Nothing Special   »   [go: up one dir, main page]

WO2013011539A1 - 有機発光素子の製造方法 - Google Patents

有機発光素子の製造方法 Download PDF

Info

Publication number
WO2013011539A1
WO2013011539A1 PCT/JP2011/004059 JP2011004059W WO2013011539A1 WO 2013011539 A1 WO2013011539 A1 WO 2013011539A1 JP 2011004059 W JP2011004059 W JP 2011004059W WO 2013011539 A1 WO2013011539 A1 WO 2013011539A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole injection
layer
tungsten oxide
film
organic
Prior art date
Application number
PCT/JP2011/004059
Other languages
English (en)
French (fr)
Inventor
隆太 山田
大内 暁
小松 隆宏
慎也 藤村
藤田 浩史
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to PCT/JP2011/004059 priority Critical patent/WO2013011539A1/ja
Priority to KR1020137033242A priority patent/KR101699119B1/ko
Priority to US14/128,867 priority patent/US9065069B2/en
Priority to JP2013524519A priority patent/JP5793570B2/ja
Publication of WO2013011539A1 publication Critical patent/WO2013011539A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to a method for manufacturing an organic light-emitting element (hereinafter referred to as “organic EL element”), which is an electroluminescent element, and in particular, for driving a wide luminance range from low luminance to high luminance for light source use with low power.
  • organic EL element organic light-emitting element
  • the organic EL element is a current-driven light emitting element and has a configuration in which a functional layer containing an organic material is provided between an electrode pair including an anode and a cathode.
  • the functional layer includes a light emitting layer, a buffer layer, and the like.
  • a hole injection layer for injecting holes may be disposed between the functional layer and the anode.
  • For driving a voltage is applied between the electrode pair, and an electroluminescence phenomenon generated by recombination of holes injected from the anode into the functional layer and electrons injected from the cathode into the functional layer is used. Since it is self-luminous, its visibility is high, and since it is a complete solid element, it has excellent impact resistance. Therefore, its use as a light-emitting element and a light source in various display devices has attracted attention.
  • Organic EL elements are roughly classified into two types depending on the type of functional layer material used.
  • the first is a vapor deposition type organic EL element in which an organic low molecular weight material is mainly used as a functional layer material and is formed by a vacuum process such as a vapor deposition method.
  • a coating type organic EL element is formed by using an organic polymer material or an organic low molecular weight material having good thin film formability as a functional layer material, and forming the film by a wet process such as an inkjet method or a gravure printing method.
  • the vapor deposition type organic EL element is suitable for a small-sized organic EL panel, but it is very difficult to apply it to, for example, a 100-inch class full-color large-sized organic EL panel.
  • the factor lies in manufacturing technology.
  • a mask vapor deposition method is generally used when forming a light emitting layer separately for each color (for example, R, G, B).
  • R, G, B a color that is a mask vapor deposition method for each color
  • the panel has a large area, it becomes difficult to maintain the alignment accuracy of the mask due to the difference in thermal expansion coefficient between the mask and the glass substrate, and thus a normal display cannot be manufactured.
  • the functional layer is manufactured by a wet process. In this process, since the positional accuracy when the functional layer is separately applied to a predetermined position does not basically depend on the substrate size, there is a merit that a technical barrier against an increase in size is low.
  • organic EL elements In order for the organic EL element to emit light efficiently and with low power consumption and high luminance, it is important to efficiently inject carriers (holes and electrons) from the electrode to the functional layer. In general, in order to inject carriers efficiently, it is effective to provide an injection layer for lowering an energy barrier (injection barrier) during injection between each electrode and a functional layer.
  • an organic low molecular vapor deposition film such as copper phthalocyanine (CuPc)
  • a coating film made of an organic polymer solution such as PEDOT: PSS
  • an inorganic vapor deposition film such as molybdenum oxide, a sputtered film, etc.
  • the hole injection layer is formed on the surface of the anode made of a transparent conductive film such as ITO or IZO, a metal film such as aluminum, or a laminate thereof.
  • Tungsten oxide has excellent hole injection characteristics, but after film formation on the substrate, it is exposed to an etching solution or cleaning solution in the bank formation process, so that part of the film dissolves and the film thickness decreases, so-called “film” Can cause the problem of "reduction”.
  • the film thickness is excessively reduced, it becomes difficult to set the required film thickness for the hole injection layer, and the surface state of the hole injection layer becomes rough, and the state becomes non-uniform as a whole. There is concern about the impact.
  • the present invention has been made in view of the above problems, and uses a hole injection layer capable of achieving both hole injection characteristics and stability with respect to a mass production process of an organic EL panel in an organic light emitting device. It is.
  • the present invention provides an organic light-emitting device capable of expecting excellent light-emitting characteristics by improving the dissolution tolerance of hole injection characteristics and exhibiting good hole injection efficiency, and a method for manufacturing the same. With the goal.
  • a method for manufacturing an organic light-emitting element which is one embodiment of the present invention includes a tungsten oxide layer including tungsten oxide having an oxygen defect structure in which oxygen atoms are partially bonded to tungsten atoms, and an anode.
  • tungsten oxide layer is formed under predetermined film formation conditions, an oxygen defect structure is formed in the film, and the hole injection characteristics are improved by the occupied level resulting from the structure. I found. Further, it has been found that if the tungsten oxide layer is baked under a predetermined condition strictly defined after the film formation, it is possible to improve the dissolution resistance to the etching solution and the cleaning solution used in the bank formation process while maintaining the oxygen defect structure.
  • One embodiment of the present invention has been made on the basis of this finding, and a tungsten oxide layer can be formed as a hole injection layer having good hole injection characteristics while reducing the amount of film loss. Thus, the manufactured organic light emitting device can be driven at a low voltage, and excellent light emission efficiency can be expected.
  • the organic EL panel is manufactured by arranging a plurality of organic light-emitting elements of one embodiment of the present invention by preventing the hole injection layer from being reduced, variation in the film thickness of the hole injection layer throughout the panel is produced. It is possible to suppress the absolute amount of light emission, and to reduce the deviation (variation) in light emission efficiency.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of an organic EL element according to Embodiment 1.
  • FIG. It is typical sectional drawing which shows the structure of a hole only element. It is a graph which shows the dependence of the drive voltage of a hole only element with respect to the film-forming conditions of a hole injection layer. It is a device characteristic figure which shows the relationship curve of the applied voltage and current density of a Hall only element. It is a device characteristic figure which shows the relationship curve of the applied voltage and current density of an organic EL element. It is a device characteristic figure which shows the relationship curve of the current density of organic electroluminescent element, and emitted light intensity. It is typical sectional drawing which shows the structure of the sample for photoelectron spectroscopy measurements.
  • FIG. 3 is an interfacial energy diagram between a tungsten oxide layer and an ⁇ -NPD layer under film formation conditions C. It is a graph which shows the relationship between the film reduction amount with respect to a tungsten oxide film-forming rate, and a drive voltage. It is a graph which shows the relationship between the amount of WOx film reduction
  • FIG. 4 is a schematic cross-sectional view (a) showing a configuration of an organic EL element 1C according to Embodiment 2, and a partially enlarged view (b) in the vicinity of a hole injection layer 4A. It is typical sectional drawing which shows the structure of Hall only element 1D.
  • FIG. 4 is a schematic cross-sectional view (a) showing a configuration of an organic EL element 1C according to Embodiment 2, and a partially enlarged view (b) in the vicinity of a hole injection layer 4A. It is typical sectional drawing which shows the structure of Hall only element 1D.
  • FIG. 10 is a process diagram for explaining a method of manufacturing an organic EL element 1C according to Embodiment 2.
  • FIG. 10 is a process diagram for explaining a method of manufacturing an organic EL element 1C according to Embodiment 2.
  • FIG. 10 is a process diagram for explaining a method of manufacturing an organic EL element 1C according to Embodiment 2.
  • FIG. 10 is a process diagram for explaining a manufacturing method of an organic EL element 1C according to a modification of the second embodiment.
  • FIG. 10 is a process diagram for explaining a manufacturing method of an organic EL element 1C according to a modification of the second embodiment. It is a device characteristic figure which shows the relationship curve of the applied voltage and current density of a Hall only element.
  • W5p 3/2, W4f 5/2 by HXPS measurement of the tungsten oxide layer is a diagram showing a spectrum attributed to W4f 7/2. It is a figure (a) which shows the peak fitting analysis result concerning sample alpha shown in Drawing 33, and a figure (b) which shows the peak fitting analysis result concerning sample epsilon. It is a figure which shows the UPS spectrum of a tungsten oxide layer. It is a figure for demonstrating the structure of a tungsten trioxide crystal
  • Luminance change plots ((a) and (b)) of samples ⁇ and ⁇ , enlarged views ((a1) and (b1)) near the peak appearing closest to the center point in each luminance change plot, and (a1) It is a figure ((a2), (b2)) which shows the 1st derivative of each brightness
  • a tungsten oxide layer including tungsten oxide having an oxygen defect structure in which oxygen atoms are partially bonded to tungsten atoms is formed over a base layer including an anode.
  • the tungsten oxide layer is baked, so that the oxygen defect structure is maintained and the etching solution used in the fourth step is counteracted.
  • the tungsten oxide layer When the tungsten oxide layer is formed under the predetermined film formation conditions as described above, an oxygen defect structure is formed in the film, and the hole injection characteristics are improved by the occupied level resulting from the structure.
  • the tungsten oxide layer by baking the tungsten oxide layer under a predetermined condition strictly defined after the film formation, it is possible to improve the dissolution resistance to the etching solution and the cleaning solution used in the bank formation process while maintaining the oxygen defect structure. .
  • the tungsten oxide layer can be configured as a hole injection layer having a good hole injection characteristic while reducing the amount of film loss. In the organic light emitting device manufactured thereby, it is possible to expect excellent luminous efficiency as well as low voltage driving.
  • the organic EL panel is manufactured by arranging a plurality of organic light-emitting elements of one embodiment of the present invention by preventing the hole injection layer from being reduced in film thickness, the variation in the finished film thickness of the hole injection layer over the entire panel can be achieved. It is possible to suppress the emission efficiency deviation (variation).
  • the tungsten oxide layer in the second step, can be fired so that the film density is 5.8 g / cm 3 or more and 6.0 g / cm 3 or less.
  • the electronic state in the first step, has an occupied level in a binding energy region that is 1.8 to 3.6 eV lower than the lowest binding energy in the valence band.
  • the tungsten oxide layer having an oxygen defect structure may be formed to maintain the occupied level even after the second step.
  • the UPS spectrum or the XPS spectrum has a raised shape in a binding energy region that is 1.8 to 3.6 eV lower than the lowest binding energy in the valence band.
  • the tungsten oxide layer having the oxygen defect structure can be formed, and the raised shape can be maintained even after the second step.
  • the differential spectrum of the UPS spectrum is different from the exponential function over a binding energy region that is 1.8 to 3.6 eV lower than the lowest binding energy in the valence band.
  • the tungsten oxide layer having the oxygen defect structure may be formed so as to have a spectral shape expressed as a function, and a shape expressed as a function different from the exponential function may be maintained even after the second step.
  • a tungsten atom having a valence of 6 and a tungsten atom having a valence of 5 are included, and the content of the pentavalent tungsten atom is 6
  • the tungsten oxide layer having the oxygen defect structure is formed such that W 5+ / W 6+, which is a value divided by the content of the valent tungsten atom, is 3.2% or more and 7.4% or less, The ratio of W 5+ / W 6+ can be maintained even after two steps.
  • a first step of forming a tungsten oxide layer containing tungsten oxide on a base layer including an anode a second step of baking the tungsten oxide layer, and the baking of the oxidized
  • a third step of forming a partition wall material film using a partition wall material above the tungsten layer a fourth step of patterning the partition wall material film using an etchant to form a partition wall having a pattern having an opening
  • a fifth step of forming an organic layer containing an organic material inside the opening, and a sixth step of forming a cathode above the organic layer a first step of forming a tungsten oxide layer containing tungsten oxide on a base layer including an anode
  • a second step of baking the tungsten oxide layer and the baking of the oxidized
  • a third step of forming a partition wall material film using a partition wall material above the tungsten layer a fourth step of patterning the partition wall material film using an etchant to form a partition wall having a pattern having an
  • a UPS spectrum or an XPS spectrum The tungsten oxide layer is formed to have a raised shape in a binding energy region that is 1.8 to 3.6 eV lower than the lowest binding energy in the valence band.
  • the dissolution resistance to the etching solution used in the fourth step can be improved while maintaining the raised structure of the UPS spectrum or the XPS spectrum. .
  • a first step of forming a tungsten oxide layer containing tungsten oxide on a base layer containing an anode, a second step of baking the tungsten oxide layer, and the baking of the oxidized A third step of forming a partition wall material film using a partition wall material above the tungsten layer; a fourth step of patterning the partition wall material film using an etchant to form a partition wall having a pattern having an opening; A fifth step of forming an organic layer containing an organic material inside the opening, and a sixth step of forming a cathode above the organic layer.
  • the valence is hexavalent.
  • tungsten atoms tungsten atoms and valence pentavalent is, the content of the pentavalent tungsten atom is a valence divided by the content of the hexavalent tungsten atom W 5+ / W 6+ is 3
  • the formed tungsten oxide layer, in the second step, by firing the tungsten oxide layer, while maintaining the ratio of the W 5+ / W 6+ can also be improved.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of the organic EL element 1 in the first embodiment.
  • the organic EL element 1 is a coating type in which a functional layer is applied by a wet process to form a film, and includes a hole injection layer 4 and various functional layers (here, a buffer layer 6A) including an organic material having a predetermined function. And the light emitting layer 6 ⁇ / b> B) are disposed between the electrode pair including the anode 2 and the cathode 8 in a state where the light emitting layer 6 ⁇ / b> B) is stacked on each other.
  • the organic EL element 1 includes an anode 2, a hole injection layer 4, a buffer layer 6A, a light emitting layer 6B, a cathode 8 (a barium layer 8A and aluminum) with respect to one main surface of a substrate 10.
  • Layer 8B) in the same order.
  • a power source DC is connected to the anode 2 and the cathode 8, and power is supplied to the organic EL element 1 from the outside.
  • the substrate 10 is a portion that becomes a base material of the organic EL element 1, and includes, for example, alkali-free glass, soda glass, non-fluorescent glass, phosphate glass, borate glass, quartz, acrylic resin, styrene resin, and polycarbonate resin. , Epoxy resin, polyethylene, polyester, silicon resin, or an insulating material such as alumina.
  • the anode 2 is composed of a transparent conductive film made of ITO having a thickness of 50 nm.
  • the structure of the anode 2 is not limited to this.
  • a transparent conductive film such as IZO, a metal film such as aluminum, APC (silver, palladium, copper alloy), ARA (silver, rubidium, gold alloy), MoCr (molybdenum) Alloy films such as NiCr (alloy of chromium) and NiCr (alloy of nickel and chromium) may be used, and a plurality of these films may be laminated.
  • the hole injection layer 4 is configured as a tungsten oxide layer including tungsten oxide (in the composition formula WOx, x is a real number in the range of 2 ⁇ x ⁇ 3) and having a thickness of 2 nm or more (here, 10 nm as an example). Is done. If the film thickness is less than 2 nm, it is difficult to perform uniform film formation, and it is difficult to form a Schottky ohmic connection between the anode 2 and the hole injection layer 4 described below, which is not preferable.
  • the Schottky ohmic connection is stably formed when the film thickness of tungsten oxide is 2 nm or more, if the hole injection layer 4 is formed with a film thickness larger than this, the Schottky ohmic connection can be used from the anode 2 using the Schottky ohmic connection. Stable hole injection efficiency to the hole injection layer 4 can be expected.
  • the film density is set to be in the range of 5.8 g / cm 3 or more and 6.0 g / cm 3 or less. This is performed immediately after film formation by baking in a baking process under a predetermined condition after the tungsten oxide film is formed (a process in which air is fired at a heating temperature of 200 ° C. to 230 ° C.
  • the film density was much in 5.4 g / cm 3 or more 5.7 g / cm 3 or less, which was increased to 5.8 g / cm 3 or more 6.0 g / cm 3 or less in the range It is.
  • the surface of the hole injection layer 4 is formed with a recess (recess) having a recess structure toward the anode side. This is because the surface on the light emitting layer 6B side is partially removed by the etching solution or cleaning solution used when forming the bank 5 during the bank formation.
  • the recess depth of the recess is smaller than the thickness of the hole injection layer 4 in the lower portion of the recess, and the film reduction amount is considerably suppressed as compared with the conventional case by the introduction of the firing step.
  • the hole injection layer 4 has a film thickness of about 14 nm immediately after film formation, and maintains a film thickness of more than half (7 nm or more) immediately after film formation even when the film is reduced.
  • the hole injection layer 4 is preferably made of tungsten oxide as much as possible, but may contain a trace amount of impurities as long as it can be mixed at a normal level.
  • the hole injection layer 4 is formed under specific film formation conditions.
  • the film has an oxygen defect structure in which oxygen atoms are partially bonded to tungsten atoms, and in the electronic state, the upper end of the valence band, that is, the lowest binding energy in the valence band, Occupied levels exist in the binding energy region as low as 1.8 to 3.6 eV.
  • This occupied level is the highest occupied level of the hole injection layer 4, and its binding energy range is closest to the Fermi level (Fermi surface) of the hole injection layer 4. Therefore, hereinafter, this occupied level is referred to as “occupied level near the Fermi surface”.
  • the “occupied level” referred to in the present invention includes an electron level by an electron orbit occupied by at least one electron, that is, a level of a so-called semi-occupied orbit.
  • the binding energy is substantially equal to the binding energy of the occupied level in the vicinity of the Fermi surface of the hole injection layer 4.
  • substantially equal and “interface state connection made” means that the lowest binding energy at the occupied level near the Fermi surface at the interface between the hole injection layer 4 and the buffer layer 6A, This means that the difference from the lowest binding energy in the highest occupied orbit is within a range of ⁇ 0.3 eV.
  • the “interface” here refers to a region including the surface of the hole injection layer 4 and the buffer layer 6A at a distance within 0.3 nm from the surface.
  • the occupied level in the vicinity of the Fermi surface is preferably present in the whole hole injection layer 4, but may be present at least at the interface with the buffer layer 6A. Note that such an occupied level in the vicinity of the Fermi surface is not possessed by all tungsten oxides.
  • a predetermined film formation described later is performed at the inside of the hole injection layer and at the interface with the buffer layer 6A. It is a unique level that can be formed for the first time depending on conditions.
  • the hole injection layer 4 has a so-called Schottky ohmic connection at the interface with the anode 2 as a feature.
  • the “Schottky ohmic connection” referred to here is a difference between the Fermi level of the anode 2 and the lowest binding energy at the occupied level in the vicinity of the Fermi surface of the hole injection layer 4 described above from the surface of the anode 2.
  • the “interface” here refers to a region including the surface of the anode 2 and a Schottky barrier formed on the hole injection layer 4 side from the surface.
  • the dissolution resistance of the tungsten oxide film with respect to the etching / cleaning liquid used in the bank formation process is improved in proportion to the increase in the film density of the tungsten oxide film.
  • the hole injection characteristic of the tungsten oxide film decreases in inverse proportion to the increase in film density.
  • hole injection characteristics and dissolution resistance have a trade-off relationship. Therefore, in the hole injection layer 4 of the first embodiment, a tungsten oxide film is formed under a predetermined condition to form the above-mentioned occupied level, and a film density is obtained by performing a baking process under strictly defined conditions after the film formation. To increase dissolution resistance. In this way, both good hole injection characteristics and dissolution resistance are highly compatible.
  • the bank 5 is not essential for the present invention, and is not necessary when the organic EL element 1 is used alone.
  • a buffer layer 6A and a functional layer composed of a light emitting layer 6B corresponding to one of RGB colors are formed on the surface of the hole injection layer 4 partitioned in each bank 5, a buffer layer 6A and a functional layer composed of a light emitting layer 6B corresponding to one of RGB colors are formed.
  • the functional layer is formed as an organic layer containing an organic material.
  • the buffer layer 6A is a layer that efficiently transports holes from the hole injection layer 4 side to the light emitting layer 6B side, and is a 20 nm thick amine organic polymer TFB (poly (9,9-di-n-). octylfluorene-alt- (1,4-phenylene-((4-sec-butylphenyl) imino) -1,4-phenylene)).
  • TFB amine organic polymer
  • the light emitting layer 6B is composed of F8BT (poly (9, 9-di-n-octylfluorene-alt-benzothiadiazole)) which is an organic polymer having a thickness of 70 nm.
  • the light emitting layer 6B is not limited to the structure made of this material, and can be configured to include a known organic material.
  • the functional layer in the present invention includes a hole transport layer that transports holes, a light-emitting layer that emits light by recombination of injected holes and electrons, a buffer layer that is used for optical property adjustment or electronic block applications, etc. Or a combination of two or more layers, or all layers.
  • a layer that performs a required function such as the above-described hole transport layer and light emitting layer in addition to the hole injection layer.
  • the functional layer refers to a layer necessary for the organic EL element other than the hole injection layer disposed between the anode and the light emitting layer.
  • the cathode 8 is configured by laminating a barium layer 8A having a thickness of 5 nm and an aluminum layer 8B having a thickness of 100 nm.
  • An electron transport layer may be provided between the light emitting layer 6B and the cathode 8. Further, the barium layer 8A may be regarded as an electron transport layer (or an electron injection layer). (Operation and effect of organic EL element)
  • the hole injection layer 4 since the hole injection layer 4 has an oxygen defect structure, an occupied level near the Fermi surface exists in the hole injection layer 4. A so-called interface state connection is made between the occupied level near the Fermi surface and the highest occupied orbit of the buffer layer 6A, and the hole injection barrier between the hole injection layer 4 and the buffer layer 6A is extremely small. It has become.
  • the organic EL element 1 when a voltage is applied to the organic EL element 1 at the time of driving, it is buffered from the Fermi level of the anode 2 to the occupied level near the Fermi surface of the hole injection layer 4 and from the occupied level near the Fermi surface. Holes are injected relatively smoothly into the highest occupied orbit of the layer 6A at a low voltage, and high hole injection efficiency is exhibited. And in a light emitting layer 6B, a favorable light emission characteristic will be exhibited because a hole recombines with an electron.
  • the difference between the Fermi level of the anode 2 and the lowest binding energy at the occupied level near the Fermi surface of the hole injection layer 4, and the lowest binding energy at the occupied level of the hole injection layer 4, The difference from the lowest binding energy in the highest occupied orbit of the buffer layer 6A is suppressed within ⁇ 0.3 eV, and the hole injection efficiency is greatly enhanced.
  • the Schottky ohmic connection formed between the anode 2 and the hole injection layer 4 is not greatly affected by the degree of the surface state of the anode 2 (including characteristics such as work function) and has high stability. Yes. Therefore, when manufacturing the organic EL element 1, it is not necessary to strictly control the surface state of the anode 2, and a large number of organic EL elements 1 or organic EL elements 1 having a high hole injection efficiency are formed at a relatively low cost. Large organic EL panels can be manufactured with good yield.
  • the “surface state of the anode” referred to here refers to the surface state of the anode immediately before forming the hole injection layer in the standard manufacturing process of the organic EL element or organic EL panel.
  • the hole injection layer 4 dissolution resistance is imparted by increasing the film density, and the amount of film loss is suppressed.
  • an occupied level exists in the film, and thereby, by exhibiting good hole injection characteristics, an effective reduction of the driving voltage can be achieved. ing.
  • the structure itself using tungsten oxide as the hole injection layer has been reported in the past (see Non-Patent Document 1).
  • the film thickness of the optimum hole injection layer obtained in this report is about 0.5 nm, and the film thickness dependence of the element characteristics is large, and the practicality for mass-producing large organic EL panels is not shown. .
  • an occupied level near the Fermi surface is positively formed in the hole injection layer.
  • the present invention provides a hole injection layer made of tungsten oxide that is chemically stable and can withstand the mass production process of a large organic EL panel, and has an occupied level in the vicinity of a predetermined Fermi surface. Efficiency is obtained and low voltage driving of the organic EL element is realized.
  • the hole injection layer is greatly different from the prior art in that the hole injection layer is provided with dissolution resistance and can stably maintain the hole injection characteristics.
  • the whole manufacturing method of the organic EL element 1 is illustrated.
  • Manufacturing method of organic EL element First, the substrate 10 is placed in a chamber of a sputter deposition apparatus. Then, a predetermined gas is introduced into the chamber, and an anode 2 made of ITO having a thickness of 50 nm is formed based on the reactive sputtering method.
  • a hole injection layer 4 made of a tungsten oxide film containing tungsten oxide having an oxygen defect structure is formed on the base layer including the anode 2 (here, directly on the upper surface of the anode 2).
  • the organic EL element 1 is applied to a large-sized organic EL panel that requires film formation of a large area, if the film is formed by a vapor deposition method or the like, there is a possibility that unevenness occurs in the film thickness or the like. If the film is formed by the reactive sputtering method, it is easy to avoid such film formation unevenness.
  • the target is replaced with metallic tungsten, and the reactive sputtering method is performed.
  • Argon gas as a sputtering gas and oxygen gas as a reactive gas are introduced into the chamber.
  • argon is ionized by a high voltage and collides with the target.
  • metallic tungsten released by the sputtering phenomenon reacts with oxygen gas to become tungsten oxide, and is formed on the anode 2 of the substrate 10.
  • the film forming conditions at this time are set to so-called low rate conditions as will be described later.
  • the deposition rate can be controlled by both the input power density of the deposition apparatus and the gas flow rate (partial pressure) ratio.
  • the film formation rate decreases when the flow rate (partial pressure) of oxygen in the gas is increased.
  • the gas pressure (total pressure) is more than 2.7 Pa and 7.0 Pa or less
  • the ratio of the oxygen gas partial pressure to the total pressure is 50% or more and 70% or less
  • the input power per target unit area (input power density) is set to be 1W / cm 2 or more 2.8W / cm less than 2.
  • a porous film quality close to a vapor deposition film can be obtained.
  • an oxygen defect structure in which oxygen atoms are partially bonded to tungsten atoms is formed, and the quasi-occupied state is within a binding energy region 1.8 to 3.6 eV lower than the lowest binding energy in the valence band. The position can be present well. Thereby, good hole injection characteristics can be secured.
  • a baking step is performed on the formed tungsten oxide film. Specifically, atmospheric baking is performed in a temperature range of 200 ° C. to 230 ° C. for a period of 15 minutes to 45 minutes. Note that if the heating temperature is too high, if an interlayer insulating film (planarization film) or the like is provided on the surface of the substrate 10, these may be altered.
  • the tungsten oxide film is hardened and baked.
  • the said immediately following deposition film density was in the range of 5.4 g / cm 3 or more 5.7 g / cm 3 or less, the film density after firing process 5.8 g / cm 3 or more It changes (increases) to a high density in the range of 6.0 g / cm 3 or less.
  • the oxygen defect structure in the film is maintained even after the baking step, so that the occupied level is preserved and the hole injection characteristics are not deteriorated.
  • the hole injection layer 4 can be provided with at least twice the dissolution resistance of the bank material etching liquid and cleaning liquid, which will be described later, immediately after film formation. Can be efficiently suppressed.
  • the hole injection layer 4 is formed.
  • a photosensitive resist material preferably a photoresist material containing a fluorine-based material is prepared.
  • This bank material is uniformly applied on the hole injection layer 4 and prebaked.
  • a mask having an opening (bank pattern to be formed) having a predetermined shape is overlaid on the bank material film.
  • etching solution a general one such as a tetramethylammonium hydroxide (TMAH) solution can be used.
  • TMAH tetramethylammonium hydroxide
  • the hole injection layer 4 is densified through the firing step, and exhibits a certain dissolution resistance against an alkali solution, water, an organic solvent, and the like. Therefore, in the bank formation process, even if the hole injection layer 4 comes into contact with the etching solution, pure water, or the like, film loss due to dissolution in the etching solution or cleaning solution is suppressed as compared with a film that does not go through the baking step. Even when the shape of the hole injection layer 4 is maintained in this manner, after the organic EL element 1 is completed, the hole injection layer 4 can be used to efficiently inject holes into the buffer layer 6A. Voltage drive can be realized satisfactorily.
  • a composition ink containing an amine-based organic molecular material is dropped onto the surface of the hole injection layer 4 exposed between adjacent banks 5 by a wet process such as an inkjet method or a gravure printing method, and a solvent is removed. Remove by volatilization. Thereby, the buffer layer 6A is formed.
  • composition ink containing an organic light-emitting material is dropped on the surface of the buffer layer 6A in the same manner to volatilize and remove the solvent. Thereby, the light emitting layer 6B is formed.
  • the formation method of the buffer layer 6A and the light emitting layer 6B is not limited to this, and a method other than the inkjet method or the gravure printing method, for example, a known method such as a dispenser method, a nozzle coating method, a spin coating method, intaglio printing, letterpress printing, etc.
  • the ink may be dropped and applied by a method.
  • a barium layer 8A and an aluminum layer 8B are formed on the surface of the light emitting layer 6B by vacuum deposition. Thereby, the cathode 8 is formed.
  • an additional sealing layer is provided on the surface of the cathode 8, or the entire element 1 is spatially externally provided.
  • a sealing can to be isolated can be provided.
  • the sealing layer can be formed of a material such as SiN (silicon nitride) or SiON (silicon oxynitride), and is provided so as to internally seal the element 1.
  • the sealing can can be formed of the same material as that of the substrate 10, for example, and a getter that adsorbs moisture and the like is provided in the sealed space.
  • the organic EL element 1 is completed through the above steps.
  • tungsten oxide film forming conditions Tungsten oxide film forming conditions
  • tungsten oxide constituting the hole injection layer 4 is formed under predetermined film formation conditions so that the hole injection layer 4 has the occupied level near the Fermi surface, and the hole injection layer 4
  • the hole injection barrier between 4 and the buffer layer 6A is reduced so that the organic EL element 1 can be driven at a low voltage.
  • a DC magnetron sputtering apparatus As a tungsten oxide film forming method for obtaining such performance, a DC magnetron sputtering apparatus is used, the target is metallic tungsten, the substrate temperature is not controlled, and the chamber gas is composed of argon gas and oxygen gas,
  • the gas pressure (total pressure) is more than 2.7 Pa and 7.0 Pa or less, and the ratio of the oxygen gas partial pressure to the total pressure is 50% or more and 70% or less, and the input power per unit unit area (input power) density) is set to the film formation condition to be 1W / cm 2 or more 2.8W / cm less than 2, it is considered to be preferable that a film is formed by reactive sputtering.
  • a hole-only element was manufactured as an evaluation device.
  • the organic EL element carriers that form current are both holes and electrons, and therefore, the electric current of the organic EL element is reflected in addition to the hole current.
  • the hole-only device since the electron injection from the cathode is hindered, the electron current hardly flows and the total current is composed of almost only the hole current, that is, the carrier can be regarded as almost only the hole. Suitable for evaluation.
  • the specifically produced hole-only device is obtained by replacing the cathode 8 in the organic EL device 1 of FIG. 1 with gold as in the cathode 8C shown in FIG. That is, as shown in FIG. 2, an anode 2 made of an ITO thin film with a thickness of 50 nm is formed on a substrate 10, and a hole injection layer 4 made of tungsten oxide with a thickness of 30 nm is formed on the anode 2, and an amine system with a thickness of 20 nm.
  • a buffer layer 6A made of TFB which is an organic polymer, a light emitting layer 6B made of F8BT which is an organic polymer having a thickness of 70 nm, and a cathode 8C made of gold having a thickness of 100 nm were sequentially laminated. Note that the bank 5 is omitted to constitute an evaluation device.
  • the hole injection layer 4 was formed by a reactive sputtering method using a DC magnetron sputtering apparatus.
  • the gas in the chamber was composed of at least one of argon gas and oxygen gas, and metallic tungsten was used as the target.
  • the substrate temperature was not controlled, and the argon gas partial pressure, oxygen gas partial pressure, and total pressure were adjusted by the flow rate of each gas.
  • Table 1 the film formation conditions are such that the total pressure, the oxygen gas partial pressure, and the input power are changed, whereby a hole provided with the hole injection layer 4 formed under each film formation condition. Only element 1B (element Nos. 1 to 14) was obtained.
  • the oxygen gas partial pressure is expressed as a ratio (%) to the total pressure.
  • Table 2 shows the relationship between input power and input power density of the DC magnetron sputtering apparatus.
  • Each produced hole-only element 1B was connected to DC power supply DC, and the voltage was applied. The applied voltage at this time was changed, and the current value that flowed according to the voltage value was converted to a value (current density) per unit area of the element.
  • the “drive voltage” is an applied voltage at a current density of 10 mA / cm 2 .
  • the hole conduction efficiency of the hole injection layer 4 affects the element characteristics in each experiment of the first embodiment. It is done. However, it is clear from the evaluation result of the energy diagram described later that the hole injection barrier between the hole injection layer 4 and the buffer layer 6A is strongly reflected in the characteristics of the element.
  • the hole injection efficiency from the hole injection layer 4 to the buffer layer 6A is mainly considered, and the hole conduction efficiency of the hole injection layer 4 is discussed in the second embodiment.
  • Table 3 shows the values of the driving voltage for the respective film-forming conditions of the total pressure, oxygen gas partial pressure, and input power of each hole-only element 1B obtained by the experiment.
  • element No. of each hole only element 1B. Is indicated by a boxed number.
  • FIG. 3 are graphs summarizing the film formation condition dependence of the driving voltage of each hole-only element 1B.
  • Each point in FIG. 3A corresponds to an element No. from left to right.
  • the drive voltages of 4, 10, and 2 are represented.
  • Each point in FIG. 3B is an element No. from left to right.
  • the drive voltage of 13, 10, 1 is represented.
  • each point in FIG. The drive voltages of 14, 2, and 8 are represented.
  • the dependence of the driving voltage on the total pressure is at least in the range where the total pressure exceeds 2.7 Pa and 4.8 Pa or less under the conditions of the oxygen gas partial pressure of 50% and the input power of 500 W.
  • FIG. 5 a clear reduction in drive voltage was confirmed. It was found by another experiment that this tendency continues at least until the total pressure is 7.0 Pa or less. Therefore, it can be said that the total pressure is desirably set in the range of more than 2.7 Pa and 7.0 Pa or less.
  • the dependency of the driving voltage on the oxygen gas partial pressure is at least an oxygen gas partial pressure of 50% to 70% under the conditions of a total pressure of 2.7 Pa and an input power of 500 W.
  • the driving voltage decreased with the increase of the oxygen gas partial pressure.
  • the oxygen gas partial pressure is preferably 50% or more and the upper limit is preferably suppressed to about 70%.
