WO2012159721A1 - Verfahren und vorrichtung zur rissprüfung eines flugzeug- oder gasturbinen-bauteils - Google Patents
Verfahren und vorrichtung zur rissprüfung eines flugzeug- oder gasturbinen-bauteils Download PDFInfo
- Publication number
- WO2012159721A1 WO2012159721A1 PCT/EP2012/002115 EP2012002115W WO2012159721A1 WO 2012159721 A1 WO2012159721 A1 WO 2012159721A1 EP 2012002115 W EP2012002115 W EP 2012002115W WO 2012159721 A1 WO2012159721 A1 WO 2012159721A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- cracks
- damage
- gas turbine
- geometric data
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/0209—Low-coherence interferometers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P6/00—Restoring or reconditioning objects
- B23P6/002—Repairing turbine components, e.g. moving or stationary blades, rotors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/2441—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/9515—Objects of complex shape, e.g. examined with use of a surface follower device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P2700/00—Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
- B23P2700/01—Aircraft parts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49764—Method of mechanical manufacture with testing or indicating
- Y10T29/49769—Using optical instrument [excludes mere human eyeballing]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49863—Assembling or joining with prestressing of part
- Y10T29/49867—Assembling or joining with prestressing of part of skin on frame member
- Y10T29/49869—Assembling or joining with prestressing of part of skin on frame member by flexing
Definitions
- the invention relates to a method for crack inspection of an aircraft or gas turbine component and a device for crack inspection of an aircraft or gas turbine component.
- Aircraft components are exposed to high stress during operation. In addition to components made of composite materials, such as structural components or metallic components, such as suspension components, this can lead to a defective cracking, especially in the components of the aircraft engine. Similar damage patterns are also present in other gas turbines, such as stationary gas turbines. Combustor components are particularly affected by the formation of cracks in gas turbines.
- Cracks are local material separations within a structure or within a component. Cracking is typically a local event in the microstructure of the surface, which is usually caused by lattice defects in the microstructure or by cyclical operating loads. As a rule, cracks spread perpendicular to the normal stress. This spread is referred to as normal voltage controlled.
- cracks occur due to high thermal and mechanical stress.
- the cracking is caused by the prevailing high temperatures and, on the other hand, the vibrations transmitted to the combustion chamber from the upstream and downstream modules, the high-pressure compressor and the high-pressure turbine promote crack growth and the cracking.
- short-term thermal material stresses during starting of the gas turbine and possibly during the starting phase of the aircraft favor the formation of cracks.
- solid particles, such as sand and dust also contribute greatly to the cracking of combustion chamber components.
- the permanent thermal stresses during the operating phase of the gas turbine cause the geometric shape of the combustion chamber components to undergo a change.
- the main problem is to detect the cracks and geometry changes occurring during operation and to repair the components by suitable measures. Due to the individually different crack or damage characteristics, this is often difficult.
- Known methods of crack testing include a number of nondestructive testing methods.
- Presently used methods include, for example, the dye penetration method, the ultrasonic inspection, the eddy current inspection, the X-ray inspection and the magnetic particle inspection.
- the dye-penetrant method usually comprises at least the following five steps:
- the technical maintenance documents define the dimensions and measuring positions to be tested.
- the test items are measured by trained personnel using measuring utensils, such as a special measuring tape, and then the exact geometry data is documented.
- the currently used in the components used color penetration is a manual, very time-consuming process. With its many process steps, the dye penetration test has a significant influence on the process and throughput time of component maintenance. In addition, the reproducibility of the test due to the manually performed evaluation of the ads is not or only partially given. The Test quality is influenced by the human factor. Furthermore, the dye penetration test is a chemical, energy-intensive and thus environmentally harmful test procedure.
- the invention is therefore based on the object to provide an improved method and a corresponding device for crack inspection of an aircraft and / or gas turbine component.
- a method for crack testing of an aircraft or gas turbine component wherein the method has at least the following method steps: a) determination of geometric data of the component by means of an optical measuring method,
- the method according to the invention it is possible to automatically detect and mark the cracks and / or other damages of the aircraft or gas turbine component as well as to store the position of the cracks and / or other damages in relation to the component coordinate system.
- the findings may be followed by measures for component repair. Complex testing methods, in particular the very expensive dye penetration method, can be dispensed with. As a result, no manual inspection of the components is required in the crack detection and the elimination of the required for the dye penetration high energy demand (heating the cleaning baths and component drying) and the chemical substances (penetrant, cleaning agents and developers) makes a contribution to reducing the environmental impact. Overall, therefore, the component transit time can be reduced and beyond the process reliability and reproducibility is improved.
- the method preferably takes place on removed components. For example, as part of the maintenance or servicing engine components are removed from the aircraft engine, cleaned and then examined with the inventive method for cracks and / or other damage.
- Optical measuring methods include, for example, measuring methods based on visible light, infrared light, ultraviolet light or laser light. In view of the small dimensions to be determined, preference is given to those measuring methods which make use of the wave properties of the light, in particular interferometric methods, coherent light being preferred. Not belonging to the optical measuring methods are, for example, methods based on electron or X-rays, ultrasound or eddy current.
- the determined geometric data are preferably automatically compared with preferably mathematically predefined and stored features and / or desired contours and / or tolerances and / or damage patterns. Deviations of the component can be achieved by comparing the geometric data with predefined desired contours and / or specific component tolerances. can be identified and classified, or any damage that has occurred can be identified by comparison with typical damage patterns and / or comparison with requirements of the component maintenance documents.
- preliminary information about the component- such as, for example, the nominal component geometry-can serve to supply prior knowledge of the expected geometry data to the evaluation means.
- the evaluation means is thereby enabled to automatically decide whether or not damage to certain component areas can occur due to geometric reasons, for example, a bore should not be damaged or classified as such.
- the determined geometry data are additionally used for a measurement of the component.
- a measurement was usually carried out after the component inspection and meant an additional expense due to a large number of measuring positions on the component.
- the accuracy of the measurement results was also clearly dependent on the knowledge and the care of the executing staff.
- the method according to the invention is well suited for aircraft or gas turbine components which are used as the combustion chamber component of an aircraft engine.
- Combustor components are subject to high loads and the crack test is usually associated with high costs, which can be significantly reduced by the method according to the invention.
- the determination of the geometry data preferably takes place with the aid of an interferometry method.
- interferometry a measurement is made by utilizing the interference effect of light.
- a preferred interferometer for the method is the Michelson interferometer, in which coherent light is split and made to interfere with itself.
- the determination of the geometry data preferably takes place with the aid of white-light interferometry.
- White light interferometry is preferred for the detection of cracks and other damage, since it allows the surface of the components to be checked very precisely.
- the optical measuring method is performed at a distance in a range between 1 and 100 mm, preferably in a range between 10 and 50 mm from the surface of the component to an optical measuring device.
- a further preferred distance of 20 to 30 mm leads according to experience to good results.
- the evaluated geometry data are used to determine the need for repair and / or scope of the component.
- it can be determined immediately after the test procedure which repairs and / or processing steps are necessary in order to reprocess the component to such an extent that it complies with the usual requirements, for example the aviation certification and / or specific specifications of the engine manufacturer.
- the evaluated geometry data for a subsequent repair and / or processing of the component are uses.
- the geometry data can thus be used for an automated welding treatment.
- the positions of the cracks and / or other damage in the coordinate system of the component are already known by the crack inspection, so that can be automated in the repair process automated at the appropriate locations or otherwise reworked. Additional programming effort and thus unwanted manual process steps can be omitted in the course of a fully automated repair cycle and the component can be used relatively quickly.
- a device for crack testing of an aircraft or gas turbine component wherein the device has an optical measuring device and an electronic evaluation means and is set up to carry out the described method.
- the components can be checked in an advantageous manner according to the invention for cracks and other damage.
- the device preferably comprises a manipulation device, by means of which the measuring device and the component can be moved relative to one another.
- the component can be stationary and the measuring device is moved to and / or around the component, or the measuring device is fixed and the component is moved.
- the manipulation device preferably comprises a turntable on which the component can be rotated about its own axis for testing and a robot, whereby the knife apparatus can be automatically moved into a position favorable for an optimal result.
- the measuring Direction is preferably arranged on a linear axis, for example, realized by a linear unit, slidably disposed toward the component.
- the linear unit can be designed for example as a linear adjuster.
- the measuring device and the component are mutually movable, this is well suited for crack testing of different sized components, since the optimum working distance can be set component-specific.
- the measuring device is preferably moved aaptly into the best possible measuring position. Due to the component-specific different geometry deviations, a path correction of the measuring device takes place.
- This path correction can be realized, for example, with the aid of a distance sensor and / or by means of a software-side path correction, that is, by the alignment of the actual geometry with the nominal geometry of the component.
- a software-side path correction that is, by the alignment of the actual geometry with the nominal geometry of the component.
- an offline path correction takes place by means of an initial measurement travel and / or an online path correction during the measurement process.
- the optical measuring device thus preferably comprises a distance sensor which, with the aid of the control device, permits automatic online and / or offline adaptive path correction of the manipulation device.
- the evaluation means determine the geometry information based on predefined features and / or target contours and / or tolerances and / or damage patterns and / or learned rules and / or prior knowledge of the expected automatically evaluates the geometry information and uses it to detect and / or classify damage.
- the manipulation device comprises a robot arm and / or a turntable.
- the robot arm and / or the turntable the measuring device or the component can be automatically brought into the desired position.
- the device comprises an automated rack warehouse, in which the component and preferably in addition a workpiece carrier are stored.
- an automated rack warehouse in which the component and preferably in addition a workpiece carrier are stored.
- the transport of the component to a surveying position preferably takes place by means of an automated transport system which comprises a lifting unit and / or a lifting station.
- an automated transport system which comprises a lifting unit and / or a lifting station.
- the component after it has been automatically selected and removed, for example, from the shelf storage, can be easily transported on.
- a workpiece carrier is provided for the transport and / or for receiving the component. Thanks to the workpiece carrier, preferably in conjunction with a zero-point clamping system, the components in the system can be easily handled, precisely positioned, efficiently equipped and at the same time quickly referenced. In addition, the workpiece carrier offers the possibility of automated processing of the component in downstream processes without further reloading.
- the device comprises a mechanism which comprises one or more deflection mirrors and preferably has an endoscope attachment.
