WO2013006837A1 - Cationic oil-in-water emulsions - Google Patents
Cationic oil-in-water emulsions Download PDFInfo
- Publication number
- WO2013006837A1 WO2013006837A1 PCT/US2012/045845 US2012045845W WO2013006837A1 WO 2013006837 A1 WO2013006837 A1 WO 2013006837A1 US 2012045845 W US2012045845 W US 2012045845W WO 2013006837 A1 WO2013006837 A1 WO 2013006837A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oil
- composition
- water emulsion
- mole
- emulsion
- Prior art date
Links
- 239000000839 emulsion Substances 0.000 title claims abstract description 276
- 125000002091 cationic group Chemical group 0.000 title claims abstract description 121
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title abstract description 73
- -1 cationic lipid Chemical class 0.000 claims abstract description 208
- 239000002245 particle Substances 0.000 claims abstract description 169
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 311
- 239000000203 mixture Substances 0.000 claims description 217
- 239000007764 o/w emulsion Substances 0.000 claims description 158
- 239000004094 surface-active agent Substances 0.000 claims description 132
- 108091007433 antigens Proteins 0.000 claims description 114
- 102000036639 antigens Human genes 0.000 claims description 114
- 239000000427 antigen Substances 0.000 claims description 109
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 claims description 98
- 238000000034 method Methods 0.000 claims description 83
- 108090000623 proteins and genes Proteins 0.000 claims description 75
- 229920000053 polysorbate 80 Polymers 0.000 claims description 67
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 claims description 66
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 claims description 61
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 claims description 61
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 claims description 60
- 229940031439 squalene Drugs 0.000 claims description 60
- 239000007864 aqueous solution Substances 0.000 claims description 57
- 102000004169 proteins and genes Human genes 0.000 claims description 53
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical group CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 claims description 51
- 125000003729 nucleotide group Chemical group 0.000 claims description 48
- 239000000872 buffer Substances 0.000 claims description 42
- 239000012071 phase Substances 0.000 claims description 41
- 241000710929 Alphavirus Species 0.000 claims description 38
- 239000008346 aqueous phase Substances 0.000 claims description 37
- 239000002773 nucleotide Substances 0.000 claims description 34
- 229920001223 polyethylene glycol Polymers 0.000 claims description 33
- 239000002202 Polyethylene glycol Substances 0.000 claims description 30
- 229920000642 polymer Polymers 0.000 claims description 30
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 28
- 239000003795 chemical substances by application Substances 0.000 claims description 28
- 239000002736 nonionic surfactant Substances 0.000 claims description 25
- 239000000243 solution Substances 0.000 claims description 25
- 239000007979 citrate buffer Substances 0.000 claims description 24
- 230000028993 immune response Effects 0.000 claims description 24
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 23
- 150000003839 salts Chemical class 0.000 claims description 23
- JXTPJDDICSTXJX-UHFFFAOYSA-N n-Triacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC JXTPJDDICSTXJX-UHFFFAOYSA-N 0.000 claims description 19
- 229940032094 squalane Drugs 0.000 claims description 19
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 claims description 17
- 229940068968 polysorbate 80 Drugs 0.000 claims description 17
- 230000003612 virological effect Effects 0.000 claims description 15
- 229930006000 Sucrose Natural products 0.000 claims description 14
- 239000011780 sodium chloride Substances 0.000 claims description 14
- 239000005720 sucrose Substances 0.000 claims description 14
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 13
- 239000001294 propane Substances 0.000 claims description 13
- 238000000265 homogenisation Methods 0.000 claims description 12
- 108091027544 Subgenomic mRNA Proteins 0.000 claims description 11
- 150000001412 amines Chemical group 0.000 claims description 11
- 230000003362 replicative effect Effects 0.000 claims description 11
- 229920001992 poloxamer 407 Polymers 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 10
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 9
- 239000007791 liquid phase Substances 0.000 claims description 9
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 claims description 8
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 8
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 8
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 8
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 claims description 8
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 claims description 8
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 8
- 239000012634 fragment Substances 0.000 claims description 8
- 239000000600 sorbitol Substances 0.000 claims description 8
- ISXSJGHXHUZXNF-LXZPIJOJSA-N [(3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl] n-[2-(dimethylamino)ethyl]carbamate;hydrochloride Chemical compound Cl.C1C=C2C[C@@H](OC(=O)NCCN(C)C)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 ISXSJGHXHUZXNF-LXZPIJOJSA-N 0.000 claims description 7
- 229910017053 inorganic salt Inorganic materials 0.000 claims description 7
- 239000008121 dextrose Substances 0.000 claims description 6
- 150000005846 sugar alcohols Chemical class 0.000 claims description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims description 5
- 235000000346 sugar Nutrition 0.000 claims description 5
- 239000003963 antioxidant agent Substances 0.000 claims description 3
- 230000003078 antioxidant effect Effects 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- KSXTUUUQYQYKCR-LQDDAWAPSA-M 2,3-bis[[(z)-octadec-9-enoyl]oxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCC(=O)OCC(C[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC KSXTUUUQYQYKCR-LQDDAWAPSA-M 0.000 claims 22
- 125000000185 sucrose group Chemical group 0.000 claims 1
- 150000007523 nucleic acids Chemical class 0.000 abstract description 37
- 102000039446 nucleic acids Human genes 0.000 abstract description 36
- 108020004707 nucleic acids Proteins 0.000 abstract description 36
- 108700001237 Nucleic Acid-Based Vaccines Proteins 0.000 abstract description 9
- 238000004873 anchoring Methods 0.000 abstract description 5
- 239000003921 oil Substances 0.000 description 208
- 235000019198 oils Nutrition 0.000 description 208
- RSMRWWHFJMENJH-LQDDAWAPSA-M 2,3-bis[[(z)-octadec-9-enoyl]oxy]propyl-trimethylazanium;methyl sulfate Chemical compound COS([O-])(=O)=O.CCCCCCCC\C=C/CCCCCCCC(=O)OCC(C[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC RSMRWWHFJMENJH-LQDDAWAPSA-M 0.000 description 87
- 210000004027 cell Anatomy 0.000 description 67
- 235000018102 proteins Nutrition 0.000 description 44
- 150000002632 lipids Chemical class 0.000 description 40
- 241000700605 Viruses Species 0.000 description 36
- 108090000765 processed proteins & peptides Proteins 0.000 description 34
- 230000014509 gene expression Effects 0.000 description 33
- 238000009472 formulation Methods 0.000 description 29
- 235000014113 dietary fatty acids Nutrition 0.000 description 27
- 229930195729 fatty acid Natural products 0.000 description 27
- 239000000194 fatty acid Substances 0.000 description 27
- 102000004196 processed proteins & peptides Human genes 0.000 description 27
- 229960005486 vaccine Drugs 0.000 description 26
- 241000701085 Human alphaherpesvirus 3 Species 0.000 description 24
- 230000005847 immunogenicity Effects 0.000 description 24
- 108020004414 DNA Proteins 0.000 description 23
- 206010028980 Neoplasm Diseases 0.000 description 22
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 22
- 241000725643 Respiratory syncytial virus Species 0.000 description 22
- 210000002966 serum Anatomy 0.000 description 22
- 150000004665 fatty acids Chemical class 0.000 description 21
- 230000001965 increasing effect Effects 0.000 description 21
- 238000001727 in vivo Methods 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 18
- 229920001184 polypeptide Polymers 0.000 description 18
- 230000000694 effects Effects 0.000 description 17
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 16
- 208000015181 infectious disease Diseases 0.000 description 16
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 15
- 241000699670 Mus sp. Species 0.000 description 15
- 239000013598 vector Substances 0.000 description 15
- 238000010668 complexation reaction Methods 0.000 description 14
- 230000003053 immunization Effects 0.000 description 14
- 229920000136 polysorbate Polymers 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 241001465754 Metazoa Species 0.000 description 13
- 239000002671 adjuvant Substances 0.000 description 13
- 238000002649 immunization Methods 0.000 description 13
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 229910019142 PO4 Inorganic materials 0.000 description 12
- 241000710959 Venezuelan equine encephalitis virus Species 0.000 description 12
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 230000003472 neutralizing effect Effects 0.000 description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 12
- 235000021317 phosphate Nutrition 0.000 description 12
- 229920001983 poloxamer Polymers 0.000 description 12
- 241000701022 Cytomegalovirus Species 0.000 description 11
- 238000003556 assay Methods 0.000 description 11
- 238000010790 dilution Methods 0.000 description 11
- 239000012895 dilution Substances 0.000 description 11
- 238000000338 in vitro Methods 0.000 description 11
- 229940022005 RNA vaccine Drugs 0.000 description 10
- 239000003814 drug Substances 0.000 description 10
- 239000011734 sodium Substances 0.000 description 10
- 229910052708 sodium Inorganic materials 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- 241000588724 Escherichia coli Species 0.000 description 9
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- 239000013566 allergen Substances 0.000 description 9
- 150000001720 carbohydrates Chemical class 0.000 description 9
- 125000004432 carbon atom Chemical group C* 0.000 description 9
- 230000003993 interaction Effects 0.000 description 9
- 239000010452 phosphate Substances 0.000 description 9
- 238000013518 transcription Methods 0.000 description 9
- 230000035897 transcription Effects 0.000 description 9
- 238000001890 transfection Methods 0.000 description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 8
- 241000725303 Human immunodeficiency virus Species 0.000 description 8
- 229960004784 allergens Drugs 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 230000015556 catabolic process Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000006731 degradation reaction Methods 0.000 description 8
- 201000010099 disease Diseases 0.000 description 8
- 201000001441 melanoma Diseases 0.000 description 8
- 239000008194 pharmaceutical composition Substances 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 8
- 229920001451 polypropylene glycol Polymers 0.000 description 8
- 230000010076 replication Effects 0.000 description 8
- 235000015112 vegetable and seed oil Nutrition 0.000 description 8
- 206010009944 Colon cancer Diseases 0.000 description 7
- 229940021995 DNA vaccine Drugs 0.000 description 7
- 241000709661 Enterovirus Species 0.000 description 7
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 7
- 108090000288 Glycoproteins Proteins 0.000 description 7
- 241000710960 Sindbis virus Species 0.000 description 7
- 150000001298 alcohols Chemical class 0.000 description 7
- 201000011510 cancer Diseases 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 7
- 230000002163 immunogen Effects 0.000 description 7
- 108010026228 mRNA guanylyltransferase Proteins 0.000 description 7
- 244000052769 pathogen Species 0.000 description 7
- 239000008188 pellet Substances 0.000 description 7
- 239000002953 phosphate buffered saline Substances 0.000 description 7
- 235000010356 sorbitol Nutrition 0.000 description 7
- 230000014616 translation Effects 0.000 description 7
- 238000002255 vaccination Methods 0.000 description 7
- 229940084778 1,4-sorbitan Drugs 0.000 description 6
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 102000003886 Glycoproteins Human genes 0.000 description 6
- 241000701806 Human papillomavirus Species 0.000 description 6
- 241000124008 Mammalia Species 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 108700026244 Open Reading Frames Proteins 0.000 description 6
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 6
- 241000710961 Semliki Forest virus Species 0.000 description 6
- 241000144282 Sigmodon Species 0.000 description 6
- 241000700584 Simplexvirus Species 0.000 description 6
- 108020004459 Small interfering RNA Proteins 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 6
- 150000002148 esters Chemical class 0.000 description 6
- 239000012467 final product Substances 0.000 description 6
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 6
- 230000002458 infectious effect Effects 0.000 description 6
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 6
- 239000002777 nucleoside Substances 0.000 description 6
- 239000013612 plasmid Substances 0.000 description 6
- 229960000502 poloxamer Drugs 0.000 description 6
- 230000003389 potentiating effect Effects 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 230000001954 sterilising effect Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- 238000013519 translation Methods 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 150000005691 triesters Chemical class 0.000 description 6
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 5
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 5
- 108090000695 Cytokines Proteins 0.000 description 5
- 102000004127 Cytokines Human genes 0.000 description 5
- 108010041986 DNA Vaccines Proteins 0.000 description 5
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 5
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 5
- 238000002965 ELISA Methods 0.000 description 5
- 241000711549 Hepacivirus C Species 0.000 description 5
- 241000709721 Hepatovirus A Species 0.000 description 5
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 5
- 101710172711 Structural protein Proteins 0.000 description 5
- 239000008351 acetate buffer Substances 0.000 description 5
- 230000005875 antibody response Effects 0.000 description 5
- 230000002238 attenuated effect Effects 0.000 description 5
- 229960001927 cetylpyridinium chloride Drugs 0.000 description 5
- YMKDRGPMQRFJGP-UHFFFAOYSA-M cetylpyridinium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 YMKDRGPMQRFJGP-UHFFFAOYSA-M 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- GZWGEAAWWHKLDR-JDVCJPALSA-M dimethyl-bis[(z)-octadec-9-enoyl]azanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCC(=O)[N+](C)(C)C(=O)CCCCCCC\C=C/CCCCCCCC GZWGEAAWWHKLDR-JDVCJPALSA-M 0.000 description 5
- 150000002170 ethers Chemical class 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 235000011187 glycerol Nutrition 0.000 description 5
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 239000002502 liposome Substances 0.000 description 5
- 208000020816 lung neoplasm Diseases 0.000 description 5
- 108700021021 mRNA Vaccine Proteins 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 5
- 230000001717 pathogenic effect Effects 0.000 description 5
- 102000040430 polynucleotide Human genes 0.000 description 5
- 108091033319 polynucleotide Proteins 0.000 description 5
- 239000002157 polynucleotide Substances 0.000 description 5
- 239000011591 potassium Substances 0.000 description 5
- 229910052700 potassium Inorganic materials 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000004659 sterilization and disinfection Methods 0.000 description 5
- 239000008362 succinate buffer Substances 0.000 description 5
- 239000013638 trimer Substances 0.000 description 5
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical group CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 4
- RFVNOJDQRGSOEL-UHFFFAOYSA-N 2-hydroxyethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCO RFVNOJDQRGSOEL-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- 241000251468 Actinopterygii Species 0.000 description 4
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 208000026310 Breast neoplasm Diseases 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 241000711573 Coronaviridae Species 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 4
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 108060004795 Methyltransferase Proteins 0.000 description 4
- 101710163270 Nuclease Proteins 0.000 description 4
- 229920001213 Polysorbate 20 Polymers 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- 241000710942 Ross River virus Species 0.000 description 4
- 208000001203 Smallpox Diseases 0.000 description 4
- 239000004147 Sorbitan trioleate Substances 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 210000001744 T-lymphocyte Anatomy 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 102000002689 Toll-like receptor Human genes 0.000 description 4
- 108020000411 Toll-like receptor Proteins 0.000 description 4
- 241000223238 Trichophyton Species 0.000 description 4
- NWGKJDSIEKMTRX-BFWOXRRGSA-N [(2r)-2-[(3r,4s)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)C1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-BFWOXRRGSA-N 0.000 description 4
- 239000000074 antisense oligonucleotide Substances 0.000 description 4
- 238000012230 antisense oligonucleotides Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 229960000686 benzalkonium chloride Drugs 0.000 description 4
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 4
- MVCRZALXJBDOKF-JPZHCBQBSA-N beta-hydroxywybutosine 5'-monophosphate Chemical compound C1=NC=2C(=O)N3C(CC(O)[C@H](NC(=O)OC)C(=O)OC)=C(C)N=C3N(C)C=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O MVCRZALXJBDOKF-JPZHCBQBSA-N 0.000 description 4
- 210000000481 breast Anatomy 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000003240 coconut oil Substances 0.000 description 4
- 235000019864 coconut oil Nutrition 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 150000002191 fatty alcohols Chemical group 0.000 description 4
- 235000019688 fish Nutrition 0.000 description 4
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 4
- 238000007918 intramuscular administration Methods 0.000 description 4
- 201000005202 lung cancer Diseases 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 150000002772 monosaccharides Chemical class 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- 125000003835 nucleoside group Chemical group 0.000 description 4
- 239000004006 olive oil Substances 0.000 description 4
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 4
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 239000000344 soap Substances 0.000 description 4
- 235000019337 sorbitan trioleate Nutrition 0.000 description 4
- 229960000391 sorbitan trioleate Drugs 0.000 description 4
- 235000012424 soybean oil Nutrition 0.000 description 4
- 239000003549 soybean oil Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 4
- 231100000331 toxic Toxicity 0.000 description 4
- 230000002588 toxic effect Effects 0.000 description 4
- 239000008158 vegetable oil Substances 0.000 description 4
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 3
- GJTBSTBJLVYKAU-XVFCMESISA-N 2-thiouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=S)NC(=O)C=C1 GJTBSTBJLVYKAU-XVFCMESISA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 241000228212 Aspergillus Species 0.000 description 3
- 241000972773 Aulopiformes Species 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 3
- 206010006187 Breast cancer Diseases 0.000 description 3
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 3
- 241000222122 Candida albicans Species 0.000 description 3
- 241000283707 Capra Species 0.000 description 3
- 108090000994 Catalytic RNA Proteins 0.000 description 3
- 102000053642 Catalytic RNA Human genes 0.000 description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- 102000016911 Deoxyribonucleases Human genes 0.000 description 3
- 108010053770 Deoxyribonucleases Proteins 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- 206010066919 Epidemic polyarthritis Diseases 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 241000282326 Felis catus Species 0.000 description 3
- 241000710831 Flavivirus Species 0.000 description 3
- 229930091371 Fructose Natural products 0.000 description 3
- 239000005715 Fructose Substances 0.000 description 3
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 3
- XKMLYUALXHKNFT-UUOKFMHZSA-N Guanosine-5'-triphosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XKMLYUALXHKNFT-UUOKFMHZSA-N 0.000 description 3
- 241000606768 Haemophilus influenzae Species 0.000 description 3
- 241000700721 Hepatitis B virus Species 0.000 description 3
- 208000005176 Hepatitis C Diseases 0.000 description 3
- 241000724709 Hepatitis delta virus Species 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 3
- 241000257303 Hymenoptera Species 0.000 description 3
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 3
- 229930195725 Mannitol Natural products 0.000 description 3
- 241000351643 Metapneumovirus Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 241000711386 Mumps virus Species 0.000 description 3
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 3
- 108010065868 RNA polymerase SP6 Proteins 0.000 description 3
- 102000006382 Ribonucleases Human genes 0.000 description 3
- 108010083644 Ribonucleases Proteins 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 241000144290 Sigmodon hispidus Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000024932 T cell mediated immunity Effects 0.000 description 3
- 230000005867 T cell response Effects 0.000 description 3
- 101710137500 T7 RNA polymerase Proteins 0.000 description 3
- 208000004006 Tick-borne encephalitis Diseases 0.000 description 3
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 3
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine group Chemical group [C@@H]1([C@H](O)[C@H](O)[C@@H](CO)O1)N1C=NC=2C(N)=NC=NC12 OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 150000001335 aliphatic alkanes Chemical class 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 150000001345 alkine derivatives Chemical class 0.000 description 3
- 229940037003 alum Drugs 0.000 description 3
- 150000001413 amino acids Chemical group 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 230000000692 anti-sense effect Effects 0.000 description 3
- 210000003719 b-lymphocyte Anatomy 0.000 description 3
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 3
- 229960001950 benzethonium chloride Drugs 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 235000012000 cholesterol Nutrition 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 238000013270 controlled release Methods 0.000 description 3
- 150000005690 diesters Chemical class 0.000 description 3
- 150000002195 fatty ethers Chemical class 0.000 description 3
- 239000012091 fetal bovine serum Substances 0.000 description 3
- 238000000684 flow cytometry Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000002538 fungal effect Effects 0.000 description 3
- 229960002897 heparin Drugs 0.000 description 3
- 229920000669 heparin Polymers 0.000 description 3
- 208000029570 hepatitis D virus infection Diseases 0.000 description 3
- 125000001165 hydrophobic group Chemical group 0.000 description 3
- 239000000819 hypertonic solution Substances 0.000 description 3
- 230000002519 immonomodulatory effect Effects 0.000 description 3
- 210000004201 immune sera Anatomy 0.000 description 3
- 229940042743 immune sera Drugs 0.000 description 3
- 238000010166 immunofluorescence Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 238000010212 intracellular staining Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 150000004668 long chain fatty acids Chemical class 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 239000000594 mannitol Substances 0.000 description 3
- 235000010355 mannitol Nutrition 0.000 description 3
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000010172 mouse model Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 150000003833 nucleoside derivatives Chemical class 0.000 description 3
- 235000008390 olive oil Nutrition 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 3
- 230000004962 physiological condition Effects 0.000 description 3
- 229920001993 poloxamer 188 Polymers 0.000 description 3
- 229960004063 propylene glycol Drugs 0.000 description 3
- 235000013772 propylene glycol Nutrition 0.000 description 3
- 238000011552 rat model Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 125000002652 ribonucleotide group Chemical group 0.000 description 3
- 108091092562 ribozyme Proteins 0.000 description 3
- 235000019515 salmon Nutrition 0.000 description 3
- 239000004055 small Interfering RNA Substances 0.000 description 3
- 150000003462 sulfoxides Chemical class 0.000 description 3
- 239000003760 tallow Substances 0.000 description 3
- 150000003512 tertiary amines Chemical class 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 150000004670 unsaturated fatty acids Chemical group 0.000 description 3
- 239000002435 venom Substances 0.000 description 3
- 210000001048 venom Anatomy 0.000 description 3
- 231100000611 venom Toxicity 0.000 description 3
- 239000000811 xylitol Substances 0.000 description 3
- 235000010447 xylitol Nutrition 0.000 description 3
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 3
- 229960002675 xylitol Drugs 0.000 description 3
- OPCHFPHZPIURNA-MFERNQICSA-N (2s)-2,5-bis(3-aminopropylamino)-n-[2-(dioctadecylamino)acetyl]pentanamide Chemical compound CCCCCCCCCCCCCCCCCCN(CC(=O)NC(=O)[C@H](CCCNCCCN)NCCCN)CCCCCCCCCCCCCCCCCC OPCHFPHZPIURNA-MFERNQICSA-N 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 2
- YFSUTJLHUFNCNZ-UHFFFAOYSA-M 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctane-1-sulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YFSUTJLHUFNCNZ-UHFFFAOYSA-M 0.000 description 2
- CITHEXJVPOWHKC-UUWRZZSWSA-N 1,2-di-O-myristoyl-sn-glycero-3-phosphocholine Chemical group CCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCC CITHEXJVPOWHKC-UUWRZZSWSA-N 0.000 description 2
- HXVKEKIORVUWDR-FDDDBJFASA-N 1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-(methylaminomethyl)-2-sulfanylidenepyrimidin-4-one Chemical compound S=C1NC(=O)C(CNC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 HXVKEKIORVUWDR-FDDDBJFASA-N 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 2
- VZQXUWKZDSEQRR-SDBHATRESA-N 2-methylthio-N(6)-(Delta(2)-isopentenyl)adenosine Chemical compound C12=NC(SC)=NC(NCC=C(C)C)=C2N=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O VZQXUWKZDSEQRR-SDBHATRESA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 2
- OIVLITBTBDPEFK-UHFFFAOYSA-N 5,6-dihydrouracil Chemical compound O=C1CCNC(=O)N1 OIVLITBTBDPEFK-UHFFFAOYSA-N 0.000 description 2
- VSCNRXVDHRNJOA-PNHWDRBUSA-N 5-(carboxymethylaminomethyl)uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(CNCC(O)=O)=C1 VSCNRXVDHRNJOA-PNHWDRBUSA-N 0.000 description 2
- ZAYHVCMSTBRABG-UHFFFAOYSA-N 5-Methylcytidine Natural products O=C1N=C(N)C(C)=CN1C1C(O)C(O)C(CO)O1 ZAYHVCMSTBRABG-UHFFFAOYSA-N 0.000 description 2
- VKLFQTYNHLDMDP-PNHWDRBUSA-N 5-carboxymethylaminomethyl-2-thiouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=S)NC(=O)C(CNCC(O)=O)=C1 VKLFQTYNHLDMDP-PNHWDRBUSA-N 0.000 description 2
- QXDXBKZJFLRLCM-UAKXSSHOSA-N 5-hydroxyuridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(O)=C1 QXDXBKZJFLRLCM-UAKXSSHOSA-N 0.000 description 2
- HLZXTFWTDIBXDF-PNHWDRBUSA-N 5-methoxycarbonylmethyl-2-thiouridine Chemical compound S=C1NC(=O)C(CC(=O)OC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 HLZXTFWTDIBXDF-PNHWDRBUSA-N 0.000 description 2
- YIZYCHKPHCPKHZ-PNHWDRBUSA-N 5-methoxycarbonylmethyluridine Chemical compound O=C1NC(=O)C(CC(=O)OC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 YIZYCHKPHCPKHZ-PNHWDRBUSA-N 0.000 description 2
- SNNBPMAXGYBMHM-JXOAFFINSA-N 5-methyl-2-thiouridine Chemical compound S=C1NC(=O)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 SNNBPMAXGYBMHM-JXOAFFINSA-N 0.000 description 2
- ZAYHVCMSTBRABG-JXOAFFINSA-N 5-methylcytidine Chemical compound O=C1N=C(N)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 ZAYHVCMSTBRABG-JXOAFFINSA-N 0.000 description 2
- PVXPPJIGRGXGCY-DJHAAKORSA-N 6-O-alpha-D-glucopyranosyl-alpha-D-fructofuranose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@](O)(CO)O1 PVXPPJIGRGXGCY-DJHAAKORSA-N 0.000 description 2
- PNWOYKVCNDZOLS-UHFFFAOYSA-N 6-amino-5-chloro-1h-pyrimidin-2-one Chemical compound NC=1NC(=O)N=CC=1Cl PNWOYKVCNDZOLS-UHFFFAOYSA-N 0.000 description 2
- CLGFIVUFZRGQRP-UHFFFAOYSA-N 7,8-dihydro-8-oxoguanine Chemical class O=C1NC(N)=NC2=C1NC(=O)N2 CLGFIVUFZRGQRP-UHFFFAOYSA-N 0.000 description 2
- OGHAROSJZRTIOK-KQYNXXCUSA-O 7-methylguanosine Chemical compound C1=2N=C(N)NC(=O)C=2[N+](C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OGHAROSJZRTIOK-KQYNXXCUSA-O 0.000 description 2
- RGKBRPAAQSHTED-UHFFFAOYSA-N 8-oxoadenine Chemical compound NC1=NC=NC2=C1NC(=O)N2 RGKBRPAAQSHTED-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- 241000712891 Arenavirus Species 0.000 description 2
- 241000271566 Aves Species 0.000 description 2
- 238000011725 BALB/c mouse Methods 0.000 description 2
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 2
- 241000193738 Bacillus anthracis Species 0.000 description 2
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- 241001674044 Blattodea Species 0.000 description 2
- 241000588832 Bordetella pertussis Species 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 241000726768 Carpinus Species 0.000 description 2
- 241000255930 Chironomidae Species 0.000 description 2
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 2
- 208000001726 Classical Swine Fever Diseases 0.000 description 2
- 241000193449 Clostridium tetani Species 0.000 description 2
- 101710094648 Coat protein Proteins 0.000 description 2
- 108700010070 Codon Usage Proteins 0.000 description 2
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 2
- 208000001490 Dengue Diseases 0.000 description 2
- 206010012310 Dengue fever Diseases 0.000 description 2
- 241000710945 Eastern equine encephalitis virus Species 0.000 description 2
- 241001115402 Ebolavirus Species 0.000 description 2
- 241001466953 Echovirus Species 0.000 description 2
- 102100031726 Endoplasmic reticulum junction formation protein lunapark Human genes 0.000 description 2
- 241001529459 Enterovirus A71 Species 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 241000283073 Equus caballus Species 0.000 description 2
- 239000004386 Erythritol Substances 0.000 description 2
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 2
- 206010017533 Fungal infection Diseases 0.000 description 2
- 241000531123 GB virus C Species 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 2
- 241000590002 Helicobacter pylori Species 0.000 description 2
- 241000724675 Hepatitis E virus Species 0.000 description 2
- 208000037262 Hepatitis delta Diseases 0.000 description 2
- 101000941029 Homo sapiens Endoplasmic reticulum junction formation protein lunapark Proteins 0.000 description 2
- 101000991410 Homo sapiens Nucleolar and spindle-associated protein 1 Proteins 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 241000701041 Human betaherpesvirus 7 Species 0.000 description 2
- 241001502974 Human gammaherpesvirus 8 Species 0.000 description 2
- 241000701027 Human herpesvirus 6 Species 0.000 description 2
- 241000342334 Human metapneumovirus Species 0.000 description 2
- 241000700723 Ictalurid herpesvirus 1 Species 0.000 description 2
- 241000711804 Infectious hematopoietic necrosis virus Species 0.000 description 2
- 241000710921 Infectious pancreatic necrosis virus Species 0.000 description 2
- 241000546112 Infectious salmon anemia virus Species 0.000 description 2
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 2
- 229930010555 Inosine Natural products 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 241000588748 Klebsiella Species 0.000 description 2
- 102100031413 L-dopachrome tautomerase Human genes 0.000 description 2
- 239000004166 Lanolin Substances 0.000 description 2
- 241000713666 Lentivirus Species 0.000 description 2
- 241001505329 Lymphocystis disease virus 1 Species 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 241000555688 Malassezia furfur Species 0.000 description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 2
- 201000005505 Measles Diseases 0.000 description 2
- 241000712079 Measles morbillivirus Species 0.000 description 2
- 102100034216 Melanocyte-stimulating hormone receptor Human genes 0.000 description 2
- 201000009906 Meningitis Diseases 0.000 description 2
- 241001480037 Microsporum Species 0.000 description 2
- 241000712045 Morbillivirus Species 0.000 description 2
- 102100034256 Mucin-1 Human genes 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 241000711466 Murine hepatitis virus Species 0.000 description 2
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 2
- 208000031888 Mycoses Diseases 0.000 description 2
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 2
- VQAYFKKCNSOZKM-IOSLPCCCSA-N N(6)-methyladenosine Chemical compound C1=NC=2C(NC)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O VQAYFKKCNSOZKM-IOSLPCCCSA-N 0.000 description 2
- VQAYFKKCNSOZKM-UHFFFAOYSA-N NSC 29409 Natural products C1=NC=2C(NC)=NC=NC=2N1C1OC(CO)C(O)C1O VQAYFKKCNSOZKM-UHFFFAOYSA-N 0.000 description 2
- 241001263478 Norovirus Species 0.000 description 2
- 208000022873 Ocular disease Diseases 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 241000713112 Orthobunyavirus Species 0.000 description 2
- 241000702244 Orthoreovirus Species 0.000 description 2
- 206010033128 Ovarian cancer Diseases 0.000 description 2
- 206010061535 Ovarian neoplasm Diseases 0.000 description 2
- 235000021314 Palmitic acid Nutrition 0.000 description 2
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 2
- 208000002606 Paramyxoviridae Infections Diseases 0.000 description 2
- 235000019483 Peanut oil Nutrition 0.000 description 2
- 241000009328 Perro Species 0.000 description 2
- 241000710778 Pestivirus Species 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 241000709664 Picornaviridae Species 0.000 description 2
- 241000711902 Pneumovirus Species 0.000 description 2
- 241000209504 Poaceae Species 0.000 description 2
- 229920002556 Polyethylene Glycol 300 Polymers 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N Purine Natural products N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 230000006819 RNA synthesis Effects 0.000 description 2
- 241000711798 Rabies lyssavirus Species 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108700008625 Reporter Genes Proteins 0.000 description 2
- 108091028664 Ribonucleotide Proteins 0.000 description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 2
- 241000702670 Rotavirus Species 0.000 description 2
- 241000710799 Rubella virus Species 0.000 description 2
- 241000710801 Rubivirus Species 0.000 description 2
- 235000019485 Safflower oil Nutrition 0.000 description 2
- 241000277263 Salmo Species 0.000 description 2
- 241000209056 Secale Species 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 241000191940 Staphylococcus Species 0.000 description 2
- 206010043376 Tetanus Diseases 0.000 description 2
- 241000711484 Transmissible gastroenteritis virus Species 0.000 description 2
- 241000893966 Trichophyton verrucosum Species 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 2
- 206010046865 Vaccinia virus infection Diseases 0.000 description 2
- 101900123149 Varicella-zoster virus Envelope glycoprotein E Proteins 0.000 description 2
- 241000870995 Variola Species 0.000 description 2
- 241000711970 Vesiculovirus Species 0.000 description 2
- 241000607626 Vibrio cholerae Species 0.000 description 2
- 108010067390 Viral Proteins Proteins 0.000 description 2
- 241000711825 Viral hemorrhagic septicemia virus Species 0.000 description 2
- YXNIEZJFCGTDKV-UHFFFAOYSA-N X-Nucleosid Natural products O=C1N(CCC(N)C(O)=O)C(=O)C=CN1C1C(O)C(O)C(CO)O1 YXNIEZJFCGTDKV-UHFFFAOYSA-N 0.000 description 2
- 241000710772 Yellow fever virus Species 0.000 description 2
- 241000607479 Yersinia pestis Species 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 230000000240 adjuvant effect Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 125000005211 alkyl trimethyl ammonium group Chemical group 0.000 description 2
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 239000010775 animal oil Substances 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 229940072107 ascorbate Drugs 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- ALSPKRWQCLSJLV-UHFFFAOYSA-N azanium;acetic acid;acetate Chemical compound [NH4+].CC(O)=O.CC([O-])=O ALSPKRWQCLSJLV-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 235000011148 calcium chloride Nutrition 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 229960001231 choline Drugs 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 208000029742 colonic neoplasm Diseases 0.000 description 2
- 239000007859 condensation product Substances 0.000 description 2
- 235000005687 corn oil Nutrition 0.000 description 2
- 239000002285 corn oil Substances 0.000 description 2
- 235000012343 cottonseed oil Nutrition 0.000 description 2
- 239000002385 cottonseed oil Substances 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 2
- 208000025729 dengue disease Diseases 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- OGQYPPBGSLZBEG-UHFFFAOYSA-N dimethyl(dioctadecyl)azanium Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC OGQYPPBGSLZBEG-UHFFFAOYSA-N 0.000 description 2
- PSLWZOIUBRXAQW-UHFFFAOYSA-M dimethyl(dioctadecyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC PSLWZOIUBRXAQW-UHFFFAOYSA-M 0.000 description 2
- 206010013023 diphtheria Diseases 0.000 description 2
- 150000002016 disaccharides Chemical class 0.000 description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 2
- 229910000397 disodium phosphate Inorganic materials 0.000 description 2
- 235000019800 disodium phosphate Nutrition 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- SYELZBGXAIXKHU-UHFFFAOYSA-N dodecyldimethylamine N-oxide Chemical compound CCCCCCCCCCCC[N+](C)(C)[O-] SYELZBGXAIXKHU-UHFFFAOYSA-N 0.000 description 2
- XJWSAJYUBXQQDR-UHFFFAOYSA-M dodecyltrimethylammonium bromide Chemical compound [Br-].CCCCCCCCCCCC[N+](C)(C)C XJWSAJYUBXQQDR-UHFFFAOYSA-M 0.000 description 2
- 108010051081 dopachrome isomerase Proteins 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 2
- 235000019414 erythritol Nutrition 0.000 description 2
- 229940009714 erythritol Drugs 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- 235000019197 fats Nutrition 0.000 description 2
- 235000021323 fish oil Nutrition 0.000 description 2
- 229940013317 fish oils Drugs 0.000 description 2
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000009368 gene silencing by RNA Effects 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 229960005150 glycerol Drugs 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 201000010536 head and neck cancer Diseases 0.000 description 2
- 208000014829 head and neck neoplasm Diseases 0.000 description 2
- 229940037467 helicobacter pylori Drugs 0.000 description 2
- 210000002443 helper t lymphocyte Anatomy 0.000 description 2
- 208000002672 hepatitis B Diseases 0.000 description 2
- 235000008216 herbs Nutrition 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 230000005745 host immune response Effects 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- 230000028996 humoral immune response Effects 0.000 description 2
- 229940021223 hypertonic solution Drugs 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 238000003119 immunoblot Methods 0.000 description 2
- 239000002955 immunomodulating agent Substances 0.000 description 2
- 229940121354 immunomodulator Drugs 0.000 description 2
- 230000003308 immunostimulating effect Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 206010022000 influenza Diseases 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 229960003786 inosine Drugs 0.000 description 2
- 229940047124 interferons Drugs 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 239000000832 lactitol Substances 0.000 description 2
- 235000010448 lactitol Nutrition 0.000 description 2
- VQHSOMBJVWLPSR-JVCRWLNRSA-N lactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-JVCRWLNRSA-N 0.000 description 2
- 229960003451 lactitol Drugs 0.000 description 2
- 235000019388 lanolin Nutrition 0.000 description 2
- 229940039717 lanolin Drugs 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 235000011147 magnesium chloride Nutrition 0.000 description 2
- 201000004792 malaria Diseases 0.000 description 2
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 2
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 2
- 239000000845 maltitol Substances 0.000 description 2
- 235000010449 maltitol Nutrition 0.000 description 2
- 229940035436 maltitol Drugs 0.000 description 2
- 229960001855 mannitol Drugs 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 2
- 235000019796 monopotassium phosphate Nutrition 0.000 description 2
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 229920001542 oligosaccharide Polymers 0.000 description 2
- 150000002482 oligosaccharides Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 201000002528 pancreatic cancer Diseases 0.000 description 2
- 208000008443 pancreatic carcinoma Diseases 0.000 description 2
- 244000045947 parasite Species 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000000312 peanut oil Substances 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 2
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 239000013573 pollen allergen Substances 0.000 description 2
- 229920000056 polyoxyethylene ether Polymers 0.000 description 2
- 229940051841 polyoxyethylene ether Drugs 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 230000002516 postimmunization Effects 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 159000000001 potassium salts Chemical class 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 238000000159 protein binding assay Methods 0.000 description 2
- 229940023143 protein vaccine Drugs 0.000 description 2
- 150000003212 purines Chemical class 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 208000023504 respiratory system disease Diseases 0.000 description 2
- 239000002336 ribonucleotide Substances 0.000 description 2
- DWRXFEITVBNRMK-JXOAFFINSA-N ribothymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 DWRXFEITVBNRMK-JXOAFFINSA-N 0.000 description 2
- RHFUOMFWUGWKKO-UHFFFAOYSA-N s2C Natural products S=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 RHFUOMFWUGWKKO-UHFFFAOYSA-N 0.000 description 2
- 235000005713 safflower oil Nutrition 0.000 description 2
- 239000003813 safflower oil Substances 0.000 description 2
