Nothing Special   »   [go: up one dir, main page]

WO2013093160A1 - Estructura flotante de hormigón prefabricado para soporte de aerogenerador - Google Patents

Estructura flotante de hormigón prefabricado para soporte de aerogenerador Download PDF

Info

Publication number
WO2013093160A1
WO2013093160A1 PCT/ES2012/070884 ES2012070884W WO2013093160A1 WO 2013093160 A1 WO2013093160 A1 WO 2013093160A1 ES 2012070884 W ES2012070884 W ES 2012070884W WO 2013093160 A1 WO2013093160 A1 WO 2013093160A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
wind turbine
floating structure
structure according
floating
Prior art date
Application number
PCT/ES2012/070884
Other languages
English (en)
French (fr)
Inventor
Climent Molins Borrell
Josep REBOLLO PERICOT
Alexis CAMPOS HORTIGÜELA
Original Assignee
Universitat Politècnica De Catalunya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politècnica De Catalunya filed Critical Universitat Politècnica De Catalunya
Priority to KR1020147019154A priority Critical patent/KR20140128958A/ko
Priority to EP12859045.2A priority patent/EP2796713B1/en
Priority to JP2014548115A priority patent/JP6139559B2/ja
Publication of WO2013093160A1 publication Critical patent/WO2013093160A1/es
Priority to US14/310,384 priority patent/US20140311058A1/en
Priority to US14/795,288 priority patent/US9238896B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B77/00Transporting or installing offshore structures on site using buoyancy forces, e.g. using semi-submersible barges, ballasting the structure or transporting of oil-and-gas platforms
    • B63B77/10Transporting or installing offshore structures on site using buoyancy forces, e.g. using semi-submersible barges, ballasting the structure or transporting of oil-and-gas platforms specially adapted for electric power plants, e.g. wind turbines or tidal turbine generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B5/00Hulls characterised by their construction of non-metallic material
    • B63B5/14Hulls characterised by their construction of non-metallic material made predominantly of concrete, e.g. reinforced
    • B63B5/16Hulls characterised by their construction of non-metallic material made predominantly of concrete, e.g. reinforced monolithic
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • E02D27/425Foundations for poles, masts or chimneys specially adapted for wind motors masts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/04Fastening or guiding equipment for chains, ropes, hawsers, or the like
    • B63B21/08Clamping devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/442Spar-type semi-submersible structures, i.e. shaped as single slender, e.g. substantially cylindrical or trussed vertical bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2231/00Material used for some parts or elements, or for particular purposes
    • B63B2231/60Concretes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0039Methods for placing the offshore structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/917Mounting on supporting structures or systems on a stationary structure attached to cables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Definitions