- These elements make it difficult to common component areas, which otherwise would be difficult or impossible to test, can be achieved by the method. For example, gaps between overlapping component areas or undercuts can thereby be examined.
- the device therefore preferably comprises a deflection mirror and / or an endoscope for the measuring device.
- the method with a resolution in a range between 1 to 50 ⁇ , more preferably 5 to 30 ⁇ , for example, about 10 to 20 ⁇ instead.
- the measuring field is preferably in a range between 1 to 50 times 1 to 50 mm 2 , more preferably in a range of 5 to 25 times 5 to 25, for example approximately 20 times 20 mm a .
- the measurement field can also be in a preferred range between 0.25 to 50 times 0.25 to 50 mm 2 , more preferably in a range from 1 to 15 times 1 to 15, for example about 3 times 3 mm 2 .
- FIG. 1 shows a schematic representation of a crack test on a component by means of an interferometry method
- Fig. 2 is an illustration of the method according to the invention for
- FIG. 1 shows an aircraft or gas turbine component 1, which is arranged on a workpiece carrier 9.
- the component 1 can be, for example, a CFRP component, for example a structural component or a metallic component.
- the component 1 can also come from a stationary gas turbine.
- the component 1 is a component of the combustion chamber of an aircraft engine.
- the surface of the combustion chamber component should be checked for the presence of possible defects, such as cracks 2, burns, deformations or other damage. Such a check is usually carried out as part of the maintenance of engine components.
- the combustion chamber components may only have cracks 2 to a certain extent.
- the permitted crack geometry for example, the maximum allowable size of the cracks 2 is prescribed.
- a crack test by the above-mentioned dye penetration method usually a crack test by the above-mentioned dye penetration method.
- the method is associated with the disadvantages described.
- the crack test of the combustion chamber component takes place according to the invention with the aid of an optical measuring method, preferably with the aid of an interferometry method.
- the white light interferometry is used.
- a measuring device 20 in particular an interferometer, is provided for this purpose.
- the measuring device 20 comprises a coherent light source 8, in particular a laser with a collimator 7 for providing parallel coherent light.
- the measuring device 20 comprises a beam splitter 4, a reference mirror 3 and a camera unit 6 with an objective unit 5.
- the combustor component to be tested and the reference mirror 3 become simultaneously with the coherent broadband light illuminated by the light source 8.
- the light waves in the beam splitter 4 are divided into two light packets.
- the combustion chamber component and the reference mirror 3 reflect the light waves, which in turn impinge on the camera unit 6 via the beam splitter 4.
- These interference patterns or brightness fluctuations are detected by the camera unit 6. In-phase and orderly clashes result in maximum constructive interference. If the wave packets arrive in phase, but offset in order and partially overlapping, a less pronounced constructive interference is obtained. If the wave packets hit the detector in succession, no interference occurs.
- the measured brightness fluctuations are evaluated by software.
- An evaluation means 14 used for the evaluation may comprise the camera unit 6 and / or one or more computers.
- geometric data are used to determine or generate geometry data.
- each pixel is assigned a height value, creating a so-called "point cloud", which allows the topography of the component surface to be determined at a surface roughness resolution and a measuring field of 0.3 times 0.3 mm 2 to 130 times 130 mm 2 are examined for damage, preferably the investigation with a resolution in a range between 1 to 50 ⁇ , more preferably 5 to 30 ⁇ , for example, about 10
- the measuring field is preferably in a range between 1 to 50 times 1 to 50 mm 2 , more preferably in a range of 5 to 25 times 5 to 25, for example, about 20 by 20 mm 2 .
- the measurement field is in a preferred range between 0.25 to 50 times 0.25 to 50 mm 2 , more preferably in a range of 1 to 15 times 1 to 15, for example about 3 times 3 mm 2 .
- Cracks 2 and / or other sometimes very small damages can be detected and identified.
- an automated comparison of the determined geometry data with storable desired contours and / or tolerances and / or typical damage images takes place.
- These desired contours and / or tolerances and / or typical damage patterns may be, for example, old geometry data originating from the same component 1 and stored at the last maintenance and crack inspection.
- the tolerances can be derived, for example, from aviation legal requirements, which makes it possible, following the method according to the invention, to have directly the information available, whether the component 1 complies with the specifications, or whether improvements are still necessary.
- Repairs can be, for example, the closing of cracks 2 by welding. The aim of the repair is to repair the component 1 so that it complies with the safety regulations and is thus able to fly again.
- the measured data are preferably evaluated in a connected computer cluster, which preferably comprises the evaluation means 14.
- the measured component surface is preferably first transformed by mathematical transformations into a plane and the surface curvature is calculated out.
- the computer or the software used is preferably set up such that it has certain characteristics or combination of features or surface properties which fulfill certain predefined conditions, for example the property "crack".
- the findings also known as damage images, can be displayed on a computer screen, for example, whereby the information about the position, ie the absolute position in the coordinate system used, is stored presented together with the findings on a computer screen, with "critical" findings, ie those requiring post-processing, are particularly marked.
- the determined geometric data are additionally used for a measurement of the component 1. This measurement is carried out according to the current state of the art usually manually following the crack test and represents a separate, time-consuming step. In contrast, an additional geometry measurement or an additional step is no longer required by the inventive method.
- the storage of the determined geometric data and the findings, such as cracks 2, burns or other damage, preferably takes place in the form of polygons and / or polygons.
- the geometry data which are initially in the form of a cloud of points as described, are transformed into a CAD model by a so-called “meshing” or “paving” process and by reverse engineering. This model can be used for further automated, preferably adaptively automated processing steps.
- the relevant component dimensions can already be (co) recorded within the scope of the crack test.
- Component dimensions to be documented according to the maintenance instructions are automatically stored and are preferably also available as a protocol.
- the measurement is preferably carried out at predefined measuring positions. which enables high reproducibility and process reliability of the measuring process.
- the measurement data are forwarded to one or more connected computers.
- the computer (s) are set up to evaluate the measurement data.
- the measurement data is stored in a database to enable long-term documentation. As a result, the change of the same component 1 over its lifetime can be observed.
- the components 1 usually undergo the maintenance processes several times in their lifetime, and the data obtained can thus be compared with the data from the previous maintenance.
- the computer used or the computer unit used is capable of transferring the collected measured values directly via a data interface into the electronic documentation system of the correspondingly assigned workshop.
- the specialist personnel can be shown any deviation from the nominal contour of the component 1 or exceedances of the permissible tolerances visually on a so-called "user interface.” This allows the skilled personnel to assess quickly and accurately, as with the maintenance of the component 1 on procedure is.
- the entire component inspection is fully automated.
- Such a fully automated component inspection which includes a crack test and a measurement of the components, is shown in FIG.
- Defining the repair scope eg "crack with weld” or “crack cluster with patch” is also done automatically.
- a “crack cluster” refers to a special crack structure in which many cracks are connected to each other at least at one point or locally close together with patch “repair the defective area is separated out of the component 1 and a replacement piece, the" patch ", also called” patch ", used in its place and connected to the component to be repaired l.
- the replacement piece is preferably made of a different than Entire no longer airworthy component, in which, however, at least the removed spare parts area still complies with aviation requirements.
- detected damages are classified on the basis of predefined damage features and / or tolerances and / or damage patterns, marked in the recorded measurement data and based thereon a suitable machining strategy (for example a welding treatment) can be defined.
- a suitable machining strategy for example a welding treatment
- a fully automated processing can be provided, in which the component 1 is repaired automatically at the defective locations, or a partially automated processing, in which by the method, for example, only an automated marking of the bodies to be repaired by means of a means of identification, further repair steps (such For example, welds) but still be performed manually.
- the component magazine 12 is part of the automated rack warehouse 13.
- the automated rack - 13 additionally includes a workpiece carrier magazine 11 in the workpiece carrier magazine 11 are workpiece carrier 9 stored.
- the individual workpiece carriers 9 may be suitable for single or multiple types of components 1.
- the automated warehouse 18 is followed by an automated transport system 18. This comprises a lifting station 19 on the shelf storage 13 and a lifting unit 17 on the turntable 16.
- the turntable 16 is part of a manipulation device 21, which also includes a robot arm 15.
- the robot arm 15 can be used to automatically bring a measuring device 20, which corresponds to the measuring device 20 from FIG. 1, and the component 1 into the desired position or measuring position.
- an evaluation means 14 Connected to the measuring device 20 is an evaluation means 14, which is used for the evaluation of the geometric data determined by the optical measuring method in the manner already described.
- control device 10 and / or a control device is provided, which is set up so that it controls the sequence of the method, controls and can run automatically.
- Control device 10 able to perform an in-process control.
- the control or control device 10 is preferably able to perform an online and / or offline control of the measuring process and in particular to perform a path correction.
- the combustion chamber component is stored in the automated rack storage 13.
- the control device 10 is preferably provided with the information about order prioritization and selection of the test method or of the test program and of the workpiece carrier 9 by reading in a bar code or a data matrix code.
- the combustion chamber component is to be checked fully automatically, a series of automated steps take place. It will initially a suitable for the combustion chamber component workpiece carrier 9 selected by the system and placed on the lifting station 19. After subsequent lowering of the lifting station 19, the outsourcing of the combustion chamber component takes place on the workpiece carrier 9. In this case, preferably via a mechanical interface between the workpiece carrier 9 and the lifting station 19, the fixation (eg clamping) of the component 1 in the workpiece carrier 9 is activated. About the transport system 18, the workpiece carrier 9 is moved with the component 1 to the lifting unit 17 and transported via the lifting unit 17 on the turntable 16. If necessary, it is also possible to manually equip the component 1 on the turntable 16 and manually select the test method or the test program on the control device 10.
- the robot arm 15 brings the measuring device 20 up to a defined distance of preferably 20 to 30 mm from the component surface.
- the robot arm has a linear unit for this purpose.
- the manipulation device 21 moves the measuring device 20 and the component 1 into the desired measuring positions.
- the control device 10 can be given certain preferred measuring methods or measuring programs which are part of the test method or test program and are suitable for the component 1 and other aircraft or gas turbine components 1.
- the control device 10 preferably stores which measuring method is to be performed with which measuring positions for which component 1.
