was repeated in the order of the PEI solution and the p (DMAA / AA) solution. After finishing the coating operation, the coated lens was immersed in a borate buffer solution in a sealed vial and autoclaved at 121 ° C. for 30 minutes.
- Table 5 shows the physical property evaluation results of the obtained lens. When the lens was allowed to stand at 23 ° C. and a humidity of 60% for 24 hours, no contraction or deformation of the lens was observed.
- Example 20 The molded body (lens) obtained in Reference Example 11 was immersed in a PAA solution at room temperature for 30 minutes, and then lightly rinsed with pure water in a beaker. The molded body was transferred to a beaker containing new pure water and put on an ultrasonic cleaner (30 seconds). Furthermore, it was rinsed lightly in a beaker containing fresh pure water. Subsequently, the same operation was repeated in the order of the PEI solution and the p (DMAA / AA) solution. After finishing the coating operation, the coated lens was immersed in a borate buffer solution in a sealed vial and autoclaved at 121 ° C. for 30 minutes.
- Table 5 shows the physical property evaluation results of the obtained lens. When the lens was allowed to stand at 23 ° C. and a humidity of 60% for 24 hours, no contraction or deformation of the lens was observed.
- Reference Example 14 The molded body obtained in Reference Example 7 was immersed in a PAA solution at room temperature for 30 minutes, and then lightly rinsed with pure water in a beaker. The molded body was transferred to a beaker containing new pure water and put on an ultrasonic cleaner (30 seconds). Furthermore, it was rinsed lightly in a beaker containing fresh pure water. Subsequently, the same operation was repeated in the order of the PEI solution and the p (DMAA / AA) solution. After finishing the coating operation, the coated lens was immersed in a borate buffer solution in a sealed vial and autoclaved at 121 ° C. for 30 minutes. In Reference Example 14, a single-focus lens having poor design properties was obtained. When the lens was allowed to stand at 23 ° C. and a humidity of 60% for 24 hours, no contraction or deformation of the lens was observed.
- Example 21 to 40 and Comparative Example 18 Using the base materials described in Table 6, an iris pattern was imparted and surface-treated by the method described in each reference example described in Table 6 to obtain a contact lens. The evaluation results are shown in Table 6.
- Example 41 According to the manufacturing method of the base material A of Reference Example 2, a contact lens A 1 having a plurality of through holes (diameter 0.8 mm) like the tear exchange promoting pattern 510 shown in FIG. 6 was obtained (diameter of about 13 mm at the edge). , Center thickness about 0.07 mm). However, after the contact lens was polymerized and before the mold and the contact lens were separated, a through hole was punched in the contact lens together with the mold using a dedicated punching die.
- Example 42 Except for using a specially shaped mold, according to the manufacturing method of the base material A of Reference Example 2, through holes [longer diameter (diameter) 3 mm, shorter diameter 0.8 mm] like the tear exchange promoting pattern 520 shown in FIG. to obtain a contact lens a 2 in which a plurality having (edge having a diameter of about 13 mm, center thickness of about 0.07 mm).
- Example 43 A contact lens having a plurality of rear grooves (length: 4 mm, width: 1 mm) like the tear exchange promoting pattern 530 shown in FIG. 8 in accordance with the manufacturing method of the base material A of Reference Example 2 except that a dedicated mold is used It was obtained a 3 (edge portion of a diameter of about 13 mm, center thickness of about 0.07 mm).
- the present invention relates to a medical device, a combination of coating solutions for application to the medical device, and a method of manufacturing the medical device, and a device that comes into contact with a body surface containing body fluid or the like, or a device that is introduced into the body, for example, It can be suitably used for ophthalmic lenses and skin materials. It is particularly useful as a low hydrous soft ophthalmic lens, for example, an ophthalmic lens such as a soft contact lens, an intraocular lens, an artificial cornea, a corneal inlay, a corneal onlay, and a spectacle lens. Among them, it is suitable for a low hydrous soft contact lens used for vision correction use and cosmetic use.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Ophthalmology & Optometry (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Dermatology (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Materials For Medical Uses (AREA)
- Eyeglasses (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
Description
成分A:1分子あたり複数の重合性官能基を有し、数平均分子量が6000以上のポリシロキサン化合物;
成分B:フルオロアルキル基を有する重合性モノマー。
〔A14〕LbLコーティングを医療デバイスに適用するためのコーティング溶液の組み合わせであって、基材上に第1のポリマーを非共有結合的に適用するための、前記第1のポリマーを含有するコーティング溶液を第1溶液とし、該基材上に第kのポリマーを非共有結合的に適用するための、前記第kのポリマーを含有するコーティング溶液を第k溶液(kは2以上n以下の整数、nは2以上の整数)とした、第1溶液~第n溶液からなるコーティング溶液の組み合わせにおいて、クオーツクリスタルマイクロバランス測定法(QCM)用の水晶振動子センサーを、第1溶液に25℃、30分間浸漬し、その後速やかに水晶振動子センサーを純水で洗浄後、乾燥させて、前記QCMによって共振周波数を測定して測定値F1を得、続けてこの水晶振動子センサーを、第2のポリマーを含有する第2溶液に25℃、30分間浸漬し、その後速やかに水晶振動子センサーを純水で洗浄後、乾燥させて、前記QCMによって共振周波数を測定して測定値F2を得、以後、同様に測定値Fnまでの測定を順次行ったときに、いずれか一つのFk-Fk-1が1500以上となるコーティング溶液の組み合わせ。ここで、前記水晶振動子センサーは、共振周波数9MHz、ATカット、金電極のものを用い、前記QCMは基本周波数27MHz、室温(約25℃)で測定する。
〔B1〕、弾性率が100kPa以上2000kPa以下、含水率が10質量%以下、引張伸度が50%以上3000%以下、ホウ酸緩衝液に対する動的接触角(前進)が80°以下である眼に装用される低含水性軟質眼用デバイスであって、該低含水性軟質眼用デバイスの少なくとも一部に虹彩様のパターンが形成されている低含水性軟質眼用デバイス。
成分A:1分子あたり複数の重合性官能基を有し、数平均分子量が6000以上のポリシロキサン化合物;
成分B:フルオロアルキル基を有する重合性モノマー。
〔C1〕眼に装用される低含水性軟質コンタクトレンズであって、前記眼との間の涙液交換を促進するパターンが形成されている低含水性軟質コンタクトレンズ。
〔C2〕前記パターンが、貫通孔、溝、およびひだ構造から選ばれた少なくとも1種である〔C1〕に記載の低含水性軟質コンタクトレンズ。
〔C3〕前記パターンが、前記貫通孔である〔C2〕に記載の低含水性軟質コンタクトレンズ。
〔C4〕基材を含み、該基材の表面の少なくとも一部に、酸性ポリマーおよび塩基性ポリマーからなる層が形成されている請求項〔C1〕~〔C3〕のいずれかに記載の低含水性軟質コンタクトレンズ。
〔C5〕前記基材が、下記成分Aの重合体、または下記成分Aおよび成分Bとの共重合体を主成分とする〔C4〕に記載の低含水性軟質コンタクトレンズ;
成分A:1分子あたり複数の重合性官能基を有し、数平均分子量が6000以上のポリシロキサン化合物;
成分B:フルオロアルキル基を有する重合性モノマー。
〔C6〕前記成分Bが(メタ)アクリル酸フルオロアルキルエステルである〔C5〕に記載の低含水性軟質コンタクトレンズ。
〔C7〕前記酸性ポリマーおよび塩基性ポリマーからなる層が、酸性ポリマー溶液による処理を1回または2回、および塩基性ポリマー溶液による処理を1回または2回、合計で3回処理を行うことにより形成された〔C4〕~〔C6〕のいずれかに記載の低含水性軟質コンタクトレンズ。
〔C8〕前記酸性ポリマーおよび塩基性ポリマーからなる層が、2種の酸性ポリマー溶液による処理を2回および塩基性ポリマー溶液による処理を1回行うことにより形成された〔C4〕~〔C6〕のいずれかに記載の低含水性軟質コンタクトレンズ。