  • the main object of the invention relates to a floating structure constructed with concrete for the support of high power wind turbines. It is part of the field of renewable energy, specifically in the use of wind power at sea, considering its use in deep sea areas, greater than one hundred and fifty meters.
  • US20060165493 describes a design formed by 3 differentiated flotation points, with an active ballast fluid transfer system between them that results in significant maintenance costs, in addition to the increase in cost due to the existence of multiple flotation points. .
  • the platform object of the present invention is based on a floating platform of the SPAR type, prefabricated in concrete with cylindrical and truncated conical geometries.
  • the structure ensures stability, adopting maximum heel angles of the order of 4 or 10 °, perfectly acceptable by existing wind turbines.
  • WO2006132539 is the consideration of concrete as a basic building material in said structure.
  • the concrete Comparing the concrete with the steel in environments of significant aggressiveness by chlorides, as is the case of the marine environment, the concrete has a very good durability, with a significant decrease in the inspection and maintenance tasks, the use of special paints not being necessary of protection or sacrificial anodes. Also, despite the fact that normal concrete has a low permeability, the use of certain additions that allow both the compactness (impermeability) and the final strength of the concrete is proposed.
  • the stability of the system is based on the generation of a stabilizing torque due to the distance between the center of care (CdC) and the center of gravity (CdG) of the system.
  • CdC center of care
  • CdG center of gravity
  • a simple geometry is provided, which allows concreting without complex geometries or singular elements, guaranteeing the necessary separation between CdG and CdC thanks to the use of materials with a density / cost ratio that allow to drastically reduce the CdG of the system without assuming an unfeasible cost for its execution, such as certain types of aggregates.
  • the structure is formed by a hollow cylindrical lower section, which functions as a flotation element and an upper one, located above the sea surface, cylindrical and / or truncated, which serves to support the wind turbine.
  • a hollow cylindrical lower section which functions as a flotation element and an upper one, located above the sea surface, cylindrical and / or truncated, which serves to support the wind turbine.
  • the base of the lower section has a hemisphere shape so that the hydrostatic pressure ensures a good confinement of the concrete, minimizing bending efforts and allowing an optimal path of the sheaths for active reinforcement.
  • connection between the wind turbine and the concrete structure is resolved by the coronation of the structure with an annular steel plate that allows the connection between it and the rotating crown of the wind turbine gondola. Additionally, this plate acts as a distribution plate for prestressing the planned active reinforcements, so that the concrete-plate-wind turbine connection is perfectly secured.
  • the fixation of the structure to the seabed is to be carried out by means of cable lines, tending to avoid the maximum deformation by own weight produced by the typical form of catenary.
  • This effect is expected to be solved by reducing the submerged weight of the cables by adding on them, so that their own weight is partially compensated with the flotation produced by the additions.
  • the effect to be achieved is to limit the vertical component on the structure that induces the tension to which the cable is subjected. Additionally, the fact of minimizing the deformation of the cable by its own weight, greater stiffnesses are achieved horizontal at the points of fixation of the structure, minimizing its displacements.
  • the flotation cylinder's own diameter allows us to have a torque that stabilizes the torsion movement of the structure through the torque introduced by the union of the cables to it.
  • the proposed system will allow greater construction facilities in series with respect to conventional steel structures, due to the versatility of large-scale production of concrete elements, reducing the cost per MW installed in a very significant way.
  • the structure can be towed during its useful life for maintenance or relocation purposes.
  • FIG 1 Elevation diagram of the floating concrete structure for wind turbine support.
  • FIG 2 Scheme of the detail of the completion of the float by hemispherical section.
  • FIG 3 Diagram of connection structure-wind turbine. As can be seen in figure 1, the structure is composed of an upper trunk section of concrete (12), topped off by a steel plate (17) for connection to the wind turbine (11).
  • the flotation of the system is guaranteed by means of a cylindrical concrete element (13) that has a certain guard over the average surface of the sea level and that is ballasted by the addition of aggregate and water in its lower part (14), topped off by means of a hemispherical cap (18) to ensure that the concrete in the area works primarily in compression and no cracks appear due to tensile stresses resulting from possible bending or pulling.
  • the entire structure is raised by the use of active reinforcements in a way that guarantees the non-decompression of concrete during its useful life in order to avoid cracks and their consequences from the point of view of durability.
  • the dimensions of the structure depend fundamentally on the actions that are applicable in each case, being possible due to its geometric simplicity to adapt them according to the different needs in one case or another. These can vary in a range of diameters between 5 and 15 meters and a draft of between 80 and 150 meters, with thicknesses that can vary from 20 to 100 centimeters.
  • the truncated cone part can be of different heights, depending on the wind turbine installed, wind conditions, etc. Its diameter is between the diameter of the lower cylinder and an upper diameter between 3 and 5m, depending on the wind turbine model.
  • the cylindrical section of the float In the section near the surface of the sea level the cylindrical section of the float can be maintained or a certain narrowing of the diameter can be carried out to achieve a structure more permeable to the effect of the waves. In the figure shown, the diameter is maintained throughout the cylinder.
  • the structure is fixed to the seabed by cable lines (15) arranged symmetrically and with its submerged weight minimized so that they acquire an almost rectilinear shape instead of an ostensibly catenary shape.
  • the float has a controlled flood and evacuation system to be able to adjust both the waterline and the initial tension in the fixing cables.
  • Figure 2 shows a detail of the lower end of the cylindrical float section by means of a hemispherical concrete cap (23), the thickness of which can be vary between 30 and 100cm, which allows the structure of active reinforcement tendons to continue and which in turn allows the pressure difference between the hydrostatic load of the water (22) and the internal pressure generated by the ballast (21) to be distributed ) in the form of compressions through concrete, eliminating possible bending stresses on the element and therefore eliminating the risk of traction and cracking.
  • FIG 3 A detail of the structure-wind turbine connection is shown in Figure 3, by means of a steel ring plate (31) supported at the end of the concrete structure (34) and fixed to it by the prestressing system itself, in which The annular steel plate acts as an anchor distribution plate (32). Said plate has perimeter overhangs that allow the connection of the wind turbine (33), so that a perfect union between concrete-plate and wind-generator plate is guaranteed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Transportation (AREA)
  • Wind Motors (AREA)
  • Foundations (AREA)