- the distance sensor which is part of the optical measuring device 20, first determines geometry pre-information of the component 1 which is used to calibrate the actual and nominal values. Geometry of the component is used and based on a path correction of the manipulation device 21 allows.
- the turntable 16 moves the component 1 clocked past the measuring device 20. More preferably, the turntable 16 moves the component 1 continuously rotating past the measuring device 20.
- the clocked step length in the circumferential direction preferably corresponds to an image width, with the images preferably overlapping to completely detect the component surface.
- the individual images overlap by 0.1 to 10 mm, preferably 0.5 to 5 mm and more preferably 1 to 2 mm.
- the individual images may preferably also overlap by 0.01 to 5 mm, preferably 0.05 to 3 mm and more preferably 0.1 to 1 mm.
- the connected evaluation means 14 evaluates the images or geometry data.
- cracks 2 are preferably detected, which have a crack width which is at least 5 ⁇ , more preferably at least 20 ⁇ . It is also possible, furthermore, preferably to detect cracks 2 which have a crack width which is at least 1 ⁇ m, more preferably at least 10 ⁇ m. Damage is also identified and classified by the evaluation means 14. The results of these findings are displayable and can be viewed on demand, for example on a computer screen.
- the responsible specialist staff decides whether and, if so, which other maintenance measures are to be provided. This is done via a human-machine interface, a so-called “user interface.”
- a so-called “expert system” decides by means of predefined features and / or tolerances and / or rules and / or more typical
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Ein Verfahren zur Rissprüfung eines Flugzeug- oder Gasturbinen-Bauteils (1) wird offenbart, wobei das Verfahren mindestens die folgenden Verfahrensschritte aufweist: • a) Ermittlung von Geometriedaten des Bauteils (1) mit Hilfe eines optischen Messverfahrens, • b) Auswerten der Geometriedaten durch ein elektronisches Auswertemittel (14), wobei Risse (2) und/oder andere Beschädigungen automatisch erkannt und/oder klassifiziert werden, und die Position der Risse (2) und/oder die Position anderer Beschädigungen gespeichert werden. Eine entsprechende Vorrichtung wird auch offenbart.
Description
Verfahren und Vorrichtung zur Rissprüfung eines Flugzeug- oder
Gasturbinen-Bauteils
Die Erfindung betrifft ein Verfahren zur Rissprüfung eines Flugzeug- oder Gasturbinen-Bauteils und eine Vorrichtung zur Rissprüfung eines Flugzeug- oder Gasturbinen-Bauteils.
Flugzeugbauteile sind im Betrieb einer hohen Beanspruchung ausgesetzt. Neben Bauteilen aus Verbundwerkstoffen, wie beispielsweise Strukturbauteile oder metallische Bauteile, wie beispielsweise Fahrwerksbauteile, kann dies insbesondere bei den Bauteilen des Flugzeugtriebwerks zu einer schadhaften Rissbildung führen. Ähnliche Schadensbilder sind auch bei anderen Gasturbinen, beispielsweise den stationären Gasturbinen vorhanden. Brennkammerbauteile sind bei Gasturbinen besonders stark von der Rissbildung betroffen.
Risse sind lokale Materialtrennungen innerhalb einer Struktur oder innerhalb eines Bauteils. Die Rissentstehung ist in der Regel ein lokales Ereignis in der Mikrostruktur der Oberfläche, das in der Regel durch Gitterfehler im Mikrogefüge oder durch zyklische Betriebsbelastungen verursacht wird. Risse breiten sich im Regelfall senkrecht zur wirkenden Normalspannung aus . Diese Ausbreitung wird als normalspannungsgesteuert bezeichnet .
Im Falle von Brennkammerbauteilen entstehen Risse durch hohe thermische und mechanische Belastung. Die Rissbildung wird zum einen durch die vorherrschenden hohen Temperaturen verursacht und zum anderen fördern die auf die Brennkammer übertragenen Schwingungen aus den vor- und nachgeschalteten Modulen, dem Hochdruckverdichter und der Hochdruckturbine das Risswachstum
und die Rissbildung. Zudem begünstigen kurzzeitige thermische Materialspannungen während des Startens der Gasturbine und ggf. während der Startphase des Flugzeugs die Rissentstehung. In die Gasturbine eingesaugte feste Partikel, wie beispielsweise Sand und Staub, tragen ebenfalls stark zur Rissentstehung an Brennkammerkomponenten bei. Des Weiteren führen die dauerhaften thermischen Belastungen während der Betriebsphase der Gasturbine dazu, dass die geometrische Form der Brennkammerkomponenten eine Veränderung erfährt.
In der Instandhaltung von Flugzeug- und/oder Gasturbinen- Bauteilen, insbesondere in der Brennkammerinstandhaltung, besteht das Hauptproblem darin, die im Betrieb entstandenen Risse und Geometrieveränderungen zu detektieren und die Bauteile durch geeignete Maßnahmen zu reparieren. Aufgrund der individuell unterschiedlichen Riss- bzw. Beschädigungsausprägung gestaltet sich dies oft schwierig.
Bekannte Verfahren zur Rissprüfung umfassen eine Reihe von zerstörungsfreien Prüfverfahren. Derzeit eingesetzte Verfahren umfassen beispielsweise das Farbeindringverfahren, die Ultraschallprüfung, die Wirbelstromprüfung, die Röntgenprüfung und die Magnetpulverprüfung.
Die Mehrheit der Bauteile, insbesondere die Bauteile von Flugzeugtriebwerken, wie beispielsweise Brennkammerbauteile, werden mit Hilfe des Farbeindringverfahrens auf Risse geprüft.
Das Farbeindringverfahren umfasst dabei üblicherweise mindestens die folgenden fünf Arbeitsschritte:
1. Vorreinigung und Trocknung des Prüflings, um Verschmutzungen zwischen den Rissflanken zu beseitigen.
2. Auftragen des sogenannten Penetrants (Kriechöl mit fluoreszierenden Farbpigmenten), das in die Risse eindringt.
3. Zwischenreinigung (Entfernen des überschüssigen Penetrants) und Trocknung.
4. Auftragen des sogenannten Entwicklers (Pulver auf Kreide basis) , um die Risse zur Anzeige zu bringen.
5. Manuelle Auswertung der Anzeigen unter ultraviolettem Licht durch geschultes Personal. Dabei werden die Anzeigen (beispielsweise Risse) auf dem Prüfling markiert.
Im Anschluss an die Farbeindringprüfung wird eine Sichtkontrolle des Prüflings durchgeführt. Dabei wird manuell überprüft, ob es sich bei den Anzeigen tatsächlich um Risse handelt und ob die markierten Rissanzeigen innerhalb der zulässigen Toleranz liegen. Die Toleranzen ergeben sich aus den technischen Instandhaltungsunterlagen für das entsprechende Bauteil .
Im Anschluss an die Sichtkontrolle erfolgt die ebenfalls manuell durchgeführte Geometrievermessung des Prüflings. In den technischen Instandhaltungsunterlagen sind die zu prüfenden Maße und Messpositionen definiert. Durch geschultes Fachpersonal werden die Prüflinge mit Hilfe von Messutensilien, wie beispielsweise einem Spezialmaßband, vermessen und anschließend die genauen Geometriedaten dokumentiert.
Das aktuell bei den Bauteilen zur Anwendung kommende Farbeindringverfahren ist ein manuelles, sehr zeitaufwendiges Verfahren. Die Farbeindringprüfung hat mit ihren vielen Prozess- schritten einen signifikanten Einfluss auf die Prozess- und Durchlaufzeit der Bauteilinstandhaltung. Zudem ist die Reproduzierbarkeit der Prüfung aufgrund der manuell durchgeführten Auswertung der Anzeigen nicht oder nur bedingt gegeben. Die
Prüfqualität wird durch den menschlichen Faktor beeinflusst. Des Weiteren handelt es sich bei der Farbeindringprüfung um ein chemisches, energieintensives und damit umweltbelastendes Prüfverfahren .
Der Erfindung liegt demzufolge die Aufgabe zugrunde, ein verbessertes Verfahren und eine entsprechende Vorrichtung zur Rissprüfung eines Flugzeug- und/oder Gasturbinen-Bauteils bereitzustellen .
Die Erfindung löst diese Aufgabe mit den Merkmalen der unabhängigen Ansprüche. Weitere bevorzugte Ausgestaltungen der Erfindung sind den Zeichnungen, den Unteransprüchen und der zugehörigen Beschreibung zu entnehmen.
Zur Lösung der Aufgabe wird erfindungsgemäß ein Verfahren zur Rissprüfung eines Flugzeug- oder Gasturbinen-Bauteils vorgeschlagen, wobei das Verfahren mindestens die folgenden Verfahrensschritte aufweist: a) Ermittlung von Geometriedaten des Bauteils mit Hilfe eines optischen Messverfahrens,
b) Auswerten der Geometriedaten durch ein elektronisches Auswertemittel, wobei Risse und/oder andere Beschädigungen automatisch erkannt und/oder klassifiziert werden und die Position der Risse und/oder anderer Beschädigungen gespeichert wird.
Durch das erfindungsgemäße Verfahren ist es möglich, die Risse und/oder andere Beschädigungen des Flugzeug- oder Gasturbinen- Bauteils automatisch zu erfassen und zu kennzeichnen sowie die Position der Risse und/oder anderer Beschädigungen im Bezug auf das Bauteilkoordinatensystem zu speichern. Entsprechend
des Befunds schließen sich ggf. Maßnahmen zur Bauteilreparatur an. Auf aufwendige Prüfungsverfahren, insbesondere auf das sehr aufwendige Farbeindringverfahren, kann verzichtet werden. Dadurch ist bei der Rissprüfung keine manuelle Inspektion der Bauteile erforderlich und der Wegfall des für das Farbeindringverfahren benötigten hohen Energiebedarfs (Erwärmung der Reinigungsbäder und Bauteiltrocknung) sowie der chemischen Substanzen (Penetrant, Reinigungsmittel und Entwickler) leistet einen Beitrag zur Reduzierung der Umweltbelastung. Insgesamt kann somit die Bauteildurchlaufzeit verringert werden und darüber hinaus wird die Prozesssicherheit und Reproduzierbarkeit verbessert . Das Verfahren findet bevorzugt an ausgebauten Bauteilen statt . Beispielsweise werden im Rahmen der Wartung oder Instandhaltung Triebwerksbauteile aus dem Flugzeugtriebwerk ausgebaut, gesäubert und dann mit dem erfindungsgemäßen Verfahren auf Risse und/oder andere Beschädigungen untersucht.