〔C9〕前記酸性ポリマーおよび塩基性ポリマーからなる層を形成する前記酸性ポリマーおよび前記塩基性ポリマーのうちの少なくとも1種が、水酸基およびアミド基から選ばれた基を有するポリマーである〔C4〕~〔C8〕のいずれかに記載の低含水性軟質コンタクトレンズ。
〔C10〕樹脂製モールドを用いて基材を成型した後、基材を該樹脂製モールドから分離する前に、前記基材の穿孔を行う低含水性軟質コンタクトレンズの製造方法。
Qa=MIUa/MIUo
ここで、MIUaは、該医療デバイスの、ホウ酸緩衝液による湿潤時における平滑な石英ガラス板との間の表面摩擦係数を表す。MIUoは、市販のコンタクトレンズである“アキュビュー(登録商標)オアシス”の、ホウ酸緩衝液による湿潤時における平滑な石英ガラス板との間の表面摩擦係数を表す。
Qb=MIUb/MIUo
ここで、MIUbは、該医療デバイスの、生理食塩水による湿潤時における平滑な石英ガラス板との間の表面摩擦係数を表す。
構成2:酸性ポリマー溶液の塗布/塩基性ポリマー溶液の塗布
構成3:塩基性ポリマー溶液の塗布/酸性ポリマー溶液の塗布/塩基性ポリマー溶液の塗布
構成4:酸性ポリマー溶液の塗布/塩基性ポリマー溶液の塗布/酸性ポリマー溶液の塗布
これらの構成の中でも、構成4が、得られる医療デバイスが特に優れた濡れ性を示すためにより好ましい。
<工程1>
1分子あたり複数の重合性官能基を有するポリシロキサン化合物であって数平均分子量が6000以上のポリシロキサン化合物である成分A、および、フルオロアルキル基を有する重合性モノマーである成分Bを含む混合物を重合し、成型体を得る工程。
<工程2>
成型体を酸性ポリマー溶液に接触させた後、余剰の該酸性ポリマー溶液を洗浄除去する工程。
<工程3>
成型体を塩基性ポリマー溶液に接触させた後、余剰の該塩基性ポリマー溶液を洗浄除去する工程。
<工程4>
成型体を酸性ポリマー溶液に接触させた後、余剰の該酸性ポリマー溶液を洗浄除去する工程。
<工程5>
前記工程1~4をこの順に含む方法で得た成型体に放射線を照射する工程。
(実施の形態1)
本発明に係る低含水性軟質眼用デバイスの実施形態の一つである低含水性ソフトコンタクトレンズについて説明する。本実施の形態において、虹彩様のパターンは、眼の虹彩の表面を覆うことで虹彩を擬似的に着色するものである。
(実施の形態2)
本発明に係る低含水性軟質眼用デバイスの他の実施形態の一つである低含水性ソフトコンタクトレンズについて説明する。本実施の形態において、虹彩様のパターンは、円環状をなす遮光性のパターンであって、前記パターンの中心に直径2.0mm以下の光学的瞳孔が形成されたものである。
<工程1>
モノマーの混合物を重合し、涙液交換促進パターンを有するレンズ形状の成型体を得る工程。
<工程2>
成型体を塩基性ポリマー溶液に接触させた後、余剰の該塩基性ポリマー溶液を洗浄除去する工程。
<工程3>
成型体を酸性ポリマー溶液に接触させた後、余剰の該酸性ポリマー溶液を洗浄除去する工程。
<工程1>
モノマーの混合物を重合し、レンズ形状の成型体を得る工程。
<工程2>
成型体に対して涙液交換促進パターンを形成する工程。
<工程3>
成型体を塩基性ポリマー溶液に接触させた後、余剰の該塩基性ポリマー溶液を洗浄除去する工程。
<工程4>
成型体を酸性ポリマー溶液に接触させた後、余剰の該酸性ポリマー溶液を洗浄除去する工程。
<ホウ酸緩衝液>
本明細書においてホウ酸緩衝液とは、特表2004-517163号公報の実施例1中に記載の「塩溶液」である。具体的には塩化ナトリウム8.48 g、ホウ酸9.26g、ホウ酸ナトリウム(四ホウ酸ナトリウム十水和物)1.0 g、およびエチレンジアミン四酢酸0.10 gを純水に溶かして1000mLとした水溶液である。
<生理食塩水>
本明細書において生理食塩水とは、塩化ナトリウムを純水に溶かして0.9質量%とした水溶液のことを指す。
<湿潤状態>
本明細書において、湿潤状態とは、試料を室温(25℃)の純水あるいは所定の水溶液中に24時間以上浸漬した状態を意味する。湿潤状態での物性値の測定は、試料を純水あるいは所定の水溶液から取り出した後、可及的速やかに実施される。
<乾燥状態>
本明細書において、乾燥状態とは、湿潤状態の試料を40℃で16時間真空乾燥した状態を意味する。該真空乾燥における真空度は2hPa以下とする。乾燥状態での物性値の測定は、上記真空乾燥の後、可及的速やかに実施される。
(1)分子量
GPC法により、以下の条件で基材に用いる各成分等のポリスチレン換算の質量平均分子量ならびに数平均分子量を測定した。
ポンプ 東ソー DP-8020
検出器 東ソー RI-8010
カラムオーブン 島津 CTO-6A
オートサンプラ 東ソー AS-8010
カラム:東ソー TSKgel GMHHR-M(内径7.8mm×30cm、粒子径5μm)×2本
カラム温度:35℃
移動相:クロロホルム
流速:1.0mL/分
サンプル濃度:0.4質量%
注入量:100μL
標準サンプル:ポリスチレン(分子量1010~109万)。
ホウ酸緩衝液による湿潤状態の試料を目視観察し、下記の基準で透明性を評価した。
A:濁りがなく透明;
B:AとCの中間程度の白濁;
C:白濁があり半透明;
D:CとEの中間程度の白濁;
E:白濁し透明性が全くない。
コンタクトレンズ形状またはフィルム形状の試験片を使用した。試験片をホウ酸緩衝液に浸漬して室温で24時間以上おいて含水させた後、表面水分をワイピングクロス(日本製紙クレシア製”キムワイプ”(登録商標))で拭き取って質量(Ww)を測定した。次に、該試験片を真空乾燥器で40℃、16時間乾燥させ、質量(Wd)を測定した。その後、次式にて含水率を求めた。得られた値が1%未満の場合は、「1%未満」と表記した。
含水率(%)=100×(Ww-Wd)/Ww。
試験片を、室温でビーカー中のホウ酸緩衝液中に24時間以上浸漬した。試験片とホウ酸緩衝液の入ったビーカーを超音波洗浄器にかけた(1分間)。試験片をホウ酸緩衝液から引き上げ、空中に表面(試験片がコンタクトレンズ形状の場合は直径方向)が垂直になるように保持した際の表面の様子を目視観察し、下記の基準で判定した。ここで直径とはコンタクトレンズの外縁部が形成する円の直径である。
A:表面の液膜が20秒以上保持する;
B:表面の液膜が10秒以上20秒未満で切れる;
C:表面の液膜が5秒以上10秒未満で切れる;
D:表面の液膜が1秒以上5秒未満で切れる;
E:表面の液膜が瞬時に切れる(1秒未満)。
ホウ酸緩衝液による湿潤状態のサンプルにて測定した。動的接触角サンプルとして、フィルム状に成型したサンプルから切り出した5mm×10mm×0.1mm程度のサイズのフィルム状の試験片、またはコンタクトレンズ状サンプルから切り出した幅5mmの短冊状試験片を使用し、ホウ酸緩衝液に対する前進時の動的接触角を測定した。測定装置として、株式会社レスカ(RHESCA)製 動的濡れ性試験器 WET-6000を使用し、浸漬速度は0.1mm/sec、浸漬深さは7mmとした。
ホウ酸緩衝液による湿潤状態のサンプルを用いて測定した。コンタクトレンズ形状のサンプルから規定の打抜型を用いて幅(最小部分)5mm、長さ14mm、厚さ0.2mmの試験片を切り出した。該試験片を用い、オリエンテック社製のRTG-1210型試験機(ロードセルUR-10N-D型)を用いて引張試験を実施した。引張速度は100mm/分で、グリップ間の距離(初期)は5mmであった。また、フィルム形状のサンプルの場合は、5mm×20mm×0.1mm程度のサイズの試験片を用いて、同様の方法で測定した。
易滑性はホウ酸緩衝液による湿潤状態のサンプル(コンタクトレンズ形状またはフィルム形状)を人指で5回擦った時の感応評価で行った。
A:非常に優れた易滑性がある;
B:AとCの中間程度の易滑性がある;
C:中程度の易滑性がある;
D:易滑性がほとんど無い(CとEの中間程度);
E:易滑性が無い。
ムチンとしてCALBIOCHEM社の Mucin, Bovine Submaxillary Gland(カタログ番号499643)を使用した。コンタクトレンズ形状のサンプルを0.1%濃度のムチン水溶液に20時間37℃の条件で浸漬させた後、BCA(ビシンコニン酸)プロテインアッセイ法によってサンプルに付着したムチンの量を定量した。
500mlのビーカーに攪拌子(36mm)を入れ、パルミチン酸メチル1.5gと純水500gを入れた。ウォーターバスの温度を37℃に設定し、前述のビーカーをウォーターバスの中央に置き、マグネチックスターラーで1時間攪拌した。回転速度は600rpmとした。コンタクトレンズ形状のサンプルを1枚ずつレンズバスケットに入れ、前述のビーカー内に投入し、そのまま攪拌した。1時間後、攪拌を止め、レンズバスケット内のサンプルを40℃の水道水と家庭用液体洗剤(ライオン製“ママレモン(登録商標)”)でこすり洗いした。洗浄後のサンプルをホウ酸緩衝液の入ったスクリュー管内に入れ、氷浴に1時間浸漬した。スクリュー管を氷浴が取り出した後、にサンプルの白濁を目視観察し、下記の基準でサンプルへのパルミチン酸メチルの付着量を判定した。
A:白濁が無く透明である;
B:白濁した部分がわずかにある;
C:白濁した部分が相当程度ある;
D:大部分が白濁している;
E:全体が白濁している。
人工涙液として、オレイン酸プロピルエステルの代わりにオレイン酸を使用する以外は国際公開第2008/127299号パンフレット、32頁、5~36行に記載の方法にしたがって調製した涙様液(TLF)緩衝液を使用した。培養用マルチプレート(24ウェル型、材質ポリスチレン、放射線滅菌済み)の1ウェル中に人工涙液2mLを入れ、サンプル(コンタクトレンズ形状)1枚を浸漬した。100rpm、37℃で24時間振とうした。その後サンプルを取り出し、リン酸緩衝塩溶液(PBS;pH約7.2)で軽く洗浄した後、人工涙液2mLを入れ替えたウェル中にサンプルを浸漬した。さらに、100rpm、37℃で24時間振とうした後、PBSで軽く洗浄し、目視でサンプルの白濁度合いを評価することで付着物量を観察した。評価は下記基準で行った。
A:白濁が観察されない;
B:白濁した部分がわずかにある(面積で1割未満);
C:白濁した部分が相当程度ある(面積で1割~5割);
D:大部分(面積で5割~10割)が白濁しているが裏側が透けて見える;
E:全体が濃く白濁しており、裏側が透けて見えにくい。
ホウ酸緩衝液による湿潤状態のサンプルの着色度(青色の濃さ)を目視観察し、下記の基準で評価した。
A:一見して着色が認められる;
B:AとCの中間程度の着色度;
C:わずかに着色が認められる;
D:CとDの中間程度の着色度;
E:着色が認められない。
コンタクトレンズ形状のサンプルまたは直径14mmの円状に切り取ったフィルム形状のサンプルを用いて測定を実施した。測定装置としては、摩擦感テスターKES-SE(カトーテック株式会社)を使用した。図1は、表面摩擦係数を測定する装置を示す模式図である。図2は、図1に示すA方向からみた測定治具11および摩擦子20の要部の構成を示す模式図である。図3は、測定治具11および摩擦子20の要部の構成を示す部分断面図である。まず、装置1の試料台10にテフロン(登録商標)製の板(65mm×100mm×1.0mm、図3では省略)を水平に置き、その上に表面が平滑な石英ガラス板10a(55mm×90mm×1.0mm)を水平に置き固定した。テフロン(登録商標)製の板と石英ガラス板は十分に平面性の高いものを用いた。ここで、石英ガラス板10aは、測定毎に表面を“キムワイプ”で拭き取って清浄で乾いた状態とする。測定では、図2,図3に示す測定治具11(重さ62g=W)の摩擦子20にサンプルSを3枚取り付けて測定を行った。このとき、サンプルSは、摩擦子20の取付ホルダ21の先端に載置された後、パッキン22によって押えられ、ナット23で固定される。サンプルSが摩擦子20の端部から突出して固定された状態で、3枚のサンプルの各々の中央部に、下記条件Aにおいてはホウ酸緩衝液を、下記条件Bにおいては生理食塩水を、各0.1mL垂らした。その後、速やかに測定治具11を装置1に取り付け、3枚のサンプルSがすべて石英ガラス板10aと接触した状態で、試料台10を水平方向(矢印Y)に1.0mm/秒の速度で移動させたときの水平方向の応力(F)が、摩擦検出部12が検出し、力計13によって測定される。表面摩擦係数(MIU)は次式で求めた。
MIU=F/W
移動距離は30mmとし、MIUの測定は0.1秒毎に実施した。
条件A:ホウ酸緩衝液による湿潤状態のサンプルを用いて測定を実施した。
条件B:生理食塩水による湿潤状態のサンプルを用いて測定を実施した。
前記(12)に記載の方法で“アキュビュー(登録商標)オアシス”(ジョンソン・エンド・ジョンソン株式会社)の条件Aでの表面摩擦係数(MIUo)を測定した。表面摩擦係数比QaとQbは以下の式で求めた。
Qa=MIUa/MIUo
Qb=MIUb/MIUo。
密閉バイアル瓶中にサンプルを清浄なホウ酸緩衝液に浸漬した状態で入れた。121℃、30分間、オートクレーブ滅菌を行った後、室温まで冷却した。これを1サイクルとして、5サイクルを繰り返した。その後、前記水濡れ性評価を行った。
A.手のひらの中央に窪みを作ってそこにホウ酸緩衝液による湿潤状態のサンプル(コンタクトレンズ形状)を置いた。そこに洗浄液(日本アルコン、“オプティフリー(登録商標)”)を加えて、もう一方の手の人差し指の腹で表裏10回ずつ擦った後、清浄な“オプティフリー(登録商標)”の入ったスクリュー管に入れ4時間以上静置した。以上の操作を1サイクルとして、15サイクル繰り返した。その後、サンプルを純水で洗浄し、ホウ酸緩衝液中に浸漬した。その後、前記水濡れ性評価を行った。
(16)装用感
ホウ酸緩衝液による湿潤状態のコンタクトレンズ形状のサンプルを、2名の被験者が6時間装用した。下記の基準で評価した。乾燥感には乾燥に伴う異物感(いわゆるゴロゴロ感)も含めた。
A:2名とも乾燥感を感じなかった;
B:1名のみが乾燥感を感じた;
C:2名とも乾燥感を感じた;
D:1名が乾燥感もしくは眼への貼り付き感を強く感じたので装用中止した;
E:2名が乾燥感もしくは眼への貼り付き感を強く感じたので装用中止した。
フィルム形状のサンプル(20mm×20mm×0.1mm)を2枚重ねるか、あるいはフィルム形状のサンプル(20mm×20mm×0.2mm)を測定に用いた。酸素透過率測定装置OX-TRAN2/21形(株式会社日立ハイテクノロジーズ)を用いて酸素透過係数測定を行った。キャリアガスとして窒素98%/水素2%の混合ガスを用い、測定ガスとして窒素79.3%/酸素20.7%の混合ガスを用いた。また、ガスの加湿は行わなかった。