- 238000007127 saponification reaction Methods 0.000 description 2
- 150000004671 saturated fatty acids Chemical class 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000013207 serial dilution Methods 0.000 description 2
- 239000010686 shark liver oil Substances 0.000 description 2
- 238000001542 size-exclusion chromatography Methods 0.000 description 2
- 201000010153 skin papilloma Diseases 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 229960002920 sorbitol Drugs 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229940031626 subunit vaccine Drugs 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 238000010189 synthetic method Methods 0.000 description 2
- 239000003784 tall oil Substances 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 2
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical class N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- 229920000428 triblock copolymer Polymers 0.000 description 2
- 241001529453 unidentified herpesvirus Species 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 208000007089 vaccinia Diseases 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 229940118696 vibrio cholerae Drugs 0.000 description 2
- 210000002845 virion Anatomy 0.000 description 2
- 238000003260 vortexing Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 239000010497 wheat germ oil Substances 0.000 description 2
- 229940051021 yellow-fever virus Drugs 0.000 description 2
- CUNWUEBNSZSNRX-RKGWDQTMSA-N (2r,3r,4r,5s)-hexane-1,2,3,4,5,6-hexol;(z)-octadec-9-enoic acid Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O CUNWUEBNSZSNRX-RKGWDQTMSA-N 0.000 description 1
- PHFMCMDFWSZKGD-IOSLPCCCSA-N (2r,3s,4r,5r)-2-(hydroxymethyl)-5-[6-(methylamino)-2-methylsulfanylpurin-9-yl]oxolane-3,4-diol Chemical compound C1=NC=2C(NC)=NC(SC)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O PHFMCMDFWSZKGD-IOSLPCCCSA-N 0.000 description 1
- PBDRYHQFSGQZAM-XRDACOTDSA-N (2r,3s,4r,5r)-2-(hydroxymethyl)-5-[6-methyl-6-(methylamino)-8h-purin-9-yl]oxolane-3,4-diol Chemical compound C1N=C2C(NC)(C)N=CN=C2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O PBDRYHQFSGQZAM-XRDACOTDSA-N 0.000 description 1
- OFBLZCXWVROESG-PKPIPKONSA-N (2s)-1,2,3-trihydroxyheptan-4-one Chemical compound CCCC(=O)C(O)[C@@H](O)CO OFBLZCXWVROESG-PKPIPKONSA-N 0.000 description 1
- MYUOTPIQBPUQQU-CKTDUXNWSA-N (2s,3r)-2-amino-n-[[9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2-methylsulfanylpurin-6-yl]carbamoyl]-3-hydroxybutanamide Chemical compound C12=NC(SC)=NC(NC(=O)NC(=O)[C@@H](N)[C@@H](C)O)=C2N=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O MYUOTPIQBPUQQU-CKTDUXNWSA-N 0.000 description 1
- GPTUGCGYEMEAOC-IBZYUGMLSA-N (2s,3r)-2-amino-n-[[9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]purin-6-yl]-methylcarbamoyl]-3-hydroxybutanamide Chemical compound C1=NC=2C(N(C)C(=O)NC(=O)[C@@H](N)[C@H](O)C)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O GPTUGCGYEMEAOC-IBZYUGMLSA-N 0.000 description 1
- JZSSTKLEXRQFEA-HEIFUQTGSA-N (2s,3r,4s,5r)-2-(6-aminopurin-9-yl)-3,4-dihydroxy-5-(hydroxymethyl)oxolane-2-carboxamide Chemical compound C1=NC2=C(N)N=CN=C2N1[C@]1(C(=O)N)O[C@H](CO)[C@@H](O)[C@H]1O JZSSTKLEXRQFEA-HEIFUQTGSA-N 0.000 description 1
- ASWBNKHCZGQVJV-UHFFFAOYSA-N (3-hexadecanoyloxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-UHFFFAOYSA-N 0.000 description 1
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 1
- NRJAVPSFFCBXDT-HUESYALOSA-N 1,2-distearoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCC NRJAVPSFFCBXDT-HUESYALOSA-N 0.000 description 1
- XIJAZGMFHRTBFY-FDDDBJFASA-N 1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2-$l^{1}-selanyl-5-(methylaminomethyl)pyrimidin-4-one Chemical compound [Se]C1=NC(=O)C(CNC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 XIJAZGMFHRTBFY-FDDDBJFASA-N 0.000 description 1
- UTQUILVPBZEHTK-ZOQUXTDFSA-N 1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-3-methylpyrimidine-2,4-dione Chemical compound O=C1N(C)C(=O)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 UTQUILVPBZEHTK-ZOQUXTDFSA-N 0.000 description 1
- BTFXIEGOSDSOGN-KWCDMSRLSA-N 1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-1,3-diazinane-2,4-dione Chemical compound O=C1NC(=O)C(C)CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 BTFXIEGOSDSOGN-KWCDMSRLSA-N 0.000 description 1
- HOPBSPVKXGUTCR-XRDACOTDSA-N 1-[6-amino-9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-8H-purin-6-yl]ethanone Chemical compound C(C)(=O)C1(C2=NCN([C@H]3[C@H](O)[C@H](O)[C@@H](CO)O3)C2=NC=N1)N HOPBSPVKXGUTCR-XRDACOTDSA-N 0.000 description 1
- GODZNYBQGNSJJN-UHFFFAOYSA-N 1-aminoethane-1,2-diol Chemical compound NC(O)CO GODZNYBQGNSJJN-UHFFFAOYSA-N 0.000 description 1
- JAXNXAGNWJBENQ-UHFFFAOYSA-N 1-dimethylphosphoryldodecan-2-ol Chemical compound CCCCCCCCCCC(O)CP(C)(C)=O JAXNXAGNWJBENQ-UHFFFAOYSA-N 0.000 description 1
- SIDULKZCBGMXJL-UHFFFAOYSA-N 1-dimethylphosphoryldodecane Chemical compound CCCCCCCCCCCCP(C)(C)=O SIDULKZCBGMXJL-UHFFFAOYSA-N 0.000 description 1
- QAQSNXHKHKONNS-UHFFFAOYSA-N 1-ethyl-2-hydroxy-4-methyl-6-oxopyridine-3-carboxamide Chemical compound CCN1C(O)=C(C(N)=O)C(C)=CC1=O QAQSNXHKHKONNS-UHFFFAOYSA-N 0.000 description 1
- GFYLSDSUCHVORB-IOSLPCCCSA-N 1-methyladenosine Chemical compound C1=NC=2C(=N)N(C)C=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O GFYLSDSUCHVORB-IOSLPCCCSA-N 0.000 description 1
- UTAIYTHAJQNQDW-KQYNXXCUSA-N 1-methylguanosine Chemical compound C1=NC=2C(=O)N(C)C(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O UTAIYTHAJQNQDW-KQYNXXCUSA-N 0.000 description 1
- WJNGQIYEQLPJMN-IOSLPCCCSA-N 1-methylinosine Chemical compound C1=NC=2C(=O)N(C)C=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WJNGQIYEQLPJMN-IOSLPCCCSA-N 0.000 description 1
- CJPDBKNETSCHCH-UHFFFAOYSA-N 1-methylsulfinyldodecane Chemical compound CCCCCCCCCCCCS(C)=O CJPDBKNETSCHCH-UHFFFAOYSA-N 0.000 description 1
- HYTOZULGKGUFII-UHFFFAOYSA-N 1-methylsulfinyltridecan-3-ol Chemical compound CCCCCCCCCCC(O)CCS(C)=O HYTOZULGKGUFII-UHFFFAOYSA-N 0.000 description 1
- 101800001779 2'-O-methyltransferase Proteins 0.000 description 1
- SNGREZUHAYWORS-UHFFFAOYSA-M 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctanoate Chemical compound [O-]C(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F SNGREZUHAYWORS-UHFFFAOYSA-M 0.000 description 1
- IQZWKGWOBPJWMX-UHFFFAOYSA-N 2-Methyladenosine Natural products C12=NC(C)=NC(N)=C2N=CN1C1OC(CO)C(O)C1O IQZWKGWOBPJWMX-UHFFFAOYSA-N 0.000 description 1
- KRQUFUKTQHISJB-YYADALCUSA-N 2-[(E)-N-[2-(4-chlorophenoxy)propoxy]-C-propylcarbonimidoyl]-3-hydroxy-5-(thian-3-yl)cyclohex-2-en-1-one Chemical compound CCC\C(=N/OCC(C)OC1=CC=C(Cl)C=C1)C1=C(O)CC(CC1=O)C1CCCSC1 KRQUFUKTQHISJB-YYADALCUSA-N 0.000 description 1
- NKFNBVMJTSYZDV-UHFFFAOYSA-N 2-[dodecyl(2-hydroxyethyl)amino]ethanol Chemical compound CCCCCCCCCCCCN(CCO)CCO NKFNBVMJTSYZDV-UHFFFAOYSA-N 0.000 description 1
- SOEYIPCQNRSIAV-IOSLPCCCSA-N 2-amino-5-(aminomethyl)-7-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1h-pyrrolo[2,3-d]pyrimidin-4-one Chemical compound C1=2NC(N)=NC(=O)C=2C(CN)=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O SOEYIPCQNRSIAV-IOSLPCCCSA-N 0.000 description 1
- BIRQNXWAXWLATA-IOSLPCCCSA-N 2-amino-7-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-4-oxo-1h-pyrrolo[2,3-d]pyrimidine-5-carbonitrile Chemical compound C1=C(C#N)C=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O BIRQNXWAXWLATA-IOSLPCCCSA-N 0.000 description 1
- QNIZHKITBISILC-RPKMEZRRSA-N 2-amino-9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)-2-methyloxolan-2-yl]-3h-purin-6-one Chemical compound C1=NC(C(NC(N)=N2)=O)=C2N1[C@]1(C)O[C@H](CO)[C@@H](O)[C@H]1O QNIZHKITBISILC-RPKMEZRRSA-N 0.000 description 1
- PBFLIOAJBULBHI-JJNLEZRASA-N 2-amino-n-[[9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]purin-6-yl]carbamoyl]acetamide Chemical compound C1=NC=2C(NC(=O)NC(=O)CN)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O PBFLIOAJBULBHI-JJNLEZRASA-N 0.000 description 1
- MWBWWFOAEOYUST-UHFFFAOYSA-N 2-aminopurine Chemical class NC1=NC=C2N=CNC2=N1 MWBWWFOAEOYUST-UHFFFAOYSA-N 0.000 description 1
- MPNXSZJPSVBLHP-UHFFFAOYSA-N 2-chloro-n-phenylpyridine-3-carboxamide Chemical compound ClC1=NC=CC=C1C(=O)NC1=CC=CC=C1 MPNXSZJPSVBLHP-UHFFFAOYSA-N 0.000 description 1
- KMEMIMRPZGDOMG-UHFFFAOYSA-N 2-cyanoethoxyphosphonamidous acid Chemical compound NP(O)OCCC#N KMEMIMRPZGDOMG-UHFFFAOYSA-N 0.000 description 1
- VWSLLSXLURJCDF-UHFFFAOYSA-N 2-methyl-4,5-dihydro-1h-imidazole Chemical compound CC1=NCCN1 VWSLLSXLURJCDF-UHFFFAOYSA-N 0.000 description 1
- IQZWKGWOBPJWMX-IOSLPCCCSA-N 2-methyladenosine Chemical compound C12=NC(C)=NC(N)=C2N=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O IQZWKGWOBPJWMX-IOSLPCCCSA-N 0.000 description 1
- QEWSGVMSLPHELX-UHFFFAOYSA-N 2-methylthio-N6-(cis-hydroxyisopentenyl) adenosine Chemical compound C12=NC(SC)=NC(NCC=C(C)CO)=C2N=CN1C1OC(CO)C(O)C1O QEWSGVMSLPHELX-UHFFFAOYSA-N 0.000 description 1
- RHFUOMFWUGWKKO-XVFCMESISA-N 2-thiocytidine Chemical compound S=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 RHFUOMFWUGWKKO-XVFCMESISA-N 0.000 description 1
- GIIGHSIIKVOWKZ-UHFFFAOYSA-N 2h-triazolo[4,5-d]pyrimidine Chemical class N1=CN=CC2=NNN=C21 GIIGHSIIKVOWKZ-UHFFFAOYSA-N 0.000 description 1
- 108020005345 3' Untranslated Regions Proteins 0.000 description 1
- YXNIEZJFCGTDKV-JANFQQFMSA-N 3-(3-amino-3-carboxypropyl)uridine Chemical compound O=C1N(CCC(N)C(O)=O)C(=O)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 YXNIEZJFCGTDKV-JANFQQFMSA-N 0.000 description 1
- LKKMLIBUAXYLOY-UHFFFAOYSA-N 3-Amino-1-methyl-5H-pyrido[4,3-b]indole Chemical compound N1C2=CC=CC=C2C2=C1C=C(N)N=C2C LKKMLIBUAXYLOY-UHFFFAOYSA-N 0.000 description 1
- RDPUKVRQKWBSPK-UHFFFAOYSA-N 3-Methylcytidine Natural products O=C1N(C)C(=N)C=CN1C1C(O)C(O)C(CO)O1 RDPUKVRQKWBSPK-UHFFFAOYSA-N 0.000 description 1
- UTQUILVPBZEHTK-UHFFFAOYSA-N 3-Methyluridine Natural products O=C1N(C)C(=O)C=CN1C1C(O)C(O)C(CO)O1 UTQUILVPBZEHTK-UHFFFAOYSA-N 0.000 description 1
- BINGDNLMMYSZFR-QYVSTXNMSA-N 3-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6,7-dimethyl-5h-imidazo[1,2-a]purin-9-one Chemical compound C1=NC=2C(=O)N3C(C)=C(C)N=C3NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O BINGDNLMMYSZFR-QYVSTXNMSA-N 0.000 description 1
- WEVYNIUIFUYDGI-UHFFFAOYSA-N 3-[6-[4-(trifluoromethoxy)anilino]-4-pyrimidinyl]benzamide Chemical compound NC(=O)C1=CC=CC(C=2N=CN=C(NC=3C=CC(OC(F)(F)F)=CC=3)C=2)=C1 WEVYNIUIFUYDGI-UHFFFAOYSA-N 0.000 description 1
- TUBRCQBRKJXJEA-UHFFFAOYSA-N 3-[hexadecyl(dimethyl)azaniumyl]propane-1-sulfonate Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)CCCS([O-])(=O)=O TUBRCQBRKJXJEA-UHFFFAOYSA-N 0.000 description 1
- RDPUKVRQKWBSPK-ZOQUXTDFSA-N 3-methylcytidine Chemical compound O=C1N(C)C(=N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 RDPUKVRQKWBSPK-ZOQUXTDFSA-N 0.000 description 1
- DBTMGCOVALSLOR-UHFFFAOYSA-N 32-alpha-galactosyl-3-alpha-galactosyl-galactose Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(OC2C(C(CO)OC(O)C2O)O)OC(CO)C1O DBTMGCOVALSLOR-UHFFFAOYSA-N 0.000 description 1
- ZLOIGESWDJYCTF-UHFFFAOYSA-N 4-Thiouridine Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=S)C=C1 ZLOIGESWDJYCTF-UHFFFAOYSA-N 0.000 description 1
- 108010068327 4-hydroxyphenylpyruvate dioxygenase Proteins 0.000 description 1
- ZLOIGESWDJYCTF-XVFCMESISA-N 4-thiouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=S)C=C1 ZLOIGESWDJYCTF-XVFCMESISA-N 0.000 description 1
- 102100030310 5,6-dihydroxyindole-2-carboxylic acid oxidase Human genes 0.000 description 1
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 1
- UVGCZRPOXXYZKH-QADQDURISA-N 5-(carboxyhydroxymethyl)uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(C(O)C(O)=O)=C1 UVGCZRPOXXYZKH-QADQDURISA-N 0.000 description 1
- FAWQJBLSWXIJLA-VPCXQMTMSA-N 5-(carboxymethyl)uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(CC(O)=O)=C1 FAWQJBLSWXIJLA-VPCXQMTMSA-N 0.000 description 1
- NFEXJLMYXXIWPI-JXOAFFINSA-N 5-Hydroxymethylcytidine Chemical compound C1=C(CO)C(N)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NFEXJLMYXXIWPI-JXOAFFINSA-N 0.000 description 1
- ZYEWPVTXYBLWRT-UHFFFAOYSA-N 5-Uridinacetamid Natural products O=C1NC(=O)C(CC(=O)N)=CN1C1C(O)C(O)C(CO)O1 ZYEWPVTXYBLWRT-UHFFFAOYSA-N 0.000 description 1
- BISHACNKZIBDFM-UHFFFAOYSA-N 5-amino-1h-pyrimidine-2,4-dione Chemical compound NC1=CNC(=O)NC1=O BISHACNKZIBDFM-UHFFFAOYSA-N 0.000 description 1
- LOEDKMLIGFMQKR-JXOAFFINSA-N 5-aminomethyl-2-thiouridine Chemical compound S=C1NC(=O)C(CN)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 LOEDKMLIGFMQKR-JXOAFFINSA-N 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- ZYEWPVTXYBLWRT-VPCXQMTMSA-N 5-carbamoylmethyluridine Chemical compound O=C1NC(=O)C(CC(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 ZYEWPVTXYBLWRT-VPCXQMTMSA-N 0.000 description 1
- ZFTBZKVVGZNMJR-UHFFFAOYSA-N 5-chlorouracil Chemical compound ClC1=CNC(=O)NC1=O ZFTBZKVVGZNMJR-UHFFFAOYSA-N 0.000 description 1
- 101710163573 5-hydroxyisourate hydrolase Proteins 0.000 description 1
- JDBGXEHEIRGOBU-UHFFFAOYSA-N 5-hydroxymethyluracil Chemical compound OCC1=CNC(=O)NC1=O JDBGXEHEIRGOBU-UHFFFAOYSA-N 0.000 description 1
- ZXIATBNUWJBBGT-JXOAFFINSA-N 5-methoxyuridine Chemical compound O=C1NC(=O)C(OC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 ZXIATBNUWJBBGT-JXOAFFINSA-N 0.000 description 1
- HXVKEKIORVUWDR-UHFFFAOYSA-N 5-methylaminomethyl-2-thiouridine Natural products S=C1NC(=O)C(CNC)=CN1C1C(O)C(O)C(CO)O1 HXVKEKIORVUWDR-UHFFFAOYSA-N 0.000 description 1
- ZXQHKBUIXRFZBV-FDDDBJFASA-N 5-methylaminomethyluridine Chemical compound O=C1NC(=O)C(CNC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 ZXQHKBUIXRFZBV-FDDDBJFASA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- USVMJSALORZVDV-UHFFFAOYSA-N 6-(gamma,gamma-dimethylallylamino)purine riboside Natural products C1=NC=2C(NCC=C(C)C)=NC=NC=2N1C1OC(CO)C(O)C1O USVMJSALORZVDV-UHFFFAOYSA-N 0.000 description 1
- QFVKLKDEXOWFSL-UHFFFAOYSA-N 6-amino-5-bromo-1h-pyrimidin-2-one Chemical compound NC=1NC(=O)N=CC=1Br QFVKLKDEXOWFSL-UHFFFAOYSA-N 0.000 description 1
- NLLCDONDZDHLCI-UHFFFAOYSA-N 6-amino-5-hydroxy-1h-pyrimidin-2-one Chemical compound NC=1NC(=O)N=CC=1O NLLCDONDZDHLCI-UHFFFAOYSA-N 0.000 description 1
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 1
- RYYIULNRIVUMTQ-UHFFFAOYSA-N 6-chloroguanine Chemical class NC1=NC(Cl)=C2N=CNC2=N1 RYYIULNRIVUMTQ-UHFFFAOYSA-N 0.000 description 1
- LOSIULRWFAEMFL-UHFFFAOYSA-N 7-deazaguanine Chemical compound O=C1NC(N)=NC2=C1CC=N2 LOSIULRWFAEMFL-UHFFFAOYSA-N 0.000 description 1
- LPXQRXLUHJKZIE-UHFFFAOYSA-N 8-azaguanine Chemical compound NC1=NC(O)=C2NN=NC2=N1 LPXQRXLUHJKZIE-UHFFFAOYSA-N 0.000 description 1
- 229960005508 8-azaguanine Drugs 0.000 description 1
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical class NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 1
- 102100030840 AT-rich interactive domain-containing protein 4B Human genes 0.000 description 1
- 208000035657 Abasia Diseases 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Chemical class C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 241000235389 Absidia Species 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 241000219496 Alnus Species 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 241000223600 Alternaria Species 0.000 description 1
- 235000009328 Amaranthus caudatus Nutrition 0.000 description 1
- 240000001592 Amaranthus caudatus Species 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-M Aminoacetate Chemical compound NCC([O-])=O DHMQDGOQFOQNFH-UHFFFAOYSA-M 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 206010059313 Anogenital warts Diseases 0.000 description 1
- 108020004491 Antisense DNA Proteins 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- 102100037435 Antiviral innate immune response receptor RIG-I Human genes 0.000 description 1
- 101710127675 Antiviral innate immune response receptor RIG-I Proteins 0.000 description 1
- 241000710189 Aphthovirus Species 0.000 description 1
- 241000256837 Apidae Species 0.000 description 1
- 241000239223 Arachnida Species 0.000 description 1
- PEMQXWCOMFJRLS-UHFFFAOYSA-N Archaeosine Natural products C1=2NC(N)=NC(=O)C=2C(C(=N)N)=CN1C1OC(CO)C(O)C1O PEMQXWCOMFJRLS-UHFFFAOYSA-N 0.000 description 1
- 201000002909 Aspergillosis Diseases 0.000 description 1
- 241000228197 Aspergillus flavus Species 0.000 description 1
- 241001225321 Aspergillus fumigatus Species 0.000 description 1
- 241000132177 Aspergillus glaucus Species 0.000 description 1
- 208000036641 Aspergillus infections Diseases 0.000 description 1
- 241000351920 Aspergillus nidulans Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 241001465318 Aspergillus terreus Species 0.000 description 1
- 241000208837 Asterales Species 0.000 description 1
- 244000075850 Avena orientalis Species 0.000 description 1
- 235000007319 Avena orientalis Nutrition 0.000 description 1
- 241000711404 Avian avulavirus 1 Species 0.000 description 1
- 102100035526 B melanoma antigen 1 Human genes 0.000 description 1
- 208000003950 B-cell lymphoma Diseases 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 241000235579 Basidiobolus Species 0.000 description 1
- 241000608319 Bebaru virus Species 0.000 description 1
- 102000015735 Beta-catenin Human genes 0.000 description 1
- 108060000903 Beta-catenin Proteins 0.000 description 1
- 235000003932 Betula Nutrition 0.000 description 1
- 241000219429 Betula Species 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- 241000219495 Betulaceae Species 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 241000335423 Blastomyces Species 0.000 description 1
- 241000238658 Blattella Species 0.000 description 1
- 241000589968 Borrelia Species 0.000 description 1
- 208000003508 Botulism Diseases 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 241000711895 Bovine orthopneumovirus Species 0.000 description 1
- 241000712005 Bovine respirovirus 3 Species 0.000 description 1
- 241000710780 Bovine viral diarrhea virus 1 Species 0.000 description 1
- 241000614861 Brachiola Species 0.000 description 1
- 241000339490 Brachyachne Species 0.000 description 1
- 241000589567 Brucella abortus Species 0.000 description 1
- 241001509299 Brucella canis Species 0.000 description 1
- 241001148106 Brucella melitensis Species 0.000 description 1
- 241001148112 Brucella neotomae Species 0.000 description 1
- 241000589568 Brucella ovis Species 0.000 description 1
- 241000514715 Brucella pinnipedialis Species 0.000 description 1
- 241000508772 Brucella sp. Species 0.000 description 1
- 241001148111 Brucella suis Species 0.000 description 1
- 241000589513 Burkholderia cepacia Species 0.000 description 1
- 241000722910 Burkholderia mallei Species 0.000 description 1
- 241001136175 Burkholderia pseudomallei Species 0.000 description 1
- 241001508395 Burkholderia sp. Species 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 241000232908 Cabassous Species 0.000 description 1
- 101100438971 Caenorhabditis elegans mat-1 gene Proteins 0.000 description 1
- 241000714198 Caliciviridae Species 0.000 description 1
- 241001493160 California encephalitis virus Species 0.000 description 1
- 241001247232 Caligidae Species 0.000 description 1
- 241001611011 Caligus Species 0.000 description 1
- 241001611004 Caligus rogercresseyi Species 0.000 description 1
- 102100025570 Cancer/testis antigen 1 Human genes 0.000 description 1
- 206010007134 Candida infections Diseases 0.000 description 1
- 241000222173 Candida parapsilosis Species 0.000 description 1
- 241000222178 Candida tropicalis Species 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- 108090000209 Carbonic anhydrases Proteins 0.000 description 1
- 102000003846 Carbonic anhydrases Human genes 0.000 description 1
- 102100027668 Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 1 Human genes 0.000 description 1
- 101710134395 Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 1 Proteins 0.000 description 1
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 1
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 241000710190 Cardiovirus Species 0.000 description 1
- 102100026548 Caspase-8 Human genes 0.000 description 1
- 108090000538 Caspase-8 Proteins 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- 102100023321 Ceruloplasmin Human genes 0.000 description 1
- CXRFDZFCGOPDTD-UHFFFAOYSA-M Cetrimide Chemical compound [Br-].CCCCCCCCCCCCCC[N+](C)(C)C CXRFDZFCGOPDTD-UHFFFAOYSA-M 0.000 description 1
- 241001502567 Chikungunya virus Species 0.000 description 1
- 241000256128 Chironomus <genus> Species 0.000 description 1
- 241000606161 Chlamydia Species 0.000 description 1
- 241001647372 Chlamydia pneumoniae Species 0.000 description 1
- 241000606153 Chlamydia trachomatis Species 0.000 description 1
- 206010061041 Chlamydial infection Diseases 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 206010008631 Cholera Diseases 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 241001668502 Cladophialophora carrionii Species 0.000 description 1
- 241000222290 Cladosporium Species 0.000 description 1
- 241001508813 Clavispora lusitaniae Species 0.000 description 1
- 241000193155 Clostridium botulinum Species 0.000 description 1
- 241000193468 Clostridium perfringens Species 0.000 description 1
- 241000223205 Coccidioides immitis Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 241000702669 Coltivirus Species 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 208000000907 Condylomata Acuminata Diseases 0.000 description 1
- 241001480517 Conidiobolus Species 0.000 description 1
- 108010060123 Conjugate Vaccines Proteins 0.000 description 1
- 241000723382 Corylus Species 0.000 description 1
- 235000001543 Corylus americana Nutrition 0.000 description 1
- 240000007582 Corylus avellana Species 0.000 description 1
- 235000007466 Corylus avellana Nutrition 0.000 description 1
- 241000186227 Corynebacterium diphtheriae Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000606678 Coxiella burnetii Species 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 241000150230 Crimean-Congo hemorrhagic fever orthonairovirus Species 0.000 description 1
- MIKUYHXYGGJMLM-UUOKFMHZSA-N Crotonoside Chemical compound C1=NC2=C(N)NC(=O)N=C2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O MIKUYHXYGGJMLM-UUOKFMHZSA-N 0.000 description 1
- 208000006081 Cryptococcal meningitis Diseases 0.000 description 1
- 201000007336 Cryptococcosis Diseases 0.000 description 1
- 241000221204 Cryptococcus neoformans Species 0.000 description 1
- 240000005109 Cryptomeria japonica Species 0.000 description 1
- 208000008953 Cryptosporidiosis Diseases 0.000 description 1
- 206010011502 Cryptosporidiosis infection Diseases 0.000 description 1
- 241000223936 Cryptosporidium parvum Species 0.000 description 1
- 241000235555 Cunninghamella Species 0.000 description 1
- 241000223208 Curvularia Species 0.000 description 1
- 241000371644 Curvularia ravenelii Species 0.000 description 1
- 102000013701 Cyclin-Dependent Kinase 4 Human genes 0.000 description 1
- 108010025464 Cyclin-Dependent Kinase 4 Proteins 0.000 description 1
- 108010072210 Cyclophilin C Proteins 0.000 description 1
- 241000179197 Cyclospora Species 0.000 description 1
- 241001051708 Cyprinid herpesvirus 3 Species 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- RXVWSYJTUUKTEA-UHFFFAOYSA-N D-maltotriose Natural products OC1C(O)C(OC(C(O)CO)C(O)C(O)C=O)OC(CO)C1OC1C(O)C(O)C(O)C(CO)O1 RXVWSYJTUUKTEA-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-WUJLRWPWSA-N D-xylulose Chemical compound OC[C@@H](O)[C@H](O)C(=O)CO ZAQJHHRNXZUBTE-WUJLRWPWSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 229940032024 DPT vaccine Drugs 0.000 description 1
- 241000209210 Dactylis Species 0.000 description 1
- 208000001840 Dandruff Diseases 0.000 description 1
- 241000725619 Dengue virus Species 0.000 description 1
- 241000238710 Dermatophagoides Species 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 108010082495 Dietary Plant Proteins Proteins 0.000 description 1
- 208000002699 Digestive System Neoplasms Diseases 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 239000006145 Eagle's minimal essential medium Substances 0.000 description 1
- 241000243234 Encephalitozoon Species 0.000 description 1
- 241000596569 Encephalitozoon intestinalis Species 0.000 description 1
- 102100027723 Endogenous retrovirus group K member 6 Rec protein Human genes 0.000 description 1
- 241000224432 Entamoeba histolytica Species 0.000 description 1
- 241000588914 Enterobacter Species 0.000 description 1
- 241000701832 Enterobacteria phage T3 Species 0.000 description 1
- 241000194032 Enterococcus faecalis Species 0.000 description 1
- 241000194031 Enterococcus faecium Species 0.000 description 1
- 241001442406 Enterocytozoon bieneusi Species 0.000 description 1
- 241000991587 Enterovirus C Species 0.000 description 1
- 241000146324 Enterovirus D68 Species 0.000 description 1
- 101710121417 Envelope glycoprotein Proteins 0.000 description 1
- 241001480035 Epidermophyton Species 0.000 description 1
- 102000018651 Epithelial Cell Adhesion Molecule Human genes 0.000 description 1
- 108010066687 Epithelial Cell Adhesion Molecule Proteins 0.000 description 1
- 244000140063 Eragrostis abyssinica Species 0.000 description 1
- 235000014966 Eragrostis abyssinica Nutrition 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 241000238739 Euroglyphus Species 0.000 description 1
- 241000223682 Exophiala Species 0.000 description 1
- 241000219427 Fagales Species 0.000 description 1
- 102100028073 Fibroblast growth factor 5 Human genes 0.000 description 1
- 108090000380 Fibroblast growth factor 5 Proteins 0.000 description 1
- 241000711950 Filoviridae Species 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 241000122862 Fonsecaea Species 0.000 description 1
- 241000710198 Foot-and-mouth disease virus Species 0.000 description 1
- 235000016623 Fragaria vesca Nutrition 0.000 description 1
- 240000009088 Fragaria x ananassa Species 0.000 description 1
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 1
- 241000589601 Francisella Species 0.000 description 1
- 241001135321 Francisella philomiragia Species 0.000 description 1
- 241000589602 Francisella tularensis Species 0.000 description 1
- 241000589599 Francisella tularensis subsp. novicida Species 0.000 description 1
- 102000001390 Fructose-Bisphosphate Aldolase Human genes 0.000 description 1
- 108010068561 Fructose-Bisphosphate Aldolase Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000223218 Fusarium Species 0.000 description 1
- 102100039717 G antigen 1 Human genes 0.000 description 1
- 101710113436 GTPase KRas Proteins 0.000 description 1
- 102000000805 Galectin 4 Human genes 0.000 description 1
- 108010001515 Galectin 4 Proteins 0.000 description 1
- 102100040510 Galectin-3-binding protein Human genes 0.000 description 1
- 101710197901 Galectin-3-binding protein Proteins 0.000 description 1
- 101710121810 Galectin-9 Proteins 0.000 description 1
- 102100031351 Galectin-9 Human genes 0.000 description 1
- 102400000921 Gastrin Human genes 0.000 description 1
- 108010052343 Gastrins Proteins 0.000 description 1
- 241000178292 Geotrichum clavatum Species 0.000 description 1
- 241000608297 Getah virus Species 0.000 description 1
- 241000224466 Giardia Species 0.000 description 1
- 108010061711 Gliadin Proteins 0.000 description 1
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 1
- 241001510533 Glycyphagus Species 0.000 description 1
- 241000190708 Guanarito mammarenavirus Species 0.000 description 1
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Natural products C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 1
- 241001466963 Hawaii calicivirus Species 0.000 description 1
- 241000035314 Henipavirus Species 0.000 description 1
- 241000711557 Hepacivirus Species 0.000 description 1
- 229920002971 Heparan sulfate Polymers 0.000 description 1
- 229940124872 Hepatitis B virus vaccine Drugs 0.000 description 1
- 208000005331 Hepatitis D Diseases 0.000 description 1
- 108091080980 Hepatitis delta virus ribozyme Proteins 0.000 description 1
- 241000228404 Histoplasma capsulatum Species 0.000 description 1
- 201000002563 Histoplasmosis Diseases 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 241000744855 Holcus Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000792935 Homo sapiens AT-rich interactive domain-containing protein 4B Proteins 0.000 description 1
- 101000874316 Homo sapiens B melanoma antigen 1 Proteins 0.000 description 1
- 101000856237 Homo sapiens Cancer/testis antigen 1 Proteins 0.000 description 1
- 101000886137 Homo sapiens G antigen 1 Proteins 0.000 description 1
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 1
- 101001011441 Homo sapiens Interferon regulatory factor 4 Proteins 0.000 description 1
- 101001064302 Homo sapiens Lipase member I Proteins 0.000 description 1
- 101000934372 Homo sapiens Macrosialin Proteins 0.000 description 1
- 101001134060 Homo sapiens Melanocyte-stimulating hormone receptor Proteins 0.000 description 1
- 101001131670 Homo sapiens PWWP domain-containing DNA repair factor 3A Proteins 0.000 description 1
- 101001136592 Homo sapiens Prostate stem cell antigen Proteins 0.000 description 1
- 101000880770 Homo sapiens Protein SSX2 Proteins 0.000 description 1
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 1
- 101000973629 Homo sapiens Ribosome quality control complex subunit NEMF Proteins 0.000 description 1
- 101000671653 Homo sapiens U3 small nucleolar RNA-associated protein 14 homolog A Proteins 0.000 description 1
- 108700028075 Human Herpesvirus 3 gp 118 Proteins 0.000 description 1
- 241000598436 Human T-cell lymphotropic virus Species 0.000 description 1
- 241000702617 Human parvovirus B19 Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 108010052919 Hydroxyethylthiazole kinase Proteins 0.000 description 1
- 108010027436 Hydroxymethylpyrimidine kinase Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 108010043496 Immunoglobulin Idiotypes Proteins 0.000 description 1
- 108010030506 Integrin alpha6beta4 Proteins 0.000 description 1
- 102100037850 Interferon gamma Human genes 0.000 description 1
- 102100030126 Interferon regulatory factor 4 Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108010002616 Interleukin-5 Proteins 0.000 description 1
- 241000710842 Japanese encephalitis virus Species 0.000 description 1
- 241000712890 Junin mammarenavirus Species 0.000 description 1
- 241000721662 Juniperus Species 0.000 description 1
- 208000007976 Ketosis Diseases 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- 241000588747 Klebsiella pneumoniae Species 0.000 description 1
- 244000285963 Kluyveromyces fragilis Species 0.000 description 1
- 235000014663 Kluyveromyces fragilis Nutrition 0.000 description 1
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 206010023927 Lassa fever Diseases 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 241000589242 Legionella pneumophila Species 0.000 description 1
- 208000004554 Leishmaniasis Diseases 0.000 description 1
- 241001247233 Lepeophtheirus Species 0.000 description 1
- 241001247234 Lepeophtheirus salmonis Species 0.000 description 1
- 206010024229 Leprosy Diseases 0.000 description 1
- 102100030659 Lipase member I Human genes 0.000 description 1
- 239000012097 Lipofectamine 2000 Substances 0.000 description 1
- 108010028921 Lipopeptides Proteins 0.000 description 1
- 241000186779 Listeria monocytogenes Species 0.000 description 1
- 241000209082 Lolium Species 0.000 description 1
- 208000016604 Lyme disease Diseases 0.000 description 1
- 241000711828 Lyssavirus Species 0.000 description 1
- 108010000410 MSH receptor Proteins 0.000 description 1
- 241000701076 Macacine alphaherpesvirus 1 Species 0.000 description 1
- 241000712898 Machupo mammarenavirus Species 0.000 description 1
- 102100025136 Macrosialin Human genes 0.000 description 1
- 241001539803 Magnusiomyces capitatus Species 0.000 description 1
- 241000555676 Malassezia Species 0.000 description 1
- 241001559185 Mammalian rubulavirus 5 Species 0.000 description 1
- 241001115401 Marburgvirus Species 0.000 description 1
- 241000608292 Mayaro virus Species 0.000 description 1
- 206010027209 Meningitis cryptococcal Diseases 0.000 description 1
- 206010027243 Meningitis histoplasma Diseases 0.000 description 1
- QWZLBLDNRUUYQI-UHFFFAOYSA-M Methylbenzethonium chloride Chemical compound [Cl-].CC1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 QWZLBLDNRUUYQI-UHFFFAOYSA-M 0.000 description 1
- 241000235048 Meyerozyma guilliermondii Species 0.000 description 1
- 241000243190 Microsporidia Species 0.000 description 1
- 241001295810 Microsporidium Species 0.000 description 1
- 241000893980 Microsporum canis Species 0.000 description 1
- 241001460074 Microsporum distortum Species 0.000 description 1
- 241001260008 Microsporum equinum Species 0.000 description 1
- 241000588655 Moraxella catarrhalis Species 0.000 description 1
- 241000235575 Mortierella Species 0.000 description 1
- 241000868135 Mucambo virus Species 0.000 description 1
- 108010008707 Mucin-1 Proteins 0.000 description 1
- 241000235395 Mucor Species 0.000 description 1
- 108010085220 Multiprotein Complexes Proteins 0.000 description 1
- 102000007474 Multiprotein Complexes Human genes 0.000 description 1
- 241000711941 Murine orthopneumovirus Species 0.000 description 1
- 241000711408 Murine respirovirus Species 0.000 description 1
- 241000186367 Mycobacterium avium Species 0.000 description 1
- 241000202934 Mycoplasma pneumoniae Species 0.000 description 1
- RSPURTUNRHNVGF-IOSLPCCCSA-N N(2),N(2)-dimethylguanosine Chemical compound C1=NC=2C(=O)NC(N(C)C)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O RSPURTUNRHNVGF-IOSLPCCCSA-N 0.000 description 1
- ZBYRSRLCXTUFLJ-IOSLPCCCSA-O N(2),N(7)-dimethylguanosine Chemical compound CNC=1NC(C=2[N+](=CN([C@H]3[C@H](O)[C@H](O)[C@@H](CO)O3)C=2N=1)C)=O ZBYRSRLCXTUFLJ-IOSLPCCCSA-O 0.000 description 1
- SLEHROROQDYRAW-KQYNXXCUSA-N N(2)-methylguanosine Chemical compound C1=NC=2C(=O)NC(NC)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O SLEHROROQDYRAW-KQYNXXCUSA-N 0.000 description 1
- NIDVTARKFBZMOT-PEBGCTIMSA-N N(4)-acetylcytidine Chemical compound O=C1N=C(NC(=O)C)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NIDVTARKFBZMOT-PEBGCTIMSA-N 0.000 description 1
- USVMJSALORZVDV-SDBHATRESA-N N(6)-(Delta(2)-isopentenyl)adenosine Chemical compound C1=NC=2C(NCC=C(C)C)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O USVMJSALORZVDV-SDBHATRESA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- UNUYMBPXEFMLNW-DWVDDHQFSA-N N-[(9-beta-D-ribofuranosylpurin-6-yl)carbamoyl]threonine Chemical compound C1=NC=2C(NC(=O)N[C@@H]([C@H](O)C)C(O)=O)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O UNUYMBPXEFMLNW-DWVDDHQFSA-N 0.000 description 1
- LZCNWAXLJWBRJE-ZOQUXTDFSA-N N4-Methylcytidine Chemical compound O=C1N=C(NC)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 LZCNWAXLJWBRJE-ZOQUXTDFSA-N 0.000 description 1
- GOSWTRUMMSCNCW-UHFFFAOYSA-N N6-(cis-hydroxyisopentenyl)adenosine Chemical compound C1=NC=2C(NCC=C(CO)C)=NC=NC=2N1C1OC(CO)C(O)C1O GOSWTRUMMSCNCW-UHFFFAOYSA-N 0.000 description 1
- 241000893976 Nannizzia gypsea Species 0.000 description 1
- 241000264375 Nannizzia nana Species 0.000 description 1
- 241000588653 Neisseria Species 0.000 description 1
- 241000588650 Neisseria meningitidis Species 0.000 description 1
- 241000526636 Nipah henipavirus Species 0.000 description 1
- 241000714209 Norwalk virus Species 0.000 description 1
- 241001126829 Nosema Species 0.000 description 1
- VZQXUWKZDSEQRR-UHFFFAOYSA-N Nucleosid Natural products C12=NC(SC)=NC(NCC=C(C)C)=C2N=CN1C1OC(CO)C(O)C1O VZQXUWKZDSEQRR-UHFFFAOYSA-N 0.000 description 1
- JXNORPPTKDEAIZ-QOCRDCMYSA-N O-4''-alpha-D-mannosylqueuosine Chemical compound NC(N1)=NC(N([C@@H]([C@@H]2O)O[C@H](CO)[C@H]2O)C=C2CN[C@H]([C@H]3O)C=C[C@@H]3O[C@H]([C@H]([C@H]3O)O)O[C@H](CO)[C@H]3O)=C2C1=O JXNORPPTKDEAIZ-QOCRDCMYSA-N 0.000 description 1
- 241000207836 Olea <angiosperm> Species 0.000 description 1
- 241000795633 Olea <sea slug> Species 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 241000277338 Oncorhynchus kisutch Species 0.000 description 1
- 241000702259 Orbivirus Species 0.000 description 1
- 241000150218 Orthonairovirus Species 0.000 description 1
- 241000700629 Orthopoxvirus Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 102000036673 PRAME Human genes 0.000 description 1
- 108060006580 PRAME Proteins 0.000 description 1
- 241001236817 Paecilomyces <Clavicipitaceae> Species 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 208000016222 Pancreatic disease Diseases 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 241000526686 Paracoccidioides brasiliensis Species 0.000 description 1
- 241000711504 Paramyxoviridae Species 0.000 description 1
- 241000991583 Parechovirus Species 0.000 description 1
- 241000228143 Penicillium Species 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 102100024968 Peptidyl-prolyl cis-trans isomerase C Human genes 0.000 description 1
- 241000238661 Periplaneta Species 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 241000745991 Phalaris Species 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 241000713137 Phlebovirus Species 0.000 description 1
- 241000746981 Phleum Species 0.000 description 1
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 1
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 241001674048 Phthiraptera Species 0.000 description 1
- 240000009188 Phyllostachys vivax Species 0.000 description 1
- 241000235645 Pichia kudriavzevii Species 0.000 description 1
- 241000218633 Pinidae Species 0.000 description 1
- 241000305299 Pithomyces Species 0.000 description 1
- 241000868134 Pixuna virus Species 0.000 description 1
- 206010035148 Plague Diseases 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 241000224016 Plasmodium Species 0.000 description 1
- 241000223960 Plasmodium falciparum Species 0.000 description 1
- 241000223821 Plasmodium malariae Species 0.000 description 1
- 206010035501 Plasmodium malariae infection Diseases 0.000 description 1
- 206010035502 Plasmodium ovale infection Diseases 0.000 description 1
- 206010035503 Plasmodium vivax infection Diseases 0.000 description 1
- 241000209464 Platanaceae Species 0.000 description 1
- 241000209466 Platanus Species 0.000 description 1
- 235000006485 Platanus occidentalis Nutrition 0.000 description 1
- 244000268528 Platanus occidentalis Species 0.000 description 1
- 241001492488 Pleistophora Species 0.000 description 1
- 241000233870 Pneumocystis Species 0.000 description 1
- 241000233872 Pneumocystis carinii Species 0.000 description 1
- 241000209048 Poa Species 0.000 description 1
- 241001536628 Poales Species 0.000 description 1
- 108091036407 Polyadenylation Proteins 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- 108010076039 Polyproteins Proteins 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 241000605862 Porphyromonas gingivalis Species 0.000 description 1
- 201000009754 Powassan encephalitis Diseases 0.000 description 1
- 241000700625 Poxviridae Species 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 102100036735 Prostate stem cell antigen Human genes 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 102100037686 Protein SSX2 Human genes 0.000 description 1
- 241000588769 Proteus <enterobacteria> Species 0.000 description 1
- 241000125945 Protoparvovirus Species 0.000 description 1
- 206010037075 Protozoal infections Diseases 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 229930185560 Pseudouridine Natural products 0.000 description 1
- PTJWIQPHWPFNBW-UHFFFAOYSA-N Pseudouridine C Natural products OC1C(O)C(CO)OC1C1=CNC(=O)NC1=O PTJWIQPHWPFNBW-UHFFFAOYSA-N 0.000 description 1
- 241000238711 Pyroglyphidae Species 0.000 description 1
- 208000009341 RNA Virus Infections Diseases 0.000 description 1
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 101800001758 RNA-directed RNA polymerase nsP4 Proteins 0.000 description 1
- 108091030071 RNAI Proteins 0.000 description 1
- 206010037742 Rabies Diseases 0.000 description 1
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 241001361634 Rhizoctonia Species 0.000 description 1
- 241000235527 Rhizopus Species 0.000 description 1
- IWUCXVSUMQZMFG-AFCXAGJDSA-N Ribavirin Chemical compound N1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 IWUCXVSUMQZMFG-AFCXAGJDSA-N 0.000 description 1
- 102100022213 Ribosome quality control complex subunit NEMF Human genes 0.000 description 1
- 240000000528 Ricinus communis Species 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 241000606701 Rickettsia Species 0.000 description 1
- 241000713124 Rift Valley fever virus Species 0.000 description 1
- 241000220221 Rosales Species 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Chemical class O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 241000907329 Russian Spring-Summer encephalitis virus Species 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 101000859263 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Cell wall protein CWP1 Proteins 0.000 description 1
- 241000293026 Saksenaea Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000293871 Salmonella enterica subsp. enterica serovar Typhi Species 0.000 description 1
- 241000277331 Salmonidae Species 0.000 description 1
- 241000132889 Scedosporium Species 0.000 description 1
- 235000007238 Secale cereale Nutrition 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 244000040738 Sesamum orientale Species 0.000 description 1
- 244000044822 Simmondsia californica Species 0.000 description 1
- 235000004433 Simmondsia californica Nutrition 0.000 description 1
- 101500008203 Sindbis virus Capsid protein Proteins 0.000 description 1
- 241000258242 Siphonaptera Species 0.000 description 1
- 241000509413 Snow Mountain virus Species 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- IYFATESGLOUGBX-YVNJGZBMSA-N Sorbitan monopalmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O IYFATESGLOUGBX-YVNJGZBMSA-N 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 244000062793 Sorghum vulgare Species 0.000 description 1
- 241001149962 Sporothrix Species 0.000 description 1
- 241001149963 Sporothrix schenckii Species 0.000 description 1
- 241000713675 Spumavirus Species 0.000 description 1
- 241000710888 St. Louis encephalitis virus Species 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 241001147691 Staphylococcus saprophyticus Species 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 240000006694 Stellaria media Species 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 241000193985 Streptococcus agalactiae Species 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 241000193996 Streptococcus pyogenes Species 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 101150031162 TM4SF1 gene Proteins 0.000 description 1
- 241001523006 Talaromyces marneffei Species 0.000 description 1
- 108010017842 Telomerase Proteins 0.000 description 1
- AOBORMOPSGHCAX-UHFFFAOYSA-N Tocophersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-UHFFFAOYSA-N 0.000 description 1
- 241000710924 Togaviridae Species 0.000 description 1
- 241000223996 Toxoplasma Species 0.000 description 1
- 241000223997 Toxoplasma gondii Species 0.000 description 1
- 201000005485 Toxoplasmosis Diseases 0.000 description 1
- 241001249162 Trachipleistophora Species 0.000 description 1