Optische Messverfahren umfassen dabei beispielsweise Messverfahren, beruhend auf sichtbarem Licht, Infrarotlicht , ultraviolettem Licht oder Laserlicht. Im Hinblick auf die geringen zu bestimmenden Abmessungen sind solche Messverfahren bevorzugt, die sich die Welleneigenschaften des Lichts zu Nutze machen, insbesondere interferometrische Verfahren, wobei kohärentes Licht bevorzugt wird. Nicht zu den optischen Messverfahren gehörend sind beispielsweise Verfahren, die auf Elektronen- oder Röntgenstrahlen, Ultraschall oder Wirbelstrom beruhen.
Vorzugsweise werden die ermittelten Geometriedaten automatisch mit vorzugsweise mathematisch vordefinierten und hinterlegten Merkmalen und/oder Soll -Konturen und/oder Toleranzen und/oder Schadensbildern verglichen. Dabei können Abweichungen des Bauteils durch den Vergleich der Geometriedaten mit vordefinierten Soll -Konturen und/oder bestimmten Bauteiltoleranzen er-
kannt und klassifiziert werden, oder aufgetretene Schäden durch den Vergleich mit typischen Schadensbildern und/oder dem Vergleich mit Vorgaben der Bauteilinstandhaltungsunterlagen erkannt werden.
Weiter bevorzugt können Vorabinformationen über das Bauteil - wie beispielsweise die nominale Bauteilgeometrie - dazu dienen, Vorkenntnisse über die zu erwartenden Geometriedaten dem Auswertemittel zuzuführen. In Verbindung mit einem sogenannten „Matching"-Prozess wird es dem Auswertemittel dadurch ermöglicht, automatisch zu entscheiden, ob Schäden an bestimmten Bauteilbereichen geometrisch bedingt auftreten können oder nicht . Beispielsweise soll eine Bohrung keinen Schaden darstellen bzw. nicht als solcher klassifiziert werden.
Vorzugsweise werden die ermittelten Geometriedaten zusätzlich für eine Vermessung des Bauteils genutzt. Eine Vermessung erfolgte üblicherweise im Anschluss an die Bauteilinspektion und bedeutete aufgrund einer Vielzahl von Messpositionen am Bauteil einen zusätzlichen Aufwand. Dabei war die Genauigkeit der Messergebnisse auch deutlich abhängig von dem Wissen und der Sorgfalt des durchführenden Personals. Durch Nutzung der für die Rissprüfung ohnehin notwendigen Geometriedaten zur Vermessung der Bauteile kann der Aufwand für die Bauteilinstandhaltung weiter vermindert und die Qualität gesteigert werden.
Gut geeignet ist das erfindungsgemäße Verfahren für solche Flugzeug- oder Gasturbinen-Bauteile, die als Brennkammerbauteil eines Flugzeugtriebwerks eingesetzt werden. Brennkammerbauteile unterliegen hohen Belastungen und die Rissprüfung ist üblicherweise mit hohem Aufwand verbunden, der durch das erfindungsgemäße Verfahren deutlich reduziert werden kann.
Vorzugsweise erfolgt die Ermittelung der Geometriedaten mit Hilfe eines Interferometrieverfahrens . Bei der Interferometrie erfolgt eine Messung durch Ausnutzung des Interferenz-Effekts von Licht. Ein dabei bevorzugtes Interferometer für das Verfahren ist das Michelson-Interferometer, bei dem kohärentes Licht aufgespalten und mit sich selbst zur Interferenz gebracht wird. Durch das Nutzen von Interferometrie können die Risse und/oder Beschädigungen gut detektiert werden.
Vorzugsweise erfolgt die Ermittlung der Geometriedaten mit Hilfe von Weißlichtinterferometrie . Weißlichtinterferometrie ist zur Detektion von Rissen und anderen Beschädigungen bevorzugt, da mit ihr die Oberfläche der Bauteile hochgenau geprüft werden kann.
Vorzugsweise wird das optische Messverfahren mit Abstand in einem Bereich zwischen l und 100 mm, bevorzugt in einem Bereich zwischen 10 und 50 mm von der Oberfläche des Bauteils zu einer optischen Messvorrichtung durchgeführt. Ein weiter bevorzugter Abstand von 20 bis 30 mm führt erfahrungsgemäß zu guten Ergebnissen.
Vorzugsweise werden die ausgewerteten Geometriedaten zur Feststellung des Reparaturbedarfs und/oder -umfangs des Bauteils genutzt. Dadurch ist nach dem Prüfungsverfahren unmittelbar feststellbar, welche Reparaturen und/oder Bearbeitungsschritte notwendig sind, um das Bauteil wieder soweit aufzubereiten, dass es den gängigen Erfordernissen, beispielsweise der luftfahrtrechtlichen Zulassung und/oder bestimmten Vorgaben der Triebwerkshersteller entspricht.
Vorzugsweise werden die ausgewerteten Geometriedaten für eine anschließende Reparatur und/oder Bearbeitung des Bauteils ge-
nutzt. Beispielsweise können so die Geometriedaten für eine automatisierte Schweißbehandlung verwendet werden. Die Positionen der Risse und/oder anderer Beschädigungen in dem Koordinatensystem des Bauteils sind bereits durch die Rissprüfung bekannt, so dass beim Reparaturverfahren automatisiert an den entsprechenden Stellen geschweißt oder anderweitig nachbearbeitet werden kann. Zusätzlicher Programmieraufwand und damit ungewünschte manuelle Prozessschritte können im Zuge eines vollautomatisierten Reparaturdurchlaufs entfallen und das Bauteil kann verhältnismäßig schnell wieder eingesetzt werden.
Zur Lösung der Aufgabe wird ferner eine Vorrichtung zur Riss- prüfung eines Flugzeug- oder Gasturbinen-Bauteils vorgeschlagen, wobei die Vorrichtung eine optische Messvorrichtung und ein elektronisches Auswertemittel aufweist und zur Durchführung des beschriebenen Verfahrens eingerichtet ist.
Durch die Vorrichtung können die Bauteile in erfindungsgemäßer vorteilhafter Art und Weise auf Risse und andere Beschädigungen hin überprüft werden.
Vorzugsweise umfasst die Vorrichtung dazu eine Manipulationsvorrichtung, mittels derer die Messvorrichtung und das Bauteil relativ zueinander bewegbar sind. Dabei kann einerseits das Bauteil stationär sein und die Messvorrichtung wird an und/oder um das Bauteil bewegt, oder die Messvorrichtung ist fest und das Bauteil wird bewegt. Schließlich ist es auch möglich, dass das Bauteil und die Messvorrichtung eine Bewegung vollziehen. So umfasst die Manipulationsvorrichtung vorzugsweise einen Drehtisch, auf dem das Bauteil zur Prüfung um seine eigene Achse gedreht werden kann und einen Roboter, wodurch die Messervorrichtung automatisiert in eine für ein optimales Ergebnis förderliche Position bewegt werden kann. Die Messvor-
richtung ist dabei bevorzugt auf einer linearen Achse, beispielsweise realisiert durch eine Lineareinheit, zu dem Bauteil hin verschiebbar angeordnet. Die Lineareinheit kann beispielsweise als Linearversteller ausgeführt sein. Durch eine solche verschiebbar angeordnete Messvorrichtung können präzise Höhenbilder erzeugt werden.
Dadurch, dass die Messvorrichtung und das Bauteil zueinander bewegbar sind, ist diese auch zur Rissprüfung von unterschiedlich großen Bauteilen gut geeignet, da der optimale Arbeitsabstand bauteilspezifisch eingestellt werden kann.
Vorzugsweise wird während der Prüfung die Messvorrichtung a- daptiv in die bestmögliche Messposition bewegt. Aufgrund der bauteilindividuell unterschiedlichen Geometrieabweichungen erfolgt eine Bahnkorrektur der MessVorrichtung . Diese Bahnkorrektur kann beispielsweise mit Hilfe eines Abstandssensors und/oder durch eine softwareseitige Bahnkorrektur, also durch den Abgleich der Ist-Geometrie mit der Nominal-Geometrie des Bauteils, realisiert werden. Vorzugsweise erfolgt eine Offline-Bahnkorrektur mittels einer initialen Messfahrt und/oder eine Online-Bahnkorrektur während des Messvorgangs.
Vorzugsweise umfasst die optische Messeinrichtung somit einen Abstandssensor, der mit Hilfe der Steuerungseinrichtung eine automatische Online- und/oder Offline-adaptive Bahnkorrektur der Manipulationsvorrichtung ermöglicht.
Zudem ist es bevorzugt, dass das Auswertemittel die Geometrie - Informationen anhand vordefinierter Merkmale und/oder Soll- Konturen und/oder Toleranzen und/oder Schadensbildern und/oder erlernter Regeln und/oder Vorkenntnisse über die zu erwarten-
den Geometrieinformationen automatisch auswertet und zur Erkennung und/oder Klassifikation von Beschädigungen nutzt.
Vorzugsweise umfasst die Manipulationsvorrichtung einen Roboterarm und/oder einen Drehtisch. Durch den Roboterarm und/oder den Drehtisch kann die Messvorrichtung oder auch das Bauteil automatisiert in die gewünschte Position gebracht werden.
Vorzugsweise umfasst die Vorrichtung ein automatisiertes Regallager, in welchem das Bauteil und vorzugsweise zusätzlich ein Werkstückträger gelagert werden. Durch das bevorzugt in modularer Bauweise aufgebaute Regallager kann die Bauteilzuführung und -lagerung verbessert und noch weiter automatisiert werden. Der Transport des Bauteils zu einer Vermessungsposition erfolgt vorzugsweise durch ein automatisiertes Transport - system welches eine Hubeinheit und/oder eine Hubstation umfasst. Über das Transportsystem kann das Bauteil, nachdem es beispielsweise aus dem Regallager automatisch ausgewählt und entnommen wurde, in einfacher Weise weiter transportiert werden.