Abstract

La plataforma objeto de la presente invención se basa en una plataforma monolítica flotante de tipo SPAR, prefabricada en hormigón y precomprimida mediante armaduras activas. La estructura está formada por un tramo de geometría cilíndrica (13), que hace las funciones de elemento de flotación y otro superior, situado por encima de la superficie marina (12), de forma cilíndrica y/o troncocónica, que sirve para el soporte del aerogenerador. La fijación de la estructura al fondo marino se realiza mediante líneas 20 de cables, a través de elementos de lastre pesados o pilotes de succión (16), capaces de contrarrestar las componentes vertical y horizontal inducidas por los cables.

Description

ESTRUCTURA FLOTANTE DE HORMIGÓN PREFABRICADO PARA SOPORTE DE
AEROGENERADOR
El objeto principal de la invención se refiere a una estructura flotante construida con hormigón para el soporte de aerogeneradores de gran potencia. Se enmarca en el ámbito de las energías renovables, en concreto en el aprovechamiento de la energía eólica en el mar, planteando su uso en zonas marítimas de gran profundidad, mayor de ciento cincuenta metros. ANTECEDENTES
En el contexto que la tendencia global se decanta por el uso de las energías renovables, de entre ellas la tecnología referente a la extracción de energía eléctrica a partir del viento ha sufrido en un corto período de tiempo un importante impulso tecnológico y de l+D.
Los avances más significativos se han traducido, y siguen traduciéndose, en aerogeneradores con potencias mucho más elevadas que las de sus predecesores, más ligeros y con mayor vida útil. Éste hecho ha permitido el planteamiento y explotación de diseños de estructuras para el soporte de aerogeneradores situados en el mar, donde los costes relativos a la cimentación necesaria para estas estructuras son considerablemente más importantes que en las estructuras cimentadas en tierra (onshore) y que con la existencia de aerogeneradores de gran potencia, que por otra parte no requieren de estructuras de soporte significativamente más costosas que para sus predecesores, permiten desde un punto de vista comercial absorber los costes extra derivados del emplazamiento en el mar a cambio de una mayor potencia instalada.
Pese a las numerosas ventajas que la tecnología de la aerogeneración en el mar ha demostrado tener hasta el momento, éstas se han visto empañadas por la dificultad de hallar ubicaciones marinas con condiciones de viento favorables y a su vez con batimetrías que permitan la fijación de éstas estructuras en profundidades máximas del orden de los 50 metros a cierta distancia de la costa, donde sea posible la instalación de grandes parques eólicos marinos que no generen un importante impacto, principalmente visual desde el punto de vista de la aceptación social de la infraestructura.
Es en este punto donde cobra sentido el diseño de plataformas flotantes para el soporte de aerogeneradores, puesto que permiten la instalación de grandes parques eólicos alejados de la costa y con gran independencia de la profundidad de la zona considerada.
Hasta la fecha se han desarrollado algunas patentes en cuanto a diferentes diseños de plataformas flotantes para dicho fin, de las cuales cabe destacar las patentes WO2010106208 y WO2006132539, que por su simplicidad permiten garantizar la estabilidad del sistema sin necesidad de recurrir a elementos activos de control de estabilidad más allá de los propios relativos a los aerogeneradores.
La patente US20060165493 describe un diseño formado por 3 puntos de flotación diferenciados, con un sistema activo de transferencia de fluido de lastrado entre ellos que se traduce en importantes costos de mantenimiento, además del aumento de coste debido a la existencia de los múltiples puntos de flotación.
Otros diseños como los presentados en WO2010110329 y WO2010110330 mantienen una filosofía parecida al propuesto en WO2006132539, introduciendo métodos de instalación que permiten facilitar su colocación en el emplazamiento definitivo.
En todos los casos anteriores, el material base de la construcción es el acero, limitando el uso del hormigón a la concepción del peso de lastrado en algunos de ellos (WO2010110329 y WO2010110330) . DESCRIPCIÓN DE LA INVENCIÓN
La plataforma objeto de la presente invención se basa en una plataforma flotante de tipo SPAR, prefabricada en hormigón con geometrías cilindrica y troncocónica.
La estructura permite garantizar la estabilidad, adoptando ángulos máximos de escora del orden de 4o a 10°, perfectamente asumibles por los aerogeneradores existentes.
La principal novedad introducida respecto otras patentes existentes como la
WO2006132539 es la consideración del hormigón como material de construcción básico en dicha estructura.