- 102100034902 Transmembrane 4 L6 family member 1 Human genes 0.000 description 1
- 241000589884 Treponema pallidum Species 0.000 description 1
- 241000893963 Trichophyton concentricum Species 0.000 description 1
- 241000893962 Trichophyton equinum Species 0.000 description 1
- 241001045770 Trichophyton mentagrophytes Species 0.000 description 1
- 241001609979 Trichophyton quinckeanum Species 0.000 description 1
- 241000223229 Trichophyton rubrum Species 0.000 description 1
- 241001480048 Trichophyton tonsurans Species 0.000 description 1
- 241001480050 Trichophyton violaceum Species 0.000 description 1
- 241000223231 Trichosporon beigelii Species 0.000 description 1
- RHQDFWAXVIIEBN-UHFFFAOYSA-N Trifluoroethanol Chemical compound OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 description 1
- 102000005924 Triose-Phosphate Isomerase Human genes 0.000 description 1
- 108700015934 Triose-phosphate isomerases Proteins 0.000 description 1
- 108030003004 Triphosphatases Proteins 0.000 description 1
- 235000019714 Triticale Nutrition 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- VQQVWGVXDIPORV-UHFFFAOYSA-N Tryptanthrine Chemical class C1=CC=C2C(=O)N3C4=CC=CC=C4C(=O)C3=NC2=C1 VQQVWGVXDIPORV-UHFFFAOYSA-N 0.000 description 1
- 241000711955 Turkey rhinotracheitis virus Species 0.000 description 1
- 208000037386 Typhoid Diseases 0.000 description 1
- 241000132125 Tyrophagus Species 0.000 description 1
- 241000261594 Tyrophagus longior Species 0.000 description 1
- 102000003425 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 102100040099 U3 small nucleolar RNA-associated protein 14 homolog A Human genes 0.000 description 1
- LUEWUZLMQUOBSB-UHFFFAOYSA-N UNPD55895 Natural products OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(OC2C(OC(OC3C(OC(O)C(O)C3O)CO)C(O)C2O)CO)C(O)C1O LUEWUZLMQUOBSB-UHFFFAOYSA-N 0.000 description 1
- 208000025609 Urogenital disease Diseases 0.000 description 1
- 101900123145 Varicella-zoster virus Envelope glycoprotein L Proteins 0.000 description 1
- 208000002687 Venezuelan Equine Encephalomyelitis Diseases 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 241000256856 Vespidae Species 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 108700022715 Viral Proteases Proteins 0.000 description 1
- 108700002693 Viral Replicase Complex Proteins Proteins 0.000 description 1
- 108010087302 Viral Structural Proteins Proteins 0.000 description 1
- 206010051511 Viral diarrhoea Diseases 0.000 description 1
- 230000010530 Virus Neutralization Effects 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 241000144556 Vittaforma Species 0.000 description 1
- 201000006449 West Nile encephalitis Diseases 0.000 description 1
- 208000005466 Western Equine Encephalomyelitis Diseases 0.000 description 1
- 201000005806 Western equine encephalitis Diseases 0.000 description 1
- JCZSFCLRSONYLH-UHFFFAOYSA-N Wyosine Natural products N=1C(C)=CN(C(C=2N=C3)=O)C=1N(C)C=2N3C1OC(CO)C(O)C1O JCZSFCLRSONYLH-UHFFFAOYSA-N 0.000 description 1
- 208000003152 Yellow Fever Diseases 0.000 description 1
- 241000607447 Yersinia enterocolitica Species 0.000 description 1
- FHHZHGZBHYYWTG-INFSMZHSSA-N [(2r,3s,4r,5r)-5-(2-amino-7-methyl-6-oxo-3h-purin-9-ium-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl [[[(2r,3s,4r,5r)-5-(2-amino-6-oxo-3h-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl] phosphate Chemical compound N1C(N)=NC(=O)C2=C1[N+]([C@H]1[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=C(C(N=C(N)N4)=O)N=C3)O)O1)O)=CN2C FHHZHGZBHYYWTG-INFSMZHSSA-N 0.000 description 1
- TVGUROHJABCRTB-MHJQXXNXSA-N [(2r,3s,4r,5s)-5-[(2r,3r,4r,5r)-2-(2-amino-6-oxo-3h-purin-9-yl)-4-hydroxy-5-(hydroxymethyl)oxolan-3-yl]oxy-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate Chemical compound O([C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C=NC=2C(=O)N=C(NC=21)N)[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O TVGUROHJABCRTB-MHJQXXNXSA-N 0.000 description 1
- NYDLOCKCVISJKK-WRBBJXAJSA-N [3-(dimethylamino)-2-[(z)-octadec-9-enoyl]oxypropyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(CN(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC NYDLOCKCVISJKK-WRBBJXAJSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 241000222126 [Candida] glabrata Species 0.000 description 1
- 241000606834 [Haemophilus] ducreyi Species 0.000 description 1
- PQIHYNWPAJABTB-QCNRFFRDSA-N [O-]S(CCNC[S+]=C(N1)N([C@@H]([C@@H]2O)O[C@H](CO)[C@H]2O)C=CC1=O)(=O)=O Chemical compound [O-]S(CCNC[S+]=C(N1)N([C@@H]([C@@H]2O)O[C@H](CO)[C@H]2O)C=CC1=O)(=O)=O PQIHYNWPAJABTB-QCNRFFRDSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 230000033289 adaptive immune response Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001323 aldoses Chemical class 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 102000013529 alpha-Fetoproteins Human genes 0.000 description 1
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 235000012735 amaranth Nutrition 0.000 description 1
- 239000004178 amaranth Substances 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- BTBJBAZGXNKLQC-UHFFFAOYSA-N ammonium lauryl sulfate Chemical compound [NH4+].CCCCCCCCCCCCOS([O-])(=O)=O BTBJBAZGXNKLQC-UHFFFAOYSA-N 0.000 description 1
- 229940063953 ammonium lauryl sulfate Drugs 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 208000025009 anogenital human papillomavirus infection Diseases 0.000 description 1
- 201000004201 anogenital venereal wart Diseases 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000001740 anti-invasion Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 229940125683 antiemetic agent Drugs 0.000 description 1
- 239000002111 antiemetic agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 239000003080 antimitotic agent Substances 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000003816 antisense DNA Substances 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- PEMQXWCOMFJRLS-RPKMEZRRSA-N archaeosine Chemical compound C1=2NC(N)=NC(=O)C=2C(C(=N)N)=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O PEMQXWCOMFJRLS-RPKMEZRRSA-N 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 229940091771 aspergillus fumigatus Drugs 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 229940065181 bacillus anthracis Drugs 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 229940092738 beeswax Drugs 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- BJVCSICIEDHBNI-UHFFFAOYSA-N benzo[b][1,8]naphthyridine Chemical class N1=CC=CC2=CC3=CC=CC=C3N=C21 BJVCSICIEDHBNI-UHFFFAOYSA-N 0.000 description 1
- JBIROUFYLSSYDX-UHFFFAOYSA-M benzododecinium chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 JBIROUFYLSSYDX-UHFFFAOYSA-M 0.000 description 1
- SMTUJUHULKBTBS-UHFFFAOYSA-N benzyl(trimethyl)azanium;methanolate Chemical compound [O-]C.C[N+](C)(C)CC1=CC=CC=C1 SMTUJUHULKBTBS-UHFFFAOYSA-N 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- WGDUUQDYDIIBKT-UHFFFAOYSA-N beta-Pseudouridine Natural products OC1OC(CN2C=CC(=O)NC2=O)C(O)C1O WGDUUQDYDIIBKT-UHFFFAOYSA-N 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 239000000227 bioadhesive Substances 0.000 description 1
- 229940031416 bivalent vaccine Drugs 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 208000008921 border disease Diseases 0.000 description 1
- 206010006451 bronchitis Diseases 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 229940074375 burkholderia mallei Drugs 0.000 description 1
- POODVSCQKVCWCE-UHFFFAOYSA-N butanedioic acid;propane-1,2-diol Chemical compound CC(O)CO.OC(=O)CCC(O)=O POODVSCQKVCWCE-UHFFFAOYSA-N 0.000 description 1
- PPBOKXIGFIBOGK-BDTUAEFFSA-N bvdv Chemical compound C([C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)C(C)C)[C@@H](C)CC)C1=CN=CN1 PPBOKXIGFIBOGK-BDTUAEFFSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229940095731 candida albicans Drugs 0.000 description 1
- 208000032343 candida glabrata infection Diseases 0.000 description 1
- 229940055022 candida parapsilosis Drugs 0.000 description 1
- 201000003984 candidiasis Diseases 0.000 description 1
- 210000000234 capsid Anatomy 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229940106189 ceramide Drugs 0.000 description 1
- 150000001783 ceramides Chemical class 0.000 description 1
- 239000004464 cereal grain Substances 0.000 description 1
- SXPWTBGAZSPLHA-UHFFFAOYSA-M cetalkonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 SXPWTBGAZSPLHA-UHFFFAOYSA-M 0.000 description 1
- 229960000228 cetalkonium chloride Drugs 0.000 description 1
- 229960002798 cetrimide Drugs 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 229940115457 cetyldimethylethylammonium bromide Drugs 0.000 description 1
- 150000001793 charged compounds Chemical class 0.000 description 1
- AOXOCDRNSPFDPE-UKEONUMOSA-N chembl413654 Chemical compound C([C@H](C(=O)NCC(=O)N[C@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](C)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@@H](N)CCC(O)=O)C1=CC=C(O)C=C1 AOXOCDRNSPFDPE-UKEONUMOSA-N 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 229940038705 chlamydia trachomatis Drugs 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 238000000749 co-immunoprecipitation Methods 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- MRUAUOIMASANKQ-UHFFFAOYSA-N cocamidopropyl betaine Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC([O-])=O MRUAUOIMASANKQ-UHFFFAOYSA-N 0.000 description 1
- 229940073507 cocamidopropyl betaine Drugs 0.000 description 1
- 235000012716 cod liver oil Nutrition 0.000 description 1
- 239000003026 cod liver oil Substances 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229940031670 conjugate vaccine Drugs 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000002577 cryoprotective agent Substances 0.000 description 1
- 239000012531 culture fluid Substances 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 239000000824 cytostatic agent Substances 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- WOQQAWHSKSSAGF-WXFJLFHKSA-N decyl beta-D-maltopyranoside Chemical compound O[C@@H]1[C@@H](O)[C@H](OCCCCCCCCCC)O[C@H](CO)[C@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 WOQQAWHSKSSAGF-WXFJLFHKSA-N 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 150000001982 diacylglycerols Chemical class 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- ZPTBLXKRQACLCR-XVFCMESISA-N dihydrouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)CC1 ZPTBLXKRQACLCR-XVFCMESISA-N 0.000 description 1
- 239000012470 diluted sample Substances 0.000 description 1
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- MWRBNPKJOOWZPW-CLFAGFIQSA-N dioleoyl phosphatidylethanolamine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(COP(O)(=O)OCCN)OC(=O)CCCCCCC\C=C/CCCCCCCC MWRBNPKJOOWZPW-CLFAGFIQSA-N 0.000 description 1
- 229960005097 diphtheria vaccines Drugs 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- SMVRDGHCVNAOIN-UHFFFAOYSA-L disodium;1-dodecoxydodecane;sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O.CCCCCCCCCCCCOCCCCCCCCCCCC SMVRDGHCVNAOIN-UHFFFAOYSA-L 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003534 dna topoisomerase inhibitor Substances 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229940007078 entamoeba histolytica Drugs 0.000 description 1
- 229940032049 enterococcus faecalis Drugs 0.000 description 1
- 230000000369 enteropathogenic effect Effects 0.000 description 1
- 230000000688 enterotoxigenic effect Effects 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- RRCFLRBBBFZLSB-XIFYLAFSSA-N epoxyqueuosine Chemical compound C1=C(CN[C@@H]2[C@H]([C@@H](O)[C@@H]3O[C@@H]32)O)C=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O RRCFLRBBBFZLSB-XIFYLAFSSA-N 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- VUFOSBDICLTFMS-UHFFFAOYSA-M ethyl-hexadecyl-dimethylazanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)CC VUFOSBDICLTFMS-UHFFFAOYSA-M 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 235000008524 evening primrose extract Nutrition 0.000 description 1
- 239000010475 evening primrose oil Substances 0.000 description 1
- 229940089020 evening primrose oil Drugs 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 150000002190 fatty acyls Chemical group 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- XRECTZIEBJDKEO-UHFFFAOYSA-N flucytosine Chemical compound NC1=NC(=O)NC=C1F XRECTZIEBJDKEO-UHFFFAOYSA-N 0.000 description 1
- 229960004413 flucytosine Drugs 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 239000013568 food allergen Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000003197 gene knockdown Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 239000013574 grass pollen allergen Substances 0.000 description 1
- 244000144993 groups of animals Species 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 108010064833 guanylyltransferase Proteins 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 229940047650 haemophilus influenzae Drugs 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 201000002769 histoplasmosis meningitis Diseases 0.000 description 1
- 229940046533 house dust mites Drugs 0.000 description 1
- 239000001257 hydrogen Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000002727 hyperosmolar Effects 0.000 description 1
- 239000000815 hypotonic solution Substances 0.000 description 1
- HOPZBJPSUKPLDT-UHFFFAOYSA-N imidazo[4,5-h]quinolin-2-one Chemical class C1=CN=C2C3=NC(=O)N=C3C=CC2=C1 HOPZBJPSUKPLDT-UHFFFAOYSA-N 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 230000004957 immunoregulator effect Effects 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 229940029583 inactivated polio vaccine Drugs 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000037797 influenza A Diseases 0.000 description 1
- 208000037798 influenza B Diseases 0.000 description 1
- 208000037799 influenza C Diseases 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229940045996 isethionic acid Drugs 0.000 description 1
- 229940119170 jojoba wax Drugs 0.000 description 1
- 150000002584 ketoses Chemical class 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000010699 lard oil Substances 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 229940115932 legionella pneumophila Drugs 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 229940059904 light mineral oil Drugs 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 239000002960 lipid emulsion Substances 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- UYQJCPNSAVWAFU-UHFFFAOYSA-N malto-tetraose Natural products OC1C(O)C(OC(C(O)CO)C(O)C(O)C=O)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(O)C(CO)O2)O)C(CO)O1 UYQJCPNSAVWAFU-UHFFFAOYSA-N 0.000 description 1
- LUEWUZLMQUOBSB-OUBHKODOSA-N maltotetraose Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@H](CO)O[C@@H](O[C@@H]2[C@@H](O[C@@H](O[C@@H]3[C@@H](O[C@@H](O)[C@H](O)[C@H]3O)CO)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O LUEWUZLMQUOBSB-OUBHKODOSA-N 0.000 description 1
- FYGDTMLNYKFZSV-UHFFFAOYSA-N mannotriose Natural products OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(OC2C(OC(O)C(O)C2O)CO)C(O)C1O FYGDTMLNYKFZSV-UHFFFAOYSA-N 0.000 description 1
- HLZXTFWTDIBXDF-UHFFFAOYSA-N mcm5sU Natural products COC(=O)Cc1cn(C2OC(CO)C(O)C2O)c(=S)[nH]c1=O HLZXTFWTDIBXDF-UHFFFAOYSA-N 0.000 description 1
- 229940041323 measles vaccine Drugs 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- XOTXNXXJZCFUOA-UGKPPGOTSA-N methyl 2-[1-[(2r,3r,4r,5r)-4-hydroxy-5-(hydroxymethyl)-3-methoxyoxolan-2-yl]-2,4-dioxopyrimidin-5-yl]acetate Chemical compound CO[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(CC(=O)OC)=C1 XOTXNXXJZCFUOA-UGKPPGOTSA-N 0.000 description 1
- JNVLKTZUCGRYNN-LQGIRWEJSA-N methyl 2-[1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2,4-dioxopyrimidin-5-yl]-2-hydroxyacetate Chemical compound O=C1NC(=O)C(C(O)C(=O)OC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 JNVLKTZUCGRYNN-LQGIRWEJSA-N 0.000 description 1
- WCNMEQDMUYVWMJ-UHFFFAOYSA-N methyl 4-[3-[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-4,6-dimethyl-9-oxoimidazo[1,2-a]purin-7-yl]-3-hydroperoxy-2-(methoxycarbonylamino)butanoate Chemical compound C1=NC=2C(=O)N3C(CC(C(NC(=O)OC)C(=O)OC)OO)=C(C)N=C3N(C)C=2N1C1OC(CO)C(O)C1O WCNMEQDMUYVWMJ-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- WZRYXYRWFAPPBJ-PNHWDRBUSA-N methyl uridin-5-yloxyacetate Chemical compound O=C1NC(=O)C(OCC(=O)OC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 WZRYXYRWFAPPBJ-PNHWDRBUSA-N 0.000 description 1
- 229960002285 methylbenzethonium chloride Drugs 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 108091070501 miRNA Proteins 0.000 description 1
- 239000002679 microRNA Substances 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 101150084874 mimG gene Proteins 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 208000008588 molluscum contagiosum Diseases 0.000 description 1
- 150000004712 monophosphates Chemical class 0.000 description 1
- 230000003232 mucoadhesive effect Effects 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 229940031348 multivalent vaccine Drugs 0.000 description 1
- 229940095293 mumps vaccine Drugs 0.000 description 1
- 125000001446 muramyl group Chemical group N[C@@H](C=O)[C@@H](O[C@@H](C(=O)*)C)[C@H](O)[C@H](O)CO 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- NFQBIAXADRDUGK-KWXKLSQISA-N n,n-dimethyl-2,3-bis[(9z,12z)-octadeca-9,12-dienoxy]propan-1-amine Chemical compound CCCCC\C=C/C\C=C/CCCCCCCCOCC(CN(C)C)OCCCCCCCC\C=C/C\C=C/CCCCC NFQBIAXADRDUGK-KWXKLSQISA-N 0.000 description 1
- ZUHZZVMEUAUWHY-UHFFFAOYSA-N n,n-dimethylpropan-1-amine Chemical compound CCCN(C)C ZUHZZVMEUAUWHY-UHFFFAOYSA-N 0.000 description 1
- IUSOXUFUXZORBF-UHFFFAOYSA-N n,n-dioctyloctan-1-amine;hydrochloride Chemical compound [Cl-].CCCCCCCC[NH+](CCCCCCCC)CCCCCCCC IUSOXUFUXZORBF-UHFFFAOYSA-N 0.000 description 1
- PUPNJSIFIXXJCH-UHFFFAOYSA-N n-(4-hydroxyphenyl)-2-(1,1,3-trioxo-1,2-benzothiazol-2-yl)acetamide Chemical compound C1=CC(O)=CC=C1NC(=O)CN1S(=O)(=O)C2=CC=CC=C2C1=O PUPNJSIFIXXJCH-UHFFFAOYSA-N 0.000 description 1
- DUWWHGPELOTTOE-UHFFFAOYSA-N n-(5-chloro-2,4-dimethoxyphenyl)-3-oxobutanamide Chemical compound COC1=CC(OC)=C(NC(=O)CC(C)=O)C=C1Cl DUWWHGPELOTTOE-UHFFFAOYSA-N 0.000 description 1
- DVEKCXOJTLDBFE-UHFFFAOYSA-N n-dodecyl-n,n-dimethylglycinate Chemical compound CCCCCCCCCCCC[N+](C)(C)CC([O-])=O DVEKCXOJTLDBFE-UHFFFAOYSA-N 0.000 description 1
- AEMBWNDIEFEPTH-UHFFFAOYSA-N n-tert-butyl-n-ethylnitrous amide Chemical compound CCN(N=O)C(C)(C)C AEMBWNDIEFEPTH-UHFFFAOYSA-N 0.000 description 1
- 239000007908 nanoemulsion Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000001668 nucleic acid synthesis Methods 0.000 description 1
- 235000019488 nut oil Nutrition 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 235000014571 nuts Nutrition 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- HEGSGKPQLMEBJL-RKQHYHRCSA-N octyl beta-D-glucopyranoside Chemical compound CCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HEGSGKPQLMEBJL-RKQHYHRCSA-N 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 125000002811 oleoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 229960000470 omalizumab Drugs 0.000 description 1
- 229960005030 other vaccine in atc Drugs 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- UNEIHNMKASENIG-UHFFFAOYSA-N para-chlorophenylpiperazine Chemical compound C1=CC(Cl)=CC=C1N1CCNCC1 UNEIHNMKASENIG-UHFFFAOYSA-N 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- SNGREZUHAYWORS-UHFFFAOYSA-N perfluorooctanoic acid Chemical compound OC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F SNGREZUHAYWORS-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- 229940066827 pertussis vaccine Drugs 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000010773 plant oil Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 201000000317 pneumocystosis Diseases 0.000 description 1
- 229920001987 poloxamine Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920001481 poly(stearyl methacrylate) Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229940068977 polysorbate 20 Drugs 0.000 description 1
- 229940068965 polysorbates Drugs 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 235000013966 potassium salts of fatty acid Nutrition 0.000 description 1
- 229940069328 povidone Drugs 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- PTJWIQPHWPFNBW-GBNDHIKLSA-N pseudouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1C1=CNC(=O)NC1=O PTJWIQPHWPFNBW-GBNDHIKLSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- PSHHQIGKVLIVBD-UHFFFAOYSA-N purine-2,4-diamine Chemical class C1=NC(N)=NC2(N)N=CN=C21 PSHHQIGKVLIVBD-UHFFFAOYSA-N 0.000 description 1
- QQXQGKSPIMGUIZ-AEZJAUAXSA-N queuosine Chemical compound C1=2C(=O)NC(N)=NC=2N([C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=C1CN[C@H]1C=C[C@H](O)[C@@H]1O QQXQGKSPIMGUIZ-AEZJAUAXSA-N 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 108010014186 ras Proteins Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000015227 regulation of liquid surface tension Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 229960000329 ribavirin Drugs 0.000 description 1
- HZCAHMRRMINHDJ-DBRKOABJSA-N ribavirin Natural products O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1N=CN=C1 HZCAHMRRMINHDJ-DBRKOABJSA-N 0.000 description 1
- 239000003161 ribonuclease inhibitor Substances 0.000 description 1
- 239000002342 ribonucleoside Substances 0.000 description 1
- 125000000548 ribosyl group Chemical group C1([C@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000008165 rice bran oil Substances 0.000 description 1
- 201000005404 rubella Diseases 0.000 description 1
- 229960003131 rubella vaccine Drugs 0.000 description 1
- 229960002181 saccharomyces boulardii Drugs 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 229940069764 shark liver oil Drugs 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229940057950 sodium laureth sulfate Drugs 0.000 description 1
- 235000013875 sodium salts of fatty acid Nutrition 0.000 description 1
- SXHLENDCVBIJFO-UHFFFAOYSA-M sodium;2-[2-(2-dodecoxyethoxy)ethoxy]ethyl sulfate Chemical compound [Na+].CCCCCCCCCCCCOCCOCCOCCOS([O-])(=O)=O SXHLENDCVBIJFO-UHFFFAOYSA-M 0.000 description 1
- IWMMSZLFZZPTJY-UHFFFAOYSA-M sodium;3-(dodecylamino)propane-1-sulfonate Chemical compound [Na+].CCCCCCCCCCCCNCCCS([O-])(=O)=O IWMMSZLFZZPTJY-UHFFFAOYSA-M 0.000 description 1
- HWCHICTXVOMIIF-UHFFFAOYSA-M sodium;3-(dodecylamino)propanoate Chemical compound [Na+].CCCCCCCCCCCCNCCC([O-])=O HWCHICTXVOMIIF-UHFFFAOYSA-M 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 229940100515 sorbitan Drugs 0.000 description 1
- 229940035044 sorbitan monolaurate Drugs 0.000 description 1
- 239000001593 sorbitan monooleate Substances 0.000 description 1
- 235000011069 sorbitan monooleate Nutrition 0.000 description 1
- 229940035049 sorbitan monooleate Drugs 0.000 description 1
- 239000001570 sorbitan monopalmitate Substances 0.000 description 1
- 235000011071 sorbitan monopalmitate Nutrition 0.000 description 1
- 229940031953 sorbitan monopalmitate Drugs 0.000 description 1
- 229960005078 sorbitan sesquioleate Drugs 0.000 description 1
- 239000012177 spermaceti Substances 0.000 description 1
- 229940084106 spermaceti Drugs 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000011146 sterile filtration Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 235000020238 sunflower seed Nutrition 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 208000006379 syphilis Diseases 0.000 description 1
- 101150047061 tag-72 gene Proteins 0.000 description 1
- 229960002766 tetanus vaccines Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 150000003584 thiosemicarbazones Chemical class 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 229960003087 tioguanine Drugs 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 229960001295 tocopherol Drugs 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 229940044693 topoisomerase inhibitor Drugs 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Chemical class OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 108010020589 trehalose-6-phosphate synthase Proteins 0.000 description 1
- 125000005208 trialkylammonium group Chemical group 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229940055035 trichophyton verrucosum Drugs 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- KMVDECFGXJKYHV-UHFFFAOYSA-L trimethyl-[10-(trimethylazaniumyl)decyl]azanium;dichloride Chemical compound [Cl-].[Cl-].C[N+](C)(C)CCCCCCCCCC[N+](C)(C)C KMVDECFGXJKYHV-UHFFFAOYSA-L 0.000 description 1
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 229960001005 tuberculin Drugs 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- 201000008297 typhoid fever Diseases 0.000 description 1
- 108010014402 tyrosinase-related protein-1 Proteins 0.000 description 1
- 238000000825 ultraviolet detection Methods 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- RVCNQQGZJWVLIP-VPCXQMTMSA-N uridin-5-yloxyacetic acid Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(OCC(O)=O)=C1 RVCNQQGZJWVLIP-VPCXQMTMSA-N 0.000 description 1
- YIZYCHKPHCPKHZ-UHFFFAOYSA-N uridine-5-acetic acid methyl ester Natural products COC(=O)Cc1cn(C2OC(CO)C(O)C2O)c(=O)[nH]c1=O YIZYCHKPHCPKHZ-UHFFFAOYSA-N 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 239000012646 vaccine adjuvant Substances 0.000 description 1
- 229940124931 vaccine adjuvant Drugs 0.000 description 1
- 108010027510 vaccinia virus capping enzyme Proteins 0.000 description 1
- 229940021648 varicella vaccine Drugs 0.000 description 1
- 201000006266 variola major Diseases 0.000 description 1
- 201000000627 variola minor Diseases 0.000 description 1
- 208000014016 variola minor infection Diseases 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 239000000277 virosome Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 239000010698 whale oil Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- QAOHCFGKCWTBGC-QHOAOGIMSA-N wybutosine Chemical compound C1=NC=2C(=O)N3C(CC[C@H](NC(=O)OC)C(=O)OC)=C(C)N=C3N(C)C=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O QAOHCFGKCWTBGC-QHOAOGIMSA-N 0.000 description 1
- QAOHCFGKCWTBGC-UHFFFAOYSA-N wybutosine Natural products C1=NC=2C(=O)N3C(CCC(NC(=O)OC)C(=O)OC)=C(C)N=C3N(C)C=2N1C1OC(CO)C(O)C1O QAOHCFGKCWTBGC-UHFFFAOYSA-N 0.000 description 1
- JCZSFCLRSONYLH-QYVSTXNMSA-N wyosin Chemical compound N=1C(C)=CN(C(C=2N=C3)=O)C=1N(C)C=2N3[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O JCZSFCLRSONYLH-QYVSTXNMSA-N 0.000 description 1
- 241000228158 x Triticosecale Species 0.000 description 1
- 229940098232 yersinia enterocolitica Drugs 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
- FYGDTMLNYKFZSV-BYLHFPJWSA-N β-1,4-galactotrioside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@H](CO)O[C@@H](O[C@@H]2[C@@H](O[C@@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-BYLHFPJWSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/39—Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/7105—Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/155—Paramyxoviridae, e.g. parainfluenza virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/245—Herpetoviridae, e.g. herpes simplex virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/02—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/12—Carboxylic acids; Salts or anhydrides thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/22—Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/24—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/34—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/107—Emulsions ; Emulsion preconcentrates; Micelles
- A61K9/1075—Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/107—Emulsions ; Emulsion preconcentrates; Micelles
- A61K9/113—Multiple emulsions, e.g. oil-in-water-in-oil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/525—Virus
- A61K2039/5256—Virus expressing foreign proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/53—DNA (RNA) vaccination
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55555—Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55566—Emulsions, e.g. Freund's adjuvant, MF59
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/57—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
- A61K2039/575—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16111—Cytomegalovirus, e.g. human herpesvirus 5
- C12N2710/16134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16111—Cytomegalovirus, e.g. human herpesvirus 5
- C12N2710/16171—Demonstrated in vivo effect
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16711—Varicellovirus, e.g. human herpesvirus 3, Varicella Zoster, pseudorabies
- C12N2710/16734—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16711—Varicellovirus, e.g. human herpesvirus 3, Varicella Zoster, pseudorabies
- C12N2710/16771—Demonstrated in vivo effect
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18511—Pneumovirus, e.g. human respiratory syncytial virus
- C12N2760/18534—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18511—Pneumovirus, e.g. human respiratory syncytial virus
- C12N2760/18571—Demonstrated in vivo effect
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/36011—Togaviridae
- C12N2770/36111—Alphavirus, e.g. Sindbis virus, VEE, EEE, WEE, Semliki
- C12N2770/36134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/36011—Togaviridae
- C12N2770/36111—Alphavirus, e.g. Sindbis virus, VEE, EEE, WEE, Semliki
- C12N2770/36141—Use of virus, viral particle or viral elements as a vector
- C12N2770/36143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2840/00—Vectors comprising a special translation-regulating system
- C12N2840/20—Vectors comprising a special translation-regulating system translation of more than one cistron
- C12N2840/203—Vectors comprising a special translation-regulating system translation of more than one cistron having an IRES
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- Nucleic acid therapeutics have promise for treating diseases ranging from inherited disorders to acquired conditions such as cancer, infectious disorders (AIDS), heart disease, arthritis, and neurodegenerative disorders (e.g., Parkinson's and Alzheimer's). Not only can functional genes be delivered to repair a genetic deficiency or induce expression of exogenous gene products, but nucleic acid can also be delivered to inhibit endogenous gene expression to provide a therapeutic effect. Inhibition of gene expression can be mediated by, e.g., antisense oligonucleotides, double-stranded RNAs (e.g., siRNAs, miRNAs), or ribozymes.
- a key step for such therapy is to deliver nucleic acid molecules into cells in vivo.
- nucleic acid molecules in particular RNA molecules
- the half life of RNA injected in vivo is only about 70 seconds (see, e.g., Kurreck, Eur. J. Bioch. 270: 1628- 44 (2003)).
- Efforts have been made to increase stability of injected RNA by the use of chemical modifications; however, there are several instances where chemical alterations led to increased cytotoxic effects or loss of or decreased function.
- cells were intolerant to doses of an RNAi duplex in which every second phosphate was replaced by phosphorothioate (Harborth, et al, Antisense Nucleic Acid Drug Rev. 13(2): 83-105 (2003)).
- RNAi duplex in which every second phosphate was replaced by phosphorothioate
- Nucleic acid based vaccines are an attractive approach to vaccination.
- intramuscular (IM) immunization of plasmid DNA encoding for antigen can induce cellular and humoral immune responses and protect against challenge.
- DNA vaccines offer certain advantages over traditional vaccines using protein antigens, or attenuated pathogens.
- DNA vaccines can be more effective in producing a properly folded antigen in its native conformation, and in generating a cellular immune response.
- DNA vaccines also do not have some of the safety problems associated with killed or attenuated pathogens.
- a killed viral preparation may contain residual live viruses, and an attenuated virus may mutate and revert to a pathogenic phenotype.
- nucleic acid based vaccines One limitation of nucleic acid based vaccines is that large doses of nucleic acid are generally required to obtain potent immune responses in non-human primates and humans. Therefore, delivery systems and adjuvants are required to enhance the potency of nucleic acid based vaccines.
- Various methods have been developed for introducing nucleic acid molecules into cells, such as calcium phosphate transfection, polyprene transfection, protoplast fusion, electroporation, microinjection and lipofection.
- Cationic lipids have been formulated as liposomes to deliver genes into cells.
- cationic lipid emulsions have been developed to deliver DNA molecules into cells. See, e.g., Kim, et al, International Journal of Pharmaceutics, 295, 35-45 (2005).
- the emulsions were shown to enhance the efficiency of in vitro transfection of DNA in the presence of up to 90% serum.
- the average size of the emulsion particles ranged from 181 nm to 344 nm, and the particle size increased after the emulsions were diluted in PBS buffer.
- Kim et al. (Pharmaceutical Research, vol. 18, pages 54-60, 2001) and Chung et al. (Journal of Controlled Release, volume 71, pages 339-350, 2001) disclose various oil-in-water emulsions that were used to enhance in vitro and in vivo transfection efficiency of DNA molecules.
- DOTAP formed the most stable and efficient emulsion for DNA delivery.
- oils tested squalene, light mineral oil, and jojoba bean oil formed stable emulsions with small particles.
- the efficiencies of in vitro transfection were shown to correlate to the stability of the emulsions (e.g., the emulsion formulated by squalene at 100 mg/mL and DOTAP at 24 mg/mL showed high in vitro transfection efficiency).
- the emulsions were prepared by first mixing the cationic lipid with water to form a liposome suspension (by sonication). Liposomes were then added to the oil (such as squalene) and the mixture was sonicated to form an oil-in-water emulsion.
- RNA molecules encoding an antigen or a derivative thereof may also be used as vaccines.
- RNA vaccines offer certain advantages as compared to DNA vaccines. However, compared with DNA-based vaccines, relatively minor attention has been given to RNA-based vaccines. RNAs are highly susceptible to degradation by nucleases when administered as a therapeutic or vaccine. Additionally, RNAs are not actively transported into cells. See, e.g., Vajdy, M., et al, Mucosal adjuvants and delivery systemsfor protein-, DNA- and RNA-based vaccines, Immunol Cell Biol, 2004. 82(6): p. 617-27.
- nucleic acid molecules or other negatively charged molecules are useful for nucleic acid-based vaccines, in particular RNA-based vaccines.
- the invention relates to cationic oil-in-water emulsions that contain high concentrations of cationic lipids and have a defined oihlipid ratio.
- the oil and cationic lipid are separate components of the emulsions, and preferably the oil is not ionic.
- the cationic lipid can interact with the negatively charged molecule thereby anchoring the molecule to the emulsion particles.
- the cationic emulsions described herein are useful for delivering negatively charged molecules, such as nucleic acid molecules (e.g., an RNA molecule encoding an antigen), to cells, and for formulating nucleic acid-based vaccines.
- the invention provides an oil-in-water emulsion comprising particles that are dispersed in an aqueous continuous phase, wherein the emulsion is characterized by: (a) the average diameter of said particles is from about 80 nm to 180 nm in diameter; (b) the emulsion comprises an oil and a cationic lipid, wherein (i) the ratio of oihcationic lipid (mole:mole) is at least about 8: 1 (mole:mole), (ii) the concentration of cationic lipid in said emulsion is at least about 2.5 mM, and (iii) with the proviso that the cationic lipid is not DC-Cholesterol.
- the oil-in-water emulsion is stable.
- the ratio of oihlipid (mole:mole) is from about 10: 1 (mole:mole) to about 43 : 1 (mole:mole).
- the oil in water emulsion can contain from about 0.2% to about 8% (w/v) oil.
- the oil is squalene or squalane.
- the invention provides an oil-in-water emulsion comprising particles that are dispersed in an aqueous continuous phase, wherein the emulsion is characterized by: (a) the average diameter of said particles is from about 80 nm to 180 nm in diameter; (b) the emulsion comprises an oil and a cationic lipid, wherein (i) the ratio of oihcationic lipid (mole:mole) is at least about 4: 1 (mole:mole), (ii) the concentration of cationic lipid in said emulsion is at least about 2.5 mM, (iii) the oil is present from about 0.2% to about 8% (w/v); and (iv) with the proviso that the cationic lipid is not DC- Cholesterol.
- the oil-in-water emulsion is stable.
- the ratio of oihlipid (mole:mole) is from about 4: 1 (mole:mole) to about 43 : 1 (mole:mole).
- the oil is squalene or squalane.
- the oil is present from 0.6% to 4% (w/v).
- the oil is present from about 1% to about 3.2% (w/v).
- the oil-in-water emulsion of this aspect can further comprise a surfactant, such as a nonionic surfactant.
- the surfactant is not a Polyethylene Glycol (PEG)- lipid.
- the surfactant can be present in an amount from about 0.01% to about 2.5% (w/v).
- the surfactant is SPAN85 (Sorbtian Trioleate), Tween 80 (polysorbate 80), or a combination thereof.
- the oil-in-water emulsion contains equal amounts of SPAN85 (Sorbtian Trioleate) and Tween 80 (polysorbate 80), for example 0.5% (w/v) of each.
- the head group of the cationic lipid comprises a quaternary amine.
- the cationic lipid is selected from the group consisting of: l,2-dioleoyloxy-3-(trimethylammonio)propane (DOTAP), 1,2-dioleoyl-sn- glycero-3-ethylphosphocholine (DOEPC), N,N-dioleoyl-N,N-dimethylammonium chloride (DODAC), and N-[l-(2, 3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride
- DOTAP 1,2-dioleoyl-sn- glycero-3-ethylphosphocholine
- DODAC N,N-dioleoyl-N,N-dimethylammonium chloride
- the emulsion is characterized by: (a) the average diameter of the emulsion particles is from about 80 nm to 180 nm in diameter; (b) the emulsion comprises an oil and DOTAP, wherein (i) the ratio of oil:DOTAP (mole:mole) is at least about 8: 1 (mole:mole), and (ii) the concentration of DOTAP in said emulsion is at least about 2.58 mM (1.8 mg/mL), or from about 2.58 mM (1.8 mg/mL) to about 7.16 mM (5 mg/mL).
- the oil can be squalene or squalane.
- the emulsion is characterized by: (a) the average diameter of the emulsion particles is from about 80 nm to 180 nm in diameter; (b) the emulsion comprises an oil and DOTAP, wherein (i) the ratio of oil:DOTAP (mole:mole) is at least about 4: 1 (mole:mole), (ii) the concentration of DOTAP in said emulsion is at least about 2.58 mM (1.8 mg/mL), and (iii) the oil is present from about 0.2% to about 8% (w/v).
- the oil is squalene or squalane.
- the concentration of DOTAP from about 2.58 mM (1.8 mg/mL) to about 7.16 mM (5 mg/mL).
- the oil is present from 0.6% to 4% (w/v). In some embodiments, the oil is present from about 1% to about 3.2% (w/v).
- the invention also provides a method for preparing an oil-in-water emulsion comprising particles that are dispersed in an aqueous continuous phase, wherein the emulsion is characterized by: (a) the average diameter of said particles is from about 80 nm to 180 nm in diameter; (b) the emulsion comprises an oil and a cationic lipid, wherein (i) the ratio of oil ationic lipid (mole:mole) is at least about 8: 1 (mole:mole), (ii) the concentration of cationic lipid in said emulsion is at least about 2.5 mM, and (iii) with the proviso that the cationic lipid is not DC-Cholesterol, the method comprises (a) directly dissolving the cationic lipid in the oil to form an oil phase; (b) providing an aqueous phase of the emulsion; and (c) dispersing the oil phase in the aqueous phase by homogenization.
- the oil can be heated
- the invention also provides a method for preparing an oil-in-water emulsion comprising particles that are dispersed in an aqueous continuous phase, wherein the emulsion is characterized by: (a) the average diameter of said particles is from about 80 nm to 180 nm in diameter; (b) the emulsion comprises an oil and a cationic lipid, wherein (i) the ratio of oil ationic lipid (mole:mole) is at least about 4: 1 (mole:mole), (ii) the concentration of cationic lipid in said emulsion is at least about 2.5 mM, (iii) the oil is present from about 0.2% to about 8% (w/v); and (iv) with the proviso that the cationic lipid is not DC- Cholesterol, the method comprises (a) directly dissolving the cationic lipid in the oil to form an oil phase; (b) providing an aqueous phase of the emulsion; and (c) dispers
- the invention provides a composition
- a nucleic acid molecule preferably an RNA molecule
- a particle of a cationic oil-in-water emulsion wherein the particle comprises an oil that is in liquid phase at 25°C, and a cationic lipid; and (i) the ratio of oihlipid (mole:mole) is at least about 8: 1 (mole:mole); (ii) the concentration of cationic lipid in said composition is at least about 1.25 mM; and (iii) with the proviso that the cationic lipid is not DC-Cholesterol.
- the average diameter of the emulsion particles is from about 80 nm to 180 nm, or about 80 nm to 150 nm, or about 80 nm to about 130 nm, and the N/P ratio of the composition is at least about 4: 1, or from about 4: 1 to about 20: 1, or from about 4: 1 to about 15: 1.
- the N/P ratio of the composition is at least about 4: 1, or from about 4: 1 to about 20: 1, or from about 4: 1 to about 15: 1.
- the ratio of oihlipid (mole:mole) is from about 10: 1 (mole:mole) to about 43 : 1 (mole:mole).
- the oil in water emulsion can contain from about 0.1% to about 5% (w/v) oil.
- the oil is squalene or squalane.
- the invention provides a composition
- a nucleic acid molecule preferably an RNA molecule
- a particle of a cationic oil-in-water emulsion wherein the particle comprises an oil that is in liquid phase at 25°C, and a cationic lipid; and (i) the ratio of oihlipid (mole:mole) is at least about 4: 1 (mole:mole); (ii) the concentration of cationic lipid in said composition is at least about 1.25 mM; (iii) the oil is present from about 0.1% to about 4% (w/v); and (iv) with the proviso that the cationic lipid is not DC-Cholesterol.
- the average diameter of the emulsion particles is from about 80 nm to 180 nm, or about 80 nm to 150 nm, or about 80 nm to about 130 nm, and the N/P ratio of the composition is at least about 4: 1, or from about 4: 1 to about 20: 1, or from about 4: 1 to about 15: 1.
- the ratio of oihlipid (mole:mole) is from about 4: 1 (mole:mole) to about 43 : 1 (mole:mole).
- the oil is squalene or squalane.
- the oil is present from 0.6% to 4% (w/v). In some embodiments, the oil is present from about 1% to about 3.2% (w/v).
- the oil-in-water emulsion of this aspect can further comprise a surfactant, such as a nonionic surfactant.
- a surfactant such as a nonionic surfactant.
- surfactant is not a Polyethylene Glycol (PEG)- lipid.
- the surfactant can be present in an amount from about 0.005% to about 1.25% (w/v).
- the surfactant is SPAN85 (Sorbtian Trioleate), Tween 80 (polysorbate 80), or a combination thereof.
- the oil-in-water emulsion contains equal amounts of SPAN85 (Sorbtian Trioleate) and Tween 80 (polysorbate 80), for example 0.25% or 0.5% (w/v) of each.
- the head group of the cationic lipid comprises a quaternary amine.
- the cationic lipid is selected from the group consisting of: l,2-dioleoyloxy-3-(trimethylammonio)propane (DOTAP), 1,2-dioleoyl-sn- glycero-3-ethylphosphocholine (DOEPC), N,N-dioleoyl-N,N-dimethylammonium chloride (DODAC), and N-[l-(2, 3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride
- DOTAP 1,2-dioleoyl-sn- glycero-3-ethylphosphocholine
- DODAC N,N-dioleoyl-N,N-dimethylammonium chloride
- the invention provides a composition
- a nucleic acid molecule preferably an RNA molecule
- a particle of a cationic oil-in-water emulsion wherein the particle comprises an oil that is in liquid phase at 25°C and DOTAP; and (i) the ratio of oil:DOTAP (mole:mole) is at least about 8: 1 (mole:mole); (ii) the concentration of DOTAP in said composition is at least about 1.29 mM, or from about 1.29 mM (0.9 mg/mL) to about 3.58 mM (2.5 mg/mL).
- the oil can be squalene or squalane.
- the N/P ratio is at least 4: 1.
- the composition is buffered (e.g., with a citrate buffer, succinate buffer, acetate buffer) and has a pH of about 6.0 to about 8.0, preferably about 6.2 to about 6.8.
- the composition can further comprise an inorganic salt, and the concentration of inorganic salt is preferably no greater than 30 mM.
- the composition can further comprise a nonionic tonicifying agent, and preferably is isotonic.
- the invention also provides a method for preparing a composition comprising a nucleic acid molecule (preferably an RNA molecule) complexed with a particle of a cationic oil-in-water emulsion, comprising:(i) providing an oil-in-water emulsion as described herein; (ii) providing an aqueous solution comprising the RNA molecule; and (iii) combining the oil-in-water emulsion of (i) and the aqueous solution of (ii), thereby preparing the composition.
- the cationic oil-in-water emulsion and RNA solution are combined at about 1 : 1 (v/v) ratio.
- the aqueous solution comprising the RNA molecule is preferably buffered (e.g., with a citrate buffer, succinate buffer, acetate buffer), can contain a inorganic salt (e.g. NaCl), which is preferably present at about 20 mM or less.
- the aqueous solution comprising the RNA molecule contains 2mM citrate buffer and 20 mM NaCl.
- the aqueous solution comprising the RNA molecule further comprises an nonionic tonicifying agent, and is isotonic.
- the aqueous solution further comprises about 560 mM sucrose.
- the aqueous solution comprising the RNA molecule further comprises a polymer or nonionic surfactant, such as Pluronic® F127, at from about 0.05% to about 20% (w/v).
- the invention provides an oil-in-water emulsion comprising particles that are dispersed in an aqueous continuous phase, wherein the emulsion comprises an oil and a cationic lipid, the average diameter of said particles is from about 80 nm to 180 nm, the oil is present from 0.6% to 4% (w/v); and the concentration of cationic lipid in said emulsion is at least about 1.25 mM.
- the oil-in-water emulsion is stable.
- the concentration of cationic lipid in said emulsion is at least about 2.5 mM.
- the oil is squalene or squalane.
- the oil-in-water emulsion of this aspect can further comprise a surfactant, such as a nonionic surfactant.
- a surfactant such as a nonionic surfactant.
- surfactant is not a Polyethylene Glycol (PEG)- lipid.
- the surfactant can be present in an amount from about 0.01% to about 2.5% (w/v).
- the surfactant is SPAN85 (Sorbtian Trioleate), Tween 80 (polysorbate 80), or a combination thereof.
- the oil-in-water emulsion contains equal amounts of SPAN85 (Sorbtian Trioleate) and Tween 80 (polysorbate 80), for example 0.25% or 0.5% (w/v) of each.
- the head group of the cationic lipid comprises a quaternary amine.
- the cationic lipid is selected from the group consisting of: l,2-dioleoyloxy-3-(trimethylammonio)propane (DOTAP), 1,2-dioleoyl-sn- glycero-3-ethylphosphocholine (DOEPC), N,N-dioleoyl-N,N-dimethylammonium chloride (DODAC), and N-[l-(2, 3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride
- DOTAP 1,2-dioleoyl-sn- glycero-3-ethylphosphocholine
- DODAC N,N-dioleoyl-N,N-dimethylammonium chloride
- the invention provides a composition
- a nucleic acid molecule preferably an RNA molecule
- the emulsion comprises an oil and a cationic lipid, the average diameter of said particles is from about 80 nm to 180 nm, the oil is present from 0.6% to 4% (w/v); and the concentration of cationic lipid in said emulsion is at least about 1.25 mM.
- the oil-in-water emulsion is stable.
- the concentration of cationic lipid in said emulsion is at least about 2.5 mM.
- the N/P ratio of the composition is at least about 4: 1.
- the composition is buffered (e.g., with a citrate buffer, succinate buffer, acetate buffer) and has a pH of about 6.0 to about 8.0, preferably about 6.2 to about 6.8.
- the composition can further comprise an inorganic salt, and the concentration of inorganic salt is preferably no greater than 30 mM.
- the composition can further comprise a nonionic tonicifying agent, and preferably is isotonic.
- the invention also relates to a method of generating an immune response in a subject, comprising administering to a subject in need thereof the composition as described herein.
- the amount of the cationic lipid administered to the subject (as a component of the composition) in a single administration is no more than about 30 mg.
- the cationic lipid is DOTAP and the total amount of DOTAP administered to the subject in a single administration is no more than about 24 mg, or no more than about 4 mg.
- FIG. 1 is a schematic of pentacistronic RNA replicons, A526, A527, A554, A555 and A556, that encode five CMV proteins. Subgenomic promoters are shown by arrows, other control elements are labeled.
- FIG. 2 is a fluorescence histogram showing that BHKV cells transfected with the A527 RNA replicon express the gH/gL/UL128/UL130/UL131 pentameric complex. Cell stain was performed using an antibody that binds a conformational epitope present on the pentameric complex.
- FIG. 3 is a schematic and graph.
- the schematic shows bicistronic RNA replicons, A160 and A531-A537, that encode CMV gH and gL.
- the graph shows neutralizing activity of immune sera from mice immunized with VRPs that contained the replicons.
- FIG. 4 is a graph showing anti-VZV protein antibody response in immune sera from mice immunized with monocistronic RNA replicons that encoded VZV proteins or bicistronic RNA replicons that encoded VZV gE and gl, or gH and gL.
- the mice were immunized with 7 ⁇ g RNA formulated with CMF32.
- This invention generally relates to cationic oil-in-water emulsions that contain high concentrations of cationic lipids and have a defined oihcationic lipid ratio.
- the oil and cationic lipid are separate components of the emulsions, and preferably the oil is not ionic.
- the cationic lipid can interact with a negatively charged molecule, such as a nucleic acid, thereby anchoring the negatively charged molecule to the emulsion particles.
- the cationic emulsions described herein are useful for delivering negatively charged molecules, such as nucleic acid molecules (e.g., an RNA molecule encoding a protein or peptide, small interfering RNA, self-replicating RNA, and the like), to cells in vivo, and for formulating nucleic acid-based vaccines.
- nucleic acid molecules e.g., an RNA molecule encoding a protein or peptide, small interfering RNA, self-replicating RNA, and the like
- the present invention is based on the discovery that stable cationic oil-in-water emulsions that contain high concentrations of cationic lipids and have a defined oikcationic lipid ratio can be successfully made.
- Emulsions that contain high concentrations of cationic lipids allow more negatively charged molecules (such as RNA molecules) to be formulated with emulsion particles, thereby increasing the efficiency of delivery.
- small volumes e.g., 0.5 mL per dose
- Emulsions that contain high concentrations of cationic lipids and have a defined oikcationic lipid ratio, as described herein, will allow for the delivery of a higher dose of RNA within a specified volume.
- an RNA molecule is complexed with a particle of the oil-in-water emulsion.
- the complexed RNA molecule is stabilized and protected from RNase-mediated degradation, and is more efficiently taken up by cells relative to free ("naked") RNA.
- RNA when the RNA is delivered to induce expression of an encoded protein, such as in the context of an RNA vaccine, emulsions that contain high concentrations of cationic lipids can increase the amount of RNA molecules that are complexed with emulsion particles. As more RNA molecules are delivered to host cells, higher amount of the encoded protein antigen is produced, which in turn enhances the potency and
- the immunogenicity of the RNA vaccine can be enhanced due to adjuvant effects of the emulsion. Therefore, in addition to more efficient delivery of a negatively charged molecule (e.g., an RNA molecule that encodes an antigen), the cationic emulsions can also enhance the immune response through adjuvant activity.
- a negatively charged molecule e.g., an RNA molecule that encodes an antigen
- the cationic emulsions can also enhance the immune response through adjuvant activity.
- formulations in which RNA molecules (encoding respiratory syncytial virus (RSV) F protein) were complexed with high- DOTAP emulsions generated higher immune responses in a mouse model and a cotton rat model of RSV, as compared to RNA molecules complexed with low-DOTAP emulsions.
- the invention provides an oil-in-water emulsion comprising particles that are dispersed in an aqueous continuous phase, wherein the emulsion is characterized by: (a) the average diameter of said particles is from about 80 nm to 180 nm; (b) the emulsion comprises an oil and a cationic lipid, wherein (i) the ratio of oihcationic lipid (mole:mole) is at least about 8: 1 (mole:mole), (ii) the concentration of cationic lipid in said emulsion is at least about 2.5 mM, and (iii) the cationic lipid is not DC- Cholesterol.
- the invention provides an oil-in-water emulsion comprising particles that are dispersed in an aqueous continuous phase, wherein the emulsion is characterized by: (a) the average diameter of said particles is from about 80 nm to 180 nm; (b) the emulsion comprises an oil and a cationic lipid, wherein (i) the ratio of oil: cationic lipid (mole:mole) is at least about 4: 1 (mole:mole), (ii) the concentration of cationic lipid in said emulsion is at least about 2.5 mM, (iii) the oil is present from about 0.2% to about 8% (w/v); and (iv) with the proviso that the cationic lipid is not DC-Cholesterol.
- the cationic emulsion may further comprise a surfactant (e.g., Tween 80, SPAN85, or a combination thereof).
- a surfactant e.g., Tween 80, SPAN85, or a combination thereof.
- the invention also provides several specific formulations of cationic oil-in-water emulsions that contain high concentrations of cationic lipids and can be used to deliver negatively charged molecules.
- the invention provides a method of preparing an oil-in- water emulsion, comprising: (1) directly dissolving a cationic lipid in an oil to form an oil phase; (2) providing an aqueous phase of the emulsion; and (3) dispersing the oil phase in the aqueous phase (e.g., by homogenization).
- the oil may be heated to a temperature between about 30°C to about 65°C to facilitate the dissolving of the lipid in the oil.
- the ratio of oihcationic lipid (mole:mole) in the oil phase is at least about 8: 1 (mole:mole), and alternatively or in addition, the average diameter of said particles is from about 80 nm to 180 nm, and/or the concentration of cationic lipid in the oil phase is at least about 5 mM.
- the invention provides a method of preparing a composition that comprises a negatively charged molecule (such as an RNA molecule) complexed with a particle of a cationic oil-in-water emulsion, comprising: (i) providing an oil-in-water emulsion as described herein; (ii) providing an aqueous solution comprising the RNA molecule; and (iii) combining the aqueous solution of (ii) and the oil-in-water emulsion of (i), thereby preparing the composition.
- a negatively charged molecule such as an RNA molecule
- the aqueous solution comprising the RNA molecule may comprise a salt (e.g., NaCl), a buffer (e.g., a citrate buffer), a nonionic tonicifying agent (e.g., sucrose, trehalose, sorbitol, or dextrose), a polymer (e.g., Pluronic® F127), or any combination thereof.
- a salt e.g., NaCl
- a buffer e.g., a citrate buffer
- a nonionic tonicifying agent e.g., sucrose, trehalose, sorbitol, or dextrose
- a polymer e.g., Pluronic® F127
- the cationic emulsions of the invention can be used to deliver a negatively charge molecule, such as a nucleic acid (e.g., RNA).
- a negatively charge molecule such as a nucleic acid (e.g., RNA).
- the compositions may be administered to a subject in need thereof to generate or potentiate an immune response.
- the compositions can also be co-delivered with another immunogenic molecule, immunogenic composition or vaccine to enhance the effectiveness of the induced immune response.
- an "antigen” refers to a molecule containing one or more epitopes (either linear, conformational or both).
- a “buffer” refers to an aqueous solution that resists changes in the pH of the solution.
- nucleotide analog or “modified nucleotide” refers to a nucleotide that contains one or more chemical modifications (e.g., substitutions) in or on the nitrogenous base of the nucleoside (e.g., cytosine (C), thymine (T) or uracil (U)), adenine (A) or guanine (G)).
- C cytosine
- T thymine
- U uracil
- G guanine
- an emulsion "particle” refers to a oil droplet suspended in the aqueous (continuous) phase of an oil-in-water emulsion.
- the particle further comprises a cationic liquid, and optionally additional components, such as a surfactant.
- polymer refers to a molecule consisting of individual chemical moieties, which may be the same or different, that are joined together.
- polymer refers to individual chemical moieties that are joined end-to-end to form a linear molecule, as well as individual chemical moieties joined together in the form of a branched (e.g., a "multi-arm” or "star-shaped") structure.
- Exemplary polymers include, e.g., poloxamers.
- Poloxamers are nonionic triblock copolymers having a central hydrophobic chain of polyoxypropylene (poly(propylene oxide)) flanked by two hydrophilic chains of polyoxyethylene (poly(ethylene oxide)).
- saccharide encompasses monosaccharides
- Oligosaccharides are saccharides having two or more monosaccharide residues.
- Examples of saccharides include glucose, maltose, maltotriose, maltotetraose, sucrose and trehalose.
- An emulsion is "stable" when the emulsion particles remain separated without significant agglomeration or coalescence for at least one month, preferably at least two months, at 4°C.
- the average particle diameter (average number diameter) of a stable emulsion does not change by more than 10% when the emulsion is stored at 4°C for one month, or preferably two months.
- surfactant is a term of art and generally refers to any molecule having both a hydrophilic group (e.g., a polar group), which energetically prefers solvation by water, and a hydrophobic group which is not well solvated by water.
- nonionic surfactant is a known term in the art and generally refers to a surfactant molecule whose hydrophilic group (e.g., polar group) is not electrostatically charged.
- the "Zeta potential" of an emulsion is determined by the electrophoretic mobility of the emulsion particles.
- the velocity of a particle in a unit electric field is referred to as its electrophoretic mobility.
- Zeta potential is typically measured using an electrophoretic mobility apparatus, such as a Zetasizer Nano Z (Malvern Instruments Ltd, United Kingdom).
- the cationic oil-in-water emulsions disclosed herein are generally described in the manner that is conventional in the art, by concentrations of components that are used to prepare the emulsions. It is understood in the art that during the process of producing emulsions, including sterilization and other downstream processes, small amounts of oil (e.g., squalene), cationic lipid (e.g., DOTAP), or other components may be lost, and the actual concentrations of these components in the final product (e.g., a packaged, sterilized emulsion that is ready for administration) might be slightly lower than starting amounts, sometimes by up to about 10%, by up to about 20%, by up to about 25%, or by up to about 35%.
- oil e.g., squalene
- DOTAP cationic lipid
- This invention generally relates to cationic oil-in-water emulsions that contain high concentrations of cationic lipids and a defined oihcationic lipid ratio.
- the emulsions are particularly suitable for delivering negatively charged molecules, such as an RNA molecule, to a cell.
- the cationic lipid can interact with the negatively charged molecule, for example through electrostatic forces and hydrophobic/hydrophilic interactions, thereby anchoring the molecule to the emulsion particles.
- the cationic emulsions described herein are useful for delivering a negatively charged molecule, such as an RNA molecule encoding an antigen or small interfering RNA to cells in vivo.
- the cationic emulsions described herein provide advantages for delivering RNA molecules that encode one or more antigens, including self-replicating RNAs, as vaccines.
- the discrete phase (or dispersed phase) of the emulsion comprises an oil and a cationic lipid, wherein the cationic lipid facilitates dispersing the oil in the aqueous (continuous) phase.
- One or more optional components may be present in the emulsion, such as surfactants (e.g., nonionic surfactants) as described below.
- the particles of the oil-in-water emulsions have an average diameter (i.e., average number diameter) of 1 micrometer or less. It is particularly desirable that the average particle diameter of the cationic emulsions is about 180 nm or less, about 170 nm or less, about 160 nm or less, about 150 nm or less, about 140 nm or less, about 130 nm or less, about 120 nm or less, about 1 10 nm or less, or about 100 nm or less; for example, from about 80 nm to 180 nm, from about 80 nm to 170 nm, from about 80 nm to 160 nm, from about 80 nm to 150 nm, from about 80 nm to 140 nm, from about 80 nm to 130 nm, from about 80 nm to 120 nm; from about 80 nm to 110 nm, or from about 80 nm to 100 nm. Particularly preferred average particle diameter is about
- the size (average diameter) of the emulsion particles can be varied by changing the ratio of surfactant to oil (increasing the ratio decreases particle size), operating pressure of homogenization (increasing operating pressure of homogenization typically reduces particle size), temperature (increasing temperature decreases particle size), changing the type of oil, inclusion of certain types of buffers in the aqueous phase, and other process parameters, as described in detail below.
- the size of the emulsion particles may affect the immunogenicity of the RNA-emulsion complex, as exemplified herein.
- the particles of the emulsions described herein can be complexed with a negatively charged molecule. Prior to complexation with the negatively charged molecule, the overall net charge of the particles (typically measured as zeta-potential) should be positive (cationic).
- the overall net charge of the particles may vary, depending on the type of the cationic lipid and the amount of the cationic lipid in the emulsion, the amount of oil in the emulsion (e.g., higher percentage of oil typically results in less charge on the surface of the particles), and may also be affected by any additional component (e.g., surfactant(s)) that is present in the emulsion.
- the zeta-potential of the pre-complexation particles are no more than about 50 mV, no more than about 45 mV, no more than about 40 mV, no more than about 35 mV, no more than about 30 mV, no more than about 25 mV, no more than about 20 mV; from about 5 mV to about 50 mV, from about 10 mV to about 50 mV, from about 10 mV to about 45 mV, from about 10 mV to about 40 mV, from about 10 mV to about 35 mV, from about 10 mV to about 30 mV, from about 10 mV to about 25 mV, or from about 10 mV to about 20 mV.
- Zeta potential can be affected by (i) pH of the emulsion, (ii) conductivity of the emulsion (e.g., salinity), and (iii) the concentration of the various components of the emulsion (polymer, non-ionic surfactants etc.).
- CMF32 An exemplary cationic emulsion of the invention is referred herein as "CMF32.”
- the oil of CMF32 is squalene (at 4.3% w/v) and the cationic lipid is DOTAP (at 3.2 mg/mL).
- CMF32 also includes the surfactants SPAN85 (sorbitan trioleate at 0.5% v/v) and Tween 80 (polysorbate 80; polyoxyethuylenesorbitan monooleate; at 0.5% v/v).
- emulsion particles of CMF32 comprise squalene, SPAN85, Tween80, and DOTAP.
- CMF34 emulsions referred to herein as "CMF34" (4.3% w/v squalene, 0.5% Tween 80, 0.5% SPAN85, and 4.4 mg/mL DOTAP), "CMF35” (4.3% w/v squalene, 0.5% Tween 80, 0.5% SPAN85, 5.0 mg/mL DOTAP), and other emulsions described herein.
- Certain exemplary cationic oil-in-water emulsions of the invention comprise DOTAP and squalene at concentrations of 2.1 mg/ml to 2.84 mg/ml (preferably 2.23 mg/ml to 2.71 mg/ml), and 30.92 mg/ml to 41.92 mg/ml (preferably 32.82 mg/ml to about 40.02 mg/ml), respectively, and further comprise equal amounts of SPAN85 and Tween80 (e.g., about 0.5% each).
- exemplary cationic oil-in-water emulsions of the invention comprise DOTAP and squalene at concentrations of 2.78 mg/ml to 3.76 mg/ml (preferably 2.94 mg/ml to 3.6 mg/ml), and 18.6 mg/ml to 25.16 mg/ml (preferably 19.69 mg/ml to about 24.07 mg/ml), respectively, and further comprise equal amounts of SPAN85 and Tween80 (e.g., about 0.5% each).
- the particles of these emulsions have an average diameter from 80 nm to 180 nm.
- the amount of surfactant should be at level that is sufficient to disperse the oil particle into the aqueous phase to form a stable emulsion.
- the actual amount of surfactant required to disperse the oil into the aqueous phase depends on the type of surfactant and the type of oil used for the emulsion; and the amount of oil may also vary according to the desired particle size (as this changes the surface area between the two phases).
- the actual amounts and the relative proportions of the components of a desired emulsion can be readily determined by a skilled artisan.
- the particles of the cationic oil-in- water emulsions comprise an oil.
- the oil preferably is in the liquid phase at 1°C or above, and is immiscible to water.
- the oil is a metabolizable, non-toxic oil; more preferably one of about 6 to about 30 carbon atoms including, but not limited to, alkanes, alkenes, alkynes, and their corresponding acids and alcohols, the ethers and esters thereof, and mixtures thereof.
- the oil may be any vegetable oil, fish oil, animal oil or synthetically prepared oil that can be metabolized by the body of the subject to which the emulsion will be administered, and is not toxic to the subject.
- the subject may be an animal, typically a mammal, and preferably a human.
- the oil is in liquid phase at 25°C.
- the oil is in liquid phase at 25°C, when it displays the properties of a fluid (as distinguished from solid and gas; and having a definite volume but no definite shape) when stored at 25°C.
- the emulsion may be stored and used at any suitable temperature.
- the oil is in liquid phase at 4°C.
- the oil may be any long chain alkane, alkene or alkyne, or an acid or alcohol derivative thereof either as the free acid, its salt or an ester such as a mono-, or di- or triester, such as the triglycerides and esters of 1 ,2-propanediol or similar poly -hydroxy alcohols.
- Alcohols may be acylated employing a mono- or poly-functional acid, for example acetic acid, propanoic acid, citric acid or the like.
- Ethers derived from long chain alcohols which are oils and meet the other criteria set forth herein may also be used.
- the individual alkane, alkene or alkyne moiety and its acid or alcohol derivatives will generally have from about 6 to about 30 carbon atoms.
- the moiety may have a straight or branched chain structure. It may be fully saturated or have one or more double or triple bonds.
- ester- or ether-based oils are employed, the limitation of about 6 to about 30 carbons applies to the individual fatty acid or fatty alcohol moieties, not the total carbon count.
- Any suitable oils from an animal, fish or vegetable source may be used.
- Sources for vegetable oils include nuts, seeds and grains, and suitable oils peanut oil, soybean oil, coconut oil, and olive oil and the like.
- Other suitable seed oils include safflower oil, cottonseed oil, sunflower seed oil, sesame seed oil and the like.
- corn oil, and the oil of other cereal grains such as wheat, oats, rye, rice, teff, triticale and the like may also be used.
- the technology for obtaining vegetable oils is well developed and well known. The compositions of these and other similar oils may be found in, for example, the Merck Index, and source materials on foods, nutrition and food technology.
- cod liver oil For example, cod liver oil, shark liver oils, and whale oil such as spermaceti exemplify several of the fish oils which may be used herein.
- a number of branched chain oils are synthesized biochemically in 5-carbon isoprene units and are generally referred to as terpenoids.
- Squalene (2,6,10, 15, 19,23-hexamethyl-2,6, 10, 14,18,22-tetracosahexaene), a branched, unsaturated terpenoid, is particularly preferred herein.
- a major source of squalene is shark liver oil, although plant oils (primarily vegetable oils), including amaranth seed, rice bran, wheat germ, and olive oils, are also suitable sources.
- Squalene can also be obtained from yeast or other suitable microbes. In some embodiments, Squalene is preferably obtained from non-animal sources, such as from olives, olive oil or yeast.
- Squalane the saturated analog to squalene, is also preferred.
- Fish oils, including squalene and squalane are readily available from commercial sources or may be obtained by methods known in the art.
- the oil comprises an oil that is selected from the group consisting of: Castor oil, Coconut oil, Corn oil, Cottonseed oil, Evening primrose oil, Fish oil, Jojoba oil, Lard oil, Linseed oil, Olive oil, Peanut oil, Safflower oil, Sesame oil, Soybean oil, Squalene, Squalane, Sunflower oil and Wheatgerm oil.
- the oil comprises Squalene or Squalane.
- the oil component of the emulsion may be present in an amount from about 0.2% to about 10% (v/v).
- the cationic oil-in- water emulsion may comprise from about 0.2% to about 10% (v/v) oil, from about 0.2% to about 9% (v/v) oil, from about 0.2% to about 8% (v/v) oil, from about 0.2% to about 7% (v/v) oil, from about 0.2% to about 6% (v/v) oil, from about 0.2% to about 5% (v/v) oil, from about 0.3% to about 10% (v/v) oil, from about 0.4% to about 10% (v/v) oil, from about 0.5% to about 10% (v/v) oil, from about 1% to about 10% (v/v) oil, from about 2% to about 10% (v/v) oil, from about 3% to about 10% (v/v) oil, from about 4% to about 10% (v/v) oil, from about 5% to about 10% (v/v) oil, from about 1% to about 10% (v
- the cationic oil-in-water emulsion may also comprise from about 0.2% to about 8% (v/v) oil, for example, from 0.6% (w/v) to 4% (w/v), from about 1% (w/v) to about 3.2% (w/v), about 1% (w/v), about 1.1% (w/v), about 1.2% (w/v), about 1.3% (w/v), about 1.4% (w/v), about 1.5% (w/v), about 1.6 % (w/v), about 1.7 % (w/v), about 1.8 % (w/v), about 1.9% (w/v), about 2.0% (w/v), about 2.1% (w/v), about 2.15% (w/v), about 2.2% (w/v), about 2.3% (w/v), about 2.4% (w/v), about 2.5% (w/v), about 2.6% (w/v), about 2.7% (w/v), about 2.8% (w/v), about 2.9% (w/v), 3.0% (w/v), about
- the cationic oil-in-water emulsion comprises about 5% (v/v) oil. In another exemplary embodiment, the cationic oil-in-water emulsion comprises about 4.3% (w/v) squalene. In other exemplary embodiments, the cationic oil-in- water emulsion comprises from 0.6% (w/v) to 4% (w/v) squalene, for example, from about 1% (w/v) to about 3.2% (w/v) squalene, such as 1.08% (w/v), 2.15% (w/v), or 3.23% (w/v) squalene, as shown in the Examples.
- the percentage of oil described above is determined based on the initial amount of the oil that is used to prepare the emulsions. It is understood in the art that the actual concentration of the oil in the final product (e.g., a packaged, sterilized emulsion that is ready for administration) might be slightly lower, sometimes by up to about 10%, by up to about 20%, by up to about 25%, or by up to about 35%.
- the emulsion particles described herein comprise a cationic lipid, which can interact with the negatively charged molecule thereby anchoring the molecule to the emulsion particles.
- any suitable cationic lipid may be used.
- the cationic lipid contains a nitrogen atom that is positively charged under physiological conditions.
- the head group of the cationic lipid can comprise a tertiary amine or, preferably, a quaternary amine.
- Certain suitable cationic lipids comprise two saturated or unsaturated fatty acid chains (e.g., side chains having from about 10 to about 30 carbon atoms).
- the cationic lipid can have a positive charge at about 12 pH, about 11 pH, about 10 pH, about 9 pH, about 8 pH, about 7 pH, or about 6 pH.
- Suitable cationic lipids include, benzalkonium chloride (BAK), benzethonium chloride, cetrimide (which contains tetradecyltrimethylammonium bromide and possibly small amounts of dodecyltrimethylammonium bromide and hexadecyltrimethyl ammonium bromide), cetylpyridinium chloride (CPC), cetyl trimethylammonium chloride (CTAC), primary amines, secondary amines, tertiary amines, including but not limited to ⁇ , ⁇ ', ⁇ '-polyoxyethylene (10)-N-tallow-l,3 -diaminopropane, other quaternary amine salts, including but not limited to dodecyltrimethylammonium bromide, hexadecyltrimethyl- ammonium bromide, mixed alkyl-trimethyl-ammonium bromide,
- BAK benzalkonium chloride
- cetrimide which contains
- benzyldimethyldodecylammonium chloride benzyldimethylhexadecyl-ammonium chloride, benzyltrimethylammonium methoxide, cetyldimethylethylammonium bromide,
- DDAB dimethyldioctadecyl ammonium bromide
- methylbenzethonium chloride methylbenzethonium chloride
- decamethonium chloride methyl mixed trialkyl ammonium chloride
- trioctylammonium chloride N,N-dimethyl-N-[2 (2-methyl-4-(l,l,3,3tetramethylbutyl)- phenoxy]-ethoxy)ethyl]-benzenemetha-naminium chloride (DEBDA)
- cetylpyridinium bromide and cetylpyridinium chloride N-alkylpiperidinium salts, dicationic bolaform electrolytes C12BU6), dialkylglycetylphosphorylcholine, lysolecithin, L-a dioleoylphosphatidylethanolamine, cholesterol hemisuccinate choline ester, lipopolyamines, including but not limited to dioctadecylamidoglycylspermine (DOGS), dipalmitoyl phosphatidylethanol-amidospermine (DPPES), lipopoly-L (or D)-lysine (LPLL, LPDL), poly (L (or D)-lysine conjugated to N- glutarylphosphatidylethanolamine, didodecyl glutamate ester with pendant amino group (Ci 2 GluPhC n N + ), ditetradecyl glutamate ester with pendant amino group (Ci 4 GluC
- the cationic lipid is selected from the group consisting of l,2-dioleoyloxy-3-(trimethylammonio)propane (DOTAP), 1,2-dioleoyl-sn- glycero-3-ethylphosphocholine (DOEPC), N,N-dioleoyl-N,N-dimethylammonium chloride (DODAC), and N-[l-(2, 3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride
- DOTAP 1,2-dioleoyl-sn- glycero-3-ethylphosphocholine
- DODAC N,N-dioleoyl-N,N-dimethylammonium chloride
- the cationic lipid is not DC-Cholesterol.
- the cationic lipid selected for the emulsion is soluble in the oil that is selected for the emulsion.
- solubility can be predicted based on the structures of the lipid and oil (e.g., the solubility of a lipid may be determined by the structure of its tail).
- lipids having one or two unsaturated fatty acid chains are soluble in squalene or squalane.
- solubility can be determined according to the quantity of the lipid that dissolves in a given quantity of the oil to form a saturated solution. Such methods are known in the art. The solubility of exemplary saturated or unsaturated fatty acids in squalene is also provided in the Examples.
- the saturation concentration of the lipid in the oil is at least about 1 mg/ml, at least about 5 mg/ml, at least about 10 mg/ml, at least about 25 mg/ml, at least about 50 mg/ml or at least about lOOmg/ml.
- the concentration of cationic lipid in the emulsion before the negatively charged molecule is complexed is at least about 1.25 mM, at least about 1.5 mM, at least about 1.75 mM, at least about 2.0 mM, at least about 2.25 mM, at least about 2.5 mM, at least about 2.75 mM, at least about 3.0 mM, at least about 3.25 mM, at least about 3.5 mM, at least about 3.75 mM, at least about 4.0 mM, at least about 4.25 mM, at least about 4.5 mM, at least about 4.75 mM, at least about 5.0 mM, at least about 5.25 mM, at least about 5.5 mM, at least about 5.75 mM, at least about 6 mM, at least about 6.25 mM, at least about 6.5 mM, at least about 6.75 mM, at least about 7 mM, at least about 7.25 mM, at least
- the cationic lipid is DOTAP.
- the cationic oil-in- water emulsion may comprise from about 0.8 mg/ml to about 10 mg/ml DOTAP.
- the cationic oil-in-water emulsion may comprise DOTAP at from about 1.7 mg/ml to about 10 mg/ml, from about 1.8 mg/ml to about 10 mg/ml, from about 2.0 mg/ml to about 10 mg/ml, from about 2.2 mg/ml to about 10 mg/ml, from about 2.4 mg/ml to about 10 mg/ml, from about 2.6 mg/ml to about 10 mg/ml, from about 2.8 mg/ml to about 10 mg/ml, from about 3.0 mg/ml to about 10 mg/ml, from about 3.2 mg/ml to about 10 mg/ml, from about 3.4 mg/ml to about 10 mg/ml, from about 3.6 mg/ml to about 10 mg/ml, from about 4.0
- the cationic oil-in-water emulsion comprises from about 1.8 mg/ml to about 5.0 mg/ml DOTAP.
- the cationic lipid is DOEPC.
- the cationic oil-in- water emulsion may comprise from about 0.8 mg/ml to about 10 mg/ml DOEPC.
- the cationic oil-in-water emulsion may comprise DOEPC at from about 1.7 mg/ml to about 10 mg/ml, from about 1.8 mg/ml to about 10 mg/ml, from about 2.0 mg/ml to about 10 mg/ml, from about 2.2 mg/ml to about 10 mg/ml, from about 2.4 mg/ml to about 10 mg/ml, from about 2.6 mg/ml to about 10 mg/ml, from about 2.8 mg/ml to about 10 mg/ml, from about 3.0 mg/ml to about 10 mg/ml, from about 3.2 mg/ml to about 10 mg/ml, from about 3.4 mg/ml to about 10 mg/ml, from about 3.6 mg/ml to about 10 mg/ml, from about 4.0 mg/m
- the cationic lipid is DODAC.
- the cationic oil-in- water emulsion may comprise from about 0.8 mg/ml to about 10 mg/ml DODAC.
- the cationic oil-in-water emulsion may comprise DODAC at from about 1.7 mg/ml to about 10 mg/ml, from about 1.8 mg/ml to about 10 mg/ml, from about 2.0 mg/ml to about 10 mg/ml, from about 2.2 mg/ml to about 10 mg/ml, from about 2.4 mg/ml to about 10 mg/ml, from about 2.6 mg/ml to about 10 mg/ml, from about 2.8 mg/ml to about 10 mg/ml, from about 3.0 mg/ml to about 10 mg/ml, from about 3.2 mg/ml to about 10 mg/ml, from about 3.4 mg/ml to about 10 mg/ml, from about 3.6 mg/ml to about 10 mg/ml, from about 4.0 mg/m
- the cationic lipid is DOTMA.
- the cationic oil-in- water emulsion may comprise from about 0.8 mg/ml to about 10 mg/ml DOTMA.
- the cationic oil-in-water emulsion may comprise DOTMA at from about 1.7 mg/ml to about 10 mg/ml, from about 1.8 mg/ml to about 10 mg/ml, from about 2.0 mg/ml to about 10 mg/ml, from about 2.2 mg/ml to about 10 mg/ml, from about 2.4 mg/ml to about 10 mg/ml, from about 2.6 mg/ml to about 10 mg/ml, from about 2.8 mg/ml to about 10 mg/ml, from about 3.0 mg/ml to about 10 mg/ml, from about 3.2 mg/ml to about 10 mg/ml, from about 3.4 mg/ml to about 10 mg/ml, from about 3.6 mg/ml to about 10 mg/ml, from about 4.0
- the concentration of a lipid described above is determined based on the initial amount of the lipid that is used to prepare the emulsions. It is understood in the art that the actual concentration of the oil in the final product (e.g., a packaged, sterilized emulsion that is ready for administration) might be slightly lower, sometimes by up to about 10%, by up to about 20%, by up to about 25%, or by up to about 35%. .
- the cationic oil-in- water emulsions of the invention have a defined oihlipid ratio.
- the ratio of oil: lipid (mole:mole) of the emulsion may be at least about 8: 1 (mole:mole), at least about 8.5: 1 (mole:mole), at least about 9: 1 (mole:mole), at least about 9.5: 1 (mole:mole), at least about 10: 1 (mole:mole), at least about 10.5: 1
- the ratio of oiklipid (mole:mole) of the emulsion may be at least about 4: 1 (mole:mole), at least about 4.2: 1 (mole:mole), at least about 4.5: 1 (mole:mole), at least about 5: 1 (mole:mole), at least about 5.5: 1 (mole:mole), at least about 6: 1 (mole:mole), at least about 6.5: 1 (mole:mole), 7: 1 (mole:mole), at least about 7.5: 1 (mole:mole), from about 4: 1 (mole:mole) to about 50: 1 (mole:mole), from about 5: 1 (mole:mole) to about 50: 1 (mole:mole), from about 6: 1 (mole:mole) to about 50: 1 (mole:mole), from about 7: 1
- the molar concentration of the oil can be calculated based on the average molecular weight of the oil.
- the average molecular weight of soybean oil (292.2) can be calculated according to the average fatty acid distribution (12% weight percentage of palmitic acid; 52% weight percentage of linolenic acid; etc), and the molecular weight of each component.
- the cationic oil-in-water emulsions described herein may further comprise additional components.
- the emulsions may comprise components that can promote particle formation, improve the complexation between the negatively charge molecules and the cationic particles, or increase the stability of the negatively charge molecule (e.g., to prevent degradation of an RNA molecule).
- the cationic oil-in- water emulsion can contain an antioxidant, such as citrate, ascorbate or salts thereof.
- the cationic oil-in-water emulsion as described herein further comprises a surfactant.
- surfactants have been used in the pharmaceutical sciences. These include naturally derived materials such as gums from trees, vegetable protein, sugar-based polymers such as alginates, and the like. Certain oxypolymers or polymers having a hydroxide or other hydrophilic substituent on the carbon backbone have surfactant activity, for example, povidone, polyvinyl alcohol, and glycol ether-based mono- and poly-functional compounds. Ionic or nonionic detergents and long chain fatty-acid- derived compounds can also be used in this invention.
- Suitable surfactants include the following:
- Water-soluble soaps such as the sodium, potassium, ammonium and alkanol-ammonium salts of higher fatty acids (C1 0 -C22), in particular sodium and potassium tallow and coconut soaps.
- Anionic synthetic non-soap surfactants which can be represented by the water-soluble salts of organic sulfuric acid reaction products having in their molecular structure an alkyl radical containing from about 8 to 22 carbon atoms and a radical selected from the group consisting of sulfonic acid and sulfuric acid ester radicals.
- sodium or potassium alkyl sulfates derived from tallow or coconut oil; sodium or potassium alkyl benzene sulfonates; sodium alkyl glyceryl ether sulfonates; sodium coconut oil fatty acid monoglyceride sulfonates and sulfates; sodium or potassium salts of sulfuric acid esters of the reaction product of one mole of a higher fatty alcohol and about 1 to 6 moles of ethylene oxide; sodium or potassium alkyl phenol ethylene oxide ether sulfonates, with 1 to 10 units of ethylene oxide per molecule and in which the alkyl radicals contain from 8 to 12 carbon atoms; the reaction product of fatty acids esterified with isethionic acid and neutralized with sodium hydroxide; sodium or potassium salts of fatty acid amide of a methyl tauride; and sodium and potassium salts of S0 3 -sulfonated C10-C24 a-olefins.
- Nonionic synthetic surfactants made by the condensation of alkylene oxide groups with an organic hydrophobic compound.
- Typical hydrophobic groups include condensation products of propylene oxide with propylene glycol, alkyl phenols, condensation product of propylene oxide and ethylene diamine, aliphatic alcohols having 8 to 22 carbon atoms, and amides of fatty acids.
- Nonionic surfactants such as amine oxides, phosphine oxides and sulfoxides, having semipolar characteristics.
- long chain tertiary amine oxides include dimethyldodecylamine oxide and bis-(2-hydroxyethyl) dodecylamine.
- phosphine oxides are found in U.S. Pat. No. 3,304,263, issued February 14, 1967, and include dimethyldodecylphosphine oxide and dimethyl-(2hydroxydodecyl) phosphine oxide.
- Long chain sulfoxides including those corresponding to the formula R 1 — SO— R 2 wherein R 1 and R 2 are substituted or unsubstituted alkyl radicals, the former containing from about 10 to about 28 carbon atoms, whereas R 2 contains from 1 to 3 carbon atoms.
- Specific examples of these sulfoxides include dodecyl methyl sulfoxide and 3- hydroxy tridecyl methyl sulfoxide.
- Ampho lytic synthetic surfactants such as sodium 3- dodecylaminopropionate and sodium 3-dodecylaminopropane sulfonate.
- Zwitterionic synthetic surfactants such as 3-(N,N-dimethyl-N- hexadecylammonio)propane- 1 -sulfonate and 3 -(N,N-dimethyl-N-hexadecylammonio)-2- hydroxy propane- 1 -sulfonate.
- surfactants can be used in a composition of the present invention: (a) soaps (i.e., alkali salts) of fatty acids, rosin acids, and tall oil; (b) alkyl arene sulfonates; (c) alkyl sulfates, including surfactants with both branched-chain and straight-chain hydrophobic groups, as well as primary and secondary sulfate groups; (d) sulfates and sulfonates containing an intermediate linkage between the hydrophobic and hydrophilic groups, such as the fatty acylated methyl taurides and the sulfated fatty monoglycerides; (e) long-chain acid esters of polyethylene glycol, especially the tall oil esters; (f) polyethylene glycol ethers of alkylphenols; (g) polyethylene glycol ethers of long-chain alcohols and mercaptans; and (h) fatty acyl diethanol amide
- anionic surfactants specifically designed for and commonly used in biological situations. Such surfactants are divided into four basic types: anionic, cationic, zwitterionic (amphoteric), and nonionic.
- exemplary anionic surfactants include, e.g., perfluorooctanoate (PFOA or PFO), perfluorooctanesulfonate (PFOS), alkyl sulfate salts such as sodium dodecyl sulfate (SDS) or ammonium lauryl sulfate, sodium laureth sulfate (also known as sodium lauryl ether sulfate, SLES), alkyl benzene sulfonate, and fatty acid salts.
- PFOA or PFO perfluorooctanoate
- PFOS perfluorooctanesulfonate
- alkyl sulfate salts such as sodium dodecyl sulfate (SDS)
- Exemplary cationic surfactants include, e.g., alkyltrimethylammonium salts such as cetyl trimethylammonium bromide (CTAB, or hexadecyl trimethyl ammonium bromide), cetylpyridinium chloride (CPC), polyethoxylated tallow amine (POEA), benzalkonium chloride (BAC), benzethonium chloride (BZT).
- Exemplary zwitterionic (amphoteric) surfactants include, e.g., dodecyl betaine, cocamidopropyl betaine, and coco ampho glycinate.
- nonionic surfactants include, e.g., alkyl poly(ethylene oxide), alkylphenol poly(ethylene oxide), copolymers of poly(ethylene oxide) and poly(propylene oxide) (commercially called poloxamers or poloxamines), Aayl polyglucosides (e.g., octyl glucoside or decyl maltoside), fatty alcohols (e.g., cetyl alcohol or oleyl alcohol), cocamide MEA, cocamide DEA, Pluronic® F-68 (polyoxyethylene-polyoxypropylene block copolymer), and polysorbates, such as Tween 20 (polysorbate 20), Tween 80 (polysorbate 80; polyoxyethuylenesorbitan monooleate), dodecyl dimethylamine oxide, and vitamin E tocopherol propylene glycol succinate (Vitamin E TPGS).
- alkyl poly(ethylene oxide) alkylphenol poly(ethylene oxide)
- a particularly useful group of surfactants are the sorbitan-based non-ionic surfactants. These surfactants are prepared by dehydration of sorbitol to give 1,4-sorbitan which is then reacted with one or more equivalents of a fatty acid. The fatty-acid-substituted moiety may be further reacted with ethylene oxide to give a second group of surfactants.
- the fatty-acid-substituted sorbitan surfactants are made by reacting 1,4- sorbitan with a fatty acid such as lauric acid, palmitic acid, stearic acid, oleic acid, or a similar long chain fatty acid to give the 1,4-sorbitan mono-ester, 1,4-sorbitan sesquiester or 1,4-sorbitan triester.
- a fatty acid such as lauric acid, palmitic acid, stearic acid, oleic acid, or a similar long chain fatty acid
- the common names for these surfactants include, for example, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monoestearate, sorbitan monooleate, sorbitan sesquioleate, and sorbitan trioleate.
- SPAN® or ARLACEL® usually with a letter or number designation which distinguishes between the various mono, di- and triester substituted sorbit
- SPAN® and ARLACEL® surfactants are hydrophilic and are generally soluble or dispersible in oil. They are also soluble in most organic solvents. In water they are generally insoluble but dispersible. Generally these surfactants will have a hydrophilic - lipophilic balance (HLB) number between 1.8 to 8.6. Such surfactants can be readily made by means known in the art or are commercially available.
- a related group of surfactants comprises olyoxyethylene sorbitan monoesters and olyoxyethylene sorbitan triesters. These materials are prepared by addition of ethylene oxide to a 1,4-sorbitan monester or triester. The addition of polyoxy ethylene converts the lipophilic sorbitan mono- or triester surfactant to a hydrophilic surfactant generally soluble or dispersible in water and soluble to varying degrees in organic liquids.
- TWEEN® These materials, commercially available under the mark TWEEN®, are useful for preparing oil-in-water emulsions and dispersions, or for the solubilization of oils and making anhydrous ointments water-soluble or washable.
- the TWEEN® surfactants may be combined with a related sorbitan monester or triester surfactants to promote emulsion stability.
- TWEEN® surfactants generally have a HLB value falling between 9.6 to 16.7. TWEEN® surfactants are commercially available.
- a third group of non-ionic surfactants which could be used alone or in conjunction with SPANS, ARLACEL® and TWEEN® surfactants are the polyoxyethylene fatty acids made by the reaction of ethylene oxide with a long-chain fatty acid.
- the most commonly available surfactant of this type is solid under the name MYRJ® and is a polyoxyethylene derivative of stearic acid.
- MYRJ® surfactants are hydrophilic and soluble or dispersible in water like TWEEN® surfactants.
- the MYRJ® surfactants may be blended with TWEEN® surfactants or with TWEEN®/SPAN® or ARLACEL® surfactant mixtures for use in forming emulsions.
- MYRJ® surfactants can be made by methods known in the art or are available commercially.
- a fourth group of polyoxyethylene based non-ionic surfactants are the polyoxyethylene fatty acid ethers derived from lauryl, acetyl, stearyl and oleyl alcohols. These materials are prepared as above by addition of ethylene oxide to a fatty alcohol.
- the commercial name for these surfactants is BRIJ®.
- BRIJ® surfactants may be hydrophilic or lipophilic depending on the size of the polyoxyethylene moiety in the surfactant. While the preparation of these compounds is available from the art, they are also readily available from commercial sources.
- non-ionic surfactants which could potentially be used are, for example, polyoxyethylene, polyol fatty acid esters, polyoxyethylene ether, polyoxypropylene fatty ethers, bee's wax derivatives containing polyoxyethylene, polyoxyethylene lanolin derivative, polyoxyethylene fatty glycerides, glycerol fatty acid esters or other
- polyoxyethylene acid alcohol or ether derivatives of long-chain fatty acids of 12-22 carbon atoms are examples of polyoxyethylene acid alcohol or ether derivatives of long-chain fatty acids of 12-22 carbon atoms.
- an emulsion-forming non-ionic surfactant which has an HLB value in the range of about 7 to 16. This value may be obtained through the use of a single non-ionic surfactant such as a TWEEN® surfactant or may be achieved by the use of a blend of surfactants such as with a sorbitan mono, di- or triester based surfactant; a sorbitan ester polyoxyethylene fatty acid; a sorbitan ester in combination with a polyoxyethylene lanolin derived surfactant; a sorbitan ester surfactant in combination with a high HLB polyoxyethylene fatty ether surfactant; or a polyethylene fatty ether surfactant or polyoxyethylene sorbitan fatty acid.
- the emulsion comprises a single non-ionic surfactant, most particularly a TWEEN® surfactant, as the emulsion stabilizing non-ionic surfactant.
- the emulsion comprises TWEEN® 80, otherwise known as polysorbate 80 or polyoxyethylene 20 sorbitan monooleate.
- the emulsion comprises two or more non-ionic surfactants, in particular a TWEEN® surfactant and a SPAN® surfactant.
- the emulsion comprises TWEEN® 80 and SPAN® 85.
- the oil-in-water emulsions can contain from about 0.01% to about 2.5% surfactant (w/v), about 0.01% to about 2% surfactant, 0.01% to about 1.5% surfactant, 0.01% to about 1% surfactant, 0.01% to about 0.5% surfactant, 0.05% to about 0.5% surfactant, 0.08% to about 0.5% surfactant, about 0.08% surfactant, about 0.1% surfactant, about 0.2% surfactant, about 0.3% surfactant, about 0.4% surfactant, about 0.5% surfactant, about 0.6% surfactant, about 0.7% surfactant, about 0.8% surfactant, about 0.9% surfactant, or about 1% surfactant.
- the oil-in-water emulsions can contain 0.05% to about 1%, 0.05% to about 0.9%, 0.05% to about 0.8%, 0.05% to about 0.7%, 0.05% to about 0.6%, 0.05% to about 0.5%, about 0.08%, about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1% (w/v) Tween 80 (polysorbate 80; polyoxyethuylenesorbitan monooleate).
- the oil-in-water emulsion contains 0.08% (w/v) Tween 80 (polysorbate 80; polyoxyethuylenesorbitan monooleate).
- the oil-in-water emulsions can contain 0.05% to about 1%, 0.05% to about 0.9%, 0.05% to about 0.8%, 0.05% to about 0.7%, 0.05% to about 0.6%, 0.05% to about 0.5%, about 0.08%, about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1% (w/v) SPAN85 (sorbitan trioleate).
- the oil-in-water emulsions can contain a combination of surfactants described herein.
- a combination of surfactants described herein for example, a combination of Tween 80 (polysorbate 80;
- polyoxyethuylenesorbitan monooleate and SPAN85 (sorbitan trioleate) may be used.
- the emulsions may contain various amounts of Tween 80 and SPAN85 (e.g., those exemplified above) or equal amounts.
- the oil-in-water emulsions can contain (w/v) about 0.05% Tween 80 and about 0.05% SPAN85, about 0.1% Tween 80 and about 0.1% SPAN85, about 0.2% Tween 80 and about 0.2% SPAN85, about 0.3% Tween 80 and about 0.3% SPAN85, about 0.4% Tween 80 and about 0.4% SPAN85, about 0.5% Tween 80 and about 0.5% SPAN85, about 0.6% Tween 80 and about 0.6% SPAN85, about 0.7% Tween 80 and about 0.7% SPAN85, about 0.8% Tween 80 and about 0.8% SPAN85, about 0.9% Tween 80 and about 0.9% SPAN85, or about 1% Tween 80 and about 1.0% SPAN85.
- the surfactant is a Polyethylene Glycol (PEG)- lipid.
- the emulsion does not comprise a PEG-lipid.
- PEG-lipids such as PEG coupled to dialkyloxypropyls (PEG-DAA), PEG coupled to diacylglycerol (PEG- DAG), PEG coupled to phosphatidylethanolamine (PE) (PEG-PE) or some other
- PEG-phospholipids PEG conjugated to ceramides
- PEG-Cer PEG conjugated to ceramides
- Other suitable PEG-lipids include, e.g., PEG-dialkyloxypropyl (DAA) lipids or PEG-diacylglycerol (DAG) lipids.
- DAA PEG-dialkyloxypropyl
- DAG PEG-diacylglycerol
- Exemplary PEG-DAG lipids include, e.g., PEG-dilauroylglycerol (C 12 ) lipids, PEG-dimyristoylglycerol (CM) lipids, PEG-dipalmitoylglycerol (C1 ⁇ 2) lipids, or PEG- distearoylglycerol (C 18 ) lipids.
- C 12 PEG-dilauroylglycerol
- CM PEG-dimyristoylglycerol
- C1 ⁇ 2 PEG-dipalmitoylglycerol
- C 18 PEG- distearoylglycerol
- Exemplary PEG-DAA lipids include, e.g., PEG- dilauryloxypropyl (C 12 ) lipids, PEG-dimyristyloxypropyl (CM) lipids, PEG- dipalmityloxypropyl (C1 ⁇ 2) lipids, or PEG-distearyloxypropyl (C 18 ) lipids.
- PEG-DAA lipids include, e.g., PEG- dilauryloxypropyl (C 12 ) lipids, PEG-dimyristyloxypropyl (CM) lipids, PEG- dipalmityloxypropyl (C1 ⁇ 2) lipids, or PEG-distearyloxypropyl (C 18 ) lipids.
- PEGs are classified by their molecular weights; for example, PEG 2000 has an average molecular weight of about 2,000 daltons, and PEG 5000 has an average molecular weight of about 5,000 daltons.
- PEGs are commercially available from Sigma Chemical Co. as well as other companies and include, for example, the following:
- monomethoxypolyethylene glycol (MePEG-OH), monomethoxypolyethylene glycol- succinate (MePEG-S), monomethoxypolyethylene glycol-succinimidyl succinate (MePEG-S- NHS), monomethoxypolyethylene glycol-amine (MePEG-NH 2 ), monomethoxypolyethylene glycol-tresylate (MePEG-TRES), and monomethoxypolyethylene glycol-imidazolyl-carbonyl (MePEG-IM).
- monomethoxypolyethyleneglycol-acetic acid (MePEG- CH 2 COOH)
- PEG-DAA conjugates e.g., PEG-DAA conjugates.
- the aqueous phase (continuous phase) of the oil-in-water emulsions is water, or an aqueous solution that can contain a salt (e.g., NaCl), a buffer (e.g., a citrate buffer), a nonionic tonicifying agent (e.g., a saccharide), a polymer, a surfactant, or any combination thereof.
- a salt e.g., NaCl
- a buffer e.g., a citrate buffer
- a nonionic tonicifying agent e.g., a saccharide
- a polymer e.g., a polymer, a surfactant, or any combination thereof.
- the aqueous phase of the pre-complexed emulsions can differ from the aqueous phase of the post-complexed emulsions (oil-in-water emulsions in which the negatively charged molecules are complexed with the emulsion particles).
- the pre-complexed emulsions are prepared in an aqueous solvent that promotes the formation of particles with desired properties (e.g., average diameter, and the like).
- the pre-complexed emulsions are diluted with an aqueous solution that contains the negatively charged molecule, and other desired components, to produce the final cationic oil-in-water emulsion, which contains the final aqueous phase with desired osmolarity and tonicity.
- the aqueous phase can contain an antioxidant, such as citrate, ascorbate or salts thereof.
- the emulsions are formulated for in vivo administration, it is preferable to make up the final solution so that the tonicity and osmolarity of the emulsion are substantially the same as normal physiological fluids in order to prevent undesired post- administration consequences, such as swelling or rapid absorption of the composition. It is also preferable to buffer the aqueous phase in order to maintain a pH compatible with normal physiological conditions. Also, in certain instances, it may be desirable to maintain the pH at a particular level in order to insure the stability of certain components of the emulsion. For example, it may be desirable to prepare an emulsion that is isotonic and isosmotic. To control tonicity, the emulsion may comprise a physiological salt, such as a sodium salt.
- a physiological salt such as a sodium salt.
- Non-ionic tonicifying agents can also be used to control tonicity.
- Non-ionic tonicity modifying agents ordinarily known to those in the art. These are typically carbohydrates of various classifications (see, for example, Voet and Voet (1990) Biochemistry (John Wiley & Sons, New York).
- Monosaccharides classified as aldoses such as glucose, mannose, arabinose, and ribose, as well as those classified as ketoses such as fructose, sorbose, and xylulose can be used as non-ionic tonicifying agents in the present invention.
- Disaccharides such a sucrose, maltose, trehalose, and lactose can also be used.
- alditols acyclic polyhydroxy alcohols, also referred to as sugar alcohols
- Non-ionic tonicity modifying agents can be present at a concentration of from about 0.1% to about 10% or about 1% to about 10%, depending upon the agent that is used.
- the aqueous phase may be buffered. Any physiologically acceptable buffer may be used herein, such as water, citrate buffers, phosphate buffers, acetate buffers, tris buffers, bicarbonate buffers, carbonate buffers, succinate buffer, or the like.
- the pH of the aqueous component will preferably be between 6.0-8.0, more preferable about 6.2 to about 6.8.
- the buffer is lOmM citrate buffer with a pH at 6.5.
- the aqueous phase is, or the buffer prepared using, RNase-free water or DEPC treated water. In some cases, high salt in the buffer might interfere with complexation of negatively charged molecule to the emulsion particle therefore is avoided. In other cases, certain amount of salt in the buffer may be included.
- the buffer is lOmM citrate buffer with a pH at 6.5. If desired the aqueous phase is, or the buffer is prepared using, RNase-free water or DEPC treated water.
- the aqueous phase may also comprise additional components such as molecules that change the osmolarity of the aqueous phase or molecules that stabilizes the negatively charged molecule after complexation.
- a non-ionic tonicifying agent such as a sugar (e.g., trehalose, sucrose, dextrose, fructose, reduced palatinose, etc.), a sugar alcohol (such as mannitol, sorbitol, xylitol, erythritol, lactitol, maltitol, glycerol, etc.).
- a nonionic polymer polymer e.g., a poly(alkyl glycol) such as polyethylene glycol, polypropylene glycol, or polybutlyene glycol
- nonionic surfactant can be used.
- the aqueous phase of the cationic oil-in- water emulsion may comprise a polymer or a surfactant, or a combination thereof.
- the oil-in-water emulsion contains a poloxamer. Poloxamers are nonionic triblock copolymers having a central hydrophobic chain of polyoxypropylene
- Poloxamers are also known by the trade name Pluronic® polymers. Poloxamer polymers may lead to greater stability and increased RNase resistance of the RNA molecule after RNA complexation.
- the cationic oil-in-water emulsion may comprise from about 0.1% to about 20% (w/v) polymer, or from about 0.05% to about 10% (w/v) polymer.
- the cationic oil-in-water emulsion may comprise a polymer (e.g., a poloxamer such as Pluronic® F127 ((Ethylene Oxide/Propylene Oxide Block Copolymer: H(OCH 2 CH 2 ) x (OCH 3 CH(CH 3 )) y (OCH 2 CH 2 ) z OH)) at from about 0.1% to about 20% (w/v), from about 0.1% to about 10% (w/v), from about 0.05% to about 10% (w/v), or from about 0.05% to about 5% (w/v).
- Pluronic® F127 ((Ethylene Oxide/Propylene Oxide Block Copolymer: H(OCH 2 CH 2 ) x (OCH 3 CH(CH 3 )) y (
- the oil-in-water emulsion comprises about 4% (w/v), or about 8% (w/v) Pluronic® F 127.
- the quantity of the aqueous component employed in these compositions will be that amount necessary to bring the value of the composition to unity. That is, a quantity of aqueous component sufficient to make 100% will be mixed, with the other components listed above in order to bring the compositions to volume.
- a negatively charged molecule When a negatively charged molecule is to be delivered, it can be complexed with the particles of the cationic oil-in-water emulsions.
- the negatively charged molecule is complexed with the emulsion particles by, for example, interactions between the negatively charged molecule and the cationic lipid on the surface of the particles, as well as hydrophobic/hydrophilic interactions between the negatively charged molecule and the surface of the particles.
- the negatively charged molecules interact with the cationic lipid through non- covalent, ionic charge interactions (electrostatic forces), and the strength of the complex as well as the amount of negatively charged compound that can be complexed to a particle are related to the amount of cationic lipid in the particle. Additionally, hydrophobic/hydrophilic interactions between the negatively charged molecule and the surface of the particles may also play a role.
- negatively charged molecules examples include negatively charged peptides, polypeptides or proteins, nucleic acid molecules (e.g., single or double stranded RNA or DNA), small molecules (e.g., small molecule immune potentiators (SMIPs), phosphonate, fluorophosphonate, etc.) and the like.
- the negatively charged molecule is an RNA molecule, such as an RNA that encodes a peptide, polypeptide or protein, including self-replicating RNA molecules, or a small interfering RNA.
- the complex can be formed by using techniques known in the art, examples of which are described herein.
- a nucleic acid-particle complex can be formed by mixing a cationic emulsion with the nucleic acid molecule, for example by vortexing.
- the amount of the negatively charged molecule and cationic lipid in the emulsions may be adjusted or optimized to provide desired strength of binding and binding capacity.
- exemplary RNA-particle complexes were produced by varying the RNA: cationic lipid ratios (as measured by the "N/P ratio").
- the term N/P ratio refers to the amount (moles) of protonatable nitrogen atoms in the cationic lipid divided by the amount (moles) of phosphates on the RNA.
- Preferred N/P ratios are from about 1 : 1 to about 20: 1, from about 2: 1 to about 18: 1, from about 3 : 1 to 16: 1, from about 4: 1 to about 14: 1, from about 6: 1 to about 12: 1, about 3: 1, about 4: 1, about 5: 1, about 6: 1, about 7: 1, about 8: 1, about 9: 1, about 10: 1, about 1 1 : 1, about 12: 1, about 13 : 1, about 14: 1, about 15: 1, or about 16: 1.
- preferred N/P ratios are at least about 3 : 1, at least about 4: 1, at least about 5: 1, at least about 6: 1, at least about 7: 1, at least about 8: 1, at least about 9: 1, at least about 10: 1, at least about 1 1 : 1, at least about 12: 1, at least about 13: 1, at least about 14: 1, at least about 15: 1, or at least about 16: 1.
- a more preferred N/P ratio is about 4: 1 or higher.
- Each emulsion may have its own optimal or preferred N/P ratio to produce desired effects (e.g., desired level of expression of the complexed RNA), which can be determined experimentally (e.g., using the assays as described herein or other techniques known in the art, such as measuring expression level of a protein that is encoded by the RNA, or measuring the percentage of the RNA molecules being released from the complex in the presence of heparin).
- desired effects e.g., desired level of expression of the complexed RNA
- desired levels of expression of the complexed RNA can be determined experimentally (e.g., using the assays as described herein or other techniques known in the art, such as measuring expression level of a protein that is encoded by the RNA, or measuring the percentage of the RNA molecules being released from the complex in the presence of heparin).
- the N/P ratio should be at a value that at least about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, or about 95% of the RNA molecules are released from the RNA- particle complexes when the RNA-particle complexes are taken up by cells.
- the N/P ratio is a value that provides for release of at least 0.5% or at least 1% of the RNA molecules are released from the RNA-particle complexes when the RNA-particle complexes are taken up by cells.
- the expression level of an antigen encoded by the RNA molecule may not necessarily correlate with the immunogenicity of the antigen.
- optimal or preferred N/P ratio fore immunogenicity may be determined by, e.g., measuring specific antibody titers.
- the cationic oil-in-water emulsions described herein are particularly suitable for formulating nucleic acid-based vaccines (e.g., DNA vaccines, RNA vaccines).
- nucleic acid-based vaccines e.g., DNA vaccines, RNA vaccines.
- the formation of a nucleic acid-emulsion particle complex facilitates the uptake of the nucleic acid into host cells, and protects the nucleic acid molecule from nuclease degradation. Transfected cells can then express the antigen encoded by the nucleic acid molecule, which can produce an immune response to the antigen.
- nucleic acid-based vaccines can effectively engage both MHC-I and MHC-II pathways allowing for the induction of CD8 + and CD4 + T cell responses, whereas antigen present in soluble form, such as recombinant protein, generally induces only antibody responses.
- the negatively charged molecule described herein is an RNA molecule.
- the RNA molecule encodes an antigen (peptide, polypeptide or protein) and the cationic oil in water emulsion is suitable for use as an RNA-based vaccine.
- the composition can contain more than one species of RNA molecule encoding an antigen, e.g., two, three, five, or ten different species of RNA molecules that are complexed to the emulsion particles. That is, the composition can contain one or more different species of RNA molecules, each encoding a different antigen.
- one RNA molecule may also encode more than one antigen, e.g., a bicistronic, or tricistronic RNA molecule that encodes different or identical antigens.
- the cationic oil in water emulsion is suitable for use as an RNA-based vaccine, that is monovalent or multivalent.
- the RNA molecule can be polycistronic.
- the sequence of the RNA molecule may be codon optimized or deoptimized for expression in a desired host, such as a human cell.
- the sequence of the RNA molecule may be modified if desired, for example to increase the efficacy of expression or replication of the RNA, or to provide additional stability or resistance to degradation.
- the RNA sequence can be modified with respect to its codon usage, for example, to increase translation efficacy and half-life of the RNA.
- a poly A tail e.g., of about 30 adenosine residues or more
- SEQ ID NO: 28 may be attached to the 3' end of the RNA to increase its half-life.
- the 5' end of the RNA may be capped with a modified ribonucleotide with the structure m7G (5') ppp (5') N (cap 0 structure) or a derivative thereof, which can be incorporated during RNA synthesis or can be enzymatically engineered after RNA transcription (e.g., by using Vaccinia Virus Capping Enzyme (VCE) consisting of mRNA triphosphatase, guanylyl- transferase and guanine-7-methytransferase, which catalyzes the construction of N7-monomethylated cap 0 structures).
- VCE Vaccinia Virus Capping Enzyme
- Cap 0 structure plays an important role in maintaining the stability and translational efficacy of the RNA molecule.
- the 5' cap of the RNA molecule may be further modified by a 2 '-O-Methyltransferase which results in the generation of a cap 1 structure (m7Gppp [m2 '- ⁇ ] N), which may further increases translation efficacy.
- the RNA molecule can comprise one or more modified nucleotides in addition to any 5' cap structure.
- modified nucleoside modifications found on mammalian RNA. See, e.g., Limbach et ah, Nucleic Acids Research, 22(12):2183-2196 (1994).
- the preparation of nucleotides and modified nucleotides and nucleosides are well-known in the art, e.g.
- Modified nucleobases which can be incorporated into modified nucleosides and nucleotides and be present in the RNA molecules include: m5C (5- methylcytidine), m5U (5-methyluridine), m6A (N6-methyladenosine), s2U (2-thiouridine), Um (2'-0-methyluridine), mlA (1-methyladenosine); m2A (2-methyladenosine); Am (2-1-0- methyladenosine); ms2m6A (2-methylthio-N6-methyladenosine); i6A (N6- isopentenyladenosine); ms2i6A (2-methylthio-N6isopentenyladenosine); io6A (N6-(cis- hydroxyisopentenyl)adenosine); ms2io6A (2-methylthio-N6-(cis-hydroxyisopentenyl)adenos
- the RNA molecule can contain phosphoramidate
- the RNA molecule does not include modified nucleotides, e.g., does not include modified nucleobases, and all of the nucleotides in the RNA molecule are conventional standard ribonucleotides A, U, G and C, with the exception of an optional 5' cap that may include, for example, 7-methylguanosine.
- modified nucleotides e.g., does not include modified nucleobases
- all of the nucleotides in the RNA molecule are conventional standard ribonucleotides A, U, G and C, with the exception of an optional 5' cap that may include, for example, 7-methylguanosine.
- the RNA may include a 5' cap comprising a 7'-methylguanosine, and the first 1, 2 or 3 5' ribonucleotides may be methylated at the 2' position of the ribose.
- the cationic oil in water emulsion contains a self- replicating RNA molecule.
- the self-replicating RNA molecule is derived from or based on an alphavirus.
- Self-replicating RNA molecules are well known in the art and can be produced by using replication elements derived from, e.g., alphaviruses, and substituting the structural viral proteins with a nucleotide sequence encoding a protein of interest. Cells transfected with self-replicating RNA briefly produce antigen before undergoing apoptotic death. This death is a likely result of requisite double-stranded (ds) RNA intermediates, which also have been shown to super-activate Dendritic Cells. Thus, the enhanced immunogenicity of self-replicating RNA may be a result of the production of proinflammatory dsRNA, which mimics an RNA-virus infection of host cells.
- ds double-stranded
- the cell's machinery is used by self-replicating RNA molecules to generate an exponential increase of encoded gene products, such as proteins or antigens, which can accumulate in the cells or be secreted from the cells.
- Encodingd gene products such as proteins or antigens
- Overexpression of proteins or antigens by self-replicating RNA molecules takes advantage of the
- immunostimulatory adjuvant effects including stimulation of toll-like receptors (TLR) 3, 7 and 8 and non TLR pathways (e.g, RIG-1, MD-5) by the products of RNA replication and amplification, and translation which induces apoptosis of the transfected cell.
- TLR toll-like receptors
- RIG-1 non TLR pathways
- the self-replicating RNA generally contains at least one or more genes selected from the group consisting of viral replicases, viral proteases, viral helicases and other nonstructural viral proteins, and also comprise 5'- and 3 '-end cz ' s-active replication sequences, and if desired, a heterologous sequences that encode a desired amino acid sequences (e.g., an antigen of interest).
- a subgenomic promoter that directs expression of the heterologous sequence can be included in the self-replicating RNA.
- the heterologous sequence e.g., an antigen of interest
- IRS internal ribosome entry site
- the self-replicating RNA molecule is not encapsulated in a virus-like particle.
- Self-replicating RNA molecules of the invention can be designed so that the self-replicating RNA molecule cannot induce production of infectious viral particles. This can be achieved, for example, by omitting one or more viral genes encoding structural proteins that are necessary for the production of viral particles in the self- replicating RNA.
- the self-replicating RNA molecule is based on an alpha virus, such as Sinebis virus (SIN), Semliki forest virus and Venezuelan equine encephalitis virus (VEE), one or more genes encoding viral structural proteins, such as capsid and/or envelope glycoproteins, can be omitted.
- an alpha virus such as Sinebis virus (SIN), Semliki forest virus and Venezuelan equine encephalitis virus (VEE)
- Sindbis virus SIN
- Semliki forest virus Semliki forest virus
- VEE Venezuelan equine encephalitis virus
- self-replicating RNA molecules of the invention can also be designed to induce production of infectious viral particles that are attenuated or virulent, or to produce viral particles that are capable of a single round of subsequent infection.
- RNA molecules When delivered to a vertebrate cell, a self-replicating RNA molecule can lead to the production of multiple daughter RNAs by transcription from itself (or from an antisense copy of itself).
- the self-replicating RNA can be directly translated after delivery to a cell, and this translation provides a RNA-dependent RNA polymerase which then produces transcripts from the delivered RNA.
- the delivered RNA leads to the production of multiple daughter RNAs.
- These transcripts are antisense relative to the delivered RNA and may be translated themselves to provide in situ expression of a gene product, or may be transcribed to provide further transcripts with the same sense as the delivered RNA which are translated to provide in situ expression of the gene product.
- Alphaviruses comprise a set of genetically, structurally, and serologically related arthropod-borne viruses of the Togaviridae family. Twenty-six known viruses and virus subtypes have been classified within the alphavirus genus, including, Sindbis virus, Semliki Forest virus, Ross River virus, and Venezuelan equine encephalitis virus.
- the self-replicating RNA of the invention may incorporate a RNA replicase derived from semliki forest virus (SFV) , Sindbis virus (SIN), Venezuelan equine encephalitis virus (VEE), Ross-River virus (RRV), or other viruses belonging to the alphavirus family.
- SFV semliki forest virus
- SI Sindbis virus
- VEE Venezuelan equine encephalitis virus
- RRV Ross-River virus
- alphavirus-based "replicon" expression vectors can be used in the invention.
- Replicon vectors may be utilized in several formats, including DNA, RNA, and recombinant replicon particles.
- Such replicon vectors have been derived from alphaviruses that include, for example, Sindbis virus (Xiong et al. (1989) Science 243: 1188-1191 ;
- Alphaviruses-derived replicons are generally quite similar in overall characteristics (e.g., structure, replication), individual alphaviruses may exhibit some particular property (e.g., receptor binding, interferon sensitivity, and disease profile) that is unique. Therefore, chimeric alphavirus replicons made from divergent virus families may also be useful.
- Alphavirus-based replicons are (+)-stranded replicons that can be translated after delivery to a cell to give of a replicase (or replicase-transcriptase).
- the replicase is translated as a polyprotein which auto-cleaves to provide a replication complex which creates genomic (-)-strand copies of the +-strand delivered RNA.
- These (-)-strand transcripts can themselves be transcribed to give further copies of the (+)-stranded parent RNA and also to give a subgenomic transcript which encodes the desired gene product. Translation of the subgenomic transcript thus leads to in situ expression of the desired gene product by the infected cell.
- Suitable alphavirus replicons can use a replicase from a Sindbis virus, a semliki forest virus, an eastern equine encephalitis virus, a Venezuelan equine encephalitis virus, etc.
- a preferred self-replicating RNA molecule thus encodes (i) a RNA-dependent RNA polymerase which can transcribe RNA from the self-replicating RNA molecule and (ii) a polypeptide antigen.
- the polymerase can be an alphavirus replicase e.g. comprising alphavirus protein nsP4.
- an alphavirus based self-replicating RNA molecule of the invention does not encode alphavirus structural proteins.
- the self-replicating RNA can lead to the production of genomic RNA copies of itself in a cell, but not to the production of RNA-containing alphavirus virions.
- the inability to produce these virions means that, unlike a wild-type alphavirus, the self-replicating RNA molecule cannot perpetuate itself in infectious form.
- alphavirus structural proteins which are necessary for perpetuation in wild-type viruses are absent from self-replicating RNAs of the invention and their place is taken by gene(s) encoding the desired gene product, such that the subgenomic transcript encodes the desired gene product rather than the structural alphavirus virion proteins.
- a self-replicating RNA molecule useful with the invention may have two open reading frames.
- the first (5') open reading frame encodes a replicase; the second (3') open reading frame encodes a polypeptide antigen.
- the RNA may have additional (downstream) open reading frames e.g. that encode another desired gene products.
- a self-replicating RNA molecule can have a 5' sequence which is compatible with the encoded replicase.
- the self-replicating RNA molecule is derived from or based on a virus other than an alphavirus, preferably, a positive-stranded RNA virus, and more preferably a picornavirus, flavivirus, rubivirus, pestivirus, hepacivirus, calicivirus, or coronavirus.
- a virus other than an alphavirus preferably, a positive-stranded RNA virus, and more preferably a picornavirus, flavivirus, rubivirus, pestivirus, hepacivirus, calicivirus, or coronavirus.
- Suitable wild-type alphavirus sequences are well-known and are available from sequence depositories, such as the American Type Culture Collection, Rockville, Md.
- alphaviruses include Aura (ATCC VR-368), Bebaru virus (ATCC VR-600, ATCC VR-1240), Cabassou (ATCC VR-922), Chikungunya virus (ATCC VR-64, ATCC VR-1241), Eastern equine encephalomyelitis virus (ATCC VR-65, ATCC VR-1242), Fort Morgan (ATCC VR-924), Getah virus (ATCC VR-369, ATCC VR- 1243), Kyzylagach (ATCC VR-927), Mayaro (ATCC VR-66), Mayaro virus (ATCC VR- 1277), Middleburg (ATCC VR-370), Mucambo virus (ATCC VR-580, ATCC VR-1244), Ndumu (ATCC VR-371), Pixuna virus (ATCC VR-372, ATCC VR-1245), Ross River virus (ATCC VR-373, ATCC VR-1246), Semliki Forest (ATCC VR-67, ATCC VR-1247), Sindbis virus (ATCC VR-68, ATCC
- the self-replicating RNA molecules of the invention are larger than other types of RNA (e.g. mRNA).
- the self-replicating RNA molecules of the invention contain at least about 4kb.
- the self-replicating RNA can contain at least about 5kb, at least about 6kb, at least about 7kb, at least about 8kb, at least about 9kb, at least about lOkb, at least about 1 lkb, at least about 12kb or more than 12kb.
- the self-replicating RNA is about 4kb to about 12kb, about 5kb to about 12kb, about 6kb to about 12kb, about 7kb to about 12kb, about 8kb to about 12kb, about 9kb to about 12kb, about lOkb to about 12kb, about 1 lkb to about 12kb, about 5kb to about 1 lkb, about 5kb to about lOkb, about 5kb to about 9kb, about 5kb to about 8kb, about 5kb to about 7kb, about 5kb to about 6kb, about 6kb to about 12kb, about 6kb to about 1 lkb, about 6kb to about lOkb, about 6kb to about 9kb, about 6kb to about 8kb, about 6kb to about 7kb, about 7kb to about 1 lkb, about 6kb to about lOkb, about 6kb to about 9kb
- the self-replicating RNA molecules of the invention may comprise one or more modified nucleotides (e.g., pseudouridine, N6-methyladenosine, 5-methylcytidine, 5- methyluridine).
- modified nucleotides e.g., pseudouridine, N6-methyladenosine, 5-methylcytidine, 5- methyluridine.
- the self-replicating RNA molecule may encode a single polypeptide antigen or, optionally, two or more of polypeptide antigens linked together in a way that each of the sequences retains its identity (e.g., linked in series) when expressed as an amino acid sequence.
- the polypeptides generated from the self-replicating RNA may then be produced as a fusion polypeptide or engineered in such a manner to result in separate polypeptide or peptide sequences.
- the self-replicating RNA of the invention may encode one or more polypeptide antigens that contain a range of epitopes.
- epitopes capable of eliciting either a helper T-cell response or a cytotoxic T-cell response or both.
- the self-replicating RNA molecules described herein may be engineered to express multiple nucleotide sequences, from two or more open reading frames, thereby allowing co-expression of proteins, such as a two or more antigens together with cytokines or other immunomodulators, which can enhance the generation of an immune response.
- proteins such as a two or more antigens together with cytokines or other immunomodulators, which can enhance the generation of an immune response.
- Such a self-replicating RNA molecule might be particularly useful, for example, in the production of various gene products (e.g., proteins) at the same time, for example, as a bivalent or multivalent vaccine.
- the self-replicating RNA molecules of the invention can be prepared using any suitable method. Several suitable methods are known in the art for producing RNA molecules that contain modified nucleotides. For example, a self-replicating RNA molecule that contains modified nucleotides can be prepared by transcribing (e.g., in vitro
- RNA-dependent RNA polymerase such as T7 phage RNA polymerase, SP6 phage RNA polymerase, T3 phage RNA polymerase, and the like, or mutants of these polymerases which allow efficient incorporation of modified nucleotides into RNA molecules.
- the transcription reaction will contain nucleotides and modified nucleotides, and other components that support the activity of the selected polymerase, such as a suitable buffer, and suitable salts.
- nucleotide analogs into a self-replicating RNA may be engineered, for example, to alter the stability of such RNA molecules, to increase resistance against RNases, to establish replication after introduction into appropriate host cells ("infectivity" of the RNA), and/or to induce or reduce innate and adaptive immune responses.
- Suitable synthetic methods can be used alone, or in combination with one or more other methods (e.g., recombinant DNA or RNA technology), to produce a self- replicating RNA molecule of the invention.
- Suitable methods for de novo synthesis are well- known in the art and can be adapted for particular applications. Exemplary methods include, for example, chemical synthesis using suitable protecting groups such as CEM (Masuda et al., (2007) Nucleic Acids Symposium Series 57:3-4), the ⁇ -cyanoethyl phosphoramidite method (Beaucage S L et al. (1981) Tetrahedron Lett 22: 1859); nucleoside H-phosphonate method (Garegg P et al.
- Nucleic acid synthesis can also be performed using suitable recombinant methods that are well-known and conventional in the art, including cloning, processing, and/or expression of polynucleotides and gene products encoded by such polynucleotides. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic polynucleotides are examples of known techniques that can be used to design and engineer polynucleotide sequences.
- Site-directed mutagenesis can be used to alter nucleic acids and the encoded proteins, for example, to insert new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, introduce mutations and the like. Suitable methods for transcription, translation and expression of nucleic acid sequences are known and conventional in the art. (See generally, Current Protocols in Molecular Biology, Vol. 2, Ed. Ausubel, et al., Greene Publish. Assoc. & Wiley Interscience, Ch. 13, 1988; Glover, DNA Cloning, Vol. II, IRL Press, Wash., D.C., Ch.
- a self-replicating RNA can be digested to monophosphates (e.g., using nuclease PI) and dephosphorylated (e.g., using a suitable phosphatase such as CIAP), and the resulting nucleosides analyzed by reversed phase HPLC (e.g., usings a YMC Pack ODS-AQ column (5 micron, 4.6 X 250 mm) and elute using a gradient, 30% B (0-5 min) to 100 % B (5 - 13 min) and at 100 % B (13-40) min, flow Rate (0.7 ml/min), UV detection (wavelength: 260 nm), column temperature (30°C).
- monophosphates e.g., using nuclease PI
- dephosphorylated e.g., using a suitable phosphatase such as CIAP
- reversed phase HPLC e.g., usings a YMC Pack ODS-AQ column (5 micron, 4.6 X
- the self-replicating RNA molecules of the invention may include one or more modified nucleotides so that the self-replicating RNA molecule will have less immunomodulatory activity upon introduction or entry into a host cell (e.g., a human cell) in comparison to the corresponding self-replicating RNA molecule that does not contain modified nucleotides.
- a host cell e.g., a human cell
- the self-replicating RNA molecules can be screened or analyzed to confirm their therapeutic and prophylactic properties using various in vitro or in vivo testing methods that are known to those of skill in the art.
- vaccines comprising self-replicating RNA molecule can be tested for their effect on induction of proliferation or effector function of the particular lymphocyte type of interest, e.g., B cells, T cells, T cell lines, and T cell clones.
- lymphocyte type of interest e.g., B cells, T cells, T cell lines, and T cell clones.
- spleen cells from immunized mice can be isolated and the capacity of cytotoxic T lymphocytes to lyse autologous target cells that contain a self replicating RNA molecule that encodes a polypeptide antigen.
- T helper cell differentiation can be analyzed by measuring proliferation or production of TH1 (IL-2 and IFN- ⁇ ) and /or TH2 (IL-4 and IL-5) cytokines by ELISA or directly in CD4+ T cells by cytoplasmic cytokine staining and flow cytometry.
- TH1 IL-2 and IFN- ⁇
- TH2 IL-4 and IL-5
- Self-replicating RNA molecules that encode a polypeptide antigen can also be tested for ability to induce humoral immune responses, as evidenced, for example, by induction of B cell production of antibodies specific for an antigen of interest.
- These assays can be conducted using, for example, peripheral B lymphocytes from immunized individuals. Such assay methods are known to those of skill in the art.
- Other assays that can be used to characterize the self-replicating RNA molecules of the invention can involve detecting expression of the encoded antigen by the target cells.
- FACS can be used to detect antigen expression on the cell surface or intracellularly. Another advantage of FACS selection is that one can sort for different levels of expression; sometimes -lower expression may be desired.
- Other suitable method for identifying cells which express a particular antigen involve panning using monoclonal antibodies on a plate or capture using magnetic beads coated with monoclonal antibodies.
- the negatively charged molecule described herein is a nucleic acid molecule (e.g., an RNA molecule) that encodes an antigen.
- Suitable antigens include, but are not limited to, a bacterial antigen, a viral antigen, a fungal antigen, a protazoan antigen, a plant antigen, a cancer antigen, or a combination thereof.
- Suitable antigens include proteins and peptides from a pathogen such as a virus, bacteria, fungus, protozoan, plant or from a tumor.
- Viral antigens and immunogens that can be encoded by the self-replicating RNA molecule include, but are not limited to, proteins and peptides from a Orthomyxoviruses, such as Influenza A, B and C;
- Paramyxoviridae viruses such as Pneumoviruses (RSV), Paramyxoviruses (PIV),
- Metapneumovirus and Morbilliviruses e.g., measles
- Pneumoviruses such as Respiratory syncytial virus (RSV), Bovine respiratory syncytial virus, Pneumonia virus of mice, and Turkey rhinotracheitis virus
- Paramyxoviruses such as Parainfluenza virus types 1 - 4 (PIV), Mumps virus, Sendai viruses, Simian virus 5, Bovine parainfluenza virus, Nipahvirus, Henipavirus and Newcastle disease virus
- Pneumoviruses such as Respiratory syncytial virus (RSV), Bovine respiratory syncytial virus, Pneumonia virus of mice, and Turkey rhinotracheitis virus
- Paramyxoviruses such as Parainfluenza virus types 1 - 4 (PIV), Mumps virus, Sendai viruses, Simian virus 5, Bovine parainfluenza virus, Nipahvirus, Henipavirus and Newcastle disease virus
- Metapneumovirus es such as human metapneumovirus (hMPV) and avian
- aMPV metapneumoviruses
- Morbilliviruses such as Measles
- Picornaviruses such as Enteroviruses, Rhinoviruses, Heparnavirus, Parechovirus, Cardioviruses and Aphthoviruses
- Enteroviruseses such as Poliovirus types 1, 2 or 3, Coxsackie A virus types 1 to 22 and 24, Coxsackie B virus types 1 to 6, Echovirus (ECHO) virus types 1 to 9, 1 1 to 27 and 29 to 34 and Enterovirus 68 to 71
- Bunyaviruses including a Orthobunyavirus such as California encephalitis virus; a Phlebovirus, such as Rift Valley Fever virus; a Nairovirus, such as Crimean-Congo hemorrhagic fever virus; Heparnaviruses, such as, Hepatitis A virus (HAV); Togaviruses (Rubella), such as a Rubivirus, an Alphavirus, or an Arter
- Pestiviruses such as Bovine viral diarrhea (BVDV), Classical swine fever (CSFV) or Border disease (BDV); Hepadnaviruses, such as Hepatitis B virus, Hepatitis C virus;
- Rhabdoviruses such as a Lyssavirus (Rabies virus) and Vesiculovirus (VSV), Caliciviridae, such as Norwalk virus, and Norwalk-like Viruses, such as Hawaii Virus and Snow Mountain Virus; Coronaviruses, such as SARS, Human respiratory coronavirus, Avian infectious bronchitis (IBV), Mouse hepatitis virus (MHV), and Porcine transmissible gastroenteritis virus (TGEV); Retroviruses such as an Oncovirus, a Lentivirus or a Spumavirus; Reoviruses, as an Orthoreovirus, a Rotavirus, an Orbivirus, or a Coltivirus; Parvoviruses, such as Parvovirus B19; Delta hepatitis virus (HDV); Hepatitis E virus (HEV); Hepatitis G virus (HGV); Human Herpesviruses, such as, by way Herpes Simplex Viruses (HSV), Varicella
- Papovaviruses such as Papillomaviruses and Polyomaviruses, Adenoviruess and
- the antigen elicits an immune response against a virus which infects fish, such as: infectious salmon anemia virus (ISAV), salmon pancreatic disease virus (SPDV), infectious pancreatic necrosis virus (IPNV), channel catfish virus (CCV), fish lymphocystis disease virus (FLDV), infectious hematopoietic necrosis virus (IHNV), koi herpesvirus, salmon picorna-like virus (also known as picorna-like virus of atlantic salmon), landlocked salmon virus (LSV), atlantic salmon rotavirus (ASR), trout strawberry disease virus (TSD), coho salmon tumor virus (CSTV), or viral hemorrhagic septicemia virus (VHSV).
- infectious salmon anemia virus ISAV
- SPDV salmon pancreatic disease virus
- IPNV infectious pancreatic necrosis virus
- CCV channel catfish virus
- FLDV fish lymphocystis disease virus
- IHNV infectious hematopoietic necrosis virus
- the antigen elicits an immune response against a parasite from the Plasmodium genus, such as P. falciparum, P.vivax, P.malariae ox P. ovale.
- the invention may be used for immunizing against malaria.
- the antigen elicits an immune response against a parasite from the Caligidae family, particularly those from the Lepeophtheirus and Caligus genera e.g. sea lice such as Lepeophtheirus salmonis or Caligus rogercresseyi.
- Bacterial antigens and immunogens that can be encoded by the self- replicating R A molecule include, but are not limited to, proteins and peptides from
- EAggEC EAggEC
- DAEC diffusely adhering E. coli
- EPEC enteropathogenic E. coli
- EHEC extraintestinal pathogenic E. coli
- EHEC enterohemorrhagic E. coli
- Bacillus anthracis anthrax
- Yersinia pestis plaque
- Mycobacterium tuberculosis EAggEC
- DAEC diffusely adhering E. coli
- EPEC enteropathogenic E. coli
- EHEC extraintestinal pathogenic E. coli
- EHEC enterohemorrhagic E. coli
- Bacillus anthracis anthrax
- Yersinia pestis plaque
- Mycobacterium tuberculosis Mycobacterium tuberculosis
- Rickettsia Listeria monocytogenes, Chlamydia pneumoniae, Vibrio cholerae, Salmonella typhi (typhoid fever), Borrelia burgdorfer, Porphyromonas gingivalis, Klebsiella,
- RNA molecules include, but are not limited to, proteins and peptides from
- Dermatophytres including: Epidermophyton floccusum, Microsporum audouini,
- Microsporum canis Microsporum distortum, Microsporum equinum, Microsporum gypsum, Microsporum nanum, Trichophyton concentricum, Trichophyton equinum, Trichophyton gallinae, Trichophyton gypseum, Trichophyton megnini, Trichophyton mentagrophytes, Trichophyton quinckeanum, Trichophyton rubrum, Trichophyton schoenleini, Trichophyton tonsurans, Trichophyton verrucosum, T. verrucosum var. album, var. discoides, var.
- Helminthosporium spp Fusarium spp, Aspergillus spp, Penicillium spp, Monolinia spp, Rhizoctonia spp, Paecilomyces spp, Pithomyces spp, and Cladosporium spp.
- Protazoan antigens and immunogens that can be encoded by the self- replicating RNA molecule include, but are not limited to, proteins and peptides from
- Entamoeba histolytica Giardia lambli, Cryptosporidium parvum, Cyclospora cayatanensis and Toxoplasma.
- Plant antigens and immunogens that can be encoded by the self-replicating RNA molecule include, but are not limited to, proteins and peptides from Ricinus communis.
- Suitable antigens include proteins and peptides from a virus such as, for example, human immunodeficiency virus (HIV), hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), herpes simplex virus (HSV), cytomegalovirus (CMV), influenza virus (flu), respiratory syncytial virus (RSV), parvovorus, norovirus, human papilloma virus (HPV), rhinovirus, yellow fever virus, rabies virus, Dengue fever virus, measles virus, mumps virus, rubella virus, varicella zoster virus, enterovirus (e.g., enterovirus 71), ebola virus, and bovine diarrhea virus.
- HCV human immunodeficiency virus
- HAV hepatitis A virus
- HBV hepatitis B virus
- HCV hepatitis C virus
- HSV herpes simplex virus
- CMV herpes simplex
- the antigenic substance is selected from the group consisting of HSV glycoprotein gD, HIV glycoprotein gpl20, HIV glycoprotein gp 40, HIV p55 gag, and polypeptides from the pol and tat regions.
- the antigen is a protein or peptide derived from a bacterium such as, for example, Helicobacter pylori, Haemophilus influenza, Vibrio cholerae (cholera), C. diphtheriae (diphtheria), C. tetani (tetanus), Neisseria meningitidis, B. pertussis, Mycobacterium tuberculosis, and the like.
- HIV antigens that can be encoded by the self-replicating RNA molecules of the invention are described in U.S. application Ser. No. 490,858, filed Mar. 9, 1990, and published European application number 181150 (May 14, 1986), as well as U.S. application Ser. Nos. 60/168,471; 09/475,515; 09/475,504; and 09/610,313, the disclosures of which are incorporated herein by reference in their entirety.
- Cytomegalovirus antigens that can be encoded by the self-replicating RNA molecules of the invention are described in U.S. Pat. No. 4,689,225, U.S. application Ser. No. 367,363, filed Jun. 16, 1989 and PCT Publication WO 89/07143, the disclosures of which are incorporated herein by reference in their entirety.
- Hepatitis C antigens that can be encoded by the self-replicating RNA molecules of the invention are described in PCT/US88/04125, published European application number 318216 (May 31, 1989), published Japanese application number 1- 500565 filed Nov. 18, 1988, Canadian application 583,561, and EPO 388,232, disclosures of which are incorporated herein by reference in their entirety.
- a different set of HCV antigens is described in European patent application 90/302866.0, filed Mar. 16, 1990, and U.S. application Ser. No. 456,637, filed Dec. 21, 1989, and PCT/US90/01348, the disclosures of which are incorporated herein by reference in their entirety.
- the antigen is derived from an allergen, such as pollen allergens (tree-, herb, weed-, and grass pollen allergens); insect or arachnid allergens (inhalant, saliva and venom allergens, e.g. mite allergens, cockroach and midges allergens, hymenopthera venom allergens); animal hair and dandruff allergens (from e.g. dog, cat, horse, rat, mouse, etc.); and food allergens (e.g. a gliadin).
- pollen allergens tree-, herb, weed-, and grass pollen allergens
- insect or arachnid allergens inhalant, saliva and venom allergens, e.g. mite allergens, cockroach and midges allergens, hymenopthera venom allergens
- animal hair and dandruff allergens from e.g. dog, cat,
- Important pollen allergens from trees, grasses and herbs are such originating from the taxonomic orders of Fagales, Oleales, Pinales and platanaceae including, but not limited to, birch (Betula), alder (Alnus), hazel (Corylus), hornbeam (Carpinus) and olive (Olea), cedar (Cryptomeria and Juniperus), plane tree (Platanus), the order of Poales including grasses of the genera Lolium, Phleum, Poa, Cynodon, Dactylis, Holcus, Phalaris, Secale, and Sorghum, the orders of Asterales and Urticales including herbs of the genera Ambrosia, Artemisia, and Parietaria.
- venom allergens including such originating from stinging or biting insects such as those from the taxonomic order of Hymenoptera including bees (Apidae), wasps (Vespidea), and ants (Formicoidae).
- a tumor immunogen or antigen, or cancer immunogen or antigen can be encoded by the self-replicating RNA molecule.
- the tumor immunogens and antigens are peptide-containing tumor antigens, such as a polypeptide tumor antigen or glycoprotein tumor antigens.
- Tumor immunogens and antigens appropriate for the use herein encompass a wide variety of molecules, such as (a) polypeptide-containing tumor antigens, including polypeptides (which can range, for example, from 8-20 amino acids in length, although lengths outside this range are also common), lipopolypeptides and glycoproteins.
- tumor immunogens are, for example, (a) full length molecules associated with cancer cells, (b) homologs and modified forms of the same, including molecules with deleted, added and/or substituted portions, and (c) fragments of the same.
- Tumor immunogens include, for example, class I-restricted antigens recognized by CD8+ lymphocytes or class II-restricted antigens recognized by CD4+ lymphocytes.
- tumor immunogens include, but are not limited to, (a) cancer-testis antigens such as NY-ESO-1, SSX2, SCP1 as well as RAGE, BAGE, GAGE and MAGE family polypeptides, for example, GAGE-1, GAGE-2, MAGE-1, MAGE-2, MAGE-3, MAGE-4, MAGE-5, MAGE-6, and MAGE- 12 (which can be used, for example, to address melanoma, lung, head and neck, NSCLC, breast, gastrointestinal, and bladder tumors), (b) mutated antigens, for example, p53 (associated with various solid tumors, e.g., colorectal, lung, head and neck cancer), p21/Ras (associated with, e.g., melanoma, pancreatic cancer and colorectal cancer), CDK4 (associated with, e.g., melanoma), MUM1 (associated with, e.g., melanom
- Galectin 4 associated with, e.g., colorectal cancer
- Galectin 9 associated with, e.g., Hodgkin's disease
- proteinase 3 associated with, e.g., chronic myelogenous leukemia
- WT 1 associated with, e.g., various leukemias
- carbonic anhydrase associated with, e.g., renal cancer
- aldolase A associated with, e.g., lung cancer
- PRAME associated with, e.g., melanoma
- HER-2/neu associated with, e.g., breast, colon, lung and ovarian cancer
- alpha-fetoprotein associated with, e.g., hepatoma
- K over-expressed antigens
- Galectin 4 associated with, e.g., colorectal cancer
- Galectin 9 associated with, e.g., Hodgkin's disease
- proteinase 3 associated with, e.
- melanoma-melanocyte differentiation antigens such as MART-l/Melan A, gplOO, MC1R, melanocyte-stimulating hormone receptor, tyrosinase, tyrosinase related protein- 1/TRP l and tyrosinase related protein-2/TRP2 (associated with, e.g., melanoma)
- prostate associated antigens such as PAP, PSA, PSMA, PSH-P1, PSM- Pl, PSM-P2, associated with e.g., prostate cancer
- immunoglobulin idiotypes associated with myeloma and B cell lymphomas, for example).
- tumor immunogens include, but are not limited to, pl5, Hom/Mel-40, H-Ras, E2A-PRL, H4-RET, IGH-IGK, MYL-RAR, Epstein Barr virus antigens, EBNA, human papillomavirus (HPV) antigens, including E6 and E7, hepatitis B and C virus antigens, human T-cell lymphotropic virus antigens, TSP-180, pl 85erbB2, pl80erbB-3, c-met, mn-23Hl, TAG-72-4, CA 19-9, CA 72-4, CAM 17.1, NuMa, K-ras, pl6, TAGE, PSCA, CT7, 43-9F, 5T4, 791 Tgp72, beta-HCG, BCA225, BTAA, CA 125, CA 15-3 (CA 27.29 ⁇ BCAA), CA 195, CA 242, CA-50, CAM43, CD68 ⁇ KP1, CO
- the negatively charged molecule (such as RNA) is generally provided in the form of an aqueous solution, or a form that can be readily dissolved in an aqueous solution (e.g., lyophilized).
- the aqueous solution can be water, or an aqueous solution that comprises a salt (e.g., NaCl), a buffer (e.g., a citrate buffer), a nonionic tonicifying agent (e.g., a saccharide), a polymer, a surfactant, or a combination thereof. If the formulation is intended for in vivo administration, it is preferable that the aqueous solution is a salt (e.g., NaCl), a buffer (e.g., a citrate buffer), a nonionic tonicifying agent (e.g., a saccharide), a polymer, a surfactant, or a combination thereof. If the formulation is intended for in vivo administration, it is preferable that the aqueous solution is
- physiologically acceptable buffer that maintains a pH that is compatible with normal physiological conditions. Also, in certain instances, it may be desirable to maintain the pH at a particular level in order to insure the stability of certain components of the formulation.
- the emulsion may comprise a physiological salt, such as a sodium salt.
- a physiological salt such as a sodium salt.
- Sodium chloride ( aCl) for example, may be used at about 0.9% (w/v) (physiological saline).
- Other salts that may be present include potassium chloride, potassium dihydrogen phosphate, disodium phosphate dehydrate, magnesium chloride, calcium chloride, etc.
- the aqueous solution comprises 10 mM NaCl and other salts or non-ionic tonicifying agents. As described herein, non-ionic tonicifying agents can also be used to control tonicity.
- the aqueous solution may be buffered. Any physiologically acceptable buffer may be used herein, such as citrate buffers, phosphate buffers, acetate buffers, succinate buffer, tris buffers, bicarbonate buffers, carbonate buffers, or the like.
- the pH of the aqueous solution will preferably be between 6.0-8.0, more preferably about 6.2 to about 6.8.
- certain amount of salt may be included in the buffer.
- salt in the buffer might interfere with complexation of negatively charged molecule to the emulsion particle, and therefore is avoided.
- the aqueous solution may also comprise additional components such as molecules that change the osmolarity of the aqueous solution or molecules that stabilizes the negatively charged molecule after complexation.
- additional components such as molecules that change the osmolarity of the aqueous solution or molecules that stabilizes the negatively charged molecule after complexation.
- the osmolality can be adjusted using a non-ionic tonicifying agent, which are generally carbohydrates but can also be polymers.
- suitable non-ionic tonicifying agents include sugars (e.g., a
- a disaccharide such as trehalose, sucrose, dextrose, fructose), sugar alcohols (e.g., mannitol, sorbitol, xylitol, erythritol, lactitol, maltitol, glycerol, reduced palatinose), and combinations thereof.
- a nonionic polymer e.g., a poly(alkyl glycol), such as polyethylene glycol, polypropylene glycol, or polybutlyene glycol
- nonionic surfactant can be used.
- the buffer comprises from about 560 nM to 600 mM of trehalose, sucrose, sorbitol, or dextrose. In other exemplary embodiments, the buffer comprises from about 500 nM to 600 mM of trehalose, sucrose, sorbitol, or dextrose.
- an aqueous solution comprising the negatively charged molecule as a hypertonic solution, and to prepare the cationic emulsion using unadulterated water or a hypotonic buffer.
- the emulsion and the negatively charged molecule are combined, the mixture becomes isotonic.
- an aqueous solution comprising RNA can be a 2X hypertonic solution, and the cationic emulsion can be prepared using lOmM Citrate buffer.
- the composition becomes isotonic.
- compositions that have physiological osmolality may be desirable for in vivo administration.
- Physiological osmolality is from about 255 mOsm/kg water to about 315 mOsm/kg water.
- the aqueous solution comprising the negatively charged molecule may further comprise a polymer or a surfactant, or a combination thereof.
- the oil-in-water emulsion contains a poloxamer.
- Pluronic® F 127 to the RNA aqueous solution prior to complexation to cationic emulsion particles led to greater stability and increased RNase resistance of the RNA molecule. Addition of pluronic F127 to RNA aqueous solution was also found to decrease the particle size of the RNA/CNE complex.
- Poloxamer polymers may also facilitate appropriate decomplexation/release of the RNA molecule, prevent aggregation of the emulsion particles, and have immune modulatory effect.
- Other polymers that may be used include, e.g., Pluronic® F68 or PEG300.
- the aqueous solution comprising the negatively charged molecule may comprise from about 0.05% to about 20% (w/v) polymer.
- the cationic oil-in-water emulsion may comprise a polymer (e.g., a poloxamer such as Pluronic® F127, Pluronic® F68, or PEG300) at from about 0.05% to about 10% (w/v), such as 0.05%, 0.5%, 1%, or 5%.
- the buffer system may comprise any combination of two or more molecules described above (salt, buffer, saccharide, polymer, etc).
- the buffer comprises 560 mM sucrose, 20 mM NaCl, and 2 mM Citrate, which can be mixed with a cationic oil in water emulsion described herein to produce a final aqueous phase that comprises 280 mM sucrose, 10 mM NaCl and 1 mM citrate.
- the invention provides a method of preparing the oil-in- water emulsions as described herein, comprising: (1) combining the oil and the cationic lipid to form the oil phase of the emulsion; (2) providing an aqueous solution to form the aqueous phase of the emulsion; and (3) dispersing the oil phase in the aqueous phase, for example, by homogenization.
- Homogenization may be achieved in any suitable way, for example, using a commercial homogenizer (e.g., IKA T25 homogenizer, available at VWR International (West Chester, PA).
- the oil-in-water emulsions are prepared by (1) directly dissolving the cationic lipid in the oil to form an oil phase; (2) providing the aqueous phase of the emulsion; and (3) dispersing the oil phase in the aqueous phase by
- the method does not use an organic solvent (such as chloroform (CHCI 3 ), dichloromethane (DCM), ethanol, acetone, Tetrahydrofuran (THF), 2,2,2 trifluoroethanol, acetonitrile, ethyl acetate, hexane, Dimethylformamide (DMF), Dimethyl sulfoxide (DMSO), etc.) to solubilize the cationic lipid first before adding the lipid to the oil.
- organic solvent such as chloroform (CHCI 3 ), dichloromethane (DCM), ethanol, acetone, Tetrahydrofuran (THF), 2,2,2 trifluoroethanol, acetonitrile, ethyl acetate, hexane, Dimethylformamide (DMF), Dimethyl sulfoxide (DMSO), etc.
- Desired amount of the cationic lipid can be measured and added directly to the oil to reach a desired final concentration.
- the surfactant(s) may be included in the oil phase or the aqueous phase according to the conventional practice in the art.
- the surfactant(s) may be included in the oil phase or the aqueous phase according to the conventional practice in the art.
- SPAN85 can be dissolved in the oil phase (e.g., squalene)
- Tween 80 may be dissolved in the aqueous phase (e.g., in a citrate buffer).
- the invention provides a method of preparing a composition that comprises a negatively charged molecule (such as RNA) complexed with a particle of a cationic oil-in-water emulsion, comprising: (i) providing a cationic oil-in-water emulsion as described herein; (ii) providing a aqueous solution comprising the negatively charged molecule (such as RNA); and (iii) combining the oil-in-water emulsion of (i) and the aqueous solution of (iii), so that the negatively charged molecule complexes with the particle of the emulsion.
- a negatively charged molecule such as RNA
- a cationic oil-in-water emulsion may be combined with an aqueous RNA solution in any desired relative amounts, e.g., about 1 : 1 (v/v), about 1.5: 1 (v/v), about 2: 1 (v/v), about 2.5: 1 (v/v), about 3: 1 (v/v), about 3.5: 1 (v/v), about 4: 1 (v/v), about 5: 1 (v/v), about 10: 1 (v/v), about 1 : 1.5 (v/v), about 1 :2 (v/v), about 1 :2.5 (v/v), about 1 :3 (v/v), about 1 :3.5 (v/v), about 1 :4 (v/v), about 1 : 1.5 (v/v), or about 1 : 1.10 (v/v), etc.
- Additional optional steps to promote particle formation, to improve the complexation between the negatively charge molecules and the cationic particles, to increase the stability of the negatively charge molecule (e.g., to prevent degradation of an RNA molecule), to facilitate appropriate decomplexati on/release of the negatively charged molecules (such as an RNA molecule), or to prevent aggregation of the emulsion particles may be included.
- a polymer e.g., Pluronic® F 127) or a surfactant may be added to the aqueous solution that comprises the negatively charged molecule (such as RNA).
- the size of the emulsion particles can be varied by changing the ratio of surfactant to oil (increasing the ratio decreases particle size), operating pressure (increasing operating pressure reduces particle size), temperature (increasing temperature decreases particle size), and other process parameters. Actual particle size will also vary with the particular surfactant, oil, and cationic lipid used, and with the particular operating conditions selected.
- Emulsion particle size can be verified by use of sizing instruments, such as the commercial Sub-Micron Particle Analyzer (Model N4MD) manufactured by the Coulter Corporation, and the parameters can be varied using the guidelines set forth above until the average diameter of the particles is less than less than about 200 nm, less than about 150 nm, or less than about 100 nm.
- sizing instruments such as the commercial Sub-Micron Particle Analyzer (Model N4MD) manufactured by the Coulter Corporation, and the parameters can be varied using the guidelines set forth above until the average diameter of the particles is less than less than about 200 nm, less than about 150 nm, or less than about 100 nm.
- the particles have an average diameter of about 180 nm or less, about 150 nm or less, about 140 nm or less, or about 130 nm or less, about 120 nm or less, or about 100 nm or less, from about 50 nm to 200 nm, from about 80 nm to 200 nm, from about 50 nm to 180 nm, from about 60 nm to 180 nm, from about 70 to 180 nm, or from about 80 nm to 180 nm, from about 80 nm to about 170 nm, from about 80 nm to about 160 nm, from about 80 nm to about 150 nm, from about 80 nm to about 140 nm, from about 80 nm to about 130 nm, from about 80 nm to about 120 nm, from about 80 nm to about 110 nm, or from about 80 nm to about 100 nm.
- Emulsions wherein the mean particle size is about 200 nm or less,
- Optional processes for preparing the cationic oil-in-water emulsion (pre- complexation emulsion), or the negatively charged molecule-emulsion complex include, e.g., sterilization, particle size selection (e.g., removing large particles), filling, packaging, and labeling, etc.
- particle size selection e.g., removing large particles
- filling packaging, and labeling, etc.
- the formulation can be sterilized by filtering through a sterilizing grade filter (e.g., through a 0.22 micron filter).
- Other sterilization techniques include a thermal process, or a radiation sterilization process, or using pulsed light to produce a sterile composition.
- the cationic oil-in-water emulsion described herein can be used to manufacture vaccines.
- Sterile and/or clinical grade cationic oil-in-water emulsions can be prepared using similar methods as described for MF59. See, e.g., Ott et al, Methods in Molecular Medicine, 2000, Volume 42, 211-228, in VACCINE ADJUV ANTS (O'Hagan ed.), Humana Press.
- the oil phase and the aqueous phase of the emulsion can be combined and processed in a rotor stator homogenizer, or an inline homogenizer, to yield a coarse emulsion.
- the coarse emulsion can then be fed into a microfluidizer, where it can be further processed to obtain a stable submicron emulsion.
- the coarse emulsion can be passed through the interaction chamber of the microfluidizer repeatedly until the desired particle size is obtained.
- the bulk emulsion can then be filtered (e.g., though a 0.22- ⁇ filter under nitrogen) to remove large particles, yielding emulsion bulk that can be filled into suitable containers (e.g., glass bottles).
- suitable containers e.g., glass bottles.
- the antigen and emulsion may be combined and sterile-filtered (e.g., though a 0.22- ⁇ filter membrane).
- the combined single vial vaccine can be filled into single-dose containers.
- the emulsion can be supplied as a separate vial.
- the emulsion bulk can be filtered-sterilized (e.g., though a 0.22- ⁇ filter membrane), filled, and packaged in final single-dose vials.
- Quality control may be optionally performed on a small sample of the emulsion bulk or admixed vaccine, and the bulk or admixed vaccine will be packaged into doses only if the sample passes the quality control test.
- the invention provides a pharmaceutical composition
- a pharmaceutical composition comprising a negatively charged molecule (such as RNA) complexed with a particle of a cationic oil-in-water emulsion, as described herein, and may further comprise one or more pharmaceutically acceptable carriers, diluents, or excipients.
- the pharmaceutical composition is an immunogenic composition, which can be used as a vaccine.
- compositions described herein may be used to deliver a negatively charged molecule to cells.
- nucleic acid molecules e.g., DNA or RNA
- the compositions described herein may also be used to deliver a nucleic acid molecule (e.g., DNA or RNA) to cells for therapeutic purposes, such as to treat a disease such as cancers or proliferative disorders, metabolic diseases, cardiovascular diseases, infections, allergies, to induce an immune response and the like.
- nucleic acid molecules may be delivered to cells to inhibit the expression of a target gene.
- Such nucleic acid molecules include, e.g., antisense oligonucleotides, double-stranded RNAs, such as small interfering RNAs and the like. Double-stranded RNA molecules, such as small interfering RNAs, can trigger RNA interference, which specifically silences the corresponding target gene (gene knock down).
- Antisense oligonucleotides are single strands of DNA or RNA that are complementary to a chosen sequence. Generally, antisense RNA can prevent protein translation of certain messenger RNA strands by binding to them.
- Antisense DNA can be used to target a specific, complementary (coding or non-coding) RNA.
- kits wherein the negatively charged molecule (such as RNA) and the cationic oil-in-water emulsion are in separate containers.
- the kit can contain a first container comprising a composition comprising the negatively charged molecule (such as RNA), and a second container comprising cationic oil- in-water emulsion.
- the two components may be mixed prior to administration, e.g., within about 72 hours, about 48 hours, about 24 hours, about 12 hours, about 10 hours, about 9 hours, about 8 hours, about 7 hours, about 6 hours, about 5 hours, about 4 hours, about 3 hours, about 2 hours, about 1 hour, about 45 minutes, about 30 minutes, about 15 minutes, about 10 minutes, about 5 minutes prior to administration.
- the two components may also be mixed about 1 minute or immediately prior to administration.
- the negatively charged molecule (e.g., RNA) may be in liquid form or can be in solid form (e.g., lyophilized). If in solid form, the kit may comprise a third container comprising a suitable aqueous solution to rehydrate the negatively charged molecule.
- Suitable aqueous solutions include pharmaceutically-acceptable buffers such as phosphate- buffered saline, Ringer's solution, dextrose solution, or any one of the aqueous solutions described above.
- sterile water may be used as the aqueous solution for rehydration, in particular in cases where additional components, such as tonicifying agents and/or osmolality adjusting agents are lyophilized along with the negatively charged molecule (e.g., RNA).
- the lyophilized negatively charged molecule e.g., RNA
- the lyophilized negatively charged molecule may be mixed directly with the cationic emulsion.
- composition e.g., a vaccine
- a negatively charged molecule e.g., RNA
- an additional component such as a protein immunogen
- both components can be frozen and lyophilized (either separately, or as a mixture), and reconstituted and mixed with the cationic emulsion prior to administration.
- the kit can further comprise other materials useful to the end-user, including other pharmaceutically acceptable formulating solutions such as buffers, diluents, filters, needles, and syringes or other delivery device.
- the kit may include a dual chamber syringe that contain water or the emulsion in one chamber, and the negatively charged molecule (e.g., RNA) is provided in solid (e.g. lyophilized) form in the other chamber.
- the kit may further include another container comprising an adjuvant (such as an aluminum containing adjuvant or MF59). In general, aluminum containing adjuvants are not preferred because they may interfere with the complexation of the negatively charged molecule with the cationic emulsion.
- Suitable containers for the compositions include, for example, bottles, vials, syringes, and test tubes.
- Containers can be formed from a variety of materials, including glass or plastic.
- a container may have a sterile access port (for example, the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle).
- Dual-chamber syringe may also be used, wherein the negatively charged molecule (e.g., RNA) is lyophilized, and either reconstituted with water in the syringe, or reconstituted directly with a cationic emulsion described herein.
- the kit can also comprise a package insert containing written instructions for methods of inducing immunity or for treating infections.
- the package insert can be an unapproved draft package insert or can be a package insert approved by the Food and Drug Administration (FDA) or other regulatory body.
- FDA Food and Drug Administration
- the invention also provides a delivery device pre-filled with the compositions described above.
- compositions provided herein may be administered singly or in combination with one or more additional therapeutic agents.
- the method of administration include, but are not limited to, oral administration, rectal administration, parenteral administration, subcutaneous administration, intravenous administration, intravitreal administration, intramuscular administration, inhalation, intranasal administration, topical administration, ophthalmic administration, or otic administration.
- a therapeutically effective amount of the compositions described herein will vary depending on, among others, the disease indicated, the severity of the disease, the age and relative health of the subject, the potency of the compound administered, the mode of administration and the treatment desired.
- the pharmaceutical compositions described herein can be administered in combination with one or more additional therapeutic agents.
- the additional therapeutic agents may include, but are not limited to antibiotics or antibacterial agents, antiemetic agents, antifungal agents, anti-inflammatory agents, antiviral agents, immunomodulatory agents, cytokines, antidepressants, hormones, alkylating agents, antimetabolites, antitumour antibiotics, antimitotic agents, topoisomerase inhibitors, cytostatic agents, anti-invasion agents, antiangiogenic agents, inhibitors of growth factor function inhibitors of viral replication, viral enzyme inhibitors, anticancer agents, cc- interferons, ⁇ -interferons, ribavirin, hormones, and other toll-like receptor modulators, immunoglobulins (Igs), and antibodies modulating Ig function (such as anti-IgE
- the pharmaceutical compositions provided herein are used in the treatment of infectious diseases including, but not limited to, disease cased by the pathogens disclosed herein, including viral diseases such as genital warts, common warts, plantar warts, rabies, respiratory syncytial virus (RSV), hepatitis B, hepatitis C, Dengue virus, yellow fever, herpes simplex virus (by way of example only, HSV-I, HSV-II, CMV, or VZV), molluscum contagiosum, vaccinia, variola, lentivirus, human immunodeficiency virus (HIV), human papilloma virus (HPV), hepatitis virus (hepatitis C virus, hepatitis B virus, hepatitis A virus), cytomegalovirus (CMV), varicella zoster virus (VZV), rhinovirus, enterovirus (e.g.
- viral diseases such as genital warts, common warts, plant
- EV71 adenovirus
- coronavirus e.g., SARS
- influenza para-influenza
- mumps virus measles virus
- rubella virus papovavirus
- papovavirus hepadnavirus
- flavivirus retrovirus
- retrovirus retrovirus
- arenavirus by way of example only, LCM, Junin virus, Machupo virus, Guanarito virus and Lassa Fever
- filovirus by way of example only, ebola virus or marburg virus.
- the pharmaceutical compositions provided herein are used in the treatment of bacterial, fungal, and protozoal infections including, but not limited to, malaria, tuberculosis and mycobacterium avium, leprosy; Pneumocystis carnii, cryptosporidiosis, histoplasmosis, toxoplasmosis, trypanosome infection, leishmaniasis, infections caused by bacteria of the genus Escherichia, Enterobacter, Salmonella,
- Staphylococcus Klebsiella, Proteus, Pseudomonas, Streptococcus, and Chlamydia
- fungal infections such as candidiasis, aspergillosis, histoplasmosis, and cryptococcal meningitis.
- the pharmaceutical compositions provided herein are used in the treatment of respiratory diseases and/or disorders, dermatological disorders, ocular diseases and/or disorders, genitourinary diseases and/or disorders including, allograft rejection, auto-immune and allergic, cancer, or damaged or ageing skin such as scarring and wrinkles.
- the invention provides a method for generating or potentiating an immune response in a subject in need thereof, such as a mammal, comprising administering an effective amount of a composition as disclosed herein.
- the immune response is preferably protective and preferably involves antibodies and/or cell-mediated immunity.
- the method may be used to induce a primary immune response and/or to boost an immune response.
- compositions disclosed herein may be used as a medicament, e.g., for use in raising or enhancing an immune response in a subject in need thereof, such as a mammal.
- compositions disclosed herein may be used in the manufacture of a medicament for generating or potentiating an immune response in a subject in need thereof, such as a mammal.
- the mammal is preferably a human, but may be, e.g., a cow, a pig, a chicken, a cat or a dog, as the pathogens covered herein may be problematic across a wide range of species.
- the human is preferably a child (e.g., a toddler or infant), a teenager, or an adult; where the vaccine is for therapeutic use, the human is preferably a teenager or an adult.
- a vaccine intended for children may also be administered to adults, e.g., to assess safety, dosage, immunogenicity, etc.
- One way of checking efficacy of therapeutic treatment involves monitoring pathogen infection after administration of the compositions or vaccines disclosed herein.
- One way of checking efficacy of prophylactic treatment involves monitoring immune responses, systemically (such as monitoring the level of IgGl and IgG2a production) and/or mucosally (such as monitoring the level of IgA production), against the antigen.
- immune responses systemically (such as monitoring the level of IgGl and IgG2a production) and/or mucosally (such as monitoring the level of IgA production)
- antigen-specific serum antibody responses are determined post-immunization but pre- challenge whereas antigen-specific mucosal antibody responses are determined post- immunization and post-challenge.
- nucleic acid molecule e.g., the RNA
- the nucleic acid molecule encodes a protein antigen
- Another way of assessing the immunogenicity of the compositions or vaccines disclosed herein where the nucleic acid molecule (e.g., the RNA) encodes a protein antigen is to express the protein antigen recombinantly for screening patient sera or mucosal secretions by immunoblot and/or microarrays. A positive reaction between the protein and the patient sample indicates that the patient has mounted an immune response to the protein in question. This method may also be used to identify immunodominant antigens and/or epitopes within protein antigens.
- compositions can also be determined in vivo by challenging appropriate animal models of the pathogen of interest infection.
- Dosage can be by a single dose schedule or a multiple dose schedule. Multiple doses may be used in a primary immunization schedule and/or in a booster immunization schedule. In a multiple dose schedule the various doses may be given by the same or different routes, e.g., a parenteral prime and mucosal boost, a mucosal prime and parenteral boost, etc. Multiple doses will typically be administered at least 1 week apart (e.g., about 2 weeks, about 3 weeks, about 4 weeks, about 6 weeks, about 8 weeks, about 10 weeks, about 12 weeks, about 16 weeks, etc.).
- the total amount of cationic lipid, such as DOTAP, that is administered to the subject in a single administration is no more than about 30 mg, or no more than about 24 mg.
- the total amount of cationic lipid, such as DOTAP, that is administered to the subject in a single administration is no more than 4 mg.
- compositions disclosed herein that include one or more antigens or are used in conjunction with one or more antigens may be used to treat both children and adults.
- a human subject may be less than 1 year old, 1-5 years old, 5-15 years old, 15-55 years old, or at least 55 years old.
- Preferred subjects for receiving the compositions are the elderly (e.g., >50 years old, >60 years old, and preferably >65 years), the young (e.g., ⁇ 5 years old), hospitalized patients, healthcare workers, armed service and military personnel, pregnant women, the chronically ill, or immunodeficient patients.
- the compositions are not suitable solely for these groups, however, and may be used more generally in a population.
- compositions disclosed herein that include one or more antigens or are used in conjunction with one or more antigens may be administered to patients at substantially the same time as (e.g., during the same medical consultation or visit to a healthcare professional or vaccination centre) other vaccines, e.g., at substantially the same time as a measles vaccine, a mumps vaccine, a rubella vaccine, a MMR vaccine, a varicella vaccine, a MMRV vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine, a DTP vaccine, a conjugated H.
- other vaccines e.g., at substantially the same time as a measles vaccine, a mumps vaccine, a rubella vaccine, a MMR vaccine, a varicella vaccine, a MMRV vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine, a DTP vaccine, a conjugated H.
- influenzae type b vaccine an inactivated poliovirus vaccine, a hepatitis B virus vaccine, a meningococcal conjugate vaccine (such as a tetravalent A C W135 Y vaccine), a respiratory syncytial virus vaccine, etc.
- compositions provided herein include or optionally include one or more immunoregulatory agents such as adjuvants.
- immunoregulatory agents such as adjuvants.
- exemplary adjuvants include, but are not limited to, a ⁇ 1 adjuvant and/or a ⁇ 2 adjuvant, further discussed below.
- the adjuvants used in the immunogenic compositions provide herein include, but are not limited to:
- PCPP Polyphosphazene
- Microparticles 18. Immunostimulatory polynucleotide (such as RNA or DNA; e.g., CpG-containing oligonucleotides)
- CNEs cationic nanoemulsions
- DOTAP cationic lipid
- CNE formulations are summarized in Table 1 below, and were modified based on CNE01. CNE01, CMF40, CNE 16, CNE02, and CNE 17 were used as reference samples for comparative studies.
- Example CMF33 DOTAP 0.5% SPAN 85 4.3% 19.3:1 lOmM
- Example CMF35 DOTAP 0.5% SPAN 85 4.3% 14.7:1 lOmM
- Example CMF44 DOTAP 0.5% SPAN 85 3.23% 12.5:1 lOmM 8 (no organic 0.5% Tween 80 citrate buffer solvent) pH 6.5 4.4
- Example CMF45 DOTAP 0.5% SPAN 85 2.15% 8.4:1 lOmM 9 (no organic 0.5% Tween 80 citrate buffer solvent) pH 6.5 4.4
- CNEs were prepared similar to charged MF59 as previously described (Ott et al, Journal of Controlled Release, volume 79, pages 1-5, 2002), with one major modification.
- DOTAP was dissolved in the squalene directly, and no organic solvent was used. It was discovered that inclusion of a solvent in emulsions that contained greater than 1.6 mg/ml DOTAP produced a foamy feedstock that could not be microfluidized to produce an emulsion. Heating squalene to 37°C allowed DOTAP to be directly dissolved in squalene, and then the oil phase could be successfully dispersed in the aqueous phase (e.g., by homogenization) to produce an emulsion.
- DOTAP is soluble in squalene and higher concentrations of DOTAP in squalene than those listed in Table 1 may be achieved. However, it has been reported that high dose of DOTAP can have toxic effects. See, e.g., Lappalainen et al, Pharm. Res., vol. 1 1(8): 1 127-31 (1994).
- squalene was heated to 37°C, and DOTAP was dissolved directly in squalene in the presence of SPAN 85.
- the resulting oil phase was then combined with the aqueous phase (Tween 80 in citrate buffer) and immediately homogenized for 2 min using an IKA T25 homogenizer at 24K RPM to produce a homogeneous feedstock (primary emulsions).
- the primary emulsions were passed three to five times through a M-l 10S Microfluidizer or a M-l 10P Microfluidizer (Microfluidics, Newton, MA) with an ice bath cooling coil at a homogenization pressure of approximately 15K-20K PSI.
- the 20ml batch samples were removed from the unit and stored at 4°C.
- concentrations of the components of the CNEs are concentrations calculated according the initial amounts of these components that were used to prepare the emulsions. It is understood that during the process of producing emulsions, or during the filter sterilization process, small amounts of squalene, DOTAP, or other components may be lost, and the actual concentrations of these components in the final product (e.g., a packaged, sterilized emulsion that is ready for administration) might be slightly lower, typically by up to about 20%, sometimes by up to about 25%, or up to about 35%.
- the conventional practice in the art is to describe the concentration of a particular component based on the initial amount that is used to prepare the emulsion, instead of the actual concentration in the final product.
- concentrations of squalene and DOTAP (calculated according the initial amounts of squalene and DOTAP that were used to prepare the emulsions), and the actual concentrations of squalene and DOTAP as measured in the final product.
- Plasmid DNA encoding an alphavirus replicon (self-replicating RNA) was used as a template for synthesis of RNA in vitro.
- Each replicon contains the genetic elements required for RNA replication but lacks sequences encoding gene products that are necessary for particle assembly.
- the structural genes of the alphavirus genome were replaced by sequences encoding a heterologous protein (whose expression is driven by the alphavirus subgenomic promoter).
- the positive- stranded RNA is translated to produce four non-structural proteins, which together replicate the genomic RNA and transcribe abundant subgenomic mRNAs encoding the heterologous protein.
- a bacteriophage T7 promoter is located upstream of the alphavirus cDNA to facilitate the synthesis of the replicon RNA in vitro, and the hepatitis delta virus (HDV) ribozyme located immediately downstream of the poly(A)-tail generates the correct 3 '-end through its self-cleaving activity.
- HDV hepatitis delta virus
- run-off transcripts were synthesized in vitro using T7 or SP6 bacteriophage derived DNA-dependent RNA polymerase.
- Transcriptions were performed for 2 hours at 37°C in the presence of 7.5 mM (T7 RNA polymerase) or 5 mM (SP6 RNA polymerase) final concentration of each of the nucleoside triphosphates (ATP, CTP, GTP and UTP) following the instructions provided by the manufacturer (Ambion, Austin, TX). Following transcription, the template DNA was digested with TURBO DNase (Ambion, Austin, TX). The replicon RNA was precipitated with LiCl and reconstituted in nuclease-free water.
- Uncapped RNA was capped post- transcriptionally with Vaccinia Capping Enzyme (VCE) using the ScriptCap m 7 G Capping System (Epicentre Biotechnologies, Madison, WI) as outlined in the user manual. Post- transcriptionally capped RNA was precipitated with LiCl and reconstituted in nuclease-free water.
- VCE Vaccinia Capping Enzyme
- replicons may be capped by supplementing the transcription reactions with 6 mM (for T7 RNA polymerase) or 4 mM (for SP6 RNA polymerase) m 7 G(5')ppp(5')G, a nonreversible cap structure analog (New England Biolabs, Beverly, MA) and lowering the concentration of guanosine triphosphate to 1.5 mM (for T7 RNA polymerase) or 1 mM (for SP6 RNA polymerase).
- the transcripts may be then purified by TURBO DNase (Ambion, Austin, TX) digestion followed by LiCL precipitation and a wash in 75% ethanol.
- RNA samples were determined by measuring the optical density at 260 nm. Integrity of the in vitro transcripts was confirmed by denaturing agarose gel electrophoresis for the presence of the full length construct.
- N/P ratio refers to the amount of nitrogen in the cationic lipid in relation to the amount of phosphates on the RNA.
- the nitrogen is the charge bearing element within the cationic lipids tested.
- the phosphate can be found on the RNA backbone.
- An N/P charge ratio of 10/1 indicates that there are 10 positively charged nitrogen from the cationic lipid present for each negatively charged phosphate on the RNA.
- the number of nitrogens in solution was calculated from the cationic lipid concentration, DOTAP for example has one nitrogen that can be protonated per molecule.
- the RNA concentration was used to calculate the amount of phosphate in solution using an estimate of 3 nmols of phosphate per microgram of RNA.
- the N/P ratio can be modified. RNA was complexed to the CNEs in a range of nitrogen / phosphate ratios (N/P). Calculation of the N/P ratio was done by calculating the number of moles of protonatable nitrogens in the emulsion per milliliter.
- RNA was diluted to the appropriate concentration and added directly into an equal volume of emulsion while vortexing lightly. The solution was allowed to sit at room temperature for approximately 2 hours. Once complexed the resulting solution was diluted to the appropriate concentration and used within 1 hour.
- Particle size assay Particle size of the emulsion was measured using a Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK) according to the manufacturer's instructions. Particle sizes are reported as the Z-Average (ZAve) with the polydispersity index (pdi). All samples were diluted in water prior to measurements. Additionally, particle size of the emulsion was measured using Horiba LA-930 particle sizer (Horiba Scientific, USA).
- VRP Viral replicon particles
- VRPs viral replicon particles
- VCR alphavirus chimeric replicons
- VEEV Venezuelan equine encephalitis virus
- PS Sindbis virus packaging signal
- VRPs were packaged into VRPs by co-electroporating them into baby hamster kidney (BHK) cells along with defective helper RNAs encoding the Sindbis virus capsid and glycoprotein genes (see Fig. 2 of Perri et al). The VRPs were then harvested and titrated by standard methods and inoculated into animals in culture fluid or other isotonic buffers.
- This Example shows that cationic oil-in-water emulsions made with high concentrations of DOTAP increased the immunogenicity of an RNA replicon that encodes the RSV-F antigen in a mouse model.
- the RNA/CNE complex was incubated with various concentrations of heparin sulfate (Alfa Aesar, Ward Hill MA) for 30 minutes at Room Temperature.
- the resulting solutions were then placed on an Airfuge high speed centrifuge (Beckman Coulter, Brea, CA) for 15 minutes.
- the centrifuge tubes were punctured with a tuberculin syringe and the subnatant was removed.
- the solution was then assayed for RNA concentration using the Ribogreen assay (Invitrogen, Carlsbad CA) according to the manufactures directions.
- the samples were analyzed on a Biotek Synergy 4 (Winooski, VT) fluorescent plate reader. Free RNA values were calculated using a standard curve.
- Table 3 shows the effect of DOTAP concentration on RNA-particle interactions (as determined by Heparin binding assay, which measured the tightness of the RNA-particle interactions) and immunogenicity.
- RNA molecules bound strongly to emulsion particles that were made with high concentrations of DOTAP (1.8 mg/mL or higher).
- Table 4 shows the effect of DOTAP concentration on RNA loading.
- RNA molecules being formulated into RNA-particle complexes.
- Table 5 shows the effect of DOTAP concentration on the immunogenicity of the RSV F antigen in an in vivo mouse model.
- vA317 replicon that expresses the surface fusion glycoprotein of RSV was used for this study.
- RNA and DOTAP administered to each mouse were held constant (meaning for emulsions with higher concentrations of DOTAP, smaller volumes of emulsion were used to prepare the RNA/emulsion complex; then, prior to immunization, the RNA/emulsion formulations were diluted such that the volumes of the RNA/emulsion formulations injected to the mice were the same), F-specific total IgG titers were comparable with different CNE formulations (Table 6). vA317 replicon was used for all CNE formulations. RNAs were made with Ambion kit. The GMT data reflect the geometric mean titer of individual mice in each group (8 mice/group). The result shows that smaller amount of the formulations were needed for emulsions with higher concentrations of DOTAP.
- Titers from pre-immunization serum contained undetectable titers.
- F-specific total IgG titers increased as the amount of RNA and DOTAP in the formulations increased (Table 7).
- the vA317 replicon was used for all CNE formulations.
- RNAs were made with Ambion kit.
- the GMT data reflect the geometric mean titer of individual mice in each group (8 mice/group). The result shows that increasing DOTAP concentration resulted in higher amount of RNA being loaded to the emulsion particles, which in turn increased the host immune response.
- CMF32 and CMF34 were further studied using different N/P ratios.
- Table 8 shows the F-specific total IgG titers of the formulations.
- Theoretical N/P ratios reflect the N/P ratios calculated according to the initial amounts of DOTAP and RNA that were used to prepare the formulations. Actual N/P ratios were slightly lower than theoretical N/P ratios because small amounts of DOTAP were lost during preparation of the emulsions.
- the vA317 was used for all CNE and CMF formulations.
- the GMT data reflect the mean logio titer of individual mice in each group (8 mice/group). All formulations were adjusted to 300 mOsrn/kg with sucrose. There were no obvious tolerability issues observed (e.g., body weight, early serum cytokines) with either CMF32 or CMF34 formulations.
- This Example shows that cationic oil-in-water emulsions made with high concentrations of DOTAP increased the immunogenicity of an RNA replicon that encodes the RSV-F antigen in a cotton rat model.
- RNA replicon The sequence of the RNA replicon, vA142 RSV-F-delFP- full ribozyme
- RSV-F trimer subunit vaccine The RSV F trimer is a recombinant protein comprising the ectodomain of RSV F with a deletion of the fusion peptide region preventing association with other trimers.
- the resulting construct forms a homogeneous trimer, as observed by size exclusion chromatography, and has an expected phenotype consistent with a postfusion F conformation as observed by electron microscopy.
- the protein was expressed in insect cells or CHO cells and purified by virtue of a HIS-tagged in fusion with the construct' s C-terminus followed by size exclusion chromatography using conventional techniques. The resulting protein sample exhibits greater than 95% purity.
- trimer protein was adsorbed on 2 mg/mL alum using 10 mM Histidine buffer, pH 6.3 and isotonicity adjusted with sodium chloride to 150 mM.
- F-subunit protein was adsorbed on alum overnight with gentle stirring at 2-8 °C.
- RSV F -specific ELISA Individual serum samples were assayed for the presence of RSV F-specific IgG by enzyme-linked immunosorbent assay (ELISA). ELISA plates (MaxiSorp 96-well, Nunc) were coated overnight at 4°C with 1 ⁇ g/ml purified RSV F (delp23-furdel-trunc uncleaved) in PBS. After washing (PBS with 0.1% Tween-20), plates were blocked with Superblock Blocking Buffer in PBS (Thermo Scientific) for at least 1.5 hr at 37°C.
- ELISA enzyme-linked immunosorbent assay
- Micro neutralization assay Serum samples were tested for the presence of neutralizing antibodies by a plaque reduction neutralization test (PR T). Two-fold serial dilutions of HI-serum (in PBS with 5% HI-FBS) were added to an equal volume of RSV Long previously titered to give approximately 1 15 PFU/25 ⁇ . Serum/virus mixtures were incubated for 2 hours at 37°C and 5% C02, to allow virus neutralization to occur, and then 25 ⁇ of this mixture (containing approximately 115 PFU) was inoculated on duplicate wells of HEp-2 cells in 96 well plates.
- PR T plaque reduction neutralization test
- the cells were overlayed with 0.75% Methyl Cellulose/ EMEM 5% HI-FBS and incubated for 42 hours.
- the number of infectious virus particles was determined by detection of syncytia formation by immunostaining followed by automated counting.
- the neutralization titer is defined as the reciprocal of the serum dilution producing at least a 60% reduction in number of synctia per well, relative to controls (no serum).
- Table 9 shows the effect of DOTAP concentration on the immunogenicity of the RSV F antigen in an in vivo cotton rat model.
- the first two vaccination used the RNA/CNE formulations as shown in Table 9.
- 3 ⁇ g of RSV F subunit protein (in alum) were used for all animals except the naive group.
- EXAMPLE 5 ASSESSING THE EFFECTS OF BUFFER COMPOSITIONS ON IMMUNOGENICITY
- Table 10 summarizes the results of murine immunogenicity studies when CMF34-formulated RNAs were prepared using different buffer systems. Table 10
- CMV Proteins Bicistronic and pentacistronic alphavirus replicons that express glycoprotein complexes from human cytomegalovirus (HCMV) were prepared, and are shown schematically in FIGS. 1 and 3.
- the alphavirus replicons were based on Venezuelan equine encephalitis virus (VEE).
- VEE Venezuelan equine encephalitis virus
- the replicons were packaged into viral replicon particles (VRPs), encapsulated in lipid nanoparticles (LNP), or formulated with CMF34. Expression of the encoded HCMV proteins and protein complexes from each of the replicons was confirmed by immunoblot, co-immunoprecipitation, and flow cytometry.
- FIG. 2 shows that these antibodies bind to BHKV cells transfected with replicon RNA expressing the HCMV
- VRPs The VRPs, RNA encaspulated in LNPs, and RNA formulated with CMF34 were used to immunize Balb/c mice by intramuscular injections in the rear quadriceps.
- the mice were immunized three times, three weeks apart, and serum samples were collected prior to each immunization as well as three weeks after the third and final immunization.
- the sera were evaluated in microneutralization assays and to measure the potency of the neutralizing antibody response that was elicited by the vaccinations.
- the titers are expressed as 50% neutralizing titer.
- FIG. 3 shows that VRPs expressing the membrane-anchored, full-length gH/gL complex elicited potent neutralizing antibodies at slightly higher titers than the soluble complex (gHsol/gL) expressed from a similar bicistronic expression cassette. Changing the order of the genes encoding gHsol and gL or replacing one of the subgenomic promoters with an IRES or an FMDV 2A site did not substantially improve immunogenicity.
- Nucleic acids encoding VZV proteins were cloned into a VEE replicon vector to produce monocystronic replicons that encode gB, gH, gL, gE, and gl, and to produce bicistronic replicons that encode gH/gL or gE/gl.
- expression of each VZV open reading frame was driven by a separate subgenomic promoter.
- plasmid encoding the replicon was linearized by digestion with Pmel, and the linearized plasmid was extracted with
- RNA was prepared by In vitro transcription of ⁇ of linearized DNA using the MEGAscript T7 kit (AMBION# AM1333). A 20 ⁇ 1 reaction was set up according to the manufacturer's instruction without cap analog and incubated for 2 hours at 32°C. TURBO DNase ( ⁇ ⁇ ) was added and the mixture was incubate for 30 min. at 32°C. RNase-free water (30 ⁇ 1) and ammonium acetate solution (30 ⁇ 1) were added. The solution was mixed and chilled for at least 30 min at -20°C. Then the solution was centrifuged at maximum speed for 25 min. at 4°C. The supernatant was discarded, and the pellet was rinsed with 70% ethanol, and again centrifuged at maximum speed for 10 min. at 4°C. The pellet was air dried and resuspended in 50 ⁇ of RNase-free water. The concentration of RNA was measured and quality was check on a denaturing gel.
- RNA was capped using the ScriptCap m7G Capping System
- ScriptCap Capping Buffer 10 mM GTP, 2 mM SAM fresh prepared, ScriptGuard RNase inhibitor, and ScriptCap Capping Enzyme.
- the mixture was incubatedfor 60 min. at 37°C.
- the reaction was stopped by adding RNase-free water and 7.5 M LiCl, mixing well and storing the mixture for at least 30 min at -20°C.
- the mixture was centrifuged at maximum speed for 25 min. at 4°C, the pellet was rinsed with 70% ethanol, again centrifuged at maximum speed for 10 min. at 4°C and the pellet was air dried.
- the pellet was resuspended in RNase-free water.
- the concentration of RNA was measured and quality was checked on a denaturing gel.
- RNA-Lipofectamine complex was placed onto the cells, and mixed by gently rocking the plate. The plates were incubated for 24 hours at 37°C in a CO2 incubator.
- transfected cells were harvested and seeded in 96 well plate, and intracellular staining was performed using commercially available mouse mAbs (dilution range 1 : 100 1 :400). Cell pellets were fixed and permeabilized with Citofix- Citoperm solutions. A secondary reagent, Alexa488 labelled goat anti-mouse F(ab')2 (1 :400 final dilution), was used.
- VZV proteins gE and gl were detected in cells transfected with monocistronic constructs (gE or gl), and expression of both gE and gl was detected in cells transfected with a bicistronic gE/gl construct in western blots using commercially available mouse antibodies, 13B1 for gE and 8C4 for gl. Expression of VZV protein gB was detected in cells transfected with a monocistronic construct encoding gB, by
- VZV protein complex gH/gL was detected by immunofluorescence in cells transfected with monocistronic gH and monocistronic gL, or with a bicistronic gH/gL construct.
- the gH/gL complex was detected using commercially available antibody SG3.
- Each immunized mouse serum was serially diluted by two fold increments starting at 1 :20 in standard culture medium, and added to the equal volume of VZV suspension in the presence of guinea pig complement. After incubation for 1 hour at 37°C, the human epithelial cell line A549, was added. Infected cells can be measured after one week of culture by counting plaques formed in the culture under microscope. From the plaque number the % inhibition at each serum dilution was calculated. A chart for each serum sample was made by plotting the value of % inhibition against the logarithmic scale the dilution factor. Subsequently an approximate line of relationship between dilution factor and % inhibition was drawn. Then the 50% neutralization titer was determined as the dilution factor where the line crossed at the value of 50% inhibition.
- the column labeled 4 °C overnight shows the solubility of the solutions in which each fatty acid was at its top concentration.
- oleic acid was soluble in squalene at 40mg/ml and remained soluble in squalene at 4 °C overnight.
- A526 Vector SGP-gH-SGP-gL-SGP-UL128-2A-UL130-2Amod-UL131 (SEQ ID NO: 4).
- A527 Vector SGP-gH-SGP-gL-SGP-UL128-EMCV-UL130-EV71- UL131 (SEQ ID NO: 5).
- A531 Vector SGP-gHsol-SGP-gL (SEQ ID NO: 6).
- A532 Vector SGP-gHsol-2A-gL (SEQ ID NO: 7).
- A533 Vector SGP-gHsol-EV71-gL (SEQ ID NO: 8).
- A534 Vector SGP-gL-EV71-gH (SEQ ID NO: 9).
- A535 Vector SGP-342-EV71-gHsol-2A-gL (SEQ ID NO: 10).
- A536 Vector SGP-342-EV71-gHsol-EMCV-gL (SEQ ID NO: 1 1).
- A537 Vector SGP-342-EV71-gL-EMCV-gHsol (SEQ ID NO: 12).
- A554 Vector SGP-gH-SGP-gL-SGP-UL128-SGP-UL130-SGP-UL131 (SEQ ID NO: 13).
- A555 Vector SGP-gHsol-SGP-gL-SGP-UL128-SGP-UL130-SGP- UL131 (SEQ ID NO: 14).
- A556 Vector SGP-gHsol6His-SGP-gL-SGP-UL128-SGP-UL130-SGP- UL131 (SEQ ID NO: 15).
- VZV gB (SEQ ID NO: 16).
- VZV gH (SEQ ID NO: 17).
- VZV gL (SEQ ID NO: 18).
- VZV gl (SEQ ID NO: 19).
- VZV gE (SEQ ID NO: 20).
- VZV VEERep.SGPgB (SEQ ID NO: 21).
- VZV VEERep.SGPgH (SEQ ID NO: 22).
- VZV VEERep.SGPgL (SEQ ID NO: 23).
- VZV VEERep.SGPgH-SGPgL (SEQ ID NO: 24).
- VZV VEERep.SGPgE (SEQ ID NO: 25).
- VZV VEERep.SGPgl (SEQ ID NO: 26).
- VZV VEErep.SGPgE-SGPgl (SEQ ID NO: 27).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Virology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Mycology (AREA)
- Biophysics (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- Dispersion Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Inorganic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pulmonology (AREA)
- Dermatology (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2014000040A MX350258B (en) | 2011-07-06 | 2012-07-06 | Cationic oil-in-water emulsions. |
CA2840965A CA2840965C (en) | 2011-07-06 | 2012-07-06 | Cationic oil-in-water emulsions |
BR112014000235A BR112014000235A8 (en) | 2011-07-06 | 2012-07-06 | cationic oil-in-water emulsions |
ES12743273T ES2702318T3 (en) | 2011-07-06 | 2012-07-06 | Cationic emulsions of oil in water |
CN201280033539.6A CN103796639B (en) | 2011-07-06 | 2012-07-06 | Cation oil-in-water emulsion |
AU2012280904A AU2012280904B2 (en) | 2011-07-06 | 2012-07-06 | Cationic oil-in-water emulsions |
EP12743273.0A EP2729124B1 (en) | 2011-07-06 | 2012-07-06 | Cationic oil-in-water emulsions |
RU2014104094A RU2649133C2 (en) | 2011-07-06 | 2012-07-06 | Cationic oil-in-water emulsions |
JP2014519088A JP6120839B2 (en) | 2011-07-06 | 2012-07-06 | Cationic oil-in-water emulsion |
EP18201788.9A EP3456316A1 (en) | 2011-07-06 | 2012-07-06 | Cationic oil-in-water emulsions |
US14/130,886 US9636410B2 (en) | 2011-07-06 | 2012-07-06 | Cationic oil-in-water emulsions |
US15/467,660 US10183074B2 (en) | 2011-07-06 | 2017-03-23 | Cationic oil-in-water emulsions |
AU2017203342A AU2017203342A1 (en) | 2011-07-06 | 2017-05-18 | Cationic oil-in-water emulsions |
US16/212,245 US11167028B2 (en) | 2011-07-06 | 2018-12-06 | Cationic oil-in-water emulsions |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161505109P | 2011-07-06 | 2011-07-06 | |
US61/505,109 | 2011-07-06 | ||
US201161545936P | 2011-10-11 | 2011-10-11 | |
US61/545,936 | 2011-10-11 | ||
US201261585641P | 2012-01-11 | 2012-01-11 | |
US61/585,641 | 2012-01-11 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/130,886 A-371-Of-International US9636410B2 (en) | 2011-07-06 | 2012-07-06 | Cationic oil-in-water emulsions |
US15/467,660 Division US10183074B2 (en) | 2011-07-06 | 2017-03-23 | Cationic oil-in-water emulsions |
US15/467,660 Continuation US10183074B2 (en) | 2011-07-06 | 2017-03-23 | Cationic oil-in-water emulsions |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013006837A1 true WO2013006837A1 (en) | 2013-01-10 |
Family
ID=46604537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/045845 WO2013006837A1 (en) | 2011-07-06 | 2012-07-06 | Cationic oil-in-water emulsions |
Country Status (12)
Country | Link |
---|---|
US (3) | US9636410B2 (en) |
EP (2) | EP3456316A1 (en) |
JP (2) | JP6120839B2 (en) |
CN (1) | CN103796639B (en) |
AU (2) | AU2012280904B2 (en) |
BR (1) | BR112014000235A8 (en) |
CA (1) | CA2840965C (en) |
ES (1) | ES2702318T3 (en) |
MX (1) | MX350258B (en) |
RU (1) | RU2649133C2 (en) |
SG (1) | SG10201605500TA (en) |
WO (1) | WO2013006837A1 (en) |
Cited By (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8664194B2 (en) | 2011-12-16 | 2014-03-04 | Moderna Therapeutics, Inc. | Method for producing a protein of interest in a primate |
US8710200B2 (en) | 2011-03-31 | 2014-04-29 | Moderna Therapeutics, Inc. | Engineered nucleic acids encoding a modified erythropoietin and their expression |
WO2014108515A1 (en) | 2013-01-10 | 2014-07-17 | Novartis Ag | Influenza virus immunogenic compositions and uses thereof |
US8822663B2 (en) | 2010-08-06 | 2014-09-02 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
WO2014140211A1 (en) | 2013-03-15 | 2014-09-18 | Novartis Ag | Rna purification methods |
WO2014172435A1 (en) * | 2013-04-16 | 2014-10-23 | University Of Cincinnati | Antimicrobial compositions of aminoglycosidic antibiotics and zinc ion chelators |
US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
US8999380B2 (en) | 2012-04-02 | 2015-04-07 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
US9107886B2 (en) | 2012-04-02 | 2015-08-18 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding basic helix-loop-helix family member E41 |
WO2015161926A1 (en) * | 2014-04-23 | 2015-10-29 | Institute For Research In Biomedicine | Human cytomegalovirus vaccine compositions and method of producing the same |
WO2015165480A1 (en) * | 2014-04-30 | 2015-11-05 | Institute For Research In Biomedicine | Human cytomegalovirus vaccine compositions and method of producing the same |
WO2015103167A3 (en) * | 2013-12-31 | 2015-11-12 | Infectious Disease Research Institute | Single vial vaccine formulations |
WO2015177312A1 (en) | 2014-05-22 | 2015-11-26 | Glaxosmithkline Biologicals Sa | Rsvf trimerization domains |
US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
US9334328B2 (en) | 2010-10-01 | 2016-05-10 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
EP3048114A1 (en) | 2015-01-22 | 2016-07-27 | Novartis AG | Cytomegalovirus antigens and uses thereof |
US9428535B2 (en) | 2011-10-03 | 2016-08-30 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
EP3061826A1 (en) | 2015-02-27 | 2016-08-31 | Novartis AG | Flavivirus replicons |
US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
EP2985276A4 (en) * | 2013-02-20 | 2017-01-25 | Fundación Pública Andaluza Para La Investigación de Malaga en Biomedicina y Salud (FIMABIS) | Formulations based on nanoemulsions and the use thereof for treating obesity |
US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9597380B2 (en) | 2012-11-26 | 2017-03-21 | Modernatx, Inc. | Terminally modified RNA |
US9655845B2 (en) | 2011-07-06 | 2017-05-23 | Glaxosmithkline Biologicals, S.A. | Oil-in-water emulsions that contain nucleic acids |
WO2017162461A1 (en) | 2016-03-21 | 2017-09-28 | Biontech Rna Pharmaceuticals Gmbh | Trans-replicating rna |
WO2017208191A1 (en) | 2016-06-02 | 2017-12-07 | Glaxosmithkline Biologicals Sa | Zika viral antigen constructs |
AU2013286093B2 (en) * | 2012-07-06 | 2018-01-04 | Novartis Ag | Complexes of cytomegalovirus proteins |
WO2018060288A1 (en) | 2016-09-29 | 2018-04-05 | Glaxosmithkline Biologicals S.A. | Compositions and methods of treatment of persistent hpv infection |
WO2018065931A1 (en) | 2016-10-05 | 2018-04-12 | Glaxosmithkline Biologicals Sa | Vaccine |
WO2018091540A1 (en) | 2016-11-17 | 2018-05-24 | Glaxosmithkline Biologicals Sa | Zika viral antigen constructs |
CN108472354A (en) * | 2015-10-22 | 2018-08-31 | 摩登纳特斯有限公司 | Respiratory syncytial virus vaccines |
US10195156B2 (en) | 2015-12-22 | 2019-02-05 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
US10207010B2 (en) | 2015-12-10 | 2019-02-19 | Modernatx, Inc. | Compositions and methods for delivery of agents |
WO2019053012A1 (en) | 2017-09-13 | 2019-03-21 | Biontech Rna Pharmaceuticals Gmbh | Rna replicon for reprogramming somatic cells |
WO2019053056A1 (en) | 2017-09-13 | 2019-03-21 | Biontech Cell & Gene Therapies Gmbh | Rna replicon for expressing a t cell receptor or an artificial t cell receptor |
EP3461497A1 (en) | 2017-09-27 | 2019-04-03 | GlaxoSmithKline Biologicals S.A. | Viral antigens |
US10266485B2 (en) | 2015-09-17 | 2019-04-23 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US10323076B2 (en) | 2013-10-03 | 2019-06-18 | Modernatx, Inc. | Polynucleotides encoding low density lipoprotein receptor |
EP3364980A4 (en) * | 2015-10-22 | 2019-07-10 | ModernaTX, Inc. | Nucleic acid vaccines for varicella zoster virus (vzv) |
EP3364949A4 (en) * | 2015-10-22 | 2019-07-31 | ModernaTX, Inc. | Cancer vaccines |
EP3364981A4 (en) * | 2015-10-22 | 2019-08-07 | ModernaTX, Inc. | Human cytomegalovirus vaccine |
US10449244B2 (en) | 2015-07-21 | 2019-10-22 | Modernatx, Inc. | Zika RNA vaccines |
US10493143B2 (en) | 2015-10-22 | 2019-12-03 | Modernatx, Inc. | Sexually transmitted disease vaccines |
WO2020035609A2 (en) | 2018-08-17 | 2020-02-20 | Glaxosmithkline Biologicals Sa | Immunogenic compositions and uses thereof |
US10653767B2 (en) | 2017-09-14 | 2020-05-19 | Modernatx, Inc. | Zika virus MRNA vaccines |
WO2020144295A1 (en) | 2019-01-10 | 2020-07-16 | Biontech Rna Pharmaceuticals Gmbh | Localized administration of rna molecules for therapy |
EP3701959A1 (en) | 2016-03-21 | 2020-09-02 | BioNTech RNA Pharmaceuticals GmbH | Rna replicon for versatile and efficient gene expression |
US10815291B2 (en) | 2013-09-30 | 2020-10-27 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
US10842859B2 (en) | 2014-03-25 | 2020-11-24 | Yale University | Uses of parasite macrophage migration inhibitory factors |
US10857105B2 (en) | 2017-03-15 | 2020-12-08 | MordernaTX, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
WO2021013798A1 (en) | 2019-07-21 | 2021-01-28 | Glaxosmithkline Biologicals Sa | Therapeutic viral vaccine |
US10925958B2 (en) | 2016-11-11 | 2021-02-23 | Modernatx, Inc. | Influenza vaccine |
EP3819377A1 (en) | 2019-11-08 | 2021-05-12 | Justus-Liebig-Universität Gießen | Circular rna and uses thereof for inhibiting rna-binding proteins |
US11045540B2 (en) | 2017-03-15 | 2021-06-29 | Modernatx, Inc. | Varicella zoster virus (VZV) vaccine |
US11066355B2 (en) | 2019-09-19 | 2021-07-20 | Modernatx, Inc. | Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents |
US11103578B2 (en) | 2016-12-08 | 2021-08-31 | Modernatx, Inc. | Respiratory virus nucleic acid vaccines |
WO2021209970A1 (en) | 2020-04-16 | 2021-10-21 | Glaxosmithkline Biologicals Sa | Sars cov-2 spike protein construct |
WO2021245090A1 (en) | 2020-06-04 | 2021-12-09 | BioNTech SE | Rna replicon for versatile and efficient gene expression |
WO2021245611A1 (en) | 2020-06-05 | 2021-12-09 | Glaxosmithkline Biologicals Sa | Modified betacoronavirus spike proteins |
US11203569B2 (en) | 2017-03-15 | 2021-12-21 | Modernatx, Inc. | Crystal forms of amino lipids |
WO2022002783A1 (en) | 2020-06-29 | 2022-01-06 | Glaxosmithkline Biologicals Sa | Adjuvants |
US11235052B2 (en) | 2015-10-22 | 2022-02-01 | Modernatx, Inc. | Chikungunya virus RNA vaccines |
CN114316130A (en) * | 2021-12-27 | 2022-04-12 | 爱森(中国)絮凝剂有限公司 | Method for utilizing byproduct sodium chloride of industrial production of dimethyl diallyl ammonium chloride in cationic emulsion |
US20220125723A1 (en) | 2010-07-06 | 2022-04-28 | Glaxosmithkline Biologicals Sa | Lipid formulations with viral immunogens |
US11351242B1 (en) | 2019-02-12 | 2022-06-07 | Modernatx, Inc. | HMPV/hPIV3 mRNA vaccine composition |
EP4008785A1 (en) | 2020-12-03 | 2022-06-08 | Justus-Liebig-Universität Gießen | Circular nucleic acids and uses thereof for interfering with genome expression and proliferation of coronaviruses |
US11364292B2 (en) | 2015-07-21 | 2022-06-21 | Modernatx, Inc. | CHIKV RNA vaccines |
WO2022137128A2 (en) | 2020-12-23 | 2022-06-30 | Glaxosmithkline Biologicals Sa | Self-amplifying messenger rna |
EP4032546A1 (en) | 2021-01-20 | 2022-07-27 | GlaxoSmithKline Biologicals S.A. | Therapeutic viral vaccine |
US11447566B2 (en) | 2018-01-04 | 2022-09-20 | Iconic Therapeutics, Inc. | Anti-tissue factor antibodies, antibody-drug conjugates, and related methods |
WO2022200574A1 (en) | 2021-03-26 | 2022-09-29 | Glaxosmithkline Biologicals Sa | Immunogenic compositions |
US11464848B2 (en) | 2017-03-15 | 2022-10-11 | Modernatx, Inc. | Respiratory syncytial virus vaccine |
WO2022248353A1 (en) | 2021-05-24 | 2022-12-01 | Glaxosmithkline Biologicals Sa | Adjuvants |
US11524023B2 (en) | 2021-02-19 | 2022-12-13 | Modernatx, Inc. | Lipid nanoparticle compositions and methods of formulating the same |
WO2022259191A1 (en) | 2021-06-09 | 2022-12-15 | Glaxosmithkline Biologicals Sa | Release assay for determining potency of self-amplifying rna drug product and methods for using |
US11547764B2 (en) | 2011-06-08 | 2023-01-10 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for MRNA delivery |
US11576961B2 (en) | 2017-03-15 | 2023-02-14 | Modernatx, Inc. | Broad spectrum influenza virus vaccine |
US11583504B2 (en) | 2016-11-08 | 2023-02-21 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
WO2023020992A1 (en) | 2021-08-16 | 2023-02-23 | Glaxosmithkline Biologicals Sa | Novel methods |
WO2023020994A1 (en) | 2021-08-16 | 2023-02-23 | Glaxosmithkline Biologicals Sa | Novel methods |
WO2023020993A1 (en) | 2021-08-16 | 2023-02-23 | Glaxosmithkline Biologicals Sa | Novel methods |
WO2023066874A1 (en) | 2021-10-18 | 2023-04-27 | BioNTech SE | Methods for determining mutations for increasing modified replicable rna function and related compositions and their use |
WO2023066875A1 (en) | 2021-10-18 | 2023-04-27 | BioNTech SE | Modified replicable rna and related compositions and their use |
US11639370B2 (en) | 2010-10-11 | 2023-05-02 | Glaxosmithkline Biologicals Sa | Antigen delivery platforms |
US11655475B2 (en) | 2010-07-06 | 2023-05-23 | Glaxosmithkline Biologicals Sa | Immunisation of large mammals with low doses of RNA |
US11690863B2 (en) | 2010-07-06 | 2023-07-04 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US11744801B2 (en) | 2017-08-31 | 2023-09-05 | Modernatx, Inc. | Methods of making lipid nanoparticles |
US11752206B2 (en) | 2017-03-15 | 2023-09-12 | Modernatx, Inc. | Herpes simplex virus vaccine |
US11759422B2 (en) | 2010-08-31 | 2023-09-19 | Glaxosmithkline Biologicals Sa | Pegylated liposomes for delivery of immunogen-encoding RNA |
US11786607B2 (en) | 2017-06-15 | 2023-10-17 | Modernatx, Inc. | RNA formulations |
WO2023213783A1 (en) | 2022-05-02 | 2023-11-09 | BioNTech SE | Replicon compositions and methods of using same for the treatment of diseases |
WO2024017479A1 (en) | 2022-07-21 | 2024-01-25 | BioNTech SE | Multifunctional cells transiently expressing an immune receptor and one or more cytokines, their use and methods for their production |
US11896636B2 (en) | 2011-07-06 | 2024-02-13 | Glaxosmithkline Biologicals Sa | Immunogenic combination compositions and uses thereof |
US11911453B2 (en) | 2018-01-29 | 2024-02-27 | Modernatx, Inc. | RSV RNA vaccines |
WO2024056856A1 (en) | 2022-09-15 | 2024-03-21 | BioNTech SE | Systems and compositions comprising trans-amplifying rna vectors with mirna |
RU2816240C2 (en) * | 2017-06-15 | 2024-03-27 | Инфекшес Дизис Рисёрч Инститьют | Nanostructured lipid carriers and stable emulsions and applications thereof |
US11969506B2 (en) | 2017-03-15 | 2024-04-30 | Modernatx, Inc. | Lipid nanoparticle formulation |
US12070495B2 (en) | 2019-03-15 | 2024-08-27 | Modernatx, Inc. | HIV RNA vaccines |
US12077501B2 (en) | 2017-06-14 | 2024-09-03 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
US12090235B2 (en) | 2018-09-20 | 2024-09-17 | Modernatx, Inc. | Preparation of lipid nanoparticles and methods of administration thereof |
EP4458968A1 (en) | 2023-05-05 | 2024-11-06 | Justus-Liebig-Universität Gießen | Circular nucleic acids and uses thereof for shaping the cellular proteome |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103796639B (en) | 2011-07-06 | 2017-05-31 | 诺华股份有限公司 | Cation oil-in-water emulsion |
WO2014028429A2 (en) | 2012-08-14 | 2014-02-20 | Moderna Therapeutics, Inc. | Enzymes and polymerases for the synthesis of rna |
WO2014159813A1 (en) | 2013-03-13 | 2014-10-02 | Moderna Therapeutics, Inc. | Long-lived polynucleotide molecules |
WO2014152211A1 (en) | 2013-03-14 | 2014-09-25 | Moderna Therapeutics, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
CA3177878A1 (en) | 2014-04-23 | 2015-10-29 | Modernatx, Inc. | Nucleic acid vaccines |
US10350165B2 (en) | 2014-12-12 | 2019-07-16 | Ojai Energetics Pbc | Methods and systems for forming stable droplets |
US10639276B2 (en) * | 2015-08-19 | 2020-05-05 | Shanghai Ginposome Pharmatech Co., Ltd. | Liposomes with ginsenoside as membrane material and preparations and use thereof |
EP3359670B2 (en) | 2015-10-05 | 2024-02-14 | ModernaTX, Inc. | Methods for therapeutic administration of messenger ribonucleic acid drugs |
CN107190050B (en) * | 2016-03-14 | 2020-10-27 | 华东理工大学 | HRP activity determination and H2O2Concentration detection kit and application thereof |
US20180216022A1 (en) * | 2017-01-27 | 2018-08-02 | Scott Rettberg | System and method for reducing friction, torque and drag in artificial lift systems used in oil and gas production wells |
EP3595676A4 (en) | 2017-03-17 | 2021-05-05 | Modernatx, Inc. | Zoonotic disease rna vaccines |
CN111315362A (en) * | 2017-06-15 | 2020-06-19 | 传染病研究所 | Nanostructured lipid carriers and stable emulsions and uses thereof |
US20190137035A1 (en) | 2017-11-03 | 2019-05-09 | Scott Rettberg | System and method for reducing friction, torque and drag in artificial lift systems used in oil and gas production wells |
CN110643632B (en) * | 2019-09-26 | 2022-06-10 | 中国科学院武汉病毒研究所 | Rabies virus infectious clone based on alphavirus replicon vector and preparation method and application thereof |
WO2021138447A1 (en) * | 2019-12-31 | 2021-07-08 | Elixirgen Therapeutics, Inc. | Temperature-based transient delivery of nucleic acids and proteins to cells and tissues |
CA3171219A1 (en) | 2020-03-09 | 2021-09-16 | Arcturus Therapeutics, Inc. | Compositions and methods for inducing immune responses |
AU2021392077A1 (en) * | 2020-12-02 | 2023-07-13 | Seqirus Inc. | Multicistronic rna vaccines and uses thereof |
CA3208643A1 (en) | 2021-01-18 | 2022-07-21 | Conserv Bioscience Limited | Coronavirus immunogenic compositions, methods and uses thereof |
US20230256068A1 (en) * | 2022-02-16 | 2023-08-17 | The Cleveland Clinic Foundation | Amhr2-ed cancer vaccine formulations |
US20230302044A1 (en) * | 2022-03-28 | 2023-09-28 | Steve Reilly | Composition to increase cellularlongevity |
Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA583561A (en) | 1959-09-22 | H. Edgerton William | Therapeutically valuable esters and methods for obtaining the same | |
US3304263A (en) | 1961-03-17 | 1967-02-14 | Procter & Gamble | Phosphine oxide detergent composition |
US4373071A (en) | 1981-04-30 | 1983-02-08 | City Of Hope Research Institute | Solid-phase synthesis of polynucleotides |
US4458066A (en) | 1980-02-29 | 1984-07-03 | University Patents, Inc. | Process for preparing polynucleotides |
US4500707A (en) | 1980-02-29 | 1985-02-19 | University Patents, Inc. | Nucleosides useful in the preparation of polynucleotides |
EP0181150A1 (en) | 1984-10-31 | 1986-05-14 | Chiron Corporation | Recombinant proteins of viruses associated with lymphadenopathy syndrome and/or acquired immune deficiency syndrome |
US4668777A (en) | 1981-03-27 | 1987-05-26 | University Patents, Inc. | Phosphoramidite nucleoside compounds |
US4689225A (en) | 1984-11-02 | 1987-08-25 | Institut Merieux | Vaccine for cytomegalovirus |
JPH01500565A (en) | 1986-07-18 | 1989-03-01 | ボエトマン,カリン,グラスサウ | Method and apparatus for rolling up flat pieces of dough, for example for Swiss rolls |
EP0318216A1 (en) | 1987-11-18 | 1989-05-31 | Chiron Corporation | NANBV diagnostics and vaccines |
WO1989007143A1 (en) | 1988-01-29 | 1989-08-10 | Chiron Corporation | Recombinant cmv neutralizing proteins |
EP0388232A1 (en) | 1989-03-17 | 1990-09-19 | Chiron Corporation | NANBV diagnostics and vaccines |
US4973679A (en) | 1981-03-27 | 1990-11-27 | University Patents, Inc. | Process for oligonucleo tide synthesis using phosphormidite intermediates |
US5047524A (en) | 1988-12-21 | 1991-09-10 | Applied Biosystems, Inc. | Automated system for polynucleotide synthesis and purification |
US5132418A (en) | 1980-02-29 | 1992-07-21 | University Patents, Inc. | Process for preparing polynucleotides |
US5153319A (en) | 1986-03-31 | 1992-10-06 | University Patents, Inc. | Process for preparing polynucleotides |
US5262530A (en) | 1988-12-21 | 1993-11-16 | Applied Biosystems, Inc. | Automated system for polynucleotide synthesis and purification |
US5700642A (en) | 1995-05-22 | 1997-12-23 | Sri International | Oligonucleotide sizing using immobilized cleavable primers |
US5885613A (en) | 1994-09-30 | 1999-03-23 | The University Of British Columbia | Bilayer stabilizing components and their use in forming programmable fusogenic liposomes |
US20030077829A1 (en) | 2001-04-30 | 2003-04-24 | Protiva Biotherapeutics Inc.. | Lipid-based formulations |
US20050175682A1 (en) | 2003-09-15 | 2005-08-11 | Protiva Biotherapeutics, Inc. | Polyethyleneglycol-modified lipid compounds and uses thereof |
US20060025366A1 (en) | 2004-07-02 | 2006-02-02 | Protiva Biotherapeutics, Inc. | Immunostimulatory siRNA molecules and uses therefor |
WO2011005799A2 (en) | 2009-07-06 | 2011-01-13 | Novartis Ag | Self replicating rna molecules and uses thereof |
WO2012006380A2 (en) * | 2010-07-06 | 2012-01-12 | Novartis Ag | Cationic oil-in-water emulsions |
US8804125B2 (en) | 2010-03-12 | 2014-08-12 | Konica Minolta, Inc. | Detection method for intermolecular interaction and detection device thereof |
US9001348B2 (en) | 2012-06-12 | 2015-04-07 | Ricoh Company, Ltd. | Information processing system, information processing method, and a recording medium that allow a user to select print data and print selected print data |
Family Cites Families (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3906092A (en) | 1971-11-26 | 1975-09-16 | Merck & Co Inc | Stimulation of antibody response |
IE51913B1 (en) | 1980-10-09 | 1987-04-29 | Mars G B Ltd | Thermo irreversible gelling system and edible materials based thereon |
WO1988001165A1 (en) | 1986-08-11 | 1988-02-25 | Innovata Biomed Limited | Pharmaceutical formulations comprising microcapsules |
US5906980A (en) | 1987-07-17 | 1999-05-25 | Hem Research Inc. | Treatment of hepatitis with mismatched dsRNA |
US5712257A (en) | 1987-08-12 | 1998-01-27 | Hem Research, Inc. | Topically active compositions of mismatched dsRNAs |
HU212924B (en) | 1989-05-25 | 1996-12-30 | Chiron Corp | Adjuvant formulation comprising a submicron oil droplet emulsion |
US5264618A (en) | 1990-04-19 | 1993-11-23 | Vical, Inc. | Cationic lipids for intracellular delivery of biologically active molecules |
ATE229543T1 (en) | 1991-06-24 | 2002-12-15 | Chiron Corp | POLYPEPTIDES OF HEPATITIS C VIRUS (HIV) |
AU679429B2 (en) | 1991-09-13 | 1997-07-03 | Novartis Vaccines And Diagnostics, Inc. | Immunoreactive hepatitis C virus polypeptide compositions |
EP0702516A4 (en) | 1993-06-01 | 1998-04-22 | Life Technologies Inc | Genetic immunization with cationic lipids |
US5739118A (en) | 1994-04-01 | 1998-04-14 | Apollon, Inc. | Compositions and methods for delivery of genetic material |
US6239116B1 (en) | 1994-07-15 | 2001-05-29 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US6040295A (en) | 1995-01-13 | 2000-03-21 | Genemedicine, Inc. | Formulated nucleic acid compositions and methods of administering the same for gene therapy |
US5795587A (en) | 1995-01-23 | 1998-08-18 | University Of Pittsburgh | Stable lipid-comprising drug delivery complexes and methods for their production |
US6120794A (en) | 1995-09-26 | 2000-09-19 | University Of Pittsburgh | Emulsion and micellar formulations for the delivery of biologically active substances to cells |
US6610321B2 (en) | 1996-07-03 | 2003-08-26 | University Of Pittsburgh | Emulsion formulations for hydrophilic active agents |
EP0938298B1 (en) | 1996-09-13 | 2002-12-04 | Lipoxen Technologies Limited | Liposome-based composition |
AU747577B2 (en) | 1997-01-30 | 2002-05-16 | Novartis Vaccines And Diagnostics, Inc. | Use of microparticles with adsorbed antigen to stimulate immune responses |
US6884435B1 (en) | 1997-01-30 | 2005-04-26 | Chiron Corporation | Microparticles with adsorbent surfaces, methods of making same, and uses thereof |
US6171586B1 (en) | 1997-06-13 | 2001-01-09 | Genentech, Inc. | Antibody formulation |
AU8298298A (en) | 1997-07-08 | 1999-02-08 | Chiron Corporation | Use of submicron oil-in-water emulsions with dna vaccines |
ES2175668T3 (en) | 1997-12-16 | 2002-11-16 | Chiron Corp | USE OF MICROPARTICLES COMBINED WITH OIL EMULSIONS IN SUBMICRONIC WATER. |
WO1999051259A2 (en) | 1998-04-03 | 1999-10-14 | University Of Iowa Research Foundation | Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines |
CA2338646C (en) | 1998-07-29 | 2008-10-07 | Chiron Corporation | Microparticles with adsorbent surfaces, methods of making same, and uses thereof |
WO2000006120A1 (en) * | 1998-07-31 | 2000-02-10 | Korea Institute Of Science And Technology | Lipid emulsion and solid lipid nanoparticle as a gene or drug carrier |
US20020142974A1 (en) | 1998-09-11 | 2002-10-03 | Leonard D. Kohn | Immune activation by double-stranded polynucleotides |
US6770282B1 (en) | 1998-10-23 | 2004-08-03 | Heska Corporation | Cationic lipid-mediated enhancement of nucleic acid immunization of cats |
DE60020677T2 (en) | 1999-02-26 | 2006-05-04 | Chiron Corp., Emeryville | MICROEMULSIONS WITH ADSORBED MACROMOLECULES AND MICROPARTICLES |
BR0010323A (en) | 1999-05-06 | 2002-01-08 | Immune Response Corp Inc | Immunogenic compositions, kit and method of making it for use in the immunization of a mammal |
EP1700603A3 (en) * | 1999-09-25 | 2007-06-13 | Coley Pharmaceutical GmbH | Immunostimulatory nucleic acids |
AU1623501A (en) | 1999-11-19 | 2001-05-30 | Chiron Corporation | Microparticle-based transfection and activation of dendritic cells |
BR0114305A (en) | 2000-09-28 | 2003-07-01 | Chiron Corp | Microparticles for release of heterologous nucleic acids |