水晶振動子バイオセンシングシステムQCM934(セイコー・イージーアンドジー株式会社)およびQCM測定ソフトウエアWinQCM(Ver1.05、セイコー・イージーアンドジー株式会社)により測定を行った。水晶振動子センサーは、QA-A9M-AU(E)(セイコー・イージーアンドジー株式会社)を用いた。
QA-A9M-AU(E)仕様
・共振周波数:9MHz
・カットタイプ:ATカット
・電極材料:金
・電極厚さ:下地チタン約100nmの上に電極材料約300nmをスパッタにより製膜
・電極直径:5mmφ
・形状:角型7.9mm×7.9mm
QCMは、室温(約25℃)にて、基本周波数27MHz(QCM測定ソフトウエアへの入力値は26.95MHz)で測定した。
ホウ酸緩衝液による湿潤状態のコンタクトレンズ形状のサンプルを、2名の被験者が6時間装用した。下記の基準で評価した。乾燥感には乾燥に伴う異物感(いわゆるゴロゴロ感)も含めた。
A:2名とも乾燥感を感じなかった;
B:1名のみが乾燥感を感じた;
C:2名とも乾燥感を感じた;
D:1名が乾燥感もしくは眼への貼り付き感を強く感じたので装用中止した;
E:2名が乾燥感もしくは眼への貼り付き感を強く感じたので装用中止した。
被験者1名がコンタクトレンズを装用した。フローレス試験紙(昭和薬品化工株式会社製)で涙液を染色し、スリットランプSL-203型(製造元株式会社オーヒラ)で観察しながら、装用したコンタクトレンズ表面を綿棒で軽く押すことをゆっくり数回繰り返した。この際、涙液交換促進パターンによる涙液交換(涙液の流れ)が確認できた場合はA、できない場合はBと表記した。Aであれば装用時に眼瞼からの圧力を受けることで涙液が交換すると考えられる。
50mLスクリュー瓶に20g純水を入れた。UniBlue A(品番298409、シグマアルドリッチ)を0.5g加え、37℃のインキュベータ中で溶解させた。溶解後、1N塩酸を4g添加し、pH試験紙でpH約1~2を確認した。酢酸エチルを24g添加し、軽く攪拌した。100mLナスフラスコに移し、静置した。UniBlue Aが酢酸エチル側に移るので下層の水層を捨てた。酢酸エチル層を100mLナスフラスコに移し、20℃のエバポレータで蒸発させた。その後、真空乾燥器で40℃、16時間乾燥させ、酸型UniBlue A[推定構造式(M1)]を得た。
成分Aとして両末端にメタクリロイル基を有するポリジメチルシロキサン(FM7726、JNC、式(M2)の化合物、質量平均分子量29kD、数平均分子量26kD)(48質量部)、成分Bとしてトリフルオロエチルアクリレート(ビスコート3F、大阪有機化学工業)(45質量部)、成分Cとして片末端にメタクリロイル基を有するポリジメチルシロキサン(FM0725、JNC、式(M3)の化合物、質量平均分子量13.3kD、数平均分子量12.8kD)(2質量部)、成分Cとして2-エチルヘキシルアクリレート(3質量部)、成分Cとしてジメチルアミノエチルアクリレート(1質量部)、成分Cとして重合性基を有する紫外線吸収剤(RUVA-93、大塚化学)(1質量部)、成分Cとして酸型UniBlue A(参考例1)(0.04質量部)、重合開始剤“イルガキュア(登録商標)”819(チバ・スペシャルティ・ケミカルズ、0.75質量部)およびt-アミルアルコール(5質量部)を混合し撹拌した。これをメンブレンフィルター(0.45μm)でろ過して不溶分を除いてモノマー混合物を得た。このモノマー混合物を試験管に入れ、タッチミキサーで攪拌しながら減圧20Torr(27hPa)にして脱気を行い、その後アルゴンガスで大気圧に戻した。この操作を3回繰り返した。窒素雰囲気のグローブボックス中で透明樹脂(ベースカーブ側ポリプロピレン、フロントカーブ側ゼオノア)製のコンタクトレンズ用モールドにモノマー混合物を注入し、蛍光ランプ(東芝、FL-6D、昼光色、6W、4本)を用いて光照射(1.71mW/cm2、20分間)して重合した。重合後に、モールドごとイソプロピルアルコール中に浸漬して、モールドからコンタクトレンズ形状の成型体を剥離した。得られた成型体を、大過剰量のイソプロピルアルコール中に60℃、2時間浸漬した。さらに、得られた成型体を、清浄なイソプロピルアルコール中に室温で1分間浸漬した後、成型体を取り出し、室温で12時間以上風乾した。これを基材Aとした。なお、基材Aは、縁部の直径約13mm、中心部厚み約0.07mmである。また、モールドとして2枚のガラス板とガスケットを使用して同様の操作を行い、30mm×30mm×0.1mmのフィルム状サンプルを得た。これを基材AFとした。
成分Aとして両末端にメタクリロイル基を有するポリジメチルシロキサン(FM7726、JNC、式(M2)の化合物、質量平均分子量29kD、数平均分子量26kD)(48質量部)、成分Bとしてトリフルオロエチルアクリレート(ビスコート3F、大阪有機化学工業)(48.5質量部)、成分Cとしてメチル(メタ)アクリレート(0.5質量部)、成分Cとして重合性基を有する紫外線吸収剤(RUVA-93、大塚化学)(1質量部)、重合開始剤“イルガキュア(登録商標)”819(チバ・スペシャルティ・ケミカルズ、0.75質量部)およびt-アミルアルコール(5質量部)を混合し撹拌した。その後、参考例2と同様の操作を行い、レンズを作製した。これを基材Bとした。なお、基材Bは、縁部の直径約13mm、中心部厚み約0.07mmである。
式(M4)で表されるシリコーンモノマー(13.4質量部)、N,N-ジメチルアクリルアミド(37.0質量部)、式(M5)で表されるシリコーンモノマー(36.6質量部)、光開始剤イルガキュア1850(1.26質量部)、紫外線吸収剤(RUVA-93、大塚化学)(1.26質量部)メタクリル酸-2-ヒドロキシエチル(9.2質量部)、トリエチレングリコールジメタクリレート(1.26質量部)、UniBlue A(品番298409、シグマアルドリッチ、式(M6)の構造、0.02質量部)、テトラヒドロリナロール(23.9質量部)を混合し撹拌した。これをメンブレンフィルター(0.45μm)でろ過して不溶分を除いてモノマー混合物を得た。このモノマー混合物を試験管に入れ、タッチミキサーで攪拌しながら減圧20Torr(27hPa)にして脱気を行い、その後アルゴンガスで大気圧に戻した。この操作を3回繰り返した後、窒素雰囲気のグローブボックス中で透明樹脂(ベースカーブ側ポリプロピレン、フロントカーブ側ゼオノア)製のコンタクトレンズ用モールドにこのモノマー混合物を注入し、蛍光ランプ(東芝、FL-6D、昼光色、6W、4本)を用いて光照射(1.71mW/cm2、20分間)して重合した。重合後、モールドごと60質量%イソプロピルアルコール水溶液中に浸漬して、モールドからコンタクトレンズ形状の成型体を剥離した。得られた成型体を、大過剰量の80質量%イソプロピルアルコール水溶液に60℃、2時間浸漬した。さらに、成型体を大過剰量の50質量%イソプロピルアルコール水溶液に室温、30分間浸漬し、次に大過剰量の25質量%イソプロピルアルコール水溶液に室温、30分間浸漬し、次に大過剰量の純水に室温、30分間浸漬した。これを基材Cとした。なお、基材Cは、縁部の直径約14mm、中心部厚み約0.07mmである。
実施例においてコーティングに供した共重合体の合成例を示すが、本合成例において各共重合体の分子量は以下に示す条件で測定し、ポリエチレンオキシド換算の分子量を求めた。
装置:島津製作所製 Prominence GPCシステム
ポンプ:LC-20AD
オートサンプラ:SIL-20AHT
カラムオーブン:CTO-20A
検出器:RID-10A
カラム:東ソー社製GMPWXL(内径7.8mm×30cm、粒子径13μm)
溶媒:水/メタノール=1/1(0.1N硝酸リチウム添加)
流速:0.5mL/分
測定時間:30分
サンプル濃度:0.1質量%
注入量:100μL
標準サンプル:Agilent社製ポリエチレンオキシド標準サンプル(0.1kD~1258kD)。
<CPVPA:N-ビニルピロリドン/アクリル酸(モル比9/1)>
500mL三口フラスコにN-ビニルピロリドン(NVP、90.02g、0.81mol)、アクリル酸(6.49g、0.09mol)、ジメチルスルホキシド(386.8g)、重合開始剤VA-061(和光純薬、0.1408g、0.562mmol)、2-メルカプトエタノール(2-ME、43.8μL、0.63mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、50℃で0.5時間撹拌し、その後70℃に昇温して、6.5時間撹拌した。重合終了後、重合反応液を室温まで冷却し、水100mLを加えた後、アセトン500mL中に注ぎ入れて一晩静置した。その後、アセトンをさらに200mL、ヘキサンを100mL加えた後、上澄み液をデカンテーションで除いた。得られた固形分をアセトン/水=500mL/100mLで7回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量は、Mn:35kD、Mw:130kD(Mw/Mn=3.8)であった。
<CPDA:N,N-ジメチルアクリルアミド/アクリル酸(モル比2/1)>
500mL三口フラスコにN,N-ジメチルアクリルアミド(59.50g、0.600mol)、アクリル酸(21.62g、0.300mol)、純水(325.20g)、重合開始剤VA-061(和光純薬、0.1408g、0.562mmol)、2-メルカプトエタノール(43.8μL、0.63mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、50℃で0.5時間撹拌し、その後70℃に昇温して、6.5時間撹拌した。重合終了後、重合反応液をエバポレータで400gまで濃縮し、2-プロパノール/n-ヘキサン=500mL/500mL中に注ぎ入れて静置後、上澄み液をデカンテーションで除いた。得られた固形分を2-プロパノール/n-ヘキサン=250mL/250mLで3回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量は、Mn:55kD、Mw:192kD(Mw/Mn=3.5)でZあった。
<CPHA:2-ヒドロキシエチルメタクリレート/アクリル酸(モル比3/1)>
300mL三口フラスコに2-ヒドロキシエチルメタクリレート(HEMA、10.3g、0.09mol)、アクリル酸(AA、2.2g、0.03mol)、ジメチルスルホキシド(49.8g)、重合開始剤VA-061(和光純薬、0.009g、0.038mmol)、2-メルカプトエタノール(2-ME、7.8μL、0.111mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、60℃で0.5時間撹拌し、その後70℃に昇温して、4.5時間撹拌した。重合終了後、重合反応液を室温まで冷却し、エタノール20mLを加えた後、水500mL中に注ぎ入れて一晩静置した。その後、上澄み液を捨て、得られた固形分を水500mLでさらに2回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量は、Mn:50kD、Mw:96kD(Mw/Mn=1.9)であった。
以下、純水とは逆浸透膜で濾過して精製した水を表す。
<PEI溶液>
ポリエチレンイミン(P3143、シグマアルドリッチ、分子量75万)を純水に溶解して1.1質量%水溶液とした。
<PAA溶液>
ポリアクリル酸(169-18591、和光純薬工業、分子量25万)を純水に溶解して1.2質量%水溶液とした。
<CPVPA溶液>
合成例1で得られたCPVPAを純水に溶解して1.1質量%水溶液とした。
<CPDA溶液>
合成例2で得られたCPDAを純水に溶解して1.1質量%水溶液とした。
<CPHA溶液>
合成例3で得られたCPHAを純水に溶解して0.01質量%水溶液とした。
<PAA1溶液>
ポリアクリル酸水溶液(シグマアルドリッチ、カタログ番号52392-5、分子量10万)を純水で希釈して0.001Mとし、その後pHが約2.5になるように1M塩酸を加えて調整した。ポリアクリル酸の濃度は、繰返し単位(アクリル酸)に基づいて計算した。
<PAA2溶液>
ポリアクリル酸水溶液(シグマアルドリッチ、カタログ番号52392-5、分子量10万)を純水で希釈して0.0001Mとし、その後pHが約2.5になるように1M塩酸を加えて調整した。ポリアクリル酸の濃度は、繰返し単位(アクリル酸)に基づいて計算した。
<PAH1溶液>
ポリ(塩酸アリルアミン)(シグマアルドリッチ、カタログ番号28322-3、分子量5.6万)を純水に溶解して0.0001Mとし、その後pHが約2.5になるように1M塩酸を加えて調整した。ポリ(塩酸アリルアミン)の濃度は、繰返し単位(塩酸アリルアミン)に基づいて計算した。
<CPDA1溶液>
CPDA溶液を純水で希釈して0.01Mとし、その後pHが約2.5になるように1M塩酸を加えて調整した。CPDAの濃度は、繰返し単位のモル平均分子量に基づいて計算した。
<CPDA2溶液>
CPDA溶液を純水で希釈して0.0001Mとし、その後pHが約2.5になるように1M塩酸を加えて調整した。CPDAの濃度は、繰返し単位のモル平均分子量に基づいて計算した。
<AcOH>
氷酢酸を純水に溶解して1.1質量%水溶液とした。
<p(DMAA/AA)溶液>
合成例2で得られたCPDAを純水に溶解して1質量%水溶液とした。
基材A(参考例2)を第1溶液(PAA溶液)に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。次に第2溶液(PEI溶液)に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。次に第3溶液(PAA溶液)に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。コーティングされた基材Aを、ホウ酸緩衝液で満たしたガラス瓶に入れて密封し、オートクレーブ処理(121℃、30分)を行って低含水性ソフトコンタクトレンズを得た。得られた低含水性ソフトコンタクトレンズの評価結果を表1に示した。
表1中に示した基材を、表1中に示した第1溶液(PAA溶液)に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。次に該基材を表1中に示した第2溶液(PEI溶液)に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。次に該基材を表1中に示した第3溶液に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。コーティングされた基材を、ホウ酸緩衝液で満たしたガラス瓶に入れて密封し、オートクレーブ処理(121℃、30分)を行って低含水性ソフトコンタクトレンズを得た。得られた低含水性ソフトコンタクトレンズの評価結果を表1に示した。なお、第3溶液は、上述したPAA溶液,CPVPA溶液,CPDA溶液,CPHA溶液のうちのいずれかから選択される。