Vorzugsweise ist für den Transport und/oder zur Aufnahme des Bauteils ein Werkstückträger vorgesehen. Durch den Werkstückträger, vorzugsweise in Verbindung mit einem Nullpunktspann- system, können die Bauteile in der Anlage leicht gehandhabt, exakt positioniert, effizient gerüstet und gleichzeitig schnell referenziert werden. Außerdem bietet der Werkstückträger die Möglichkeit, das Bauteil ohne weitere Umspannvorgänge in nachfolgenden Prozessen automatisiert zu bearbeiten.
Vorzugsweise umfasst die Vorrichtung eine Mechanik, die einen oder mehrere Umlenkspiegel umfasst und bevorzugt einen Endos- kopaufsatz aufweist. Durch diese Elemente können schwer zu-
gängliche Bauteilbereiche, die sonst nur schwer oder gar nicht geprüft werden können, durch das Verfahren erreicht werden. Beispielsweise können dadurch Zwischenräume von sich überlappenden Bauteilbereichen oder Hinterschnitte untersucht werden. Vorzugsweise umfasst die Vorrichtung demnach einen Umlenkspiegel und/oder ein Endoskop für die Messvorrichtung.
Vorzugsweise findet das Verfahren mit einer Auflösung in einem Bereich zwischen 1 bis 50 μπι, weiter bevorzugt 5 bis 30 μπι, beispielsweise ungefähr 10 bis 20 μπι statt. Das Messfeld liegt vorzugsweise in einem Bereich zwischen 1 bis 50 mal 1 bis 50 mm2, weiter bevorzugt in einem Bereich von 5 bis 25 mal 5 bis 25, beispielsweise ungefähr 20 mal 20 mma . Das Messfeld kann auch in einem bevorzugten Bereich zwischen 0,25 bis 50 mal 0,25 bis 50 mm2, weiter bevorzugt in einem Bereich von 1 bis 15 mal 1 bis 15, beispielsweise ungefähr 3 mal 3 mm2, liegen.
Die Erfindung wird im Folgenden anhand bevorzugter Ausführungsformen unter Bezugnahme auf die beigefügten Figuren erläutert. Dabei zeigt:
Fig. 1 eine schematische Darstellung einer Rissprüfung an einem Bauteil mittels eines Interferometrieverfah- rens ;
Fig. 2 eine Darstellung des erfindungsgemäßen Verfahrens zur
Rissprüfung sowie eine erfindungsgemäße Vorrichtung zur Durchführung des Verfahrens .
In der Figur l ist ein Flugzeug- oder Gasturbinen-Bauteil l dargestellt, welches auf einem Werkstückträger 9 angeordnet ist. Das Bauteil 1 kann beispielsweise ein CFK-Bauteil, beispielsweise ein Strukturbauteil oder ein metallisches, bei-
spielsweise ein Fahrwerksbauteil sein. Des Weiteren kann das Bauteil 1 auch aus einer stationären Gasturbine stammen. In diesem Ausführungsbeispiel handelt es sich bei dem Bauteil 1 um ein Bauteil aus der Brennkammer eines Flugzeugtriebwerkes. Die Oberfläche des Brennkammerbauteils soll auf das Vorhandensein möglicher Defekte, beispielsweise Risse 2, Verbrennungen, Deformationen oder andere Beschädigungen überprüft werden. Eine solche Überprüfung erfolgt üblicherweise im Rahmen der Instandhaltung von Triebwerksbauteilen. Es existieren luftfahrt- rechtliche Standards und Anforderungen an die Bauteilbeschaffenheit. So dürfen die Brennkammerbauteile beispielsweise nur in bestimmtem Umfang Risse 2 aufweisen. Auch die erlaubte Rissgeometrie, beispielsweise die maximal zulässige Größe der Risse 2 ist vorgeschrieben. Um diesen Anforderungen gerecht zu werden, erfolgt üblicherweise eine Rissprüfung durch das eingangs erwähnte Farbeindringverfahren. Das Verfahren ist jedoch mit den beschriebenen Nachteilen verbunden.
Um auf das aufwendige Farbeindringverfahren verzichten zu können, erfolgt die Rissprüfung des Brennkammerbauteils erfindungsgemäß unter Zuhilfenahme eines optischen Messverfahrens, bevorzugt unter Zuhilfenahme eines Interferometrieverfahrens . Vorzugsweise findet dabei die Weißlichtinterferometrie Anwendung. Wie in der Figur 1 dargestellt, wird dazu eine Messvorrichtung 20, insbesondere ein Interferometer vorgesehen. Die Messvorrichtung 20 umfasst dabei eine kohärente Lichtquelle 8, insbesondere einen Laser mit einem Kollimator 7 zur Bereitstellung von parallelem kohärentem Licht. Des Weiteren umfasst die Messvorrichtung 20 einen Strahlteiler 4, einen Referenzspiegel 3 sowie eine Kameraeinheit 6 mit Objektiveinheit 5.
Das zu prüfende Brennkammerbauteil und der Referenzspiegel 3 werden gleichzeitig mit dem kohärenten, breitbandigen Licht
von der Lichtquelle 8 beleuchtet. Dazu werden die Lichtwellen in dem Strahlteiler 4 in zwei Lichtpakete aufgeteilt. Das Brennkammerbauteil und der Referenzspiegel 3 reflektieren die Lichtwellen, die wiederum über den Strahlteiler 4 auf die Kameraeinheit 6 treffen. Dabei kommt es dann zur Entstehung von Interferenzmustern, wenn die Weglänge zum Bauteil l mit der Weglänge zum Referenzspiegel 3 übereinstimmen. Diese Interferenzmuster oder Helligkeitsschwankungen werden von der Kameraeinheit 6 detektiert . Beim phasengleichen und ordnungsrichtigen Aufeinandertreffen kommt es zur maximalen konstruktiven Interferenz. Kommen die Wellenpakete phasenrichtig, aber ord- nungsverschoben und teilüberlappend zusammen, erhält man eine weniger ausgeprägte konstruktive Interferenz. Treffen die Wellenpakete hintereinander auf den Detektor, so entsteht keine Interferenz .
Die gemessenen Helligkeitsschwankungen werden von einer Software ausgewertet. Ein zur Auswertung verwendetes Auswertemittel 14 kann dabei die Kameraeinheit 6 und/oder einen bzw. mehrere Computer umfassen. Unter Einsatz mathematischer Algorithmen, die den Helligkeitsschwankungen Höhenwerte zuordnen, werden durch die Messung Geometriedaten ermittelt bzw. erzeugt. Mathematisch wird jedem Pixel ein Höhenwert zugeordnet, wodurch eine sog. „Punktewolke" erzeugt wird. Dadurch kann die Topographie der Bauteiloberfläche mit einer Auflösung im Bereich der Oberflächenrauhigkeit bestimmt werden. Die Bauteil - Oberfläche kann mit einer Auflösung von 0,3 μπ bis 130 μτη und einem Messfeld von 0,3 mal 0,3 mm2 bis 130 mal 130 mm2 auf Beschädigungen untersucht werden, vorzugsweise findet die Untersuchung mit einer Auflösung in einem Bereich zwischen 1 bis 50 μπι, weiter bevorzugt 5 bis 30 μπι, beispielsweise ungefähr 10 bis 20 μπι statt. Das Messfeld liegt vorzugsweise in einem Bereich zwischen 1 bis 50 mal 1 bis 50 mm2, weiter bevorzugt in
einem Bereich von 5 bis 25 mal 5 bis 25, beispielsweise ungefähr 20 mal 20 mm2. In diesem Ausführungsbeispiel liegt das Messfeld in einem bevorzugten Bereich zwischen 0,25 bis 50 mal 0,25 bis 50 mm2, weiter bevorzugt in einem Bereich von 1 bis 15 mal 1 bis 15, beispielsweise ungefähr 3 mal 3 mm2. Risse 2 und/oder andere zum Teil sehr kleine Beschädigungen können de- tektiert und identifiziert werden. Vorzugsweise erfolgt ein automatisierter Vergleich der ermittelten Geometriedaten mit hinterlegbaren Soll -Konturen und/oder Toleranzen und/oder typischen Schadensbildern. Diese Soll-Konturen und/oder Toleranzen und/oder typischen Schadensbilder können beispielsweise alte Geometriedaten sein, die von demselben Bauteil 1 stammen und bei der letzten Instandhaltung und Rissprüfung gespeichert wurden. Die Toleranzen können beispielsweise aus luftfahrt - rechtlichen Vorgaben abgeleitet sein, wodurch es ermöglicht wird, im Anschluss an das erfindungsgemäße Verfahren direkt die Informationen zur Verfügung zu haben, ob das Bauteil 1 den Vorgaben entspricht, oder ob noch Ausbesserungen nötig sind. Ausbesserungen können dabei beispielsweise das Verschließen von Rissen 2 durch Schweißungen sein. Ziel der Ausbesserung ist, das Bauteil 1 so zu reparieren, dass es den Sicherheitsbestimmungen entspricht und damit wieder flugfähig ist.
Im Zuge des Prüfungsverfahrens werden die Messdaten vorzugsweise in einem angeschlossenen Rechnercluster ausgewertet, den das Auswertemittel 14 vorzugsweise mit umfasst . Dabei wird die gemessene Bauteiloberfläche vorzugsweise zunächst durch mathematische Umformungen in eine Ebene transformiert und die Oberflächenkrümmung herausgerechnet. Der verwendete Computer bzw. die verwendete Software ist dazu bevorzugt so eingerichtet, dass sie bestimmte Merkmale bzw. Kombination von Merkmalen oder Oberflächeneigenschaften, welche bestimmte vordefinierte Bedingungen erfüllen, beispielsweise die Eigenschaft „Riss"
oder „Beschädigung" zuordnet und die Koordinaten dieses Befundes speichert. Dadurch können die Befunde, auch Schadensbilder genannt, beispielsweise auf einem Computerbildschirm angezeigt werden, wobei die Information über die Position - also die Absolutposition im verwendeten Koordinatensystem - gespeichert wird. Vorzugweise kann das Bauteil 1 zusammen mit den Befunden auf einem Computerbildschirm dargestellt werden, wobei „kritische" Befunde, also solche, die eine Nachbearbeitung erfordern, besonders gekennzeichnet sind. Die ermittelten Geometriedaten werden zusätzlich für eine Vermessung des Bauteils 1 genutzt. Diese Vermessung erfolgt nach aktuellem Stand der Technik üblicherweise manuell im Anschluss an die Rissprüfung und stellt einen separaten, zeitaufwendigen Arbeitsschritt dar. Im Gegensatz dazu ist durch das erfindungsgemäße Verfahren eine zusätzliche Geometrievermessung bzw. ein zusätzlicher Arbeitsschritt nicht mehr erforderlich.