  • element No. 14 satisfies all the desirable conditions of the total pressure, oxygen gas partial pressure, and input power described above. On the other hand, element No. 1 and 7 do not partially satisfy the above desirable conditions.
  • the element No. No. 14 film forming conditions are film forming conditions A and element no. No. 1 film formation condition B, element No.
  • the film formation condition 7 is referred to as film formation condition C.
  • element no. 1 is HOD-B
  • element no. 7 was also described as HOD-C.
  • HOD-A As shown in FIG. 4, compared with HOD-B and HOD-C, HOD-A has the fastest rise in current density-applied voltage curve and a high current density at the lowest applied voltage. . Accordingly, it is estimated that HOD-A is superior in hole injection efficiency from the hole injection layer 4 to the buffer layer 6A as compared with HOD-B and HOD-C. Note that HOD-A is an element having the lowest drive voltage among the hole-only elements 1B.
  • the above is the verification regarding the hole injection efficiency from the hole injection layer 4 to the buffer layer 6A in the hole only element 1B.
  • the hole only element 1B has the same configuration as the organic EL element 1 except for the cathode. Therefore, also in the organic EL element 1, the dependency of the hole injection efficiency from the hole injection layer 4 to the buffer layer 6A on the film formation conditions is essentially the same as that of the hole only element 1B. In order to confirm this, each organic EL element 1 using the hole injection layer 4 under the deposition conditions A, B, and C was fabricated.
  • each specifically produced organic EL element 1 is formed with an anode 2 made of an ITO thin film having a thickness of 50 nm on a substrate 10 and further made of tungsten oxide having a thickness of 30 nm on the anode 2.
  • Hole injection layer 4 buffer layer 6A made of TFB which is an amine organic polymer having a thickness of 20 nm
  • light emitting layer 6B made of F8BT which is an organic polymer having a thickness of 70 nm
  • barium having a thickness of 5 nm and aluminum having a thickness of 100 nm
  • the cathode 8 made of the above was sequentially laminated. Note that the bank 5 is omitted because of the evaluation device configuration.
  • the produced organic EL elements 1 under the film forming conditions A, B, and C were connected to a DC power source DC, and a voltage was applied.
  • the current density-applied voltage curve at this time is shown in FIG.
  • the vertical axis represents current density (mA / cm 2 )
  • the horizontal axis represents applied voltage (V).
  • the organic EL element 1 under the film forming condition A is BPD-A
  • the organic EL element 1 under the film forming condition B is BPD-B
  • the organic EL element 1 under the film forming condition C is used.
  • BPD-C the organic EL element 1 under the film forming condition
  • BPD-A has the fastest rise in the current density-applied voltage curve compared to BPD-B and BPD-C, and a high current density is obtained at the lowest applied voltage. .
  • This is the same tendency as HOD-A, HOD-B, and HOD-C, which are hole-only elements having the same film forming conditions.
  • a light emission intensity-current density curve showing the relationship of the light emission intensity according to the change in current density is shown in FIG.
  • the vertical axis represents emission intensity (cd / A)
  • the horizontal axis represents current density (mA / cm 2 ). From this, it can be seen that the emission intensity of BPD-A is the highest in the range of the measured current density.
  • tungsten oxide constituting the hole injection layer 4 is a DC magnetron sputtering apparatus
  • the target is metallic tungsten
  • the substrate temperature is not controlled
  • the gas in the chamber is argon gas and oxygen It is composed of gas
  • the total pressure is over 2.7 Pa and 7.0 Pa or less
  • the ratio of the oxygen gas partial pressure to the total pressure is 50% or more and 70% or less
  • the input power density is 1 W / cm 2 or more.
  • the hole injection efficiency from the hole injection layer 4 to the buffer layer 6A is good, thereby achieving excellent low voltage driving and high light emission. It is assumed that efficiency is achieved.
  • the conditions of input electric power were again expressed by input electric power density based on Table 2.
  • the input power is adjusted so that the input power density satisfies the above conditions according to the target size.
  • the hole injection layer 4 that realizes the organic EL element 1 with excellent low voltage driving and high luminous efficiency can be obtained. Note that the total pressure and oxygen partial pressure do not depend on the size of the apparatus or the target.
  • the substrate temperature is not intentionally set in a sputtering apparatus arranged in a room temperature environment. Therefore, the substrate temperature is room temperature at least before film formation. However, the substrate temperature may increase by several tens of degrees Celsius during film formation.
  • the organic EL element 1 in which the hole injection layer 4 is produced under the film forming condition A is the organic EL element 1 according to the first embodiment, and has an occupied level near the Fermi surface described above. This will be discussed later.
  • the tungsten oxide constituting the hole injection layer 4 of the organic EL element 1 of Embodiment 1 has an occupied level near the Fermi surface.
  • the occupied level in the vicinity of the Fermi surface is formed by adjusting the film forming conditions shown in the previous experiment. Details are described below.
  • the sample for photoelectron spectroscopy measurement was produced on each film-forming condition.
  • a tungsten oxide layer 12 (corresponding to the hole injection layer 4) having a thickness of 10 nm is formed on the conductive silicon substrate 11 by the reactive sputtering method.
  • the sample 1A under the film formation condition A will be referred to as sample A
  • the sample 1A under the film formation condition B as sample B
  • the sample 1A under the film formation condition C as sample C.
  • Samples A, B, and C were all deposited in a sputtering apparatus and then transferred into a glove box connected to the sputtering apparatus and filled with nitrogen gas, and kept in a state where they were not exposed to the atmosphere. . And it enclosed with the transfer vessel in the said glove box, and mounted
  • UPS ultraviolet photoelectron spectroscopy
  • the UPS spectrum reflects the state of the occupied level such as the valence band from the surface of the measurement object to a depth of several nm. Therefore, in this experiment, the state of the occupied level in the surface layer of the tungsten oxide layer 12 was observed using UPS.
  • UPS measurement conditions are as follows. In Samples A, B, and C, since the conductive silicon substrate 11 was used, no charge-up occurred during measurement.
  • FIG. 8 shows a UPS spectrum of the tungsten oxide layer 12 of Sample A.
  • the origin of the binding energy on the horizontal axis is the Fermi level of the conductive silicon substrate 11, and the left direction is the positive direction.
  • the UPS spectrum shown by tungsten oxide the largest and steep rise is uniquely determined.
  • a tangent line passing through the rising inflection point is defined as a line (i), and an intersection with the horizontal axis is defined as a point (iii).
  • the UPS spectrum of tungsten oxide is divided into a region (x) located on the high bond energy side from the point (iii) and a region (y) located on the low bond energy side.
  • the ratio of the number of tungsten atoms to oxygen atoms in samples A, B, and C is approximately 1: 3.
  • This composition ratio was determined by X-ray photoelectron spectroscopy (XPS). Specifically, using the photoelectron spectrometer, as in the UPS measurement, the tungsten oxide layer 12 is subjected to XPS measurement without exposure to the atmosphere, and tungsten and oxygen at a depth of several nm from the surface of the tungsten oxide layer 12 are measured. The composition ratio was estimated. In Table 4, the conditions for forming the tungsten oxide layer 12 are also shown.
  • the tungsten oxide layer 12 has an atomic arrangement based on tungsten trioxide, that is, six oxygen atoms are 1 in at least a range of several nm from the surface. It is considered that the basic structure has a structure in which octahedron bonds to two tungsten atoms and the octahedrons share an apex oxygen atom. Therefore, the region (x) in FIG. 8 has the basic structure of the tungsten trioxide crystal or the amorphous structure in which the order of the crystal is disordered (however, the bond is not broken and the basic structure is maintained). Is an area corresponding to a so-called valence band. In addition, this inventor measured the X-ray absorption fine structure (XAFS) of the tungsten oxide layer 12, and confirmed that the said basic structure was formed in any of the samples A, B, and C.
  • XAFS X-ray absorption fine structure
  • the region (y) in FIG. 8 corresponds to the band gap between the valence band and the conduction band, but as this UPS spectrum shows, this region is different from the valence band in tungsten oxide. It is known that there may be a number of occupied levels. This is a level derived from another structure different from the above basic structure, and is a so-called inter-gap level (in-gap state or gap state).
  • FIG. 9 shows UPS spectra in the region (y) of the tungsten oxide layers 12 in the samples A, B, and C.
  • FIG. 9 The intensity of the spectrum shown in FIG. 9 was normalized by the value of the peak top of the peak (ii) located 3 to 4 eV higher than the point (iii) in FIG. 9 also shows the point (iii) at the same horizontal axis position as the point (iii) in FIG.
  • the horizontal axis is expressed as a relative value (relative binding energy) with respect to the point (iii), and the binding energy decreases from left to right.
  • tungsten oxide having a structure that is raised (not necessarily having a peak shape) in a region of a binding energy that is about 1.8 to 3.6 eV lower than the point (iii) in the UPS spectrum is formed as a hole.
  • excellent hole injection efficiency can be exhibited in the organic EL element.
  • a region having a binding energy lower by about 2.0 to 3.2 eV than the point (iii) is a region where the raised structure is relatively easy to confirm and the raised portion is relatively steep. It can be said that it is particularly important.
  • the raised structure in the UPS spectrum is referred to as “a raised structure near the Fermi surface”.
  • the occupied level corresponding to the raised structure in the vicinity of the Fermi surface is the aforementioned “occupied level in the vicinity of the Fermi surface”.
  • the UPS spectrum shown in FIG. 9 is subjected to two-term smoothing (with a smoothing factor of 1) 11 times, and then the differential processing by the central difference method is performed. went. This is to smooth the variation factors such as background noise during UPS measurement, to smooth the differential curve, and to clarify the following discussion.
  • the differential value is 0 in the region (v) from the bond energy measurable by the photoelectron spectrometer to the point (iv).
  • the differential value increases almost at the rate of increase toward the high binding energy side. It only increases gradually.
  • the shapes of the differential curves of the samples B and C in the regions (v) and (vi) are almost similar to the UPS spectra of the samples B and C shown in FIG. Therefore, it can be said that the shape of the UPS spectrum and its differential curve in the regions (v) and (vi) of the samples B and C are exponential shapes.
  • the tungsten oxide layer 12 of the sample A shows a steep rise from the vicinity of the point (iv) toward the high binding energy side, and the shape of the differential curve in the regions (v) and (vi) is exponential.
  • the shape of the curve is clearly different. It is confirmed that such a sample A has a raised structure in the vicinity of the Fermi surface, which begins to rise near the point (iv) in the spectrum before differentiation in FIG. 9 and is different from the exponential spectrum shape. it can.
  • the characteristic of Sample A is that, in other words, the occupied level near the Fermi surface exists in the range of about 1.8 to 3.6 eV lower than the lowest binding energy in the valence band. In the range of approximately 2.0 to 3.2 eV lower than the lowest binding energy, the raised structure near the Fermi surface corresponding to this range can be clearly confirmed by the UPS spectrum.
  • FIG. 12 is an XPS spectrum of the tungsten oxide layer 12 of Sample A after the atmospheric exposure.
  • the UPS spectrum (same as in FIG. 8) of the tungsten oxide layer 12 of Sample A was overwritten.
  • XPS measurement conditions are the same as the UPS measurement conditions described above, except that the light source is Al K ⁇ rays. However, the interval between measurement points was set to 0.1 eV.
  • the point (iii) in the figure is the same horizontal axis position as in FIG. 8, and the horizontal axis is shown by the relative binding energy with respect to the point (iii) as in FIG. Further, the line corresponding to (i) of FIG. 8 in the XPS spectrum is indicated by (i) ′ in FIG.
  • the raised structure in the vicinity of the Fermi surface in the tungsten oxide layer 12 of Sample A is about 1.8 lower than the lowest binding energy in the valence band in the XPS spectrum as in the case of the UPS spectrum. Within the range of ⁇ 3.6 eV, the existence of a considerably large raised structure can be clearly confirmed. In another experiment, a raised structure near the Fermi surface was also confirmed in the spectrum of hard X-ray photoelectron spectroscopy.
  • the structure of the organic EL element 1 shown in FIG. 1 (the structure in which the anode 2 made of ITO and the hole injection layer 4 made of tungsten oxide are sequentially laminated on one surface of the substrate 10. ), And UPS and XPS measurements were performed, charge-up occurred during the measurement of the tungsten oxide layer under the deposition conditions B and C.
  • the absolute value of the binding energy indicated by each occupied level of the hole injection layer 4 may differ from that of the tungsten oxide layer 12 of sample 1A, but at least in the range from the band gap to the lowest binding energy in the valence band, a spectrum having the same shape as sample 1A is obtained. ing.
  • the bond trajectory between 5d orbitals of adjacent tungsten atoms formed by depletion of oxygen atoms, or the 5d orbital of tungsten atoms alone existing in the film surface or in the film without being terminated by oxygen atoms It is presumed that the occupied level near the Fermi surface is derived. If these 5d orbitals are in a semi-occupied or non-occupied state, it is assumed that when they come into contact with organic molecules, electrons can be extracted from the highest occupied orbitals of organic molecules for mutual energy stabilization. Is done.
  • the tungsten oxide has a semi-occupied 5d orbital of a single tungsten atom, or a structure similar thereto, whose bonding energy is lower than the bonding orbital of 5d orbitals of adjacent tungsten atoms. I think that it corresponds to a level.
  • FIG. 13 is an energy diagram at the interface between the ⁇ -NPD layer and the tungsten oxide layer having an occupied level near the Fermi surface of the present invention.
  • the lowest binding energy in the valence band (denoted as “upper end of valence band” in the figure) and the occupancy quasi near the Fermi surface.
  • the lowest binding energy (denoted as “in-gap state upper end” in the figure) at the occupied level in the vicinity of the Fermi surface, corresponding to the rising position of the position.
  • the upper end of the valence band corresponds to the point (iii) in FIG. 8
  • the upper end of the in-gap state corresponds to the point (iv) in FIG.
  • the binding energy of the highest occupied orbit of ⁇ -NPD is the binding energy at the peak rising position by the highest occupied orbit in the UPS spectrum, in other words, the lowest in the highest occupied orbit of ⁇ -NPD. Binding energy.
  • the tungsten oxide layer formed on the ITO substrate is moved back and forth between the photoelectron spectrometer and the ultra-high vacuum deposition apparatus connected to the apparatus, and UPS measurement and ⁇ -NPD are performed.
  • the energy diagram of FIG. 13 was obtained by repeating ultra-high vacuum deposition. Since no charge-up was confirmed during the UPS measurement, in FIG. 13, the binding energy on the vertical axis is expressed as an absolute value with the Fermi level of the ITO substrate as the origin.
  • FIG. 13 shows that the interface state connection is realized not by chance but by the interaction between tungsten oxide and ⁇ -NPD.
  • the change in vacuum level (vacuum level shift) at the interface is that the electric double layer is formed at the interface with the tungsten oxide layer side negative and the ⁇ -NPD layer side positive based on the direction of the change.
  • the magnitude of the vacuum level shift is as large as 2 eV, it is appropriate that the electric double layer is formed not by physical adsorption but by an action similar to a chemical bond. That is, it should be considered that the interface state connection is realized by the interaction between tungsten oxide and ⁇ -NPD.
  • the inventor of the present application infers the following mechanism as a specific interaction.
  • the occupied level in the vicinity of the Fermi surface is derived from the 5d orbit of a tungsten atom constituting a structure similar to an oxygen defect as described above. This is hereinafter referred to as “the raised W5d trajectory”.
  • the raised structure When the highest occupied orbit of the ⁇ -NPD molecule approaches the W5d orbit of the raised structure on the surface of the tungsten oxide layer, the raised structure is separated from the highest occupied orbit of the ⁇ -NPD molecule for mutual energy stabilization. Move to the W5d orbit. As a result, an electric double layer is formed at the interface, and vacuum level shift and interface level connection as shown in FIG. 13 occur.
  • the highest occupied orbitals of amine organic molecules such as ⁇ -NPD are generally distributed with the electron density biased toward the nitrogen atom of the amine structure, and the unshared electron pair of the nitrogen atom is mainly used. It has been reported many as a result of the first principle calculation that it is configured as a component. From this, it is presumed that electrons move from the unshared electron pair of the nitrogen atom of the amine structure to the W5d orbit of the raised structure, particularly at the interface between the tungsten oxide layer and the amine organic molecule layer.
  • the tungsten oxide layer and the ⁇ shown in FIG. 13 are formed at each interface between the deposited film of molybdenum oxide having the same physical properties as tungsten oxide and ⁇ -NPD and F8BT.
  • interface state connection similar to the interface state connection of the NPD layer (see Non-Patent Documents 3, 4, and 5).
  • the excellent hole injection efficiency for the functional layer of the hole injection layer of the organic EL element of the present invention can be explained by the above interface state connection. That is, an interface state connection occurs between a hole injection layer made of tungsten oxide having an occupied level near the Fermi surface and an adjacent functional layer, and the binding energy at the rising position of the occupied level near the Fermi surface The binding energy at the rising position of the highest occupied orbit of the functional layer becomes almost equal. Hole injection occurs between the connected levels. Therefore, there is almost no hole injection barrier between the hole injection layer and the functional layer of the present invention.
  • the highest occupied orbital of the organic molecules constituting the functional layer interacts with the occupied level near the Fermi surface of the tungsten oxide layer.
  • Sites with high electron density of the highest occupied orbital for example, nitrogen atom of amine structure in amine organic molecule; indicated by “injection site (y)” in the figure
  • injection site (x) structure similar to oxygen defect on the surface of tungsten oxide layer
  • the tungsten oxide layer having no raised structure near the Fermi surface such as the samples B and C described above, has the number density even if the implantation site (x) exists.
  • the UPS spectrum it is so small that it does not reach the raised structure near the Fermi surface. Therefore, the possibility that the injection site (y) is in contact with the injection site (x) is very low. Since holes are injected where the injection site (x) and the injection site (y) are in contact, it can be seen that the efficiency of the samples B and C is extremely poor.
  • the tungsten oxide layer having a raised structure near the Fermi surface such as the sample A described above, has abundant injection sites (y). Therefore, it is highly likely that the injection site (y) is in contact with the injection site (x), and the hole injection efficiency from the hole injection layer to the functional layer is high.
  • the ⁇ -NPD layer is also applied to the tungsten oxide layer under the film formation condition C in which the raised structure in the vicinity of the Fermi surface cannot be confirmed at all, similarly to FIG. The energy diagram at the interface was measured.
  • FIG. 15 shows the result.
  • the upper end of the in-gap state corresponding to the raised structure near the Fermi surface could not be confirmed. Therefore, as another candidate of the level used for hole injection, a structure different from the raised structure (see (z in FIG. 8), which is seen on the higher binding energy side than the position of the raised structure near the Fermi surface in the UPS spectrum. )) Rising position (denoted as "second in-gap state upper end") and the valence band upper end are shown in FIG.
  • the highest occupied orbit of ⁇ -NPD in FIG. 15 is completely different from that in FIG. 13, and it is not approaching the upper end of the second in-gap state or the upper end of the valence band at all, that is, there is no interface state connection. Not happening. This means that neither the second in-gap state nor the valence band interacts with the highest occupied orbital of ⁇ -NPD. Even if holes are injected into the highest occupied orbit of ⁇ -NPD from the upper end of the second in-gap state, the injection barrier is 0.75 eV, which is very large compared to the case of FIG.
  • This difference in the injection barrier is considered to have a great influence on the driving voltage and luminous efficiency of the hole-only element 1B and the organic EL element 1 under the respective film forming conditions described above. That is, the difference in characteristics between the hole-only element 1B and the organic EL element 1 under the deposition conditions A, B, and C is that the organic EL element of the present invention has excellent hole injection efficiency from the hole injection layer to the functional layer. It is thought to strongly suggest this.
  • the organic EL device of the present invention has excellent hole injection efficiency.
  • a hole injection layer made of tungsten oxide has a raised structure near the Fermi surface in its photoelectron spectroscopy spectrum. This means that a structure similar to an oxygen defect and an occupied level in the vicinity of the Fermi surface derived therefrom are present at least on the surface of the hole injection layer.
  • the occupied level itself in the vicinity of the Fermi surface has the effect of connecting the interface state with the highest occupied orbital of the organic molecule by taking electrons from the organic molecule constituting the adjacent functional layer.
  • the relationship between the drive voltage (standardized) of the tungsten oxide (WOx) film and the dissolution resistance with respect to a predetermined film formation rate condition is shown in the graph of FIG.
  • the dissolution resistance was examined when the etching solution (TMAH solution) was dropped onto the film immediately after film formation.
  • TMAH solution etching solution
  • the tungsten oxide film is not baked, and the film density is controlled only by the film formation rates of “low rate”, “medium rate”, and “high rate”.
  • Each film formation rate was as follows.
  • the evaluation criteria for the required tolerance of the film reduction amount considers a range in which the film thickness can be controlled from the film thickness immediately after film formation (14 nm), and the film loss amount is less than half (7 nm or less immediately after film formation). ). Moreover, the evaluation standard of the required performance of the drive voltage (standardization) was set to a range of 1 or less as an example.
  • the film reduction amount (diamond dotted line) and the drive voltage (square dotted line) are in a trade-off relationship with each other, and it can be confirmed that the film reduction amount can be suppressed as the film density increases.
  • the following resist formation / peeling process was performed as a bank formation process.
  • a resist (tok TFR-940) was applied by spin coating under the condition of 2500 rpm / 25 sec. This was baked at 100 ° C. for 90 seconds, then developed with a 2.38% developer (TMAH solution), and washed with water for 60 seconds. The resist was stripped with acetone.
  • Evaluation criteria for dissolution resistance were evaluated as “good” when the film thickness was less than half of the film thickness immediately after film formation, and “bad” when the film thickness was more than this.
  • the evaluation criteria for device characteristics were evaluated as “good” when the voltage value was able to achieve the performance equal to or higher than the LCD, and “bad” when the voltage value was higher than the above.
  • Table 5 shows the film forming conditions, measurement results, and evaluation results of these samples. No. Reference numerals 4 and 5 correspond to examples according to the film forming conditions of the first embodiment.
  • the sample No. 1 was formed at a high rate with a relatively high power density.
  • the film density was high and the dissolution resistance was excellent, the device characteristics were not excellent, so that the total performance was deteriorated.
  • the baking step is omitted.
  • pentavalent tungsten atoms are hardly generated in tungsten oxide, and almost no oxygen defect structure is formed (the tungsten atoms in the film are only hexavalent). It is thought that the device characteristics were lowered.
  • Sample No. with a relatively low Power density and no firing step In 1 to 3, relatively many pentavalent tungsten atoms are generated in the film by film formation at a low rate, and an oxygen defect structure is formed. For this reason, hole injection characteristics can be secured to some extent. However, since the dissolution properties are not excellent and the amount of film loss is large, the total performance is lowered.
  • sample Nos. 1 and 2 were subjected to a firing process after film formation at a relatively low power density (low rate).
  • a firing process after film formation at a relatively low power density (low rate).
  • an oxygen defect structure is formed in the presence of a pentavalent tungsten atom, and excellent device characteristics are exhibited, and good dissolution resistance is also exhibited by improving the film density. For this reason, the total performance is excellent. From this result, it is possible to confirm the film forming conditions of the examples including the first embodiment and the effectiveness of the baking process.
  • FIG. 17 shown next is a graph showing the relationship between the film reduction amount (diamond dotted line) and the drive voltage (round dotted line) with respect to the film density of the tungsten oxide (WOx) film.
  • the film reduction amount diamond dotted line
  • the drive voltage round dotted line
  • the driving voltage increases rapidly when the film density is higher than about 6 g / cm 3 . This is presumably because the oxygen defect structure in the film disappears and the occupied level disappears due to the increase in film density.
  • the film density needs to be set to about 5.8 g / cm 3 or more.
  • an inflection point exists in the vicinity of 5.8 g / cm 3 , which corresponds to. Therefore, in consideration of these, it is considered that the range of 5.8 g / cm 3 or more and 6.0 g / cm 3 or less is appropriate as the film density of tungsten oxide suitable for the hole injection layer.
  • FIG. 18 shows a tungsten oxide film formed at a low rate, a tungsten oxide film (corresponding to the hole injection layer 4) that has been formed at a low rate and then subjected to a baking process, and a tungsten oxide film formed at a high rate.
  • FIG. 6 is a diagram in which UPS spectra measured for each of the above are superimposed.
  • the tungsten oxide film formed at a low rate has a raised structure in the spectrum as in FIG. 9, indicating that there are occupied levels in the film.
  • the tungsten oxide film formed at a low rate and subjected to the baking process after the film formation also has an occupied level in the film.
  • the occupied level is well maintained in the film even after the firing step.
  • FIG. 19 shows the relationship between the film density and the amount of film reduction.
  • an organic EL panel in which a plurality of organic EL elements were arranged was used.
  • center indicates an organic EL element near the center of the panel
  • edge indicates an organic EL element near the panel periphery.
  • FIG. 21 is a diagram showing the relationship between the film reduction amount with respect to the film density and the in-plane film thickness deviation in the organic EL panel.
  • FIG. 21 shows the result.
  • the variation of the film reduction amount at each position on the organic EL panel is referred to as “panel thickness deviation in the panel surface” and is obtained as a difference between the maximum value and the minimum value of the film reduction amount.
  • one of the specifications required for the organic EL panel is that the film thickness deviation in the panel surface of the hole injection layer is 4 nm or less ( ⁇ 2 nm or less). If the film thickness deviation in the panel surface of the hole injection layer is large, it may be considered that the cavity design of the organic EL element is affected.
  • the hole injection layer with a small amount of film loss can be designed to have a thin film thickness at the time of film formation.
  • the absolute amount of deviation can be reduced. Therefore, in the present invention, by utilizing the fact that the film loss can be suppressed as much as possible by making the tungsten oxide film resistant to dissolution, the film thickness at the time of film formation is reduced and the film thickness deviation in the panel thickness of the finished film thickness is reduced. It is possible to suppress the absolute amount. Thereby, variation in the light emission efficiency of each element on the panel can be prevented.
  • the in-plane film thickness deviation is suppressed to 4 nm or less ( ⁇ 2 nm or less) regardless of the presence or absence of the firing step.
  • the in-plane film thickness deviation was reduced by 40% or more in the sample that had undergone the firing step, compared to the case where the firing step was not performed.
  • the film thickness deviation in the panel surface is as small as possible. For this reason, it can be said that the baking process with respect to the tungsten oxide film of the present invention is effective in that the absolute amount of film thickness deviation in the panel surface can be effectively suppressed.
  • FIG. 22 is a graph showing the relationship between the in-panel film thickness deviation (WOx film thickness deviation) of the hole injection layer made of tungsten oxide and the current efficiency deviation in each of RGB colors.
  • the light emission characteristics of the organic EL element in which color filters of RGB colors were laminated were used for the measurement.
  • the current efficiency shift increases in proportion to the film thickness shift of the tungsten oxide film.
  • the film thickness shift in each organic EL element on the panel can be suppressed, so that the current efficiency becomes uniform and the light emission characteristics can be made uniform. This effect can ultimately contribute to improving the image display performance of the entire organic EL panel.
  • the in-plane efficiency is improved by performing the baking process on the tungsten oxide film after the film formation as compared with the case where the baking process is not performed. It can be confirmed that variation is reduced and uniform light emission characteristics can be expected in the entire panel.
  • FIG. 23 is a graph showing the measurement results on the relationship between the film reduction amount (diamond dotted line) and the film density (rectangular dotted line) with respect to the baking time of the baking process performed after the tungsten oxide film is formed.
  • the film thickness immediately after film formation was (14 nm), and the firing temperature was (230 ° C.).
  • FIG. 24A is a schematic cross-sectional view showing the configuration of the organic EL element 1C according to the present embodiment.
  • FIG. 24B is a partially enlarged view near the hole injection layer 4A.
  • the organic EL element 1C is, for example, a coating type in which a functional layer is applied by a wet process to form a film, and a hole injection layer 4A and various functional layers including an organic material having a predetermined function are stacked on each other. In this state, it has a configuration interposed between the electrode pair composed of the anode 2 and the cathode 8D.
  • the organic EL element 1C has an anode 2, an ITO layer 3, a hole injection layer 4A, a buffer layer 6A, a light emitting layer 6B, an electron injection layer 7, a cathode 8D, a sealing, with respect to one main surface of the substrate 10.
  • the layers 9 are stacked in the same order.
  • ITO layer 3 The ITO (indium tin oxide) layer 3 is interposed between the anode 2 and the hole injection layer 4A and has a function of improving the bonding property between the layers.
  • the ITO layer 3 is separated from the anode 2, but the ITO layer 3 can also be regarded as a part of the anode 2.
  • the hole injection layer 4A is a tungsten oxide layer having a thickness of at least 2 nm (here, 30 nm as an example), which is formed under film formation conditions at a predetermined low rate. It consists of As a result, the ITO layer 3 and the hole injection layer 4A are in Schottky ohmic connection, and the vicinity of the Fermi surface at the position where the distance from the surface of the ITO layer 3 to the hole injection layer 4A side is 2 nm.
  • FIG. 24A shows a state in which the hole injection layer 4A has a slightly reduced surface on the light emitting layer 6B side and has a concave structure toward the anode 2 side.
  • the tungsten oxide constituting the hole injection layer 4A can be expressed as a real number composition in the range of 2 ⁇ x ⁇ 3 in the composition formula WOx.
  • the hole injection layer 4A is preferably made of tungsten oxide with as high a purity as possible, but may contain a trace amount of impurities that can be mixed at a normal level.
  • the details of the predetermined film forming conditions for the hole injection layer 4A will be described in detail in the section (Method for manufacturing the organic EL element 1C) and the section (About the film forming conditions for the hole injection layer 4A).
  • the tungsten oxide layer constituting the hole injection layer 4A is formed under the predetermined film formation conditions, so that the tungsten oxide crystal 13 is formed as shown in FIG. Contains many.
  • the grain size of each crystal 13 is on the order of nanometers.
  • the hole injection layer 4A has a thickness of about 30 nm, while the crystal 13 has a grain size of about 3 to 10 nm.
  • the crystal 13 having a particle size of the order of nanometers is referred to as “nanocrystal 13”, and the layer structure composed of the nanocrystal 13 is referred to as “nanocrystal structure”.
  • the hole injection layer 4A may include an amorphous structure in addition to the nanocrystal structure.
  • the tungsten atoms constituting the tungsten oxide are distributed so as to have a maximum valence state that the tungsten oxide can take and a valence state lower than the maximum valence. is doing.
  • a structure similar to an oxygen defect may exist in the tungsten oxide layer.
  • the valence of the tungsten atom not included in the structure similar to the oxygen defect is hexavalent, while the valence of the tungsten atom included in the structure similar to the oxygen defect is lower than the hexavalence.
  • the organic EL element 1C in addition to the relaxation of the hole injection barrier between the ITO layer 3 and the hole injection layer 4A described above, pentavalent tungsten atoms are distributed in the hole injection layer 4A, and the structure is similar to an oxygen defect. By forming, further improvement in hole conduction efficiency can be expected. That is, by providing the hole injection layer 4A made of tungsten oxide with a nanocrystal structure, holes injected from the ITO layer 3 into the hole injection layer 4A conduct oxygen defects present at the crystal grain boundaries of the nanocrystal 13. As a result, the number of paths through which holes are conducted can be increased, leading to an improvement in hole conduction efficiency. Thereby, in the organic EL element 1C, the drive voltage can be reduced efficiently.
  • the hole injection layer 4A undergoes a predetermined baking process after film formation, and the chemical resistance and dissolution resistance are enhanced by increasing the density. Therefore, even when the hole injection layer 4A comes into contact with a solution or the like used in a process or the like performed after the formation of the same layer, the damage of the hole injection layer 4A due to dissolution, alteration, decomposition, or the like is suppressed, and Film reduction can be effectively prevented. Since the hole injection layer 4A is made of a material having excellent chemical resistance, an effect of preventing a decrease in hole conduction efficiency can be expected.
  • the hole injection layer 4A made of tungsten oxide in this embodiment includes both a case where the hole injection layer 4A is made of only a nanocrystal structure and a case where the hole injection layer 4A is made of both a nanocrystal structure and an amorphous structure.
  • the nanocrystal structure is desirably present uniformly throughout the hole injection layer 4A, but between the interface between the ITO layer 3 and the hole injection layer 4A and the interface between the hole injection layer 4A and the buffer layer 6A.
  • the grain boundary is connected even at one location, holes can be efficiently conducted from the lower end to the upper end of the hole injection layer 4A.
  • Non-Patent Document 1 suggests that hole conduction efficiency is improved by crystallizing a tungsten oxide layer by annealing at 450 ° C.
  • Non-Patent Document 1 does not describe the conditions for forming a tungsten oxide layer having a large area and the influence of tungsten oxide formed as a hole injection layer on the substrate on other layers on the substrate. Practical mass productivity of organic EL panels is not shown. Further, it is not shown that a tungsten oxide nanocrystal having a structure similar to an oxygen defect is positively formed in the hole injection layer.
  • the hole injection layer according to one embodiment of the present invention includes a tungsten oxide layer that hardly causes a chemical reaction, is stable, and can withstand a mass production process of a large organic EL panel. Furthermore, it is greatly different from the prior art in that excellent hole conduction efficiency is realized by making the tungsten oxide layer positively have a structure similar to oxygen defects.
  • the electron injection layer 7 has a function of injecting electrons from the cathode 8D to the light emitting layer 6B.
  • barium having a thickness of about 5 nm, lithium fluoride having a thickness of about 1 nm, sodium fluoride, or a combination thereof Is preferably formed.
  • the cathode 8D is composed of, for example, an ITO layer having a thickness of about 100 nm.
  • a DC power supply DC is connected to the anode 2 and the cathode 8D, and power is supplied to the organic EL element 1C from the outside.
  • the sealing layer 9 has a function of suppressing the organic EL element 1C from being exposed to moisture and air, and is formed of a material such as SiN (silicon nitride) or SiON (silicon oxynitride), for example. In the case of a top emission type organic EL element, it is preferably formed of a light transmissive material.
  • a thin film made of silver is formed on the substrate 10 by, for example, sputtering, and the thin film is patterned by, for example, photolithography to form the anodes 2 in a matrix (FIG. 26A).
  • the thin film may be formed by a vacuum evaporation method or the like.
  • an ITO thin film is formed, for example, by sputtering, and the ITO layer 3 is formed by patterning the ITO thin film, for example, by photolithography.
  • a thin film 4X containing tungsten oxide is formed on the upper surface of the base layer including the anode 2 (here, the upper surface of the ITO layer 3) under predetermined film formation conditions (low-rate film formation conditions) described later (FIG. 26).
  • predetermined film formation conditions low-rate film formation conditions described later (FIG. 26).
  • atmospheric baking is performed at a baking time of 200 ° C. to 230 ° C. for 15 minutes to 45 minutes, and baking is performed to obtain a film density of 5.8 g / cm 3 to 6.0 g / cm. Increase to 3 range.
  • the film is densified by a baking process, and at least twice as long as the dissolution resistance to an etching solution and a cleaning solution used in the following bank formation step is provided immediately after film formation.