基材A(参考例2)に対し、特表2005-538418号公報の実施例4に記載のコーティングEを施した。コーティングEはポリアクリル酸をPAA、ポリ(塩酸アリルアミン)をPAHと表記するとPAA/PAH/PAA/PAH/PAA/PAH/PAA/PAH/PAAの順にコーティングを行うものである。ただし、PAA溶液(PAA1溶液、0.01M,pH2.5)の代わりにCPDA1溶液(0.01M,pH2.5)およびCPDA2溶液(0.0001M,pH2.5)を用いた。すなわち、CPDA/PAH/CPDA/PAH/CPDA/PAH/CPDA/PAH/CPDAの順にコーティングを行った。具体的には、(a)基材AをCPDA1溶液(0.01M,pH2.5)に30分間浸漬して最も内部側の層として形成する。その後、(b)得られた基材Aに対し、すすぎを行わずに、PAH1溶液(0.0001M,pH2.5)に5分間浸漬する。さらに、(c)得られた基材Aに対し、すすぎを行わずに、CPDA2溶液(0.0001M,pH2.5)に5分間浸漬する。(d)得られる基材Aに対し、工程(b)および(c)をさらに3回繰り返してコーティングEによってコーティングされた基材Aを得る。このコーティングEによってコーティングされた基材Aを、ホウ酸緩衝液で満たしたガラス瓶に入れて密封し、オートクレーブ処理(121℃、30分)を行って低含水性ソフトコンタクトレンズを得た。得られた低含水性ソフトコンタクトレンズの評価結果を表1に示した。
基材B(参考例3)に対し、特表2005-538418号公報の実施例4に記載のコーティングEを施した。ただし、PAA溶液(PAA1溶液、0.01M,pH2.5)の代わりにCPDA1溶液(0.01M,pH2.5)およびCPDA2溶液(0.0001M,pH2.5)を用いた。すなわち、CPDA/PAH/CPDA/PAH/CPDA/PAH/CPDA/PAH/CPDAの順にコーティングを行った。具体的には、(a)基材AをCPDA1溶液(0.01M,pH2.5)に30分間浸漬して最も内部側の層として形成する。その後、(b)得られた基材Aに対し、すすぎを行わずに、PAH1溶液(0.0001M,pH2.5)に5分間浸漬する。さらに、(c)得られた基材Aに対し、すすぎを行わずに、CPDA2溶液(0.0001M,pH2.5)に5分間浸漬する。(d)得られる基材Aに対し、工程(b)および(c)をさらに3回繰り返してコーティングEによってコーティングされた基材Aを得る。このコーティングEによってコーティングされた基材Aを、ホウ酸緩衝液で満たしたガラス瓶に入れて密封し、オートクレーブ処理(121℃、30分)を行って低含水性ソフトコンタクトレンズを得た。得られた低含水性ソフトコンタクトレンズの評価結果を表2に示した。
基材AF(参考例2)を第1溶液(PAA溶液)に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。次に第2溶液(PEI溶液)に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。次に第3溶液(CPDA溶液)に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。コーティングされた基材を、ホウ酸緩衝液で満たしたガラス瓶に入れて密封し、オートクレーブ処理(121℃、30分)を行って医療デバイスを得た。得られた医療デバイスの評価結果を表2に示した。
基材A(参考例2)に対し、特表2005-538418号公報の実施例4に記載のコーティングCを施した。コーティングCはポリアクリル酸をPAA、ポリ(塩酸アリルアミン)をPAHと表記するとPAA/PAH/PAA/PAH/PAA/PAH/PAA/PAH/PAAの順にコーティングを行うものである。具体的には、(a)基材AをPAA2溶液(0.0001M,pH2.5)に30分間浸漬して最も内部側の層として形成する。その後、(b)得られた基材Aに対し、すすぎを行わずに、PAH1溶液(0.0001M,pH2.5)に5分間浸漬する。さらに、(c)得られた基材Aに対し、すすぎを行わずに、PAA2溶液(0.0001M,pH2.5)に5分間浸漬する。(d)得られる基材Aに対し、工程(b)および(c)をさらに3回繰り返してコーティングCによってコーティングされた基材Aを得る。このコーティングCによってコーティングされた基材Aを、ホウ酸緩衝液で満たしたガラス瓶に入れて密封し、オートクレーブ処理(121℃、30分)を行って低含水性ソフトコンタクトレンズを得た。得られた低含水性ソフトコンタクトレンズの評価結果を表2に示した。
比較例1と同様の手順で基材A(参考例2)に対し、特表2005-538418号公報の実施例4に記載のコーティングCを施した。ただし最終層のコーティングはPAA2溶液(0.0001M,pH2.5)の代わりにCPDA2溶液(0.0001M,pH2.5)を用いた。すなわちPAA/PAH/PAA/PAH/PAA/PAH/PAA/PAH/CPDAの順にコーティングを行った。得られた基材を、ホウ酸緩衝液で満たしたガラス瓶に入れて密封し、オートクレーブ処理(121℃、30分)を行って低含水性ソフトコンタクトレンズを得た。得られた低含水性ソフトコンタクトレンズの評価結果を表2に示した。
比較例1と同様の手順で基材A(参考例2)に対し、特表2005-538418号公報の実施例4に記載のコーティングCを施した。ただしPAA2溶液(0.0001M,pH2.5)の代わりにCPDA2)溶液(0.0001M,pH2.5)を用いた。すなわちCPDA/PAH/CPDA/PAH/CPDA/PAH/CPDA/PAH/CPDAの順にコーティングを行った。得られた基材を、ホウ酸緩衝液で満たしたガラス瓶に入れて密封し、オートクレーブ処理(121℃、30分)を行って低含水性ソフトコンタクトレンズを得た。得られた低含水性ソフトコンタクトレンズの評価結果を表2に示した。
基材A(参考例2)に対し、特表2005-538418号公報の実施例4に記載のコーティングEを施した。コーティングEはポリアクリル酸をPAA、ポリ(塩酸アリルアミン)をPAHと表記するとPAA/PAH/PAA/PAH/PAA/PAH/PAA/PAH/PAAの順にコーティングを行うものである。具体的には、(a)基材AをPAA1溶液(0.01M,pH2.5)に30分間浸漬して最も内部側の層として形成する。その後、(b)得られた基材Aに対し、すすぎを行わずに、PAH1溶液(0.0001M,pH2.5)に5分間浸漬する。さらに、(c)得られた基材Aに対し、すすぎを行わずに、PAA2溶液(0.0001M,pH2.5)に5分間浸漬する。(d)得られる基材Aに対し、工程(b)および(c)をさらに3回繰り返してコーティングEによってコーティングされた基材Aを得る。このコーティングEによってコーティングされた基材Aを、ホウ酸緩衝液で満たしたガラス瓶に入れて密封し、オートクレーブ処理(121℃、30分)を行って低含水性ソフトコンタクトレンズを得た。得られた低含水性ソフトコンタクトレンズの評価結果を表2に示した。
参考例12と同様の手順で基材A(参考例2)に対し、特表2005-538418号公報の実施例4に記載のコーティングEを施した。ただし最終層のコーティングはPAA2溶液(0.0001M,pH2.5)の代わりにCPDA2溶液(0.0001M,pH2.5)を用いた。すなわちPAA/PAH/PAA/PAH/PAA/PAH/PAA/PAH/CPDAの順にコーティングを行った。得られた基材を、ホウ酸緩衝液で満たしたガラス瓶に入れて密封し、オートクレーブ処理(121℃、30分)を行って低含水性ソフトコンタクトレンズを得た。得られた低含水性ソフトコンタクトレンズの評価結果を表2に示した。
市販シリコーンハイドロゲルソフトコンタクトレンズ製品“アキュビュー(登録商標)オアシス”(ジョンソン・エンド・ジョンソン株式会社)の評価を行った。評価結果を表3に示した。
基材C(参考例4)に対し、第1溶液(PAA溶液)に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。次に該基材を第2溶液(PEI溶液)に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。次に該基材を第3溶液(CPDA溶液)に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。得られた基材を、ホウ酸緩衝液で満たしたガラス瓶に入れて密封し、オートクレーブ処理(121℃、30分)を行ってソフトコンタクトレンズを得た。得られたシリコーンハイドロゲルソフトコンタクトレンズの評価結果を表3に示した。
基材C(参考例4)に対し、特表2005-538418号公報の実施例4に記載のコーティングEを施した。コーティングEはポリアクリル酸をPAA、ポリ(塩酸アリルアミン)をPAHと表記するとPAA/PAH/PAA/PAH/PAA/PAH/PAA/PAH/PAAの順にコーティングを行うものである。具体的には、(a)基材BをPAA1溶液(0.01M,pH2.5)に30分間浸漬して最も内部側の層として形成する。その後、(b)得られた基材Cに対し、すすぎを行わずに、PAH1溶液(0.0001M,pH2.5)に5分間浸漬する。さらに、(c)得られた基材Cに対し、すすぎを行わずに、PAA2溶液(0.0001M,pH2.5)に5分間浸漬する。(d)得られる基材Cに対し、工程(b)および(c)をさらに3回繰り返してコーティングEによってコーティングされた基材Cを得る。このコーティングEによってコーティングされた基材Cを、ホウ酸緩衝液で満たしたガラス瓶に入れて密封し、オートクレーブ処理(121℃、30分)を行ってソフトコンタクトレンズを得た。得られたシリコーンハイドロゲルソフトコンタクトレンズの評価結果を表3に示した。
比較例1と同様の手順で基材AF(参考例2)に対し、特表2005-538418号公報の実施例4に記載のコーティングCを施した。すなわちPAA/PAH/PAA/PAH/PAA/PAH/PAA/PAH/PAAの順にコーティングを行った。得られた基材を、ホウ酸緩衝液で満たしたガラス瓶に入れて密封し、オートクレーブ処理(121℃、30分)を行って医療デバイスを得た。得られた医療デバイスの評価結果を表3に示した。
水晶振動子センサー(共振周波数9MHz、ATカット、金電極)をPAA溶液に30分間浸漬した後、3つの純水浴(各100mL)にそれぞれ1分間浸漬し、乾燥窒素ガスを吹き付けて乾燥させ、QCM(基本周波数27MHz、室温(約25℃))によって共振周波数(F1)を測定した。次に該水晶振動子センサーをPEI溶液に30分間浸漬した後、(各100mL)にそれぞれ1分間浸漬し、乾燥窒素ガスを吹き付けて乾燥させ、QCM(基本周波数27MHz、室温(約25℃))によって共振周波数(F2)を測定した。次に該水晶振動子センサーをPAA溶液に30分間浸漬した後、3つの純水浴(各100mL)にそれぞれ1分間浸漬し、乾燥窒素ガスを吹き付けて乾燥させ、QCM(基本周波数27MHz、室温(約25℃))によって共振周波数(F3)を測定した。測定結果を表4に示した。
表4中に示した第1溶液~第3溶液を用いて、実施例12と同様にして共振周波数F1~F3を測定した。実施例13~15それぞれの測定結果を表4に示した。
表4中に示すような特表2005-538418号公報の実施例4のコーティングCに準じた方法を実施した。具体的には、水晶振動子センサー(共振周波数9MHz、ATカット、金電極)をPAA2溶液に30分間浸漬した後、3つの純水浴(各100mL)にそれぞれ1分間浸漬し、乾燥窒素ガスを吹き付けて乾燥させ、QCM(基本周波数27MHz、室温(約25℃))によって共振周波数(F1)を測定した。次に該水晶振動子センサーをPAH1溶液に5分間浸漬した後、(各100mL)にそれぞれ1分間浸漬し、乾燥窒素ガスを吹き付けて乾燥させ、QCM(基本周波数27MHz、室温(約25℃))によって共振周波数(F2)を測定した。次に該水晶振動子センサーをPAA2溶液に5分間浸漬した後、3つの純水浴(各100mL)にそれぞれ1分間浸漬し、乾燥窒素ガスを吹き付けて乾燥させ、QCM(基本周波数27MHz、室温(約25℃))によって共振周波数(F3)を測定した。以下同様に表4中に記載の第4溶液~第9溶液に5分間浸漬した後、純水で洗浄、乾燥窒素ガスによる乾燥後、共振周波数F4~F9を測定した。測定結果を表4に示した。
比較例8と同様に、特表2005-538418号公報の実施例4に記載のコーティングCに準じた方法を実施した。表4中に示した第1溶液~第9溶液を用いて、比較例9と同様にして共振周波数F1~F9を測定した。測定結果を表4に示した。
比較例8と同様に、特表2005-538418号公報の実施例4に記載のコーティングEに準じた方法を実施した。表4中に示した第1溶液~第9溶液を用いて、比較例9と同様にして共振周波数F1~F9を測定した。測定結果を表4に示した。
表4中に示した第1溶液~第3溶液を用いて、実施例12と同様にして共振周波数F1~F3を測定した。測定結果を表4に示した。
成分Aとして下記式(M2)
成分Aとして両末端にメタクリロイル基を有するポリジメチルシロキサン(FM7726、チッソ、前述の式(M2)の化合物、質量平均分子量29kD、数平均分子量26kD)(49質量部)、成分Bとしてトリフルオロエチルアクリレート(ビスコート3F、大阪有機化学工業)(45質量部)、成分Cとして2-エチルヘキシルアクリレート(5質量部)、成分CとしてN,N-ジメチルアクリルアミド(1質量部)、成分Cとして重合性基を有する紫外線吸収剤(RUVA-93、大塚化学)(1質量部)、成分Cとして重合性基を有する着色剤[(Uniblue A、シグマアルドリッチ、式(M3)](0.1質量部)、重合開始剤“イルガキュア(登録商標)”819(チバ・スペシャルティ・ケミカルズ、0.75質量部)およびt-アミルアルコール(10質量部)を混合し撹拌した。メンブレンフィルター(0.45μm)でろ過して不溶分を除いてモノマー混合物を得た。
参考例7で得られた成型体(コンタクトレンズ)のフロントカーブ表面に図4の虹彩パターン410をプリントしてコンタクトレンズ形状のサンプルを得た。プリントされた虹彩パターンの直径は、約11mmであった。虹彩パターン中央部の光学的透明部の最大の直径は、約6.5mmであった。また、得られた成型体は、縁部の直径約14mm、中心部厚み約0.07mmであった。