Comparando el hormigón con el acero en ambientes de agresividad importante por cloruros, como es el caso del ambiente marino, el hormigón presenta una muy buena durabilidad, con una importante disminución de las tareas de inspección y mantenimiento, no siendo necesario el uso de pinturas especiales de protección ni de ánodos de sacrificio. Asimismo, pese a que el hormigón normal presenta una permeabilidad baja, se propone el uso de ciertas adiciones que permitan aumentar tanto la compacidad (impermeabilidad) como la resistencia final del hormigón.
La estabilidad del sistema se basa en la generación de un par estabilizador debido a la distancia entre el centro de carena (CdC) y el centro de gravedad (CdG) del sistema. A diferencia de otras soluciones como la propuesta en WO2010106208, donde la geometría juega un papel muy importante en la maximización de la distancia entre el CdG y el CdC, en este caso se ha previsto una geometría simple, que permita el hormigonado sin geometrías complejas ni elementos singulares, garantizando la separación necesaria entre CdG y CdC gracias al uso de materiales con una relación densidad/coste que permitan rebajar de forma drástica el CdG del sistema sin suponer un coste inviable para su ejecución, como pueden ser ciertos tipos de áridos.
La estructura está formada por un tramo inferior cilindrico hueco, que hace las funciones de elemento de flotación y otro superior, situado por encima de la superficie marina, de forma cilindrica y/o troncocónica, que sirve para el soporte del aerogenerador. En ambos tramos se prevé la disposición de distintas aberturas que conecten el interior de la estructura con el exterior, con sus correspondientes sistemas de apertura/sellado, para fines de construcción y/o mantenimiento.
Debido a la escasa resistencia del hormigón a los esfuerzos de tracción, y a que se trata de una estructura donde las acciones externas generan grandes esfuerzos de flexión, la estructura debe ser pretensada para evitar la descompresión del hormigón, evitando fallos por tracción así como las posibles fisuras que puedan afectar a la estanqueidad del sistema.
La base del tramo inferior presenta forma de hemiesfera a fin que la presión hidrostática asegure un buen confinamiento del hormigón, minimizando los esfuerzos de flexión y permitiendo un recorrido óptimo de las vainas para la armadura activa.
La unión entre el aerogenerador y la estructura de hormigón se resuelve mediante el remate en coronación de la estructura con una pletina anular de acero que permite la conexión entre ésta y la corona de giro de la góndola del aerogenerador. Adicionalmente esta pletina hace las funciones de placa de reparto para el pretensado de las armaduras activas previstas, de forma que queda perfectamente asegurada la unión hormigón-pletina-aerogenerador.
La fijación de la estructura al fondo marino se plantea realizarla mediante líneas de cables, tendiendo a evitar al máximo la deformación por peso propio que produce la típica forma de catenaria. Este efecto se prevé solucionarlo reduciendo el peso sumergido de los cables mediante adiciones sobre éstos, de forma que se compense parcialmente su peso propio con la flotación producida por las adiciones. El efecto que se busca conseguir es el de limitar la componente vertical sobre la estructura que induce la tensión a la que se encuentra sometido el cable. Adicionalmente, el hecho de minimizar la deformación del cable por peso propio, se consiguen mayores rigideces horizontales en los puntos de fijación de la estructura, minimizando sus desplazamientos.
Esta propiedad puede conseguirse mediante nuevos materiales poliméricos de los cuales, a diferencia del sistema propuesto, no se conocen muy bien sus características Teológicas a largo plazo ni sus propiedades frente a los esfuerzos de fatiga del material, por lo que la propuesta es una innovación desde el punto de vista de conseguir ciertas propiedades interesantes de nuevos materiales, evitando la incertidumbre que estos nos plantean.
Al minimizar su deformación por peso propio, éstos adquieren una forma casi- rectilínea que, a diferencia de los sistemas típicos con deformadas de los cables de tipo catenaria, provoca una reacción vertical importante en el punto de fijación sobre el lecho marino. Este hecho plantea la necesidad de disponer cimentaciones que permitan resistir dichas componentes verticales. Las cimentaciones planteadas deben ser de tipo lastre por peso propio o pilotes de succión, en función de las características geotécnicas del terreno que compone el fondo marino.
Adicionalmente, el propio diámetro del cilindro de flotación nos permite disponer de un par estabilizador del movimiento de torsión de la estructura a través del par de fuerzas introducido por la unión de los cables a ésta.