AR045702A1 (en) | 2001-10-03 | 2005-11-09 | Chiron Corp | COMPOSITIONS OF ASSISTANTS. |
US6861410B1 (en) | 2002-03-21 | 2005-03-01 | Chiron Corporation | Immunological adjuvant compositions |
CA2487274A1 (en) * | 2002-05-06 | 2003-11-13 | Nucleonics Inc. | Spermine chemically linked to lipids and cell-specific targeting molecules as a transfection agent |
AU2003302226A1 (en) | 2002-09-24 | 2004-06-30 | University Of Kentucky Research Foundation | Nanoparticle-based vaccine delivery system containing adjuvant |
US7303881B2 (en) | 2004-04-30 | 2007-12-04 | Pds Biotechnology Corporation | Antigen delivery compositions and methods of use |
US7749520B2 (en) | 2004-07-07 | 2010-07-06 | Statens Serum Institut | Compositions and methods for stabilizing lipid based adjuvant formulations using glycolipids |
CN101175508A (en) | 2004-10-21 | 2008-05-07 | 惠氏公司 | Immunogenic compositions of staphylococcus epidermidis polypeptide antigens |
FR2885813B1 (en) | 2005-05-19 | 2008-01-11 | Oreal | VECTORIZATION OF DSRNA BY CATIONIC PARTICLES AND THEIR USE ON SKIN MODEL. |
US7964191B2 (en) | 2006-02-02 | 2011-06-21 | Allergan, Inc. | Compositions and methods for the treatment of ophthalmic disease |
JP2009534342A (en) | 2006-04-20 | 2009-09-24 | サイレンス・セラピューティクス・アーゲー | Lipoplex formulation for specific delivery to vascular endothelium |
US8877206B2 (en) | 2007-03-22 | 2014-11-04 | Pds Biotechnology Corporation | Stimulation of an immune response by cationic lipids |
WO2009129227A1 (en) | 2008-04-17 | 2009-10-22 | Pds Biotechnology Corporation | Stimulation of an immune response by enantiomers of cationic lipids |
WO2010009277A2 (en) | 2008-07-15 | 2010-01-21 | Novartis Ag | Immunogenic amphipathic peptide compositions |
KR20120013336A (en) * | 2009-03-25 | 2012-02-14 | 노파르티스 아게 | Pharmaceutical composition containing a drug and sirna |
CN101538745B (en) * | 2009-04-22 | 2010-12-29 | 西南交通大学 | Method for preparing biodegradable polymerultrafine fiber capable of controllably releasing genomic medicine |
WO2010142660A2 (en) * | 2009-06-09 | 2010-12-16 | Novartis Ag | Drug delivery system |
EA026374B1 (en) * | 2009-12-23 | 2017-04-28 | Новартис Аг | Lipids, lipid compositions, and methods of using them |
EP2590676B1 (en) | 2010-07-06 | 2016-08-17 | GlaxoSmithKline Biologicals SA | Virion-like delivery particles for self-replicating rna molecules |
ES2657547T3 (en) | 2011-07-06 | 2018-03-05 | Glaxosmithkline Biologicals Sa | Oil-in-water emulsions containing nucleic acids |
CN103796639B (en) | 2011-07-06 | 2017-05-31 | 诺华股份有限公司 | Cation oil-in-water emulsion |
AU2019202336A1 (en) | 2018-06-29 | 2020-01-16 | Integria Healthcare (Australia) Pty Limited | Immunomodulatory compositions and uses thereof |
-
2012
- 2012-07-06 CN CN201280033539.6A patent/CN103796639B/en active Active
- 2012-07-06 RU RU2014104094A patent/RU2649133C2/en active
- 2012-07-06 EP EP18201788.9A patent/EP3456316A1/en not_active Withdrawn
- 2012-07-06 US US14/130,886 patent/US9636410B2/en active Active
- 2012-07-06 SG SG10201605500TA patent/SG10201605500TA/en unknown
- 2012-07-06 EP EP12743273.0A patent/EP2729124B1/en active Active
- 2012-07-06 ES ES12743273T patent/ES2702318T3/en active Active
- 2012-07-06 WO PCT/US2012/045845 patent/WO2013006837A1/en active Application Filing
- 2012-07-06 BR BR112014000235A patent/BR112014000235A8/en not_active Application Discontinuation
- 2012-07-06 JP JP2014519088A patent/JP6120839B2/en active Active
- 2012-07-06 MX MX2014000040A patent/MX350258B/en active IP Right Grant
- 2012-07-06 AU AU2012280904A patent/AU2012280904B2/en active Active
- 2012-07-06 CA CA2840965A patent/CA2840965C/en active Active
-
2016
- 2016-08-09 JP JP2016156141A patent/JP2016210792A/en not_active Withdrawn
-
2017
- 2017-03-23 US US15/467,660 patent/US10183074B2/en active Active
- 2017-05-18 AU AU2017203342A patent/AU2017203342A1/en not_active Abandoned
-
2018
- 2018-12-06 US US16/212,245 patent/US11167028B2/en active Active
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA583561A (en) | 1959-09-22 | H. Edgerton William | Therapeutically valuable esters and methods for obtaining the same | |
US3304263A (en) | 1961-03-17 | 1967-02-14 | Procter & Gamble | Phosphine oxide detergent composition |
US5132418A (en) | 1980-02-29 | 1992-07-21 | University Patents, Inc. | Process for preparing polynucleotides |
US4458066A (en) | 1980-02-29 | 1984-07-03 | University Patents, Inc. | Process for preparing polynucleotides |
US4500707A (en) | 1980-02-29 | 1985-02-19 | University Patents, Inc. | Nucleosides useful in the preparation of polynucleotides |
US4973679A (en) | 1981-03-27 | 1990-11-27 | University Patents, Inc. | Process for oligonucleo tide synthesis using phosphormidite intermediates |
US4668777A (en) | 1981-03-27 | 1987-05-26 | University Patents, Inc. | Phosphoramidite nucleoside compounds |
US4373071A (en) | 1981-04-30 | 1983-02-08 | City Of Hope Research Institute | Solid-phase synthesis of polynucleotides |
EP0181150A1 (en) | 1984-10-31 | 1986-05-14 | Chiron Corporation | Recombinant proteins of viruses associated with lymphadenopathy syndrome and/or acquired immune deficiency syndrome |
US4689225A (en) | 1984-11-02 | 1987-08-25 | Institut Merieux | Vaccine for cytomegalovirus |
US5153319A (en) | 1986-03-31 | 1992-10-06 | University Patents, Inc. | Process for preparing polynucleotides |
JPH01500565A (en) | 1986-07-18 | 1989-03-01 | ボエトマン,カリン,グラスサウ | Method and apparatus for rolling up flat pieces of dough, for example for Swiss rolls |
EP0318216A1 (en) | 1987-11-18 | 1989-05-31 | Chiron Corporation | NANBV diagnostics and vaccines |
WO1989007143A1 (en) | 1988-01-29 | 1989-08-10 | Chiron Corporation | Recombinant cmv neutralizing proteins |
US5262530A (en) | 1988-12-21 | 1993-11-16 | Applied Biosystems, Inc. | Automated system for polynucleotide synthesis and purification |
US5047524A (en) | 1988-12-21 | 1991-09-10 | Applied Biosystems, Inc. | Automated system for polynucleotide synthesis and purification |
EP0388232A1 (en) | 1989-03-17 | 1990-09-19 | Chiron Corporation | NANBV diagnostics and vaccines |
US5885613A (en) | 1994-09-30 | 1999-03-23 | The University Of British Columbia | Bilayer stabilizing components and their use in forming programmable fusogenic liposomes |
US5700642A (en) | 1995-05-22 | 1997-12-23 | Sri International | Oligonucleotide sizing using immobilized cleavable primers |
US20030077829A1 (en) | 2001-04-30 | 2003-04-24 | Protiva Biotherapeutics Inc.. | Lipid-based formulations |
US20050175682A1 (en) | 2003-09-15 | 2005-08-11 | Protiva Biotherapeutics, Inc. | Polyethyleneglycol-modified lipid compounds and uses thereof |
US20060025366A1 (en) | 2004-07-02 | 2006-02-02 | Protiva Biotherapeutics, Inc. | Immunostimulatory siRNA molecules and uses therefor |
WO2011005799A2 (en) | 2009-07-06 | 2011-01-13 | Novartis Ag | Self replicating rna molecules and uses thereof |
US8804125B2 (en) | 2010-03-12 | 2014-08-12 | Konica Minolta, Inc. | Detection method for intermolecular interaction and detection device thereof |
WO2012006380A2 (en) * | 2010-07-06 | 2012-01-12 | Novartis Ag | Cationic oil-in-water emulsions |
US9001348B2 (en) | 2012-06-12 | 2015-04-07 | Ricoh Company, Ltd. | Information processing system, information processing method, and a recording medium that allow a user to select print data and print selected print data |
Non-Patent Citations (37)
Title |
---|
AUSUBEL, ET AL.: "Current Protocols in Molecular Biology", vol. 2, 1988, GREENE PUBLISH. ASSOC. & WILEY INTERSCIENCE |
BEAUCAGE S L ET AL., TETRAHEDRON LETT, vol. 22, 1981, pages 1859 |
BERGLUND ET AL., NAT. BIOTECH., vol. 16, 1998, pages 562 - 565 |
BITTER ET AL., METHODS IN ENZYMOLOGY, vol. 153, 1987, pages 516 - 544 |
CHUNG ET AL., JOURNAL OF CONTROLLED RELEASE, vol. 71, 2001, pages 339 - 350 |
DUBENSKY ET AL., J. VIROL., vol. 70, 1996, pages 508 - 519 |
FROEHLER B C ET AL., NUCL ACID RES, vol. 14, 1986, pages 5399 - 407 |
GAFFNEY B L ET AL., TETRAHEDRON LETT, vol. 29, 1988, pages 2619 - 22 |
GAREGG P ET AL., TETRAHEDRON LETT, vol. 27, 1986, pages 4051 - 4 |
GAREGG P ET AL., TETRAHEDRON LETT, vol. 27, 1986, pages 4055 - 8 |
GLOVER: "DNA Cloning", vol. II, 1986, IRL PRESS |
GOODCHILD J, BIOCONJUGATE CHEM, vol. 1, 1990, pages 165 |
HARBORTH ET AL., ANTISENSE NUCLEIC ACID DRUG REV., vol. 13, no. 2, 2003, pages 83 - 105 |
HARIHARAN ET AL., J. VIROL., vol. 72, 1998, pages 950 - 958 |
KIM ET AL., INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 295, 2005, pages 35 - 45 |
KIM ET AL., PHARMACEUTICAL RESEARCH, vol. 18, 2001, pages 54 - 60 |
KURRECK, EUR. J. BIOCH., vol. 270, 2003, pages 1628 - 44 |
LAPPALAINEN ET AL., PHARM. RES., vol. 11, no. 8, 1994, pages 1127 - 31 |
LILJESTROM, BIO/TECHNOLOGY, vol. 9, 1991, pages 1356 - 1361 |
LIMBACH ET AL., NUCLEIC ACIDS RESEARCH, vol. 22, no. 12, 1994, pages 2183 - 2196 |
MACAGNO ET AL., J. VIROL., vol. 84, no. 2, 2010, pages 1005 - 13 |
MASUDA ET AL., NUCLEIC ACIDS SYMPOSIUM SERIES, vol. 51, 2007, pages 3 - 4 |
OTT ET AL., JOURNAL OF CONTROLLED RELEASE, vol. 79, 2002, pages 1 - 5 |
OTT ET AL.: "VACCINE ADJUVANTS", vol. 42, 2000, HUMANA PRESS, article "Methods in Molecular Medicine", pages: 211 - 228 |
OTT G ET AL: "A cationic sub-micron emulsion (MF59/DOTAP) is an effective delivery system for DNA vaccines", JOURNAL OF CONTROLLED RELEASE, ELSEVIER, AMSTERDAM, NL, vol. 79, no. 1-3, 19 February 2002 (2002-02-19), pages 1 - 5, XP004340908, ISSN: 0168-3659, DOI: 10.1016/S0168-3659(01)00545-4 * |
PERRI ET AL., J. VIROL, vol. 77, 2003, pages 10394 - 10403 |
PERRI S. ET AL., J VIROL, vol. 77, 2003, pages 10394 - 10403 |
POLO ET AL., PNAS, vol. 96, 1999, pages 4598 - 4603 |
PUSHKO ET AL., VIROLOGY, vol. 239, 1997, pages 389 - 401 |
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR PRESS |
STRATHERN ET AL.,: "The Molecular Biology of the Yeast Saccharomyces", vol. I, II, 1982, COLD SPRING HARBOR PRESS |
UHLMANN ET AL., CHEM REV, vol. 90, 1990, pages 544 - 84 |
VAJDY, M. ET AL.: "Mucosal adjuvants and delivery systemsfor protein-, DNA-and RNA-based vaccines", IMMUNOL CELL BIOL, vol. 82, no. 6, 2004, pages 617 - 27, XP002370291, DOI: doi:10.1111/j.1440-1711.2004.01288.x |
VOET; VOET: "Biochemistry", 1990, JOHN WILEY & SONS |
XIONG ET AL., SCIENCE, vol. 243, 1989, pages 1188 - 1191 |
YI ET AL., PHARMACEUTICAL RESEARCH, vol. 17, 2000, pages 314 - 320 |
YI SUN WOO ET AL: "A cationic lipid emulsion/DNA complex as a physically stable and serum-resistant gene delivery system", PHARMACEUTICAL RESEARCH, KLUWER ACADEMIC PUBLISHERS, NEW YORK, NY, US, vol. 17, no. 3, 1 March 2000 (2000-03-01), pages 314 - 320, XP009143185, ISSN: 0724-8741, DOI: 10.1023/A:1007553106681 * |
Cited By (217)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11666534B2 (en) | 2010-07-06 | 2023-06-06 | Glaxosmithkline Biologicals Sa | Methods of administering lipid formulations with viral immunogens |
US11655475B2 (en) | 2010-07-06 | 2023-05-23 | Glaxosmithkline Biologicals Sa | Immunisation of large mammals with low doses of RNA |
US11730754B2 (en) | 2010-07-06 | 2023-08-22 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US20220125723A1 (en) | 2010-07-06 | 2022-04-28 | Glaxosmithkline Biologicals Sa | Lipid formulations with viral immunogens |
US11717529B2 (en) | 2010-07-06 | 2023-08-08 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US11638694B2 (en) | 2010-07-06 | 2023-05-02 | Glaxosmithkline Biologicals Sa | Vaccine for eliciting immune response comprising lipid formulations and RNA encoding multiple immunogens |
US11638693B2 (en) | 2010-07-06 | 2023-05-02 | Glaxosmithkline Biologicals Sa | Vaccine for eliciting immune response comprising RNA encoding an immunogen and lipid formulations comprising mole percentage of lipids |
US11690863B2 (en) | 2010-07-06 | 2023-07-04 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US11690864B2 (en) | 2010-07-06 | 2023-07-04 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US11913001B2 (en) | 2010-07-06 | 2024-02-27 | Glaxosmithkline Biologicals Sa | Immunisation of large mammals with low doses of RNA |
US11905514B2 (en) | 2010-07-06 | 2024-02-20 | Glaxosmithkline Biological Sa | Immunisation of large mammals with low doses of RNA |
US11690861B2 (en) | 2010-07-06 | 2023-07-04 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US11891608B2 (en) | 2010-07-06 | 2024-02-06 | Glaxosmithkline Biologicals Sa | Immunization of large mammals with low doses of RNA |
US11883534B2 (en) | 2010-07-06 | 2024-01-30 | Glaxosmithkline Biologicals Sa | Immunisation with lipid formulations with RNA encoding immunogens |
US11865080B2 (en) | 2010-07-06 | 2024-01-09 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US11857562B2 (en) | 2010-07-06 | 2024-01-02 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US11857681B2 (en) | 2010-07-06 | 2024-01-02 | Glaxosmithkline Biologicals Sa | Lipid formulations with RNA encoding immunogens |
US11851660B2 (en) | 2010-07-06 | 2023-12-26 | Glaxosmithkline Biologicals Sa | Immunisation of large mammals with low doses of RNA |
US11850305B2 (en) | 2010-07-06 | 2023-12-26 | Glaxosmithkline Biologicals Sa | Method of making lipid formulations with RNA encoding immunogens |
US11690865B2 (en) | 2010-07-06 | 2023-07-04 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US11845925B2 (en) | 2010-07-06 | 2023-12-19 | Glaxosmithkline Biologicals Sa | Immunisation of large mammals with low doses of RNA |
US11690862B1 (en) | 2010-07-06 | 2023-07-04 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US11839686B2 (en) | 2010-07-06 | 2023-12-12 | Glaxosmithkline Biologicals Sa | Lipid formulations with viral immunogens |
US11786467B2 (en) | 2010-07-06 | 2023-10-17 | Glaxosmithkline Biologicals Sa | Lipid formulations with immunogens |
US11773395B1 (en) | 2010-07-06 | 2023-10-03 | Glaxosmithkline Biologicals Sa | Immunization of large mammals with low doses of RNA |
US11766401B2 (en) | 2010-07-06 | 2023-09-26 | Glaxosmithkline Biologicals Sa | Methods of administering lipid formulations with immunogens |
US11759475B2 (en) | 2010-07-06 | 2023-09-19 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US11696923B2 (en) | 2010-07-06 | 2023-07-11 | Glaxosmithkline Biologicals, Sa | Delivery of RNA to trigger multiple immune pathways |
US11739334B2 (en) | 2010-07-06 | 2023-08-29 | Glaxosmithkline Biologicals Sa | Immunisation of large mammals with low doses of RNA |
US11707482B2 (en) | 2010-07-06 | 2023-07-25 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US8822663B2 (en) | 2010-08-06 | 2014-09-02 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US9447164B2 (en) | 2010-08-06 | 2016-09-20 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US9181319B2 (en) | 2010-08-06 | 2015-11-10 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US9937233B2 (en) | 2010-08-06 | 2018-04-10 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
US11759422B2 (en) | 2010-08-31 | 2023-09-19 | Glaxosmithkline Biologicals Sa | Pegylated liposomes for delivery of immunogen-encoding RNA |
US9334328B2 (en) | 2010-10-01 | 2016-05-10 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US10064959B2 (en) | 2010-10-01 | 2018-09-04 | Modernatx, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9657295B2 (en) | 2010-10-01 | 2017-05-23 | Modernatx, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US11639370B2 (en) | 2010-10-11 | 2023-05-02 | Glaxosmithkline Biologicals Sa | Antigen delivery platforms |
US9533047B2 (en) | 2011-03-31 | 2017-01-03 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
US9950068B2 (en) | 2011-03-31 | 2018-04-24 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
US8710200B2 (en) | 2011-03-31 | 2014-04-29 | Moderna Therapeutics, Inc. | Engineered nucleic acids encoding a modified erythropoietin and their expression |
US11951179B2 (en) | 2011-06-08 | 2024-04-09 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for MRNA delivery |
US11951180B2 (en) | 2011-06-08 | 2024-04-09 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for MRNA delivery |
US11730825B2 (en) | 2011-06-08 | 2023-08-22 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US12121592B2 (en) | 2011-06-08 | 2024-10-22 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US11547764B2 (en) | 2011-06-08 | 2023-01-10 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for MRNA delivery |
US11951181B2 (en) | 2011-06-08 | 2024-04-09 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US9655845B2 (en) | 2011-07-06 | 2017-05-23 | Glaxosmithkline Biologicals, S.A. | Oil-in-water emulsions that contain nucleic acids |
US11896636B2 (en) | 2011-07-06 | 2024-02-13 | Glaxosmithkline Biologicals Sa | Immunogenic combination compositions and uses thereof |
US11026890B2 (en) | 2011-07-06 | 2021-06-08 | Glaxosmithkline Biologicals Sa | Oil-in-water emulsions that contain nucleic acids |
US10307374B2 (en) | 2011-07-06 | 2019-06-04 | Glaxosmithkline Biologicals S.A. | Oil-in-water emulsions that contain nucleic acids |
US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US10751386B2 (en) | 2011-09-12 | 2020-08-25 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
US10022425B2 (en) | 2011-09-12 | 2018-07-17 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
US9428535B2 (en) | 2011-10-03 | 2016-08-30 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US8680069B2 (en) | 2011-12-16 | 2014-03-25 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of G-CSF |
US9271996B2 (en) | 2011-12-16 | 2016-03-01 | Moderna Therapeutics, Inc. | Formulation and delivery of PLGA microspheres |
US8754062B2 (en) | 2011-12-16 | 2014-06-17 | Moderna Therapeutics, Inc. | DLIN-KC2-DMA lipid nanoparticle delivery of modified polynucleotides |
US8664194B2 (en) | 2011-12-16 | 2014-03-04 | Moderna Therapeutics, Inc. | Method for producing a protein of interest in a primate |
US9295689B2 (en) | 2011-12-16 | 2016-03-29 | Moderna Therapeutics, Inc. | Formulation and delivery of PLGA microspheres |
US9186372B2 (en) | 2011-12-16 | 2015-11-17 | Moderna Therapeutics, Inc. | Split dose administration |
US9814760B2 (en) | 2012-04-02 | 2017-11-14 | Modernatx, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
US10501512B2 (en) | 2012-04-02 | 2019-12-10 | Modernatx, Inc. | Modified polynucleotides |
US9303079B2 (en) | 2012-04-02 | 2016-04-05 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9782462B2 (en) | 2012-04-02 | 2017-10-10 | Modernatx, Inc. | Modified polynucleotides for the production of proteins associated with human disease |
US9255129B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding SIAH E3 ubiquitin protein ligase 1 |
US9878056B2 (en) | 2012-04-02 | 2018-01-30 | Modernatx, Inc. | Modified polynucleotides for the production of cosmetic proteins and peptides |
US9675668B2 (en) | 2012-04-02 | 2017-06-13 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding hepatitis A virus cellular receptor 2 |
US9254311B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins |
US9233141B2 (en) | 2012-04-02 | 2016-01-12 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins associated with blood and lymphatic disorders |
US9221891B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | In vivo production of proteins |
US9220792B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding aquaporin-5 |
US9220755B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins associated with blood and lymphatic disorders |
US8999380B2 (en) | 2012-04-02 | 2015-04-07 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
US9050297B2 (en) | 2012-04-02 | 2015-06-09 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding aryl hydrocarbon receptor nuclear translocator |
US9061059B2 (en) | 2012-04-02 | 2015-06-23 | Moderna Therapeutics, Inc. | Modified polynucleotides for treating protein deficiency |
US9089604B2 (en) | 2012-04-02 | 2015-07-28 | Moderna Therapeutics, Inc. | Modified polynucleotides for treating galactosylceramidase protein deficiency |
US9216205B2 (en) | 2012-04-02 | 2015-12-22 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding granulysin |
US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
US9827332B2 (en) | 2012-04-02 | 2017-11-28 | Modernatx, Inc. | Modified polynucleotides for the production of proteins |
US9192651B2 (en) | 2012-04-02 | 2015-11-24 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of secreted proteins |
US9587003B2 (en) | 2012-04-02 | 2017-03-07 | Modernatx, Inc. | Modified polynucleotides for the production of oncology-related proteins and peptides |
US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9149506B2 (en) | 2012-04-02 | 2015-10-06 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding septin-4 |
US9828416B2 (en) | 2012-04-02 | 2017-11-28 | Modernatx, Inc. | Modified polynucleotides for the production of secreted proteins |
US9114113B2 (en) | 2012-04-02 | 2015-08-25 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding citeD4 |
US9107886B2 (en) | 2012-04-02 | 2015-08-18 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding basic helix-loop-helix family member E41 |
US9095552B2 (en) | 2012-04-02 | 2015-08-04 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding copper metabolism (MURR1) domain containing 1 |
US9301993B2 (en) | 2012-04-02 | 2016-04-05 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding apoptosis inducing factor 1 |
US10287322B2 (en) | 2012-07-06 | 2019-05-14 | Glaxosmithkline Biologicals S.A. | Complexes of cytomegalovirus proteins |
AU2013286093B2 (en) * | 2012-07-06 | 2018-01-04 | Novartis Ag | Complexes of cytomegalovirus proteins |
EP2869843B1 (en) | 2012-07-06 | 2019-08-07 | GlaxoSmithKline Biologicals SA | Complexes of cytomegalovirus proteins |
US9597380B2 (en) | 2012-11-26 | 2017-03-21 | Modernatx, Inc. | Terminally modified RNA |
WO2014108515A1 (en) | 2013-01-10 | 2014-07-17 | Novartis Ag | Influenza virus immunogenic compositions and uses thereof |
EP2985276A4 (en) * | 2013-02-20 | 2017-01-25 | Fundación Pública Andaluza Para La Investigación de Malaga en Biomedicina y Salud (FIMABIS) | Formulations based on nanoemulsions and the use thereof for treating obesity |
WO2014140211A1 (en) | 2013-03-15 | 2014-09-18 | Novartis Ag | Rna purification methods |
EP3521429A1 (en) | 2013-03-15 | 2019-08-07 | GlaxoSmithKline Biologicals SA | Rna purification methods |
US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
WO2014172435A1 (en) * | 2013-04-16 | 2014-10-23 | University Of Cincinnati | Antimicrobial compositions of aminoglycosidic antibiotics and zinc ion chelators |
US10124064B2 (en) | 2013-04-16 | 2018-11-13 | University Of Cincinnati | Antimicrobial compositions of aminoglycosidic antibiotics and zinc ion chelators specifically formulated for enhanced inhibition of bacterial colonization and antibacterial efficacy |
US9821063B2 (en) | 2013-04-16 | 2017-11-21 | University Of Cincinnati | Antimicrobial compositions of aminoglycosidic antibiotics and zinc ion chelators specifically formulated for enhanced inhibition of bacterial colonization and antibacterial efficacy |
US10815291B2 (en) | 2013-09-30 | 2020-10-27 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
US10323076B2 (en) | 2013-10-03 | 2019-06-18 | Modernatx, Inc. | Polynucleotides encoding low density lipoprotein receptor |
AU2014373928B2 (en) * | 2013-12-31 | 2020-07-16 | Access To Advanced Health Institute | Single vial vaccine formulations |
AU2020227042B2 (en) * | 2013-12-31 | 2021-12-02 | Access To Advanced Health Institute | Single vial vaccine formulations |
AU2014373928C1 (en) * | 2013-12-31 | 2020-12-17 | Access To Advanced Health Institute | Single vial vaccine formulations |
WO2015103167A3 (en) * | 2013-12-31 | 2015-11-12 | Infectious Disease Research Institute | Single vial vaccine formulations |
IL246456B2 (en) * | 2013-12-31 | 2024-06-01 | Access To Advanced Health Inst | Single vial vaccine formulations |
IL246456B1 (en) * | 2013-12-31 | 2024-02-01 | Access To Advanced Health Inst | Single vial vaccine formulations |
US11801223B2 (en) | 2013-12-31 | 2023-10-31 | Access To Advanced Health Institute | Single vial vaccine formulations |
US10842859B2 (en) | 2014-03-25 | 2020-11-24 | Yale University | Uses of parasite macrophage migration inhibitory factors |
WO2015161926A1 (en) * | 2014-04-23 | 2015-10-29 | Institute For Research In Biomedicine | Human cytomegalovirus vaccine compositions and method of producing the same |
WO2015165480A1 (en) * | 2014-04-30 | 2015-11-05 | Institute For Research In Biomedicine | Human cytomegalovirus vaccine compositions and method of producing the same |
WO2015177312A1 (en) | 2014-05-22 | 2015-11-26 | Glaxosmithkline Biologicals Sa | Rsvf trimerization domains |
EP4180056A1 (en) | 2015-01-22 | 2023-05-17 | GlaxoSmithKline Biologicals SA | Cytomegalovirus antigens and uses thereof |
WO2016116904A1 (en) | 2015-01-22 | 2016-07-28 | Glaxosmithkline Biologicals Sa | Cytomegalovirus antigens and uses thereof |
EP3048114A1 (en) | 2015-01-22 | 2016-07-27 | Novartis AG | Cytomegalovirus antigens and uses thereof |
WO2016135675A1 (en) | 2015-02-27 | 2016-09-01 | Novartis Ag | Flavivirus replicons |
EP3061826A1 (en) | 2015-02-27 | 2016-08-31 | Novartis AG | Flavivirus replicons |
US11364292B2 (en) | 2015-07-21 | 2022-06-21 | Modernatx, Inc. | CHIKV RNA vaccines |
US10702597B2 (en) | 2015-07-21 | 2020-07-07 | Modernatx, Inc. | CHIKV RNA vaccines |
US10449244B2 (en) | 2015-07-21 | 2019-10-22 | Modernatx, Inc. | Zika RNA vaccines |
US11007260B2 (en) | 2015-07-21 | 2021-05-18 | Modernatx, Inc. | Infectious disease vaccines |
US11220476B2 (en) | 2015-09-17 | 2022-01-11 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US10442756B2 (en) | 2015-09-17 | 2019-10-15 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US10266485B2 (en) | 2015-09-17 | 2019-04-23 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US10392341B2 (en) | 2015-09-17 | 2019-08-27 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
EP3364980A4 (en) * | 2015-10-22 | 2019-07-10 | ModernaTX, Inc. | Nucleic acid vaccines for varicella zoster virus (vzv) |
EP3365008A4 (en) * | 2015-10-22 | 2019-08-07 | ModernaTX, Inc. | Respiratory syncytial virus vaccine |
US10493143B2 (en) | 2015-10-22 | 2019-12-03 | Modernatx, Inc. | Sexually transmitted disease vaccines |
CN108472354A (en) * | 2015-10-22 | 2018-08-31 | 摩登纳特斯有限公司 | Respiratory syncytial virus vaccines |
AU2016341311B2 (en) * | 2015-10-22 | 2023-11-16 | Modernatx, Inc. | Respiratory syncytial virus vaccine |
US11235052B2 (en) | 2015-10-22 | 2022-02-01 | Modernatx, Inc. | Chikungunya virus RNA vaccines |
EP3364981A4 (en) * | 2015-10-22 | 2019-08-07 | ModernaTX, Inc. | Human cytomegalovirus vaccine |
US11643441B1 (en) | 2015-10-22 | 2023-05-09 | Modernatx, Inc. | Nucleic acid vaccines for varicella zoster virus (VZV) |
EP3364949A4 (en) * | 2015-10-22 | 2019-07-31 | ModernaTX, Inc. | Cancer vaccines |
US11278611B2 (en) | 2015-10-22 | 2022-03-22 | Modernatx, Inc. | Zika virus RNA vaccines |
AU2016342371B2 (en) * | 2015-10-22 | 2023-05-11 | Modernatx, Inc. | Nucleic acid vaccines for varicella zoster virus (VZV) |
US11285222B2 (en) | 2015-12-10 | 2022-03-29 | Modernatx, Inc. | Compositions and methods for delivery of agents |
US10556018B2 (en) | 2015-12-10 | 2020-02-11 | Modernatx, Inc. | Compositions and methods for delivery of agents |
US10207010B2 (en) | 2015-12-10 | 2019-02-19 | Modernatx, Inc. | Compositions and methods for delivery of agents |
US10485885B2 (en) | 2015-12-10 | 2019-11-26 | Modernatx, Inc. | Compositions and methods for delivery of agents |
US10799463B2 (en) | 2015-12-22 | 2020-10-13 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
US10195156B2 (en) | 2015-12-22 | 2019-02-05 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
EP3964584A1 (en) | 2016-03-21 | 2022-03-09 | BioNTech SE | Trans-replicating rna |
EP3701959A1 (en) | 2016-03-21 | 2020-09-02 | BioNTech RNA Pharmaceuticals GmbH | Rna replicon for versatile and efficient gene expression |
WO2017162461A1 (en) | 2016-03-21 | 2017-09-28 | Biontech Rna Pharmaceuticals Gmbh | Trans-replicating rna |
WO2017208191A1 (en) | 2016-06-02 | 2017-12-07 | Glaxosmithkline Biologicals Sa | Zika viral antigen constructs |
BE1024796B1 (en) * | 2016-06-02 | 2018-07-10 | Glaxosmithkline Biologicals Sa | ANTIGENIC CONSTRUCTS OF ZIKA VIRUS |
WO2018060288A1 (en) | 2016-09-29 | 2018-04-05 | Glaxosmithkline Biologicals S.A. | Compositions and methods of treatment of persistent hpv infection |
WO2018065931A1 (en) | 2016-10-05 | 2018-04-12 | Glaxosmithkline Biologicals Sa | Vaccine |
US11583504B2 (en) | 2016-11-08 | 2023-02-21 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
US10925958B2 (en) | 2016-11-11 | 2021-02-23 | Modernatx, Inc. | Influenza vaccine |
US11696946B2 (en) | 2016-11-11 | 2023-07-11 | Modernatx, Inc. | Influenza vaccine |
EP4043031A1 (en) | 2016-11-17 | 2022-08-17 | GlaxoSmithKline Biologicals SA | Zika viral antigen constructs |
US11780885B2 (en) | 2016-11-17 | 2023-10-10 | Glaxosmithkline Biologicals Sa | Zika viral antigen constructs |
BE1025121B1 (en) * | 2016-11-17 | 2018-11-05 | Glaxosmithkline Biologicals Sa | ANTIGENIC CONSTRUCTS OF ZIKA VIRUS |
WO2018091540A1 (en) | 2016-11-17 | 2018-05-24 | Glaxosmithkline Biologicals Sa | Zika viral antigen constructs |
US11103578B2 (en) | 2016-12-08 | 2021-08-31 | Modernatx, Inc. | Respiratory virus nucleic acid vaccines |
US11045540B2 (en) | 2017-03-15 | 2021-06-29 | Modernatx, Inc. | Varicella zoster virus (VZV) vaccine |
US11464848B2 (en) | 2017-03-15 | 2022-10-11 | Modernatx, Inc. | Respiratory syncytial virus vaccine |
US11576961B2 (en) | 2017-03-15 | 2023-02-14 | Modernatx, Inc. | Broad spectrum influenza virus vaccine |
US11969506B2 (en) | 2017-03-15 | 2024-04-30 | Modernatx, Inc. | Lipid nanoparticle formulation |
US11752206B2 (en) | 2017-03-15 | 2023-09-12 | Modernatx, Inc. | Herpes simplex virus vaccine |
US11918644B2 (en) | 2017-03-15 | 2024-03-05 | Modernatx, Inc. | Varicella zoster virus (VZV) vaccine |
US11203569B2 (en) | 2017-03-15 | 2021-12-21 | Modernatx, Inc. | Crystal forms of amino lipids |
US10857105B2 (en) | 2017-03-15 | 2020-12-08 | MordernaTX, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US12077501B2 (en) | 2017-06-14 | 2024-09-03 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
US11786607B2 (en) | 2017-06-15 | 2023-10-17 | Modernatx, Inc. | RNA formulations |
RU2816240C2 (en) * | 2017-06-15 | 2024-03-27 | Инфекшес Дизис Рисёрч Инститьют | Nanostructured lipid carriers and stable emulsions and applications thereof |
US11744801B2 (en) | 2017-08-31 | 2023-09-05 | Modernatx, Inc. | Methods of making lipid nanoparticles |
WO2019053012A1 (en) | 2017-09-13 | 2019-03-21 | Biontech Rna Pharmaceuticals Gmbh | Rna replicon for reprogramming somatic cells |
WO2019053056A1 (en) | 2017-09-13 | 2019-03-21 | Biontech Cell & Gene Therapies Gmbh | Rna replicon for expressing a t cell receptor or an artificial t cell receptor |
US11207398B2 (en) | 2017-09-14 | 2021-12-28 | Modernatx, Inc. | Zika virus mRNA vaccines |
US10653767B2 (en) | 2017-09-14 | 2020-05-19 | Modernatx, Inc. | Zika virus MRNA vaccines |
WO2019063565A1 (en) | 2017-09-27 | 2019-04-04 | Glaxosmithkline Biologicals Sa | Viral antigens |
EP3461497A1 (en) | 2017-09-27 | 2019-04-03 | GlaxoSmithKline Biologicals S.A. | Viral antigens |
US11447566B2 (en) | 2018-01-04 | 2022-09-20 | Iconic Therapeutics, Inc. | Anti-tissue factor antibodies, antibody-drug conjugates, and related methods |
US11911453B2 (en) | 2018-01-29 | 2024-02-27 | Modernatx, Inc. | RSV RNA vaccines |
WO2020035609A2 (en) | 2018-08-17 | 2020-02-20 | Glaxosmithkline Biologicals Sa | Immunogenic compositions and uses thereof |
US12083174B2 (en) | 2018-08-17 | 2024-09-10 | Glaxosmithkline Biologicals Sa | Immunogenic compositions and uses thereof |
US12090235B2 (en) | 2018-09-20 | 2024-09-17 | Modernatx, Inc. | Preparation of lipid nanoparticles and methods of administration thereof |
WO2020144295A1 (en) | 2019-01-10 | 2020-07-16 | Biontech Rna Pharmaceuticals Gmbh | Localized administration of rna molecules for therapy |
US11351242B1 (en) | 2019-02-12 | 2022-06-07 | Modernatx, Inc. | HMPV/hPIV3 mRNA vaccine composition |
US12070495B2 (en) | 2019-03-15 | 2024-08-27 | Modernatx, Inc. | HIV RNA vaccines |
WO2021013798A1 (en) | 2019-07-21 | 2021-01-28 | Glaxosmithkline Biologicals Sa | Therapeutic viral vaccine |
US11597698B2 (en) | 2019-09-19 | 2023-03-07 | Modernatx, Inc. | Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents |
US11066355B2 (en) | 2019-09-19 | 2021-07-20 | Modernatx, Inc. | Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents |
EP3819377A1 (en) | 2019-11-08 | 2021-05-12 | Justus-Liebig-Universität Gießen | Circular rna and uses thereof for inhibiting rna-binding proteins |
WO2021209970A1 (en) | 2020-04-16 | 2021-10-21 | Glaxosmithkline Biologicals Sa | Sars cov-2 spike protein construct |
WO2021245090A1 (en) | 2020-06-04 | 2021-12-09 | BioNTech SE | Rna replicon for versatile and efficient gene expression |
WO2021245611A1 (en) | 2020-06-05 | 2021-12-09 | Glaxosmithkline Biologicals Sa | Modified betacoronavirus spike proteins |
WO2022002783A1 (en) | 2020-06-29 | 2022-01-06 | Glaxosmithkline Biologicals Sa | Adjuvants |
EP4008785A1 (en) | 2020-12-03 | 2022-06-08 | Justus-Liebig-Universität Gießen | Circular nucleic acids and uses thereof for interfering with genome expression and proliferation of coronaviruses |
WO2022137128A2 (en) | 2020-12-23 | 2022-06-30 | Glaxosmithkline Biologicals Sa | Self-amplifying messenger rna |
EP4032546A1 (en) | 2021-01-20 | 2022-07-27 | GlaxoSmithKline Biologicals S.A. | Therapeutic viral vaccine |
WO2022157153A2 (en) | 2021-01-20 | 2022-07-28 | Glaxosmithkline Biologicals Sa | Therapeutic viral vaccine |
US11622972B2 (en) | 2021-02-19 | 2023-04-11 | Modernatx, Inc. | Lipid nanoparticle compositions and methods of formulating the same |
US11524023B2 (en) | 2021-02-19 | 2022-12-13 | Modernatx, Inc. | Lipid nanoparticle compositions and methods of formulating the same |
WO2022200575A1 (en) | 2021-03-26 | 2022-09-29 | Glaxosmithkline Biologicals Sa | Immunogenic compositions |
WO2022200574A1 (en) | 2021-03-26 | 2022-09-29 | Glaxosmithkline Biologicals Sa | Immunogenic compositions |
WO2022248353A1 (en) | 2021-05-24 | 2022-12-01 | Glaxosmithkline Biologicals Sa | Adjuvants |
WO2022259191A1 (en) | 2021-06-09 | 2022-12-15 | Glaxosmithkline Biologicals Sa | Release assay for determining potency of self-amplifying rna drug product and methods for using |
WO2023020992A1 (en) | 2021-08-16 | 2023-02-23 | Glaxosmithkline Biologicals Sa | Novel methods |
WO2023020994A1 (en) | 2021-08-16 | 2023-02-23 | Glaxosmithkline Biologicals Sa | Novel methods |
WO2023020993A1 (en) | 2021-08-16 | 2023-02-23 | Glaxosmithkline Biologicals Sa | Novel methods |
WO2023066875A1 (en) | 2021-10-18 | 2023-04-27 | BioNTech SE | Modified replicable rna and related compositions and their use |
WO2023066874A1 (en) | 2021-10-18 | 2023-04-27 | BioNTech SE | Methods for determining mutations for increasing modified replicable rna function and related compositions and their use |
CN114316130A (en) * | 2021-12-27 | 2022-04-12 | 爱森(中国)絮凝剂有限公司 | Method for utilizing byproduct sodium chloride of industrial production of dimethyl diallyl ammonium chloride in cationic emulsion |
WO2023213378A1 (en) | 2022-05-02 | 2023-11-09 | BioNTech SE | Replicon compositions and methods of using same for the treatment of diseases |
WO2023213783A1 (en) | 2022-05-02 | 2023-11-09 | BioNTech SE | Replicon compositions and methods of using same for the treatment of diseases |
WO2024018035A1 (en) | 2022-07-21 | 2024-01-25 | BioNTech SE | Multifunctional cells transiently expressing an immune receptor and one or more cytokines, their use and methods for their production |
WO2024017479A1 (en) | 2022-07-21 | 2024-01-25 | BioNTech SE | Multifunctional cells transiently expressing an immune receptor and one or more cytokines, their use and methods for their production |
WO2024056856A1 (en) | 2022-09-15 | 2024-03-21 | BioNTech SE | Systems and compositions comprising trans-amplifying rna vectors with mirna |
US12144895B2 (en) | 2022-12-13 | 2024-11-19 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
EP4458968A1 (en) | 2023-05-05 | 2024-11-06 | Justus-Liebig-Universität Gießen | Circular nucleic acids and uses thereof for shaping the cellular proteome |
Also Published As
Publication number | Publication date |
---|---|
MX350258B (en) | 2017-08-31 |
CA2840965C (en) | 2021-03-02 |
AU2017203342A1 (en) | 2017-06-08 |
JP2016210792A (en) | 2016-12-15 |
ES2702318T3 (en) | 2019-02-28 |
JP2014522841A (en) | 2014-09-08 |
CA2840965A1 (en) | 2013-01-10 |
CN103796639B (en) | 2017-05-31 |
US9636410B2 (en) | 2017-05-02 |
US20140220083A1 (en) | 2014-08-07 |
US10183074B2 (en) | 2019-01-22 |
BR112014000235A2 (en) | 2017-02-14 |
RU2649133C2 (en) | 2018-03-29 |
EP2729124B1 (en) | 2018-10-24 |
AU2012280904B2 (en) | 2017-02-23 |
US20190091329A1 (en) | 2019-03-28 |
AU2012280904A1 (en) | 2013-05-09 |
SG10201605500TA (en) | 2016-08-30 |
MX2014000040A (en) | 2014-02-27 |
RU2014104094A (en) | 2015-08-20 |
US20170202960A1 (en) | 2017-07-20 |
CN103796639A (en) | 2014-05-14 |
EP2729124A1 (en) | 2014-05-14 |
EP3456316A1 (en) | 2019-03-20 |
BR112014000235A8 (en) | 2018-03-06 |
JP6120839B2 (en) | 2017-04-26 |
US11167028B2 (en) | 2021-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11167028B2 (en) | Cationic oil-in-water emulsions | |
US11026890B2 (en) | Oil-in-water emulsions that contain nucleic acids | |
US11135287B2 (en) | Method for preparing composition comprising a cationic oil-in-water emulsion | |
BR112014000227B1 (en) | OIL-IN-WATER EMULSIONS CONTAINING NUCLEIC ACIDS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12743273 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012280904 Country of ref document: AU Date of ref document: 20120706 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2014519088 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2840965 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2014/000040 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012743273 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2014104094 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14130886 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014000235 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014000235 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140106 |