参考例7で得られた成型体(コンタクトレンズ)のフロントカーブ表面に図5の虹彩パターン420をプリントしてコンタクトレンズ形状のサンプルを得た。プリントされた虹彩パターンの直径は、約8.0mmであって、光学的瞳孔の直径は、約1.35mmであった。
成分Aとして両末端にメタクリロイル基を有するポリジメチルシロキサン(FM7726、チッソ、前述の式(M2)の化合物、質量平均分子量29kD、数平均分子量26kD)(50質量部)、成分Bとしてトリフルオロエチルアクリレート(ビスコート3F、大阪有機化学工業)(46質量部)、成分Cとしてメチル(メタ)アクリレート(3質量部)、成分Cとして重合性基を有する紫外線吸収剤(RUVA-93、大塚化学)(1質量部)、成分Cとして重合開始剤“イルガキュア(登録商標)”819(チバ・スペシャルティ・ケミカルズ、0.75質量部)およびt-アミルアルコール(10質量部)を混合して撹拌し、均一で透明なモノマー混合物を得た。
図5の虹彩パターン420(参考例9と同じもの)に変える以外は、参考例10と同様の操作を行い、レンズを作製した。得られたレンズは、縁部の直径約14mm、中心部厚み約0.07mmであった。
参考例6で得られた成型体をPAA溶液に室温で30分間浸漬した後、ビーカー中の純水で軽く濯ぎ洗いした。成型体を新しい純水が入ったビーカーに移し、超音波洗浄器にかけた(30秒間)。さらに、新しい純水が入ったビーカー中で軽く濯ぎ洗いした。次いで、PEI溶液、p(DMAA/AA)溶液の順に同様の操作を繰り返した。コーティング操作を終えた後、コーティングしたレンズを密閉バイアル瓶中のホウ酸緩衝液中に浸漬した状態で入れ、121℃で30分間、オートクレーブ滅菌を行った。乾燥感が少なく、かつピンホールを有し、遠方も近方も焦点が合うようなレンズが得られた。また、得られたレンズの物性評価結果を表5に示した。該レンズを23℃、湿度60%条件下で24時間静置したところ、レンズの収縮や変形は認められなかった。
参考例8で得られた成型体をPAA溶液に室温で30分間浸漬した後、ビーカー中の純水で軽く濯ぎ洗いした。成型体を新しい純水が入ったビーカーに移し、超音波洗浄器にかけた(30秒間)。さらに、新しい純水が入ったビーカー中で軽く濯ぎ洗いした。次いで、PEI溶液、p(DMAA/AA)溶液の順に同様の操作を繰り返した。コーティング操作を終えた後、コーティングしたレンズを密閉バイアル瓶中のホウ酸緩衝液中に浸漬した状態で入れ、121℃で30分間、オートクレーブ滅菌を行った。乾燥感が少なく、かつ装用者の瞳孔を大きく見せ、意匠性の良いレンズが得られた。また、得られたレンズの物性評価結果を表5に示した。該レンズを23℃、湿度60%条件下で24時間静置したところ、レンズの収縮や変形は認められなかった。
参考例9で得られた成型体をPAA溶液に室温で30分間浸漬した後、ビーカー中の純水で軽く濯ぎ洗いした。成型体を新しい純水が入ったビーカーに移し、超音波洗浄器にかけた(30秒間)。さらに、新しい純水が入ったビーカー中で軽く濯ぎ洗いした。次いで、PEI溶液、p(DMAA/AA)溶液の順に同様の操作を繰り返した。コーティング操作を終えた後、コーティングしたレンズを密閉バイアル瓶中のホウ酸緩衝液中に浸漬した状態で入れ、121℃で30分間、オートクレーブ滅菌を行った。乾燥感が少なく、かつピンホールを有し、遠方も近方も焦点が合うようなレンズが得られた。また、得られたレンズの物性評価結果を表5に示した。該レンズを23℃、湿度60%条件下で24時間静置したところ、レンズの収縮や変形は認められなかった。
参考例10で得られた成型体(レンズ)をPAA溶液に室温で30分間浸漬した後、ビーカー中の純水で軽く濯ぎ洗いした。成型体を新しい純水が入ったビーカーに移し、超音波洗浄器にかけた(30秒間)。さらに、新しい純水が入ったビーカー中で軽く濯ぎ洗いした。次いで、PEI溶液、p(DMAA/AA)溶液の順に同様の操作を繰り返した。コーティング操作を終えた後、コーティングしたレンズを密閉バイアル瓶中のホウ酸緩衝液中に浸漬した状態で入れ、121℃で30分間、オートクレーブ滅菌を行った。乾燥感が少なく、かつ装用者の瞳孔を大きく見せ、意匠性の良いレンズが得られた。また、得られたレンズの物性評価結果を表5に示した。該レンズを23℃、湿度60%条件下で24時間静置したところ、レンズの収縮や変形は認められなかった。
参考例11で得られた成型体(レンズ)をPAA溶液に室温で30分間浸漬した後、ビーカー中の純水で軽く濯ぎ洗いした。成型体を新しい純水が入ったビーカーに移し、超音波洗浄器にかけた(30秒間)。さらに、新しい純水が入ったビーカー中で軽く濯ぎ洗いした。次いで、PEI溶液、p(DMAA/AA)溶液の順に同様の操作を繰り返した。コーティング操作を終えた後、コーティングしたレンズを密閉バイアル瓶中のホウ酸緩衝液中に浸漬した状態で入れ、121℃で30分間、オートクレーブ滅菌を行った。乾燥感が少なく、かつピンホールを有し、遠方も近方も焦点が合うようなレンズが得られた。また、得られたレンズの物性評価結果を表5に示した。該レンズを23℃、湿度60%条件下で24時間静置したところ、レンズの収縮や変形は認められなかった。
参考例7で得られた成型体をPAA溶液に室温で30分間浸漬した後、ビーカー中の純水で軽く濯ぎ洗いした。成型体を新しい純水が入ったビーカーに移し、超音波洗浄器にかけた(30秒間)。さらに、新しい純水が入ったビーカー中で軽く濯ぎ洗いした。次いで、PEI溶液、p(DMAA/AA)溶液の順に同様の操作を繰り返した。コーティング操作を終えた後、コーティングしたレンズを密閉バイアル瓶中のホウ酸緩衝液中に浸漬した状態で入れ、121℃で30分間、オートクレーブ滅菌を行った。参考例14では、意匠性に乏しい、単焦点のレンズが得られた。該レンズを23℃、湿度60%条件下で24時間静置したところ、レンズの収縮や変形は認められなかった。
市販カラーコンタクトレンズ(含水率58%)を被験者AおよびBが6時間装用した。A、Bともに眼の乾燥感を感じて快適ではなかった。また、レンズを23℃、湿度60%条件下で24時間静置させると水分が蒸発することにより、収縮し、しわが入って変形した。
参考例6で得られた成型体を1質量%PVP K90水溶液(ポリビニルピロリドン、シグマアルドリッチジャパン、分子量36万)に室温で30分間浸漬した後、取り出して人指で触ったところ非常に優れた易滑性があった。易滑性評価基準でAであった。その後、ビーカー中の純水で軽く濯ぎ洗いし、人指で触ったところ易滑性がなかった。易滑性評価基準でEであった。また、このレンズにおける他の物性評価結果を表5に示した。
参考例8で得られた成型体を1質量%PVP K90水溶液(ポリビニルピロリドン、シグマアルドリッチジャパン、分子量36万)に室温で30分間浸漬した後、取り出して人指で触ったところ非常に優れた易滑性があった。易滑性評価基準でAであった。その後、ビーカー中の純水で軽く濯ぎ洗いし、人指で触ったところ易滑性がなかった。易滑性評価基準でEであった。また、このレンズにおける他の物性評価結果を表5に示した。
参考例9で得られた成型体を1質量%PVP K90水溶液(ポリビニルピロリドン、シグマアルドリッチジャパン、分子量36万)に室温で30分間浸漬した後、取り出して人指で触ったところ非常に優れた易滑性があった。易滑性評価基準でAであった。その後、ビーカー中の純水で軽く濯ぎ洗いし、人指で触ったところ易滑性がなかった。易滑性評価基準でEであった。また、このレンズにおける他の物性評価結果を表5に示した。
参考例10で得られた成型体(レンズ)を1質量%PVP K90水溶液(ポリビニルピロリドン、シグマアルドリッチジャパン、分子量36万)に室温で30分間浸漬した後、取り出して人指で触ったところ非常に優れた易滑性があった。易滑性評価基準でAであった。その後、ビーカー中の純水で軽く濯ぎ洗いし、人指で触ったところ易滑性がなかった。易滑性評価基準でEであった。また、このレンズにおける他の物性評価結果を表5に示した。
参考例11で得られた成型体(レンズ)を1質量%PVP K90水溶液(ポリビニルピロリドン、シグマアルドリッチジャパン、分子量36万)に室温で30分間浸漬した後、取り出して人指で触ったところ非常に優れた易滑性があった。易滑性評価基準でAであった。その後、ビーカー中の純水で軽く濯ぎ洗いし、人指で触ったところ易滑性がなかった。易滑性評価基準でEであった。また、このレンズにおける他の物性評価結果を表5に示した。
表6中に記載の基材を用いて、表6中に記載の各参考例に記載の方法で虹彩パターンの付与と表面処理を行ってコンタクトレンズを得た。評価結果を表6に示した。
参考例2の基材Aの作製法に従って、図6に示す涙液交換促進パターン510のような貫通孔(径0.8mm)を複数有するコンタクトレンズA1を得た(縁部の直径約13mm、中心部厚み約0.07mm)。ただし、コンタクトレンズを重合後、モールドとコンタクトレンズを分離する前の段階で、専用の打ち抜き型を使用してコンタクトレンズにモールドごと貫通孔を穿孔した。
専用形状のモールドを使用する以外は参考例2の基材Aの作製法に従って、図7に示す涙液交換促進パターン520のような貫通孔〔長径(径)3mm、短径0.8mm〕を複数有するコンタクトレンズA2を得た(縁部の直径約13mm、中心部厚み約0.07mm)。
専用形状のモールドを使用する以外は参考例2の基材Aの作製法に従って、図8に示す涙液交換促進パターン530のような後面側の溝(長4mm、幅1mm)を複数有するコンタクトレンズA3を得た(縁部の直径約13mm、中心部厚み約0.07mm)。
参考例4の基材Cの作製法に従って、図6に示す涙液交換促進パターン510のような貫通孔(径0.8mm)を有するコンタクトレンズC1を得た(縁部の直径約13mm、中心部厚み約0.07mm)。ただし、コンタクトレンズを重合後、モールドとコンタクトレンズを分離する前の段階で、専用の打ち抜き型を使用してコンタクトレンズにモールドごと貫通孔を穿孔した。
表7中に記載のコンタクトレンズ(または基材)を基材として用いて、表7中に記載の参考例に記載の方法で表面処理を行ってコンタクトレンズを得た。評価結果を表7に示した。
10 試料台
10a 石英ガラス板
11 測定治具(アルミニウム製)
12 摩擦検出部
13 力計
20 摩擦子
21 取付ホルダ(アルミニウム製)
22 パッキン(“テフロン(登録商標)”製)
23 ナット(アルミニウム製)
S サンプル
41,42 低含水性軟質眼用レンズ
410,420 虹彩パターン
421 光学的瞳孔
51,52,53 低含水性軟質コンタクトレンズ
510,520,530 涙液交換促進パターン
511,521 貫通孔
531 溝
Claims (14)
- 弾性率が100kPa以上2000kPa以下、
含水率が10質量%以下、
引張伸度が50%以上3000%以下、
ホウ酸緩衝液に対する動的接触角(前進)が80°以下である医療デバイス。 - ホウ酸緩衝液による湿潤時の表面摩擦係数比(Qa)が2以下である請求項1に記載の医療デバイス;
ただし、Qa=MIUa/MIUo
ここで、MIUaは前記医療デバイスの、前記ホウ酸緩衝液による湿潤時における平滑な石英ガラス板との間の表面摩擦係数を表す;MIUoは“アキュビュー(登録商標)オアシス”の、前記ホウ酸緩衝液による湿潤時における平滑な石英ガラス板との間の表面摩擦係数を表す。 - 生理食塩水による湿潤時の表面摩擦係数比(Qb)が3以下である請求項1に記載の医療デバイス;
ただし、Qb=MIUb/MIUo
ここで、MIUbは前記医療デバイスの、前記生理食塩水による湿潤時における平滑な石英ガラス板との間の表面摩擦係数を表す;MIUoは“アキュビュー(登録商標)オアシス”の、ホウ酸緩衝液による湿潤時における平滑な石英ガラス板との間の表面摩擦係数を表す。 - 生理食塩水による湿潤時の表面摩擦係数比(Qb)とホウ酸緩衝液による湿潤時の表面摩擦係数比(Qa)の差(Qb-Qa)が1.6以下である請求項1に記載の医療デバイス;
ただし、Qa=MIUa/MIUo
Qb=MIUb/MIUo
ここで、MIUaは前記医療デバイスの、前記ホウ酸緩衝液による湿潤時における平滑な石英ガラス板との間の表面摩擦係数を表す;MIUbは前記医療デバイスの、前記生理食塩水による湿潤時における平滑な石英ガラス板との間の表面摩擦係数を表す;MIUoは“アキュビュー(登録商標)オアシス”の、前記ホウ酸緩衝液による湿潤時における平滑な石英ガラス板との間の表面摩擦係数を表す。 - 前記医療デバイスが基材を含み、該基材の表面の少なくとも一部に、酸性ポリマーおよび塩基性ポリマーからなる層が形成された請求項1~4のいずれかに記載の医療デバイス。
- 基材を、第1のポリマーを含有する第1溶液と接触させて、前記第1のポリマーを前記基材上に非共有結合的に適用する第1工程から該基材を第nのポリマーを含有する第n溶液と接触させて、前記第nのポリマーを前記基材上に非共有結合的に適用する第n工程(nは2以上の整数)まで、合計n個の工程を経て、LbLコーティングを基材に適用して医療デバイスを得る、医療デバイスの製造方法であって、
前記第1溶液~第n溶液のいずれか一つの第(k-1)溶液(kは2以上n以下の整数)を、クオーツクリスタルマイクロバランス測定法(QCM)用の水晶振動子センサーに接触させ、その後速やかに水晶振動子センサーを純水で洗浄後、乾燥させて、前記QCMによって共振周波数を測定して測定値Fk-1を得、
続けてこの水晶振動子センサーに第k溶液を接触させ、その後速やかに水晶振動子センサーを純水で洗浄後、乾燥させて、前記QCMによって共振周波数を測定して測定値Fkを得た際、
前記Fk-前記Fk-1が1500以上である第(k-1)溶液および第k溶液を用いる医療デバイスの製造方法;
ここで、前記水晶振動子センサーは、共振周波数9MHz、ATカット、金電極のものを用い、前記QCMは基本周波数27MHz、室温(約25℃)で測定する。 - LbLコーティングを医療デバイスに適用するためのコーティング溶液の組み合わせであって、
基材上に第1のポリマーを非共有結合的に適用するための、前記第1のポリマーを含有するコーティング溶液を第1溶液とし、
該基材上に第kのポリマーを非共有結合的に適用するための、前記第kのポリマーを含有するコーティング溶液を第k溶液(kは2以上n以下の整数、nは2以上の整数)とした、第1溶液~第n溶液からなるコーティング溶液の組み合わせにおいて、
クオーツクリスタルマイクロバランス測定法(QCM)用の水晶振動子センサーを、第1溶液に25℃、30分間浸漬し、その後速やかに水晶振動子センサーを純水で洗浄後、乾燥させて、前記QCMによって共振周波数を測定して測定値F1を得、