El sistema planteado permitirá mayores facilidades de construcción en serie respecto a las estructuras de acero convencionales, debido a la versatilidad de la producción a gran escala de elementos de hormigón, reduciendo el coste por MW instalado de forma muy significativa.
De igual forma que en las invenciones relacionadas anteriormente, la estructura puede ser remolcada durante su vida útil con fines de mantenimiento o relocalización de la misma.
DESCRIPCIÓN DE LAS FIGURAS
Seguidamente se describen brevemente las figuras que ayudan a comprender mejor la invención y que se encuentran directamente relacionada con la invención, presentadas a modo de ejemplo, sin ser limitantes de ésta.
FIG 1 : Esquema en alzado de la estructura flotante de hormigón para soporte de aerogenerador.
FIG 2: Esquema del detalle de la finalización del flotador mediante sección hemiesférica.
FIG 3: Esquema pletina de conexión estructura-aerogenerador. Como se observa en la figura 1 , la estructura está compuesta por un tramo superior troncocónico de hormigón (12), rematado superiormente por una pletina de acero (17) para la conexión con el aerogenerador (11).
La flotación del sistema se garantiza mediante un elemento cilindrico de hormigón (13) que presenta un cierto resguardo sobre la superficie media del nivel del mar y que se encuentra lastrado mediante el añadido de árido y agua en su parte inferior (14), rematado inferiormente mediante casquete hemiesférico (18) para asegurar que el hormigón de la zona trabaje fundamentalmente a compresión y no aparezcan fisuras debidas a esfuerzos de tracción resultantes de posibles flexiones o tiros. Toda la estructura se plantea mediante el uso de armaduras activas de forma que se garantice la no descompresión del hormigón durante su vida útil a fin de evitar fisuras y sus consecuencias desde el punto de vista de la durabilidad.
Las dimensiones de la estructura dependen fundamentalmente de las acciones que sean de aplicación en cada caso, siendo posible debido a su simplicidad geométrica adaptarlas según las diferentes necesidades en un caso u otro. Éstas pueden variar en un rango de diámetros de entre 5 y 15 metros y un calado de entre 80 y 150 metros, con espesores que pueden variar desde 20 a 100 centímetros. La parte troncocónica puede ser de diversas alturas, en función del aerogenerador instalado, condiciones de viento, etc. Su diámetro va comprendido entre el diámetro del cilindro inferior y un diámetro superior entre los 3 y 5m, en función del modelo de aerogenerador.
En el tramo cercano a la superficie del nivel del mar se puede mantener la sección cilindrica del flotador o realizar un cierto estrechamiento del diámetro para conseguir una estructura más permeable al efecto del oleaje. En la figura mostrada se mantiene el diámetro en todo el cilindro.
La fijación de la estructura al lecho marino se realiza mediante líneas de cables (15) dispuestas simétricamente y con su peso sumergido minimizado de forma que adquieran una forma casi rectilínea en lugar de una forma ostensiblemente de catenaria. El flotador posee de un sistema de inundación y evacuación controlada para poder ajusfar tanto la línea de flotación como la tensión inicial en los cables de fijación.
La fijación en el fondo marino (16) se plantea a través de elementos de lastre pesados o pilotes de succión, capaces de contrarrestar la importante componente vertical y horizontal inducidos por los cables en el fondo, a diferencia de los sistemas típicos de ancla o lastres poco pesados.
En la figura 2 se observa un detalle del remate inferior del tramo cilindrico de flotador mediante un casquete hemiesférico de hormigón (23), cuyo espesor puede variar entre los 30 y 100cm, que permite dar continuidad a los tendones de armaduras activas de la estructura y que a su vez permite distribuir la diferencia de presión entre la carga hidrostática del agua (22) y la presión interna generada por el lastre (21) en forma de compresiones a través del hormigón, eliminando posibles esfuerzos de flexión sobre el elemento y por lo tanto eliminando el riesgo de aparición de tracciones y fisuras.
En la figura 3 se muestra un detalle de la conexión estructura-aerogenerador, mediante una placa anular de acero (31) apoyada en el extremo de la estructura de hormigón (34) y fijada a ésta mediante el propio sistema de pretensado, en el cual la placa de acero anular hace las funciones de placa de reparto de los anclajes (32). Dicha placa presenta voladizos perimetrales que permiten la conexión del aerogenerador (33), de forma que se garantiza una unión perfecta entre placa-hormigón y placa-aerogenerador.