  • a bank material film 5X is formed on the thin film 4X using a bank material made of an organic material, and a part of the bank material film 5X is removed to expose a part of the thin film 4X (FIG. 26C).
  • the bank material film 5X can be formed, for example, by coating. The removal of the bank material film 5X can be performed by patterning using a predetermined developer (tetramethylammonium hydroxide (TMAH) solution or the like).
  • TMAH tetramethylammonium hydroxide
  • the tungsten oxide constituting the thin film 4X is slightly dissolved in the TMAH solution although it has a good chemical resistance through a baking step after the film formation.
  • the bank residue adhering to the surface of the thin film 4X is washed with the developer, the exposed portion of the thin film 4X is eroded and a concave structure is formed in which the film is slightly reduced toward the anode 2 (FIG. 27A).
  • a hole injection layer 4A having a recess 4a is formed.
  • the bank 5 is formed by subjecting the surface of the bank material film 5X to a liquid repellency treatment using, for example, fluorine plasma.
  • a composition ink containing an organic material is dropped into the region defined by the bank 5 by, for example, an ink jet method, and the ink is dried to form the buffer layer 6A and the light emitting layer 6B (FIG. 27B).
  • the ink may be dropped by a dispenser method, a nozzle coating method, a spin coating method, intaglio printing, letterpress printing, or the like.
  • a barium thin film to be the electron injection layer 7 is formed by, for example, vacuum deposition (FIG. 28A).
  • an ITO thin film that becomes the cathode 8D is formed, for example, by sputtering (FIG. 28B).
  • the sealing layer 9 is formed on the cathode 8D (FIG. 28C).
  • the hole injection layer 4A (thin film 4X) is preferably formed by a reactive sputtering method. Specifically, metallic tungsten is used as a target, argon gas is used as a sputtering gas, and oxygen gas is used as a reactive gas in the chamber. In this state, argon is ionized by a high voltage and collides with the target. At this time, metallic tungsten released by the sputtering phenomenon reacts with oxygen gas to become tungsten oxide, and a tungsten oxide layer is formed on the ITO layer 3.
  • the total pressure of the gas in the chamber is 2.3 Pa to 7.0 Pa
  • the total pressure is The oxygen gas partial pressure ratio is 50% or more and 70% or less
  • the input power (input power density) per unit area of the target is 1.4 W / cm 2 or more and less than 2.8 W / cm 2
  • the total pressure / power density which is a value obtained by dividing the total pressure by the input power density, is preferably set to be greater than 0.7 Pa ⁇ cm 2 / W.
  • a hole injection layer 4A made of tungsten oxide having a nanocrystal structure is formed.
  • the planarizing film 17 is formed on the substrate 10 using an insulating resin material such as polyimide or acrylic.
  • an insulating resin material such as polyimide or acrylic.
  • Three layers of an aluminum alloy thin film 2X, an IZO thin film 3X, and a thin film (tungsten oxide film) 4X are sequentially formed on the planarizing film 17 based on the vapor deposition method (FIG. 29A).
  • an ACL (aluminum cobalt lanthanum alloy) material can be used as the aluminum alloy material.
  • a resist pattern R is formed by photolithography in a region where the anode 2, the IZO layer 3A, and the hole injection layer 4B are to be formed (FIG. 29B).
  • the region of the thin film 4X not covered with the resist pattern R is subjected to dry etching (D / E) processing and patterned (FIG. 29C).
  • dry etching in order to selectively etch only the thin film 4X, either a mixed gas of F-based gas and N 2 gas or a mixed gas of F-based gas and O 2 gas is used.
  • Specific conditions for setting the dry etching process can be determined as follows as an example.
  • regions of the IZO thin film 3X and the AI alloy thin film 2X that are not covered with the resist pattern R are patterned by wet etching (FIG. 29D).
  • a mixed solution of nitric acid, phosphoric acid, acetic acid and water is used, and the two layers of the IZO thin film 3X and the Al alloy thin film 2X are wet etched together.
  • Specific conditions for setting the wet etching process can be determined as follows as an example.
  • Treatment target IZO thin film and Al alloy thin film
  • Etchant Mixed aqueous solution of phosphoric acid, nitric acid, acetic acid
  • Solvent mixing ratio Arbitrary (can be mixed under general conditions)
  • Etching temperature lower than room temperature.
  • the film thickness of the upper IZO thin film is preferably 20 nm or less. This is because when the film thickness exceeds 20 nm, the amount of side etching increases.
  • the anode 2 and the IZO layer 3A are formed. Thereafter, a resist stripping step is performed to remove the resist pattern R, whereby a three-layer structure of the patterned anode 2, IZO layer 3A, and hole injection layer 4B can be obtained (FIG. 30A). In this process, the hole injection layer 4B is formed at a position corresponding to the anode 2 and the IZO layer 3A.
  • a bank material film 5X (not shown) is formed on the exposed surface of the planarization film 17, and the bank 5 is formed by patterning the bank material film 5X (FIG. 30B).
  • a predetermined ink is prepared by the above-described method, and this is sequentially dropped and dried in an area defined in the bank 5, thereby forming the buffer layer 6A and the light emitting layer 6B, respectively (FIG. 30).
  • C ⁇ Various experiments and considerations regarding film formation conditions of hole injection layers 4A and 4B> (Regarding film forming conditions of hole injection layers 4A and 4B)
  • tungsten oxide constituting the hole injection layers 4A and 4B is formed under predetermined film formation conditions (low-rate film formation conditions), so that a nanocrystal structure exists in the hole injection layers 4A and 4B.
  • the hole conduction efficiency is improved, and the organic EL element 1C can be driven at a low voltage.
  • the predetermined film forming conditions will be described in detail.
  • the DC magnetron sputtering apparatus was used for film formation, and the target was metallic tungsten.
  • the substrate temperature was not controlled.
  • the sputtering gas is preferably composed of argon gas
  • the reactive gas is composed of oxygen gas
  • the respective gases are set to the same flow rate
  • the film is formed by the reactive sputtering method.
  • the film formation method of the hole injection layers 4A and 4B is not limited to this, and the film can also be formed by a method other than the sputtering method, for example, a known method such as a vapor deposition method or a CVD method.
  • the hole injection layers 4A and 4B made of tungsten oxide having a nanocrystal structure atoms and clusters flying to the substrate have a low motion that does not break the regular structure previously formed on the substrate. It is considered necessary to reach the substrate with energy and to be coupled with each other with regularity while moving on the substrate. For this purpose, it is desirable to form the film at the lowest possible film formation rate.
  • the above-described (1) to (4) are conceivable as film formation conditions that can realize the low film formation rate in the reactive sputtering method.
  • the inventors of the present application obtained a hole injection layer made of tungsten oxide having a nanocrystal structure by forming a hole injection layer under these film formation conditions (1) to (4). The reduction effect is confirmed.
  • the upper limit of the total pressure is 4.7 Pa, but it has been separately confirmed that the same tendency is exhibited up to at least 7.0 Pa.
  • the ratio of the oxygen gas partial pressure to the total pressure is set to 50%, but at least 50% to 70%, a reduction in driving voltage has been confirmed. Yes.
  • the input power density in (3) changes the number and kinetic energy of tungsten atoms and tungsten clusters that are sputtered and released from the target. In other words, by lowering the input power density, the number of tungsten released from the target is reduced, the kinetic energy is also reduced, the amount of tungsten flying to the substrate can be reduced and the kinetic energy can be reduced, and film formation at a low rate can be achieved. I can expect.
  • the total pressure in (1) changes the mean free path of tungsten atoms and tungsten clusters released from the target.
  • the probability that tungsten atoms and tungsten clusters will repeatedly collide with the gas in the chamber before reaching the substrate increases, the flying directions of tungsten atoms and tungsten clusters are dispersed, and kinetic energy is also increased.
  • the amount of tungsten reaching the substrate can be reduced and the kinetic energy can be reduced, and film formation at a low rate can be expected.
  • the condition of the above parameters (total pressure / power density) for forming the nanocrystal structure of the second embodiment is 0.78 Pa ⁇ cm 2 / W or more within the range of the experiment described later, 0.7Pa ⁇ cm 2 / W is considered necessary larger than, the more reliable is considered to be preferable at 0.8Pa ⁇ cm 2 / W or more.
  • the upper limit value of the above parameter is 3.13 Pa ⁇ cm 2 / W or less within the range of the experiment described later, and is considered to be smaller than 3.2 Pa ⁇ cm 2 / W. Is considered to be preferably 3.1 Pa ⁇ cm 2 / W or less.
  • the film formation condition (4) was determined. It was confirmed by another experiment that the film formation rate was lower as the parameter value was larger and the film formation rate was higher as the parameter value was smaller.
  • a hole-only element 1D shown in FIG. 25 was fabricated as an evaluation device. As described in the first embodiment, since the carriers flowing through the hole-only element can be regarded as only holes, the hole-only element is suitable for evaluating the hole conduction efficiency.
  • the hole-only element 1D is obtained by changing the organic EL element 1C of FIG. 24 to the configuration of the evaluation device, replacing the ITO cathode 8D with a cathode 8E made of gold, and omitting the anode 2.
  • the ITO layer 3 is used as an anode, and the electron injection layer 7 and the bank 5 are omitted.
  • the layers are manufactured based on the manufacturing method described above. The thickness of each layer is 30 nm for the hole injection layer 4A, 20 nm for the buffer layer 6A made of TFB, 70 nm for the light emitting layer 6B made of F8BT, and the cathode made of gold. 8E was set to 100 nm. *
  • the hole injection layer 4A was formed by a reactive sputtering method using a DC magnetron sputtering apparatus.
  • the gas in the chamber was composed of at least one of argon gas and oxygen gas, and metallic tungsten was used as the target.
  • the substrate temperature was not controlled, and the total pressure was adjusted by the flow rate of each gas.
  • the partial pressures of argon gas and oxygen gas in the chamber are 50%, respectively.
  • Each hole-only element 1D composed of the hole injection layer 4A having the five film forming conditions ⁇ to ⁇ shown in Table 7 was produced.
  • the hole-only element 1D formed under the film formation condition ⁇ is HOD- ⁇
  • the hole-only element 1D formed under the film formation condition ⁇ is HOD- ⁇
  • the hole-only element 1D formed under the film formation condition ⁇ is HOD.
  • the hole-only element 1D formed under the film formation condition ⁇ is referred to as HOD- ⁇
  • the hole-only element 1D formed under the film formation condition ⁇ is referred to as HOD- ⁇ .
  • Each produced Hall-only element 1D was connected to a DC power source DC and a voltage was applied. The applied voltage at this time was changed, and the current value that flowed according to the voltage value was converted to a value (current density) per unit area of the element.
  • FIG. 31 shows the relationship between the applied voltage and current density of each hole-only element 1D.
  • the vertical axis represents current density (mA / cm 2 )
  • the horizontal axis represents applied voltage (V).
  • Table 8 shows the driving voltage of each hole-only element 1D.
  • the “driving voltage” here is an applied voltage at a current density of 0.3 mA / cm 2 .
  • each hole-only element 1D has the same configuration other than the hole injection layer 4A, and therefore, the hole injection barrier between two adjacent layers excluding the hole injection layer 4A and the layers other than the hole injection layer 4A.
  • the hole conduction efficiency is considered constant.
  • the conduction efficiency of the hole injection layer 4A has a stronger influence on the device characteristics than the hole injection efficiency from the hole injection layer 4A to the buffer layer 6A.
  • the ITO layer 3 and the hole injection layer 4A used in the experiment have the Schottky ohmic connection of the present invention, as described in the first embodiment. . Therefore, it can be said that the difference in driving voltage depending on the film formation conditions of the hole injection layer 4A in each hole-only device 1D strongly reflects the difference in hole conduction efficiency of the hole injection layer 4A.
  • HOD- ⁇ has the slowest rise in current density-applied voltage curve and the highest drive voltage compared to other devices. Therefore, it is considered that HOD- ⁇ , ⁇ , ⁇ , and ⁇ are superior in hole conduction efficiency as compared with HOD- ⁇ produced under the film forming conditions in which the total pressure is reduced and the input power density is maximized.
  • the hole-only device 1D is the same as the organic EL device 1C except for the cathode 8E with respect to the essential parts related to the characteristics of the device. It is a configuration. Therefore, also in the organic EL element 1C, the film formation condition dependency of the hole conduction efficiency of the hole injection layer 4A is essentially the same as that of the hole-only element 1D.
  • an organic EL element 1C using a hole injection layer 4A formed under each film forming condition of ⁇ to ⁇ was manufactured.
  • the organic EL element 1C formed under the film forming condition ⁇ is BPD- ⁇
  • the organic EL element 1C formed under the film forming condition ⁇ is BPD- ⁇
  • the organic EL element 1C formed under the film forming condition ⁇ is BPD.
  • the organic EL element 1C formed under the film formation condition ⁇ is referred to as BPD- ⁇
  • the organic EL element 1C formed under the film formation condition ⁇ is referred to as BPD- ⁇ .
  • Each organic EL element 1C is obtained by changing the organic EL element 1C of FIG. 24 to the configuration of the evaluation device, replacing the cathode 8D from ITO to aluminum, omitting the anode 2, and using the ITO layer 3 as the anode.
  • Bank 5 is omitted.
  • the layers are manufactured based on the manufacturing method described above, and the thickness of each layer is 30 nm for the hole injection layer 4A, 20 nm for the buffer layer 6A made of TFB, 70 nm for the light emitting layer 6B made of F8BT, and a barium layer.
  • the electron injection layer 7 was 5 nm
  • the cathode 8 made of an aluminum layer was 100 nm.
  • Each organic EL element 1C produced under the deposition conditions ⁇ to ⁇ was connected to a DC power source DC, and a voltage was applied. The applied voltage at this time was changed, and the current value that flowed according to the voltage value was converted to a value (current density) per unit area of the element.
  • the relationship between the applied voltage and current density of each organic EL element 1C is shown in FIG. In the figure, the vertical axis represents current density (mA / cm 2 ), and the horizontal axis represents applied voltage (V).
  • Table 9 shows the driving voltage of each organic EL element 1C.
  • the “driving voltage” here is an applied voltage at a current density of 8 mA / cm 2 .
  • BPD- ⁇ has the slowest rise of the current density-applied voltage curve and the highest drive voltage compared to other devices. This is the same tendency as the hole-only elements HOD- ⁇ to ⁇ having the same film forming conditions.
  • the film formation condition dependency of the hole conduction efficiency of the hole injection layer 4A is also acting in the organic EL element 1C as in the case of the hole only element 1D. That is, even in the organic EL element 1C, the hole conduction efficiency of the hole injection layer 4A is improved by performing the film formation under the film formation conditions in the range of the film formation conditions ⁇ , ⁇ , ⁇ , and ⁇ , thereby reducing the low voltage. It is considered that driving has been realized.
  • the input power condition is represented by the input power density as shown in Table 7.
  • Table 7 the input power density
  • a tungsten oxide layer having excellent hole conduction efficiency as in this experiment. 4A can be obtained.
  • the total pressure and oxygen partial pressure do not depend on the apparatus.
  • the substrate temperature is not intentionally set in a sputtering apparatus arranged in a room temperature environment. Therefore, at least the substrate temperature before film formation is room temperature. However, the substrate temperature may increase by several tens of degrees Celsius during film formation.
  • the inventor of this application has confirmed by another experiment that the drive voltage rises conversely when the oxygen partial pressure is increased too much. Therefore, the oxygen partial pressure is desirably 50% to 70%.
  • an organic EL element having a hole injection layer produced under film formation conditions ⁇ , ⁇ , ⁇ , and ⁇ is preferable for low voltage driving, and more preferably an organic EL element produced under film formation conditions ⁇ and ⁇ . It is.
  • an organic EL element including a hole injection layer manufactured under film forming conditions ⁇ , ⁇ , ⁇ , and ⁇ is an object of the present application.
  • Pentavalent tungsten atoms are present in the tungsten oxide layers constituting the hole injection layers 4A and 4B of the organic EL element 1C of the second embodiment. These pentavalent tungsten atoms are formed by adjusting the film forming conditions shown in the previous experiment. Details are described below.
  • HXPS measurement a hard X-ray photoelectron spectroscopic measurement (hereinafter simply referred to as “HXPS measurement”) experiment was conducted.
  • HXPS spectrum information from a hard X-ray photoelectron spectrum (hereinafter simply referred to as “HXPS spectrum”) up to several tens of nm in depth of the film of the measurement object, in other words, information on the bulk of the film is obtained.
  • the measurement depth is determined by the angle formed by the surface normal and the direction in which photoelectrons are detected.
  • the angle was adjusted and determined to be 40 °.
  • HXPS measurement conditions are as follows. During the measurement, no charge up occurred.
  • HXPS measurement was performed on each hole injection layer 4A of samples ⁇ to ⁇ .
  • the resulting spectrum is shown in FIG.
  • the horizontal axis is the binding energy
  • the Fermi level of the ITO substrate is the origin
  • the left direction is the positive direction.
  • the vertical axis represents the photoelectron intensity.
  • each peak is 5p 3/2 level (W5p 3/2 ), 4f 5/2 level of tungsten from the left to the right in the figure. It was assigned to be a peak corresponding to (W4f 5/2 ), 4f 7/2 level (W4f 7/2 ).
  • the position of the peak top of the component (W 6+ 4f 7/2 ) attributed to the hexavalent W4f 7/2 was adjusted to the binding energy of 35.7 eV.
  • the positions and half-widths of the peak tops of the components attributed to the surface photoelectrons of W5p 3/2 , W4f 5/2 , and W4f 7/2 , the component attributed to hexavalent, and the component attributed to pentavalent was set within the range shown in Table 10.
  • the initial value of the ratio of the Lorentzian function in the Gaussian-Lorentzian mixed function used for fitting each component was also set within the range shown in Table 10.
  • the initial value of the area intensity of each component was arbitrarily set while maintaining the above intensity ratio. Then, the area intensity of each component is moved while maintaining the above intensity ratio, and the peak position of each component, the half width, and the ratio of the Lorentzian function are moved within the range of Table 10, and optimization calculation is performed up to 100 times, The final peak fitting analysis result was obtained.
  • FIG. 34A shows the analysis result of the sample ⁇
  • FIG. 34B shows the analysis result of the sample ⁇ .
  • sample ⁇ , sample ⁇ are measured spectra (corresponding to the spectra in FIG. 33), and the two-dot chain line (surface) is a component (W sur 5p 3/2 , W sur 4f 5 ) belonging to the surface photoelectrons.
  • the dotted line (W 6+ ) is a component attributed to hexavalence (W 6+ 5p 3/2 , W 6+ 4f 5/2 , W 6+ 4f 7/2 ),
  • one-dot chain line ( W 5+ ) is a component (W 5+ 5p 3/2 , W 5+ 4f 5/2 , W 5+ 4f 7/2 ) attributed to pentavalent.
  • a solid line (fit) is a spectrum obtained by adding the components indicated by the two-dot chain line, the dotted line, and the one-dot chain line.
  • sample ⁇ there is a large “deviation” between the solid line (fit), which is the sum of the components of the peak fitting result, and the dotted line (W 6+ ) of only the hexavalent component.
  • sample ⁇ does not have the “shift” as much as sample ⁇ . That is, it is assumed that this “deviation” in the sample ⁇ suggests the presence of pentavalent tungsten atoms.
  • W 5+ / W 6+ which is the ratio of the number of pentavalent tungsten atoms to hexavalent tungsten atoms in samples ⁇ to ⁇ . This ratio was calculated by dividing the area intensity of the component attributed to pentavalent by the area intensity of the component attributed to corresponding hexavalence in the peak fitting analysis result of each sample.
  • the area intensity ratio of the component attributed to pentavalent and the component attributed to the corresponding hexavalent is the same value in terms of measurement in any of W5p 3/2 , W4f 5/2 , and W4f 7/2 become. In fact, the same value was confirmed in this study. Therefore, in the following discussion, only W4f 7/2 is used.
  • Table 11 shows W 5+ / W 6+ in W4f 7/2 of samples ⁇ to ⁇ .
  • sample ⁇ has the highest proportion of pentavalent tungsten atoms in hole injection layer 4A, and then sample ⁇ , sample ⁇ , and sample ⁇ in this order. The ratio tends to be small, and the sample ⁇ is the smallest. Further, comparing the results of Table 9 and Table 11, it can be seen that the higher the proportion of pentavalent tungsten atoms in the hole injection layer 4A, the lower the driving voltage of the organic EL element.
  • the ratio of the number of tungsten atoms and oxygen atoms in the hole injection layer 4A in the samples ⁇ to ⁇ is the average of the whole layer, It was confirmed that the ratio was approximately 1: 3. From this ratio, in any of samples ⁇ to ⁇ , the hole injection layer 4A is considered to have an atomic arrangement based on tungsten trioxide in the basic structure almost entirely.
  • the inventor of the present application measured the X-ray absorption fine structure (XAFS) of the hole injection layer 4A, and confirmed that the basic structure was formed in any of samples ⁇ to ⁇ .
  • XAFS X-ray absorption fine structure
  • the hole injection layer 4A made of tungsten oxide of the second embodiment has an occupied level near the Fermi surface.
  • interface state connection is made between the hole injection layer 4A and the buffer layer 6A, and the hole injection barrier between the hole injection layer 4A and the buffer layer 6A is kept small.
  • the organic EL element of Embodiment 2 can be driven at a low voltage.
  • the occupied level in the vicinity of the Fermi surface exists at the grain boundary of the nanocrystal not only in the above-described interface but also in the layer of the hole injection layer 4A as described later, and serves as a hole conduction path. .
  • the hole injection layer 4A can obtain good hole conduction efficiency, and the organic EL element of the second embodiment can be driven at a lower voltage.
  • a hole injection layer 4A was formed in a sputtering apparatus, and then transferred to a glove box connected to the sputtering apparatus and filled with nitrogen gas, so that it was not exposed to the atmosphere. And it enclosed with the transfer vessel in the said glove box, and mounted
  • UPS measurement conditions are as follows. Note that no charge-up occurred during the measurement.
  • FIG. 35 shows a UPS spectrum in the region (y) of each hole injection layer 4A of samples ⁇ and ⁇ .
  • the symbols such as the region (y) and the point (iii) are as described in the first embodiment, and the horizontal axis is the relative binding energy with the point (iii) as the origin.
  • the UPS measurement is an evaluation of the surface layer only. Therefore, it was confirmed by HXPS measurement of each hole injection layer 4A of samples ⁇ and ⁇ whether the raised structure near the Fermi surface exists even over the entire film of hole injection layer 4A. On the other hand, it was still not confirmed in the sample ⁇ .
  • the hole injection layer 4A of the second embodiment has an occupied level near the Fermi surface.
  • a tungsten oxide layer having a structure that is raised (not necessarily a peak) in a region having a binding energy of about 1.8 to 3.6 eV lower than the point (iii), that is, an occupancy quasi-near the Fermi surface By using a tungsten oxide layer having a position as a hole injection layer, the organic EL element of Embodiment 2 can exhibit excellent hole conduction efficiency.
  • the characteristics of the series of hole-only devices and organic EL devices described in the second embodiment include the hole injection efficiency from the ITO layer 3 to the hole injection layer 4A and the hole injection efficiency from the hole injection layer 4A to the buffer layer 6A. Rather than the hole conduction efficiency of the hole injection layer 4A. The reason is described below.
  • the injection sites (x) are present in the hole injection layer 4A at such a number density that can be confirmed by UPS, as will be described with reference to FIG. 14 in the first embodiment.
  • the shape of the raised structure and the normalized strength are not much different in each of the ⁇ , ⁇ , ⁇ , and ⁇ hole injection layers 4A. Therefore, the number density of the injection sites (x) is each of ⁇ , ⁇ , ⁇ , and ⁇ . It is considered that the hole injection layer 4A has the same level.
  • each of the ⁇ , ⁇ , ⁇ , and ⁇ hole injection layers 4A is an injection site of the buffer layer 6A. It is considered that the injection site (x) has a sufficient number density with respect to the number density of (y). That is, the hole injection layers 4A under the film formation conditions ⁇ , ⁇ , ⁇ , and ⁇ can be regarded as having the same degree of hole injection efficiency from the hole injection layer 4A to the buffer layer 6A.
  • FIG. 36 is a view for explaining the structure of a tungsten oxide crystal.
  • the tungsten oxide according to the second embodiment has a composition ratio of tungsten to oxygen of approximately 1: 3. Therefore, here, description will be made by taking tungsten trioxide as an example.
  • the crystal of tungsten trioxide has a structure in which six oxygen atoms are bonded to one tungsten atom in octahedral coordination, and the octahedrons share apex oxygen atoms.
  • the octahedrons are shown in a regular order like rhenium trioxide, but the octahedrons are actually arranged slightly distorted.
  • These tungsten atoms bonded to six oxygen atoms in octahedral coordination are hexavalent tungsten atoms.
  • a tungsten atom having a valence lower than hexavalent corresponds to a disorder in which the octahedral coordination is disturbed in some way.
  • one of the six coordinated oxygen atoms is missing and has an oxygen defect.
  • the tungsten atom bonded to the remaining five oxygen atoms is pentavalent. Become.
  • the mechanism of hole conduction in the hole injection layer 4A of the second embodiment having pentavalent tungsten atoms inferred from the above is as follows.
  • a pentavalent tungsten atom can donate electrons to holes from its own unshared electron pair. Therefore, if pentavalent tungsten atoms are close to each other, holes can move by hopping between unshared electron pairs of pentavalent tungsten atoms by the voltage applied to the hole injection layer. is there. Furthermore, if the pentavalent tungsten atoms are substantially adjacent to each other, the overlap of the 5d orbitals corresponding to the unshared electron pair becomes large and can be easily moved without hopping.
  • holes are conducted between pentavalent tungsten atoms present in the hole injection layer 4A.
  • the hole injection layer 4A in the sample for TEM observation was formed using a DC magnetron sputtering apparatus. Specifically, a 30-nm-thick tungsten oxide layer (considered as the hole injection layer 4A) was formed on the ITO substrate formed on glass by the reactive sputtering method.
  • the TEM observation samples prepared under the film formation conditions ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ are referred to as samples ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ , respectively.
  • the thickness direction of the sample is thinned with respect to the surface to be observed.
  • the cross section of the hole injection layer 4A is observed, and the cross section is produced by sample processing using a focused ion beam (FIB) apparatus, and further thinned to a thickness of about 50 nm.
  • FIB focused ion beam
  • FIG. 37 shows a TEM observation photograph of a cross section of each hole injection layer 4A of samples ⁇ to ⁇ . The magnification of the photograph follows the scale bar described in the photograph. The darkest part to the brightest part is divided into 256 gradations for display.
  • FIG. 38 shows the result of two-dimensional Fourier transform of the TEM observation photograph of FIG. 37 (referred to as a two-dimensional Fourier transform image).
  • This two-dimensional Fourier transform image is a wave number distribution in the inverse space of the TEM observation photograph of FIG. 37, and thus shows the periodicity of the TEM observation photograph.
  • the two-dimensional Fourier transform image of FIG. 38 was created by subjecting the TEM photograph of FIG. 37 to Fourier transform using image processing software “LAview Version # 1.77”.
  • FIG. 39 is a diagram showing an outline of the creation method, and shows a sample ⁇ as an example.
  • FIG. 39 (a) a two-dimensional Fourier transform image is rotated in increments of 1 ° from 0 ° to 359 ° with the center point as the center of rotation, and from the center point to the X axis in the figure at every 1 ° rotation. Measure the luminance with respect to the distance in the direction. Then, all the measurement results for every 1 ° rotation were added and divided by 360 to obtain an average luminance (referred to as normalized luminance) with respect to the distance from the center point.
  • FIG. 39B is a graph in which the distance from the center point is plotted on the horizontal axis and the normalized luminance at each distance is plotted on the vertical axis.
  • FIG. 42 is a diagram showing an outline of the evaluation method, and shows samples ⁇ and ⁇ as examples.
  • FIGS. 42 (a) and 42 (b) are luminance change plots of samples ⁇ and ⁇ , respectively, and FIGS. 42 (a1) and 42 (b1) are enlarged views near the peak P1.
  • the “peak width L of the peak P1” indicated by “L” in the figure is used as an index indicating the “sharpness” of the peak P1.
  • the luminance change plots of FIGS. 42 (a1) and (b1) are first-order differentiated and shown in FIGS. 42 (a2) and (b2). . 42 (a2) and 42 (b2), the value on the horizontal axis corresponding to the peak top of the peak P1 and the value on the horizontal axis corresponding to the position where the differential value first becomes 0 from the peak top toward the center point.
  • the peak width L is defined as the difference between the two.
  • Table 12 shows the values of the peak width L in the samples ⁇ to ⁇ when the value on the horizontal axis corresponding to the peak top of the peak P1 is normalized as 100.
  • the peak width L is the smallest for the sample ⁇ , increases in the order of the samples ⁇ , ⁇ , and ⁇ , and is the maximum for the sample ⁇ .
  • the peak width L of the samples ⁇ and ⁇ is not as small as the sample ⁇ .
  • the organic EL element 1C having the hole injection layer 4A under the film forming conditions ⁇ and ⁇ has a good hole conduction efficiency as described above.
  • the value of the peak width L in Table 12 indicates the clarity of the concentric bright part closest to the center point in the two-dimensional Fourier transform image of FIG.
  • the larger the value of the peak width L the larger the concentric bright part spreads, and therefore the regularity and order in the TEM photograph of FIG. 37 before the two-dimensional Fourier transform become lower.
  • a hole injection layer having good hole conduction efficiency has an occupied level in the vicinity of the Fermi surface throughout the film, has a high proportion of pentavalent tungsten atoms, has a nanocrystal structure, and has high regularity and order of the film structure.
  • the hole injection layer with poor hole conduction efficiency does not confirm the occupied level near the Fermi surface over the entire film, and the proportion of pentavalent tungsten atoms is very low, and the nanocrystal structure cannot be confirmed. Low regularity and order. The correlation between these experimental results will be discussed below.
  • the hole injection layer under each film forming condition in the second embodiment has a composition ratio of tungsten to oxygen of approximately 1: 3. Therefore, it is considered that the nanocrystal that is a factor of the regularity of the film structure seen in the hole injection layer under the film formation conditions ⁇ , ⁇ , ⁇ , and ⁇ is a microcrystal of tungsten trioxide.
  • Non-Patent Document 6 shows that the surface of tungsten trioxide crystal has a structure in which half of the outermost tungsten atoms are not terminated with oxygen atoms, and the structure where all the outermost tungsten atoms are terminated with oxygen atoms. More stable. In this way, it is considered that many pentavalent tungsten atoms that are not terminated by oxygen atoms are present on the surface or grain boundary of the nanocrystal.
  • the hole injection layer under the film formation condition ⁇ has almost no pentavalent tungsten atoms, nanocrystals are not confirmed, and the entire film has an amorphous structure with poor regularity.
  • the octahedron structure which is the basic structure of tungsten trioxide, shares oxygen at the apex without interrupting each other (thus it does not become a pentavalent tungsten atom), but the octahedron structure is periodic. This is probably due to lack of order.
  • the occupied level in the vicinity of the Fermi surface is considered to be derived from a structure similar to an oxygen defect.
  • the pentavalent tungsten atom is also derived from a structure similar to an oxygen defect. That is, the occupied level in the vicinity of the Fermi surface and the pentavalent tungsten atom are caused by the structure similar to the same oxygen defect.
  • the assumption that the 5d orbit that is not used for bonding with an oxygen atom of a pentavalent tungsten atom or the like is an occupied level in the vicinity of the Fermi surface is as follows. Many reports have been made.
  • FIG. 43B is a diagram showing the conduction of the holes 14 when the amorphous structure 16 is dominant and the nanocrystals 15 are few (or none) in the hole injection layer.
  • hopping of the holes 14 occurs between the relatively close pentavalent tungsten atoms present in the amorphous structure 16.
  • the holes 14 move to the buffer layer side while hopping between adjacent pentavalent tungsten atoms. That is, in the amorphous structure 16, the holes 14 move by hopping conduction.
  • the driving voltage of the element becomes high.
  • a structure similar to oxygen defects may be increased in the amorphous structure 16, and in fact, a tungsten oxide film is formed under predetermined conditions by, for example, vacuum deposition. Then, it is possible to produce an amorphous film containing a lot of structures similar to oxygen defects.
  • the hole injection layer of the present invention has a composition ratio of tungsten to oxygen of approximately 1: 3, so that the entire film has few structures similar to oxygen defects and forms a crystal structure. Therefore, chemical stability is kept relatively good and coloring is reduced.
  • FIG. 43 (a) is a diagram showing the conduction of the holes 14 when there are few (or no) amorphous structures 16 in the hole injection layer, while many nanocrystals 13 are present.
  • the presence of a large number of nanocrystals 13 further connects the respective surfaces and grain boundaries.
  • the structure of the metal oxide layer exhibiting good hole conduction efficiency includes (1) that there is a portion responsible for giving and receiving holes, and (2) that it is continuously present, Is considered important. Therefore, (1) a metal atom having a valence lower than the maximum valence that can be taken by itself is present in the layer, and (2) a metal oxide layer forming a nanocrystal structure is suitable for hole conduction. It can be said that it is a structure.
  • the film formation method of the hole injection layer of the present invention is not limited to the reactive sputtering method, and for example, a vapor deposition method, a CVD method, or the like can be used.
  • the organic EL element of the present invention is not limited to a configuration using a single element.
  • An organic EL light-emitting device can be configured by integrating a plurality of organic EL elements as pixels on a substrate.
  • Such an organic EL light-emitting device can be implemented by appropriately setting the film thickness of each layer in each element, and can be used as, for example, a lighting device. Or it can also be set as the organic electroluminescent panel which is an image display apparatus.
  • the rising position of the peak P1 shown in FIG. 42 is the position at which the differential value first becomes 0 from the peak top of the peak P1 toward the center point in FIGS. 42 (a2) and (b2). did.
  • the determination method of the rising position of the peak P1 is not limited to this.
  • an average value of normalized luminance near the peak P1 is used as a baseline, and the baseline and the peak P1 are determined.
  • An intersection with a nearby graph can be set as the rising position of the peak P1.
  • a hole transport layer may be formed between the hole injection layer and the light emitting layer.
  • the hole transport layer has a function of transporting holes injected from the hole injection layer to the light emitting layer.
  • a hole transporting organic material is used as the hole transport layer.
  • the hole transporting organic material is an organic substance having a property of transmitting generated holes by a charge transfer reaction between molecules. This is sometimes called a p-type organic semiconductor.
  • the material of the hole transport layer may be either a high molecular material or a low molecular material, and can be formed by, for example, a wet printing method.
  • the hole transport layer material preferably contains a cross-linking agent so as not to be mixed with the light emitting layer material.
  • the material for the hole transport layer include a copolymer containing a fluorene moiety and a triarylamine moiety, and a low molecular weight triarylamine derivative.
  • the crosslinking agent dipentaerythritol hexaacrylate or the like can be used. In this case, it is preferably formed of poly (3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid (PEDOT: PSS) or a derivative thereof (such as a copolymer).
  • the ITO layer 3 is formed thereon in order to improve the bonding property between the respective layers.
  • the anode 2 is made of a material mainly containing aluminum, the bondability is improved. Therefore, the ITO layer 3 may be omitted and the anode may have a single layer structure.
  • the bank shape is not limited to a so-called pixel bank (a cross-shaped bank), and a line bank can also be adopted.
  • FIG. 44 shows a configuration of an organic EL panel in which a plurality of line banks 65 are arranged and the light emitting layers 66a, 66b, 66c adjacent in the X-axis direction are divided.
  • the line bank 65 is adopted, the light emitting layers adjacent to each other along the Y-axis direction are not defined by the bank element, but influence each other by appropriately setting the driving method, the area of the anode, the interval, and the like. It can be made to emit light without.
  • an organic material is used as the bank material, but an inorganic material can also be used.
  • the bank material film can be formed by coating, for example, as in the case of using an organic material.
  • the organic EL device of the present invention can be used for display devices for mobile phones, display devices for televisions, various light sources, and the like. In any application, it can be applied as an organic EL element that is driven at a low voltage in a wide luminance range from low luminance to high luminance such as a light source. With such high performance, it can be widely used as various display devices for home or public facilities, or for business use, television devices, displays for portable electronic devices, illumination light sources, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明は、ホール注入特性の溶解耐性を向上させるとともに、良好なホール注入効率を発揮させることにより、優れた発光特性を期待することのできる有機発光素子の製造方法を提供することを目的とする。 基板10の片面に、陽極2、ホール注入層4、バッファ層6A、発光層6B、陰極8を順次積層して有機EL素子1を構成する。発光領域はバンク5で区画する。ホール注入層4は所定条件で成膜した酸素欠陥部分を含む酸化タングステン層であり、電子状態において、価電子帯で最も低い結合エネルギーよりも1.8~3.6eV低い結合エネルギーの範囲内に占有準位を存在させる。成膜後に200℃以上230℃以下の温度で15分以上45分以下、大気焼成して膜密度を増大させ、バンク形成工程時に用いるエッチング液や洗浄液等への溶解耐性を向上させる。