Die Speicherung der ermittelten Geometriedaten und der Befunde, wie Risse 2, Verbrennungen oder andere Beschädigungen, erfolgt vorzugsweise in Form von Polygonzügen und/oder Polygonen. Die Geometriedaten, die wie beschrieben zunächst in Form einer Punktewolke vorliegen, werden durch einen sog. „Meshing" oder „Paving" Prozess und durch Flächenrückführung in ein CAD- Modell transformiert. Dieses Modell kann für weitere automatisierte, vorzugsweise adaptiv automatisierte Bearbeitungs- schritte genutzt werden.
Durch das optische Messverfahren können die relevanten Bauteilmaße bereits im Rahmen der Rissprüfung (mit- ) erfasst werden. Bauteilmaße, die gemäß der Instandhaltungsvorschriften zu dokumentieren sind, werden automatisch abgespeichert und stehen vorzugsweise auch als Protokoll zur Verfügung. Die Maßbestimmung erfolgt dabei vorzugsweise an vordefinierten Messpo-
sitionen, wodurch eine hohe Reproduzierbarkeit und Prozesssicherheit des Messvorgangs erreicht werden kann. Anschließend werden die Messdaten an einen oder mehrere angeschlossene Computer weitergeleitet. Der oder die Computer sind dazu eingerichtet die Messdaten auszuwerten. Vorzugsweise werden die Messdaten in einer Datenbank abgelegt, um eine Langzeitdokumentation zu ermöglichen. Dadurch kann die Veränderung desselben Bauteils 1 über seine Lebenszeit beobachtet werden. Die Bauteile 1 durchlaufen in ihrer Lebenszeit in der Regel mehrere Male die Instandhaltungsprozesse und die ermittelten Daten können somit mit den Daten von der vorherigen Instandhaltung verglichen werden.
Vorzugsweise ist der eingesetzte Computer bzw. die eingesetzte Rechnereinheit in der Lage, die gesammelten Messwerte direkt über eine Datenschnittstelle in das elektronische Dokumentationssystem der entsprechend zugeordneten Werkstatt zu übertragen. Vorzugsweise kann dem Fachpersonal jegliche Abweichung von der Soll -Kontur des Bauteils 1 bzw. Überschreitungen der zulässigen Toleranzen optisch auf einem sog. „User Interface" dargestellt werden. Dadurch kann das Fachpersonal schnell und messgenau einschätzen, wie mit der Instandhaltung des Bauteils 1 weiter zu verfahren ist .
Vorzugsweise erfolgt die gesamte Bauteilinspektion vollautomatisiert. Eine derartige vollautomatisierte Bauteilinspektion, die eine Rissprüfung und eine Vermessung der Bauteile umfasst, ist in der Figur 2 dargestellt. Das Festlegen des Reparaturum- fangs (beispielsweise „Riss mit Schweißnaht" oder „Riss- Cluster mit Patch") erfolgt dabei ebenfalls automatisiert. Ein „Riss-Cluster" bezeichnet eine spezielle Rissstruktur, bei der viele Risse an zumindest einer Stelle miteinander verbunden sind oder lokal dicht zusammen liegen. Bei einer „Riss-Cluster
mit Patch" Reparatur wird der schadhafte Bereich aus dem Bauteil 1 herausgetrennt und ein Ersatzstück, der „Patch", auch „Flicken" genannt, an dessen Stelle eingesetzt und mit dem zu reparierenden Bauteil l verbunden. Das Ersatzstück stammt vorzugsweise aus einem anderen, als Ganzes nicht mehr flugtauglichen Bauteil, bei dem jedoch zumindest der entfernte Ersatzstückbereich den luftfahrtrechtlichen Anforderungen noch entspricht .
Wie beschrieben, werden detektierte Beschädigungen anhand von vordefinierten Beschädigungsmerkmalen und/oder Toleranzen und/oder Schadensbildern klassifiziert, in den aufgenommenen Messdaten markiert und darauf basierend kann eine geeignete Bearbeitungsstrategie (beispielsweise eine Schweißbehandlung) festgelegt werden. Dabei kann eine vollautomatisierte Bearbeitung vorgesehen werden, bei der das Bauteil 1 an den schadhaften Stellen automatisch repariert wird, oder eine teilautomatisierte Bearbeitung, bei der durch das Verfahren beispielsweise nur eine automatisierte Markierung der zu reparierenden Stellen mit Hilfe eines Kennzeichnungsmittels erfolgt, weitere Reparaturschritte (wie beispielsweise Schweißungen) jedoch noch manuell durchgeführt werden.
Das zu prüfende Bauteil 1 befindet sich zunächst mit anderen zu prüfenden Bauteilen 1 in dem Bauteilmagazin 12. Das Bauteilmagazin 12 ist Teil des automatisierten Regallagers 13. Neben dem Bauteilmagazin 12 umfasst das automatisierte Regal - lager 13 zusätzlich ein Werkstückträgermagazin 11. Im Werkstückträgermagazin 11 werden Werkstückträger 9 gelagert. Die einzelnen Werkstückträger 9 können sich für einzelne oder mehrere Arten von Bauteilen 1 eignen.
An das Regallager 13 schließt sich ein automatisiertes Transportsystem 18 an. Dieses umfasst eine Hubstation 19 am Regallager 13 sowie eine Hubeinheit 17 am Drehtisch 16. Der Drehtisch 16 ist Teil einer Manipulationseinrichtung 21, welche auch einen Roboterarm 15 umfasst . Durch den Roboterarm 15 kann eine Messvorrichtung 20, welcher der Messvorrichtung 20 aus der Figur 1 entspricht, und das Bauteil 1 automatisiert in die gewünschte Position bzw. Messposition gebracht werden.
Mit der Messvorrichtung 20 verbunden ist ein Auswertemittel 14, welches für die Auswertung der durch das optische Messverfahren ermittelten Geometriedaten in der bereits beschriebenen Art und Weise eingesetzt wird.
Weiterhin ist eine Steuerungseinrichtung 10 und/oder eine Regelungsreinrichtung vorgesehen, die so eingerichtet ist, dass sie den Ablauf des Verfahrens steuert, regelt und automatisch ablaufen lassen kann. Vorzugsweise ist die Regelungs- bzw.
Steuerungseinrichtung 10 in der Lage eine In-Prozess-Regelung durchzuführen. Die Regelungs- bzw. Steuerungseinrichtung 10 ist hier bevorzugt in der Lage eine Online- und/oder Offline- Regelung des Messprozesses durchzuführen und insbesondere eine Bahnkorrektur durchzuführen.
Das Brennkammerbauteil wird in dem automatisierten Regallager 13 gelagert. Der Steuerungseinrichtung 10 wird die Information über Auftragspriorisierung und Auswahl des Prüfungsverfahrens bzw. des Prüfprogramms und des Werkstückträgers 9 vorzugsweise über Einlesen eines Barcodes oder eines Data Matrix Codes ü- bermittelt .
Soll das Brennkammerbauteil vollautomatisch geprüft werden, laufen eine Reihe von automatisierten Schritten ab. Es wird
zunächst ein für das Brennkammerbauteil geeigneter Werkstückträger 9 vom System ausgewählt und auf der Hubstation 19 platziert. Nach anschließendem Absenken der Hubstation 19 erfolgt die Auslagerung des Brennkammerbauteils auf den Werkstückträger 9. Dabei wird bevorzugt über eine mechanische Schnittstelle zwischen Werkstückträger 9 und der Hubstation 19 die Fixierung (beispielsweise Klemmung) des Bauteils 1 im Werkstückträger 9 aktiviert. Über das Transportsystem 18 wird der Werkstückträger 9 mit dem Bauteil 1 zur Hubeinheit 17 bewegt und über die Hubeinheit 17 auf den Drehtisch 16 transportiert. Bei Bedarf besteht auch die Möglichkeit das Bauteil 1 manuell auf dem Drehtisch 16 zu rüsten und das Prüfverfahren bzw. das Prüfprogramm an der Steuerungseinrichtung 10 manuell auszuwählen.
Nachdem über eine Schnittstelle zwischen Werkstückträger 9 und Drehtisch 16 ein entsprechendes Signal an die Steuereinrichtung 10 gesendet wurde, beginnt das Ermitteln der Geometriedaten. Der Roboterarm 15 führt die Messeinrichtung 20 auf einen definierten Abstand von vorzugsweise 20 bis 30 mm an die Bauteiloberfläche heran. Vorzugsweise weist der Roboterarm dazu eine Lineareinheit auf. Durch die Manipulationseinrichtung 21 werden die Messeinrichtung 20 und das Bauteil 1 in die gewünschten Messpositionen bewegt. Dabei können der Steuereinrichtung 10 bestimmte bevorzugte Messverfahren bzw. Messprogramme vorgegeben werden, die Teil des Prüfungsverfahrens bzw. Prüfprogramms sind und für das Bauteil 1 und andere Flugzeugoder Gasturbinen-Bauteile l geeignet sind. Vorzugweise ist in der Steuereinrichtung 10 hinterlegt, welches Messverfahren mit welchen Messpositionen für welches Bauteil 1 durchzuführen ist. Der Abstandssensor, der Teil der optischen Messeinrichtung 20 ist, ermittelt zunächst Geometrievorinformationen des Bauteils 1, die zur Kalibrierung der Ist- mit der Nominal-
Geometrie des Bauteils dient und basierend darauf eine Bahnkorrektur der Manipulationsvorrichtung 21 ermöglicht. Vorzugsweise bewegt der Drehtisch 16 das Bauteil 1 an der Messeinrichtung 20 getaktet vorbei. Weiter bevorzugt bewegt der Drehtisch 16 das Bauteil 1 kontinuierlich drehend an der Messeinrichtung 20 vorbei. Bei einer getakteten Rotation entspricht die getaktete Schrittlänge in Umfangsrichtung vorzugsweise einer Bildbreite, wobei sich die Bilder zur vollständigen Erfassung der Bauteiloberfläche vorzugsweise überlappen. Vorzugsweise überlappen sich die einzelnen Bilder um 0,1 bis 10 mm, bevorzugt 0,5 bis 5 mm und weiter bevorzugt 1 bis 2 mm. Die einzelnen Bilder können sich vorzugsweise auch um 0,01 bis 5 mm, bevorzugt 0,05 bis 3 mm und weiter bevorzugt 0,1 bis 1 mm überlappen. Das angeschlossene Auswertemittel 14 wertet die Bilder bzw. Geometriedaten aus. Dabei werden vorzugsweise Risse 2 detektiert, die eine Rissbreite aufweisen, die mindestens 5 μτη, weiter bevorzugt mindestens 20 μπι beträgt. Es können weiterhin auch vorzugsweise Risse 2 detektiert werden, die eine Rissbreite aufweisen, die mindestens 1 μτη, weiter bevorzugt mindestens 10 μτη beträgt . Auch Beschädigungen werden durch das Auswertemittel 14 identifiziert und klassifiziert. Die Ergebnisse dieser Befunde sind anzeigbar und können bei Bedarf beispielsweise auf einem Computerbildschirm eingesehen werden.