Claims

REIVINDICACIONES
1. -Estructura flotante para el soporte de aerogeneradores u otros elementos, caracterizado por ser una estructura prefabricada monolítica de hormigón armado y pretensado, con tramos cilindricos y troncocónicos de longitud total comprendida entre 1 10 y 320 metros, cuyo tramo inferior sumergido contiene el lastre.
2. -Estructura flotante hormigón de acuerdo a la reivindicación 1 , cuyos diámetros exteriores están comprendidos entre 2.8 y 15.2 metros y cuyos espesores están comprendidos entre 20 y 100 centímetros.
3. -Estructura flotante de acuerdo a la reivindicación 1 y 2, donde el estado tensional de compresión en la estructura de hormigón se alcance mediante el uso de armaduras activas.
4. -Estructura flotante de acuerdo a las reivindicaciones 1 , 2 y 3, donde la parte inferior del cilindro de flotación sea de forma hemiesférica y a través de la cual se dé continuidad a las armaduras activas.
5. -Estructura flotante de acuerdo a las reivindicaciones 1 , 2 y 3, donde la unión entre la estructura de hormigón y el aerogenerador se realice a través de una placa metálica que a su vez se fija al hormigón mediante su función de placa de reparto de anclajes.
6. -Estructura flotante de acuerdo a la reivindicación 1 y 2, donde los cables de fijación al lecho marino disponen de adiciones de material de baja densidad que compensa al menos el 50% de su peso sumergido.
PCT/ES2012/070884 2011-12-23 2012-12-19 Estructura flotante de hormigón prefabricado para soporte de aerogenerador WO2013093160A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147019154A KR20140128958A (ko) 2011-12-23 2012-12-19 풍력발전용 터빈을 지지하기 위한 부유식 프리캐스트-콘크리트 구조물
EP12859045.2A EP2796713B1 (en) 2011-12-23 2012-12-19 Floating precast-concrete structure for supporting a wind turbine
JP2014548115A JP6139559B2 (ja) 2011-12-23 2012-12-19 風力タービンを支持するプレキャストしたコンクリート製構造物
US14/310,384 US20140311058A1 (en) 2011-12-23 2014-06-20 Precast concrete floating structure for supporting a wind turbine
US14/795,288 US9238896B2 (en) 2012-12-19 2015-07-09 Floating structure for supporting a wind turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201132097 2011-12-23
ES201132097A ES2415767B2 (es) 2011-12-23 2011-12-23 Estructura flotante de hormigón prefabricado para soporte de aerogenerador

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/310,384 Continuation-In-Part US20140311058A1 (en) 2011-12-23 2014-06-20 Precast concrete floating structure for supporting a wind turbine

Publications (1)

Publication Number Publication Date
WO2013093160A1 true WO2013093160A1 (es) 2013-06-27

Family

ID=48667799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070884 WO2013093160A1 (es) 2011-12-23 2012-12-19 Estructura flotante de hormigón prefabricado para soporte de aerogenerador

Country Status (7)

Country Link
US (1) US20140311058A1 (es)
EP (1) EP2796713B1 (es)
JP (1) JP6139559B2 (es)
KR (1) KR20140128958A (es)
ES (1) ES2415767B2 (es)
PT (1) PT2796713T (es)
WO (1) WO2013093160A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9238896B2 (en) 2012-12-19 2016-01-19 Universitat Politècnica De Catalunya Floating structure for supporting a wind turbine
CN109137958A (zh) * 2018-10-24 2019-01-04 北京天杉高科风电科技有限责任公司 预应力海上单桩基础及其安装方法
US10337501B2 (en) 2014-11-26 2019-07-02 Saitec Offshore Technologies S.L.U. Floating platform for harnessing wind energy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015121371B4 (de) * 2015-12-08 2018-11-15 Aerodyn Consulting Singapore Pte Ltd Offshore-Windpark
KR102239547B1 (ko) 2021-01-12 2021-04-14 주식회사 에이스이앤티 해상 풍력발전 부유체의 밸러스팅 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021415A1 (en) * 1996-11-12 1998-05-22 H.B. Zachry Company Precast, modular spar system
JP2002188557A (ja) * 2000-12-18 2002-07-05 Mitsui Eng & Shipbuild Co Ltd 浮体式風力発電装置及びその設置方法
US20060165493A1 (en) 2003-01-06 2006-07-27 Erik Nim Wind turbine with floating foundation
WO2006132539A1 (en) 2005-06-06 2006-12-14 Norsk Hydro Asa Floating wind turbine installation
JP2009018671A (ja) * 2007-07-11 2009-01-29 Penta Ocean Construction Co Ltd 洋上風力発電のスパー型浮体構造およびその製造方法
WO2010106208A2 (es) 2009-03-17 2010-09-23 Apia Xxi, S.A. Plataforma flotante para la extracción de energía eólica
WO2010110330A1 (ja) 2009-03-24 2010-09-30 戸田建設株式会社 洋上風力発電設備及びその施工方法
WO2010110329A1 (ja) 2009-03-24 2010-09-30 戸田建設株式会社 洋上風力発電設備及びその施工方法
WO2012061710A2 (en) * 2010-11-04 2012-05-10 University Of Maine System Board Of Trustees Floating hybrid composite wind turbine platform and tower system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR498033A (fr) * 1918-04-20 1919-12-24 William Green Perfectionnements dans la construction de navires, bateaux et autres vaisseaux analogues
US3225500A (en) * 1962-07-17 1965-12-28 Richard P Martter Prestressed tendon anchor means
NL6405951A (es) * 1964-05-28 1965-11-29
US3537268A (en) * 1967-08-09 1970-11-03 Hans Christer Georgii Marine station and method for fabricating the same
JPS5546068U (es) * 1978-09-20 1980-03-26
JPS5853637B2 (ja) * 1979-10-29 1983-11-30 三井造船株式会社 コンクリ−ト製の浮体構造物
JPS5940194U (ja) * 1982-09-08 1984-03-14 シバタ工業株式会社 浮体係留装置
JP4476096B2 (ja) * 2004-10-22 2010-06-09 株式会社竹中工務店 大型高層風力発電所の建設方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021415A1 (en) * 1996-11-12 1998-05-22 H.B. Zachry Company Precast, modular spar system
JP2002188557A (ja) * 2000-12-18 2002-07-05 Mitsui Eng & Shipbuild Co Ltd 浮体式風力発電装置及びその設置方法
US20060165493A1 (en) 2003-01-06 2006-07-27 Erik Nim Wind turbine with floating foundation
WO2006132539A1 (en) 2005-06-06 2006-12-14 Norsk Hydro Asa Floating wind turbine installation
JP2009018671A (ja) * 2007-07-11 2009-01-29 Penta Ocean Construction Co Ltd 洋上風力発電のスパー型浮体構造およびその製造方法
WO2010106208A2 (es) 2009-03-17 2010-09-23 Apia Xxi, S.A. Plataforma flotante para la extracción de energía eólica
WO2010110330A1 (ja) 2009-03-24 2010-09-30 戸田建設株式会社 洋上風力発電設備及びその施工方法
WO2010110329A1 (ja) 2009-03-24 2010-09-30 戸田建設株式会社 洋上風力発電設備及びその施工方法
WO2012061710A2 (en) * 2010-11-04 2012-05-10 University Of Maine System Board Of Trustees Floating hybrid composite wind turbine platform and tower system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9238896B2 (en) 2012-12-19 2016-01-19 Universitat Politècnica De Catalunya Floating structure for supporting a wind turbine
US10337501B2 (en) 2014-11-26 2019-07-02 Saitec Offshore Technologies S.L.U. Floating platform for harnessing wind energy
CN109137958A (zh) * 2018-10-24 2019-01-04 北京天杉高科风电科技有限责任公司 预应力海上单桩基础及其安装方法

Also Published As

Publication number Publication date
PT2796713T (pt) 2017-07-03
EP2796713A4 (en) 2015-12-23
KR20140128958A (ko) 2014-11-06
JP6139559B2 (ja) 2017-05-31
US20140311058A1 (en) 2014-10-23
EP2796713A1 (en) 2014-10-29
EP2796713B1 (en) 2017-03-22
JP2015503060A (ja) 2015-01-29
ES2415767A1 (es) 2013-07-26
ES2415767B2 (es) 2014-06-04

Similar Documents

Publication Publication Date Title
ES2516590B1 (es) Estructura sumergible de soporte activo para torres de generadores y subestaciones o elementos similares, en instalaciones marítimas
EP2428443B1 (en) Installation method and recovery method for offshore wind turbine
JP5715152B2 (ja) 浮遊式電力生成設備
US9238896B2 (en) Floating structure for supporting a wind turbine
WO2018095304A1 (zh) 一种浮式风机的移动压载调平控制装置
ES2952964T3 (es) Estructura marítima para la cimentación de edificaciones y su método de instalación
ES2471071T3 (es) Dispositivo de soporte de un aerogenerador de producción de energía eléctrica en el mar, instalación de producción de energía eléctrica en el mar correspondiente
CN108248783B (zh) 一种海上风电潜式浮式基础的施工方法
ES2415767B2 (es) Estructura flotante de hormigón prefabricado para soporte de aerogenerador
ES2545553B1 (es) Plataforma flotante de aprovechamiento de energía eólica
CN108407987A (zh) 一种水上张拉的海上风电浮式基础及其施工方法
EP2463524B1 (en) Marine wind turbine whole machine
CN108454799B (zh) 一种海上风电浮式基础浮运施工方法
CN108407986B (zh) 一种可浮运的海上风电浮式基础及其施工方法
KR100900500B1 (ko) 넓은 분산 부유 구조물을 가진 해상 부유 풍력 발전 장치
CN208102275U (zh) 一种可浮运的海上风电浮式基础
CN106741689A (zh) 一种Spar型装配式预应力钢筋混凝土浮式海上风机基础
ES2876053A1 (es) Plataforma flotante de hormigon armado de aplicacion a la industria del sector de la eolica marina
CN207985139U (zh) 一种新型海上风电潜式浮式基础
CN211340375U (zh) 一种海上平台桥梁抗波浪浮托力锚固装置
CN108316335A (zh) 一种张紧式系泊潜式浮式基础及其施工方法
CN207987953U (zh) 一种张紧式系泊潜式浮式基础
CN207985140U (zh) 一种水上张拉的海上风电浮式基础
CN219277753U (zh) 一种抗风浪耐腐蚀水中灯桩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859045

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014548115

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012859045

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012859045

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147019154

Country of ref document: KR

Kind code of ref document: A