Description

有機発光素子の製造方法
 本発明は、電気的発光素子である有機発光素子(以下「有機EL素子」と称する)の製造方法に関し、特に、低輝度から光源用途等の高輝度まで幅広い輝度範囲を低電力で駆動するための技術に関する。
 近年、有機半導体を用いた各種機能素子の研究開発が進められている。
 代表的な機能素子として、有機EL素子がある。有機EL素子は電流駆動型の発光素子であり、陽極および陰極とからなる電極対の間に、有機材料を含んでなる機能層を設けた構成を有する。機能層には、発光層、バッファ層等が含まれる。機能層と陽極との間には、ホールを注入するためのホール注入層が配設されることがある。駆動には電極対間に電圧を印加し、陽極から機能層に注入されるホールと、陰極から機能層に注入される電子との再結合によって発生する、電界発光現象を利用する。自己発光を行うため視認性が高く、かつ、完全固体素子であるため耐衝撃性に優れるなどの特徴を有することから、各種表示装置における発光素子や光源としての利用が注目されている。
 有機EL素子は、使用する機能層材料の種類によって大きく2つの型に分類される。第一に、主として有機低分子材料を機能層材料とし、これを蒸着法などの真空プロセスで成膜してなる蒸着型有機EL素子である。第二に、有機高分子材料や薄膜形成性の良い有機低分子材料を機能層材料とし、これをインクジェット法やグラビア印刷法等のウェットプロセスで成膜してなる塗布型有機EL素子である。
 これまでは、発光材料の発光効率が高いことや駆動寿命が長い等の理由により、蒸着型有機EL素子の開発が先行しており(例えば、特許文献1、2参照)、すでに携帯電話用ディスプレイや小型テレビなどで実用化が始まっている。
 蒸着型有機EL素子は、小型の有機ELパネル用途には好適であるが、例えば100インチ級のフルカラー大型有機ELパネルに適用することは非常に困難である。その要因は製造技術にある。蒸着型有機EL素子を用いて有機ELパネルを製造する場合、一般に発光層を色ごと(例えばR、G、B)に分けて成膜する際にはマスク蒸着法が用いられる。しかし、パネルが大面積になると、マスクとガラス基板の熱膨張係数の違い等により、マスクの位置合わせ精度を保つことが困難になるため、正常なディスプレイを作製することができない。これらを克服するために、白色の発光層を全面に使用し、RGBのカラーフィルタを設けて塗り分けを回避する方法があるが、この場合は取り出せる光が発光量の1/3になるため、原理的に消費電力が増大するという欠点がある。
 そこで、この有機ELパネルの大型化については、塗布型有機EL素子を用いて実現しようという試みが始まっている。前述したように、塗布型有機EL素子では、機能層をウェットプロセスによって作製する。このプロセスでは機能層を所定位置に塗り分ける際の位置精度が基本的に基板サイズに依存しないため、大型化に対する技術的障壁が低いというメリットがある。
 一方、有機EL素子の発光効率を向上させる研究開発も盛んに行われている。有機EL素子を効率よく、低消費電力かつ高輝度で発光させるためには、電極から機能層へキャリア(ホールおよび電子)を効率よく注入することが重要である。一般にキャリアを効率よく注入するためには、それぞれの電極と機能層との間に、注入の際のエネルギー障壁(注入障壁)を低くするための注入層を設けるのが有効である。このうちホール注入層としては、銅フタロシアニン(CuPc)等の有機低分子の蒸着膜や、PEDOT:PSS等の有機高分子溶液からなる塗布膜、或いは酸化モリブデン等の無機物の蒸着膜・スパッタ膜等が用いられている。中でも酸化モリブデンを用いた有機EL素子においては、ホール注入効率の改善や寿命の改善が報告されている(例えば、特許文献3参照)。ホール注入層は、ITO、IZO等の透明導電膜、或いはアルミニウム等の金属膜、或いはこれらの積層からなる、陽極の表面上に形成される。
特許3369615号公報 特許3789991号公報 特開2005-203339号公報
Jingze Li et al.、 Synthetic Metals 151、 141(2005). 渡邊寛己 他、 有機EL討論会第7回例会予稿集 17(2008). Hyunbok Lee et al.、 Applied Physics Letters 93、 043308(2008). 中山泰生 他、 有機EL討論会第7回例会予稿集 5(2008). Kaname Kanai et al.、 Organic Electronics 11、 188(2010). I. N. Yakovkin et al.、 Surface Science 601、 1481(2007).
 しかしながら、上記した利点を有する有機EL素子を製造する場合でも、課題が存在する。
 酸化タングステンはホール注入特性に優れるが、基板上に成膜した後、バンク形成工程においてエッチング液や洗浄液に曝されることにより、膜の一部が溶解して膜厚が減少する、いわゆる「膜減り」の問題を生じうる。
 膜減りが過度に生じると、ホール注入層として必要な膜厚設定が困難になる他、ホール注入層の膜表面の状態が粗くなり、その状態も全体で不均一になりので、ホール注入特性に影響を及ぼすことが懸念される。
 本発明は、以上の課題に鑑みてなされたものであって、ホール注入特性と、有機ELパネルの量産プロセスに対する安定性とを両立させることのできるホール注入層を、有機発光素子に用いたものである。
 具体的に本発明は、ホール注入特性の溶解耐性を向上させるとともに、良好なホール注入効率を発揮させることにより、優れた発光特性を期待することのできる有機発光素子とその製造方法を提供することを目的とする。
 上記課題を解決するために、本発明の一態様である有機発光素子の製造方法は、タングステン原子に酸素原子が部分結合してなる酸素欠陥構造を持つ酸化タングステンを含む酸化タングステン層を、陽極を含む下地層上に形成する第1工程と、前記酸化タングステン層を焼成する第2工程と、前記焼成した前記酸化タングステン層の上方に、隔壁材料を用いて隔壁材料膜を形成する第3工程と、前記隔壁材料膜をエッチング液を用いてパターニングし、開口部を有するパターンの隔壁を形成する第4工程と、前記開口部の内部に有機材料を含む有機層を形成する第5工程と、前記有機層の上方に陰極を形成する第6工程と、を有し、前記第2工程では、前記酸化タングステン層を焼成することで、前記酸素欠陥構造を維持しつつ、前記第4工程で用いるエッチング液に対する溶解耐性を向上させるものとする。
 本願発明者らが鋭意検討した結果、所定の成膜条件で酸化タングステン層を成膜すると、膜中に酸素欠陥構造が形成され、当該構造に起因する占有準位によってホール注入特性が向上することを見出した。また、酸化タングステン層を成膜後に厳密に規定された所定条件で焼成すれば、前記酸素欠陥構造を維持しつつ、バンク形成工程で用いるエッチング液や洗浄液に対する溶解耐性を向上させることができることを見出した本発明の一態様はこの知見に基づいてなされたものであり、膜減り量を減らしつつ、且つ、良好なホール注入特性を持つホール注入層として酸化タングステン層を構成することができる。これにより製造された有機発光素子を低電圧で駆動できるとともに、優れた発光効率の発揮を期待できる。
 また、ホール注入層の膜減りを防止したことで、本発明の一態様の有機発光素子を複数配設して有機ELパネルを製造した場合は、パネル全体にわたってホール注入層の仕上がり膜厚のばらつきの絶対量を抑制することが可能となり、発光効率のずれ(ばらつき)を低減することも可能である。
実施の形態1に係る有機EL素子の構成を示す模式的な断面図である。 ホールオンリー素子の構成を示す模式的な断面図である。 ホール注入層の成膜条件に対するホールオンリー素子の駆動電圧の依存性を示すグラフである。 ホールオンリー素子の印加電圧と電流密度の関係曲線を示すデバイス特性図である。 有機EL素子の印加電圧と電流密度の関係曲線を示すデバイス特性図である。 有機EL素子の電流密度と発光強度の関係曲線を示すデバイス特性図である。 光電子分光測定用のサンプルの構成を示す模式的な断面図である。 酸化タングステン層のUPSスペクトルを示す図である。 酸化タングステン層のUPSスペクトルを示す図である。 図9のUPSスペクトルの微分曲線を示す図である。 大気曝露した酸化タングステン層のUPSスペクトルを示す図である。 本発明の酸化タングステン層のUPSスペクトルおよびXPSスペクトルを併せて示す図である。 本発明の酸化タングステン層とα-NPD層の界面エネルギーダイアグラムである。 ホール注入層と機能層の注入サイトの効果を説明するための図である。 成膜条件Cの酸化タングステン層とα-NPD層の界面エネルギーダイアグラムである。 酸化タングステン成膜レートに対する膜減り量と駆動電圧の関係を示すグラフである。 酸化タングステン膜密度に対するWOx膜減り量と駆動電圧との関係を示すグラフである。 各成膜条件に係る酸化タングステン膜のUPSスペクトルの比較図である。 酸化タングステンの膜密度と膜減り量との関係を示すグラフである。 酸化タングステン成膜後の焼成工程導入の効果を説明するための図である。 酸化タングステン膜密度に対する膜減り量とパネル面内膜厚ズレとの関係を示すグラフである。 酸化タングステン膜の膜厚ズレに対する電流効率のズレとの関係を示すグラフである。 焼成時間に対する膜減り量と膜密度の関係を示すグラフである。 実施の形態2に係る有機EL素子1Cの構成を示す模式的な断面図(a)と、ホール注入層4A付近の部分拡大図(b)である。 ホールオンリー素子1Dの構成を示す模式的な断面図である。 実施の形態2に係る有機EL素子1Cの製造方法を説明する工程図である。 実施の形態2に係る有機EL素子1Cの製造方法を説明する工程図である。 実施の形態2に係る有機EL素子1Cの製造方法を説明する工程図である。 実施の形態2の変形例に係る有機EL素子1Cの製造方法を説明する工程図である。 実施の形態2の変形例に係る有機EL素子1Cの製造方法を説明する工程図である。 ホールオンリー素子の印加電圧と電流密度の関係曲線を示すデバイス特性図である。 有機EL素子の印加電圧と電流密度の関係曲線を示すデバイス特性図である。 酸化タングステン層のHXPS測定によるW5p3/2、W4f5/2、W4f7/2に帰属されるスペクトルを示す図である。 図33に示すサンプルαに係るピークフィッティング解析結果を示す図(a)と、サンプルεに係るピークフィッティング解析結果を示す図(b)である。 酸化タングステン層のUPSスペクトルを示す図である。 三酸化タングステン結晶の構造を説明するための図である。 酸化タングステン層の断面TEM写真である。 図37に示すTEM写真の2次元フーリエ変換像を示す図である。 図38に示す2次元フーリエ変換像から輝度変化プロットを作成する過程を説明する図である。 サンプルα、β、γにおける2次元フーリエ変換像と輝度変化プロットを示す図である。 サンプルδ、εにおける2次元フーリエ変換像と輝度変化プロットを示す図である。 サンプルα、εの輝度変化プロット((a)、(b))と、各輝度変化プロットにおける中心点から最も近くに現れるピーク付近の拡大図((a1)、(b1))と、(a1)および(b1)の各輝度変化プロットの1次微分を示す図((a2)、(b2))である。 酸化タングステン層が、主にナノクリスタル構造で形成される場合のホール伝導を模式的に示す図(a)と、主にアモルファス構造で形成される場合のホール伝導を模式的に示す図(b)である。 変形例に係る有機ELパネルの一部を示す平面図である。
<発明の態様>
 本発明の一態様である有機発光素子の製造方法は、タングステン原子に酸素原子が部分結合してなる酸素欠陥構造を持つ酸化タングステンを含む酸化タングステン層を、陽極を含む下地層上に形成する第1工程と、前記酸化タングステン層を焼成する第2工程と、前記焼成した前記酸化タングステン層の上方に、隔壁材料を用いて隔壁材料膜を形成する第3工程と、前記隔壁材料膜をエッチング液を用いてパターニングし、開口部を有するパターンの隔壁を形成する第4工程と、前記開口部の内部に有機材料を含む有機層を形成する第5工程と、前記有機層の上方に陰極を形成する第6工程と、を有し、前記第2工程では、前記酸化タングステン層を焼成することで、前記酸素欠陥構造を維持しつつ、前記第4工程で用いるエッチング液に対する溶解耐性を向上させるものとする。
 このように所定の成膜条件で酸化タングステン層を成膜すると、膜中に酸素欠陥構造が形成され、当該構造に起因する占有準位によってホール注入特性が向上する。また、酸化タングステン層を成膜後に厳密に規定された所定条件で焼成することで、前記酸素欠陥構造を維持しつつつ、バンク形成工程で用いるエッチング液や洗浄液に対する溶解耐性を向上させることもできる。これにより膜減り量を減らしつつ、且つ、良好なホール注入特性を持つホール注入層として酸化タングステン層を構成できる。これにより製造された有機発光素子では、低電圧駆動とともに、優れた発光効率の発揮を期待できる。
 また、ホール注入層の膜減りを防止したことで、本発明の一態様の有機発光素子を複数配設して有機ELパネルを製造すれば、パネル全体にわたってホール注入層の仕上がり膜厚のばらつきを抑制でき、発光効率のずれ(ばらつき)を低減することも可能である。
 また、本発明の別の態様として、前記第2工程では、膜密度が5.8g/cm以上6.0g/cm以下となるように前記酸化タングステン層を焼成することもできる。
 また、本発明の別の態様として、前記第1工程では、電子状態において、価電子帯で最も低い結合エネルギーより1.8~3.6eV低い結合エネルギー領域に占有準位を有するように、前記酸素欠陥構造を持つ前記酸化タングステン層を形成し、前記第2工程後も前記占有準位を維持することもできる。
 また、本発明の別の態様として、前記第1工程では、UPSスペクトルまたはXPSスペクトルにおいて、価電子帯で最も低い結合エネルギーより1.8~3.6eV低い結合エネルギー領域内に隆起した形状を有するように、前記酸素欠陥構造を持つ前記酸化タングステン層を形成し、前記第2工程後も前記隆起形状を維持することもできる。
 また、本発明の別の態様として、前記第1工程では、UPSスペクトルの微分スペクトルにおいて、価電子帯で最も低い結合エネルギーより1.8~3.6eV低い結合エネルギー領域にわたり、指数関数とは異なる関数として表わされるスペクトル形状を有するように、前記酸素欠陥構造を持つ前記酸化タングステン層を形成し、前記第2工程後も前記指数関数とは異なる関数として表わされる形状を維持することもできる。
 また、本発明の別の態様として、前記第1工程では、価数が6価であるタングステン原子および価数が5価であるタングステン原子を含み、前記5価のタングステン原子の含有量を前記6価のタングステン原子の含有量で割った価であるW5+/W6+が3.2%以上7.4%以下となるように、前記酸素欠陥構造を持つ前記酸化タングステン層を形成し、前記第2工程後も前記W5+/W6+の比率を維持することもできる。
 また、本発明の別の態様として、酸化タングステンを含む酸化タングステン層を、陽極を含む下地層上に形成する第1工程と、前記酸化タングステン層を焼成する第2工程と、前記焼成した前記酸化タングステン層の上方に、隔壁材料を用いて隔壁材料膜を形成する第3工程と、前記隔壁材料膜をエッチング液を用いてパターニングし、開口部を有するパターンの隔壁を形成する第4工程と、前記開口部の内部に有機材料を含む有機層を形成する第5工程と、前記有機層の上方に陰極を形成する第6工程と、を有し、前記第1工程では、UPSスペクトルまたはXPSスペクトルにおいて、価電子帯で最も低い結合エネルギーより1.8~3.6eV低い結合エネルギー領域内に隆起した形状を有するように前記酸化タングステン層を形成し、前記第2工程では、前記酸化タングステン層を焼成することで、前記UPSスペクトルまたは前記XPSスペクトルの前記隆起構造を維持しつつ、前記第4工程で用いるエッチング液に対する溶解耐性を向上させることもできる。
 また、本発明の別の態様として、酸化タングステンを含む酸化タングステン層を、陽極を含む下地層上に形成する第1工程と、前記酸化タングステン層を焼成する第2工程と、前記焼成した前記酸化タングステン層の上方に、隔壁材料を用いて隔壁材料膜を形成する第3工程と、前記隔壁材料膜をエッチング液を用いてパターニングし、開口部を有するパターンの隔壁を形成する第4工程と、前記開口部の内部に有機材料を含む有機層を形成する第5工程と、前記有機層の上方に陰極を形成する第6工程と、を有し、前記第1工程では、価数が6価であるタングステン原子および価数が5価であるタングステン原子を含み、前記5価のタングステン原子の含有量を前記6価のタングステン原子の含有量で割った価であるW5+/W6+が3.2%以上7.4%以下となるように、前記酸化タングステン層を形成し、前記第2工程では、前記酸化タングステン層を焼成することで、前記W5+/W6+の比率を維持しつつ、前記第4工程で用いるエッチング液に対する溶解耐性を向上させることもできる。
 以下、本発明の各実施の形態の有機EL素子と製造方法を説明し、本発明の各性能確認実験と考察を述べる。
 なお、各図面における構成要素の縮尺は、説明のため模式的に図示しており、実際のものとは異なる内容を含む。
<実施の形態1>
(有機EL素子の構成)
 図1は、本実施の形態1における有機EL素子1の構成を示す模式的な断面図である。
 有機EL素子1は、機能層をウェットプロセスにより塗布して成膜する塗布型であって、ホール注入層4と、所定の機能を有する有機材料を含んでなる各種機能層(ここではバッファ層6Aおよび発光層6B)が互いに積層された状態で、陽極2および陰極8からなる電極対の間に介設された構成を有する。
 具体的には図1に示すように、有機EL素子1は、基板10の片側主面に対し、陽極2、ホール注入層4、バッファ層6A、発光層6B、陰極8(バリウム層8Aおよびアルミニウム層8B)とを同順に積層して構成される。陽極2および陰極8には電源DCが接続され、外部より有機EL素子1に給電されるようになっている。
(基板)
 基板10は有機EL素子1の基材となる部分であり、例えば、無アルカリガラス、ソーダガラス、無蛍光ガラス、燐酸系ガラス、硼酸系ガラス、石英、アクリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエチレン、ポリエステル、シリコン系樹脂、またはアルミナ等の絶縁性材料のいずれかで形成することができる。
 図示していないが、基板10の表面には有機EL素子1を駆動するためのTFT(薄膜トランジスタ)が形成されている。
(陽極) 
 陽極2は、厚さ50nmのITOからなる透明導電膜で構成されている。陽極2の構成はこれに限定されず、例えばIZOなどの透明導電膜、アルミニウムなどの金属膜、APC(銀、パラジウム、銅の合金)、ARA(銀、ルビジウム、金の合金)、MoCr(モリブデンとクロムの合金)、NiCr(ニッケルとクロムの合金)などの合金膜でもよく、またこれらを複数積層して構成することもできる。
(ホール注入層)
 ホール注入層4は、酸化タングステン(組成式WOxにおいて、xは概ね2<x<3の範囲における実数)を含んでなる、膜厚が2nm以上(ここでは一例として10nm)の酸化タングステン層として構成される。膜厚が2nm未満であると、均一な成膜を行いにくく、また、以下に示す陽極2とホール注入層4との間のショットキーオーミック接続を形成しにくいので、好ましくない。前記ショットキーオーミック接続は酸化タングステンの膜厚が2nm以上で安定して形成されるため、これ以上の膜厚でホール注入層4を形成すれば、ショットキーオーミック接続を利用して、陽極2からホール注入層4への安定したホール注入効率を期待できる。一方、膜密度は5.8g/cm以上6.0g/cm以下の範囲となるように設定されている。これは酸化タングステン成膜後に所定条件の焼成工程(加熱温度200℃以上230℃以内、加熱時間15分以上45分以内の条件で大気焼成する工程)で焼き締めを図ることにより、成膜直後(as-depo膜状態)では5.4g/cm以上5.7g/cm以下程度であった膜密度を、5.8g/cm以上6.0g/cm以下の範囲まで増加させたものである。このように膜密度を増大させることで、製造時のバンク形成工程で用いるエッチング液や洗浄液に対する溶解耐性を付与し、膜減りを最小限に抑制している。
 なお図1に示すように、ホール注入層4の表面には、陽極側に向かって凹入構造となる窪み部(凹部)が形成されている。これはバンク5形成工程時に使用するバンク形成時のエッチング液や洗浄液によって、発光層6B側の表面が部分的に除去されたことによる。ここで凹部の凹入深さは、当該凹部内の低部におけるホール注入層4の厚みよりも小さく、上記焼成工程の導入によって、従来に比べて膜減り量が相当に抑制されている。具体的に、ホール注入層4は成膜直後は14nm程度の膜厚であり、膜減りによっても成膜直後の半分以上(7nm以上)の膜厚を維持している。
 ホール注入層4はできるだけ酸化タングステンのみで構成されることが望ましいが、通常レベルで混入し得る程度であれば、極微量の不純物が含まれていてもよい。
 ここで、当該ホール注入層4は特定の成膜条件で成膜されている。これにより、膜中にタングステン原子に対して酸素原子が部分的に結合してなる酸素欠陥構造を有し、電子状態において、価電子帯の上端、すなわち価電子帯で最も低い結合エネルギーよりも、1.8~3.6eV低い結合エネルギー領域内に占有準位が存在している。この占有準位がホール注入層4の最高占有準位であり、その結合エネルギー範囲はホール注入層4のフェルミレベル(フェルミ面)に最も近い。したがって以降では、この占有準位を「フェルミ面近傍の占有準位」と称する。
 なお、本発明において言及する「占有準位」とは、少なくとも1つの電子によって占められた電子軌道による電子準位、いわゆる半占軌道の準位を内含するものとする。
 フェルミ面近傍の占有準位が存在することで、ホール注入層4と機能層(ここではバッファ層6A)との積層界面では、いわゆる界面準位接続がなされ、バッファ層6Aの最高被占軌道の結合エネルギーが、ホール注入層4の前記フェルミ面近傍の占有準位の結合エネルギーと、ほぼ等しくなる。
 ここで言う「ほぼ等しくなる」および「界面準位接続がなされた」とは、ホール注入層4とバッファ層6Aとの界面において、前記フェルミ面近傍の占有準位で最も低い結合エネルギーと、前記最高被占軌道で最も低い結合エネルギーとの差が、±0.3eV以内の範囲にあることを意味している。
 さらに、ここで言う「界面」とは、ホール注入層4の表面と、当該表面から0.3nm以内の距離におけるバッファ層6Aとを含む領域を指す。
 また、前記フェルミ面近傍の占有準位は、ホール注入層4の全体に存在することが望ましいが、少なくともバッファ層6Aとの界面に存在すればよい。なお、このようなフェルミ面近傍の占有準位は、全ての酸化タングステンが有しているものではなく、特にホール注入層の内部や、バッファ層6Aとの界面においては、後述する所定の成膜条件によって初めて形成できる、特有の準位である。
 さらに、ホール注入層4は、その特徴として陽極2との界面において、いわゆるショットキーオーミック接続を形成している。
 なお、ここで言う「ショットキーオーミック接続」とは、陽極2のフェルミレベルと、前述したホール注入層4のフェルミ面近傍の占有準位で最も低い結合エネルギーとの差が、陽極2の表面からホール注入層4側への距離が2nmの位置において、±0.3eV以内に小さく収まっている接続を言う。また、ここで言う「界面」とは、陽極2の表面と、当該表面からホール注入層4側に形成されるショットキーバリアを含む領域を指す。
 ここで本願発明者らの検討により、バンク形成工程で用いるエッチング・洗浄液に対する、酸化タングステン膜の溶解耐性は、酸化タングステン膜の膜密度の上昇に比例して向上することが分かった。一方、酸化タングステン膜のホール注入特性は、膜密度の上昇に反比例して低下する。このようにホール注入特性と溶解耐性はトレードオフの関係を有することも明らかになった。そこで本実施の形態1のホール注入層4は、酸化タングステン膜を所定条件で成膜し、上記占有準位を形成する一方で、成膜後に厳密に規定した条件で焼成工程を行って膜密度を高め、溶解耐性を付与する。このようにして良好なホール注入特性と溶解耐性の両立を高度に両立させたものである。
 また、上記のようにホール注入層4の膜減りを防止したことで、有機EL素子1を複数配設して有機ELパネルを構成すれば、パネル全体にわたってホール注入層4の仕上がり膜厚のばらつきを抑制できる。これにより、各素子1における発光効率のずれ(ばらつき)も低減することが可能となる。
(バンク)
 ホール注入層4の表面には、発光層6Bを区画するように、絶縁性の有機材料(例えばアクリル系樹脂、ポリイミド系樹脂、ノボラック型フェノール樹脂等)からなるバンク(隔壁)5が、一定の台形断面を持つストライプ構造または井桁構造をなすように形成される。
なお、バンク5は本発明に必須の構成ではなく、有機EL素子1を単体で使用する場合等には不要である。
(機能層)
各々のバンク5に区画されたホール注入層4の表面には、バッファ層6Aと、RGBのいずれかの色に対応する発光層6Bからなる機能層が形成されている。機能層は、有機材料を含む有機層として形成される。複数の有機EL素子1を用いて有機ELパネルを構成する場合には、RGBの各色に対応する一連の3つの素子1を1単位(画素、ピクセル)として、基板10上にこれを複数単位にわたり並設する。
[バッファ層]
 バッファ層6Aは、ホール注入層4側から発光層6B側へホールを効率よく輸送する層であって、厚さ20nmのアミン系有機高分子であるTFB(poly(9、9-di-n-octylfluorene-alt-(1、4-phenylene-((4-sec-butylphenyl)imino)-1、4-phenylene))で構成される。
[発光層]
 発光層6Bは、厚さ70nmの有機高分子であるF8BT(poly(9、9-di-n-octylfluorene-alt-benzothiadiazole))で構成される。しかしながら、発光層6Bはこの材料からなる構成に限定されず、公知の有機材料を含むように構成することが可能である。たとえば特開平5-163488号公報に記載のオキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオレン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物およびアザキノロン化合物、ピラゾリン誘導体およびピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、アンスラセン化合物、シアニン化合物、アクリジン化合物、8-ヒドロキシキノリン化合物の金属錯体、2-ビピリジン化合物の金属錯体、シッフ塩とIII族金属との錯体、オキシン金属錯体、希土類錯体等の蛍光物質等を挙げることができる。
 なお、本発明における機能層は、ホールを輸送するホール輸送層、注入されたホールと電子とが再結合することで発光する発光層、光学特性の調整または電子ブロックの用途に用いられるバッファ層等のいずれか、もしくはそれら2層以上の組み合わせ、または全ての層を指す。一般に有機EL素子には、ホール注入層以外に上記したホール輸送層、発光層等のそれぞれ所要機能を果たす層が存在する場合がある。機能層とは、陽極と発光層との間において配設される、ホール注入層以外の有機EL素子に必要な層を指している。
(陰極)
 陰極8は、厚さ5nmのバリウム層8Aと、厚さ100nmのアルミニウム層8Bを積層して構成される。
 なお、発光層6Bと陰極8との間に、電子輸送層が配設されることもある。また、バリウム層8Aを電子輸送層(あるいは電子注入層)と見なしてもよい。
(有機EL素子の作用および効果)
 以上の構成を持つ有機EL素子1では、ホール注入層4が酸素欠陥構造を有することで、当該ホール注入層4中に前記フェルミ面近傍の占有準位が存在する。そして当該フェルミ面近傍の占有準位と、バッファ層6Aの最高被占軌道との間で、いわゆる界面準位接続がなされ、ホール注入層4とバッファ層6Aとの間のホール注入障壁が極めて小さくなっている。
 さらに有機EL素子1では、陽極2とホール注入層4の間には良好なショットキーオーミック接続が形成され、陽極2とホール注入層4との間においてもホール注入障壁が小さく抑えられている。
 これにより有機EL素子1では、駆動時に有機EL素子1に電圧を印加すると、陽極2のフェルミレベルからホール注入層4のフェルミ面近傍の占有準位へ、またフェルミ面近傍の占有準位からバッファ層6Aの最高被占軌道へと、低電圧で比較的スムーズにホールが注入され、高いホール注入効率が発揮される。そして発光層6Bにおいてホールが電子と再結合することで、良好な発光特性が発揮されることとなる。具体的には、陽極2のフェルミレベルと、ホール注入層4のフェルミ面近傍の占有準位で最も低い結合エネルギーとの差、およびホール注入層4の前記占有準位で最も低い結合エネルギーと、バッファ層6Aの最高被占軌道で最も低い結合エネルギーとの差は、いずれも±0.3eV以内に抑えられており、ホール注入効率が非常に高められている。
 陽極2とホール注入層4との間に形成されるショットキーオーミック接続は、陽極2の表面状態の程度(仕事関数等の特性を含む)に大きな影響を受けず、高い安定性を有している。このため、有機EL素子1の製造に際しては陽極2の表面状態を厳密にコントロールする必要がなく、比較的低コストで高いホール注入効率を持つ有機EL素子1、または有機EL素子1を多数形成してなる大型有機ELパネルを、歩留まり良く製造できる。
 なお、ここで言う「陽極の表面状態」とは、有機EL素子または有機ELパネルの標準的な製造工程における、ホール注入層形成直前の陽極の表面状態を指すものとする。
 さらにホール注入層4では、膜密度を高めることで溶解耐性を付与し、膜減り量を抑えている。一方、上記した厳密な所定条件で成膜することで、膜中に占有準位を存在させ、これによって良好なホール注入特性を発揮させることで、駆動電圧の効果的な低減を図れるようになっている。
 ここで、酸化タングステンをホール注入層として用いる構成自体については、過去に報告されている(非特許文献1参照)。しかしながら、この報告で得られた最適なホール注入層の膜厚は0.5nm程度であり、素子特性の膜厚依存性も大きく、大型有機ELパネルを量産するだけの実用性は示されていない。さらに、ホール注入層に積極的にフェルミ面近傍の占有準位を形成することも示されていない。本発明は、化学的に比較的安定で、大型有機ELパネルの量産プロセスにも耐える酸化タングステンからなるホール注入層において、所定のフェルミ面近傍の占有準位を存在させ、これにより優れたホール注入効率を得、有機EL素子の低電圧駆動を実現する。しかもホール注入層に溶解耐性を付与し、安定的にホール注入特性を維持できるようにした点において、従来技術と大きく異なるものである。
 次に、有機EL素子1の全体的な製造方法を例示する。
(有機EL素子の製造方法)
 まず、基板10をスパッタ成膜装置のチャンバー内に載置する。そしてチャンバー内に所定のガスを導入し、反応性スパッタ法に基づき、厚さ50nmのITOからなる陽極2を成膜する。
 次に、前記陽極2を含む下地層の上に(ここでは陽極2の上面に直接)、酸素欠陥構造を持つ酸化タングステンを含む酸化タングステン膜からなる、ホール注入層4を成膜する。ここでは反応性スパッタ法で成膜することが好適である。特に、大面積の成膜が必要な大型有機ELパネルに有機EL素子1を適用する場合には、蒸着法等で成膜すると、膜厚等にムラが生じるおそれがある。反応性スパッタ法で成膜すれば、このような成膜ムラの発生の回避は容易である。
 具体的には、ターゲットを金属タングステンに交換し、反応性スパッタ法を実施する。スパッタガスとしてアルゴンガス、反応性ガスとして酸素ガスをチャンバー内に導入する。この状態で高電圧によりアルゴンをイオン化し、ターゲットに衝突させる。このとき、スパッタリング現象により放出された金属タングステンが酸素ガスと反応して酸化タングステンとなり、基板10の陽極2上に成膜される。
 なお、このときの成膜条件は後述するように、いわゆる低レート条件に設定する。成膜レートは成膜装置の投入電力密度とガス流量(分圧)比の両方で制御できる。酸化タングステンの成膜では、ガス中の酸素の流量(分圧)を増加させると成膜レートが低下する。低レート条件としては、具体的には、ガス圧(全圧)が2.7Pa超7.0Pa以下とし、かつ酸素ガス分圧の全圧に対する比が50%以上70%以下であって、さらにターゲット単位面積当たりの投入電力(投入電力密度)が1W/cm以上2.8W/cm未満となるように設定することが好適である。低レートでの成膜を行うことで、蒸着膜に近いポーラスな膜質が得られる。そして少なくとも酸化タングステンの表層において、タングステン原子に酸素原子が部分結合してなる酸素欠陥構造を形成し、価電子帯で最も低い結合エネルギーから1.8~3.6eV低い結合エネルギー領域内に占有準位を良好に存在させることができる。これにより、良好なホール注入特性を確保できる。
 次に、前記成膜した酸化タングステン膜に対して焼成工程を実施する。具体的には、200℃以上230℃以下の温度範囲で15分以上45分以下の時間にわたり、大気焼成を実施する。加熱温度が高すぎると、基板10の表面に層間絶縁膜(平坦化膜)等を配設している場合は、これらが変質するおそれがあるため留意する。
 この焼成により、酸化タングステン膜を硬化させるとともに、焼き締めを行う。具体的に言うと、前記成膜直後は膜密度が5.4g/cm以上5.7g/cm以下の範囲であったのが、焼成工程後には膜密度が5.8g/cm以上6.0g/cm以下の範囲の高密度に変化(増大)する。さらに、上記焼成条件に基づけば、焼成工程を経ても膜中の酸素欠陥構造は維持されるため、占有準位は温存され、ホール注入特性が低下することはない。この焼成工程によりホール注入層4を高密度化することで、ホール注入層4に対して後述するバンク材料のエッチング液や洗浄液の溶解耐性を、少なくとも成膜直後の2倍以上付与でき、膜減りを効率的に抑制できる。
 以上の各プロセスを経るとホール注入層4が形成される。
 次に、バンク材料として、例えば感光性のレジスト材料、好ましくはフッ素系材料を含有するフォトレジスト材料を用意する。このバンク材料をホール注入層4上に一様に塗布し、プリベークを実施する。このバンク材料膜に対し、所定形状の開口部(形成すべきバンクのパターン)を持つマスクを重ねる。そして、マスクの上からバンク材料膜を感光させた後、未硬化の余分なバンク材料を現像液(エッチング液)で洗い出してパターニングする。エッチング液には、例えばテトラメチルアンモニウムハイドロキシオキサイド(TMAH)溶液等、一般的なものを利用できる。エッチング後は洗浄液(一例として純水等)で洗浄することで、バンク5が完成する。
 ここで本実施の形態1では、前記焼成工程を経ることでホール注入層4が高密度化し、アルカリ溶液や水、有機溶媒等に対して一定の溶解耐性を発揮する。したがって、バンク形成工程において、ホール注入層4がエッチング液や純水等に触れても、前記焼成工程を経ない場合の膜に比べ、エッチング液や洗浄液に対する溶解による膜減りが抑制される。このようにホール注入層4の形態が維持されることによっても、有機EL素子1が完成した後には、当該ホール注入層4を介し、バッファ層6Aに効率よくホール注入を行うことができ、低電圧駆動を良好に実現できる。
 続いて、隣接するバンク5の間に露出しているホール注入層4の表面に、例えばインクジェット法やグラビア印刷法によるウェットプロセスにより、アミン系有機分子材料を含む組成物インクを滴下し、溶媒を揮発除去させる。これによりバッファ層6Aが形成される。
 次に、バッファ層6Aの表面に、同様の方法で、有機発光材料を含む組成物インクを滴下し、溶媒を揮発除去させる。これにより発光層6Bが形成される。
 なお、バッファ層6A、発光層6Bの形成方法はこれに限定されず、インクジェット法やグラビア印刷法以外の方法、例えばディスペンサー法、ノズルコート法、スピンコート法、凹版印刷、凸版印刷等の公知の方法によりインクを滴下・塗布しても良い。
 続いて、発光層6Bの表面に真空蒸着法でバリウム層8A、アルミニウム層8Bを成膜する。これにより陰極8が形成される。
 なお、図1には図示しないが、有機EL素子1が大気に曝されるのを抑制する目的で、陰極8の表面にさらに封止層を設けるか、あるいは素子1全体を空間的に外部から隔離する封止缶を設けることができる。封止層は例えばSiN(窒化シリコン)、SiON(酸窒化シリコン)等の材料で形成でき、素子1を内部封止するように設ける。封止缶を用いる場合は、封止缶は例えば基板10と同様の材料で形成でき、水分などを吸着するゲッターを密閉空間内に設ける。
 以上の工程を経ることで、有機EL素子1が完成する。
<各種実験と考察>
(酸化タングステンの成膜条件について)
 本実施の形態1では、ホール注入層4を構成する酸化タングステンを所定の成膜条件で成膜することで、ホール注入層4に前記したフェルミ面近傍の占有準位を存在させ、ホール注入層4とバッファ層6Aとの間のホール注入障壁を低減して、有機EL素子1を低電圧駆動できるようにしている。
 このような性能を得るための酸化タングステンの成膜方法としては、DCマグネトロンスパッタ装置を用い、ターゲットは金属タングステンとし、基板温度は制御せず、チャンバー内ガスはアルゴンガスと酸素ガスで構成し、ガス圧(全圧)が2.7Pa超7.0Pa以下であり、かつ酸素ガス分圧の全圧に対する比が50%以上70%以下であって、さらにターゲット単位面積当たりの投入電力(投入電力密度)が1W/cm以上2.8W/cm未満となる成膜条件に設定して、反応性スパッタ法で成膜することが好適であると考えられる。
 上記成膜条件の有効性は以下の諸実験で確認された。
 まず、ホール注入層4からバッファ層6Aへのホール注入効率の、成膜条件依存性の評価を確実にするために、評価デバイスとしてホールオンリー素子を作製するものとした。
 有機EL素子においては、電流を形成するキャリアはホールと電子の両方であり、したがって有機EL素子の電気特性には、ホール電流以外にも電子電流が反映されている。しかし、ホールオンリー素子では陰極からの電子の注入が阻害されるため、電子電流はほとんど流れず、全電流はほぼホール電流のみから構成され、すなわちキャリアはほぼホールのみと見なせるため、ホール注入効率の評価に好適である。
 具体的に作製したホールオンリー素子は、図1の有機EL素子1における陰極8を、図2に示す陰極8Cのように金に置き換えたものである。すなわち図2に示すように、基板10上に厚さ50nmのITO薄膜からなる陽極2を形成し、さらに陽極2上に厚さ30nmの酸化タングステンからなるホール注入層4、厚さ20nmのアミン系有機高分子であるTFBからなるバッファ層6A、厚さ70nmの有機高分子であるF8BTからなる発光層6B、厚さ100nmの金からなる陰極8Cを順次積層した構成とした。なお、評価デバイスを構成するため、バンク5は省略した。
 この作製工程において、ホール注入層4は、DCマグネトロンスパッタ装置を用い、反応性スパッタ法で成膜した。チャンバー内ガスは、アルゴンガスおよび酸素ガスの少なくともいずれかから構成し、ターゲットは金属タングステンを用いた。基板温度は制御せず、アルゴンガス分圧、酸素ガス分圧、全圧は各ガスの流量で調節するものとした。成膜条件は以下の表1に示すように、全圧、酸素ガス分圧、および投入電力の各条件を変化させるものとし、これにより各成膜条件で成膜したホール注入層4を備えるホールオンリー素子1B(素子No.1~14)を得た。なおこれ以降、酸素ガス分圧は、全圧に対する比(%)として表す。
Figure JPOXMLDOC01-appb-T000001
 
 上記DCマグネトロンスパッタ装置の、投入電力と投入電力密度の関係を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 作製した各ホールオンリー素子1Bを直流電源DCに接続し、電圧を印加した。このときの印加電圧を変化させ、電圧値に応じて流れた電流値を素子の単位面積当たりの値(電流密度)に換算した。以降、「駆動電圧」とは、電流密度10mA/cmのときの印加電圧とする。
 この駆動電圧が小さいほど、ホール注入層4からバッファ層6Aへのホール注入効率は高いと推測される。なぜなら、各ホールオンリー素子1Bにおいて、ホール注入層4以外の各部位の作製方法は同一であるから、ホール注入層4を除く、隣接する2つの層の間のホール注入障壁は一定と考えられる。また、後述のように、当該実験で用いた陰極2とホール注入層4は、ショットキーオーミック接続をしていることが、別の実験により確認されている。したがって、ホール注入層4の成膜条件による駆動電圧の違いは、ホール注入層4からバッファ層6Aへのホール注入効率、およびホール注入層4自体のホール伝導効率を強く反映したものになる。
 ここで、本実施の形態1の各実験における素子の特性には、ホール注入層4からバッファ層6Aへのホール注入効率の他に、ホール注入層4のホール伝導効率も影響していると考えられる。しかしながら、当該素子の特性において、少なくともホール注入層4とバッファ層6Aとの間のホール注入障壁が強く反映されていることは、後述するエネルギーダイアグラムの評価結果からも明確である。
 なお、本実施の形態1では、ホール注入層4からバッファ層6Aへのホール注入効率を主に考察し、ホール注入層4のホール伝導効率については、実施の形態2で考察を行う。
 表3は、当該実験によって得られた、各ホールオンリー素子1Bの、全圧、酸素ガス分圧、投入電力の各成膜条件に対する、駆動電圧の値である。表3中、各ホールオンリー素子1Bの素子No.は囲み数字で示している。
Figure JPOXMLDOC01-appb-T000003
 
 また、図3の(a)~(c)は、各ホールオンリー素子1Bの駆動電圧の成膜条件依存性をまとめたグラフである。図3(a)中の各点は、左から右に向かって、素子No.4、10、2の駆動電圧を表す。図3(b)中の各点は、左から右に向かって、素子No.13、10、1の駆動電圧を表す。さらに図3(c)中の各点は、左から右に向かって、素子No.14、2、8の駆動電圧を表す。
 なお当該実験では、全圧が2.7Paで酸素ガス分圧が100%の場合、全圧が4.8Paで酸素ガス分圧が30%の場合、全圧が4.8Paで酸素ガス分圧が70%の場合、全圧が4.8Paで酸素ガス分圧が100%の場合は、いずれもガス流量などのスパッタ装置の制約で成膜を行えなかった。
 まず、駆動電圧の全圧依存性は、図3(a)からわかるように、酸素ガス分圧50%、投入電力500Wの条件下では、少なくとも全圧が2.7Pa超4.8Pa以下の範囲において、駆動電圧の明確な低減が確認できた。この傾向は、少なくとも全圧が7.0Pa以下の範囲まで続くことが別の実験により分かった。したがって、全圧は2.7Pa超7.0Pa以下の範囲に設定することが望ましいと言える。
 次に、駆動電圧の酸素ガス分圧依存性は、図3(b)からわかるように、全圧2.7Pa、投入電力500Wの条件下では、少なくとも酸素ガス分圧が50%以上70%以下の範囲において、酸素ガス分圧の上昇とともに駆動電圧の低下が確認できた。ただし、これ以上に酸素ガス分圧が上昇すると、別の実験により逆に駆動電圧の上昇が確認された。したがって、酸素ガス分圧は50%以上で上限を70%程度に抑えることが望ましいと言える。
 次に、駆動電圧の投入電力依存性は、図3(c)からわかるように、全圧4.8Pa、酸素ガス分圧50%の条件下では、投入電力が500W超で、急激に駆動電圧が上昇することが確認された。したがって、投入電力は500W以下に抑えるのが望ましいと考えられる。なお、表3の素子No.1、3を見ると、投入電力が500Wであっても、全圧が2.7Pa以下であれば、駆動電圧が上昇するという結果が確認できる。
 次に、各ホールオンリー素子1Bのうち、代表して素子No.14、1、7の電流密度―印加電圧曲線を図4に示した。図中縦軸は電流密度(mA/cm)、横軸は印加電圧(V)である。素子No.14は、上記した全圧、酸素ガス分圧、投入電力の望ましい条件をすべて満たしている。一方、素子No.1、7は、上記望ましい条件を一部満たしていない。
 ここで、以降の説明のために、ホール注入層4(および後述の酸化タングステン層12)の成膜条件に関しては、素子No.14の成膜条件を成膜条件A、素子No.1の成膜条件を成膜条件B、素子No.7の成膜条件を成膜条件Cと呼ぶことにする。また、それに倣い、図4では、素子No.14をHOD-A、素子No.1をHOD-B、素子No.7をHOD-Cとも記述した。
 図4に示されるように、HOD-AはHOD-B、HOD-Cと比較して、最も電流密度―印加電圧曲線の立ち上がりが早く、また最も低い印加電圧で高い電流密度が得られている。これにより、HOD-AはHOD-B、HOD-Cと比較し、ホール注入層4からバッファ層6Aへのホール注入効率が優れていることが推測される。なお、HOD-Aは、各ホールオンリー素子1Bの中で最も駆動電圧が低い素子である。
 以上は、ホールオンリー素子1Bにおけるホール注入層4からバッファ層6Aへのホール注入効率に関する検証であったが、ホールオンリー素子1Bは、陰極以外は有機EL素子1と同様の構成である。したがって、有機EL素子1においても、ホール注入層4からバッファ層6Aへのホール注入効率の成膜条件依存性は、本質的にホールオンリー素子1Bと同じである。このことを確認するために、成膜条件A、B、Cのホール注入層4を用いた各有機EL素子1を作製した。
 具体的に作製した各有機EL素子1は、図1に示すように、基板10上に厚さ50nmのITO薄膜からなる陽極2を形成し、さらに陽極2上に厚さ30nmの酸化タングステンからなるホール注入層4、厚さ20nmのアミン系有機高分子であるTFBからなるバッファ層6A、厚さ70nmの有機高分子であるF8BTからなる発光層6B、厚さ5nmのバリウムおよび厚さ100nmのアルミニウムからなる陰極8を順次積層した構成とした。なお、評価デバイス構成であるため、バンク5は省略した。
 作製した成膜条件A、B、Cの各有機EL素子1を直流電源DCに接続し、電圧を印加した。このときの電流密度―印加電圧曲線を図5に示した。図中、縦軸は電流密度(mA/cm)、横軸は印加電圧(V)である。
 なお、以降の説明のために、図5では、成膜条件Aの有機EL素子1をBPD-A、成膜条件Bの有機EL素子1をBPD-B、成膜条件Cの有機EL素子1をBPD-Cと記述した。
 図5に示されるように、BPD-AはBPD-B、BPD-Cと比較して、最も電流密度―印加電圧曲線の立ち上がりが早く、また最も低い印加電圧で高い電流密度が得られている。これは、それぞれ同じ成膜条件のホールオンリー素子であるHOD-A、HOD-B、HOD-Cと同様の傾向である。
 さらに、上記の各有機EL素子1について、電流密度の変化に応じた発光強度の関係を表す、発光強度―電流密度曲線を図6に示した。図中、縦軸は発光強度(cd/A)、横軸は電流密度(mA/cm)である。これより、少なくとも測定した電流密度の範囲では、BPD-Aの発光強度が最も高いことがわかる。
 以上の結果により、ホール注入層4からバッファ層6Aへのホール注入効率の成膜条件依存性が、有機EL素子1においても、ホールオンリー素子1Bの場合と同様に作用していることが推測される。すなわち、当該実験の有機EL素子1において、ホール注入層4を構成する酸化タングステンを、DCマグネトロンスパッタ装置を用い、ターゲットは金属タングステンとし、基板温度は制御せず、チャンバー内ガスはアルゴンガスと酸素ガスで構成し、全圧が2.7Pa超7.0Pa以下であり、かつ酸素ガス分圧の全圧に対する比が50%以上70%以下であって、さらに投入電力密度が1W/cm以上2.8W/cm未満となる成膜条件下で、反応性スパッタ法で成膜すると、ホール注入層4からバッファ層6Aへのホール注入効率が良く、それにより優れた低電圧駆動と高い発光効率が実現されることが推測される。
 なお、上記においては、投入電力の条件は、表2をもとに改めて投入電力密度で表した。本実験で用いたDCマグネトロンスパッタ装置とは異なるDCマグネトロンスパッタ装置を用いる場合は、ターゲットのサイズに合わせて、投入電力密度が上記条件になるように投入電力を調節することにより、本実験と同様に、優れた低電圧駆動と高い発光効率の有機EL素子1を実現するホール注入層4が得られる。なお、全圧、酸素分圧については、装置やターゲットのサイズに依存しない。
 また、ホール注入層4の反応性スパッタ法による成膜時は、室温環境下に配置されるスパッタ装置において、基板温度を意図的には設定していない。したがって、少なくとも成膜前は基板温度は室温である。ただし、成膜中に基板温度は数10℃程度上昇する可能性がある。
 なお、成膜条件Aでホール注入層4を作製した有機EL素子1が、本実施の形態1の有機EL素子1であり、前記したフェルミ面近傍の占有準位を持つ。これについては、以降で考察する。
(ホール注入層の電子状態について)
 本実施の形態1の有機EL素子1のホール注入層4を構成する酸化タングステンには、前記フェルミ面近傍の占有準位が存在している。このフェルミ面近傍の占有準位は、先の実験で示した成膜条件の調整により形成されるものである。詳細を以下に述べる。
 前述の成膜条件A、B、Cで成膜した酸化タングステンにおける、前記フェルミ面近傍の占有準位の存在を確認する実験を行った。
 各成膜条件で、光電子分光測定用のサンプルを作製した。当該サンプルの構成としては、図7に示す1Aのように、導電性シリコン基板11の上に、厚さ10nmの酸化タングステン層12(ホール注入層4に該当する)を、前記の反応性スパッタ法により成膜した。以降、成膜条件Aのサンプル1AをサンプルA、成膜条件Bのサンプル1AをサンプルB、成膜条件Cのサンプル1AをサンプルCと記述する。
 サンプルA、B、Cは、いずれもスパッタ装置内において酸化タングステン層12を成膜した後、当該スパッタ装置に連結され窒素ガスが充填されたグローブボックス内に移送し、大気曝露しない状態を保った。そして、当該グローブボックス内でトランスファーベッセルに封入し、光電子分光装置に装着した。これにより、酸化タングステン層12を成膜後に大気曝露することなく、紫外光電子分光(UPS)測定を実施した。
 ここで、一般にUPSスペクトルは、測定対象物の表面から深さ数nmまでにおける、価電子帯などの占有準位の状態を反映したものになる。そこで本実験では、UPSを用いて酸化タングステン層12の表層における占有準位の状態を観察するものとした。
 UPS測定条件は以下の通りである。なお、サンプルA、B、Cでは導電性シリコン基板11を用いたため、測定中チャージアップは発生しなかった。
 光源   :He I線
 バイアス :なし
 出射角  :基板法線方向
測定点間隔:0.05eV
 図8に、サンプルAの酸化タングステン層12のUPSスペクトルを示す。横軸の結合エネルギーの原点は導電性シリコン基板11のフェルミレベルとし、左方向を正の向きとした。
 以下、図8を用いて、酸化タングステン層12の各占有準位について説明する。
 一般に酸化タングステンが示すUPSスペクトルにおいて、最も大きく急峻な立ち上がりは一意に定まる。この立ち上がりの変曲点を通る接線を線(i)、その横軸との交点を点(iii)とする。これにより、酸化タングステンのUPSスペクトルは、点(iii)から高結合エネルギー側に位置する領域(x)と、低結合エネルギー側に位置する領域(y)に分けられる。
 ここで、以下の表4に示した酸化タングステン層12の組成比によれば、サンプルA、B、Cとも、タングステン原子と酸素原子の数の比率がほぼ1:3である。なお、この組成比は、X線光電子分光(XPS)により求めた。具体的には、当該光電子分光装置を用い、前記UPS測定と同様に、酸化タングステン層12を大気曝露することなくXPS測定し、酸化タングステン層12の表面から深さ数nmまでにおけるタングステンと酸素の組成比を見積もった。なお、表4には、酸化タングステン層12の成膜条件も併記してある。
Figure JPOXMLDOC01-appb-T000004
 
 この組成比から、サンプルA、B、Cのいずれにおいても、酸化タングステン層12は少なくとも表面から深さ数nm以内の範囲において、三酸化タングステンを基本とする原子配置、つまり6つの酸素原子が1つのタングステン原子に対し8面体配位で結合し、8面体が互いに頂点の酸素原子を共有する構造を基本構造に持つと考えられる。したがって、図8における領域(x)は、三酸化タングステン結晶、あるいはその結晶の秩序が乱れた(ただし結合は切れておらず、上記基本構造が保たれている)アモルファス構造が持つ、上記基本構造に由来する占有準位であり、いわゆる価電子帯に対応する領域である。なお、本願発明者は酸化タングステン層12のX線吸収微細構造(XAFS)測定を行い、サンプルA、B、Cのいずれにおいても、上記基本構造が形成されていることを確認した。
 したがって、図8における領域(y)は、価電子帯と伝導帯の間のバンドギャップに対応するが、本UPSスペクトルが示すように、酸化タングステンにはこの領域にも、価電子帯とは別の占有準位が存在することがあることが知られている。これは上記基本構造とは異なる別の構造に由来する準位であり、いわゆるバンドギャップ間準位(in-gap stateあるいはgap state)である。
 続いて図9に、サンプルA、B、Cにおける各酸化タングステン層12の、領域(y)におけるUPSスペクトルを示す。図9に示すスペクトルの強度は、図8における点(iii)よりも3~4eVほど高結合エネルギー側に位置するピーク(ii)のピークトップの値で規格化した。図9にも図8の点(iii)と同じ横軸位置に点(iii)を示している。横軸は点(iii)を基準とした相対値(相対結合エネルギー)として表し、左から右に向かって結合エネルギーが低くなるように示している。
 図9に示されるように、サンプルAの酸化タングステン層12では、点(iii)からおおよそ3.6eV低い結合エネルギーの位置から、点(iii)からおおよそ1.8eV低い結合エネルギーの位置までの領域に、ピークの存在が確認できる。このピークの明瞭な立ち上がり位置を図中に点(iv)で示した。このようなピークは、サンプルB、Cでは確認できない。
 本発明はこのように、UPSスペクトルにおいて点(iii)から1.8~3.6eV程度低い結合エネルギーの領域内に隆起(ピーク形状を持つとは限らない)した構造を持つ酸化タングステンを、ホール注入層として用いることにより、有機EL素子において優れたホール注入効率が発揮できるようになっている。
 ここで、当該隆起の程度が急峻であるほど、ホール注入効率が高くなる傾向があることが分かっている。したがって、図9に示すように、点(iii)から2.0~3.2eV程度低い結合エネルギーの領域は、比較的当該隆起構造を確認しやすく、かつ、その隆起が比較的急峻である領域として、特に重要であると言える。
 なお、以降、UPSスペクトルにおける当該隆起構造を、「フェルミ面近傍の隆起構造」と称する。このフェルミ面近傍の隆起構造に対応する占有準位が、前記した「フェルミ面近傍の占有準位」である。
 次に、上記フェルミ面近傍の隆起構造をより明確にするために、図9に示したサンプルA、B、CのUPSスペクトルにおける規格化強度の微分を計算した。
 具体的には、グラフ解析ソフトウェア「IGOR Pro 6.0」を用い、図9に示すUPSスペクトルについて2項スムージング(スムージングファクターは1とした)を11回行い、その後に中心差分法による微分処理を行った。これはUPS測定時のバックグラウンドノイズなどのばらつき要因を平滑化し、微分曲線をスムーズにし、下記の議論を明快にするためである。
 この処理により得られた微分曲線を図10に示した。図10中の点(iii)、(iv)は図9と同一の横軸位置である。
 図10に示す微分曲線によれば、サンプルB、Cの酸化タングステン層12では、光電子分光装置で測定可能な結合エネルギーから点(iv)に至るまでの領域(v)においては、微分値は0付近をほぼ前後するのみであり、さらに点(iv)から高結合エネルギー側におおよそ1.2eVまでの領域(vi)では、微分値は高結合エネルギー側に向かって、ほぼその増加率を増しながら漸増していくのみである。そして、この領域(v)、(vi)におけるサンプルB、Cの各微分曲線の形状は、当該各微分曲線の元である図9に示したサンプルB、CのUPSスペクトルとほぼ相似である。したがって、サンプルB、Cの領域(v)、(vi)におけるUPSスペクトルとその微分曲線の形状は、指数関数的な形状であると言える。
 一方、サンプルAの酸化タングステン層12では、点(iv)付近から高結合エネルギー側に向かって急峻な立ち上がりを見せており、領域(v)、(vi)における微分曲線の形状は指数関数的な曲線の形状とは明らかに異なっている。このようなサンプルAについては、図9の微分前のスペクトルにおいても、点(iv)付近から隆起し始め、また指数関数的なスペクトル形状とは異なる、フェルミ面近傍の隆起構造を持つことが確認できる。
このようなサンプルAの特性は、言い換えると、価電子帯で最も低い結合エネルギーよりおおよそ1.8~3.6eV低い範囲内にフェルミ面近傍の占有準位が存在し、特に、価電子帯で最も低い結合エネルギーよりおおよそ2.0~3.2eV低い範囲内にて、この範囲に対応するフェルミ面近傍の隆起構造が、UPSスペクトルで明瞭に確認できるものである。
 次に、成膜後大気曝露せずに図9のUPSスペクトルを測定したサンプルA、B、Cの酸化タングステン層12に対し、常温にて大気曝露を1時間行った。そして、再びUPS測定を行い、これによるスペクトルの変化を確認した。その前記領域(y)におけるUPSスペクトルを図11に示す。横軸の取り方は図9と同様であり、図中の点(iii)、(iv)は図9と同一の横軸位置である。
 図11に示したUPSスペクトルによれば、サンプルB、Cの酸化タングステン層12では、大気曝露前と同様にフェルミ面近傍の隆起構造は確認できない。これに対し、サンプルAの酸化タングステン層12では、大気曝露後には強度やスペクトル形状に変化はみられるものの、依然としてフェルミ面近傍の隆起構造の存在を確認できる。これにより、サンプルAについては、一定時間大気曝露を行っても、大気曝露前の特性が維持でき、周辺雰囲気に対して一定の安定性を有することがわかる。
 以上では、サンプルA、B、Cについて測定したUPSスペクトルに対して議論を行ったが、上記フェルミ面近傍の隆起構造は、XPSや硬X線光電子分光測定で得たスペクトルでも同様に確認することができる。
 図12は、サンプルAの酸化タングステン層12の、前記大気曝露後のXPSスペクトルである。なお、比較のため、サンプルAの酸化タングステン層12のUPSスペクトル(図8と同一のもの)を重ね書きした。
 XPS測定条件は、光源がAl Kα線であること以外は、前述のUPS測定条件と同様である。ただし測定点の間隔は0.1eVとした。図12において、図中の点(iii)は図8と同一の横軸位置であり、横軸は図9と同様に、点(iii)を基準とした相対結合エネルギーで示している。また、XPSスペクトルにおける図8の(i)に該当する線を、図12中で(i)’で示した。
 図12に示すように、サンプルAの酸化タングステン層12におけるフェルミ面近傍の隆起構造は、XPSスペクトルにおいても、UPSスペクトルの場合と同様に、価電子帯で最も低い結合エネルギーよりもおおよそ1.8~3.6eV低い範囲内にて、相当の大きさの隆起構造として、存在を明確に確認することができる。なお、別の実験により、硬X線光電子分光のスペクトルでも同様にフェルミ面近傍の隆起構造が確認できた。
 なお、上記測定においては、光電子分光測定用のサンプルとして、図1に示す有機EL素子1の構造とは別に、導電性シリコン基板11の上に酸化タングステン層12を形成してなるサンプル1A(図7)を用いた。これは単に、測定中のチャージアップを防ぐための措置であり、本発明の有機EL素子の構造を当該構成に限定するものではない。
 本願発明者が行った別の実験によれば、図1に示す有機EL素子1の構成(基板10の片面にITOからなる陽極2、および酸化タングステンからなるホール注入層4を、順次積層した構成)を有するサンプルを用い、UPS、XPS測定を行った場合は、成膜条件B、Cの酸化タングステン層の測定中にチャージアップが発生した。
 しかしながら、チャージアップをキャンセルする中和銃を併用すれば、ホール注入層4の各占有準位の示す結合エネルギーの絶対値(例えば、光電子分光装置自体のフェルミレベルを原点とするときの結合エネルギーの値)は、サンプル1Aの酸化タングステン層12のものとは異なることがあるものの、少なくともバンドギャップから価電子帯で最も低い結合エネルギーに至る範囲においては、サンプル1Aと同様の形状のスペクトルが得られている。
(ホール注入層から機能層へのホール注入効率に関する考察)
 酸化タングステンからなるホール注入層において、UPSスペクトル等でフェルミ面近傍の隆起構造として確認できるフェルミ面近傍の占有準位が、ホール注入層から機能層へのホール注入効率に作用する原理は、以下のように考えることができる。
 酸化タングステンの薄膜や結晶に見られる、前記フェルミ面近傍の占有準位は、酸素欠陥に類する構造に由来することが、実験および第一原理計算の結果から多数報告されている。
 具体的には、酸素原子の欠乏により形成される隣接したタングステン原子の5d軌道同士の結合軌道や、酸素原子に終端されることなく膜表面や膜内に存在するタングステン原子単体の5d軌道に、前記フェルミ面近傍の占有準位が由来するものと推測されている。これらの5d軌道は、半占あるいは非占状態であれば、有機分子と接触したとき、相互のエネルギー安定化のために、有機分子の最高被占軌道から電子を引き抜くことが可能であると推測される。
 実際、酸化タングステンと、触媒作用やエレクトロクロミズム、フォトクロミズムなど、多くの共通した物性を持つ酸化モリブデンにおいては、その薄膜上に有機低分子のα-NPDからなる層を積層すると、α-NPD分子から酸化モリブデン薄膜に電子が移動するとの報告がある(非特許文献2参照)。
 なお、本願発明者は、酸化タングステンにおいては、隣接したタングステン原子の5d軌道同士の結合軌道よりも結合エネルギーが低い、タングステン原子単体の半占5d軌道あるいはそれに類似した構造が、フェルミ面近傍の占有準位に該当するものと考える。
 図13は、本発明のフェルミ面近傍の占有準位を持つ酸化タングステン層と、α-NPD層との界面における、エネルギーダイアグラムである。
 図13中では、まず、当該酸化タングステン層(ホール注入層に該当する)における、価電子帯で最も低い結合エネルギー(図中「価電子帯上端」と表記した)と、フェルミ面近傍の占有準位の立ち上がり位置に相当する、フェルミ面近傍の占有準位で最も低い結合エネルギー(図中「in-gap state上端」と表記した)を示している。UPSスペクトルにおいては、価電子帯上端は図8の点(iii)に該当し、in-gap state上端は図9の点(iv)に該当する。
 そして、さらに当該酸化タングステン層の上に、α-NPD(機能層に該当する)を積層したときの、α-NPD層の膜厚と、α-NPDの最高被占軌道の結合エネルギー、また真空準位との関係も示している。ここで、α-NPDの最高被占軌道の結合エネルギーとは、UPSスペクトルにおける、当該最高被占軌道によるピークの立ち上がり位置の結合エネルギーであり、言い換えればα-NPDの最高被占軌道で最も低い結合エネルギーである。
 具体的には、ITO基板上に成膜した当該酸化タングステン層を、光電子分光装置と当該装置に連結された超高真空蒸着装置との間で基板を往復させながら、UPS測定とα-NPDの超高真空蒸着とを繰り返すことで、図13のエネルギーダイアグラムを得た。UPS測定中にチャージアップは確認されなかったので、図13では、縦軸の結合エネルギーをITO基板のフェルミレベルを原点とした絶対値表記にしている。
 図13から、α-NPD層の厚さが少なくとも0~0.3nmの範囲、つまり当該酸化タングステン層とα-NPD層との界面付近においては、当該酸化タングステン層のin-gap state上端と、α-NPDの最高被占軌道の結合エネルギーはほぼ等しく、言わば互いの準位が接続した状態(前述の界面準位接続の状態)になっていることがわかる。なお、ここで言う「等しい」とは、実際上多少の差を含んでおり、具体的には±0.3eV以内の範囲を指す。
 さらに、図13は、前記界面準位接続が、偶然によるものではなく、酸化タングステンとα-NPDとの相互作用により実現しているものであることを示している。
 例えば、界面における真空準位の変化(真空準位シフト)は、その変化の向きから、界面に電気二重層が、酸化タングステン層側を負、α-NPD層側を正として形成されていることを示す。また、その真空準位シフトの大きさが2eV近くと非常に大きいため、当該電気二重層は、物理吸着等ではなく、化学結合に類する作用により形成されたと考えるのが妥当である。すなわち、前記界面準位接続は、酸化タングステンとα-NPDとの相互作用により実現していると考えるべきである。
 本願発明者は、具体的な相互作用として、以下のメカニズムを推察している。
 まず、フェルミ面近傍の占有準位は、上述のとおり、酸素欠陥に類する構造を構成しているタングステン原子の5d軌道に由来するものである。これを、以下「隆起構造のW5d軌道」と称する。
 当該酸化タングステン層の表面において、隆起構造のW5d軌道に、α-NPD分子の最高被占軌道が近づくと、相互のエネルギー安定化のために、α-NPD分子の最高被占軌道から、隆起構造のW5d軌道に電子が移動する。これにより、界面に電気二重層が形成され、図13に見られるような真空準位シフト、界面準位接続が起こる。
 さらに具体的には、α-NPD等のアミン系有機分子の最高被占軌道は、一般にその電子密度がアミン構造の窒素原子に偏って分布しており、当該窒素原子の非共有電子対を主成分として構成されていることが、第一原理計算による結果として多数報告されている。このことから、特に、当該酸化タングステン層と、アミン系有機分子の層との界面においては、アミン構造の窒素原子の非共有電子対から、隆起構造のW5d軌道に電子が移動すると推察される。
 上記の推察を支持するものとしては、前述のように酸化タングステンと共通の物性を持つ酸化モリブデンの蒸着膜と、α-NPD、F8BTとの各界面において、図13で示した酸化タングステン層とα-NPD層の界面準位接続と同様の界面準位接続の報告がある(非特許文献3、4、5参照)。
 本発明の有機EL素子のホール注入層が持つ、機能層に対する優れたホール注入効率は、以上の界面準位接続により説明することができる。すなわち、フェルミ面近傍の占有準位を持つ酸化タングステンからなるホール注入層と、隣接した機能層との間で、界面準位接続が起こり、フェルミ面近傍の占有準位の立ち上がり位置の結合エネルギーと、機能層の最高被占軌道の立ち上がり位置の結合エネルギーがほぼ等しくなる。ホール注入は、この接続された準位間で起こる。したがって、本発明のホール注入層と機能層との間のホール注入障壁は、ほぼ無いに等しい。
 しかしながら、フェルミ面近傍の占有準位を形成する要因である酸素欠陥に類する構造が全く無い酸化タングステンというものが、現実に存在するとは考えにくい。例えば、前述のサンプルB、C等、光電子分光スペクトルにおけるフェルミ面近傍の隆起構造がない酸化タングステンにおいても、酸素欠陥に類する構造が、極めてわずかにでも存在はしていると考えるのが妥当である。
 これに対し、先の実験が示すように、サンプルAの酸化タングステン層12に該当するホール注入層4を持つホールオンリー素子HOD-Aおよび有機EL素子BPD-Aが優れた低電圧駆動を示す理由を、図14を用いて説明する。
 酸化タングステン層に機能層を積層するとき、機能層を構成する有機分子の最高被占軌道と、酸化タングステン層のフェルミ面近傍の占有準位とが相互作用するには、その界面において、有機分子の最高被占軌道の電子密度が高い部位(例えば、アミン系有機分子におけるアミン構造の窒素原子。図中「注入サイト(y)」で示す)と、酸化タングステン層表面の酸素欠陥に類する構造(図中「注入サイト(x)」で示す)が、相互作用する距離まで接近(接触)する必要がある。
 しかし、図14(b)に示すように、前述のサンプルB、C等、フェルミ面近傍の隆起構造が存在しない酸化タングステン層には、注入サイト(x)が存在するとしても、その数密度は、UPSスペクトルにおいてフェルミ面近傍の隆起構造を発現するまでに至らないほど小さい。したがって、注入サイト(y)が注入サイト(x)と接触する可能性が非常に低い。注入サイト(x)と注入サイト(y)が接触するところにおいてホールが注入されるのであるから、サンプルB、Cはその効率が極めて悪いことがわかる。
 これに対し、図14(a)に示すように、前述のサンプルA等、フェルミ面近傍の隆起構造を持つ酸化タングステン層には、注入サイト(y)が豊富に存在する。したがって、注入サイト(y)が注入サイト(x)と接触する可能性が高く、ホール注入層から機能層へのホール注入効率が高いことがわかる。
 ここまでの一連の考察をより確実にするために、さらに、フェルミ面近傍の隆起構造が全く確認できない、成膜条件Cの酸化タングステン層に対しても、図13と同様に、α-NPD層との界面におけるエネルギーダイアグラムを測定した。
 図15にその結果を示す。ここで、上記のように、当該酸化タングステン層では、フェルミ面近傍の隆起構造に該当するin-gap state上端が全く確認できなかった。そこで、ホール注入に使われる準位の別の候補として、UPSスペクトルにおいてフェルミ面近傍の隆起構造の位置よりも高結合エネルギー側に見られる、当該隆起構造とは別の構造(図8の(z))の立ち上がり位置(「第2in-gap state上端」と表記した)と、価電子帯上端とを、図15中に示した。
 しかしながら、図15のα-NPDの最高被占軌道は図13とは全く異なり、第2in-gap state上端にも、価電子帯上端にも、全く近づいておらず、つまり全く界面準位接続が起こっていない。これは、第2in-gap stateも、価電子帯も、α-NPDの最高被占軌道とはほとんど相互作用していないことを意味する。そして、仮に第2in-gap state上端からα-NPDの最高被占軌道にホールが注入されるとしても、その注入障壁は0.75eVと、ほぼ0であった図13の場合に比べ極めて大きい。
 この注入障壁の差は、前述の各成膜条件のホールオンリー素子1B、有機EL素子1の駆動電圧や発光効率に大きく影響していると考えられる。すなわち、成膜条件A、B、Cの各ホールオンリー素子1B、有機EL素子1の特性の違いは、本発明の有機EL素子が、ホール注入層から機能層への優れたホール注入効率を持つことを強く示唆するものと考えられるのである。
 以上をまとめると、本発明の有機EL素子が優れたホール注入効率を持つことは、次のように説明できる。
 まず、酸化タングステンからなるホール注入層が、その光電子分光スペクトルにおいて、フェルミ面近傍の隆起構造を持つ。これは、酸素欠陥に類する構造、そしてそれに由来するフェルミ面近傍の占有準位が、当該ホール注入層の表面に少なからず存在することを意味する。
 そして、フェルミ面近傍の占有準位自体は、隣接する機能層を構成する有機分子から電子を奪うことで、有機分子の最高被占軌道と界面準位接続する作用を持つ。
 したがって、ホール注入層の表面に、少なからず酸素欠陥に類する構造が存在すれば、フェルミ面近傍の占有準位と、有機分子の最高被占軌道の電子密度が高い部位とが接触する確率が高く、界面準位接続の作用が効率的に起こり、ホール注入層から機能層への優れたホール注入効率が発現することになる。
(酸化タングステン膜の膜減りとホール注入特性、駆動電圧等の関係について)
 ホール注入層4では、上記所定の成膜条件で成膜した直後の酸化タングステン膜を焼成することによって焼き締め、高密度化する。これにより上記したホール注入特性を維持しつつ、バンク形成工程で用いるエッチング液や洗浄液に対する溶解耐性を確保している。
 ここで、所定の成膜レート条件に対する、酸化タングステン(WOx)膜の駆動電圧(規格化)と溶解耐性との関係を図16のグラフに示す。溶解耐性は、成膜直後の膜に対してエッチング液(TMAH溶液を)滴下した場合について調べた。実験上、酸化タングステン膜に対して焼成は行わず、膜密度は「低レート」、「中レート」、「高レート」の各成膜レートのみによって制御している。各成膜レートは以下の条件とした。
 低レート:Power密度1.4W/cm、成膜雰囲気Ar/O比100:100
 中レート:Power密度2.8W/cm、成膜雰囲気Ar/O比100:43
 高レート:Power密度5.6W/cm、成膜雰囲気Ar/O比100:43
 膜減り量の必要耐性の評価基準は、一例として、実際の成膜直後の膜厚(14nm)からの膜厚制御可能な範囲を考慮し、膜減り量が成膜直後の半分以下(7nm以下)となる範囲に設定した。また駆動電圧(規格化)の必要性能の評価基準は、一例として、1以下の範囲とした。
 図16のグラフに示すように、成膜レートが高レート化すると、溶解耐性が向上して膜減り量は減少する半面、駆動電圧が高くなる。逆に成膜レートが低レート化すると、溶解耐性が低下して膜減り量は増加する半面、ホール注入特性は向上し、駆動電圧が改善する。但し低レート成膜では膜減り量が増加するため、発光領域全体にわたってホール注入層の均一な膜厚を維持することが難しくなり、発光ムラ等の原因となりうる。
 このように酸化タングステンの膜密度に関し、膜減り量(菱形点線)と駆動電圧(四角点線)とは互いにトレードオフの関係にあり、膜密度が上がると膜減り量を抑えられることが確認できる。
 次に、成膜条件を変化させ、且つ、成膜後に焼成工程を導入した場合の酸化タングステン膜の諸特性について評価した。有機EL素子を複数個形成した有機ELパネルのサンプルを複数(No.1~7)作製し、各サンプルにおいて、成膜条件・焼成条件(成膜雰囲気、Power密度、成膜装置、成膜後の焼成の有無)を変化させた。その後、ホール注入層の膜厚をパネルの中央領域と周辺領域に分けて測定し、膜密度、膜減り量、デバイス特性(駆動電圧)、溶解(BNK)耐性(バンク形成工程で用いる洗浄液・エッチング液に対するもの)、トータル性能(デバイス特性と溶解耐性を含む総合評価)を行った。酸化タングステン膜の溶解耐性の測定方法としては、以下のレジスト形成・剥離工程をバンク形成工程に見立てて実施した。酸化タングステン成膜後にレジスト(tok)TFR-940)をスピンコート法で2500rpm/25secの条件で塗布した。これを100℃90secでベークし、その後、2.38%現像液(TMAH溶液)で現像し、60sec水洗処理した。前記レジストはアセトンで剥離した。
 溶解耐性の評価基準は、膜減り量が成膜直後の膜厚の半分以下の場合を「良」とし、膜減り量がこれ以上に及ぶと「悪い」と評価した。
 デバイス特性の評価基準は、LCD同等以上の性能実現可能な電圧値の場合を「良」とし、前記以上の電圧値の場合を「悪い」と評価した。
 これらのサンプルの成膜条件、測定結果と評価結果を表5に示す。No.4、5が実施の形態1の成膜条件にならった実施例に相当する。
Figure JPOXMLDOC01-appb-T000005
 表5に示す結果から、Power密度が比較的高い、高レートで成膜したサンプルNo.6、7では、膜密度が高く溶解耐性に優れるものの、デバイス特性が優れないため、トータル性能が悪くなった。なお、成膜直後でも溶解耐性が高いことが確認されたため、焼成工程は省略している。別の検討により、高レートで成膜を行うと、酸化タングステンの中に5価のタングステン原子が生成されにくくなって酸素欠陥構造がほとんど生成されず(膜中のタングステン原子は6価のみとなり)、デバイス特性が低くなったものと考えられる。
 一方、Power密度が比較的低く、焼成工程を行わないサンプルNo.1~3では、低レートでの成膜により膜中に5価のタングステン原子が比較的多く生成されて酸素欠陥構造が形成される。このためホール注入特性はある程度確保できる。しかしながら溶解特性が優れず膜減り量が多いため、トータル性能は低下している。
 これらのサンプルに対し、比較的低いPower密度(低レート)で成膜した後、焼成工程を実施したサンプルNo.4、5では、5価のタングステン原子を存在させて酸素欠陥構造を形成し、優れたデバイス特性を発揮するとともに、膜密度の向上により良好な溶解耐性も発揮している。このため、トータル性能が優れている。この結果により、実施の形態1を含む実施例の成膜条件と、焼成工程の有効性を確認することができる。
 次に示す図17は、酸化タングステン(WOx)膜の膜密度に対する、膜減り量(菱形点線)と駆動電圧(丸点線)の関係を示すグラフである。測定に用いたサンプルは成膜レートのみを変化させて膜密度を調整しており、焼成工程は実施していない。
 図17に示すように、駆動電圧は膜密度が約6g/cm程度より高くなると急激に上昇する。これは膜密度上昇により膜中の酸素欠陥構造が消失し、占有準位も無くなるためと考えられる。一方、膜減り量を7nm程度以下に抑えるためには、膜密度はほぼ5.8g/cm以上に設定する必要がある。また、図17に示すグラフでは、約5.7g/cm以下の膜減り量の測定ポイントを結ぶ線と、約5.9g/cm以上の膜減り量の測定ポイントを結ぶ線との交点に相当する、5.8g/cm付近に変曲点が存在する可能性も考えられる。従ってこれらを考慮すると、ホール注入層として適切な酸化タングステンの膜密度としては、5.8g/cm以上6.0g/cm以下の範囲が適当であると考えられる。
 次に示す図18は、低レートで成膜した酸化タングステン膜、低レートで成膜した後に焼成工程を経た酸化タングステン膜(ホール注入層4に相当する)、高レートで成膜した酸化タングステン膜、の各々について測定したUPSスペクトルを重ねた図である。
 図18に示すように、高レートで成膜した酸化タングステン膜においてはスペクトルの隆起構造が無く、膜中に占有準位がほとんど存在しないことを示している。
 一方、低レートで成膜した酸化タングステン膜は図9と同様に、スペクトル中に隆起構造が存在しており、膜中に占有準位が存在することを示している。
 ここで低レートで成膜を行い、且つ、成膜後に焼成工程を実施した酸化タングステンについても、膜中に占有準位が存在することを示している。
 このようにホール注入層4においては、焼成工程後にも膜中に占有準位が良好に維持されていることを確認できる。
 次に図19に、膜密度と膜減り量の関係を示す。測定には有機EL素子を複数個配設した有機ELパネルを用いた。グラフ中、「センター」はパネル中央付近の有機EL素子、「エッジ」はパネル周辺付近の有機EL素子を指す。
 図19の結果から、焼成工程を行わない場合に比べ、焼成工程を行うことで膜密度が増加するのに伴い、パネル中央付近および周辺付近のいずれでも、膜減り量が減少することを確認できる。
 ここで図20を用いて酸化タングステン膜の膜減りが生じる様子と、成膜後の焼成工程の効果を説明する。低レートで酸化タングステン膜を成膜した後、そのままバンク形成工程を実行すると、酸化タングステン膜が低密度であるため、大幅に膜減りが生じる。一方、成膜した酸化タングステン膜について所定の焼成工程を実施し、焼き締めを行うと膜密度が上昇する。これにより溶解耐性が付与され、バンク形成工程を実施しても、膜減り量を最小限に抑制することができる。
(有機ELパネルにおける面内膜厚ズレについて)
 次に図21は、膜密度に対する膜減り量と、有機ELパネルにおける面内膜厚ズレの関係を示す図である。
 実験には基板表面の複数個所に酸化タングステン膜を形成したサンプルを複数作製し、焼成工程有と焼成工程無の酸化タングステン膜の膜減り量と、各基板上における膜減り後の膜厚のばらつきを、それぞれ膜密度との関係で求めた。図21はこの結果を示す。ここでは有機ELパネル上の各位置での膜減り量のばらつきを「パネル面内膜厚ズレ」と称し、膜減り量の最大値と最小値の差として求める。
 現在、有機ELパネルで要求されるスペックの一つは、ホール注入層のパネル面内膜厚ズレを4nm以下(±2nm以下)とすることである。ホール注入層のパネル面内膜厚ズレが大きいと、有機EL素子のキャビティ設計等に影響を及ぼすことも考えられる。
 ここで、酸化タングステン膜の膜減りを完全に防ぐことは現時点では難しいが、膜減り量が少ないホール注入層は成膜時の膜厚を薄く設計できるため、仕上がり膜厚におけるパネル面内膜厚ズレの絶対量も小さくできる。そこで本発明では、酸化タングステン膜に溶解耐性を持たせることで膜減り量を極力抑制できることを利用することで、成膜時の膜厚を薄くして仕上がり膜厚のパネル面内膜厚ズレの絶対量を抑制することが可能である。これにより、パネル上の各素子の発光効率のばらつきも防止できる。
 具体的に図21の結果をみると、今回測定に供したいずれのサンプルでも、焼成工程の有無に関係なく、パネル面内膜厚ズレは4nm以下(±2nm以下)に抑えられている。その中でも焼成工程を経たサンプルは、焼成工程を行わない場合に比べ、40%以上も面内膜厚ズレが低減された。
 有機ELパネルにおいて均一な発光特性を得る観点では、パネル面内膜厚ズレは極力小さい方がよい。このためパネル面内膜厚ズレの絶対量を効果的に抑制できる点において、本発明の酸化タングステン膜に対する焼成工程は有効であると言える。
 次に図22は、酸化タングステンからなるホール注入層のパネル面内膜厚ズレ(WOx膜厚ズレ)とRGB各色での電流効率のズレの関係を示すグラフである。測定に当たっては、RGBそれぞれの色のカラーフィルターを積層した有機EL素子の発光特性を測定に供した。
 図22に示すように、電流効率のズレは、酸化タングステン膜の膜厚ズレに比例して大きくなる。ここで本発明によれば、パネル上の各有機EL素子における膜厚ズレを抑制できるため、電流効率も均一になり、発光特性の均一化を期待できる。この効果は最終的に有機ELパネル全体の画像表示性能の向上に貢献できる。
 次に、実施の形態1の成膜条件で成膜した酸化タングステン膜をホール注入層として持つ有機EL素子を複数配設し、各有機ELパネルを作製した。前記各素子にはRGBいずれかの色のカラーフィルター(CF)を積層配置した。この有機ELパネルを駆動させ、パネル面内効率のばらつき(最大値-最小値)を求めた。この算出結果を比較例(WOx成膜後に焼成工程を実施しなかったもの)と比較した。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、RGB全ての色に対応する有機ELパネルにおいて、成膜後の酸化タングステン膜に焼成工程を実施することで、焼成工程を実施しなかった場合に比べて面内効率のばらつきが低減し、パネル全体において均一な発光特性を期待できることを確認できる。
 次に、図23は酸化タングステン成膜後に実施する焼成工程の焼成時間に対する、膜減り量(菱形点線)と膜密度(四角形点線)の関係についての測定結果を示すグラフである。成膜直後の膜厚は(14nm)とし、焼成温度は(230℃)とした。
 当図に示す結果から、膜減り量は、焼成時間が15分程度以上でほぼ漸近する。一方、膜密度は焼成時間が45分程度以上で漸近する。これ以上に焼成時間が長くなっても、酸化タングステン膜の特性に目立った影響は見られなかった。この測定結果より、膜密度を高めて膜減り量を低減するためには、焼成時間は少なくとも15分間でよく、45分以下で十分と言える。よって、好ましい焼成時間としては、15分以上45分以下の範囲が適当であると考えられる。
<実施の形態2>
〈有機EL素子1Cの全体構成〉
 図24(a)は、本実施の形態に係る有機EL素子1Cの構成を示す模式的な断面図である。図24(b)はホール注入層4A付近の部分拡大図である。
 有機EL素子1Cは、例えば、機能層をウェットプロセスにより塗布して成膜する塗布型であって、ホール注入層4Aと、所定の機能を有する有機材料を含んでなる各種機能層が互いに積層された状態で、陽極2および陰極8Dからなる電極対の間に介設された構成を有する。
 具体的には、有機EL素子1Cは、基板10の片側主面に対し、陽極2、ITO層3、ホール注入層4A、バッファ層6A、発光層6B、電子注入層7、陰極8D、封止層9を同順に積層して構成される。以下、有機EL素子1との違いを中心に説明する。
(ITO層3)
 ITO(酸化インジウムスズ)層3は、陽極2とホール注入層4Aの間に介在し、各層間の接合性を良好にする機能を有する。有機EL素子1Cでは、ITO層3を陽極2と分けているが、ITO層3を陽極2の一部とみなすこともできる。
(ホール注入層4A)
 ホール注入層4Aは、実施の形態1のホール注入層4と同様に、所定の低レートによる成膜条件で成膜された、少なくとも2nm以上の膜厚(ここでは一例として30nm)の酸化タングステン層で構成されている。これにより、ITO層3とホール注入層4Aはショットキーオーミック接続しており、ITO層3のフェルミレベルと、ITO層3の表面からホール注入層4A側への距離が2nmの位置におけるフェルミ面近傍の占有準位で最も低い結合エネルギーとの差が、±0.3eV以内に収まっている。これによって有機EL素子1Cでは、従来構成に比べてITO層3とホール注入層4A間のホール注入障壁が緩和され、良好な低電圧駆動が可能となっている。また、ホール注入層4Aの膜密度は5.8g/cm~6.0g/cmの範囲の高密度に設定され、バンク5の形成工程で用いるエッチング液や洗浄液に対する溶解耐性が高められている。これにより、膜減り量も最小限に抑制される。図24(a)では、ホール注入層4Aは発光層6B側の表面が若干膜減りし、陽極2側に向かって凹入構造をなしている様子を示している。
 ホール注入層4Aを構成する酸化タングステンは、その組成式WOxにおいて、xが概ね2<x<3の範囲における実数の構成として表わせる。ホール注入層4Aは可能な限り高純度の酸化タングステンで構成することが望ましいが、通常レベルで混入し得る程度の微量の不純物が含まれていてもよい。
 なお、ホール注入層4Aの所定の成膜条件についての詳細は(有機EL素子1Cの製造方法)の項および(ホール注入層4Aの成膜条件について)の項で詳細に説明する。
 ここで実施の形態2では、ホール注入層4Aを構成する酸化タングステン層が上記所定の成膜条件で成膜されていることにより、図24(b)に示すように、酸化タングステンの結晶13を多数含んでいる。各々の結晶13の粒径はナノメートルオーダーである。例示するとホール注入層4Aが厚さ30nm程度であるのに対し、結晶13の粒径は3~10nm程度である。以下、粒径がナノメートルオーダーの大きさの結晶13を「ナノクリスタル13」と称し、ナノクリスタル13からなる層の構造を「ナノクリスタル構造」と称する。なお、ホール注入層4Aには、ナノクリスタル構造以外に、アモルファス構造が含まれていてもよい。
 上記のようなナノクリスタル構造を有するホール注入層4Aでは、酸化タングステンを構成するタングステン原子は、自らが取り得る最大価数の状態および当該最大価数よりも低い価数の状態を有するように分布している。一般に、酸化タングステン層には酸素欠陥に類する構造が存在することがある。酸素欠陥に類する構造に含まれていないタングステン原子の価数は6価であり、一方、酸素欠陥に類する構造に含まれているタングステン原子の価数は6価よりも低い状態である。また、一般に、酸素欠陥に類する構造は結晶の表面に多く存在する。
 したがって、有機EL素子1Cでは、上記したITO層3とホール注入層4Aとの間のホール注入障壁の緩和に加え、ホール注入層4A中に5価のタングステン原子を分布させ、酸素欠陥に類する構造を形成させることによって、さらなるホール伝導効率の向上を期待できる。すなわち、酸化タングステンからなるホール注入層4Aにナノクリスタル構造を持たせることで、ITO層3からホール注入層4Aに注入されたホールは、ナノクリスタル13の結晶粒界に存在する酸素欠陥を伝導するので、ホールが伝導する経路を増やすことができ、ホール伝導効率の向上につながる。これにより有機EL素子1Cでは、駆動電圧の低減を効率よく図れる。
 また、ホール注入層4Aは成膜後に所定の焼成工程を経ており、高密度化によって化学的耐性および溶解耐性が高められている。したがって、ホール注入層4Aが、同層の形成後に行われる工程等において用いられる溶液等と触れた場合であっても、溶解、変質、分解等によるホール注入層4Aの損傷を抑制し、且つ、膜減りを効果的に防止できる。ホール注入層4Aが化学的耐性に優れる材料で構成されることで、ホール伝導効率の低下の防止効果も期待できる。
 ここで本実施の形態における酸化タングステンからなるホール注入層4Aは、ナノクリスタル構造のみから構成されている場合と、ナノクリスタル構造とアモルファス構造の両方から構成されている場合の双方を含むものとする。また、ナノクリスタル構造は、ホール注入層4Aの全体に均一に存在することが望ましいが、ITO層3とホール注入層4Aが接する界面から、ホール注入層4Aとバッファ層6Aが接する界面との間に、一箇所でも粒界が繋がっていれば、ホール注入層4Aの下端から上端へホールを効率よく伝導させることができる。
 なお、酸化タングステン結晶を含む層をホール注入層として用いる例自体は、過去にも報告されている。例えば、非特許文献1からは、酸化タングステン層を450℃のアニーリングで結晶化することにより、ホール伝導効率が向上することが示唆される。しかしながら、非特許文献1には、大面積の酸化タングステン層の成膜条件や、基板上にホール注入層として成膜された酸化タングステンが基板上の他層に与える影響等に関して記載がなく、大型有機ELパネルの実用的な量産性が示されていない。さらに、ホール注入層に積極的に酸素欠陥に類する構造を有する酸化タングステンのナノクリスタルを形成することも示されていない。本発明の一態様に係るホール注入層は、化学反応を起こしにくく、安定であり、大型有機ELパネルの量産プロセスにも耐える酸化タングステン層で構成されている。さらに、酸化タングステン層に積極的に酸素欠陥に類する構造を存在させることにより、優れたホール伝導効率を実現している点で、従来技術と大きく異なるものである。
(電子注入層7・陰極8D・封止層9)
 電子注入層7は、電子を陰極8Dから発光層6Bへ注入する機能を有し、例えば、膜厚5nm程度のバリウム、厚さ1nm程度のフッ化リチウム、フッ化ナトリウム、あるいはこれらを組み合わせた層で形成されることが好ましい。
 陰極8Dは、例えば、膜厚100nm程度のITO層から構成される。陽極2および陰極8Dには直流電源DCが接続され、外部より有機EL素子1Cに給電されるようになっている。
 封止層9は、有機EL素子1Cが水分や空気に晒されることを抑制する機能を有し、例えば、SiN(窒化シリコン)、SiON(酸窒化シリコン)等の材料で形成される。トップエミッション型の有機EL素子の場合は、光透過性の材料で形成されることが好ましい。
〈有機EL素子1Cの製造方法〉
 次に、図26~29を用いて、有機EL素子1Cの全体的な製造方法を例示する。
 まず、基板10上に例えばスパッタ法により銀からなる薄膜を形成し、当該薄膜を例えばフォトリソグラフィでパターニングすることにより、マトリックス状に陽極2を形成する(図26(a))。なお、当該薄膜は真空蒸着法等で形成しても良い。
 引き続き、例えばスパッタ法によりITO薄膜を形成し、当該ITO薄膜を例えばフォトリソグラフィによりパターニングすることにより、ITO層3を形成する。
 続いて、陽極2を含む下地層の上面(ここではITO層3の上面)に、後述する所定の成膜条件(低レート成膜条件)で、酸化タングステンを含む薄膜4Xを形成する(図26(b))。これによりタングステン原子に酸素原子が部分結合してなる酸素欠陥構造を形成し、価電子帯で最も低い結合エネルギーから1.8~3.6eV低い結合エネルギー領域内に占有準位を良好に存在させ、ホール注入特性を確保する。
 その後は実施の形態1と同様に、200℃~230℃、15分~45分の焼成時間で大気焼成を行い、焼き締めを行って膜密度を5.8g/cm~6.0g/cmの範囲まで増加させる。焼成工程により膜を高密度化し、以下のバンク形成工程で用いるエッチング液や洗浄液に対する溶解耐性を少なくとも成膜直後の2倍以上付与する。
 次に、薄膜4X上に有機材料からなるバンク材料を用いてバンク材料膜5Xを形成し、バンク材料膜5Xの一部を除去して薄膜4Xの一部を露出させる(図26(c))。バンク材料膜5Xの形成は、例えば塗布等により行うことができる。バンク材料膜5Xの除去は、所定の現像液(テトラメチルアンモニウムハイドロオキサイド(TMAH)溶液等)を用いてパターニングをすることにより行うことができる。
 このとき、薄膜4Xを構成する酸化タングステンは、成膜後の焼成工程を経ることで化学耐性は良好ではあるものの、TMAH溶液には若干溶解する。前記現像液により薄膜4Xの表面に付着するバンク残渣を洗浄すると、薄膜4Xの露出部分が浸食され、陽極2に向かって若干膜減りした凹入構造が形成される(図27(a))。この結果、凹部4aを具備するホール注入層4Aが形成される。
 次に、バンク材料膜5Xの表面に例えばフッ素プラズマ等による撥液処理を施して、バンク5を形成する。続いて、バンク5で規定された領域内に、例えばインクジェット法により有機材料を含む組成物インクを滴下し、そのインクを乾燥させてバッファ層6A、発光層6Bを形成する(図27(b))。なお、ディスペンサー法、ノズルコート法、スピンコート法、凹版印刷、凸版印刷等によりインクを滴下しても良い。
 次に、例えば真空蒸着法により、電子注入層7となるバリウム薄膜を形成する(図28(a))。
 次に、例えばスパッタ法により、陰極8DとなるITO薄膜を形成する(図28(b))。
 次に、陰極8Dの上に対して、封止層9を形成する(図28(c))。
 以上で有機EL素子1Cが完成する。
 ここで、ホール注入層4A(薄膜4X)の成膜条件について述べる。ホール注入層4A(薄膜4X)は、反応性スパッタ法で成膜することが好適である。具体的には、金属タングステンをターゲットとし、アルゴンガスをスパッタガスとし、酸素ガスを反応性ガスとしてチャンバー内に導入する。この状態で高電圧によりアルゴンをイオン化し、ターゲットに衝突させる。このとき、スパッタリング現象により放出された金属タングステンが酸素ガスと反応して酸化タングステンとなり、ITO層3上に酸化タングステン層が成膜される。
 なお、この成膜条件の詳細については次項で述べるが、簡単に述べると、(1)チャンバー内のガスの全圧が2.3Pa以上7.0Pa以下であり、かつ、(2)全圧に対する酸素ガス分圧の割合が50%以上70%以下であり、かつ、(3)ターゲットの単位面積当たりの投入電力(投入電力密度)が1.4W/cm以上2.8W/cm未満であり、かつ、(4)全圧を投入電力密度で割った値である全圧/電力密度が0.7Pa・cm/Wより大きくなるように設定することが好適である。このような成膜条件により、ナノクリスタル構造を有する酸化タングステンからなるホール注入層4Aが形成される。
(陽極形成工程からバンク形成工程までの別の工程例)
 次に図29、31を用いて、陽極形成工程からバンク形成工程までのプロセスの別例を説明する。なお、当該プロセスでは、基板10の表面に平坦化膜17を形成する構成を例示している。
 まず、基板10上にポリイミドやアクリル等の絶縁性樹脂材料を用いて平坦化膜17を形成する。当該平坦化膜17の上に、蒸着法に基づき、アルミ合金薄膜2X、IZO薄膜3X、薄膜(酸化タングステン膜)4Xの3層を順次形成する(図29(a))。アルミ合金材料としては、例えばACL(アルミコバルトランタン合金)材料を利用できる。
 次に、陽極2、IZO層3A、ホール注入層4Bを形成させたい領域に、フォトリソグラフィー法によりレジストパターンRを形成する(図29(b))。
 続いて、レジストパターンRに覆われていない薄膜4Xの領域をドライエッチング(D/E)処理し、パターニングする(図29(c))。このドライエッチング処理では、薄膜4Xのみを選択的にエッチングするため、F系ガスとNガスの混合ガス、もしくはF系ガスとOガスの混合ガスのいずれかを用いる。具体的なドライエッチング処理の設定条件は一例として以下の通りに定めることができる。
[ドライエッチング条件]
 処理対象;酸化タングステン膜
 エッチングガス;フッ素系ガス(SF、CFCHF
 混合ガス;O、N
 混合ガス比;CF:O=160:40
 供給パワー;Source 500W、Bias 400W
 圧力;10~50mTorr
 エッチング温度;室温
 上記ドライエッチング処理を実施後、ホール注入層4Bが形成される。その後はOガスでアッシング処理を行うことで、次のウェットエッチング(W/E)処理におけるレジストパターンRの剥離を容易にしておく。
 次に、ウェットエッチング処理により、レジストパターンRに覆われていないIZO薄膜3X、AI合金薄膜2Xの領域をパターニングする(図29(d))。エッチャントとして、硝酸、リン酸、酢酸、水の混合液を用い、IZO薄膜3X、Al合金薄膜2Xの2層を一括してウェットエッチングする。
 具体的なウェットエッチング処理の設定条件は一例として以下の通りに定めることができる。
[ウェットエッチング条件]
 処理対象;IZO薄膜及びAl合金薄膜
 エッチャント;リン酸、硝酸、酢酸の混合水溶液
 溶剤の混合比率;任意(一般的な条件で混合可能)
 エッチング温度;室温よりも低くする。
 なお、当該ウェットエッチング処理を良好に行うため、上層のIZO薄膜の膜厚としては20nm以下が好ましい。膜厚が20nmを超えると、サイドエッチング量が多くなるからである。
 また、IZO薄膜を用いてIZO層を形成する代わりに、ITO薄膜を用いてITO層を形成することも勿論可能である。
 以上のプロセスを経ると、陽極2及びIZO層3Aが形成される。その後、レジスト剥離工程を実施してレジストパターンRを除去することで、パターニングされた陽極2、IZO層3A、ホール注入層4Bの3層構造を得ることができる(図30(a))。このプロセスでは、ホール注入層4Bは陽極2、IZO層3Aに対応する位置に合わせて形成される。
 次に、露出している平坦化膜17の表面にバンク材料膜5X(不図示)を形成し、これをパターニングすることで、バンク5が形成される(図30(b))。
 なお、その後は上記した方法で所定のインクを調整し、これをバンク5に規定された領域に順次滴下・乾燥することで、バッファ層6A、発光層6Bをそれぞれ形成することができる(図30(c))。
〈ホール注入層4A、4Bの成膜条件に関する各種実験と考察〉
(ホール注入層4A、4Bの成膜条件について)
 実施の形態2では、ホール注入層4A、4Bを構成する酸化タングステンを所定の成膜条件(低レート成膜条件)で成膜することで、ホール注入層4A、4Bにナノクリスタル構造を存在させることによりホール伝導効率を向上させ、有機EL素子1Cを低電圧駆動できるようにしている。この所定の成膜条件について詳細に説明する。
 成膜にはDCマグネトロンスパッタ装置を用い、ターゲットは金属タングステンとした。基板温度の制御は行わなかった。スパッタガスはアルゴンガスで構成し、反応性ガスは酸素ガスで構成し、各々のガスを同等の流量とし、反応性スパッタ法で成膜することが好適であると考えられる。なお、ホール注入層4A、4Bの成膜方法はこれに限定されず、スパッタ法以外の方法、例えば蒸着法、CVD法等の公知の方法により成膜することもできる。
 ナノクリスタル構造を持つ酸化タングステンからなるホール注入層4A、4Bを形成するためには、基板に飛来する原子やクラスターが、基板上に先に形成された規則的な構造を壊さない程度の低運動エネルギーで基板に到達し、基板上を動きながら互いに規則性を持って結合できることが必要と考えられ、このためには出来る限り低い成膜レートで成膜されることが望ましい。
 ここで、後述する実験結果より、反応性スパッタ法において上記の低い成膜レートを実現できる成膜条件としては、上述した(1)~(4)が考えられる。本願発明者らは、この成膜条件(1)~(4)でホール注入層を成膜することで、ナノクリスタル構造を持つ酸化タングステンからなるホール注入層を得、有機EL素子の駆動電圧の低減効果を確認している。
 なお、上記(1)に関し、後述する実験においては、全圧は上限値が4.7Paであるが、少なくとも7.0Paまでは同様な傾向を示すことが、別途確認されている。
 また、上記(2)に関し、後述する実験においては、全圧に対する酸素ガス分圧の割合は50%に設定されているが、少なくとも50%以上70%以下において、駆動電圧の低減が確認されている。
 さらに、上記(4)に関し、補足説明する。アルゴンガスと酸素ガスの流量が同等の場合、投入電力密度と全圧によって膜質が決定すると考えられる。(3)の投入電力密度は、スパッタされターゲットから放出されるタングステン原子やタングステンクラスターの数と運動エネルギーを変化させる。つまり、投入電力密度を低くすることによって、ターゲットから放出されるタングステンの数が減少し、運動エネルギーも低下し、基板に飛来するタングステンを少なくかつ低運動エネルギーにでき、低レートでの成膜を期待できる。また、(1)の全圧は、ターゲットから放出されたタングステン原子やタングステンクラスターの平均自由行程を変化させる。つまり、全圧が高いとタングステン原子やタングステンクラスターが、基板に到達するまでにチャンバー内のガスと衝突を繰返す確率が上昇して、タングステン原子やタングステンクラスターの飛来方向が分散し、かつ運動エネルギーも衝突で失うことによって、基板に到達するタングステンを少なくかつ低運動エネルギーにでき、低レートでの成膜を期待できる。
 しかし、投入電力密度と全圧をそれぞれ単独で制御して成膜レートを変化させるには、限界があると考えられる。そこで、全圧を投入電力密度で割った値を、新たに成膜レートを決めるパラメータとして採用し、成膜条件(4)を決定した。
 具体的には、実施の形態2のナノクリスタル構造を形成するための上記パラメータ(全圧/電力密度)の条件は、後述する実験の範囲内では0.78Pa・cm/W以上であり、0.7Pa・cm/Wよりも大きいことが必要であると考えられ、より確実には0.8Pa・cm/W以上であることが好ましいと考えられる。一方で、上記パラメータの上限値については、後述する実験の範囲内では3.13Pa・cm/W以下であり、3.2Pa・cm/Wよも小さければよいと考えられ、より確実には3.1Pa・cm/W以下であることが好ましいと考えられる。しかし、上述の成膜レートとナノクリスタル構造に関する考察から、成膜レートは低いほど好ましく、したがって必ずしも上限値には制約されないと考えられる。以上から、成膜条件(4)を決定した。
なお、上記パラメータの値が大きい程成膜レートが低く、上記パラメータの値が小さい程成膜レートが高くなることが、別の実験により確認された。
 次に、上記成膜条件の有効性を確認するための諸実験を行った。
 まず、ホール注入層4A、4Bのホール伝導効率の、成膜条件依存性の評価を行うため、評価デバイスとして図25に示すホールオンリー素子1Dを作製した。実施の形態1で述べたように、ホールオンリー素子を流れるキャリアはホールのみと見なすことができるため、ホールオンリー素子はホール伝導効率の評価に好適である。
 図25に示すように、ホールオンリー素子1Dは、図24の有機EL素子1Cを評価デバイスの構成に変更したものであり、ITO陰極8Dを金からなる陰極8Eに置き換え、また陽極2を省略してITO層3を陽極とし、さらに電子注入層7、バンク5を省略したものである。具体的には、上述した製造方法に基づいて作製し、各層の膜厚は、ホール注入層4Aを30nm、TFBからなるバッファ層6Aを20nm、F8BTからなる発光層6Bを70nm、金からなる陰極8Eを100nmとした。 
 ホールオンリー素子1Dの作製工程において、ホール注入層4Aは、DCマグネトロンスパッタ装置を用い、反応性スパッタ法で成膜した。チャンバー内ガスは、アルゴンガスおよび酸素ガスの少なくともいずれかから構成し、ターゲットは金属タングステンを用いた。基板温度は制御せず、全圧は各ガスの流量で調節するものとした。チャンバー内のアルゴンガスおよび酸素ガスの分圧はそれぞれ50%である。
 表7に示すα~εの5通りの成膜条件のホール注入層4Aで構成される、各ホールオンリー素子1Dを作製した。以下、成膜条件αで成膜したホールオンリー素子1DをHOD-α、成膜条件βで成膜したホールオンリー素子1DをHOD-β、成膜条件γで成膜したホールオンリー素子1DをHOD-γ、成膜条件δで成膜したホールオンリー素子1DをHOD-δ、成膜条件εで成膜したホールオンリー素子1DをHOD-εと称する。
Figure JPOXMLDOC01-appb-T000007
 
 作製した各ホールオンリー素子1Dを直流電源DCに接続し、電圧を印加した。このときの印加電圧を変化させ、電圧値に応じて流れた電流値を素子の単位面積当たりの値(電流密度)に換算した。
 各ホールオンリー素子1Dの印加電圧と電流密度の関係を図31に示す。図中縦軸は電流密度(mA/cm)、横軸は印加電圧(V)である。
 また、各ホールオンリー素子1Dの駆動電圧を表8に示す。なお、ここでの「駆動電圧」は、電流密度0.3mA/cmのときの印加電圧とした。
 この駆動電圧が小さいほど、ホール注入層4Aのホール伝導効率は高いと言える。なぜなら、各ホールオンリー素子1Dにおいて、ホール注入層4A以外の構成は同一であるから、ホール注入層4Aを除く、隣接する2つの層の間のホール注入障壁や、ホール注入層4Aを除く各層のホール伝導効率は一定と考えられる。また、後述する理由により、ホール注入層4Aからバッファ層6Aへのホール注入効率よりも、ホール注入層4Aの伝導効率の方が、素子の特性に強く影響していると考えられる。さらに、当該実験で用いたITO層3とホール注入層4Aは、実施の形態1で述べたのと同様に、本発明のショットキーオーミック接続をしていることが、別の実験で確認された。したがって、各ホールオンリー素子1Dにおける、ホール注入層4Aの成膜条件による駆動電圧の違いは、ホール注入層4Aのホール伝導効率の違いを強く反映したものであると言える。
Figure JPOXMLDOC01-appb-T000008
 
 表8および図31に示されるように、HOD-εは他の素子に比べ、最も電流密度―印加電圧曲線の立ち上がりが遅く、最も駆動電圧が高い。したがって、HOD-α、β、γ、δは、全圧を下げるとともに投入電力密度を最大にした成膜条件で作製したHOD-εと比較して、ホール伝導効率が優れていると考えられる。
 以上、ホールオンリー素子1Dにおけるホール注入層4Aのホール伝導効率に関する検証について述べたが、ホールオンリー素子1Dは、素子の特性に関わる本質的な部分に関して、陰極8E以外は有機EL素子1Cと同一の構成である。したがって、有機EL素子1Cにおいても、ホール注入層4Aのホール伝導効率の成膜条件依存性は、本質的にホールオンリー素子1Dと同じである。
 このことを確認するために、α~εの各成膜条件で成膜したホール注入層4Aを用いた有機EL素子1Cを作製した。以下、成膜条件αで成膜した有機EL素子1CをBPD-α、成膜条件βで成膜した有機EL素子1CをBPD-β、成膜条件γで成膜した有機EL素子1CをBPD-γ、成膜条件δで成膜した有機EL素子1CをBPD-δ、成膜条件εで成膜した有機EL素子1CをBPD-εと称する。
 各有機EL素子1Cは、図24の有機EL素子1Cを評価デバイスの構成に変更したものであり、陰極8DをITOからアルミニウムに置き換え、また陽極2を省略してITO層3を陽極とし、さらにバンク5を省略したものである。具体的には、上述した製造方法に基づいて作製し、各層の膜厚は、ホール注入層4Aを30nm、TFBからなるバッファ層6Aを20nm、F8BTからなる発光層6Bを70nm、バリウム層からなる電子注入層7を5nm、アルミニウム層からなる陰極8を100nmとした。
 作製した成膜条件α~εの各有機EL素子1Cを直流電源DCに接続し、電圧を印加した。このときの印加電圧を変化させ、電圧値に応じて流れた電流値を素子の単位面積当たりの値(電流密度)に換算した。

 各有機EL素子1Cの印加電圧と電流密度の関係を図32に示す。図中縦軸は電流密度(mA/cm)、横軸は印加電圧(V)である。
 また、各有機EL素子1Cの駆動電圧を表9に示す。なお、ここでの「駆動電圧」は、電流密度8mA/cmのときの印加電圧とした。
Figure JPOXMLDOC01-appb-T000009
 
 表9および図32に示されるように、BPD-εは他の素子に比べ、最も電流密度―印加電圧曲線の立ち上がりが遅く、最も駆動電圧が高い。これは、それぞれ同じ成膜条件のホールオンリー素子HOD-α~εと同様の傾向である。
 以上の結果により、ホール注入層4Aのホール伝導効率の成膜条件依存性が、有機EL素子1Cにおいても、ホールオンリー素子1Dの場合と同様に作用していることが確認された。すなわち、有機EL素子1Cにおいても、成膜条件α、β、γ、δの範囲となる成膜条件で成膜を行うことにより、ホール注入層4Aのホール伝導効率が向上し、それにより低電圧駆動が実現されていると考えられる。
 なお、上記においては、投入電力の条件は、表7に示したように投入電力密度で表した。本実験で用いたものと異なるDCマグネトロンスパッタ装置を用いる場合は、投入電力密度が上記条件になるように投入電力を調節することにより、本実験と同様に、優れたホール伝導効率の酸化タングステン層からなるホール注入層4Aを得ることができる。なお、全圧、酸素分圧については、装置に依存しない。
 また、ホール注入層4Aの反応性スパッタ法による成膜時は、室温環境下に配置されるスパッタ装置において、基板温度を意図的には設定していない。したがって、少なくとも成膜前の基板温度は室温である。ただし、成膜中に基板温度は数10℃程度上昇する可能性がある。
 なお、本願発明者は別の実験により、酸素分圧を上げすぎた場合には逆に駆動電圧が上昇してしまうことを確認している。したがって、酸素分圧は50%~70%であることが望ましい。
 以上の実験結果より、低電圧駆動には成膜条件α、β、γ、δで作製したホール注入層を備える有機EL素子が好ましく、より好ましくは成膜条件α、βで作製した有機EL素子である。以下、成膜条件α、β、γ、δで作製したホール注入層を備える有機EL素子を本願の対象とする。
(ホール注入層4Aのタングステンの化学状態について)
 実施の形態2の有機EL素子1Cのホール注入層4A、4Bを構成する酸化タングステン層には、5価のタングステン原子が存在している。この5価のタングステン原子は、先の実験で示した成膜条件の調整により形成されるものである。詳細を以下に述べる。
 前述の成膜条件α~εで成膜した酸化タングステンの化学状態を確認するために、硬X線光電子分光測定(以下、単に「HXPS測定」と称す)実験を行った。ここで、一般に硬X線光電子分光スペクトル(以下、単に「HXPSスペクトル」と称す)からは、測定対象物の膜の深さ数十nmまでに渡る情報、言い換えれば膜のバルクの情報が得られ、測定深さは、表面の法線と光電子を検出する方向とがなす角度によって決まる。本実験では、酸化タングステン層の厚み方向全体の価数の状態を観察するために、上記角度を調整し、40°に決定した。
 HXPS測定条件は以下の通りである。なお、測定中、チャージアップは発生しなかった。
 (HXPS測定条件)
  SPring-8のビームラインBL46XUを使用。
  光源   :シンクロトロン放射光(エネルギー8keV)
  バイアス :なし
  出射角  :基板法線方向とのなす角が40°
  測定点間隔:0.05eV
 表7に示すα~εの各成膜条件でHXPS測定用のサンプルを作製した。ガラス上に成膜されたITO基板の上に、厚さ30nmの酸化タングステン層(ホール注入層4Aと見なす)を、前記の反応性スパッタ法で成膜することにより、HXPS測定用のサンプルとした。以降、成膜条件α、β、γ、δ、εで作製したHXPS測定用サンプルを、それぞれサンプルα、サンプルβ、サンプルγ、サンプルδ、サンプルεと称する。
 サンプルα~εの各ホール注入層4Aに対してHXPS測定を行った。その結果のスペクトルを図33に示す。横軸は結合エネルギーであり、ITO基板のフェルミレベルを原点とし、左方向を正の向きとした。縦軸は光電子強度である。
 図33に示す結合エネルギー領域には3つのピークが観測され、各ピークは図の左から右に向かって、それぞれタングステンの5p3/2準位(W5p3/2)、4f5/2準位(W4f5/2)、4f7/2準位(W4f7/2)に対応するピークであると帰属した。
 次に、各サンプルのスペクトルのW5p3/2、W4f5/2、W4f7/2に帰属された各ピークに対し、光電子分光解析用ソフト「XPSPEAK 4.1」を用いてピークフィッティング解析を行った。まず、硬X線のエネルギーに対する光イオン化断面積から、W4f7/2、W4f5/2、W5p3/2に対応する各成分それぞれの面積強度比を、W4f7/2:W4f5/2:W5p3/2=4:3:10.5に固定した。次に、表10に示すように、W4f7/2の6価に帰属される成分(W6+4f7/2)のピークトップの位置を結合エネルギー35.7eVに合わせた。次に、W5p3/2、W4f5/2、W4f7/2それぞれの表面光電子に帰属される成分、6価に帰属される成分、5価に帰属される成分のピークトップの位置と半値幅の初期値を、表10に示す範囲内に設定した。また、各成分のフィッティングに用いるGaussian-Lorentzianの混合関数におけるLorentzian関数の比率の初期値も、表10に示す範囲内に設定した。さらに、各成分の面積強度の初期値を、上記の強度比を保った上で任意に設定した。そして、各成分の面積強度を上記の強度比を保ちながら動かし、また各成分のピーク位置、半値幅、Lorentzian関数の比率を表10の範囲内で動かし、最大100回最適化計算することにより、最終的なピークフィッティング解析結果を得た。
Figure JPOXMLDOC01-appb-T000010
 
 最終的なピークフィッティング解析結果を図34に示す。図34(a)は、サンプルαの解析結果、図34(b)はサンプルεの解析結果である。
 両図において、破線(sample α、sample ε)は実測スペクトル(図33のスペクトルに相当)、二点鎖線(surface)は表面光電子に帰属される成分(Wsur5p3/2、Wsur4f5/2、Wsur4f7/2)、点線(W6+)は6価に帰属される成分(W6+5p3/2、W6+4f5/2、W6+4f7/2)、一点鎖線(W5+)は5価に帰属される成分(W5+5p3/2、W5+4f5/2、W5+4f7/2)である。実線(fit)は、二点鎖線と点線と一点鎖線で示す各成分を足し合わせたスペクトルである。
 図34の破線と実線のスペクトルは非常に良く一致しており、すなわちW5p3/2、W4f5/2、W4f7/2の各準位に帰属されるピークは、いずれもホール注入層4Aの表面からの光電子に帰属される成分(surface)と、ホール注入層4Aの層内に含まれる6価に帰属される成分(W6+)および5価に帰属される成分(W5+)の足し合わせで良く説明できることが分かる。
 また、図34(a)のサンプルαでは、6価に帰属される各成分(W6+)に対して0.3~1.8eV低い結合エネルギー領域に、対応した5価に帰属される成分(W5+)が存在することが確認できる。一方、図34(b)のサンプルεでは、そのような5価に帰属される成分は確認できない。分かりやすくするために、図34(a)および(b)のそれぞれの右側に、丸で囲んだ部分の拡大図を示した。これによれば、サンプルαでははっきりとW5+の一点鎖線の山(図中(c)で示した)が存在していること確認できるが、サンプルεでは確認できない。さらに、拡大図の細部に着目すると、サンプルαではピークフィッティング結果の各成分の足し合わせである実線(fit)と、6価の成分のみの点線(W6+)との間で大きく「ずれ」がある一方で、サンプルεではサンプルαほどの「ずれ」はない。すなわち、サンプルαにおけるこの「ずれ」が5価のタングステン原子の存在を示唆するものであると推察される。
 次に、サンプルα~εにおける、6価のタングステン原子に対する5価のタングステン原子の数の比率であるW5+/W6+を算出した。この比率は、各サンプルのピークフィッティング解析結果において、5価に帰属される成分の面積強度を、対応する6価に帰属される成分の面積強度で除算することにより算出した。
 なお、5価に帰属される成分と、対応する6価に帰属される成分の面積強度比は、W5p3/2、W4f5/2、W4f7/2のいずれにおいても、測定原理上同じ値になる。実際、本検討においても同じ値であることを確認している。そこで、以降の考察では、W4f7/2のみを用いている。
 表11にサンプルα~εのW4f7/2におけるW5+/W6+を示す。
Figure JPOXMLDOC01-appb-T000011
 
 表11に示すW5+/W6+の値によれば、ホール注入層4A中の5価のタングステン原子の割合が最も高いのはサンプルαであり、続いてサンプルβ、サンプルγ、サンプルδの順にその割合が小さくなる傾向があり、サンプルεは最も小さい。また、表9と表11の結果を比較すると、ホール注入層4A中の5価のタングステン原子の割合が高いほど、有機EL素子の駆動電圧が低くなる傾向があることがわかる。
 なお、上記のHXPS測定を用いて、タングステンと酸素の組成比を求めることにより、サンプルα~εとも、ホール注入層4A中のタングステン原子と酸素原子の数の比率は、層全体の平均として、ほぼ1:3であることが確認された。この比率より、サンプルα~εのいずれにおいても、ホール注入層4Aはほぼ全体にわたって、三酸化タングステンを基本とする原子配置を基本構造に持つと考えられる。なお、本願発明者はホール注入層4AのX線吸収微細構造(XAFS)測定を行い、サンプルα~εのいずれにおいても、上記基本構造が形成されていることを確認した。
(ホール注入層4Aの電子状態について)
 実施の形態2の酸化タングステンからなるホール注入層4Aは、実施の形態1のホール注入層4と同様に、フェルミ面近傍の占有準位を有する。この占有準位の作用により、ホール注入層4Aとバッファ層6Aとの間で界面準位接続がなされ、ホール注入層4Aとバッファ層6Aとの間のホール注入障壁が小さく抑えられている。これにより、実施の形態2の有機EL素子は、低電圧での駆動が可能となる。
 そして、このフェルミ面近傍の占有準位は、後述のように、上記の界面だけでなく、ホール注入層4Aの層中においてもナノクリスタルの粒界に存在し、ホールの伝導経路となっている。その結果、ホール注入層4Aは良好なホール伝導効率を得ることができ、実施の形態2の有機EL素子は、より低電圧での駆動が可能となる。
 前述のサンプルα~εの各ホール注入層4Aに対し、このフェルミ面近傍の占有準位の存在を確認する実験を、UPS測定を用いて行った。
 サンプルα~εは、いずれもスパッタ装置内においてホール注入層4Aを成膜した後、当該スパッタ装置に連結され窒素ガスが充填されたグローブボックス内に移送し、大気曝露しない状態を保った。そして、当該グローブボックス内でトランスファーベッセルに封入し、光電子分光装置に装着した。これにより、ホール注入層4Aを成膜後に大気曝露することなく、UPS測定を実施した。
 UPS測定条件は以下の通りである。なお、測定中チャージアップは発生しなかった。
  光源   :He I線
  バイアス :なし
  出射角  :基板法線方向
  測定点間隔:0.05eV
 図35に、サンプルα、εの各ホール注入層4Aの、領域(y)におけるUPSスペクトルを示す。ここで、領域(y)や点(iii)等の記号は、実施の形態1で説明した通りであり、横軸は点(iii)を原点とした相対的な結合エネルギーである。
 図35に示されるように、サンプルαのホール注入層4Aでは、価電子帯の立ち上がりの位置である点(iii)からおおよそ3.6eV低い結合エネルギーの位置から、点(iii)からおおよそ1.8eV低い結合エネルギーの位置までの領域に、実施の形態1で述べたフェルミ面近傍の隆起構造が確認できる。一方、このような隆起構造は、サンプルεでは確認できない。なお、サンプルβ、γ、δにおいても、上記の隆起構造は確認され、その形状、規格化強度に、サンプルαとの大きな差は見られなかった。
 しかしながら、UPS測定は表層のみの評価である。そこで、ホール注入層4Aの膜全体に渡ってもフェルミ面近傍の隆起構造が存在するかを、サンプルα、εの各ホール注入層4AのHXPS測定で確認したところ、サンプルαではやはり隆起構造が確認され、一方サンプルεではやはり確認できなかった。
 以上の実験より、実施の形態2のホール注入層4Aは、フェルミ面近傍の占有準位を有することが確認された。このように、光電子スペクトルにおいて点(iii)から1.8~3.6eV程度低い結合エネルギーの領域内に隆起(ピークとは限らない)した構造を持つ酸化タングステン層、すなわちフェルミ面近傍の占有準位を有する酸化タングステン層を、ホール注入層として用いることにより、実施の形態2の有機EL素子は、優れたホール伝導効率を発揮できるようになっている。
 なお、実施の形態2で述べた一連のホールオンリー素子、有機EL素子の特性には、ITO層3からホール注入層4Aへのホール注入効率、ホール注入層4Aからバッファ層6Aへのホール注入効率よりも、ホール注入層4Aのホール伝導効率が大きく影響していると考えられる。その理由を以下に述べる。
 成膜条件α、β、γ、δの各ホール注入層4Aでは、前述したように、いずれもUPS測定において、フェルミ面近傍の隆起構造が確認された。このことは、実施の形態1における図14で説明すれば、これらのホール注入層4Aには、いずれも注入サイト(x)がUPSで確認できる程度の数密度で存在していることを意味する。さらに、隆起構造の形状や規格化強度は、α、β、γ、δの各ホール注入層4Aで大差なく、したがって、注入サイト(x)の数密度は、α、β、γ、δの各ホール注入層4Aで同程度と考えられる。そして、成膜条件αが、実施の形態1の成膜条件Aと同等であることを考慮すれば、α、β、γ、δの各ホール注入層4Aは、いずれもバッファ層6Aの注入サイト(y)の数密度に対し、十分な数密度の注入サイト(x)を持っていると考えられる。つまり、成膜条件α、β、γ、δの各ホール注入層4Aは、ホール注入層4Aからバッファ層6Aへのホール注入効率に関しては、同程度と見なせる。
 ところが、表8のHOD-α、β、γ、δの駆動電圧は、いずれも良好であるものの、2.25Vの開きがある。したがって、ホール注入層4Aからバッファ層6Aへのホール注入効率以外の要素が、この開きに影響していることになる。そして、実施の形態2においては、ITO層3とホール注入層4Aの間には、前述のようにショットキーオーミック接続が形成されているから、この開きに影響する要素は、残りのひとつ、つまりホール注入層4A自体のホール伝導効率と考えられるのである。
(W5+/W6+の値とホール伝導効率の関係に関する考察)
 図36は酸化タングステン結晶の構造を説明するための図である。実施の形態2の酸化タングステンは、前述したようにタングステンと酸素の組成比がほぼ1:3であるから、ここでは三酸化タングステンを例に挙げて説明する。
 図36に示すように、三酸化タングステンの結晶は、6つの酸素原子が1つのタングステン原子に対し8面体配位で結合し、その8面体同士が頂点の酸素原子を共有する構造を持つ。(なお、図36では、単純化のために8面体が三酸化レニウムのように整然と並んだ絵で示しているが、実際は8面体同士がやや歪んで配置している。)
 この、6つの酸素と8面体配位で結合したタングステン原子が、6価のタングステン原子である。一方で、6価より価数が低いタングステン原子とは、この8面体配位が何らかの形で乱れたものに対応する。典型的には、配位している6つの酸素原子のうちのひとつが抜け酸素欠陥となっている場合で、このとき、残された5つの酸素原子と結合しているタングステン原子は5価となる。
 一般に金属酸化物に酸素欠陥が存在するときは、電気的な中性を維持するために、抜けた酸素原子が残した電子が欠陥周囲の金属原子に供給され、これにより金属原子の価数は低くなる。5価のタングステン原子は、このようにして電子がひとつ供給されており、したがって、抜けた酸素原子との結合に使われていた電子ひとつと合わせて、ひとつの非共有電子対を有していると考えられる。
 以上から推測される、5価のタングステン原子を有する実施の形態2のホール注入層4Aにおけるホール伝導のメカニズムは、例えば以下の通りである。
 5価のタングステン原子は、自身が持つ非共有電子対から電子をホールに供与することが可能である。したがって、5価のタングステン原子同士がある程度近接して存在すれば、ホール注入層に印加された電圧によって、ホールは5価のタングステン原子の非共有電子対の間をホッピングで移動することも可能である。さらに、5価のタングステン原子同士がほぼ隣接していれば、非共有電子対に対応する5d軌道同士の重なりが大きくなり、ホッピングをしなくても容易に移動が可能である。
 すなわち、実施の形態2では、ホール注入層4A中に存在する5価のタングステン原子の間を、ホールが伝導していると考えられるのである。
 上記の推測に基づけば、サンプルαのようにW5+/W6+の値が大きい、すなわち5価のタングステン原子の割合が高いホール注入層4Aでは、5価のタングステン原子同士がより近接、隣接しやすくなるため、低電圧でホール伝導しやすく、有機EL素子1Cにおいて優れたホール伝導効率を発揮できると考えられる。
 なお、サンプルγ、δにおいては、W5+/W6+の値がサンプルαほど高くはないが、3.2%程度であっても、素子は良好な低電圧駆動であった。これより、W5+/W6+の値は3.2%程度以上であれば良いと考えられる。
(ホール注入層4Aにおける酸化タングステンの微細構造について)
 実施の形態2のホール注入層4Aを構成する酸化タングステン層には、ナノクリスタル構造が存在している。このナノクリスタル構造は、成膜条件の調整により形成されるものである。詳細を以下に述べる。
 表7の成膜条件α~εで成膜した各ホール注入層4Aにおけるナノクリスタル構造の存在を確認するために、透過電子顕微鏡(TEM)観察実験を行った。
 TEM観察用のサンプルにおけるホール注入層4Aは、DCマグネトロンスパッタ装置を用いて成膜した。具体的には、ガラス上に成膜されたITO基板の上に、厚さ30nmの酸化タングステン層(ホール注入層4Aと見なす)を前記の反応性スパッタ法により成膜した。
以降、成膜条件α、β、γ、δ、εで作製したTEM観察用サンプルを、それぞれサンプルα、β、γ、δ、εと称する。
 ここで、一般にTEM観察は、観察する面に対して、サンプルの厚み方向を薄くして観察を行う。実施の形態2では、ホール注入層4Aの断面を観察するものとし、収束イオンビーム(FIB)装置を用いたサンプル加工により当該断面を作製し、さらに厚さ50nm程度の薄片にした。FIB加工とTEM観察の条件は以下の通りである。
 (FIB加工条件)
  使用機器:Quanta200(FEI社製)
  加速電圧:30kV(最終仕上げ5kV)
  薄片膜厚:約50nm
 (TEM観察条件)
  使用機器:トプコンEM-002B(トプコンテクノハウス社製)
  観察方法:高分解能電子顕微鏡法
  加速電圧:200kV
 図37に、サンプルα~εの各ホール注入層4Aの断面のTEM観察写真を示す。写真の倍率は、写真内に記載したスケールバーに従う。また、最暗部から最明部までを256階調に分割し表示している。
 サンプルα、β、γ、δの各TEM写真では、部分的に明部が同方向に配列していることによる、規則的な線状構造が確認される。スケールバーから、この線状構造はおおよそ1.85~5.55Åの間隔で配列していることがわかる。一方で、サンプルεでは明部が不規則に分散しており、規則的に配列した線状構造は確認されなかった。
一般にTEM写真において、上記のような線状構造がある領域は、一つの微細な結晶を表している。図37のTEM写真では、この結晶の大きさは、おおよそ5nm~10nm程度のナノサイズと見て取れる。したがって、上記の線状構造の有無は、次のように言い換えられる。すなわち、サンプルα、β、γ、δでは酸化タングステンのナノクリスタル構造が確認できるが、一方でサンプルεでは確認できず、ほぼ全体がアモルファス構造と考えられる。
 図37のサンプルαのTEM写真において、ナノクリスタルの任意の1つを白線の輪郭線にて図示した。なお、この輪郭線は正確なものではなく、あくまで例示である。なぜなら、TEM写真には断面の最表面だけではなく、その下層の様子も写り込んでいるため、正確な輪郭を特定することが困難であるからである。この輪郭線で囲んだナノクリスタルの大きさは、おおよそ5nm程度と読める。
 図37のTEM観察写真を2次元フーリエ変換した結果(2次元フーリエ変換像と称す)を、図38に示す。この2次元フーリエ変換像は、図37のTEM観察写真の逆空間における波数の分布であり、したがってTEM観察写真の周期性を示すものである。具体的には、図38の2次元フーリエ変換像は、図37のTEM写真を画像処理ソフト「LAview Version #1.77」を用い、フーリエ変換を行って作成した。
 サンプルα、β、γ、δの2次元フーリエ変換像では、中心点(Γ点)を中心とした、比較的明瞭な3本ないしは2本の同心円状の明部が確認される。一方、サンプルεでは、この同心円状の明部は不明瞭である。
上記の同心円状の明部の「不明瞭さ」は、図37のTEM写真における秩序性の崩れを示している。つまり、同心円状の明部が明瞭に確認できるサンプルα、β、γ、δのホール注入層4Aは秩序性、規則性が比較的高く、サンプルεのホール注入層4Aは秩序性、規則性が低いことを示している。
 上記の秩序性を明確にするために、図38の各2次元フーリエ変換像から、像の中心点からの距離に対する輝度の変化を示すグラフを作成した。図39は、その作成方法の概要を示す図であり、サンプルαを例として示している。
 図39(a)に示すように、2次元フーリエ変換像を、その中心点を回転中心として0°から359°まで1°刻みに回転させ、1°回転毎に、中心点から図のX軸方向の距離に対する輝度を測定する。そして、この1°回転毎の測定結果を全て足し合わせて360で割ることで、中心点からの距離に対する平均輝度(規格化輝度と称す)を得た。中心点からの距離を横軸に、各距離における規格化輝度を縦軸としてプロットしたものが図39(b)である。なお、2次元フーリエ変換像の回転には「Microsoft Office Picture Manager」を用い、中心点からの距離と輝度の測定には、画像処理ソフト「ImageNos」を用いた。以下、図39で説明した方法で作成した、中心点からの距離と、各距離における規格化輝度との関係を示すプロットを「輝度変化プロット」と称する。
 図40、図41に、サンプルα~εの輝度変化プロットを示す。各サンプルとも、中心点の高輝度部とは別に、矢印で示したピークを有することが分かる。以下、この輝度変化プロットにおける、中心点から最も近くに現れる矢印のピークを「ピークP1」と称する。
図40、41から、サンプルεのピークP1に比べて、サンプルα、β、γ、δのピークP1は鋭い凸形状を持っていることがわかる。この各サンプルのピークP1の鋭さを、数値化して比較した。図42はその評価方法の概要を示す図であり、サンプルαおよびεを例として示している。
 図42(a)、(b)は、それぞれサンプルαおよびεの輝度変化プロットであり、図42(a1)、(b1)はそのピークP1付近の拡大図である。図中に「L」で示した「ピークP1のピーク幅L」を、ピークP1の「鋭さ」を示す指標として用いることにする。
 この「ピークP1のピーク幅L」をより正確に決定するために、図42(a1)、(b1)の輝度変化プロットを一次微分し、それを図42(a2)、(b2)に示した。図42(a2)、(b2)において、ピークP1のピークトップに対応する横軸の値と、当該ピークトップから中心点に向かって最初に微分値が0となる位置に対応する横軸の値との差を、ピーク幅Lとする。
 ピークP1のピークトップに対応する横軸の値を100として規格化したときの、サンプルα~εにおけるピーク幅Lの値を表12に示す。
Figure JPOXMLDOC01-appb-T000012
 