続けてこの水晶振動子センサーを、第2のポリマーを含有する第2溶液に25℃、30分間浸漬し、その後速やかに水晶振動子センサーを純水で洗浄後、乾燥させて、前記QCMによって共振周波数を測定して測定値F2を得、
以後、同様に測定値Fnまでの測定を順次行ったときに、
いずれか一つのFk-Fk-1が1500以上となるコーティング溶液の組み合わせ;
ここで、前記水晶振動子センサーは、共振周波数9MHz、ATカット、金電極のものを用い、前記QCMは基本周波数27MHz、室温(約25℃)で測定する。 - 弾性率が100kPa以上2000kPa以下、含水率が10質量%以下、引張伸度が50%以上3000%以下、ホウ酸緩衝液に対する動的接触角(前進)が80°以下である、眼に装用される低含水性軟質眼用デバイスであって、該低含水性軟質眼用デバイスの少なくとも一部に虹彩様のパターンが形成されている低含水性軟質眼用デバイス。
- 低含水性軟質基材の表面の少なくとも一部に、酸性ポリマーおよび塩基性ポリマーからなる層が形成された低含水性軟質眼用デバイスであって、該低含水性軟質眼用デバイスの少なくとも一部に虹彩様のパターンが形成されている低含水性軟質眼用デバイス。
- 前記パターンは、円環状をなす遮光性のパターンであって、前記パターンの中心に直径2.0mm以下の光学的瞳孔が形成された請求項8または9記載の低含水性軟質眼用デバイス。
- 前記パターンは、虹彩の表面を覆うことで前記虹彩を擬似的に着色する請求項8~10のいずれかに記載の低含水性軟質眼用デバイス。
- 眼に装用される低含水性軟質コンタクトレンズであって、
前記眼との間の涙液交換を促進するパターンが形成されている低含水性軟質コンタクトレンズ。 - 前記パターンが、貫通孔、溝、およびひだ構造から選ばれた少なくとも1種である請求項12に記載の低含水性軟質コンタクトレンズ。
- 樹脂製モールドを用いて基材を成型した後、基材を該樹脂製モールドから分離する前に、前記基材の穿孔を行う低含水性軟質コンタクトレンズの製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12823514.0A EP2746835B1 (en) | 2011-08-17 | 2012-08-10 | Medical device |
KR1020147005749A KR101900993B1 (ko) | 2011-08-17 | 2012-08-10 | 의료 디바이스, 코팅 용액의 조합 및 의료 디바이스의 제조 방법 |
JP2012543819A JP6163756B2 (ja) | 2011-08-17 | 2012-08-10 | 医療デバイス |
KR1020187013199A KR101947974B1 (ko) | 2011-08-17 | 2012-08-10 | 의료 디바이스, 코팅 용액의 조합 및 의료 디바이스의 제조 방법 |
CN201280040005.6A CN103733121B (zh) | 2011-08-17 | 2012-08-10 | 医疗设备、涂布溶液的组合和医疗设备的制造方法 |
US14/238,010 US10591749B2 (en) | 2011-08-17 | 2012-08-10 | Medical device, combination of coating solutions, and method for producing medical device |
EP19196908.8A EP3598212B1 (en) | 2011-08-17 | 2012-08-10 | Contact lens, and method for producing same |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011178652 | 2011-08-17 | ||
JP2011-178652 | 2011-08-17 | ||
JP2011178649 | 2011-08-17 | ||
JP2011178653 | 2011-08-17 | ||
JP2011-178649 | 2011-08-17 | ||
JP2011-178653 | 2011-08-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013024799A1 true WO2013024799A1 (ja) | 2013-02-21 |
Family
ID=47715118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/070435 WO2013024799A1 (ja) | 2011-08-17 | 2012-08-10 | 医療デバイス、コーティング溶液の組合せおよび医療デバイスの製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10591749B2 (ja) |
EP (2) | EP3598212B1 (ja) |
JP (2) | JP6163756B2 (ja) |
KR (2) | KR101947974B1 (ja) |
CN (3) | CN103733121B (ja) |
TW (2) | TWI530728B (ja) |
WO (1) | WO2013024799A1 (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015508425A (ja) * | 2011-12-14 | 2015-03-19 | センプラス・バイオサイエンシーズ・コーポレイションSemprus Biosciences Corp. | 表面改質したコンタクトレンズ |
WO2015060212A1 (ja) * | 2013-10-21 | 2015-04-30 | 株式会社メニコン | コンタクトレンズおよびコンタクトレンズセット |
WO2015060211A1 (ja) * | 2013-10-21 | 2015-04-30 | 株式会社メニコン | コンタクトレンズ |
WO2017146101A1 (ja) * | 2016-02-22 | 2017-08-31 | 東レ株式会社 | デバイスおよびその製造方法 |
WO2017146102A1 (ja) * | 2016-02-22 | 2017-08-31 | 東レ株式会社 | デバイスおよびその製造方法 |
WO2019031477A1 (ja) | 2017-08-09 | 2019-02-14 | 東レ株式会社 | 医療デバイスおよびその製造方法 |
WO2020121940A1 (ja) | 2018-12-12 | 2020-06-18 | 東レ株式会社 | 医療デバイスおよびその製造方法 |
JP2020154321A (ja) * | 2017-08-23 | 2020-09-24 | ペガビジョン コーポレイションPegavision Corporation | 素子保護機能を有するコンタクトレンズ |
WO2020235275A1 (ja) | 2019-05-20 | 2020-11-26 | 東レ株式会社 | 医療デバイスの製造方法 |
WO2021039519A1 (ja) | 2019-08-27 | 2021-03-04 | 東レ株式会社 | 医療デバイスの製造方法 |
WO2021145249A1 (ja) | 2020-01-16 | 2021-07-22 | 東レ株式会社 | 医療デバイスの製造方法 |
WO2022185837A1 (ja) | 2021-03-02 | 2022-09-09 | 東レ株式会社 | 被覆医療デバイスおよびその製造方法 |
WO2022185833A1 (ja) | 2021-03-02 | 2022-09-09 | 東レ株式会社 | 被覆医療デバイスの製造方法 |
WO2022185836A1 (ja) | 2021-03-02 | 2022-09-09 | 東レ株式会社 | 被覆医療デバイスおよびその製造方法 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2745854B1 (en) | 2011-08-17 | 2018-02-07 | Toray Industries, Inc. | Medical device, and method for producing same |
EP2803372A1 (en) | 2013-05-16 | 2014-11-19 | Universiteit Twente | Process for the preparation of an object supporting a lipid bilayer |
EP3325541A4 (en) * | 2015-07-23 | 2019-04-17 | The University of North Carolina at Chapel Hill | SOLVENT-FREE SUPERWEAR AND SUPERELASTIC MATERIALS |
US10838234B2 (en) | 2016-08-18 | 2020-11-17 | Johnson & Johnson Vision Care, Inc. | Contact lens with improved visual performance and minimized halo utilizing pupil apodization |
JP7014185B2 (ja) * | 2017-01-17 | 2022-02-01 | 日油株式会社 | コンタクトレンズ用モノマー組成物、コンタクトレンズ用重合体及びその製造方法、並びにコンタクトレンズ及びその製造方法 |
EP3585934A1 (en) | 2017-03-28 | 2020-01-01 | The Texas A&M University System | Coatings for materials |
JP6632645B2 (ja) * | 2018-01-30 | 2020-01-22 | フリュー株式会社 | カラーコンタクトレンズ |
WO2020004628A1 (ja) * | 2018-06-29 | 2020-01-02 | 三菱ケミカル株式会社 | 滑り止め加工剤、滑り止め加工された繊維加工品、及び滑り止め加工された繊維加工品の製造方法 |
EP3859431A4 (en) * | 2018-11-09 | 2022-06-29 | Toray Industries, Inc. | Medical device and method for manufacturing same |
TWM579294U (zh) * | 2019-02-01 | 2019-06-11 | 大立光電股份有限公司 | 相機模組及電子裝置 |
CN113543753B (zh) * | 2019-03-04 | 2024-04-19 | 国立大学法人东北大学 | 眼用医疗器械的水分的吸收或排出方法及眼用医疗器械 |
JP6659990B2 (ja) * | 2019-09-17 | 2020-03-04 | フリュー株式会社 | カラーコンタクトレンズ |
JP2020008872A (ja) * | 2019-09-17 | 2020-01-16 | フリュー株式会社 | カラーコンタクトレンズ |
US20210341756A1 (en) * | 2020-04-29 | 2021-11-04 | TruIris LLC | Interference pattern ablation systems and methods |
WO2022224717A1 (ja) | 2021-04-19 | 2022-10-27 | 国立研究開発法人物質・材料研究機構 | 軟質眼用レンズ及びその製造方法 |
CN117437151B (zh) * | 2023-12-21 | 2024-03-08 | 成都市晶林科技有限公司 | 一种噪声抑制的伪彩映射方法 |
Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5424047A (en) | 1977-07-25 | 1979-02-23 | Bausch & Lomb | Polysiloxane composition and contact lens |
JPS5481363A (en) | 1977-12-13 | 1979-06-28 | Shin Etsu Chem Co Ltd | Manufacture of silicone contact lens |
JPS5651715A (en) | 1979-09-13 | 1981-05-09 | Bausch & Lomb | Waterrabsorbing contact lens produced from polysiloxane*acrylic acid polymer |
JPS56161436A (en) | 1980-04-10 | 1981-12-11 | Tokyo Contact Lens Kenkyusho:Kk | Preparation of polymer having fine through-hole |
JPS59229524A (ja) | 1983-04-28 | 1984-12-24 | ミネソタ・マイニング・アンド・マニユフアクチユアリング・コンパニ− | 付加ポリマ−製の眼用器具 |
JPH02188717A (ja) | 1989-01-17 | 1990-07-24 | Menikon:Kk | 軟質眼用レンズ材料 |
JPH055861A (ja) | 1991-06-28 | 1993-01-14 | Asahi Chem Ind Co Ltd | コンタクトレンズ材料 |
JPH09502542A (ja) | 1993-09-13 | 1997-03-11 | ピルキントン バーンズ ハインド インコーポレイテッド | 環状マスクコンタクトレンズ |
WO1999035520A1 (en) | 1998-01-09 | 1999-07-15 | Novartis Ag | Coating of polymers |
JPH11242191A (ja) | 1998-02-24 | 1999-09-07 | Hitoshi Toyama | 遠近両用コンタクトアイリス |
JP2000191667A (ja) * | 1998-12-24 | 2000-07-11 | Toray Ind Inc | 眼用レンズ用モノマー、眼用レンズ用ポリマーおよびそれを用いたコンタクトレンズ |
JP2000230021A (ja) * | 1999-02-09 | 2000-08-22 | Toray Ind Inc | モノマーおよびそれを用いたポリマー、プラスチック成形体 |
WO2001044861A1 (fr) * | 1999-12-16 | 2001-06-21 | Asahikasei Aime Co., Ltd. | Lentille de contact souple pouvant etre portee longtemps |
WO2001057118A2 (en) | 2000-02-04 | 2001-08-09 | Novartis Ag | Process for coating a surface |
US20010045676A1 (en) | 2000-02-04 | 2001-11-29 | Winterton Lynn Cook | Method for modifying a surface |
JP2002182166A (ja) * | 2000-12-11 | 2002-06-26 | Toray Ind Inc | プラスチック成形品およびそれからなるコンタクトレンズ |
JP2004510199A (ja) | 2000-09-28 | 2004-04-02 | ノバルティス アクチエンゲゼルシャフト | 増加した涙流のための有孔レンズ及びそのレンズの製造方法 |
JP2004517163A (ja) | 2000-11-15 | 2004-06-10 | ジヨンソン・アンド・ジヨンソン・ビジヨン・ケア・インコーポレーテツド | 加水分解による劣化に対するシリコーンヒドロゲルの安定化方法 |
JP2005500554A (ja) | 2000-07-28 | 2005-01-06 | オキュラー サイエンシス インコーポレイテッド | マイクロチャネルを設けたコンタクトレンズ |
JP2005508708A (ja) * | 2001-11-14 | 2005-04-07 | ノバルティス アクチエンゲゼルシャフト | 抗微生物コーティングを上に有する医療装置 |
JP2005538418A (ja) | 2002-09-11 | 2005-12-15 | ノバルティス アクチエンゲゼルシャフト | LbLコーティングを医療用デバイスに適用する方法 |
JP2006515688A (ja) | 2003-01-06 | 2006-06-01 | オキュラー サイエンシス インコーポレイテッド | 融合マイクロチャネルを備えたコンタクトレンズ |
JP2006309101A (ja) | 2005-05-02 | 2006-11-09 | Kashin Kin | コンタクトレンズ |
JP2007526946A (ja) | 2004-03-05 | 2007-09-20 | ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド | 非環式ポリアミドを含む湿潤性ヒドロゲル |
JP2007537492A (ja) | 2004-05-12 | 2007-12-20 | ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド | 角膜縁リングと虹彩パターンを組み合わせた着色コンタクトレンズ |
WO2008127299A2 (en) | 2006-10-31 | 2008-10-23 | Johnson & Johnson Vision Care, Inc. | Antimicrobial polymeric articles, processes to prepare them and methods of their use |
JP2009540369A (ja) | 2006-06-08 | 2009-11-19 | ノバルティス アクチエンゲゼルシャフト | 良好なコーティング耐久性を有するシリコーンヒドロゲルコンタクトレンズを製造するための方法 |
JP2011500216A (ja) * | 2007-10-17 | 2011-01-06 | プリンストン ユニバーシティー | 機能化基板とその製造方法 |
JP2011511850A (ja) * | 2007-12-27 | 2011-04-14 | 東レ株式会社 | シリコーンプレポリマー溶液 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01314222A (ja) * | 1988-05-12 | 1989-12-19 | Ceskoslovenska Akad Ved | コンタクトレンズ及びその製造方法 |
DE68927648T2 (de) | 1988-11-02 | 1997-04-24 | British Tech Group | Giessen und Verpacken von Kontaktlinsen |
US5070215A (en) * | 1989-05-02 | 1991-12-03 | Bausch & Lomb Incorporated | Novel vinyl carbonate and vinyl carbamate contact lens material monomers |
US5034461A (en) * | 1989-06-07 | 1991-07-23 | Bausch & Lomb Incorporated | Novel prepolymers useful in biomedical devices |
JPH06230320A (ja) * | 1993-02-08 | 1994-08-19 | Asahi Chem Ind Co Ltd | 装用性に優れたソフトコンタクトレンズ |
US5760100B1 (en) * | 1994-09-06 | 2000-11-14 | Ciba Vision Corp | Extended wear ophthalmic lens |
IL116654A (en) * | 1996-01-02 | 1999-08-17 | Holo Or Ltd | Monofocal contact lens |
US6451871B1 (en) | 1998-11-25 | 2002-09-17 | Novartis Ag | Methods of modifying surface characteristics |
US7052131B2 (en) * | 2001-09-10 | 2006-05-30 | J&J Vision Care, Inc. | Biomedical devices containing internal wetting agents |
US6822016B2 (en) * | 2001-09-10 | 2004-11-23 | Johnson & Johnson Vision Care, Inc. | Biomedical devices containing internal wetting agents |
CA2372930A1 (en) * | 1999-05-12 | 2000-11-23 | Eri Ito | Ocular lens materials and process for producing the same |
US6689480B2 (en) * | 2000-05-10 | 2004-02-10 | Toray Industries, Inc. | Surface-treated plastic article and method of surface treatment |
US6926965B2 (en) * | 2002-09-11 | 2005-08-09 | Novartis Ag | LbL-coated medical device and method for making the same |
US7628810B2 (en) * | 2003-05-28 | 2009-12-08 | Acufocus, Inc. | Mask configured to maintain nutrient transport without producing visible diffraction patterns |
JP4566536B2 (ja) * | 2003-09-18 | 2010-10-20 | 株式会社メニコン | 眼用レンズ材料 |
US20060079839A1 (en) | 2004-06-29 | 2006-04-13 | Becton, Dickinson And Company | Single-use syringe |
WO2010002914A1 (en) | 2008-06-30 | 2010-01-07 | C.R. Bard, Inc. | Polyurethane/polysoprene blend catheter |
US20100109176A1 (en) | 2008-11-03 | 2010-05-06 | Chris Davison | Machined lens molds and methods for making and using same |
CN102597855A (zh) * | 2009-10-20 | 2012-07-18 | 株式会社国际视野 | 软性隐形镜片 |
AU2011216361B2 (en) | 2010-02-16 | 2013-11-14 | Toray Industries, Inc. | Soft ocular lens having low moisture content and method for producing same |
TWM388011U (en) | 2010-04-13 | 2010-09-01 | Chung Hwa Univ Of Medical Technology | Contact lenses |
EP2745854B1 (en) | 2011-08-17 | 2018-02-07 | Toray Industries, Inc. | Medical device, and method for producing same |
-
2012
- 2012-08-10 CN CN201280040005.6A patent/CN103733121B/zh active Active
- 2012-08-10 WO PCT/JP2012/070435 patent/WO2013024799A1/ja active Application Filing
- 2012-08-10 KR KR1020187013199A patent/KR101947974B1/ko active IP Right Grant
- 2012-08-10 CN CN201610305903.XA patent/CN105739120B/zh active Active
- 2012-08-10 JP JP2012543819A patent/JP6163756B2/ja active Active
- 2012-08-10 CN CN201610304120.XA patent/CN105717662B/zh active Active
- 2012-08-10 EP EP19196908.8A patent/EP3598212B1/en active Active
- 2012-08-10 KR KR1020147005749A patent/KR101900993B1/ko active IP Right Grant
- 2012-08-10 EP EP12823514.0A patent/EP2746835B1/en active Active
- 2012-08-10 US US14/238,010 patent/US10591749B2/en active Active
- 2012-08-16 TW TW101129693A patent/TWI530728B/zh active
- 2012-08-16 TW TW104126408A patent/TWI582488B/zh active
-
2015
- 2015-09-25 JP JP2015188823A patent/JP6159768B2/ja active Active
Patent Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5424047A (en) | 1977-07-25 | 1979-02-23 | Bausch & Lomb | Polysiloxane composition and contact lens |
JPS5481363A (en) | 1977-12-13 | 1979-06-28 | Shin Etsu Chem Co Ltd | Manufacture of silicone contact lens |
JPS5651715A (en) | 1979-09-13 | 1981-05-09 | Bausch & Lomb | Waterrabsorbing contact lens produced from polysiloxane*acrylic acid polymer |
JPS56161436A (en) | 1980-04-10 | 1981-12-11 | Tokyo Contact Lens Kenkyusho:Kk | Preparation of polymer having fine through-hole |
JPS59229524A (ja) | 1983-04-28 | 1984-12-24 | ミネソタ・マイニング・アンド・マニユフアクチユアリング・コンパニ− | 付加ポリマ−製の眼用器具 |
JPH02188717A (ja) | 1989-01-17 | 1990-07-24 | Menikon:Kk | 軟質眼用レンズ材料 |
JPH055861A (ja) | 1991-06-28 | 1993-01-14 | Asahi Chem Ind Co Ltd | コンタクトレンズ材料 |
JPH09502542A (ja) | 1993-09-13 | 1997-03-11 | ピルキントン バーンズ ハインド インコーポレイテッド | 環状マスクコンタクトレンズ |
WO1999035520A1 (en) | 1998-01-09 | 1999-07-15 | Novartis Ag | Coating of polymers |