Anhand der Ergebnisse entscheidet das verantwortliche Fachpersonal, ob und ggf. welche weiteren Instandhaltungsmaßnahmen vorgesehen werden. Dies geschieht über eine Mensch-Maschinen- Schnittstelle, ein sog. „User Interface". Vorzugsweise entscheidet ein sog. „Expertensystem" durch vordefinierte Merkmale und/oder Toleranzen und/oder Regeln und/oder typischer
Schadensbilder und/oder anhand früherer Entscheidungen eigenständig innerhalb einer automatisierten Reparaturprozesskette, welche weiteren Instandhaltungsmaßnahmen auf Basis der Befunde erforderlich sind und leitet diese entsprechend ein.
Bezugszeichenliste :
1 Bauteil
2 Riss
3 Referenzspiegel
4 Strahlteiler
5 Obj ektiveinheit
6 Kameraeinheit
7 Kollimator
8 Lichtquelle
9 Werkstückträger
10 Steuerungseinrichtung
11 Werkstückträgermagazin
12 Bauteilmagazin
13 Regallager
14 Auswertemittel
15 Roboterarm
16 Drehtisch
17 Hubeinheit
18 TransportSystem
19 Hubstation
0 Messvorrichtung
1 Manipulationseinrichtung
Claims
Ansprüche :
Verfahren zur Rissprüfung eines Flugzeug- oder Gasturbinen- Bauteils (1) , dadurch gekennzeichnet, dass es mindestens die folgenden Verfahrensschritte aufweist : a) Ermittlung von Geometriedaten des Bauteils (1) mit Hilfe eines optischen Messverfahrens,
b) Auswerten der Geometriedaten durch ein elektronisches Auswertemittel (14) , wobei Risse (2) und/oder andere Beschädigungen automatisch erkannt und/oder klassifiziert werden und die Position der Risse (2) und/oder anderer Beschädigungen gespeichert wird.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die ermittelten Geometriedaten automatisch mit vorzugsweise mathematisch vordefinierten und hinterlegten Merkmalen und/oder Soll -Konturen und/oder Toleranzen und/oder Schadensbildern verglichen werden.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die ermittelten Geometriedaten zusätzlich für eine Vermessung des Bauteils (1) genutzt werden.
Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass es sich bei dem Flugzeug- oder Gasturbinen-Bauteil (1) um ein Brennkammerbauteil eines Flugzeugtriebwerks handelt.
Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Ermittlung der Geometriedaten mit Hilfe eines Interferometrieverfahrens erfolgt.
6. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Ermittlung der Geometriedaten mit Hilfe von eißlichtinterferometrie erfolgt.
7. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die ausgewerteten Geometriedaten zur Feststellung des Reparaturbedarfs und/oder -umfangs des Bauteils (1) genutzt werden.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die ausgewerteten Geometriedaten für eine anschließende, vorzugsweise automatisierte Reparatur und/oder Bearbeitung des Bauteils (1) genutzt werden.
9. Vorrichtung zur Rissprüfung eines Flugzeug- oder Gasturbinen-Bauteils (1) , dadurch gekennzeichnet, dass die Vorrichtung eine optische Messvorrichtung (20) und ein elektronisches Auswertemittel (14) aufweist und zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 8 eingerichtet ist .
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Vorrichtung eine Manipulationsvorrichtung (21) umfasst, mittels derer die Messvorrichtung (20) und das Bauteil (1) relativ zueinander bewegbar sind.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Manipulationsvorrichtung (21) einen Roboterarm (15) und/oder einen Drehtisch (16) umfasst.
12. Vorrichtung nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass die Vorrichtung ein automatisiertes Regallager (13) umfasst, in welchem das Bauteil (1) und vor-
zugsweise zusätzlich ein Werkstückträger (9) , gelagert wird .
13. Vorrichtung nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass die Vorrichtung einen Umlenkspiegel und/oder ein Endoskop für die Messvorrichtung (20) umfasst.
14. Vorrichtung nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass das Auswertemittel (14) die Geometrieinformationen anhand vordefinierter Merkmale und/oder Soll- Konturen und/oder Toleranzen und/oder Schadensbildern und/oder erlernter Regeln und/oder Vorkenntnisse über die zu erwartenden Geometrieinformationen automatisch auswertet und zur Erkennung und/oder Klassifikation von Beschädigungen nutzt.
15. Vorrichtung nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, dass die optische Messeinrichtung (20) einen Abstandssensor umfasst, der mit Hilfe der Steuerungseinrichtung (10) eine automatische Online- und/oder Offline- adaptive Bahnkorrektur der Manipulationsvorrichtung (21) ermöglicht .
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG2013083076A SG194871A1 (en) | 2011-05-24 | 2012-05-16 | Method and device for checking cracks in an airplane or gas turbine component |
EP12723113.2A EP2715322B1 (de) | 2011-05-24 | 2012-05-16 | Verfahren und vorrichtung zur rissprüfung eines flugzeug- oder gasturbinen-bauteils |
CN201280025288.7A CN103562712B (zh) | 2011-05-24 | 2012-05-16 | 用于检测在飞机部件或燃气涡轮部件中的裂纹的方法和设备 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011103003A DE102011103003A1 (de) | 2011-05-24 | 2011-05-24 | Verfahren und Vorrichtung zur Rissprüfung eines Flugzeug- oder Gasturbinen-Bauteils |
DE102011103003.8 | 2011-05-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012159721A1 true WO2012159721A1 (de) | 2012-11-29 |
Family
ID=46148819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2012/002115 WO2012159721A1 (de) | 2011-05-24 | 2012-05-16 | Verfahren und vorrichtung zur rissprüfung eines flugzeug- oder gasturbinen-bauteils |
Country Status (6)
Country | Link |
---|---|
US (1) | US9719774B2 (de) |
EP (1) | EP2715322B1 (de) |
CN (1) | CN103562712B (de) |
DE (1) | DE102011103003A1 (de) |
SG (1) | SG194871A1 (de) |
WO (1) | WO2012159721A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9719774B2 (en) | 2011-05-24 | 2017-08-01 | Lufthansa Technik Ag | Method for detecting cracks in an aircraft or gas turbine component |
DE102016224049A1 (de) | 2016-12-02 | 2018-06-07 | Lufthansa Technik Ag | Verfahren und Einrichtung zur Schadensvermessung eines hohlen Flugzeug- oder Gasturbinen-Bauteils |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201307832A (zh) * | 2011-08-01 | 2013-02-16 | Hon Hai Prec Ind Co Ltd | 模仁成型面檢測方法 |
DE102011114541A1 (de) * | 2011-09-30 | 2013-04-04 | Lufthansa Technik Ag | Endoskopiesystem und korrespondierendesVerfahren zur Untersuchung von Gasturbinen |
DE102012221782A1 (de) | 2012-11-28 | 2014-05-28 | Lufthansa Technik Ag | Verfahren und Vorrichtung zur Reparatur eines Flugzeug- und/oder Gasturbinen-Bauteils |
US9607370B2 (en) * | 2014-01-15 | 2017-03-28 | The Boeing Company | System and methods of inspecting an object |
US20160102554A1 (en) * | 2014-10-08 | 2016-04-14 | Caterpillar Inc. | Inspection and qualification for remanufacturing of compressor wheels |
CN104764609A (zh) * | 2015-04-03 | 2015-07-08 | 西北工业大学 | 一种航空发动机主燃烧室的综合光学测量平台 |
DE102015220525B4 (de) | 2015-10-21 | 2023-06-29 | Lufthansa Technik Aktiengesellschaft | Vorrichtung und Verfahren zur Bearbeitung eines Bauteils |
DE102015120660A1 (de) * | 2015-11-27 | 2017-06-01 | Airbus Defence and Space GmbH | Luftfahrzeuginspektionssystem |
CN105915843A (zh) * | 2016-04-20 | 2016-08-31 | 国网上海市电力公司 | 一种断路器内视检测装置及其检测工艺 |
CN107782731B (zh) * | 2016-08-31 | 2021-08-03 | 西门子能源有限公司 | 用于维护零部件表面受损的机械设备的方法 |
DE102016216895B4 (de) | 2016-09-06 | 2019-02-28 | Lufthansa Technik Ag | Verfahren zur eindeutigen Positionszuordnung und Identifizierung einer Turbinenschaufel |
FR3066176B1 (fr) * | 2017-05-15 | 2019-05-03 | Safran Aircraft Engines | Moyeu d'helice a motif deformable et systeme pour la detection d'anomalies affectant ledit moyeu |
DE102017209878A1 (de) * | 2017-06-12 | 2018-12-13 | Siemens Aktiengesellschaft | Vorrichtung zur beschleunigten Inspektion von einem Hohlraum, insbesondere von Hitzeschildelementen in einer Brennkammer |
JP7007139B2 (ja) * | 2017-09-20 | 2022-01-24 | オリンパス株式会社 | 内視鏡装置、内視鏡システム及び検査方法 |
JP6541742B2 (ja) * | 2017-10-13 | 2019-07-10 | 三菱重工業株式会社 | 風車翼の補修方法 |
US11608756B2 (en) | 2018-07-17 | 2023-03-21 | General Electric Company | Service apparatus for use with rotary machines |
US10755401B2 (en) * | 2018-12-04 | 2020-08-25 | General Electric Company | System and method for work piece inspection |
CN110103856B (zh) * | 2018-12-22 | 2020-05-19 | 朱云 | 汽车,火车,地铁以及飞机自动找出故障修理方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5563417A (en) * | 1993-10-20 | 1996-10-08 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" | Process and apparatus for automatically characterising, optimising and checking a crack detection analysis method |