 表12に示すように、ピーク幅Lは、サンプルαが最も小さく、サンプルβ、γ、δの順に大きくなり、サンプルεで最大となっている。ここで、サンプルγ、δのピーク幅Lはサンプルαほど小さくはない。しかしながら、21.9程度の値であっても、成膜条件γ、δのホール注入層4Aを持つ有機EL素子1Cは、前述の通り良好なホール伝導効率が得られている。
 表12のピーク幅Lの値は、図38の2次元フーリエ変換像における、中心点から最も近い同心円状の明部の明瞭さを示している。ピーク幅Lの値が小さいほど、同心円状の明部の広がりが小さく、したがって、2次元フーリエ変換前の図37のTEM写真における規則性、秩序性が高くなる。これは、TEM写真において、ナノクリスタル構造が占める面積の割合が大きくなることに対応すると考えられる。反対に、ピーク幅Lの値が大きいほど、同心円状の明部の広がりが大きく、したがって、2次元フーリエ変換前の図37のTEM写真における規則性、秩序性が低くなる。これは、TEM写真において、ナノクリスタル構造が占める面積の割合が低くなることに対応すると考えられる。
(ナノクリスタル構造とホール伝導効率との関係に関する考察)
 実施の形態2の各実験によって、次のことがわかった。ホール伝導効率が良いホール注入層は、膜全体にわたってフェルミ面近傍の占有準位を持ち、5価のタングステン原子の割合が高く、ナノクリスタル構造を持ち、膜構造の規則性、秩序性が高い。逆に、ホール伝導効率が悪いホール注入層は、膜全体にわたってフェルミ面近傍の占有準位が確認されず、5価のタングステン原子の割合が非常に低く、ナノクリスタル構造も確認できず、膜構造の規則性、秩序性が低い。この各実験結果の相関関係を、以下に考察する。
 まず、ナノクリスタル構造(膜構造の規則性)と、5価のタングステン原子の関係について述べる。
 実施の形態2の各成膜条件のホール注入層は、前述のように、いずれもタングステンと酸素の組成比がほぼ1:3である。したがって、成膜条件α、β、γ、δのホール注入層で見られた、膜構造の規則性の要因であるナノクリスタルは、三酸化タングステンの微結晶であると考えられる。
 ここで、一般に、ナノスケールの微結晶内部に酸素欠陥が生じた場合、そのサイズの小ささ故に、酸素欠陥が影響を及ぼす領域が相対的に非常に大きくなるため、微結晶は大きく歪み、その結晶構造の維持が困難になる。したがって、酸素欠陥に類する構造に由来する5価のタングステン原子が、ナノクリスタルの内部に含まれる可能性は低い。
 しかし、ナノクリスタルの表面や、ナノクリスタル同士の粒界に関しては、この限りではない。一般に、結晶の周期性が途切れる表面や粒界では、いわゆる表面酸素欠陥などの、酸素欠陥に類する構造が容易に形成される。例えば非特許文献6は、三酸化タングステン結晶の表面は、最表面のタングステン原子の半数が酸素原子に終端されていない構造の方が、最表面のタングステン原子の全てが酸素原子に終端された構造よりも安定であると報告している。このようにして、ナノクリスタルの表面や粒界には、酸素原子に終端されていない5価のタングステン原子が多く存在していると考えられる。
 一方で、成膜条件εのホール注入層は、5価のタングステン原子はほとんどなく、ナノクリスタルは確認されず、膜全体が規則性に乏しいアモルファス構造である。これは、三酸化タングステンの基本構造である8面体構造同士は、互いに途切れることなく頂点の酸素を共有している(したがって5価のタングステン原子にはならない)ものの、その8面体の並び方に周期性、秩序性がないためと考えられる。
 次に、フェルミ面近傍の占有準位と、5価のタングステン原子の関係について述べる。
 実施の形態1で述べたように、フェルミ面近傍の占有準位は酸素欠陥に類する構造に由来すると考えられている。また、5価のタングステン原子も酸素欠陥に類する構造に由来する。すなわち、フェルミ面近傍の占有準位と5価のタングステン原子は、同じ酸素欠陥に類する構造がその形成要因である。具体的には、5価のタングステン原子などが持つ酸素原子との結合に使われていない5d軌道がフェルミ面近傍の占有準位であるとの推測が、実施の形態1で述べたように、多数報告されている。
 以上から、ホール伝導効率が良いホール注入層では、ナノクリスタルの表面や粒界に5価のタングステン原子が多く隣接して存在し、したがって、表面や粒界において、5価のタングステン原子の5d軌道同士の重なりが大きく、フェルミ面近傍の占有準位が連続的に存在していると推察される。一方で、ホール伝導効率が悪いホール注入層では、酸素欠陥に類する構造およびそれに由来する5価のタングステン原子はアモルファス構造中にほとんどなく、そのためフェルミ面近傍の占有準位がほとんど存在しないと推察される。
 続いて、本発明のホール注入層のホール伝導のメカニズムについてさらに考察する。すでに、ホール注入層4A中に存在する5価のタングステン原子の間をホールが伝導している、と考察したが、上記の各実験結果の相関関係から、さらに具体像を推測することが可能である。
 まず、成膜条件εのホール注入層のように、主にアモルファス構造で形成されている酸化タングステンからなるホール注入層における、ホール伝導を説明する。図43(b)はホール注入層において、アモルファス構造16が支配的であり、ナノクリスタル15が少ない(あるいは全くない)場合における、ホール14の伝導を示す図である。ホール注入層に電圧が印加されると、アモルファス構造16中では、離散して存在する5価のタングステン原子のうち比較的近接しているものの間で、ホール14のホッピングが起こる。そして、電界の力を受けて、ホール14は近接する5価のタングステン原子の間をホッピングしながら、バッファ層側へ移動していく。つまり、アモルファス構造16中では、ホッピング伝導によりホール14が移動する。
 ここで、成膜条件εのホール注入層のように、5価のタングステン原子が極めて少ない場合、5価のタングステン原子間の距離が長く、この長距離間をホッピングするためには非常に高い電圧を印加する必要があり、したがって素子の駆動電圧は高くなる。
 なお、この高電圧化を避けるためには、5価のタングステン原子、したがって酸素欠陥に類する構造をアモルファス構造16中に増やせば良く、実際、例えば真空蒸着法による所定の条件で酸化タングステンを成膜すれば、酸素欠陥に類する構造を多く含むアモルファス膜を作製することは可能である。
 しかしながら、このような酸素欠陥に類する構造を多量に含むアモルファス膜では、化学的な安定性は失われてしまい、さらに、酸素欠陥に類する構造の光吸収現象に由来する、明らかな着色も生じてしまうため、有機ELパネルの量産に対して実用的ではない。この点、本発明のホール注入層は、タングステンと酸素の組成比がほぼ1:3であることから膜全体としては酸素欠陥に類する構造が少なく、かつ、結晶構造を形成している。したがって、化学的な安定性が比較的良好に保たれ、着色も低減されている。
 なお、図43(b)でナノクリスタル15の表面にホール14が到達した場合、ナノクリスタル15の表面には5価のタングステン原子が多く存在し、このためホールの授受が可能であるフェルミ面近傍の占有準位が、表面に隣接して存在し、したがってナノクリスタル15の表面に限れば、ホール14の移動は容易である。しかしながら、バッファ層にホール14が到達するためには、結局アモルファス構造16を経由せざるを得ないため、ホール伝導効率は向上しない。
 次に、本発明のナノクリスタル構造を有する酸化タングステン層におけるホール伝導を説明する。図43(a)はホール注入層において、アモルファス構造16が少なく(あるいは全くなく)、一方でナノクリスタル13が数多く存在している場合における、ホール14の伝導を示す図である。まず、上記と同様に、ナノクリスタル13の表面や粒界には、5価のタングステン原子が多く隣接して存在し、このためホールの授受が可能であるフェルミ面近傍の占有準位が、表面や粒界にほぼ連続して存在している。しかも、図43(a)ではナノクリスタル13が数多く存在していることにより、それぞれの表面や粒界がさらに連結している。すなわち、ナノクリスタル13間を連結した表面や粒界による、図の太矢印のような連続したホールの伝導経路が存在している。これにより、ホール注入層に電圧が印加されると、ホール14は、この連結した表面や粒界に広がっているフェルミ面近傍の占有準位を容易に伝導し、低駆動電圧でバッファ層に到達できるのである。
 以上の考察から、良好なホール伝導効率を示す金属酸化物層の構造としては、(1)ホールの授受を担う部分が存在すること、および(2)それが連続的に存在していること、が重要であると考えられる。したがって、(1)自身が取り得る最大価数より低い価数の金属原子が層中に存在し、(2)ナノクリスタル構造を形成している、金属酸化物層が、ホールの伝導に好適な構造と言える。 
 なお、上記した実施の形態2における実験及び考察は、主にホール注入層4Aに基づいて行ったが、当然ながらホール注入層4Bについても当てはまるものである。
<その他の事項>
 本発明のホール注入層の成膜方法は、反応性スパッタ法に限定されず、例えば蒸着法、CVD法等を用いることもできる。
 本発明の有機EL素子は、素子を単一で用いる構成に限定されない。複数の有機EL素子を画素として基板上に集積することにより、有機EL発光装置を構成することもできる。このような有機EL発光装置は、各々の素子における各層の膜厚を適切に設定して実施可能であり、例えば、照明装置等として利用できる。或いは、画像表示装置である有機ELパネルとすることもできる。
 実施の形態2では、図42に示したピークP1の立ち上がり位置を、図42(a2)、(b2)において、ピークP1のピークトップから中心点に向かって最初に微分値が0になる位置とした。しかし、ピークP1の立ち上がり位置の決定方法はこれに限らず、例えば、図42(a1)を例に説明すると、ピークP1近傍の規格化輝度の平均値をベースラインとし、当該ベースラインとピークP1近傍のグラフとの交点をピークP1の立ち上がり位置とすることもできる。
 本発明の有機EL素子では、ホール注入層と発光層の間にホール輸送層を形成してもよい。ホール輸送層は、ホール注入層から注入されたホールを発光層へ輸送する機能を有する。ホール輸送層としては、ホール輸送性の有機材料を用いる。ホール輸送性の有機材料とは、生じたホールを分子間の電荷移動反応により伝達する性質を有する有機物質である。これは、p型の有機半導体と呼ばれることもある。
 ホール輸送層の材料は、高分子材料または低分子材料のいずれを用いてもよく、例えば湿式印刷法で成膜できる。上層である発光層を形成する際に、発光層の材料と混ざらないよう、ホール輸送層の材料は、架橋剤を含むことが好ましい。ホール輸送層の材料としては、フルオレン部位とトリアリールアミン部位を含む共重合体や、低分子量のトリアリールアミン誘導体を例示できる。架橋剤の例としては、ジペンタエリスリトールヘキサアクリレートなどを用いることができる。この場合、ポリスチレンスルホン酸をドープしたポリ(3、4-エチレンジオキシチオフェン)(PEDOT:PSS)や、その誘導体(共重合体など)で形成されていることが好適である。
 有機EL素子1Cでは、陽極2を銀からなる薄膜で形成しているので、各層間の接合性を良好にするために、ITO層3をその上に形成している。陽極2をアルミニウムを主に含む材料にしたときは、接合性は良好になるため、ITO層3を無くして、陽極を単層構造にしてもよい。
 本発明の有機EL素子を用いて有機ELパネルを製造する場合、バンク形状はいわゆるピクセルバンク(井桁状バンク)に限定されず、ラインバンクも採用できる。図44に、複数本のラインバンク65を配置し、X軸方向に隣接する発光層66a、66b、66cを区分けした有機ELパネルの構成を示す。ラインバンク65を採用する場合には、Y軸方向に沿って隣接する発光層同士はバンク要素により規定されていないが、駆動方法や、陽極の面積、間隔などを適宜設定することにより、互いに影響せずに発光させることができる。
 また実施の形態1、2では、バンク材料として、有機材料が用いられていたが、無機材料を用いることもできる。この場合、バンク材料膜の形成は、有機材料を用いる場合と同様、例えば塗布等により行うことができる。
 本発明の有機EL素子は、携帯電話用のディスプレイやテレビなどの表示素子、各種光源などに利用可能である。いずれの用途においても、低輝度から光源用途等の高輝度まで幅広い輝度範囲で低電圧駆動される有機EL素子として適用できる。このような高性能により、家庭用もしくは公共施設、あるいは業務用の各種ディスプレイ装置、テレビジョン装置、携帯型電子機器用ディスプレイ、照明光源等として、幅広い利用が可能である。
 1、1C  有機EL素子
 1A    光電子分光測定用サンプル
 1B、1D ホールオンリー素子
 2     陽極
 3     ITO層
 3A    IZO層
 4X    薄膜(酸化タングステン膜)
 4、4A、4B  ホール注入層
 5X    バンク材料膜
 5     バンク
 6A    バッファ層
 6B    発光層
 8     陰極(2層)
 8A    バリウム層(陰極構成層)
 8B    アルミニウム層(陰極構成層)
 8C、8E    陰極(Au単層)
 8D    陰極(ITO単層)
 9     封止層
 10    基板
 11   シリコン基板
 12   酸化タングステン層
 13、15    ナノクリスタル
 14    ホール
 16    アモルファス構造
 17    平坦化膜
 DC    直流電源

Claims (8)

  1.  タングステン原子に酸素原子が部分結合してなる酸素欠陥構造を持つ酸化タングステンを含む酸化タングステン層を、陽極を含む下地層上に形成する第1工程と、
     前記酸化タングステン層を焼成する第2工程と、
     前記焼成した前記酸化タングステン層の上方に、隔壁材料を用いて隔壁材料膜を形成する第3工程と、
     前記隔壁材料膜をエッチング液を用いてパターニングし、開口部を有するパターンの隔壁を形成する第4工程と、
     前記開口部の内部に有機材料を含む有機層を形成する第5工程と、
     前記有機層の上方に陰極を形成する第6工程と、を有し、
     前記第2工程では、
     前記酸化タングステン層を焼成することで、前記酸素欠陥構造を維持しつつ、前記第4工程で用いるエッチング液に対する溶解耐性を向上させる
     有機発光素子の製造方法。
  2.  前記第2工程では、膜密度が5.8g/cm以上6.0g/cm以下となるように前記酸化タングステン層を焼成する
     請求項1に記載の有機発光素子の製造方法。
  3.  前記第1工程では、電子状態において、価電子帯で最も低い結合エネルギーより1.8~3.6eV低い結合エネルギー領域に占有準位を有するように、前記酸素欠陥構造を持つ前記酸化タングステン層を形成し、
     前記第2工程後も前記占有準位を維持する
     請求項1に記載の有機発光素子の製造方法。
  4.  前記第1工程では、UPSスペクトルまたはXPSスペクトルにおいて、価電子帯で最も低い結合エネルギーより1.8~3.6eV低い結合エネルギー領域内に隆起した形状を有するように、前記酸素欠陥構造を持つ前記酸化タングステン層を形成し、
     前記第2工程後も前記隆起形状を維持する
     請求項1に記載の有機発光素子の製造方法。
  5.  前記第1工程では、UPSスペクトルの微分スペクトルにおいて、価電子帯で最も低い結合エネルギーより1.8~3.6eV低い結合エネルギー領域にわたり、指数関数とは異なる関数として表わされるスペクトル形状を有するように、前記酸素欠陥構造を持つ前記酸化タングステン層を形成し、
     前記第2工程後も前記指数関数とは異なる関数として表わされる形状を維持する
     請求項1に記載の有機発光素子の製造方法。
  6.  前記第1工程では、価数が6価であるタングステン原子および価数が5価であるタングステン原子を含み、
     前記5価のタングステン原子の含有量を前記6価のタングステン原子の含有量で割った価であるW5+/W6+が3.2%以上7.4%以下となるように、前記酸素欠陥構造を持つ前記酸化タングステン層を形成し、
     前記第2工程後も前記W5+/W6+の比率を維持する
     請求項1に記載の有機発光素子の製造方法。
  7.  酸化タングステンを含む酸化タングステン層を、陽極を含む下地層上に形成する第1工程と、
     前記酸化タングステン層を焼成する第2工程と、
     前記焼成した前記酸化タングステン層の上方に、隔壁材料を用いて隔壁材料膜を形成する第3工程と、
     前記隔壁材料膜をエッチング液を用いてパターニングし、開口部を有するパターンの隔壁を形成する第4工程と、
     前記開口部の内部に有機材料を含む有機層を形成する第5工程と、
     前記有機層の上方に陰極を形成する第6工程と、を有し、
     前記第1工程では、UPSスペクトルまたはXPSスペクトルにおいて、価電子帯で最も低い結合エネルギーより1.8~3.6eV低い結合エネルギー領域内に隆起した形状を有するように前記酸化タングステン層を形成し、
     前記第2工程では、
     前記酸化タングステン層を焼成することで、前記UPSスペクトルまたは前記XPSスペクトルの前記隆起構造を維持しつつ、前記第4工程で用いるエッチング液に対する溶解耐性を向上させる
     有機発光素子の製造方法。
  8.  酸化タングステンを含む酸化タングステン層を、陽極を含む下地層上に形成する第1工程と、
     前記酸化タングステン層を焼成する第2工程と、
     前記焼成した前記酸化タングステン層の上方に、隔壁材料を用いて隔壁材料膜を形成する第3工程と、
     前記隔壁材料膜をエッチング液を用いてパターニングし、開口部を有するパターンの隔壁を形成する第4工程と、
     前記開口部の内部に有機材料を含む有機層を形成する第5工程と、
     前記有機層の上方に陰極を形成する第6工程と、を有し、
     前記第1工程では、価数が6価であるタングステン原子および価数が5価であるタングステン原子を含み、
     前記5価のタングステン原子の含有量を前記6価のタングステン原子の含有量で割った価であるW5+/W6+が3.2%以上7.4%以下となるように、前記酸化タングステン層を形成し、
     前記第2工程では、
     前記酸化タングステン層を焼成することで、前記W5+/W6+の比率を維持しつつ、前記第4工程で用いるエッチング液に対する溶解耐性を向上させる
     有機発光素子の製造方法。
PCT/JP2011/004059 2011-07-15 2011-07-15 有機発光素子の製造方法 WO2013011539A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2011/004059 WO2013011539A1 (ja) 2011-07-15 2011-07-15 有機発光素子の製造方法
KR1020137033242A KR101699119B1 (ko) 2011-07-15 2011-07-15 유기 발광 소자의 제조 방법
US14/128,867 US9065069B2 (en) 2011-07-15 2011-07-15 Method for producing organic light-emitting element
JP2013524519A JP5793570B2 (ja) 2011-07-15 2011-07-15 有機発光素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/004059 WO2013011539A1 (ja) 2011-07-15 2011-07-15 有機発光素子の製造方法

Publications (1)

Publication Number Publication Date
WO2013011539A1 true WO2013011539A1 (ja) 2013-01-24

Family

ID=47557747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004059 WO2013011539A1 (ja) 2011-07-15 2011-07-15 有機発光素子の製造方法

Country Status (4)

Country Link
US (1) US9065069B2 (ja)
JP (1) JP5793570B2 (ja)
KR (1) KR101699119B1 (ja)
WO (1) WO2013011539A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140035405A (ko) * 2011-07-15 2014-03-21 파나소닉 주식회사 유기 발광 소자
WO2013157058A1 (ja) * 2012-04-18 2013-10-24 パナソニック株式会社 有機el素子
JP2019102589A (ja) * 2017-11-30 2019-06-24 株式会社ジャパンディスプレイ 表示装置と表示装置の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223276A (ja) * 1999-02-02 2000-08-11 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
JP2006114928A (ja) * 2005-12-09 2006-04-27 Idemitsu Kosan Co Ltd n型無機半導体、n型無機半導体薄膜及びその製造方法
JP2006347807A (ja) * 2005-06-15 2006-12-28 Sumitomo Metal Mining Co Ltd 酸化物焼結体、酸化物透明導電膜、およびこれらの製造方法
WO2011021343A1 (ja) * 2009-08-19 2011-02-24 パナソニック株式会社 有機el素子
JP4647708B2 (ja) * 2008-09-30 2011-03-09 パナソニック株式会社 有機elデバイスおよびその製造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443922A (en) 1991-11-07 1995-08-22 Konica Corporation Organic thin film electroluminescence element
JPH05163488A (ja) 1991-12-17 1993-06-29 Konica Corp 有機薄膜エレクトロルミネッセンス素子
US5294869A (en) 1991-12-30 1994-03-15 Eastman Kodak Company Organic electroluminescent multicolor image display device
US5688551A (en) 1995-11-13 1997-11-18 Eastman Kodak Company Method of forming an organic electroluminescent display panel
JP4501345B2 (ja) 2002-02-08 2010-07-14 住友化学株式会社 金属含有メソポアシリケート、その製造方法およびその用途
WO2005060017A1 (en) 2003-12-16 2005-06-30 Matsushita Electric Industrial Co., Ltd. Organic electroluminescent device and method for manufacturing the same
US20090160325A1 (en) 2003-12-16 2009-06-25 Panasonic Corporation Organic electroluminescent device and method for manufacturing the same
JP2005203339A (ja) 2003-12-16 2005-07-28 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子およびその製造方法
EP1857179A1 (en) * 2005-01-18 2007-11-21 Nippon Shokubai Kagaku Kogyo Co. Ltd. Visible light-responsive photocatalyst composition and process for producing the same
JP5295668B2 (ja) 2008-07-14 2013-09-18 国立大学法人北海道大学 光触媒体の製造方法
JP5113723B2 (ja) 2008-11-04 2013-01-09 住友化学株式会社 光触媒体分散液
JP5720006B2 (ja) 2010-06-24 2015-05-20 株式会社Joled 有機el素子、表示装置および発光装置
JP5624141B2 (ja) 2010-07-30 2014-11-12 パナソニック株式会社 有機el素子
JP5677436B2 (ja) 2010-08-06 2015-02-25 パナソニック株式会社 有機el素子
JP5677432B2 (ja) 2010-08-06 2015-02-25 パナソニック株式会社 有機el素子、表示装置および発光装置
WO2012017503A1 (ja) 2010-08-06 2012-02-09 パナソニック株式会社 有機el素子
CN103038909B (zh) 2010-08-06 2015-07-29 株式会社日本有机雷特显示器 有机el元件及其制造方法
WO2012017490A1 (ja) 2010-08-06 2012-02-09 パナソニック株式会社 有機el素子、表示装置および発光装置
CN103053042B (zh) 2010-08-06 2016-02-24 株式会社日本有机雷特显示器 有机el元件及其制造方法
WO2012017501A1 (ja) 2010-08-06 2012-02-09 パナソニック株式会社 有機el素子およびその製造方法
WO2012017497A1 (ja) 2010-08-06 2012-02-09 パナソニック株式会社 有機el素子
JP5677431B2 (ja) 2010-08-06 2015-02-25 パナソニック株式会社 有機el素子、表示装置および発光装置
WO2012098587A1 (ja) 2011-01-21 2012-07-26 パナソニック株式会社 有機el素子
WO2012114648A1 (ja) 2011-02-23 2012-08-30 パナソニック株式会社 有機el表示パネルおよび有機el表示装置
JP5809234B2 (ja) 2011-02-25 2015-11-10 株式会社Joled 有機el表示パネルおよび有機el表示装置
JPWO2012153445A1 (ja) 2011-05-11 2014-07-28 パナソニック株式会社 有機el表示パネルおよび有機el表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223276A (ja) * 1999-02-02 2000-08-11 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
JP2006347807A (ja) * 2005-06-15 2006-12-28 Sumitomo Metal Mining Co Ltd 酸化物焼結体、酸化物透明導電膜、およびこれらの製造方法
JP2006114928A (ja) * 2005-12-09 2006-04-27 Idemitsu Kosan Co Ltd n型無機半導体、n型無機半導体薄膜及びその製造方法
JP4647708B2 (ja) * 2008-09-30 2011-03-09 パナソニック株式会社 有機elデバイスおよびその製造方法
WO2011021343A1 (ja) * 2009-08-19 2011-02-24 パナソニック株式会社 有機el素子

Also Published As

Publication number Publication date
US20140147952A1 (en) 2014-05-29
US9065069B2 (en) 2015-06-23
JPWO2013011539A1 (ja) 2015-02-23
KR20140034225A (ko) 2014-03-19
JP5793570B2 (ja) 2015-10-14
KR101699119B1 (ko) 2017-01-23

Similar Documents

Publication Publication Date Title
JP5676652B2 (ja) 有機el素子
JP5437736B2 (ja) 有機el素子
JP5677437B2 (ja) 有機el素子
JP5612691B2 (ja) 有機el素子およびその製造方法
WO2012153445A1 (ja) 有機el表示パネルおよび有機el表示装置
JP5677434B2 (ja) 有機el素子
WO2012017502A1 (ja) 有機el素子およびその製造方法
JP5861210B2 (ja) 有機発光素子
JP5677436B2 (ja) 有機el素子
WO2012014256A1 (ja) 有機el素子
JP5793569B2 (ja) 有機発光素子の製造方法
WO2012017501A1 (ja) 有機el素子およびその製造方法
WO2013128504A1 (ja) 有機el素子とその製造方法、および金属酸化物膜の成膜方法
JP5793570B2 (ja) 有機発光素子の製造方法
JP5612503B2 (ja) 有機発光装置
JP2012174712A (ja) 有機発光素子
JP2012174346A (ja) 有機発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137033242

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013524519

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14128867

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869701

Country of ref document: EP

Kind code of ref document: A1