JP2002501211A (ja) | 1998-01-09 | 2002-01-15 | ノバルティス ファーマ アクチエンゲゼルシャフト | ポリマーのコーティング |
JPH11242191A (ja) | 1998-02-24 | 1999-09-07 | Hitoshi Toyama | 遠近両用コンタクトアイリス |
JP2000191667A (ja) * | 1998-12-24 | 2000-07-11 | Toray Ind Inc | 眼用レンズ用モノマー、眼用レンズ用ポリマーおよびそれを用いたコンタクトレンズ |
JP2000230021A (ja) * | 1999-02-09 | 2000-08-22 | Toray Ind Inc | モノマーおよびそれを用いたポリマー、プラスチック成形体 |
WO2001044861A1 (fr) * | 1999-12-16 | 2001-06-21 | Asahikasei Aime Co., Ltd. | Lentille de contact souple pouvant etre portee longtemps |
US20010045676A1 (en) | 2000-02-04 | 2001-11-29 | Winterton Lynn Cook | Method for modifying a surface |
WO2001057118A2 (en) | 2000-02-04 | 2001-08-09 | Novartis Ag | Process for coating a surface |
JP2005500554A (ja) | 2000-07-28 | 2005-01-06 | オキュラー サイエンシス インコーポレイテッド | マイクロチャネルを設けたコンタクトレンズ |
JP2004510199A (ja) | 2000-09-28 | 2004-04-02 | ノバルティス アクチエンゲゼルシャフト | 増加した涙流のための有孔レンズ及びそのレンズの製造方法 |
JP2004517163A (ja) | 2000-11-15 | 2004-06-10 | ジヨンソン・アンド・ジヨンソン・ビジヨン・ケア・インコーポレーテツド | 加水分解による劣化に対するシリコーンヒドロゲルの安定化方法 |
JP2002182166A (ja) * | 2000-12-11 | 2002-06-26 | Toray Ind Inc | プラスチック成形品およびそれからなるコンタクトレンズ |
JP2005508708A (ja) * | 2001-11-14 | 2005-04-07 | ノバルティス アクチエンゲゼルシャフト | 抗微生物コーティングを上に有する医療装置 |
JP2005538418A (ja) | 2002-09-11 | 2005-12-15 | ノバルティス アクチエンゲゼルシャフト | LbLコーティングを医療用デバイスに適用する方法 |
JP2006515688A (ja) | 2003-01-06 | 2006-06-01 | オキュラー サイエンシス インコーポレイテッド | 融合マイクロチャネルを備えたコンタクトレンズ |
JP2007526946A (ja) | 2004-03-05 | 2007-09-20 | ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド | 非環式ポリアミドを含む湿潤性ヒドロゲル |
JP2007537492A (ja) | 2004-05-12 | 2007-12-20 | ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド | 角膜縁リングと虹彩パターンを組み合わせた着色コンタクトレンズ |
JP2006309101A (ja) | 2005-05-02 | 2006-11-09 | Kashin Kin | コンタクトレンズ |
JP2009540369A (ja) | 2006-06-08 | 2009-11-19 | ノバルティス アクチエンゲゼルシャフト | 良好なコーティング耐久性を有するシリコーンヒドロゲルコンタクトレンズを製造するための方法 |
WO2008127299A2 (en) | 2006-10-31 | 2008-10-23 | Johnson & Johnson Vision Care, Inc. | Antimicrobial polymeric articles, processes to prepare them and methods of their use |
JP2011500216A (ja) * | 2007-10-17 | 2011-01-06 | プリンストン ユニバーシティー | 機能化基板とその製造方法 |
JP2011511850A (ja) * | 2007-12-27 | 2011-04-14 | 東レ株式会社 | シリコーンプレポリマー溶液 |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015508425A (ja) * | 2011-12-14 | 2015-03-19 | センプラス・バイオサイエンシーズ・コーポレイションSemprus Biosciences Corp. | 表面改質したコンタクトレンズ |
WO2015060212A1 (ja) * | 2013-10-21 | 2015-04-30 | 株式会社メニコン | コンタクトレンズおよびコンタクトレンズセット |
WO2015060211A1 (ja) * | 2013-10-21 | 2015-04-30 | 株式会社メニコン | コンタクトレンズ |
JPWO2015060212A1 (ja) * | 2013-10-21 | 2017-03-09 | 株式会社メニコン | コンタクトレンズおよびコンタクトレンズセット |
JPWO2015060211A1 (ja) * | 2013-10-21 | 2017-03-09 | 株式会社メニコン | コンタクトレンズ |
JPWO2017146102A1 (ja) * | 2016-02-22 | 2018-12-13 | 東レ株式会社 | デバイスおよびその製造方法 |
WO2017146102A1 (ja) * | 2016-02-22 | 2017-08-31 | 東レ株式会社 | デバイスおよびその製造方法 |
KR20180114900A (ko) * | 2016-02-22 | 2018-10-19 | 도레이 카부시키가이샤 | 디바이스 및 그의 제조 방법 |
US11045574B2 (en) | 2016-02-22 | 2021-06-29 | Toray Industries, Inc. | Device and production method for the same |
JPWO2017146101A1 (ja) * | 2016-02-22 | 2018-12-13 | 東レ株式会社 | デバイスおよびその製造方法 |
US11986573B2 (en) | 2016-02-22 | 2024-05-21 | Toray Industries, Inc. | Device and production method for the same |
KR102490268B1 (ko) | 2016-02-22 | 2023-01-20 | 도레이 카부시키가이샤 | 디바이스 및 그의 제조 방법 |
JP7163985B2 (ja) | 2016-02-22 | 2022-11-01 | 東レ株式会社 | 眼用レンズの製造方法 |
KR102400800B1 (ko) | 2016-02-22 | 2022-05-24 | 도레이 카부시키가이샤 | 디바이스 및 그의 제조 방법 |
KR20220054912A (ko) * | 2016-02-22 | 2022-05-03 | 도레이 카부시키가이샤 | 디바이스 및 그의 제조 방법 |
WO2017146101A1 (ja) * | 2016-02-22 | 2017-08-31 | 東レ株式会社 | デバイスおよびその製造方法 |
JP2021079193A (ja) * | 2016-02-22 | 2021-05-27 | 東レ株式会社 | デバイスおよびその製造方法 |
US11020511B2 (en) | 2016-02-22 | 2021-06-01 | Toray Industries, Inc. | Device and production method for the same |
US11202849B2 (en) | 2017-08-09 | 2021-12-21 | Toray Industries, Inc. | Medical device and method for manufacturing the same |
KR20200040233A (ko) | 2017-08-09 | 2020-04-17 | 도레이 카부시키가이샤 | 의료 디바이스 및 그의 제조 방법 |
WO2019031477A1 (ja) | 2017-08-09 | 2019-02-14 | 東レ株式会社 | 医療デバイスおよびその製造方法 |
JP2020154321A (ja) * | 2017-08-23 | 2020-09-24 | ペガビジョン コーポレイションPegavision Corporation | 素子保護機能を有するコンタクトレンズ |
JP7160856B2 (ja) | 2017-08-23 | 2022-10-25 | ペガビジョン コーポレイション | 素子保護機能を有するコンタクトレンズ |
KR20210102221A (ko) | 2018-12-12 | 2021-08-19 | 도레이 카부시키가이샤 | 의료 디바이스 및 그 제조 방법 |
WO2020121940A1 (ja) | 2018-12-12 | 2020-06-18 | 東レ株式会社 | 医療デバイスおよびその製造方法 |
WO2020235275A1 (ja) | 2019-05-20 | 2020-11-26 | 東レ株式会社 | 医療デバイスの製造方法 |
WO2021039519A1 (ja) | 2019-08-27 | 2021-03-04 | 東レ株式会社 | 医療デバイスの製造方法 |
WO2021145249A1 (ja) | 2020-01-16 | 2021-07-22 | 東レ株式会社 | 医療デバイスの製造方法 |
WO2022185837A1 (ja) | 2021-03-02 | 2022-09-09 | 東レ株式会社 | 被覆医療デバイスおよびその製造方法 |
WO2022185833A1 (ja) | 2021-03-02 | 2022-09-09 | 東レ株式会社 | 被覆医療デバイスの製造方法 |
WO2022185836A1 (ja) | 2021-03-02 | 2022-09-09 | 東レ株式会社 | 被覆医療デバイスおよびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2746835A4 (en) | 2015-07-01 |
KR101947974B1 (ko) | 2019-02-13 |
CN105739120A (zh) | 2016-07-06 |
TWI530728B (zh) | 2016-04-21 |
TW201543110A (zh) | 2015-11-16 |
EP2746835B1 (en) | 2019-12-11 |
US10591749B2 (en) | 2020-03-17 |
JP6159768B2 (ja) | 2017-07-05 |
TW201319658A (zh) | 2013-05-16 |
JP6163756B2 (ja) | 2017-07-19 |
US20140198294A1 (en) | 2014-07-17 |
CN105717662B (zh) | 2020-05-19 |
EP3598212B1 (en) | 2022-11-23 |
EP3598212A1 (en) | 2020-01-22 |
CN103733121B (zh) | 2016-06-01 |
CN103733121A (zh) | 2014-04-16 |
JPWO2013024799A1 (ja) | 2015-03-05 |
KR20140054168A (ko) | 2014-05-08 |
CN105717662A (zh) | 2016-06-29 |
JP2016028292A (ja) | 2016-02-25 |
KR101900993B1 (ko) | 2018-09-20 |
CN105739120B (zh) | 2019-03-15 |
TWI582488B (zh) | 2017-05-11 |
EP2746835A1 (en) | 2014-06-25 |
KR20180053426A (ko) | 2018-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6159768B2 (ja) | 低含水性軟質コンタクトレンズおよび低含水性軟質コンタクトレンズの製造方法 | |
JP5954170B2 (ja) | 低含水性軟質眼用レンズおよびその製造方法 | |
JP6036299B2 (ja) | 医療デバイスおよびその製造方法 | |
JP6338263B2 (ja) | 低含水性軟質デバイスおよびその製造方法 | |
JP6070193B2 (ja) | 医療デバイスおよびその製造方法 | |
JP6003653B2 (ja) | 医療デバイスおよびその製造方法 | |
US9753187B2 (en) | Low hydrous soft ophthalmic lens and method for manufacturing the same | |
JP2013057932A (ja) | 軟質樹脂デバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012543819 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12823514 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14238010 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147005749 Country of ref document: KR Kind code of ref document: A |