US6195891B1 (en) * | 1999-04-26 | 2001-03-06 | Ge Aviation Service Operation | Method for identification and repair of indications in hardware |
DE10010019C1 (de) * | 2000-03-02 | 2001-08-16 | Siemens Ag | Verfahren zur optoelektronischen Zustandsüberwachung rotierender Laufräder von Schienenfahrzeugen |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US781385A (en) * | 1904-05-09 | 1905-01-31 | Simon E Williams | Sanitary attachment for telephone-transmitters. |
US4340306A (en) * | 1980-02-04 | 1982-07-20 | Balasubramanian N | Optical system for surface topography measurement |
US5257088A (en) * | 1992-03-27 | 1993-10-26 | Laser Technology, Inc. | Apparatus and method for nondestructive inspection of a vehicle |
US5430935A (en) * | 1993-07-14 | 1995-07-11 | Yaworsky; Chester E. | Method for repairing a combustion chamber assembly |
GB9523240D0 (en) | 1995-11-14 | 1996-01-17 | Secr Defence | Damage sensors |
DE19642980C1 (de) * | 1996-10-18 | 1998-08-13 | Mtu Muenchen Gmbh | Verfahren zur Instandsetzung verschlissener Schaufelspitzen von Verdichter- und Turbinenschaufel |
DE19708582A1 (de) * | 1997-03-03 | 1998-09-10 | Bauer Ernst & Sohn Gmbh Co Kg | Qualitätskontrolle für Kunststeine |
US6028670A (en) * | 1998-01-19 | 2000-02-22 | Zygo Corporation | Interferometric methods and systems using low coherence illumination |
DE19924607A1 (de) * | 1999-05-28 | 2000-11-30 | Siemens Ag | Inspektionsvorrichtung für eine Ringbrennkammer einer Gasturbine und Verfahren zur Inspektion einer Ringbrennkammer einer Gasturbine |
US6195168B1 (en) * | 1999-07-22 | 2001-02-27 | Zygo Corporation | Infrared scanning interferometry apparatus and method |
US6597460B2 (en) * | 2000-05-19 | 2003-07-22 | Zygo Corporation | Height scanning interferometer for determining the absolute position and surface profile of an object with respect to a datum |
DE10214984B4 (de) * | 2002-04-04 | 2006-01-19 | Eads Deutschland Gmbh | Aktorik- und Sensoriksystem für Verbundstrukturen |
JP4104924B2 (ja) * | 2002-07-08 | 2008-06-18 | 東レエンジニアリング株式会社 | 光学的測定方法およびその装置 |
US6915236B2 (en) * | 2002-11-22 | 2005-07-05 | General Electric Company | Method and system for automated repair design of damaged blades of a compressor or turbine |
US6969821B2 (en) * | 2003-06-30 | 2005-11-29 | General Electric Company | Airfoil qualification system and method |
US20070039175A1 (en) * | 2005-07-19 | 2007-02-22 | General Electric Company | Methods for repairing turbine engine components |
US7301165B2 (en) * | 2005-10-24 | 2007-11-27 | General Electric Company | Methods and apparatus for inspecting an object |
CA2665259A1 (en) * | 2006-01-09 | 2007-07-19 | Surface Technology Holdings, Ltd. | Method of improving the properties of a repaired component and a component improved thereby |
DE102009004661A1 (de) * | 2009-01-12 | 2010-07-15 | Rolls-Royce Deutschland Ltd & Co Kg | Vorrichtung zur Reparatur der Schaufeln von BLISK-Trommeln mittels Laserstrahlauftragsschweißen |
JP2010185692A (ja) * | 2009-02-10 | 2010-08-26 | Hitachi High-Technologies Corp | ディスク表面検査装置、その検査システム及びその検査方法 |
JP2010217124A (ja) * | 2009-03-19 | 2010-09-30 | Panasonic Corp | 形状測定装置及び方法 |
US8269980B1 (en) * | 2009-05-11 | 2012-09-18 | Engineering Synthesis Design, Inc. | White light scanning interferometer with simultaneous phase-shifting module |
FR2945630B1 (fr) * | 2009-05-14 | 2011-12-30 | Airbus France | Procede et systeme d'inspection a distance d'une structure |
DE102011103003A1 (de) | 2011-05-24 | 2012-11-29 | Lufthansa Technik Ag | Verfahren und Vorrichtung zur Rissprüfung eines Flugzeug- oder Gasturbinen-Bauteils |
US9310317B2 (en) * | 2012-01-25 | 2016-04-12 | The Boeing Company | Automated system and method for tracking and detecting discrepancies on a target object |
-
2011
- 2011-05-24 DE DE102011103003A patent/DE102011103003A1/de not_active Ceased
-
2012
- 2012-05-16 SG SG2013083076A patent/SG194871A1/en unknown
- 2012-05-16 CN CN201280025288.7A patent/CN103562712B/zh active Active
- 2012-05-16 WO PCT/EP2012/002115 patent/WO2012159721A1/de unknown
- 2012-05-16 EP EP12723113.2A patent/EP2715322B1/de active Active
- 2012-05-24 US US13/479,316 patent/US9719774B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5563417A (en) * | 1993-10-20 | 1996-10-08 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" | Process and apparatus for automatically characterising, optimising and checking a crack detection analysis method |
US6195891B1 (en) * | 1999-04-26 | 2001-03-06 | Ge Aviation Service Operation | Method for identification and repair of indications in hardware |
DE10010019C1 (de) * | 2000-03-02 | 2001-08-16 | Siemens Ag | Verfahren zur optoelektronischen Zustandsüberwachung rotierender Laufräder von Schienenfahrzeugen |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9719774B2 (en) | 2011-05-24 | 2017-08-01 | Lufthansa Technik Ag | Method for detecting cracks in an aircraft or gas turbine component |
DE102016224049A1 (de) | 2016-12-02 | 2018-06-07 | Lufthansa Technik Ag | Verfahren und Einrichtung zur Schadensvermessung eines hohlen Flugzeug- oder Gasturbinen-Bauteils |
WO2018100144A1 (de) | 2016-12-02 | 2018-06-07 | Lufthansa Technik Ag | Verfahren und einrichtung zur schadensvermessung eines hohlen flugzeug- oder gasturbinen-bauteils |
Also Published As
Publication number | Publication date |
---|---|
CN103562712A (zh) | 2014-02-05 |
US9719774B2 (en) | 2017-08-01 |
DE102011103003A1 (de) | 2012-11-29 |
EP2715322A1 (de) | 2014-04-09 |
US20120297600A1 (en) | 2012-11-29 |
SG194871A1 (en) | 2013-12-30 |
CN103562712B (zh) | 2017-09-15 |
EP2715322B1 (de) | 2020-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2715322B1 (de) | Verfahren und vorrichtung zur rissprüfung eines flugzeug- oder gasturbinen-bauteils | |
DE102015119240B3 (de) | Automatisches detektieren und robotergestütztes bearbeiten von oberflächendefekten | |
DE102014212246B3 (de) | Verfahren und Vorrichtung zur Qualitätssicherung | |
DE102014208768B4 (de) | Verfahren und Vorrichtung zur Qualitätssicherung | |
WO2014082947A1 (de) | Verfahren und vorrichtung zur reparatur eines flugzeug- und/oder gasturbinen-bauteils | |
EP2150362B1 (de) | Verfahren zur erkennung und klassifizierung von oberflächenfehlern auf stranggegossenen brammen | |
DE102011114541A1 (de) | Endoskopiesystem und korrespondierendesVerfahren zur Untersuchung von Gasturbinen | |
EP3432266A1 (de) | Verfahren und vorrichtung zum erkennen von fehlstellen | |
EP3140062A1 (de) | Verfahren zum prüfen eines niets | |
EP3417237B1 (de) | Referenzplatte und verfahren zur kalibrierung und/oder überprüfung eines deflektometrie-sensorsystems | |
EP2083260A2 (de) | Vorrichtung und Verfahren zur Untersuchung der Oberfläche eines Bauteils | |
WO2020212489A1 (de) | Computer-implementiertes verfahren zur bestimmung von defekten eines mittels eines additiven fertigungsprozesses hergestellten objekts | |
DE10036741A1 (de) | Verfahren und Kontrollsystem zur Kontrolle der Beschichtungsqualität von Werkstücken | |
DE102018214280A1 (de) | Inspektionssystem und Verfahren zum Korrigieren eines Bildes für eine Inspektion | |
DE102016103055A1 (de) | Verfahren zum Bearbeiten eines Werkstücks | |
EP3775765B1 (de) | Vorrichtung und verfahren zur oberflächenanalyse von bauteilen mit kühlfluidöffnungen | |
EP3548839A1 (de) | Verfahren und einrichtung zur schadensvermessung eines hohlen flugzeug- oder gasturbinen-bauteils | |
DE102015220525B4 (de) | Vorrichtung und Verfahren zur Bearbeitung eines Bauteils | |
EP3911944B1 (de) | Verfahren und vorrichtung zur boroskopinspektion | |
WO2022167022A1 (de) | Verfahren zum prüfen eines bauteils einer strömungsmaschine | |
WO2019229136A1 (de) | Herstellungsverfahren für eine antriebseinrichtung und prüfeinrichtung | |
EP4328543B1 (de) | Verfahren zur beurteilung des ergebnisses einer an einem werkstück durch partikelstrahlen durchgeführten oberflächenbehandlung | |
DE102018211284A1 (de) | Vorrichtung und Verfahren zum Entfernen von Beschichtungsmaterial aus Kühlfluidöffnungen eines Bauteils | |
DE102008007738B4 (de) | Verfahren zur Qualitätskontrolle eines Karosseriebauteils | |
EP4170331A1 (de) | Verfahren und messgerät zur messung von messobjekten mittels röntgenfluoreszenz |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12723113 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |